NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



MULTI PLE CRI TERION OPTIM ZATION W TH
STATI STI CAL  CONSI DERATI ON

by
M R Lightner* &S. W Director**

DRC- 18- 22-79
Sept enber 1979

*Bel | Tel ephone Labs
North Andover, MA

**Department of Electrical Engineering
Carnegi e-Mel 1 on University
Pittsburgh, PA 15213

This work was supported in part by the National Science Foundation
under Gant ENG 27-20895.




ABSTRACT:

A number of recent papers have described circuit optimization methods
in which maximizing yield was the sole design criterion. However, in actual
practice there are many competing design criterion such as minimizing power, _
maximizing speed, area, etc., as well as maximizing yield. 1In this paper we
use the techniques of Multiple Criterion Optimization (MCO) to provide a
framework within which to consider all of these objectives simultaneously.
Towards this end we develop a new method for estimating yield and the gradient
of yield. This method is based upon a combination of the Simplicial Approxima-
tion technique of Director and Hachtel and the yield estimation procedure of
Bandler and Abdel-Malek. The ideas of MCO and the new yield estimation procedure

are applied to the design of a two-input MOSFET NAND gate.




| | NTRODUCTI ON

During the past ten years concern with the statistical behavior of an
electronic circuit design has increased rapidly [1-14]. This increased
interest can be traced primarily to the evolution of the integrated circuit
i ndustry where the manufacturing (wafer) yield is a prinme econoni c paraneter
Furthernmore, in integrated circuit design it is generally not possible to
specify tighter parameter tolerances in order to increase the yield, thus
rendering many of the statistical design techniques devel oped for discrete
circuits invalid for integrated designs. However, yield is not the only
concern in integrated circuit design. There are many conpeting design criteria
and in this paper we present a nethod for considering all the conpeting design
criteria including yield simultaneously.

In addjtion to yield, LSI design is concerned with such factors as power
di ssi pation, area, and dynanic and steady-state electrical characteristics.

W shall call these factors performance criteria to distinguish them from

yi el d. If we did not consider yield we could state the design problemin the
form
£,(x)
mn :
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s.t. g(x) <0
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where x = (X, ,X_....X ) are the various desi gnabl e parameters, g(«) and h(«)
the (nonlinear) circuit and perfornmance constraints and the fiﬂ»Ys the various
conpeting performance criteria. Thus (1) expresses the desire to simultaneously
mnimze all the performance criterion subject to a certain set of constraints.
Design (optimzation) problens of the form (1) are known as Miultiple
Criterion Qptimzation (MXO problens or Miultiple Criteria Decision Mking
(MCDV) problens [15-24]. Techniques for dealing with problens of this form
have been devel oped and successfully applied to the design of electronic
circuits [15,16,22]. The main characteristic of these MCO problens is that
there is generally no optinum solution, rather we have a set of noninferior
[23,24] or optimal trade-off solutions. The final design should be chosen
fromanong this set of optinal trade-off designs. MCO techniques are concerned
with the generation of all or certain nmenbers of this set of trade-off designs.
In this paper we will consider the MCO problemwhen yield is one of the

conpeting criterion. The constraints in (1) define the feasible regionft,
9={§|%(§)3Q, RG) = 0} (2)

The nom nal set of paraneters is Xo and these paraneters are subject to statistica
variation described by a joint probability density function (p.d.f,),F(ﬁfﬁo),
wher e Xo is the nom nal point and X the randomvariable. Thus we have:
Definition: The yield, Y(xo), of a circuit whose nom nal paraneters
X have a p.d.f. F(x,x ) and whose feasible region isft (2), is

gi ven by
T(g) = J'F(gg,ﬁo)d;‘cl. 3

Q




3.
Since our main concern here is the design of integrated circuits, which have a

fixed p.d.f. (to first order), our operational definition of yield maxim zation

will be:

Definition Yield maxinmization is the attenpt to increase the yield of a

desi gn exclusively through the adjustment of the nom nal parameters, Xg.
Therefore the problemwe will address in this paper is finding the yield and

gradient of yield so as to be able to solve the follow ng MCO probl em

£, &)
£, %9)
nmn .
X
"l-o .
£, &)
l-Y(zo)
subject to
hG,) = &
8 <8
(Note that minimzation of 1-Y(x ) is equivalent to maxinization of Y(x )).
fljo : r,o
In Section Il we will discuss techniques for estimating yield, concentrating

on techniques due to Director, Hachtel and Brayton [1-4] and Bandl er and

Abdal -Mal ek [11-12]. Section IIl presents our technique for estimating yield
whi ch uses techni ques fromboth of the previous nethods. In Section IV we
apply the techni ques of Section Ill to the MCO design of a MOSFET NAND gate

where yield is one of the design criterion. Finally in Section V we present

a brief summary and suggestions for future research.




1.1 SIMLIC AL APPROXI VATI ON

Gven the feasible region in input space, ft, and a set of mpoints on the
boundary, &t, of ft, where
Ft » + < 0 for all i and g.(x) = 0 for
{x 19:(%) = 9 (%)

at least one j; 1,je{l,2,...,n}} (5)

the sinplicial approximation, SA toft is the convex hull of these points.

Specifically the sinplicial approximtion is defined by

SA={ x| Jif XED. 1 =12 N (6)

where the Ry are outward pointing normals to the boundi ng hyperpl anes defined
by the points on the boundary of ft, and the bi are the distances, in sone appro-
priate norm between these hyperplanes (or "faces") in the approximtion and the

origin. Under the assunption that ft is convex and conpact

SA £ ft (7)
Fig. 1 illustrates the siﬁplicial approxi-mation in two dinmension. This approxi-
mation derives its name fromthe fact that each face of the polyhedron is a
sinmplex. Specifics on how this approximation can be generated are given in [1].
Once an.adequate sinmplicial approximation to ft has been generated a variety

of statistical design problens can be attacked. O particular interest here

is the use of the sinplicial approximtion for yield maximzation. 1In order

to proceed with this discussion we need the concept of a normbody. In what
follows we assune that the probability density function, p.d.f., of the

paraneters, F(x,«”) is uninodal and bounded, i.e.
02 FQx) sM<m

wher e Xo is the nominal point. Let LA(a,§“) denote the |evel set, or |evel

contour, of the p.d.f., i.e.,
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Fig. 1 Sinplicial Approximation, SA to the feasible region.




0.
Le (a,>'§’\) = {ic | ng,") 21a, 0 £a£M< +} (8)

Under the above assunptions, L"Ca) is a closed convex body.
For exanmple, if F was an independent Gaussian p.d.f. wth equal variance

\v/d,x ) would be a circle in tw dinmensions, a sphere in three dinmensions,
"njo

and in general a hypersphere in n dinensions. Since a normn( O can be
associated with any closed convex body the |evel contour defined by (8) can
also be witten as

L(r,x) ={x | n(x-x) <r} (9)

where the normhas the properties:
i) n(x) >0 for all x
i) n(”) £n(jg +nty)

iii) n(aé) = an(é) for a >0

and r is related to a_l.

Note that the normin the above definition is sometimes called a M nkowski
norm [29] because unlike a standard norm there is no requirement of symretry
about the origin. In this way a much larger class of p.d.f.'s can be described
than woul d be possible with a standard or equilibrated norm [4,29]. In view of

(8 and (9) we shall call H?(a) a norm body or yield body.

In [1] and [3] a procedure for yield nmaxi m zation was described whi ch was
based upon the assunption that the maxi mumyield point coincides with the center
of the maxi mumyield body which could be inscribed in SA [If this assunption
were valid there would be a direct correlation between the size of the inscribed
yield body and the actual yield and yield body inscription could formthe basis
for a greatly sinplified procedure for yield estimation. Unfortunately, as we
now denonstrate, this assunption is not, in general, valid. Under the assunption

the SA is a good approxinmation toft, we take the yield, at a given nominal, to be




Y(g\c'o) = IF%’{O) dx, (1)
SA

Let V{»} denote Euclidean vol une, so that V{LF(ot,xo) 'M\SA} is the vol une

of the intersection of the level set L_(a,x ) with the approximation SA
r r”o

Rewiting (11) as a Lebesgue-Stieltjes integral [14,31,32] vyields

M
Y = | o= [ vitglag) (salg (12)
A 0

Now define the inner |evel contour, LI‘ as the level contour of the |argest

yield body with center Xo whi ch can be inscribed in SA

Lr(x) =1L (r-,x) (13a)
I go n | Ao
wher e
rIiﬁo):max {r |L_rj(r,:‘<_0)f| SA:LP_(r,")} 13b)

and the outer |evel contour, LO’ as the level contour of the snallest yield

body centered at x which just contains SA

\S>>- Ws 7 (14

wher e

ro(;go):m'n{ (o ~(r,")! " SA=SA (14b)

Not e that <

o The inner and outer |evel contours can al so be expressed

M1

in terns of I_F (a,>,<bo):

Ll.(%o) = LF(uI ) ;fo) (15a)
wher e

3l (ng) =™n t o] LpCo. ~n SA = LpCa.j")} (15b)




and
Lo(ggo) = LF(GO”'&)) (16a)
whefe
ao(§o) = max {aILF(a,éo) Nsa = SA} (16b)

< .
Note that ao __aI

With these definitions (12) can be rewritten as

M
Y(x ) = f v{LF(a,:q(O)HSA}da = oy (x )V{sA}
0
aI(g&D)
+[ V{Lg (a,x ) sA}da
ao(go)
M
+ f V{LF(Q’}’%O) }da 17)
“I(*o)

Observe that choosing the nominal point to be the center X1 of the largest
yield body which can be inscribed into SA, is equivalent to minimizing uI(xo)
which maximizes the third term on the right hand side of Eq. (17). 1In order
to truly maximize yield we should also maximize the first term on the right
hand side of (17), i.e. maximize a(ﬂxo). This implies choosing the nominal

point to be the center, x., of the smallest yield body which contains SA,

0
Xo° Only if these two points coincide, i.e. Xo = X1° will either one be the
true maximum yield point. Anderson [32] has shown thatif the levels sets of
F(§,§o) are symmetric about the nominal and if the SA is symmetric about some
point ﬁ*’ then maximum yield occurs when Xo = x*. However, in the general
case, the second term on the right hand side of (17) will determine the maximum
yield point as a trade-off between Xy and Xo0° In fact, direct differentiation
of (17) yields




a;(x,)

_j_o Y(Xo) j = 3 vd~Cet, x*Q SAda (18)

/ a5 (x,)

Wiile the yield maxinization technique associated with Sinplicial

Approxi mation will not satisfy our requirenents for an MCO design problem
use of the SA as an approxinmation to the feasible region is conveni ent because
the general nonlinear constraints associated with the MO problem could be
repl aced by a set of linear constraints. This "linearization of the con-
straints could greatly reduce the work associated with the constrained opti-
m zations which occur in solving (1). However, this savings nust be wei ghed
agai nst the cost of generating a sufficiently accurate approxi mation. For-
tunately for problems with small nunbers of statistical paraneters (such as
I C design where only a few basic physical paraneters actually vary) this may
be a very useful first step in adding yield as a criterion to the MCO design

probl em

1.2 QUADRATI C APPROXI MATI ON

In this nethod, proposed by Bandl er and Abdel - Mal ek [11,12], approxima-
tions are made to both the feasible region and the yield integral over the
feasible region. The nmethod assumes that the p.d.f., F(",);\o), is truncated
or adequately represented by an orthotopic (or hyperrectangul ar) truncated

distribution over a fixed region R thus

j F(/\X,%)%» 1
R

aF Gsx,)dx = 1-Y(x ) (19)

!; F(x,x )dx = Y(x )
R Q N\, VO A, f1jQ
{r
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Eq. (19) is an evaluation of the failure rate and will be denoted by F. To

be able to accommopdate arbitrary p.d.f.'s Bandler and Abdel - Mal ek regi onalize

R into a nunber of nonintersecting orthotopic cells, Rl, i.e.
R =URi (20)
i
i=l,2,...,N
QR = ¢ (21)
i
Next a wei ght L is associated with each cell. This weight is the probability
of a paraneter falling into the ith cell, i.e.
W =P {x eR} = fl%(()kx ) dx. (22)
1 * X R - -
| * N *

This integral is evaluated by Monte Carlo techniques [25-28] (note that no
circuit simulations are involved here) and is invariant with respect to the

nom nal point x .
a0

Next a quadratic estimate of the feasible region, ft, is generated. The
approxi mati on is generated dynam cally, updated as necessary and only generated
in those areas thought to have a high probability of failure. If we denote
this approximation toft byf;, an estimate to the failure rate (19) is

"
1-¥(e ) X f~ F(x,x,0dx © 1-Y(x ). (23)
Rft

Since evaluation of (23) is difficult a further refinement is made as
follows. First, the points aiong the edges of the orthotope R which intersect
Ft are found and f_t is linearized about these pointse Let f-t denote the linearized
approxi mation to Ft. Then (23) can be approxi nated by

l-Y(%) v f.. F(x,mo) dx, (24)

v A"
R-0y

Next, the volunme of each orthotopic cell, R outsideft ’ VCRM t A}, can be

’
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can he estimated and the following calculation carried out

1) 8 ) Fowd | F b T'\a,)wiv{Ri_\} (25)

1
R-Ql Ri—ﬂz

The last termof (25) enbodies the essence of the Bandl er Abdel - Mal ek net hod.
Noti ce that because the failure rate (25) has an analytical rather than
probabilistic formit is possible to differentiate this expression in order
to estinmate the gradient of the yield with respect to the nom nal point.

The Bandl er, Abdel - Mal ek nmet hod has a nunber of interesting features
including a determnistic estimate of yield and its gradient, an approxination
of the feasible region, and the capability of handling arbitrary statistical
distributions. There are several problems with this nmethod that prevent its
direct use in MCO problens. First, the approximations associated with the
proposed nethod (esp, (24) and (25)) are only accurate when the naxi num
yield point is approached. This leads to questionable useful ness when yield
is being traded-off against other criterion. Next, once a particular quadratic
approximation toft is generated, it nust be constantly updated as various
trade-of f solutions are found. This neans that the approximations cannot readily
be used to replace the nonlinear constraints of the MCO and thus the cost of

the approximati on cannot be anortized over the entire MCO sol ution process.

[11. _A Y ELD ESTI MATI ON PROCEDURE FCR USE W TH MCO

In this section we describe a yield estinmation procedure which is useful
in an MCO setting. This proéedure enpl oys the sinplicial approxinmation as a
linearization of the feasible region thus allowing us to replace the nonlinear
constrai ned optimzations required for MCO by linearly constrained optim zations.
(In general, we replace nost of the nonlinear constraints by linear constraints,

see Sec. IV. and [15,16]). Thus there is a significant reduction in the cost
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of the optimzation required in generating trade-off solutions. Further, we
adopt the Bandl er, Abdel-Ml ek idea of partitioning the p.d.f. over a region.
This schene allows the generation of closed formestimates of the yield which
can be differentiated to obtain closed formestimates of the gradient of the
yi el d.

By construction, each face of the approximation, SA is an (n-1) dinen-

sional sinplex. Thus, as shown in Fig. 2, each nom nal point %o’ interior to

SA, induces a unique interior sinplicial deconposition of SA Let us consider
various methods of approximating the yield using this deconposition.

The yield over the ith interior sinplex, is

Y. (g,) = f FGg.x,)d% (26)

SAy

wher e SA1(>,§O) is the ith conponent of the interior sinplicial deconposition
i nduced by %o One approach to estimating (26) is to forma piecew se |inear
approxi mati on of the integral. GCenerically, this approximtion would have the

form
et g K| ,

wher e V{SA.l(xo)} is the Euclidean volune of the ith segnent, F("c.hu,jcho) t he
value of the p.d.f. at the point R and dk is a weight. The gradient of (27)

could serve as an approxination to the gradient of vyield:

3Y, (x,) . f o ) [ 5 ]
3% v V{SAi(f)\(.O)} }'_kzl_l V% *<Opt*>) * \{% V{SAiQ'O)}I{@)‘.( \*%*_&\j ' (Zé)

}

Upon exami nation of (27) and (28), it is seen that in order to efficiently

estimate yield and its gradient over the ith region we nust efficiently evaluate




Fig.

2

An

interior sinplicial

%5

deconposition of the Sinplicial

Appr oxi mation induced by a noninal point.

L3.
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V{SAi(&O)} and V \ASAijgo)}. Let X.1 be a matrix whose colums are the
coordinates of the vertices of SA (x ) exclusive of x . This matrix is inde-
pendent of the nominal. Observe that the volunme of a unit sinplex which has
one vertex at the origin and the remaining vertices at unity on each co-
ordinate is 1/nl. By using Xi and X0 to formthe affine transformation that

takes the unit sinplex into SA (x ) it can be shown that

1 *wo ( \
V{SA(x)} ="r| det (X)i 1-x*XTtel | (29)
{ J

where n is the nunber of designable paranmeters, e is a vector with all ones and

det (Xi) is the determinant of Xi‘ The gradient of (29) is

v, V{SAi(gh(Q)} ::i:y sgn[det(X.) {1-x’; XM e} (-X;1 e) (30)

n0

where sgn is the sign function. Thus to-evaluate (29) and (30) we need to find
1

X; exand det(Xﬁ)» This can be easily done for each X..L by sol ving
3T %

or by LU factorization

LV = (31)

-1 -1 -1

~vthte-x
X 171 i 3
n

det(X) = . U.

wher e Li and U.1 are determined by triangular factorization of X,. Note that
(31) is a preprocessing step that only needs to be done once for each Xy -

Al'so as we progress fromthe ith face to its neighbor, only one colum of X
changes and so further econonies are possible in these calculations (for simlar

i deas see [33]).
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Let us examine (29) and (30) and relate themto the information con-

tained in the Sinplicial Approxinmation. The term

N
corresponds to a normal to the ith face assuning the ith face is one unit

fromthe origin. Therefore

is sinply the distance of the nominal point to the ith face and, assum ng
we have a SA is the sanme as

T
bi - :oﬂi

wher e n, is the normal to the ith face of the SA and p, the corresponding right

hand side. Therefore, the only_extra work required to find (29) and (30) above
that of finding the SA is the calculation of det(X).

Greater accuracy can be obtained in approximating (26) if each interior
sinplex is further broken into a nunber of segnments by cutting it with hyper-
pl anes parallel to the included face of the SA The integral of the yield
over each segnment can be found by using a piecewise linear estimate of the p.d.fe

over the segment. Such a division is shown in Fig. 3. By defining

nml,..+,n
£ =x +3=(x -x) (22)
k=1,...,%
where | is the number of segments desired and X", n¥l, ..., n, are the vertices

of SA, the estinmate of the yield over the ith sinplex becones

1 1 v
Vi) = T VISA G oy ¢ (FGgag) * L F(Epexg)) (33)

E [E F(Emk’%)]

k=j-1 m=1

n n
i-¢i-1) L1
+ Q o V{SAfﬁo)} 2n

J-2




Tig. 3

Division of the ith interior simplicial.

16.
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The gradient of the yield over the ith interior sinplex is estinated by

taking the gradient of (33), i.e.

1 1 J i n aF(Eikl'Eo)
vﬁaYi(?‘{D) = -5 v SAi(xo)J (E—Tf) l V%F(;‘!‘oﬁ%) + kzl T }
1 1 ’)’:‘ J—
+ =V V 4sA F(x ,x ) + F(E.. o5
on X 1():\P) Sr YR el IR J
(3A)
£ .n_,, .\D | 5 o AF(E, . X )
+ .J__-(.__J__L)._ v JSA.(X ) L l_ [ Admk "0
j§2 ® i I Zn kij-l m£1 o -
. _ [ jl .
U I RS VS By WSS O o (E-k”‘ﬂl'
3 2 l 1 g J Zny| =y admk’ np J

Note that (34). is the exact gradient of (33), Further, since the conputational
effort of calculating V{SA.1(>g_o)} has been reduced to an inner product, (see (29))

and 7x V{SA.1(>5w)} to checking a sign (see (30)), the major effort in evaluating

%
(33) and (34) is the conputation of F(x,x ) and V F(x,x ) at various points
f\j 00 X f\j *\P
over SAi(xo)e Summing (33) and (34) over all interior sinplices gives the

estimates of yield and gradient of yield for the sinplicial approximation.

For a particular sinplicial approximtion (Fig. 4) we conpare a 1000-sanple
Monte Carlo estimate of yield to the nethod described above using 10 segnments per
interior sinplex. For a Gaussian p.d.f. wth equal variance and no correlation,
the results are shown in Table 1. Conparisons are nmade for two different

standard devi ations and for several nom nal points through the approxi mation.




Fig.

4

The Sinplicial Approxinmation used in the
conmparison of the piecewi se |linear and
Monte Carlo estimates of yield.
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Table 1  Conparison of piecew se |inear approximation of yield
using 10 divisions of each interior sinplex with a 1000
sampl e Monte Carlo over the Sinplicial Approximation.

PL Approxi mation Monte Carlo (1000 Samples) |Confidence Inter-
val of Monte Carlo
Standard Deviation -- 1

37.68 : 42.2 +4

46.78 48.8 + 41

96. 44 94.9 "+ 18

93. 22 93.5 42 ;

90. 24 91.8 + 2.2

St andard Deviation = 2

26. 97 29.1 3.7
42.9 44.9 +4.1
62.47 63. 7 +4
56. 61 : . 56. 2 e
6. 62  60.8 +4
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Since much of the effort in the above method for estimating yield and
its gradient is preprocessing and hence only nged be done once, and because
the Simplicial Approximation reduces the work involved in solving constrained
optimization problem, we feel that this is a computationally viable approach
for use when adding yield as an objective function in a Multiple Criteria

Optimization circuit design problem.

IV. MCO OF A MOSFET NAND GATE INCLUDING YIELD

We now apply the yield estimation techniques discussed in Section III
to the MCO of the two input MOSFET NAND gate shown in Fig. 5. The circuit
we considered has been used as a time domain optimization example by Director
and Brayton [34], an example for Simplicial Approximation by Director and
Hachtel [1], and as an example for MCO design by Fraser [22] and Lightner
and Director [15,16]. The MOS model, shown in Fig. ¢, includes the effect
of substrate bias. .

The designable parameters are the width W23 of the bottom two transistors
(constrained to be the same), the width of Tl, W., and the flat band voltage,

1

\Y Table 2 presents the range of these parameters as well as other con-

FB®
stants needed to analyze the NAND gate.

The objectives are: to minimize the area used by the tramsistors, to
minimize the switching time of the gate, to require the ON voltage Vo to be
as close to zero as possible, and to maximize the yield.

The switching time of the gate is a function of the time it takes for
the circuit to turn ON and the time it takes the circuit to turn OFF. But
the turn OFF time is much larger than the turn ON time and thus we can con-
sider minimization of the turn OFF time - turn OFF propagation delay tPD -

instead of the entire switching cycle. 1In general, the evaluation of top

will require a transient analysis, but for the class of MOSFET gates we are
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.©® MAAH

Fig. 5 Two input MOSFET NAND gate used in exanple.
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JDS=GM»WU(VGS-VT) above pinch-off

JDS=GM.WL*VDS*(VGS-VT-VDS/2) below pinch-off

o SUB 5

VT=Vco+k*(VSSUB+PSI)
ro

where

GM=Normalized transconductance

WL»Width-to-length ratio of the device

VT=Gate threshold voltage

VGS-Gate-to-substrate voltage

VDS=Drain-to-source voltage

VFB=Flat band voltage

k-constant

PSI=Electrostatic potential on surface at the onset of conduction

V5SUB”Source-to~substrate voltage

JDS

esS

l

S

Fi g.

6

| ll—oSUB

Model of MOSFET device used in exanple.
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Table 2 Par armet er val ues, constants, and constraints
used in the MOSFET NAND gate exanpl e.

PSI=.5771
k=.5
GM=.006

L-12.7 microns -ZAVFB_<_-1
L =5.08 microns
2 5<W <50
VDD=-6.5 volts I

VGG=-14.5 volts | 50<VY3<250

Vin=-6 volts (in ON state)
Af =1.03657

C.=5 pF

A
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concerned with an approximtion to tPD does exist. This approximation is
based upon the assunption that the output node is dominated by a single

| oad capacitance (independent of voltage), and is adequate for static MOSFET
logic. Fraser [22] devel oped this approxinmation assuning that the | ower
transistors are out of the circuit and the ON state val ue of the output

vol tage was zero. The approximation is

L

1
*pPD T *F \71 Ta (35)
wher e
a:-Ap- In =1 (36)
(m1) 3m4
and
T = Gav
= VoD
_\" (37hb)
(VGG V)

with Ar’ a multiplicative constant used to match (35) with the delay found
using an accurate transient sinulation (nore informally A—r is known as a
Ski nner constant [37]). Using (35)-(37), the turn OFF propagation delay can
be approxinmated (to first order) w thout performng a transient circuit sinmulation
(except once to estimate A"_) .
Thus, in order to evaluate the objectives of our design we sinply need

to performa d.c. analysis of the NAND gate in the ON state and eval uate the

yield by the method of Section IIl. The objective functions for the NAND
gate are
«| " A A W_: Ta (egn_ 35) (38)
x9 = \y L1+ 2LogiWog (area) (39)
= -V_ (ON output voltage) (40)
4> = 1 - Y(W W3¢ Veg) (Failure) (41)
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where the designabl e paranmeters are V*, W', and V,g (see Figure 6) .
Besi des the constraints on designable paraneters given in Table 2, an
upper limt of 2500 m | 52 was placed upon the area, 110 nsec. was the
maxi mum accept abl e propagati on delay, and -.7 volts the smallest acceptable
ON out put voltage (see [22]).
The gradi ents of (\hi and <fJ> were found by considering the circuit
equations as equality constraints and adding themvia Lagrange multipliers
to (38) and (40). Direct differentiation of the resulting equations and proper
definition of the nultipliers gave the gradi ents of <f>,-L and 4>3 (this is essen-
tially the approach taken by Hachtel, Brayton and Qustavson [38] and is also
equi valent to the adjoint network [39] nethod of calculating gradients).
The MCO problemis
21 B

nmn / (42a)

subject to

<'fi <+ 110 (nsec.)
* 1 2500 (mils?
. (42b)
# £ .7 (volts)
-2 < V,.< -1 (volts)
— ED

5 <W < 50 (mcrons)

50 < W3 < 250 (microns) .

The first step in attenpting to find noninferior solutions to (42a) is
to generate a sinplicial approxinmation to the feasible region described by
the constraints (42b). W used the algorithmdescribed in Director and Hachtel
[1] with the starting point 07-12, W3=230, and Vg —.2), and scales (1/4.6,

1/50.3, 1) to generate an approxi mation. After generating the initial
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approxi mati on each objective function was first mnimzed subject to the
constants (42b). Then the constraints were replaced by the sinplicial approxi-
mati on and the objective functions mnimzed again. The results of these
m nim zations indicated that the sinplicial approximation did not contain the
paraneter val ues which were the true minimzers of all the objectives. The situa-.
tion was caused, in main, by slight nonconvexities in the true feasible region
To remedy this problemwe included the ninimzers of each objective as vertices
of the sinplicial approximation. |In order to check the extent of the noncon-
vexity of the feasible region, we performed a circuit sinulation at the center
of each face of the new approxi mation. Al though sone face centers were
i nfeasible, the extent of infeasibility was very snmall - less than 1.0% in
all cases. Based upon the precedi ng check we assuned that the updated
sinmplicial approximtion was an adequate approximation to the true feasible
regi on even though the true feasible region was slightly nonconvex.

Bef ore proceeding, we checked the size of each face. This was done by
cal cul ati ng det(Xi) which is proportional to the area. In doing this we found
four faces quite large conpared to the renmaining faces. This discrepancy in
face size could cause an accuracy problemin our yield algorithm Therefore
we found the centroid of each large face and used it to generate three copl anar
(but smaller) faces per large face.

Table 3 lists the normals to each of the 38 faces, the right-hand-side
associated with the description of each face and which vertex points define
whi ch faces. Table 4 lists the 21 vertices of the approximtion and the

estinmated maxi numyield point given by the Sinplicial Approximtion algorithm

V. MCO OF THE NAND | NCLUDI NG YI ELD

The problemwe want to generate noninferior solutions to is:
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Tabl e 3a. Normals to the faces of the
Sinplicial Approxination.
FACE U n2 n3

1 . 307 -.0214 - .581

L. . 0666 .082 - .3789

3 . . 061 . 0837 - .3172

4 . 133 -.00282 -1.587

5 -.0334 -.00318 -1.43

6 . 127 -.0041 -1.573

7 -. 0737 . 00051 -1.42

8 . 025 . 0144 -1.6

9 -. 306 -. 0002 - .294
10 -.304 -. 00025 - .33
11 -.305 -. 00019 - .332
12 -. 306 -.00017 - .309
13 -. 307 . 00006 - .314
14 . 1204 . 096 - .00023
15 .12 . 096 - .000196
16 . 338 -. 0045 -1.06
17 .33 -.0196 - .736
18 . 319 -.0216 - .555
19 .323 -.0213 - .61
20 . 302 -.0213 - .582
21 -.081 -. 0096 - .92
22 -. 305 -.00023 - .293
23 -.301 -.00048 - .333
24 . 306 -.0208 - .395
25 -.1098 . 0468 - .275
26 -. 306 -.0001 - .296
27 -. 307 . 00008 - .313
28 .12 . 0963 . 0022
29 -.303 -. 00019 .- .253
30 0 0 3.07
31 0 0 3.07
32 0 0 3.07
33 .12 . 0963 - .00023
34 .12 '. 0963 - .00023
35 . .12 -. 0963 - .0002
36 * .12 . 0963 - .0002
37 .12 « *.0963 - .0022
38- .12 . 0963 - .0022




Tabi e 3b.

Ri ght - hand-side of Sinpiiciai
and vertices which define faces of SA

Appr oxi mat i on

VERTICES
FACE by WHICH FORM FACE

1 .533 7 8 10

2 20.43 2 3 11

3 20.66 3 '5 11
4 3.99 2 4 12

5 1.81 1 8 12

6 3.63 4 8 12

7 2.15 1 11 12

8 6.59 2 11 12

9 - 214 6 9 13
10 - 2.09 1 9 14
11 - 2.08 1 11 14
12 - 211 9 13 14
13 - 2.07 11 13 14
14 23.7 2 3 19
15 23.7 3 5 20
16 5.25 2 4 15
17 1.40 4 8 15
18 .595 7 10 15
19 .782 8 10 15
20 .503 7 8 16
21 - .832 1 8 16
22 -2.15 6 9 16
23 -2.1 1 9 16
24 .395 7 15 16
25 10.48 5 11 17
26 -2.12 6 13 17
27 - 2.07 11 13 17
2S 23.69 5 21 17
29 - 2.16 6 16 17
30 - 3.07 15 16 18
31 - 3.07 15 17 18
32 - - 3.07 16 17 18
33 - 23.7 2| 19 15
34 23.7 3 19 15
35 23.7 5 | 20 15
36 23.7 31 .20 15
37 23.69 5 21 15
38 23.69 17 4 .21 15




Tabl e 4.

Vertices of Sinplicial Approximation

2.,

VERTEX. w, wo VT

1 8.766 194.64 -1.9

H 12.83 230.03 -1.852
3 10.91 232.43 -1.67
4 12.62 210.01 -1.334
5 8.34 - 235.6 -1.316
6 7.92 203 -1.089
7 9.71 144.37 -1.102
8 10.65 179.93 -1.91
9 3.23 183.6 -1.404
10 11.27 179.3 -1.57
11 8.72 233.2 -1.887
12 10.787 217.12 -2

13 - 8.18 201.27 -1.36
14 8.28 199.79 -1.46
15 15.46 226.74 -1

16 7.896 115.8 -1

17 7.82 236.28 -1

13 10.39 192.94 -1

19 13.06 e 229.7 -1.507
20 11.57 +231.6 -1.323
21 - 10.54 232.90 -1.105

estimated design center

W - 10.6; W -+ 209; V

T

= -1.47
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¢
2
mn (43)
Xy = (Wp2¥y3:Vpg) 43
1= Y( Xo)
subject to ~— —
T
r\s Xg < b, i=1,...,38

where the yield Y(Xo) is estimated using the algorithmpresented in Section 3.
Because of the success of the mninmax nethod of generating noninferior solu-
tions, [15,16] (43) is restated as

mm y
(?\‘D’Y)

subject to
| Wi LY
Woxp T Y
“it3 1Y
w,(1-Y(x )) < ¥

(44)

Gl A<y L=1.....38

To proceed with the optimzation we nust choose the standard deviations of
the paraneters and the nunber of subdivisions of each interior sinplex.

The choice of standard deviations was, in large part, ad hoc since no
industrial data was available. However, it was decided that the two geonetric
par amet ers V& and Mﬁﬁ shoul d have the same standard deviation. The flat band
voltage is also subject to variation, but basically independent of the geonetric

vari ables. The standard devi ati ons chosen are:




(45)
FB

An independeht Gaussi an distribution was assuned for all paraneters. Finally,
after calculating the yield for the standard deviations (45) at various points
in the feasible region, and for different nunber of divisions of the interior
sinmplices, we chose L=20 as being a reasonable trade-off between an accurate
estimate of yield and conputational expense. The starting val ues were chosen
to be

W, = 10 Wy = 200 Vpg - -1.3 (46)

A di scussion of the ideas and concepts of MCO can be found in [15, 16].
For our purposes it suffices to state that the weighted m ni nax approach is
one of the nmost powerful MCO nmethods available and that specific interpretations
of, and selection heuristics for, the weights exist [15,16]. The general approach
begins with a minimnzation of each objective function separately, known as
a boundary search. Based upon the results of the boundary search weights

are chosen and further optimzation performnmed

The constrained optimzation algorithmwe use is the constrained variable
metric algorithmdue to Powell [40-42]. (The quadratic programmng al gorithm
used in the Powell algorithmwas due to Canon, Cullum and Polak [44]). This
al gorithm has proven very successful in the optimzation of various electronic
circuits and on various standard test cases [40] and was far better than a first

order Augnented Lagrangi an techni que used as a conparison [15,44].

Table 5 contains the boundary search data for problem (44) using (46)

as nom nal starting point.

The first set of weights chosen [see 15,16] was based upon conbining the

boundary solutions with the maxi mumyield solution being preferred seven tines




Table 5.

Results of minimax MCO Design of NAND gate including yield.

FINAL PARAMETERS

FINAL PERFORMANCES

RUM # WEIGHTS v, Wyq Vep €D AREA |vo| YIELD NITER| NFULC | NGRLD
1 1 0 50_ 0 15.46 226.74 -1 56.2 2500 .7 9.22 5 6 6
2 0 1 0 0 7.86 115.8 -1 110 1277 .7 09 3 4 4
3 0 0 1 0 7.82 236.28 -1 110 2500 .35 10.3 13 14 14
4 0 0 0 1 10.5 200.58 -1.344 85.8 2171 .5712 78.8 9 25 9
5 0114 .00046 1.74 .33 10.2 191.53 -1.012 84.8 2076 .56 19.5 11 20 11
6 .01103 .0005 ~1.675 2.707 9.57 1€9.7 -1.275 93.3 2049 .546 48.2 19 25 15
7 .01047 .0004 2.06 .06 9.11 200.1 ~-1.15 96.4 2150 .49 46.01 5 12 5
8 .0125  .00055 2.5 .333 9.43 201.3 -1.25 94.3 2165 .508 61.9 21 35 22

4
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mor e than the other solutions. The factor of seven was chosen because the
range of possible values for yield was large and we desired to naintain yield
at a noderately high level. However, as Table 5 shows, the factor of seven
was not |arge enough and a small yield resulted.

This run also points out the inportance of having a reasonably accurate
estinmate of the boundary of the feasible region. The trade-off solution
could be found anywhere in the feasible region, even on the boundary or exterior
to the region, depending on the statistics of the paraneters and the shape
of the feasible region. Thus during the course of one optimzation the
nom nal point could conceivably go fromthe center to the edge of the feasible
region. It is for this reason we feel the Sinplicial Approximation approach
to estimating ft, is nore econom cal than the constant updating nmethod of
Bandl er and Abdel - Mal ek.

The next run was perforned to trade-off between yield and propagation
delay. The weight was found by conbining the solution of run four and one
in a nine-to-one weighting. Notice that a trade-off did occur but certainly
not one that would be chosen as a final design since run four produced nore
preferable results. A trade-off between output voltage and yield was used as
the basis for the seventh run in which the noninferior solutions of runs four
and three were conbined with nine-to-one weighting to generate the weight
vector. This run produced a nore desirable trade-off in that a significant
reduction in output voltage, over the value in run four, was achieved while
mai nt ai ni ng the yield nmoderately high

Qur last run was based on specifying a solution that would be interesting
top = 80, AREA = 1800, -Vgo = .4, and YIELD = 70% and converting that point
into a weight for the mininmax optimzation [16]. Although requiring a
relatively large nunber of function evaluations, the result of this optimza-

tion (run 8, Table 5) was the nbst interesting point so far obtained. Wile
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not achieving the desired performance, the solution is an appealing traderoff
poi nt especially when V0 is inmportant.

Clearly many nore interesting noninferior designs could be generated by
judi cious. choice of weights. It is interesting to note that the various
noni nferior solutions generated give the designer an understanding of the
potential trade-offs possible. This would be particularly useful in view
of the fact that the optimzation without considering yield could lead to

unacceptably low values for yield (see runs li-3)

V. SUMVARY AND SUGGESTI ONS FOR FUTURE RESEARCH

In this paper we have investigated the addition of manufacturing yield as one
of the conpeting criterion in a Miltiple Criterion Optimization of electronic
circuits. The desirable characteristics of a yield estimation algorithmin
an MCO environnment were discussed. Two particular yield estimation algorithns,
one due to Director, Hachtel and Brayton and one to Bandl er and AbdeI—Nh[ek
were discussed. A newyield estimation algorithmwas presented having sone
properties of both the previous algorithns which we feel is useful for
evaluating yield .in an MCO design. This new algorithmwas applied to the MCO
design of a MOSFET NAND gate. The results of the exanple were mixed but we
feel they indicate that the consideration of yield and various perfornance

criteria sinultaneously is an interesting synthesis worthy of future research.

The area of Statistical Design both singly and in connection with MCO
is still inits infancy. The nethod presented in this paper has tw main
weak points: a "curse of dinensionality," and the requirenment that the
feasible region in input space be convex. To a greater or |esser extent, al
Statistical Design nmethods suffer froma curse of dinensionality and there does

not seemto be any easy fix for this problem The assunption of convexity
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of the feasible region in input space is inherent in the Sinplicial Approxim-
tion method. Sone nethods have relaxed this requirenent slightly but the
ability to do statistical design on an arbitrary feasible regi on needs nuch
further research in order to be realized. Notice further that as new
statistical design nethods become avail abl e which overconme to sone extent
either of the aforenentioned problens, it may take further research so that
these met hods can successfully be used in an MCO design settinge
Concerning the nmethod of yield estimation presented here at |east two
i mprovenents are possible. First, instead of dividing each interior sinplex
by- hyperpl anes parallel to the face of the SA subdivisions could be basedeon the
actual level contours of thep.d.f., thus allow ng an adaptive subdivision that m ght
be nmore accurate and/or efficient. Second, the nethod of integrating the p.d.f.
over each subdivision of the sinplex could be nodified to inprove the accuracy
by using higher order approximations. Alternately, use of different nethods
for the calculation of yield and gradient of yield mght inprove the accuracy
of the gradient information and inprove the performance of thé optim zation
Finally, nore conputational experience on circuit design problens is
necessary both in yield estinmation and MCO probl ems. However, because of the
nat ural ness, sinplicity, and usefulness of considering circuit design from an
MCO vi ewpoint, including yield, we feel that the evolution of various new

met hods shoul d proceed fromthis point of view
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