
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



MULTIPLE CRITERION OPTIMIZATION WITH
STATISTICAL CONSIDERATION

by

M. R. Lightner* & S. W. Director**

DRC-18-22-79

September 1979

*Bell Telephone Labs
North Andover, MA

**Department of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

This work was supported in part by the National Science Foundation
under Grant ENG 27-20895.



0. C o

ABSTRACT:

A number of recent papers have described circuit optimization methods
y

in which maximizing yield was the sole design criterion. However, in actual

practice there are many competing design criterion such as minimizing power, y

maximizing speed, area, etc., as well as maximizing yield. In this paper we

use the techniques of Multiple Criterion Optimization (MCO) to provide a

framework within which to consider all of these objectives simultaneously.

Towards this end we develop a new method for estimating yield and the gradient

of yield. This method is based upon a combination of the Simplicial Approxima-

tion technique of Director and Hachtel and the yield estimation procedure of

Bandler and Abdel-Malek. The ideas of MCO and the new yield estimation procedure

are applied to the design of a two-input MOSFET NAND gate.
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I. INTRODUCTION

During the past ten years concern with the statistical behavior of an

electronic circuit design has increased rapidly [1-14]. This increased

interest can be traced primarily to the evolution of the integrated circuit

industry where the manufacturing (wafer) yield is a prime economic parameter.

Furthermore, in integrated circuit design it is generally not possible to

specify tighter parameter tolerances in order to increase the yield, thus

rendering many of the statistical design techniques developed for discrete

circuits invalid for integrated designs. However, yield is not the only

concern in integrated circuit design. There are many competing design criteria

and in this paper we present a method for considering all the competing design

criteria including yield simultaneously.

In addition to yield, LSI design is concerned with such factors as power

dissipation, area, and dynamic and steady-state electrical characteristics.

We shall call these factors performance criteria to distinguish them from

yield. If we did not consider yield we could state the design problem in the

form:

Ms)

min

f (x)m <v

s.t. g(x) < 0
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where x = (x., ,x_ x ) are the various designable parameters, g(«) and h(«)

the (nonlinear) circuit and performance constraints and the f.(»)fs the various

competing performance criteria. Thus (1) expresses the desire to simultaneously

minimize all the performance criterion subject to a certain set of constraints.

Design (optimization) problems of the form (1) are known as Multiple

Criterion Optimization (MCO) problems or Multiple Criteria Decision Making

(MCDM) problems [15-24]. Techniques for dealing with problems of this form

have been developed and successfully applied to the design of electronic

circuits [15,16,22]. The main characteristic of these MCO problems is that

there is generally no optimum solution, rather we have a set of noninferior

[23,24] or optimal trade-off solutions. The final design should be chosen

from among this set of optimal trade-off designs. MCO techniques are concerned

with the generation of all or certain members of this set of trade-off designs.

In this paper we will consider the MCO problem when yield is one of the

competing criterion. The constraints in (1) define the feasible region ft,

The nominal set of parameters is x and these parameters are subject to statistical

variation described by a joint probability density function (p.d.f,),F(x,x ),

where x is the nominal point and x the random variable. Thus we have:

Definition: The yield, Y(x ), of a circuit whose nominal parameters

x have a p.d.f. F(x,x ) and whose feasible region is ft (2), is

given by
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Since our main concern here is the design of integrated circuits, which have a

fixed p.d.f. (to first order), our operational definition of yield maximization

will be:

Definition Yield maximization is the attempt to increase the yield of a

design exclusively through the adjustment of the nominal parameters, x .

Therefore the problem we will address in this paper is finding the yield and

gradient of yield so as to be able to solve the following MCO problem:

min

x

subject to

(Note that minimization of 1-Y(x ) is equivalent to maximization of Y(x )).
f\jO r\,O

In Section II we will discuss techniques for estimating yield, concentrating

on techniques due to Director, Hachtel and Brayton [1-4] and Bandler and

Abdal-Malek [11-12]. Section III presents our technique for estimating yield

which uses techniques from both of the previous methods. In Section IV we

apply the techniques of Section III to the MCO design of a MOSFET NAND gate

where yield is one of the design criterion. Finally in Section V we present

a brief summary and suggestions for future research.
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II. 1 SIMPLICIAL APPROXIMATION

Given the feasible region in input space, ft, and a set of m points on the

boundary, 8ft, of ft, where

3ft » {x |g±(x) _< 0 for all i and g.(x) = 0 for

at least one j; 1,je{l,2,...,m}} (5)

the simplicial approximation, SA, to ft is the convex hull of these points.

Specifically the simplicial approximation is defined by

SA = { x | rj* x £ b ± , i = 1,2,..., NF> (6)

where the n. are outward pointing normals to the bounding hyperplanes defined

by the points on the boundary of ft, and the b. are the distances, in some appro-

priate norm, between these hyperplanes (or "faces") in the approximation and the

origin. Under the assumption that ft is convex and compact

SA £ ft (7)

Fig. 1 illustrates the simplicial approximation in two dimension. This approxi-

mation derives its name from the fact that each face of the polyhedron is a

simplex. Specifics on how this approximation can be generated are given in [1].

Once an adequate simplicial approximation to ft has been generated a variety

of statistical design problems can be attacked. Of particular interest here

is the use of the simplicial approximation for yield maximization. In order

to proceed with this discussion we need the concept of a norm body. In what

follows we assume that the probability density function, p.d.f., of the

parameters, F(x,x^) is unimodal and bounded, i.e.

0

where x is the nominal point. Let L^(a,x ) denote the level set, or level

contour, of the p.d.f., i.e.,



feasible region

Simplicicil
Approximation

to feasible region

x

Fig. 1 Simplicial Approximation, SA, to the feasible region.



F (a,x^) = {jc | FCx,^) 21 a, 0 £ a £ M < •} (8)

Under the above assumptions, L^Ca) is a closed convex body.

For example, if F was an independent Gaussian p.d.f. with equal variance,

Vot,x ) would be a circle in two dimensions, a sphere in three dimensions,
r\jO

and in general a hypersphere in n dimensions. Since a norm n(O can be

associated with any closed convex body the level contour defined by (8) can

also be written as

L (r,x ) = {x | n(x-x ) < r} (9)

where the norm has the properties:

i) n(x) > 0 for all x

ii) n ( ^ ) £ n(jg) + nty)

iii) n(ax) = an(x) for a > 0

and r is related to a

Note that the norm in the above definition is sometimes called a Minkowski

norm [29] because unlike a standard norm, there is no requirement of symmetry

about the origin. In this way a much larger class of p.d.f.fs can be described

than would be possible with a standard or equilibrated norm [4,29]. In view of

(8) and (9) we shall call L (a) a norm body or yield body.

In [1] and [3] a procedure for yield maximization was described which was

based upon the assumption that the maximum yield point coincides with the center

of the maximum yield body which could be inscribed in SA. If this assumption

were valid there would be a direct correlation between the size of the inscribed

yield body and the actual yield and yield body inscription could form the basis

for a greatly simplified procedure for yield estimation. Unfortunately, as we

now demonstrate, this assumption is not, in general, valid. Under the assumption

the SA is a good approximation to ft, we take the yield, at a given nominal, to be
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SA

Let V{»} denote Euclidean volume, so that V{L (ot,x ) M S A } is the volume

of the intersection of the level set L_(a,x ) with the approximation SA.
r r^o

Rewriting (11) as a Lebesgue-Stieltjes integral [14,31,32] yields

M

SA 0

Now define the inner level contour, L , as the level contour of the largest

yield body with center x which can be inscribed in SA:

L T(x) = L (r ,x ) (13a)
I o,o n l /\,o

where

= max {r |Ln(r,xo)f| SA = Ln(r,^)} 13b)

and the outer level contour, L , as the level contour of the smallest yield

body centered at x which just contains SA:

VSo> - W s ^ (14a)

where

= min { r| ^ ( r , ^ ) ! ^ SA = SA} (14b)

Note that r <_ r . The inner and outer level contours can also be expressed

in terms of L (a,x ):

( 1 5 a )

where

aI(^o) = m±n tolLpCo.^n SA = LpCa.j^)} (15b)
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and

0^o VVSo <1 6 a>
where

aQ(xo) = max {a^fa,^) O SA = SA} (16b)

Note that a < a .

With these definitions (12) can be rewritten as

M

Y(x ) = f V{L (a,x ) H SA}da - a Ax )V{SA}ao J F *\o 0 ao
0

otT(x )

• /

M

+ J Vd^a,^) }da (17)

Observe that choosing the nominal point to be the center £ of the largest

yield body which can be inscribed into SA, is equivalent to minimizing a (x )

which maximizes the third term on the right hand side of Eq. (17). In order

to truly maximize yield we should also maximize the first term on the right

hand side of (17), i.e. maximize aQ(x ). This implies choosing the nominal

point to be the center, x , of the smallest yield body which contains SA,

x-. Only if these two points coincide, i.e. x~ = ĉ , will either one be the

true maximum yield point. Anderson [32] has shown that if the levels sets of

F(jc,x ) are symmetric about the nominal and if the SA is symmetric about some

point x*, then maximum yield occurs when x = ;£*. However, in the general

case, the second term on the right hand side of (17) will determine the maximum

yield point as a trade-off between x and x^. In fact, direct differentiation

of (17) yields



dx
°

Y(X Q) j = J Vd^Cct.x^Q SA}da

9.

(18)

While the yield maximization technique associated with Simplicial

Approximation will not satisfy our requirements for an MCO design problem,

use of the SA as an approximation to the feasible region is convenient because

the general nonlinear constraints associated with the MCO problem could be

replaced by a set of linear constraints. This "linearization11 of the con-

straints could greatly reduce the work associated with the constrained opti-

mizations which occur in solving (1). However, this savings must be weighed

against the cost of generating a sufficiently accurate approximation. For-

tunately for problems with small numbers of statistical parameters (such as

IC design where only a few basic physical parameters actually vary) this may

be a very useful first step in adding yield as a criterion to the MCO design

problem.

II.2 QUADRATIC APPROXIMATION

In this method, proposed by Bandler and Abdel-Malek [11,12], approxima-

tions are made to both the feasible region and the yield integral over the

feasible region. The method assumes that the p.d.f., F(^,x ), is truncated

or adequately represented by an orthotopic (or hyperrectangular) truncated

distribution over a fixed region R, thus

f F(x,x )dx »J ^ %o %

F(x,x )dx = Y(x )
*\, 'VO *\, f\jQ

{{-a
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Eq. (19) is an evaluation of the failure rate and will be denoted by F. To

be able to accommodate arbitrary p.d.f.'s Bandler and Abdel-Malek regionalize

R into a number of nonintersecting orthotopic cells, R., i.e.

W. = P {x eR.} = J-F(x,x )dx. (22)
1 * X R.

(20)

i=l,2,...,N

C\R± = c() (21)

Next a weight w. , is associated with each cell. This weight is the probability

of a parameter falling into the ith cell, i.e.

J-F(x,:
li * ^ *

This integral is evaluated by Monte Carlo techniques [25-28] (note that no

circuit simulations are involved here) and is invariant with respect to the

nominal point x .

Next a quadratic estimate of the feasible region, ft, is generated. The

approximation is generated dynamically, updated as necessary and only generated

in those areas thought to have a high probability of failure. If we denote

this approximation to ft by ft, an estimate to the failure rate (19) is

(23)

R-ft

Since evaluation of (23) is difficult a further refinement is made as

follows. First, the points aiong the edges of the orthotope R which intersect

ft are found and ft is linearized about these points• Let ft denote the linearized

approximation to ft. Then (23) can be approximated by

c ) dx, (24)

Next, the volume of each orthotopic cell, R^ outside ft , VCR^ft^}, can be
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can he estimated and the following calculation carried out

/ F < W d ? / F ( ) d T ? w i v { R i - V (25)

The last term of (25) embodies the essence of the Bandler Abdel-Malek method.

Notice that because the failure rate (25) has an analytical rather than

probabilistic form it is possible to differentiate this expression in order

to estimate the gradient of the yield with respect to the nominal point.

The Bandler, Abdel-Malek method has a number of interesting features

including a deterministic estimate of yield and its gradient, an approximation

of the feasible region, and the capability of handling arbitrary statistical

distributions. There are several problems with this method that prevent its

direct use in MCO problems. First, the approximations associated with the

proposed method (esp, (24) and (25)) are only accurate when the maximum

yield point is approached. This leads to questionable usefulness when yield

is being traded-off against other criterion. Next, once a particular quadratic

approximation to ft is generated, it must be constantly updated as various

trade-off solutions are found. This means that the approximations cannot readily

be used to replace the nonlinear constraints of the MCO and thus the cost of

the approximation cannot be amortized over the entire MCO solution process.

III. A YIELD ESTIMATION PROCEDURE FOR USE WITH MCO

In this section we describe a yield estimation procedure which is useful

in an MCO setting. This procedure employs the simplicial approximation as a

linearization of the feasible region thus allowing us to replace the nonlinear

constrained optimizations required for MCO by linearly constrained optimizations.

(In general, we replace most of the nonlinear constraints by linear constraints,

see Sec. IV. and [15,16]). Thus there is a significant reduction in the cost
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of the optimization required in generating trade-off solutions. Further, we

adopt the Bandler, Abdel-Malek idea of partitioning the p.d.f. over a region.

This scheme allows the generation of closed form estimates of the yield which

can be differentiated to obtain closed form estimates of the gradient of the

yield.

By construction, each face of the approximation, SA, is an (n-1) dimen-

sional simplex. Thus, as shown in Fig. 2, each nominal point x , interior to

SA, induces a unique interior simplicial decomposition of SA. Let us consider

various methods of approximating the yield using this decomposition.

The yield over the ith interior simplex, is

( 2 6 )

where SA.(x ) is the ith component of the interior simplicial decomposition

induced by x . One approach to estimating (26) is to form a piecewise linear

approximation of the integral. Generically, this approximation would have the

form

* V { S Ai ( xo ) } lX dkF(xik'Xo>| (27>

where V{SA.(x )} is the Euclidean volume of the ith segment, F(̂ c., ,jc ) the

value of the p.d.f. at the point x., and d is a weight. The gradient of (27)

could serve as an approximation to the gradient of yield:

V { S A i ( x o ) } \ I Vx *<%**o>) + Vx V{SAi (x.o )}{ X \*%*-&\ ' ( 2 8 )
I k = l f\o I i\o

Upon examination of (27) and (28), it is seen that in order to efficiently

estimate yield and its gradient over the ith region we must efficiently evaluate



X

L3.

X

Fig. 2 An interior simplicial decomposition of the Simplicial
Approximation induced by a nominal point.
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V{SA.(x )} and V V{SA.(jc )}. Let X. be a matrix whose columns are the

coordinates of the vertices of SA.(x ) exclusive of x . This matrix is inde-

pendent of the nominal. Observe that the volume of a unit simplex which has

one vertex at the origin and the remaining vertices at unity on each co-

ordinate is 1/n!. By using X. and x to form the affine transformation that

takes the unit simplex into SA.(x ) it can be shown that
1 *v»o

V{SA (x )} = ̂ r | det (X ) i 1-x^ XT1 e I I (29)

where n is the number of designable parameters, e is a vector with all ones and

det (X.) is the determinant of X.. The gradient of (29) is

V{SAi(xQ)} = iy sgn[det(X.) {1-x* X^e}] (-X"1 e) (30)

where sgn is the sign function. Thus to evaluate (29) and (30) we need to find

X e and det(X.)» This can be easily done for each X. by solving
i 'X i i

or by LU factorization

e
0/

det(X.) = ±Sl u..

where L. and U. are determined by triangular factorization of X.. Note that

(31) is a preprocessing step that only needs to be done once for each X..

Also as we progress from the ith face to its neighbor, only one column of Xi

changes and so further economies are possible in these calculations (for similar

ideas see [33]).
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Let us examine (29) and (30) and relate them to the information con-

tained in the Simplicial Approximation. The term

\ \

corresponds to a normal to the ith face assuming the ith face is one unit

from the origin. Therefore

T -1
1-x X. e

is simply the distance of the nominal point to the ith face and, assuming

we have a SA, is the same as

where n. is the normal to the ith face of the SA and b. the corresponding right
i ^

' hand side. Therefore, the only extra work required to find (29) and (30) above

that of finding the SA, is the calculation of det(Xi).

Greater accuracy can be obtained in approximating (26) if each interior

simplex is further broken into a number of segments by cutting it with hyper-

planes parallel to the included face of the SA. The integral of the yield

over each segment can be found by using a piecewise linear estimate of the p.d.f•

over the segment. Such a division is shown in Fig. 3. By defining

m^l,..•,n

£ = x + — (x -x ) (22)

where I is the number of segments desired and x^ , m=l, ..., n, are the vertices

of SAi? the estimate of the yield over the ith simplex becomes

1
( 3 3 )

y
J-2
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t<*(«;«)

Fig, 3 Division of the ith interior simplicial.
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The gradient of the yield over the ith interior simplex is estimated by

taking the gradient of (33), i.e.

+ — V V 4
on x

SA.(x )
1 <\P sr

1

(3A)

I

+ I jn - (.i-Dn v ) SA (x } I !_r y F

Note that (34). is the exact gradient of (33), Further, since the computational

effort of calculating V{SA.(x )} has been reduced to an inner product, (see (29))

and 7 V{SA.(x )} to checking a sign (see (30)), the major effort in evaluating

%o
(33) and (34) is the computation of F(x,x ) and V F(x,x ) at various points

f\j o O X f\j *\P

over SA.(x )• Summing (33) and (34) over all interior simplices gives the

estimates of yield and gradient of yield for the simplicial approximation.

For a particular simplicial approximation (Fig. 4) we compare a 1000-sample

Monte Carlo estimate of yield to the method described above using 10 segments per

interior simplex. For a Gaussian p.d.f. with equal variance and no correlation,

the results are shown in Table 1. Comparisons are made for two different

standard deviations and for several nominal points through the approximation.
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X
2

Fig. 4 The Simplicial Approximation used in the
comparison of the piecewise linear and
Monte Carlo estimates of yield.
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Table 1 Comparison of piecewise linear approximation of yield
using 10 divisions of each interior simplex with a 1000
sample Monte Carlo over the Simplicial Approximation.

PL Approximation

Standard

3 7.68

46.78

96.44

93.22

90.24

Monte Carlo (1000 Samples)

Deviation - 1

42.2

48.8

94.9

93.5

91.8

Standard Deviation = 2

26.97

42.9

62.47

56.61

61). 62

29.1

44.9

63.7

56.2

60.8

Confidence Inter-
val of Monte Carlo

± 4

± 4.1

+ 1.8

i

± 2 ;

+ 2.2
i

1

± 3-7

± 4-1

• * !

± 4
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Since much of the effort in the above method for estimating yield and

its gradient is preprocessing and hence only need be done once, and because

the Simplicial Approximation reduces the work involved in solving constrained

optimization problem, we feel that this is a computationally viable approach

for use when adding yield as an objective function in a Multiple Criteria

Optimization circuit design problem.

IV. MCO OF A MOSFET NAND GATE INCLUDING YIELD

We now apply the yield estimation techniques discussed in Section III

to the MCO of the two input MOSFET NAND gate shown in Fig. 5. The circuit

we considered has been used as a time domain optimization example by Director

and Brayton [34], an example for Simplicial Approximation by Director and

Hachtel [1], and as an example for MCO design by Fraser [22] and Lightner

and Director [15,16]. The MOS model, shown in Fig. 6, includes the effect

of substrate bias. -

The designable parameters are the width W^« of the bottom two transistors

(constrained to be the same), the width of T-, W , and the flat band voltage,

V_-,. Table 2 presents the range of these parameters as well as other con-
FB

stants needed to analyze the NAND gate.

The objectives are: to minimize the area used by the transistors, to

minimize the switching time of the gate, to require the ON voltage V to be

as close to zero as possible, and to maximize the yield.

The switching time of the gate is a function of the time it takes for

the circuit to turn ON and the time it takes the circuit to turn OFF. But

the turn OFF time is much larger than the turn ON time and thus we can con-

sider minimization of the turn OFF time - turn OFF propagation delay t -

instead of the entire switching cycle. In general, the evaluation of t

will require a transient analysis, but for the class of MOSFET gates we are
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in

VGG TX

Ik

Ik

MAAH

K V
DD

Fig. 5 Two input MOSFET NAND gate used in example.
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CGS

D
Q

SUB

D

o

JDS

JDS=GM»WU(VGS-VT) above pinch-off

JDS=GM.WL*VDS*(VGS-VT-VDS/2) below pinch-off

.5
VT=VCQ+k*(VSSUB+PSI)

ro

where

GM=Normalized transconductance

WL»Width-to-length ratio of the device

VT-Gate threshold voltage

VGS-Gate-to-substrate voltage

VDS=Drain-to-source voltage

VFB=Flat band voltage

k-constant

PSI=Electrostatic potential on surface at the onset of conduction

V5SUB^Source-to~substrate voltage

ess
I—oSUB

Fig. 6 Model of MOSFET device used in example.



Table 2 Parameter values, constants, and constraints
used in the MOSFET NAND gate example.

PSI=.5771

k=.5

GM=.OO6

L - 1 2 . 7 microns - 2 ^ V F B < - 1
L =5.08 microns
23 5<W <50

VDD=-6.5 volts l

VGG=-14.5 volts 50<VV3<250

Vin=-6 volts (in ON state)

A =1.03657
f

C L = 5 PF
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concerned with an approximation to t does exist. This approximation is

based upon the assumption that the output node is dominated by a single

load capacitance (independent of voltage), and is adequate for static MOSFET

logic. Fraser [22] developed this approximation assuming that the lower

transistors are out of the circuit and the ON state value of the output

voltage was zero. The approximation is

L

*PD = *F VT T a ( 3 5 )

where

a = -Ap- In ̂ =1 (36)
(m-1) 3m-4

and

) ( 3 7 b )

V

with A_, a multiplicative constant used to match (35) with the delay found

using an accurate transient simulation (more informally A_ is known as a

Skinner constant [37]). Using (35)-(37), the turn OFF propagation delay can

be approximated (to first order) without performing a transient circuit simulation

(except once to estimate A^).

Thus, in order to evaluate the objectives of our design we simply need

to perform a d.c. analysis of the NAND gate in the ON state and evaluate the

yield by the method of Section III. The objective functions for the NAND

gate are

• l ' ^ ' ^ w Ta (eqn- 35) (38)

*2 = V L 1 + 2 L23#W23 ( a r e a ) ( 3 9 )

<f>3 = -V (ON output voltage) (40)

4>4 = l-Y(W rW 2 3 fV F B) (Failure) ( 4 1 )
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where the designable parameters are V^, W ^ , and V p B (see Figure 6) .

Besides the constraints on designable parameters given in Table 2, an

2
upper limit of 2500 mils was placed upon the area, 110 nsec. was the

maximum acceptable propagation delay, and -.7 volts the smallest acceptable

ON output voltage (see [22]).

The gradients of (J>1 and <j>~ were found by considering the circuit

equations as equality constraints and adding them via Lagrange multipliers

to (38) and (40). Direct differentiation of the resulting equations and proper

definition of the multipliers gave the gradients of <f>, and 4>~ (this is essen-

tially the approach taken by Hachtel, Brayton and Gustavson [38] and is also

equivalent to the adjoint network [39] method of calculating gradients).

The MCO problem is

min / (42a)

subject to

<j>- <± 110 (nsec.)

* 1 2500 (mils2)

(42b)
<j> £ .7 (volts)

-2 < V_ < -1 (volts)
— ED

5 < W- < 50 (microns)

50 <_ W23 <_ 250 (microns) .

The first step in attempting to find noninferior solutions to (42a) is

to generate a simplicial approximation to the feasible region described by

the constraints (42b). We used the algorithm described in Director and Hachtel

[1] with the starting point 0^-12, W23=230, and V F f i—1.2), and scales (1/4.6,

1/50.3, 1) to generate an approximation. After generating the initial
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approximation each objective function was first minimized subject to the

constants (42b). Then the constraints were replaced by the simplicial approxi-

mation and the objective functions minimized again. The results of these

minimizations indicated that the simplicial approximation did not contain the

parameter values which were the true minimizers of all the objectives. The situa-

tion was caused, in main, by slight nonconvexities in the true feasible region.

To remedy this problem we included the minimizers of each objective as vertices

of the simplicial approximation. In order to check the extent of the noncon-

vexity of the feasible region, we performed a circuit simulation at the center

of each face of the new approximation. Although some face centers were

infeasible, the extent of infeasibility was very small - less than 1.0% in

all cases. Based upon the preceding check we assumed that the updated

simplicial approximation was an adequate approximation to the true feasible

region even though the true feasible region was slightly nonconvex.

Before proceeding, we checked the size of each face. This was done by

calculating det(X.) which is proportional to the area. In doing this we found

four faces quite large compared to the remaining faces. This discrepancy in

face size could cause an accuracy problem in our yield algorithm. Therefore

we found the centroid of each large face and used it to generate three coplanar

(but smaller) faces per large face.

Table 3 lists the normals to each of the 38 faces, the right-hand-side

associated with the description of each face and which vertex points define

which faces. Table 4 lists the 21 vertices of the approximation and the

estimated maximum yield point given by the Simplicial Approximation algorithm.

IV. MCO OF THE NAND INCLUDING YIELD

The problem we want to generate noninferior solutions to is:



Table 3a. Normals to the faces of the
Simplicial Approximation.
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FACE

1
L.

3 •
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33-
3 4 •

35 •
36 *
37
38- .

nl •

.307

.0666

.061

.133
-.0334
.127

-.0737
.025

-.306
-.304
-.305
-.306
-.307
.1204
.12
.338
.33
.319 •
.323
.302

-.081
-.305
-.301
.306

-.1098
-.306
-.307
.12

-.303
0
0
0
.12
.12
.12
.12
.12
.12

n2

-.0214
.082
.0837

-.00282
-.00318
-.0041
.00051
.0144

-.0002
-.00025
-.00019
-.00017
.00006
.096
.096

-.0045
-.0196
-.0216
-.0213
-.0213
-.0096
-.00023
-.00048
-.0208
.0468

-.0001
.00008
.0963

-.00019
0
0
0

.0963
'.0963
-.0963
.0963

• .0963
.0963

n3

- .581
- .3789
- .3172
-1.587
-1.43
-1.573
-1.42
-1.6
- .294
- .33
- .332
- .309
- .314
- .00023
- .000196
-1.06
- .736
- .555
- .61
- .582
- .92
- .293
- .333
- .395
- .275
- .296
- .313

.0022
- .253
3.07
3.07
3.07

- .00023
- .00023
- .0002
- .0002
- .0022
- .0022
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Tabie 3b. Right-hand-side of Simpiiciai Approximation
and vertices which define faces of SA.

FACE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2S
29
30
31
32
33
34
35
36
37
38

b t

. 5 3 3
20.43
20.66

3.99
1.81
3.63
2.15
6.59

- 2.14
- 2.09
- 2.08
- 2.11
- 2.07

23.7
23.7
5.25
1.40

.595

.782

.503
- .832
- 2.15
- 2.1

.395
10.48

- 2.12
- 2.07

23.69
- 2.16
- 3.07
- 3.07

• - 3.07
- 23.7

23.7
23.7

\ 23.7
23.69
23.69

VERTICES
WHICH FORM

7
2
3
2
1
4
1
2
6
1
1
9

11
2
3
2
4
7
8
7
1
6
1
7
5
6

11
5
6

15
15
16
2 .
3

• 5

3
5

17 .

8
3
'5
4
8
8

11
11
9
9

11
13
13

3
5
4
8

10
10
8
8
9
9

15
11
13
13
21
16
16
17
17
19
19

• 20
20
21

. 21 '

FACE

10
11
11
12
12
12
12
12
13
14
14
14
14
19
20
15
15
15
15
16
16
16
16
16
17
17
17
17
17
18
18
18
15
15
15
15
15
15
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Table 4. Vertices of Simplicial Approximation

VERTEX.

1
1
dm

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

13

19

20

21 •

W l

8.766

12.83

10.91

12.62

8.34 •

7.92

9.71

10.65

3.23

11.27

8.72

10.787

8.18

8.28

15.46

7.896

7.82

10.39

13.06

11.57

10.54

W2

194.64

230.03

232.43

210.01

235.6

203

144.37

179.93

183.6

179.3

233.2

217.12

201.27

199.79

226.74

115.8

236.28

192.94

• 229.7

• 2 3 1 . 6

232.90

VT

- 1 . 9

-1 .852

-1 .67

-1 .334

-1 .316

-1 .089

- 1 . 102

- 1 . 9 1

-1 .404

-1 .57

-1 .887

-2

-1 .36

-1 .46

-1

- 1

-1

-1

-1 .507

-1 .323

-1 .105

estimated design center

Wj - 10.6; W2 -• 209; -1.47
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min

subject to

1-Y(xo)

(43)

r\± X <_ b±

where the yield Y(x ) is estimated using the algorithm presented in Section 3.

Because of the success of the minimax method of generating noninferior solu-

tions, [15,16] (43) is restated as

m m y

subject to

W2*2 -

1 Y

Ui ^ o -

(44)

.,...,38

To proceed with the optimization we must choose the standard deviations of

the parameters and the number of subdivisions of each interior simplex.

The choice of standard deviations was, in large part, ad hoc since no

industrial data was available. However, it was decided that the two geometric

parameters W and W«« should have the same standard deviation. The flat band

voltage is also subject to variation, but basically independent of the geometric

variables. The standard deviations chosen are:



'31 .

1 " (45)

FB

An independent Gaussian distribution was assumed for all parameters. Finally,

after calculating the yield for the standard deviations (45) at various points

in the feasible region, and for different number of divisions of the interior

simplices, we chose L=20 as being a reasonable trade-off between an accurate

estimate of yield and computational expense. The starting values were chosen

to be

Wx = 10 W 2 3 = 200 V p B - -1.3 (46)

A discussion of the ideas and concepts of MCO can be found in [15,16].

For our purposes it suffices to state that the weighted minimax approach is

one of the most powerful MCO methods available and that specific interpretations

of, and selection heuristics for, the weights exist [15,16]. The general approach

begins with a minimization of each objective function separately, known as

a boundary search. Based upon the results of the boundary search weights

are chosen and further optimization performed.

The constrained optimization algorithm we use is the constrained variable

metric algorithm due to Powell [40-42]. (The quadratic programming algorithm

used in the Powell algorithm was due to Canon, Cullum, and Polak [44]). This

algorithm has proven very successful in the optimization of various electronic

circuits and on various standard test cases [40] and was far better than a first

order Augmented Lagrangian technique used as a comparison [15,44].

Table 5 contains the boundary search data for problem (44) using (46)

as nominal starting point.

The first set of weights chosen [see 15,16] was based upon combining the

boundary solutions with the maximum yield solution being preferred seven times



Table 5. Results of minimax MCO Design of NAND gate including yield.

RUM //

1

2

3

4

5

6

7

8

1

0

0

0

. 0 1 1 4

. 0 1 1 0 3

. 0 1 0 4 7

. 0 1 2 5

WEIGHTS

o •

1

0

0

.00046

.0005

.0004

.00055

o.

0

1

0

1.74

• 1.675

2.06

2.5

• •

2.

2.

2.

3.

0

0

0

1

33

70.7

06

333

FINAL

W l

15.46

' 7.86

7 . 8 2

10.5

10.2

' 9.57

9.11

9.4 3

PARAMETERS

W V
2 3 FB

226.74

115.8

236.28

200.58

1 9 1 . 5 3

1E9.7

2 0 0 . 1

2 0 1 . 3

-1

-1

-1

-1.344

-1.012

-1.275

-1 .15

-1 .25

56.2

110

110

85.8

84.8

93.3

96.4

94.3

FINAL PI

AREA

2500

1277

2500

2171

2076

2049 .

2150 .

2165 .

ZRFORMANCES

v Y I P - D

o /*

.7

.7

.35

. 5712

.56

546

49

508

9 . 2 2

.09

10.3

78.8

19.5

4 8 . 2

46.01

61.9

NITER

5

3

13

9

11

19

5

21

NFUtJC

6

4

14

25

20

25

12

35

KGRAD

6

4

14

9

11

19

5

22
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more than the other solutions. The factor of seven was chosen because the

range of possible values for yield was large and we desired to maintain yield

at a moderately high level. However, as Table 5 shows, the factor of seven

was not large enough and a small yield resulted.

This run also points out the importance of having a reasonably accurate

estimate of the boundary of the feasible region. The trade-off solution

could be found anywhere in the feasible region, even on the boundary or exterior

to the region, depending on the statistics of the parameters and the shape

of the feasible region. Thus during the course of one optimization the

nominal point could conceivably go from the center to the edge of the feasible

region. It is for this reason we feel the Simplicial Approximation approach

to estimating ft, is more economical than the constant updating method of

Bandler and Abdel-Malek.

The next run was performed to trade-off between yield and propagation

delay. The weight was found by combining the solution of run four and one

in a nine-to-one weighting. Notice that a trade-off did occur but certainly

not one that would be chosen as a final design since run four produced more

preferable results. A trade-off between output voltage and yield was used as

the basis for the seventh run in which the noninferior solutions of runs four

and three were combined with nine-to-one weighting to generate the weight

vector. This run produced a more desirable trade-off in that a significant

reduction in output voltage, over the value in run four, was achieved while

maintaining the yield moderately high.

Our last run was based on specifying a solution that would be interesting,

tpD = 80, AREA = 1800, -V Q = .4, and YIELD = 70%, and converting that point

into a weight for the minimax optimization [16]. Although requiring a

relatively large number of function evaluations, the result of this optimiza-

tion (run 8, Table 5) was the most interesting point so far obtained. While



34.

not achieving the desired performance, the solution is an appealing traderoff

point especially when V is important.

Clearly many more interesting noninferior designs could be generated by

judicious choice of weights. It is interesting to note that the various

noninferior solutions generated give the designer an understanding of the

potential trade-offs possible. This would be particularly useful in view

of the fact that the optimization without considering yield could lead to

unacceptably low values for yield (see runs li-3).

V. SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

In this paper we have investigated the addition of manufacturing yield as one

of the competing criterion in a Multiple Criterion Optimization of electronic

circuits. The desirable characteristics of a yield estimation algorithm in

an MCO environment were discussed. Two particular yield estimation algorithms,

one due to Director, Hachtel and Brayton and one to Bandler and Abdel-Malek

were discussed. A new yield estimation algorithm was presented having some

properties of both the previous algorithms which we feel is useful for

evaluating yield .in an MCO design. This new algorithm was applied to the MCO

design of a MOSFET NAND gate. The results of the example were mixed but we

feel they indicate that the consideration of yield and various performance

criteria simultaneously is an interesting synthesis worthy of future research.

The area of Statistical Design both singly and in connection with MCO

is still in its infancy. The method presented in this paper has two main

weak points: a "curse of dimensionality," and the requirement that the

feasible region in input space be convex. To a greater or lesser extent, all

Statistical Design methods suffer from a curse of dimensionality and there does

not seem to be any easy fix for this problem. The assumption of convexity
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of the feasible region in input space is inherent in the Simplicial Approxima-

tion method. Some methods have relaxed this requirement slightly but the

ability to do statistical design on an arbitrary feasible region needs much

further research in order to be realized. Notice further that as new

statistical design methods become available which overcome to some extent

either of the aforementioned problems, it may take further research so that

these methods can successfully be used in an MCO design setting•

Concerning the method of yield estimation presented here at least two

improvements are possible. First, instead of dividing each interior simplex

by hyperplanes parallel to the face of the SA, subdivisions could be based upon the

actual level contours of thep.d.f., thus allowing an adaptive subdivision that might

be more accurate and/or efficient. Second, the method of integrating the p.d.f.

over each subdivision of the simplex could be modified to improve the accuracy

by using higher order approximations. Alternately, use of different methods

for the calculation of yield and gradient of yield might improve the accuracy

of the gradient information and improve the performance of the optimization.

Finally, more computational experience on circuit design problems is

necessary both in yield estimation and MCO problems. However, because of the

naturalness, simplicity, and usefulness of considering circuit design from an

MCO viewpoint, including yield, we feel that the evolution of various new

methods should proceed from this point of view.
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