NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

*
LASCALA - A LANGUAGE FOR LARGE SCALE LI NEAR ALGEBRA
by
AW Westerberg & T.J. Berna
DRC- 06- 4- 79
January 1979

Depart nent of Chenical Engineering
Carnegi e- Melion University
Pittsburgh, PA 15213

"Presented at S| AM Synposium on Sparse Matrix Conputations,
Knoxville, TN, Novenber 1978.

This work supported by NSF G ant ENG 76-80149.

LASCALA —A Language for Large
Scal e Linear Al gebra
A W Wsterberg and T.J. Berna

Abstract. A problemoriented |anguage is described which is capable
of directing the cal cul ati on sequence associated with solving |arge,
sparse, linear al gebra systens which in general will require the use
of mass nenory. Although the concept of LASCALA arose in connection
with the problemof optimzing |arge chemcal processes, its applica-
tionis suitable for use with any large natrices having a | oosely con-
nected bl ock diagonal structure.

1. Introduction. e approach used to devel op a nodel of a chem

ical process is towite all of the constraints associated with the
process and to solve them simultaneously. These constraints include
linear and nonlinear equality and inequality algebraic constraints,
and for a typical process there are often several thousand such con-
straints. Once the nodel has been generated, one would like to find
the set of feasible (or optinal feasible) solutions which describe
the process. Unfortunately, it is frequently undesirable, if not im
possible, to handle all of the constraints sinultaneously without re-
sorting to the use of nass nenory devices for auxiliary storage.

The purpose of our work has been to devel op an optinization schene
capable of finding optinmal feasible solutions for |arge chemcal pro-
cesses. Qur first step was to develop a scherme for conputing the L/U
factors of the large Jacobian matrix associated with the process con-
straints. Qur algorithm (Vesterberg and Berna, 1978) perforns the

| factorization in a bl ock-by-bl ock manner to avoid using an excessive
anmount of core storage. In order to inplenent the ideas présented in
that paper and in order to extend these ideas for use with our opti-
m zation algorithm (Berna, Locke and Wsterberg, 1978), we advocate

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

LASCALA —A Language for Large Scale Linear Algebra

the use of a problemoriented | anguage such as LASCALA (Large Scal e
Li near Al gebra).

We are in the early stages of devel opi ng LASCALA. Although the
sanpl e probl em presented here has a chemical engineering parentage,
LASCALA is well-suited for use in solving any problens that give rise
to a large bordered bl ock diagonal (BBD) Jacobian matrix. Presently
'LASCALA programs nust be written manually, but its full potential can
be realized only when the prograns are generated automatically. Qur
primary objective in witing this paper is to introduce LASCALA in
concept and to show the types of commands that such a | anguage shoul d
have.

Thr oughout the discussion we assune that the user has available a
sparse matri x package capable of performng an L/U factorization of
a sparse matrix and of performng the forward and backward substitu-
tions required to solve linear algebraic systems. W have given this
hypot heti cal package the nane SPARSE and assune it contains four rou-
tines: ANALYSE, FACTOR, FWD and BACK. The ANALYSE step, which de-
termnes the pivot sequence, nust have sone provision for handling
nonpi vot flags. FACTOR performs the elimnation for a given pivot
sequence. The routines FWD and BACK nust be able to perform sepa- -
rately the forward and backward steps of the Gaussian elimnation
where the coefficient matrix is the factored matrix or its transparse
Qur intention in designing LASCALA has been to keep the problem
oriented |anguage independent of any particular sparse matrix code.

The di scussion which follows is divided into six sections. The
first section describes the nature of the chem cal process design
problem Following a statenent of the design problem there is a
statement of the optimzation algorithmand a description of the
met hod used to generate the process constraints. Section 5 describes
sone of the sparse matrix mani pulations required in our work. In
Section 6 we describe LASCALA in greater detail, and we discuss future

work in Section 7.

2. The Design Process. A typical designh problemis stated as

foll ows: Design a process for producing 1 mllion kil ograns of a
chem cal "C' per year. The product nust be-99. 9% pure, and avail able

rawmaterials are chemicals "A" and "B"« In addition to the explicit

LASCALA —A Language for Large Scale Linear Al gebra

requi rements stated above, there are several inplicit constraints re-
quiring that the final design nust: nininmze annual operating ex-
penses, conply with Iocal pollution codes, neet certain safety stan-
dards, etc. A designer faced with solving this problemnornally be-
gins by considering each of the elements which might go into the pro-
cess: the reactor, purification units, heat exchangers, etc. Before
anal yzi ng the behavior of the entire process the designer nust ana-
lyze the behavior of each elenent. |In considering the reactor, for
exanpl e, the designer nust consider various operating conditions
avail able and alternative reaction schenmes. As each of the elenents
is analyzed, the designer begins to |link themtogether and to anal yze
the behavior of the entire network. The designer then continues to
work with the network until an acceptable (pe}haps an optinmal) pro-
cess is discovered.

A desirable feature of any design package is that the user nust be
able to place arbitrary specifications on the process. For exanple
the original problem statenment m ght specify the tenperature, pres-
sure, conposition or flowate at any point in the process. The spec-
ifications mght require that some function of these variables be sat-
i sfied. In any event, the final design nust satisfy all specifica-
tions inposed on the process.

VWhen the entire chem cal process is considgred there are n+r+q
vari ables and n equality constraints. The user specifies values for
g of the variables; effectively, these variables become constants for
the remai nder of the problem The Jacobian matrix for the equality
constraints is factored into the product of a lower triangular matrix
L and an upper triangular matrix IJ. The n variables corresponding to
the pivots of the factored Jacobian matri x becone the dependent vari -
ables x and the remaining variables become the decision (independent)
variables 11. The r decision variables represent the actual degrees
of freedom for optimzing the chem cal process design.

Bef ore concludi ng our discussion of the chemical process design
prdblenl we would like to say a few words about the structure of the
Jacobi an matri x corresponding to a typical‘chenical process. The
Jacobi an has a bordered bl ock diagonal structure; the blocks cor-

respond to the various elenments in the process, and the overlap

LASCALA —A Language for Large Scale Linear Al gebra

bet ween bl ocks is due to the connections anong the el enents in the
network. One can expect to find Jacobian matrices having this struc-
ture whenever the constraints are related to a set of |oosely con-
nected nmodul es. W say nore about the role that this structure plays
in the design process later in this paper. Now let us consider the
optim zation problemas a nmathematician mght see it.

+ 3. The Optimzation Algorithm The problemof finding an optinal
design for a particular chemcal process can be stated as foll ows:

Mn $(z)
subject to
g(2) =0
(PI) h(z) * 0

Zd?m

gﬁan+r R

hsR*** -+ R"
#:RMT 4 R

where § may be the net annual operating expenses, and g and h are the
constraints described in Section 2. For problens of industrial sig-
nificance n and mrange from about 1000 to 50,000 and r ranges from1l
to about 50. Typical values for n and r are 10,000 and 10, respec-
tively. In order to solve (Pi) within a reasonable amount of core
storage and execution time, we have nodified an al gorithmpublished
by Powel | (1977). Powell's algorithmrelies heavily on sone work
publ i shed by Han (1975). 1In the remainder of this section we sketch
the devel opment of the relevant details of our optimzation algorithm
(Berna, Locke and Westerberg, 1978).

In order to develop the conditions necessary for z* to be an opti-
mal feasible solutionto (Pi), we define the Lagrange function

(1) L(z, X, u0 = §(z) - X'g(z) - n'h(z)

The necessary conditions for optimality then become

LASCALA — A Language for Large Scale Linear Algebra

T T
D _ g -2% _dg , _ dh
(2) dz 0 dz bz A dz
(3) g(z) =0 3 h(z) 20
(4) wth=0 ; w20

The Newton-Raphson scheme for solving (2) gives

2 T T
L ¥L . _,_3® dL, _d , _dh
(5) + > Az 0 >z + bzz Az bz A 5z

In a similar fashion, the constraints in (3) can be linearized to give

g+ 28 Az =0
T
dz
(6)
h+°—h—TAzzo
0z

At this point, we define the following quadratic function

2
(7N | Q(az) = & + 9% Az + % Azl 2L LT
dz dzdz

Az

Now consider the quadratic programming problem (QPP) formed by mini-
mizing Q(Az) subject to the linearized constraints (6):

Min Q(Az)
Az

(QPP) s.t. g+ 9—% Az = 0
dz
dh

h+ —Az2=20
sz

The necessary conditions for Az* to be a solution to (QPP) are that
(5) and (6) hold and that the following constraints be satisfied:

(8) ' pT<h+—%:-Az*>=o
z .

p=20

L1

LASCALA —A Language for Large Scale Linear Al gebra

Based on.the observation that (5), (6) and (8) are satisfied by sol v-
ing (QPP) and that these constraints represent the Newt on-Raphson
iteration from Zy to Zy+l Powel | (1977) devel oped an al gorithmwhich
solves (Pi) by generating and solving a sequence of QPP's. Instead

of actually conputing b LT the Hessian of the Lagrange function,
bzbz
Powel | uses a series of pairw se rank-one updates to approximate this

matrix. The basic algorithmis given as foll ows:

2
Step 1. Quess C =1 andeC|s—b-L—‘J\
&bz
Sep 2. Bvaluate $, g, g, h, - N9
bz 0z
Step 3, Solve QPP for Az*, X*, p*
Step 4, Estimate (% (bi) (—Q——) Az
z+AZ,est vz bz z
T
(B (B
Step 5. Move to z .=z + Az and repeat Step 2. Wing the sane
nexc

Xt and |A fromStep 4, eval uate

o).

next next next
62
(A z ., Az =0 so the term_L....Az is zero.) Then use
nexu A
bzéz
oL)
[() to update C.
dAz DAz act
Step 6. Iterate fromStep 3 until ||Az|| is small.

For relatively snall problens (n £ 50) this al gorithmworks ex-
trenely well. For very large problens (n”~ 1000) the size of C ex-
ceeds the core storage space available on nost machi nes; furthernore,
the conputational requirenents involved in updating C (by conputing
wkwl) are prohibitive for large values of n. Qur algorithm which

T

LASCALA —A Language for Large Scale Linear Al gebra

extends the above al gorithm uses the linearized equality constraints
in (6) to set up a reduced (QP) where the size of the Hessian matrix
is rxr instead of (nfr)x(nfr). A second advantage associated with the
extended al gorithmis that we never conpute Wn\:NI; i nstead, we al ways
conpute the appropriate scalar products associated with the pre- and
post-nmul tiplication operators of C In other words, we never need C
alone. Rather, we need terns of the formpTCq where these terns are
conputed (after | rank-one updates of C A« n) as follows

)
P'Cq - pq + Z (p) (W)
k=1

Uis operationrequires (24-1) tthAmultiplications; if Cis treated as
a full matrix, this operation requires n2+n multiplications. This dif--
ference does not even include the An2 multiplications (for the A outer
pr oduct s Wlk(\l\i) required to conpute C

The basic approach of our algorithmis to partition the original
variable set z into xSR* and ueR". This partitioning is acconplished
by performng an L/U factorization of the matrix ﬁ\-, The vari abl es

correspondi ng to nonzero pivots are |abeled x; the remaining variabl es
are labeled u. At each iteration we use these factors to set up a re-
duced QPP which is solved to obtain Au and p,. The values for Ax and
X are conputed by performng the back substitution based on Au and \ x.
Figure 1 illustrates this process. The details of the optimzation

al gorithmare published el sewhere (Berna, Locke, Vesterberg, 1978),

but in the present discussion we wish to focus on the sparse matrix
mani pul ations required to carry out the optimzation procedure. Be-
fore discussing these mani pulations we first need to describe the
process for generating the Jacobian natrices and residual s associ at ed
with each of the constraints in the process. Section 4 describes this
procedure, and we continue our discussion of the sparse matrix op-
erations in Section 5.

- LASCALA —A Language for Large Scale Linear A gebra

X u RHE
FORURRD
ELI HI Nf I TI OM
8\
REl WICE3)
:‘: PROBLEM
®
h/
REDUCED P
& SOLVE FO7 AU

ax T DI i CKSUSSTI TUTE
| 171 FORAY

Figure 1. Schematic diagramof procedure used to solve very large
quadratic programmng problens (QPP s).

4, Process Mbdel: Packets and CGenerators, The discussion in

this section centers around the approach adopted for nodeling a chem
ical process. The job of the process nodel is to generate the con-
straints in (Pi) that describe a process. Conventional chemcal pro-
cess simulation packages visualize the process nodel as a set of in-
terconnected unit subroutines which operate on inlet streamval ues
and produce outlet streamvalues. In addition to the process streans
associated with each unit, there may be one or nore paraneters which
the user is required to specify. As we nentioned earlier it is far
nore desirable for a process simulator to accept arbitrary constraints
on the process; such is the case with equation based simul ation pack-
ages. V¢ are interested in devel oping a process simlator capable

of generating the Jacobian elements and right-hand sides associ ated
with the constraints in (Pi). Jacobian elenents are conputed by

M generators" which conpute the el enents based on the val ues of vari -
ables in the associated "variabl e packets.'™ The rows are identified
as those belonging to the "equation packets™ associated with the

LASCALA —A Language for Large Scale Linear Algebra

particul ar generator. [Each generator has a set of packets associated

with it; Figure 2 illustrates.

Rssoci at od

Vari abl e
Pci cf cot (s)
(N
Ascoc iated /’////’ 77
Equat i on éi"f’.’? V/
Peckot ('s) s
N /

Figure 2. Jacobian elenents are generated by a generator in the
particular rows and colums identified as the associated
equation and vari abl e packet(s).

In order to clarify the presentation of these concepts, we have
devel oped a Generator, Equation and Variable (CGEV) diagramwhich
schematically illustrates the connection between the various genera-
tors and packets in a given process nodel. Figure 3 illustrates the
GEV di agram and correspondi ng Jacobian matrix for a sinple p}ocess[
Vari abl e packets are illustrated by |abeled solid horizontal Iines,
equati on packets by labeled solid vertical lines. Generators are
represented by |abel ed boxes, and the packets associated with each
generator are those connected by a dashed line to that generator. In
this exanple variable packets "S2" and "Cost'' are associated with two
generators while the equation packet, "Cost Function,'! is associated
with two generators. This diagramillustrates the fact that each
generator may be associated with many packets and that any packet nmay
be associated with nore than one generator. Froma chem cal engi-
neering viewpoint this concept in nodeling offers several advantages:
one is that the physical property calculations nmay be included as
separate generators, another is that these physical properties can be
associated with a process streaminstead of using the less natura
associ ati on of physical properties with process units. To those un-
famliar with chemical process nodels, this latter distinction my
seemto be of little inportance. The significance of the statenent

is nore clearly understood when one considers that: (1) all process

wy

LASCALA — A Language for Large Scale Linear Algebra

31 32 33
- _ - - -=
V. - ~
Ty k pune |
MIFLI I- » CINLFatne r"ﬂ"
.
. —l —: runry
)
] [}
1 cosT 1
— .
PIPt COST [, VIR MW COST
CCUCt cf I TOR CEM KOTCr
Ll \ []
] LI ¥
!)
| COST '
1 rUHCTIOH ,
PI PC COST DATA PUMP COST RRTR

fa)

. PIPC P
9 PPl 2 PR sk BEFR i

PI PCL [nrc ct»cnTor |
PHPI | pur.p CEHERQTCfc '

cosT pi Pt PUHPI FOTM | p1#E . PUMPI
I'UUCTj oxX COST COsT] QOST . COST]

Figure 3. &V diagram(a) for process containing a punp and a |ength

of pipe; (b) shows Jacobian natri x associated\Mtf1this_GEv
simulators currently associ ate physical property calculations with a
process unit and not with a process stream and (2) because a process
streamis usually associated with two process units there is the pos-
sibility that two different values for a conputed physical property
coul d be assigned to the sane process stream Qur convention can
elimnate the possibility of having this discrepancy ari se.

5. Manipul ations for Large Problens. In Section 3 we alluded to
an optin zation algorithmwhich solves (Pi) by solving a series of
@P s in the degrees of freedom Au, only. In order to arrive at this
reduced PP one nust be able to conpute the L/U factors of the

Jacobi an matri x AZT. For large probl ens, those of industrial signif-
bx

i cance, the Jacobian matrix rmust be factored in a bl ock-by-bl ock nman-
ner; in this section we discuss the mani pul ati ons required to solve

(Pi) in areasonabl e anount of core storage space. For conveni ence
we introduce the follow ng notation

LASCALA —A Language for Large Scale Linear Algebra

5= 7°§r_ -

X - U buT

A= J)’('\ju v=3J B

O bh_

b bu

A K?L
C = Quasi - Newt on Approxi nation to T
bz&z

th A
wk = k—rank-one update to C

Al though the ideas presented in this section first arose in connec-
tion with chem cal process nmodels, we wish to stress that they nay be
applied to any loosely connected network of nodules giving rise to a
bordered bl ock diagonal (BBD) Jacobian matrix.

The structure of a typical chemcal process naturally gives rise
to a bordered bl ock diagonal (BBD) Jacobian matrix. Qur first goal
is to conpute A = J-IJ and v = J'lg in a bl ock-by- bl ock fashi on.

X U X

The sinplest case is illustrated in Figure 4a. In this discussion a
single.prine (') will denote Jacobian and right-hand side elenents
associ ated with equation packet "a" and a double prine (") will be
used for those associated with"b" . The Jacobian matri x associ at ed
with this process is shown in Figure 4b. The first step in factoring
this matrix is to generate the Jacobian el enents associated with unit
"a'’. Nonpivot flags are placed on the equation packet $ and on the
variabl e packets ab’ and ba' because these packets are shared with a
generator that has not yet been processed, and therefore there nay be
ot her nonzeros in these colums. The active systemis shown in Fig-
ure 5a. W then pivot to conmpute the L/U factors of this matrix to
get the structure shown in Figure 5b. The factored bl ock (the non-
crosshatched portion in Figure 5b) is stored in one area of nmss
menory, the residual block (the crosshatched portion) in another. W
next repeat this process for "b" . jj” active matrix with the appro-

priate nonpivot flags is shown in Figure 5c. Pivoting on the

11,-

LASCALA —A Language for Large Scale Linear Al gebra

3
TRy

Figure 4. Process containing two interconnected units (a) and its
associ ated Jacobian matrix (b).

¥ s "
I
N
% ~EIET A
e Y LT T YY|
[L]] ™
& % ps-

i
(14}
1 Y
Li4) i]
Col um.
(1]
Figure 5. Steps (a) through (f) illustrate the sequence of operations

used to factor the Jacobian matrix of Figure 4.

all owabl e rows and columms leads to the structure represented in Fig-
ure 5d. The factored block is sent to nass nenory, and the two resid-
ual blocks (that is, this one and the one from™a'’) are conbined to
give the matrix shown in Figure 5e. There is no need to prevent pi-

voting in any rows or colums, therefore pivoting leads to the matrix

illustrated in Figure 5f. The nonpivoted colums are equivalent to
L"1Ju so A is obtained by perfornming only the backward substitution on
these colums. In order to calculate A = J-IJ ‘we nmove the col umms

X u

+
corresponding to L~ J, to the right hand side of the equality and

-

LASCALA —A Language for Large Scale Linear A gebra

backsubstitute. Cnhce the backsubstitution has been performed for the
residual block, we retrieve the factored bl ock corresponding to ' b'.
V¢ identify those colums associated with Ju and nove these to the right

hand side of the equality. This procedure is shown schenatically in
"af.

Figure 6. The process is separated for

RETR EVE

S,

I: u.nl

VR
5P 1D

iU x /
Ul

REPEFi T FORYa' TO GET
f»j"% Ju
V=Jx o]

Figure 6. Schenatic representation of backward substitution step
associated with the Jacobian matrix in Figure 4.

It is asinple matter to show that the follow ng operations can al so
be perforned in a bl ock-by-bl ock manner:

Ku* KA

A ;3 o
afa
Vie have illustrated sone of the nanipulations that are required;

we now exam ne LASCALA in greater detail keeping in mnd the capa-
bilities it must exhibit. '

13

LASCALA —A Language for Large Scale Linear Algebra

6, LASCALA Commands, As stated in previous sections of this paper,

our objective is to develop a problemoriented |anguage capable of de-
scribing certain sparse matri x mani pul ations. Table 1 contains a list
of commands currently proposed for LASCALA. In the present section we
descri be each of these commands and introduce the conputational envi-

ronnment devel oped to handle large sparse matrices.

TABLE 1
LASCALA Conmands

Menory Tr ansf er
Managenent

Conver si on Local
d obal
Convert

Generati ng Set GN\GF
JGEN
KGEN
JRCEN
KRGEN

Sol vi ng Set PNPF
Anal yze
Fact or
FWD
BKWD

O her Add
Arithmetic Subt
Mul t.

P P

The first command for discussion is the TRANSFER command. To a
large extent the efficiency of a sparse matrix schene is determ ned by
how effectively it uses mass nenory and core storage space. On the
ot her hand, one would like to reduce the nunber of data transfers to
mass menory devi ces because these are very costly operations. On the
other hand, one would like to avoid cluttering up core space with data
that is not needed for the current matrix calculation (but which may
be required Ilater) .

Figure 7 illustrates one conputational environnment which attenpts
to use core space efficiently while organizing data to reduce the num

ber of transfers to mass menory. The core storage space is divided

e

LASCALA — A Language for Large Scale Linear Algebra

CORE STORAGE BUFFERS
[3
woRKING |uS BF1
STORRGE
I BF 2
TEMPORARY Lora

STORAGE . |TS

Figure 7. Data structure used with large systems.

into a working store (WS) and a temporary store (TS); the fraction of
core allocated to either category can be changed as required by the
executive routines. Data which can be sent to mass memory is stored
in one of three buffers according to its type. The syntax of the
TRANSFER command is as follows:

TRANSFER 'type' 'from' 'to' ('list of names')

where acceptable symbols for "type", and "from" and "to" are given in
Table 2.

TABLE 2
Acceptable Parameters for the TRANSFER Command

Data Type Designator

VP Variable Packet
FB Factored Block
RB Residual Block
vC Vector

Location Designators

BFl, BF2, BF3 Buffers 1, 2 and 3, respectively
WS Working Storage Space

TS Temporary Storage Space

within WS is a matrix structure used for core-resident matrix op-
erations. This matrix has a set of LOCAL row and column indices which
differ from the set of GLOBAL row and column indices. The commands
LOCAL and GLOBAL convert a given set of indices into LOCAL and GLOBAL '

indices, respectively.

LASCALA —A Language for Large Scale Linear A gebra

The OONVERT command is used to convert fromone sparse matri x data
structure to another. At present a matrix may use any of four data
structures: full, sparse, rank-one or the data structure peculiar to
the user's sparse matrix package. The sparse data structure is a list
of the nonzeros in the matrix along with their respective row and col -
umm indices. The rank-one data structure contains the k rank-one up-
dates (w) where the matrix is given by adding the k outer products
WiWI toxthe identity matrix. The other tV\DI data structures are
sel f expl anat ory.

The constraint generating commands are SET GNG- JGEN, KGEN, JRGEN
and KRGEN The first command is used to set "generate/ no-generat e
flags in order to suppress and/or ignore generation of certain rows
and/or columms of the Jacobian nmatrix. The commands JCGEN and KGEN are
used to generate the partial derivatives associated with the equality
and inequality constraints, respectively, while JREN and KREEN are
used to generate the residuals of these constraints.

The commands associated with solving a |linear systemare SET PNPF,
ANALYZE, FACTOR FWD and BACK. The first command is used to set
"pivot/no-pivot” flags to indicate any rows or col unns whose el enents
may not be considered for pivot variables. The remaining four com
mands are used to call the appropriate routines of the user-supplied
sparse matrix package described in the Introduction. Qher comrands
whi ch shoul d be conpatible with the sparse matrix package are: ADD,
SUBT and MLT. These commands are used to add, subtract or rultiply
two matrices where one or both of the natrices is sparse. The @P com
mand is used to call the appropriate routines to solve the QPP de-
scribed in Section 3. Due to the nature of our QPP we do not use a
sparse matri x code but rather use a full matrix version of Fletcher's
general i zed QPP al gorithm

In order to give the reader a nore concrete exanpl e of how LASCALA
m ght be used, we have included a portion of a sanple program In this
program (see Figure 8) each of units A, B, Cand D are so large that
they must be treated separately in core. The sanple programill us-
trates the sequence of LASCALA commands required to performthe elim
ination and forward substitution on the linearized equality con-
straints associated with unit A | A simlar sequence of commands is
r®Quired for the other units and for the backward substitution.

e

LASCALA —A Language for Large Scale Linear A gebra

EXAMPLE PROGRAM . N
T SG
—_—r A B e C =P D
S2 S3 sS4

A

SS

USER | NPUT COMPLETE. ALL VAPI ABLES/ EQUATICMS | NI TI ALI ZED 4 SCALED.
C UNIT A

TRANSFER VP B'1 US CSI, SS, Vi»A, S2)
TRANSFER VC BF3 WS CLGNOFA, LPHPFA)

SET G\GF (LGN5FA)

SET PKPF CLAKPFA)

JOEN

LCCAL

CONVERT SP SPMP1

ANALYZE

FIO

OLOCAL

TRANSFER TP WS DF2 CVPA)

TRANSFER PB US TS (PDA)

TPAUSFER VP W8 TS CSS) '
TPANSFER VP W8 LF1 CVPA> :
TRANSFER VP W8 EF1 <ST>

Figure 8. Typical segnent from LASCALA program

7. Extensions to LASCALA. An obvious extension to the work de-
scribed thus far, and one which we are currently studying, is to de-
velop a conpiler which will automatically generate the necessary
sequence of LASCALA commands associated with the user's description
of his problem The conpiler should make sone attenpt to optinize
the order in which the variables are generated/elimnated. The com:
pil er shoul d al so contain guidelines for deciding what order to use
in storing variables for faster retrieval frommass menory.

REFERENCES

Berna, T.J., MH Locke and AW Westerberg, "A New Approach to Op-
timzation of Chemcal Processes,™ Paper presented at National
A ChE Meeting, Mam, FL. (Novenber 1978).

Powel |, MJ.D., '"A Fast Algorithmfor Nonlinear Constrained Qpti mi -
zation Calculations,'’ Paper presented at the 1977 Dundee Oon-

ference on Numerical Analysis.

Westerberg, AW and T.J. Berna, "Deconposition of Very Large-Scal e
Newt on- Raphson Based Fl owsheeting Probl ens, % Conputers and Chem
ical Engineering, 29 61-63 (1978).

17.

