
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

LASCALA - A LANGUAGE FOR LARGE SCALE LINEAR ALGEBRA

by

A.W. Westerberg & T.J. Berna

DRC-06-4-79

January 1979

Department of Chemical Engineering
Carnegie-Melion University
Pittsburgh, PA 15213

^Presented at SIAM Symposium on Sparse Matrix Computations,
Knoxville, TN, November 1978.

This work supported by NSF Grant ENG-76-80149.

LASCALA — A Language for Large

Scale Linear Algebra

A.W. Westerberg and T.J. Berna

Abstract. A problem-oriented language is described which is capable
of directing the calculation sequence associated with solving large,
sparse, linear algebra systems which in general will require the use
of mass memory. Although the concept of LASCALA arose in connection
with the problem of optimizing large chemical processes, its applica-
tion is suitable for use with any large matrices having a loosely con-
nected block diagonal structure.

1. Introduction. One approach used to develop a model of a chem-

ical process is to write all of the constraints associated with the

process and to solve them simultaneously. These constraints include

linear and nonlinear equality and inequality algebraic constraints,

and for a typical process there are often several thousand such con-

straints. Once the model has been generated, one would like to find

the set of feasible (or optimal feasible) solutions which describe

the process. Unfortunately, it is frequently undesirable, if not im-

possible, to handle all of the constraints simultaneously without re-

sorting to the use of mass memory devices for auxiliary storage.

The purpose of our work has been to develop an optimization scheme

capable of finding optimal feasible solutions for large chemical pro-

cesses. Our first step was to develop a scheme for computing the L/U

factors of the large Jacobian matrix associated with the process con-

straints. Our algorithm (Westerberg and Berna, 1978) performs the

factorization in a block-by-block manner to avoid using an excessive

amount of core storage. In order to implement the ideas presented in

that paper and in order to extend these ideas for use with our opti-

mization algorithm (Berna, Locke and Westerberg, 1978), we advocate

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

LASCALA — A Language for Large Scale Linear Algebra

the use of a problem-oriented language such as LASCALA (Large Scale

Linear Algebra).

We are in the early stages of developing LASCALA. Although the

sample problem presented here has a chemical engineering parentage,

LASCALA is well-suited for use in solving any problems that give rise

to a large bordered block diagonal (BBD) Jacobian matrix. Presently

LASCALA programs must be written manually, but its full potential can

be realized only when the programs are generated automatically. Our

primary objective in writing this paper is to introduce LASCALA in

concept and to show the types of commands that such a language should

have.

Throughout the discussion we assume that the user has available a

sparse matrix package capable of performing an L/U factorization of

a sparse matrix and of performing the forward and backward substitu-

tions required to solve linear algebraic systems. We have given this

hypothetical package the name SPARSE and assume it contains four rou-

tines: ANALYSE, FACTOR, FWD and BACK. The ANALYSE step, which de-

termines the pivot sequence, must have some provision for handling

nonpivot flags. FACTOR performs the elimination for a given pivot

sequence. The routines FWD and BACK must be able to perform sepa-

rately the forward and backward steps of the Gaussian elimination

where the coefficient matrix is the factored matrix or its transparse.

Our intention in designing LASCALA has been to keep the problem-

oriented language independent of any particular sparse matrix code.

The discussion which follows is divided into six sections. The

first section describes the nature of the chemical process design

problem. Following a statement of the design problem, there is a

statement of the optimization algorithm and a description of the

method used to generate the process constraints. Section 5 describes

some of the sparse matrix manipulations required in our work. In

Section 6 we describe LASCALA in greater detail, and we discuss future

work in Section 7.

2. The Design Process. A typical design problem is stated as

follows: Design a process for producing 1 million kilograms of a

chemical "C" per year. The product must be 99.9% pure, and available

raw materials are chemicals nA" and "B" • In addition to the explicit

LASCALA — A Language for Large Scale Linear Algebra

requirements stated above, there are several implicit constraints re-

quiring that the final design must: minimize annual operating ex-

penses, comply with local pollution codes, meet certain safety stan-

dards, etc. A designer faced with solving this problem normally be-

gins by considering each of the elements which might go into the pro-

cess: the reactor, purification units, heat exchangers, etc. Before

analyzing the behavior of the entire process the designer must ana-

lyze the behavior of each element. In considering the reactor, for

example, the designer must consider various operating conditions

available and alternative reaction schemes. As each of the elements

is analyzed, the designer begins to link them together and to analyze

the behavior of the entire network. The designer then continues to

work with the network until an acceptable (perhaps an optimal) pro-

cess is discovered.

A desirable feature of any design package is that the user must be

able to place arbitrary specifications on the process. For example,

the original problem statement might specify the temperature, pres-

sure, composition or flowrate at any point in the process. The spec-

ifications might require that some function of these variables be sat-

isfied. In any event, the final design must satisfy all specifica-

tions imposed on the process.

When the entire chemical process is considered there are n+r+q

variables and n equality constraints. The user specifies values for

q of the variables; effectively, these variables become constants for

the remainder of the problem. The Jacobian matrix for the equality

constraints is factored into the product of a lower triangular matrix

L and an upper triangular matrix l|. The n variables corresponding to

the pivots of the factored Jacobian matrix become the dependent vari-

ables x and the remaining variables become the decision (independent)

variables 11. The r decision variables represent the actual degrees

of freedom for optimizing the chemical process design.

Before concluding our discussion of the chemical process design

problem, we would like to say a few words about the structure of the

Jacobian matrix corresponding to a typical chemical process. The

Jacobian has a bordered block diagonal structure; the blocks cor-

respond to the various elements in the process, and the overlap

3.

LASCALA — A Language for Large Scale Linear Algebra

between blocks is due to the connections among the elements in the

network. One can expect to find Jacobian matrices having this struc-

ture whenever the constraints are related to a set of loosely con-

nected modules. We say more about the role that this structure plays

in the design process later in this paper. Now let us consider the

optimization problem as a mathematician might see it.

3. The Optimization Algorithm. The problem of finding an optimal

design for a particular chemical process can be stated as follows:

Min $(z)

subject to

(PI)

g(2) =

h(z) *

z eR

g:R

hsR***

0

0

- Rn

Rm

R

where § may be the net annual operating expenses, and g and h are the

constraints described in Section 2. For problems of industrial sig-

nificance n and m range from about 1000 to 50,000 and r ranges from 1

to about 50. Typical values for n and r are 10,000 and 10, respec-

tively. In order to solve (Pi) within a reasonable amount of core

storage and execution time, we have modified an algorithm published

by Powell (1977). Powell's algorithm relies heavily on some work

published by Han (1975). In the remainder of this section we sketch

the development of the relevant details of our optimization algorithm

(Berna, Locke and Westerberg, 1978).

In order to develop the conditions necessary for z* to be an opti-

mal feasible solution to (Pi), we define the Lagrange function

(1) L(z,X,uO = §(z) - XTg(z) - nTh(z)

The necessary conditions for optimality then become

LASGALA — A Language for Large Scale Linear Algebra

bz bz bz 'v bz

(3) g(z) - 0 ; h(z) * 0

(4) HTh = 0 ; n ^ 0

The Newton-Raphson scheme for solving (2) gives

In a similar fashion, the constraints in (3) can be linearized to give

Az = 0

(6)

h + ^ - Az ̂ 0
6zT

At this point, we define the following quadratic function

2
M 1 T U(7) Q(Az) = $ + M _ Az + 1

Now consider the quadratic programming problem (QPP) formed by mini-

mizing Q(Az) subject to the linearized constraints (6):

Min Q(Az)
Az

(QPP) s.t. g + ^ Az = 0
bzT

h + ^ - Az ̂ 0
oz1

The necessary conditions for Az* to be a solution to (QPP) are that

(5) and (6) hold and that the following constraints be satisfied:

(8) nT (h + &- Az*
V bz1

\x * 0

LASCALA — A Language for Large Scale Linear Algebra

Based on the observation that (5), (6) and (8) are satisfied by solv-

ing (QPP) and that these constraints represent the Newton-Raphson

iteration from z to z , Powell (1977) developed an algorithm which

solves (Pi) by generating and solving a sequence of QPP's. Instead

of actually computing — — ~ , the Hessian of the Lagrange function,
bzbz

Powell uses a series of pairwise rank-one updates to approximate this

matrix. The basic algorithm is given as follows:

2

Step 1. Guess C = I and z (C is —-—— j
&zbzT y

Step 2. Evaluate $, g, g, h, ^_, ^, g

Step 3, Solve QPP for Az*, X*, p,*

Step 5. Move to z = z + Az and repeat Step 2. Using the same
nexc

X* and |A* from Step 4, evaluate

(fe)
next, act next next next

2
(At z , Az = 0 so the term Az is zero.) Then use

nexu . ^ ^ j.

bz&z

Step 6. Iterate from Step 3 until ||Az|| is small.

For relatively small problems (n £ 50) this algorithm works ex-

tremely well. For very large problems (n ̂ 1000) the size of C ex-

ceeds the core storage space available on most machines; furthermore,

the computational requirements involved in updating C (by computing
T) are prohibitive for large values of n. Our algorithm, which

LASCALA — A Language for Large Scale Linear Algebra

extends the above algorithm, uses the linearized equality constraints

in (6) to set up a reduced (QPP) where the size of the Hessian matrix

is rxr instead of (nfr)x(nfr). A second advantage associated with the
Textended algorithm is that we never compute W, W, ; instead, we always

compute the appropriate scalar products associated with the pre- and

post-multiplication operators of C. In other words, we never need C
Talone. Rather, we need terms of the form p Cq where these terms are

computed (after I rank-one updates of C, A « n) as follows

P
TCq - pTq

Uiis operation requires (2X4-1) tthA multiplications; if C is treated as
2

a full matrix, this operation requires n +n multiplications. This dif-
2

ference does not even include the An multiplications (for the A outer

products W«W,) required to compute C.

The basic approach of our algorithm is to partition the original

variable set z into xSR and ueR . This partitioning is accomplished

by performing an L/U factorization of the matrix —^-. The variables

corresponding to nonzero pivots are labeled x; the remaining variables

are labeled u. At each iteration we use these factors to set up a re-

duced QPP which is solved to obtain Au and p,. The values for Ax and

X are computed by performing the back substitution based on Au and \x.

Figure 1 illustrates this process. The details of the optimization

algorithm are published elsewhere (Berna, Locke, Westerberg, 1978),

but in the present discussion we wish to focus on the sparse matrix

manipulations required to carry out the optimization procedure. Be-

fore discussing these manipulations we first need to describe the

process for generating the Jacobian matrices and residuals associated

with each of the constraints in the process. Section 4 describes this

procedure, and we continue our discussion of the sparse matrix op-

erations in Section 5.

LASCALA — A Language for Large Scale Linear Algebra

x u

\
ELIHINflTIOM

REIUJCE3)
PROBLEM

REDUCED QPP
SOLVE FOi? AU

DfiCKSUSSTITUTE
FOR A-

Figure 1. Schematic diagram of procedure used to solve very large
quadratic programming problems (QPP's).

4. Process Model: Packets and Generators, The discussion in

this section centers around the approach adopted for modeling a chem-

ical process. The job of the process model is to generate the con-

straints in (Pi) that describe a process. Conventional chemical pro-

cess simulation packages visualize the process model as a set of in-

terconnected unit subroutines which operate on inlet stream values

and produce outlet stream values. In addition to the process streams

associated with each unit, there may be one or more parameters which

the user is required to specify. As we mentioned earlier it is far

more desirable for a process simulator to accept arbitrary constraints

on the process; such is the case with equation based simulation pack-

ages. We are interested in developing a process simulator capable

of generating the Jacobian elements and right-hand sides associated

with the constraints in (Pi). Jacobian elements are computed by
11 generators" which compute the elements based on the values of vari-

ables in the associated "variable packets.11 The rows are identified

as those belonging to the "equation packets11 associated with the

LASCALA — A Language for Large Scale Linear Algebra

particular generator. Each generator has a set of packets associated

with it; Figure 2 illustrates.

Rssociatod
Variable
Pcicfcot(s)

Equation
Peckot(s)

Figure 2. Jacobian elements are generated by a generator in the
particular rows and columns identified as the associated
equation and variable packet(s).

In order to clarify the presentation of these concepts, we have

developed a Generator, Equation and Variable (GEV) diagram which

schematically illustrates the connection between the various genera-

tors and packets in a given process model. Figure 3 illustrates the

GEV diagram and corresponding Jacobian matrix for a simple process.

Variable packets are illustrated by labeled solid horizontal lines,

equation packets by labeled solid vertical lines. Generators are

represented by labeled boxes, and the packets associated with each

generator are those connected by a dashed line to that generator. In

this example variable packets "S2" and nCost!l are associated with two

generators while the equation packet, "Cost Function,11 is associated

with two generators. This diagram illustrates the fact that each

generator may be associated with many packets and that any packet may

be associated with more than one generator. From a chemical engi-

neering viewpoint this concept in modeling offers several advantages:

one is that the physical property calculations may be included as

separate generators, another is that these physical properties can be

associated with a process stream instead of using the less natural

association of physical properties with process units. To those un-

familiar with chemical process models, this latter distinction may

seem to be of little importance. The significance of the statement

is more clearly understood when one considers that: (1) all process

LASCALA — A Language for Large Scale Linear Algebra

L J **»* I
I" " " CCNLRQTOR r

1

PIPt COST
CCUCfcflTOR

COST

V

\ '

1

Pl'MP COST
CEMtKOTCr

COST
rUHCTIOH

PIPC COST DATA PUMP COST

fa)

PIPC1

PHPI

COST

ruucTjox

SI

[nrc

PIPE1

ct»:c*n

piPt
COST

S2

TOR |

| pur.p

PHPI S3

CEHERQTCfc

PUHPI
COST]

FOTM

PIPC
COST

COST

pimp
COST
imp

PUMP I
COST]

Figure 3. GEV diagram (a) for process containing a pump and a length
of pipe; (b) shows Jacobian matrix associated with this GEV.

simulators currently associate physical property calculations with a

process unit and not with a process stream, and (2) because a process

stream is usually associated with two process units there is the pos-

sibility that two different values for a computed physical property

could be assigned to the same process stream. Our convention can

eliminate the possibility of having this discrepancy arise.

5. Manipulations for Large Problems. In Section 3 we alluded to

an optimization algorithm which solves (Pi) by solving a series of

QPP's in the degrees of freedom, Au, only. In order to arrive at this

reduced QPP one must be able to compute the L/U factors of the

Jacobian matrix ̂ 2-. For large problems, those of industrial signif-
bx

icance, the Jacobian matrix must be factored in a block-by-block man-

ner; in this section we discuss the manipulations required to solve

(Pi) in a reasonable amount of core storage space. For convenience

we introduce the following notation:

LASCALA — A Language for Large Scale Linear Algebra

Jx = 7T JU

A = J~\j
x u

K =%
x x T u x Tbx bu

A K 2L
C = Quasi-Newton Approximation to -

bz&z

th A

w = k— rank-one update to C

Although the ideas presented in this section first arose in connec-

tion with chemical process models, we wish to stress that they may be

applied to any loosely connected network of modules giving rise to a

bordered block diagonal (BBD) Jacobian matrix.

The structure of a typical chemical process naturally gives rise

to a bordered block diagonal (BBD) Jacobian matrix. Our first goal

is to compute A = J J and v = J g in a block-by-block fashion.
X U X

The simplest case is illustrated in Figure 4a. In this discussion a

single prime (') will denote Jacobian and right-hand side elements

associated with equation packet "a" and a double prime (") will be

used for those associated with nb" . The Jacobian matrix associated

with this process is shown in Figure 4b. The first step in factoring

this matrix is to generate the Jacobian elements associated with unit

"a11. Nonpivot flags are placed on the equation packet $ and on the

variable packets abf and ba! because these packets are shared with a

generator that has not yet been processed, and therefore there may be

other nonzeros in these columns. The active system is shown in Fig-

ure 5a. We then pivot to compute the L/U factors of this matrix to

get the structure shown in Figure 5b. The factored block (the non-

crosshatched portion in Figure 5b) is stored in one area of mass

memory, the residual block (the crosshatched portion) in another. We

next repeat this process for "b" . jj^ active matrix with the appro-

priate nonpivot flags is shown in Figure 5c. Pivoting on the

11,

LASCALA — A Language for Large Scale Linear Algebra

V
a-

b .1

Figure 4. Process containing two interconnected units (a) and its
associated Jacobian matrix (b).

l

-1 \
Column.

Figure 5. Steps (a) through (f) illustrate the sequence of operations
used to factor the Jacobian matrix of Figure 4.

allowable rows and columns leads to the structure represented in Fig-

ure 5d. The factored block is sent to mass memory, and the two resid-

ual blocks (that is, this one and the one from flalf) are combined to

give the matrix shown in Figure 5e. There is no need to prevent pi-

voting in any rows or columns, therefore pivoting leads to the matrix

illustrated in Figure 5f. The nonpivoted columns are equivalent to

L" J so A is obtained by performing only the backward substitution on

these columns. In order to calculate A = J J we move the columns

1 x u
corresponding to L~ Ju to the right hand side of the equality and

LASCALA — A Language for Large Scale Linear Algebra

backsubstitute. Once the backsubstitution has been performed for the

residual block, we retrieve the factored block corresponding to 'b1.

We identify those columns associated with J and move these to the right

hand side of the equality. This procedure is shown schematically in

Figure 6. The process is separated for faf.

RETRIEVE

REPEfiT FOR va' TO GET

f»=j"x! Ju

Figure 6. Schematic representation of backward substitution step
associated with the Jacobian matrix in Figure 4.

It is a simple matter to show that the following operations can also

be performed in a block-by-block manner:

K + K Au x

CA Cv

TXA

Wfe have illustrated some of the manipulations that are required;

we now examine LASCALA in greater detail keeping in mind the capa-

bilities it must exhibit.

LASCALA — A Language for Large Scale Linear Algebra

6, LASCALA Commands, As stated in previous sections of this paper,

our objective is to develop a problem-oriented language capable of de-

scribing certain sparse matrix manipulations. Table 1 contains a list

of commands currently proposed for LASCALA. In the present section we

describe each of these commands and introduce the computational envi-

ronment developed to handle large sparse matrices.

TABLE 1

LASCALA Conmands

Memory
Management

Conversion

Generating

Solving

Other
Arithmetic

QPP

Transfer

Local
Global
Convert

Set GNGF
JGEN
KGEN
JRGEN
KRGEN

Set PNPF
Analyze
Factor
FWD
BKWD

Add
Subt
Mult

QPP

The first command for discussion is the TRANSFER command. To a

large extent the efficiency of a sparse matrix scheme is determined by

how effectively it uses mass memory and core storage space. On the

other hand, one would like to reduce the number of data transfers to

mass memory devices because these are very costly operations. On the

other hand, one would like to avoid cluttering up core space with data

that is not needed for the current matrix calculation (but which may

be required later)

Figure 7 illustrates one computational environment which attempts

to use core space efficiently while organizing data to reduce the num-

ber of transfers to mass memory. The core storage space is divided

LASCALA — A Language for Large Scale Linear Algebra

CORE STORPCE BUFFERS

WORKING
STORAGE

TEMPORRRY
STORAGE

US

4-
TS

^ ^

BFl

BF2

2Fc]

Figure 7. Data structure used with large systems.

into a working store (WS) and a temporary store (TS); the fraction of

core allocated to either category can be changed as required by the

executive routines. Data which can be sent to mass memory is stored

in one of three buffers according to its type. The syntax of the

TRANSFER command is as follows:

TRANSFER 'type1 'from1 'to1 ('list of names')

where acceptable symbols for "type11, and nfromfl and lftoM are given in

Table 2.

TABLE 2

Acceptable Parameters for the TRANSFER Command

Data Type Designator

VP Variable Packet
FB Factored Block
RB Residual Block
VC Vector

Location Designators

BFl, BF2, BF3
WS
TS

Buffers 1, 2 and 3, respectively
Working Storage Space
Temporary Storage Space

Within WS is a matrix structure used for core-resident matrix op-

erations. This matrix has a set of LOCAL row and column indices which

differ from the set of GLOBAL row and column indices. The commands

LOCAL and GLOBAL convert a given set of indices into LOCAL and GLOBAL

indices, respectively.

LASCALA — A Language for Large Scale Linear Algebra

The CONVERT command is used to convert from one sparse matrix data

structure to another. At present a matrix may use any of four data

structures: full, sparse, rank-one or the data structure peculiar to

the user's sparse matrix package. The sparse data structure is a list

of the nonzeros in the matrix along with their respective row and col-

umn indices. The rank-one data structure contains the k rank-one up-

dates (w.) where the matrix is given by adding the k outer products
T X

w.w. to the identity matrix. The other two data structures are

selfexplanatory.

The constraint generating commands are SET GNGF JGEN, KGEN, JRGEN

and KRGEN. The first command is used to set "generate/no-generate11

flags in order to suppress and/or ignore generation of certain rows

and/or columns of the Jacobian matrix. The commands JGEN and KGEN are

used to generate the partial derivatives associated with the equality

and inequality constraints, respectively, while JRGEN and KRGEN are

used to generate the residuals of these constraints.

The commands associated with solving a linear system are SET PNPF,

ANALYZE, FACTOR, FWD and BACK. The first command is used to set

"pivot/no-pivotfl flags to indicate any rows or columns whose elements

may not be considered for pivot variables. The remaining four com-

mands are used to call the appropriate routines of the user-supplied

sparse matrix package described in the Introduction. Other commands

which should be compatible with the sparse matrix package are: ADD,

SUBT and MULT. These commands are used to add, subtract or multiply

two matrices where one or both of the matrices is sparse. The QPP com-

mand is used to call the appropriate routines to solve the QPP de-

scribed in Section 3. Due to the nature of our QPP we do not use a

sparse matrix code but rather use a full matrix version of Fletcher's

generalized QPP algorithm.

In order to give the reader a more concrete example of how LASCALA

might be used, we have included a portion of a sample program. In this

program (see Figure 8) each of units A, B, C and D are so large that

they must be treated separately in core. The sample program illus-

trates the sequence of LASCALA commands required to perform the elim-

ination and forward substitution on the linearized equality con-

straints associated with unit A. A similar sequence of commands is
r for the other units and for the backward substitution.

LASCALA — A Language for Large Scale Linear Algebra

EXAMPLE PROGRAM ^
1 SG

SI S2 S3 S4

A |
SS

USER INPUT COMPLETE. ALL VAPIABLES/EQUATICMS INITIALIZED 4 SCALED.

C UNIT A

TRANSFER VP Br1 US CS1,SS,Vf»A S2)
TRANSFER VC BF3 WS CLGNOFA,LPHPFA)
SET GNC-F (LGN5FA)
SET PKPF CL^KPFA)
JOEN
LCCAL
CONVERT SP SPMP1
ANALYZE
FIO
OLOCAL
TRANSFER TP WS DF2 CVPA)
TRANSFER PB US TS (PDA)
TPAUSFER VP W3 TS CSS)
TPANSFER VP WS LF1 CVPA>
TRANSFER VP WS EF1 <ST>

Figure 8. Typical segment from LASCALA program.

7. Extensions to LASCALA. An obvious extension to the work de-

scribed thus far, and one which we are currently studying, is to de-

velop a compiler which will automatically generate the necessary

sequence of LASCALA commands associated with the user's description

of his problem. The compiler should make some attempt to optimize

the order in which the variables are generated/eliminated. The com-

piler should also contain guidelines for deciding what order to use

in storing variables for faster retrieval from mass memory.

REFERENCES

Berna, T.J., M.H. Locke and A.W, Westerberg, "A New Approach to Op-
timization of Chemical Processes,11 Paper presented at National
AlChE Meeting, Miami, FL. (November 1978).

Powell, M.J.D., lfA Fast Algorithm for Nonlinear Constrained Optimi-
zation Calculations,!f Paper presented at the 1977 Dundee Con-
ference on Numerical Analysis.

Westerberg, A.W. and T.J. Berna, "Decomposition of Very Large-Scale
Newton-Raphson Based Flowsheeting Problems,11 Computers and Chem-
ical Engineering, 29 61-63 (1978).

17.

