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ABSTRACT

Based on recent work reported by Powell, a new optimzation al -
gorithmis presented which nerges the Newton-Raphson nethod and quadratic
programmng. A unique feature is that one does not converge the equality
and tight inequality constraints for each step taken by the optim zation
'algorithnl H e paper shows how to performthe necessary cal cul ations ef-
ficiently for very large probl enms which require the use of mass nenory.
Experience with the algorithmon snall problens indicates it converges ex--
ceptionally quickly to the optinmal answer, often in as fewiterations (5
to 15) as are needed to performa single simulationwth no optimzation

usi ng nore conventional approaches.
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SCOPE

In optimzing the nodel of a chem cal process one is faced with
solving a nonlinear progranm ng probl em containing anywhere -from severa
hundred to several thousand nonlinear equality and inequality constraints.
Bef ore process optinizers were devel oped, a designer who wished to optimze
a chenmical process would usually adjust one or nore of the independent vari -
abl es and use the conmputer to converge the equality constraints (heat and
mat eri al bal ance equations) and to evaluate the objective function. Based
on the results of this sinulation, the designer would check many of the
inequality constraints by hand and then would readjust the decision vari-
abl es and perform another simulation to get a better and/or feasible result.

Some earlier attenpts to design a chenical process optinizer (e.g
Fri edman and Pi nder, 1972) nimcked this process by replacing the designer
with an pattern search optim zation routine. Although approaches such as
this are reasonably effective at inproving the process, they are inefficient
and have difficulty handling the inequality constraints.

Recently Powel | (1977a) published an al gorithmwhich drastically
reduces the conputational effort required to solve nonlinear prograns.
The unique feature of Powell's technique is that.he does not have to con-
verge the equality constraints or tight inequality constraints at each it-
eration. Powell's technique is not suitable as stated for |arge problens
because it requires-that thg user solve a very large quadratic.progranning
problem (QPP) involving a Hessian matrix of the size of the nunber of prob-
lemvariables at .each iteration. Although this nethod converges rapidly,
it requires too nuch core storage. W extend Powell's work by devel opi ng

a deconposition schene which permts one




(1) to solve the same problem but reduce drastically
the storage requirements, and

(2) to take computational advantage of the fact the

optimization is of a system of interconnected
process units.

This paper opens with a brief description of the process optimi-
zation problem and some comments on the more significant algorithms already
available. We then discuss Powell's algorithm, and, starting with his for-
mulation of the problem, we perform the algebra necessary to arrive at a
decomposed problem. We follow this development with a formal statement
of the resulting algorithm and an example problem.,

In this paper we rely heavily on an earlier paper by two of the
authors (Westerberg and Berna (1978)) which describes a decomposition tech-
nique for solving large sets of structured linearized equations arising from
modeling chemical processes. We do not attempt to present any convergence
proofs here, because Powell's results are directly applicable. The reader

is referred to Powell (1977b) and Han (1975).




CONCLUSI NS AND S| GN FI CANCE

There are two major difficulties associated with optimzing a
noder n chem cal process nodel: excessive storage requirenents and exces-
sive conputational requirenments. The technique we present in this paper
addresses both of these problens directly. Qur nethod is an extension of
work recently published by Powel | (1977a). Powell's algorithmis based
on the Newt on- Raphson method, and it generates a quadratic programat each
iteration to inprove the current guess at the solution to the original non-
linear program The prinary advantage of Powell's scherme is that it does
not need to find a feasible solution to the equality constraints (or tight
inequality constraints) at each iteration. The paper denonstrates with an
exanpl e that this fact dramatically reduces the conputational work involved
in converging to the optimal solution. Unfortunately, Powell's nethod as
stated becones inpractical for large problens because it requires solving
a quadratic programin all the problemvariables and not just in the deci-
sion variables. W show that the nodul ar nature of chem cal processes.has
allowed us to develop an al gorithmwhich uses mass nenory efficiently for
very large problens and which solves a quadratic programat each iteration

in the decision variables only. Therefore, we are applying Powell's al go-

rithmin a way that never requires us to use nmore than a nodest anount of
core. Based on a small nunber of test problens this algorithmappears to
require about the sane nunber of gradient and function evaluations to ar-
rive at an optimal solution as avail able nonoptim zing simulation packages

require to obtain a single solution.
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The chemical process optimzation problemcan be stated as foll ows

Mn $(z)
Subject to g(z) =0
h(z) £0 (Pi)
zeRMT
g R,H-r._.Rn

h: R'H-r -+ g™

where the constraints represent material and energy bal ances, equilibrium
rel ati onshi ps, economc factors, etc. For many chenical .processes of prac-
tical inportance n and mhave val ues anywhere from 1000 to 50,000, and r

m ght range anywhere up to about 50. Cbviously, these problens are very

| ar ge.

e techni que which has been quite successful for solving highly
constrai ned nonlinear programmng problens is the Generalized Reduced G a-
dient (&RG algorithm (Abadie and Carpentier, 1969). This technique u.ses
the equality constraints (and tight inequality constraints) to elimnate
conputationally a |arge nunber of variables and equality constraints from
the total set. This procedure reduces the apparent dimensionality of the
optimzation problem At each iteration all of the elininated constraints
nust be satisfied, thus at each iteration the algorithmmust solve a very
| arge set of nonlinear al gebraic equations.

Sone investigators, notably in the oil industry, have been suc-
cessful in converting problem (Pi) into a large |inear programmng probl em
(LP) by linearizing the constraints and the objective function. Because
large linear prograns are relatively easy to solve the LP-based al gorithm

solves a sequence of LP s which eventually converge to the desired optinum




Thi s techni que works well for sonme problens, but it has a drawback. There
is no information in the algorithmabout the curvature of the constraints,
t heref ore convergence cannot be second order near the sol ution. .POME||
(1978) illustrates this difficulty with a small exanpl e.

Anot her class of optimzation algorithnms is called exact penalty
function net hods. They use an extended Lagrangi an function, one which has
a penalty termadded to it as well as the constraints with multipliers.
Char al anbons (1978) describes these methods and clains they are very effec-
tive, but the extension of these ideas to very l|large problens does not yet
appear to be avail abl e.

Froma conputational standpoint, we feel the nost successful al -
gorithmavail abl e may be that recently devel oped by Powell (1977a). The
total nunber of gradient and function evaluations required by this algorithm
to obtain an optinmal solution corresponds to the nunber required by many
simul ati on packages to obtain a single feasible solution. Table 1 i I'lus-
trates how Powel |'s al gorithm conpares with the best knémn algorithnms for

solving sone snall classical problens studied by Golville and others

(Povel |, 1977a).




Table 1. Conparison of Algorithns (Table 1 of Powell, 1977a)
Pr obl em Colville (1968) Bi ggs (1972) Fl et cher (1975) Powel |

Colville 1 13 8 39 6
4) (4)

Colville 2 112 47 149 17
(3) (16)

Colville 3 23 10 64 3
) 2

Post Ofice — 11 30 7
Probl em (4) (5)
Powel | —_ — 37 7
©) (6)

The nunbers represent the nunber of times the functions and

wer e conput ed,;

their gradients

the nunbers in parentheses are the nunber of iterations.




Pr obl em Deconposition

For convenience we restate the optim zation problem but this
time we partition the variables into tw sets: xer and ueRr.
Mn $(x,u)
X, u
Subject to g(x,u) =0
h(x,u)- ~ 0
$:R""->R (P2)
gk 4 g"

h:Rn+r -+ Rm

W linearize the equality and inequality constraints about a cur--

rent guess at the solution, obtaining

ngto+’\Au- - g
bx bu

Rhay 1+ Bhay g -
bx! txxfa‘lJ

We approxi mate the objective function $(x,u) to second order in all the

probl em vari abl es

$(x + AX, u+ Au) =$(x,u) + f'-i'=7-="i /.

+] [ix"Au"] ¢ [ ] to (2)
Au

where, as shown by Powell (1977a), C should be the Hessian matrix of the

Lagrange function

L(x,u,Xn) - §(x,u) - X'g - nh
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X and \'s, are vectors of Lagrange and Kuhn- Tucker mul tiplers, respectively.

The approxi mate probl em
A
Mn $(x + AX, u + Au)

subject to constraints (1) is a quadratic programmi ng problemin variabl es

AXx, Au.

The necessary conditions for solving this approxi mate probl em

are as foll ows,

1) Stationarity of the Lagrange Function with Respect to Ax and Au

T
AT /2Ny /ML, -/
A I oh” %
bu bu bu
2) Ciginal Constraints
QBT AX + 95¥ Au=- g
ox du
dh dh
o+ L= puz - h
bx’ put

3) Kuhn-Tucker Conditions

pT[ ¢x+9—hii.-:su+h]=o
bxT bu
p=20

It is these conditions that a QPP algorithmsatisfies. A this

point it is convenient to introduce the notation listed in Table 2




Table 2. Nonenclature for Partial Derivatives

, b$ , b$
X X u
ho bg_
x QI
X T Ku "- 11
6Xx bu
2 9
Cc :\] G__ Cc = \] OL :.'
"o IR “ pubu’
= f K
xu xXouT— ¢ i budx

Not e: W assune that Cis symetric (i.e. Ca.j: CJ.l)
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Wth this newnotation the stationary condition (2) becores

i

T T |
C C J K AX =-b
XX Xu x wy x
c c 3t K Au =-b
ux uu u u u (3)
JX Ju 0 0 -X =-g
K 0 + | =-h
u 0 ] L -
sIIK K 1] =0
L'X U Au
h
=0

Note that the coefficient matrix is symetric and that the |ower right por--

tion of the matrix is zero.

Rearranging the matrix in (3) we get

- ]
JT C c Kﬂ - X =-b
x XX XU X H
O J J 0 AX = - b
x ! v‘r) ')
it c C KT Au
u ux uu u - -8
_O I& Ku O ] - u- * h
T AX
B [Kx R, 1 N =0
h
k=0

The coefficient matrix in (4) is very large (2n+r +nm x (2n+ r+m
(n and mmay be several thousand each; r may be 1 to 50). This matrix is .
reasonably sparse, and each of the bl ocks has a structure which can be used

to sinplify the conputational requirements for solving (4).
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A very efficient method for solving largevsparse linear systems
of equations of the formMx =b is to factor the matrix M into the product
of a sparse lower triangular matrix, L, and a sparse upper triangular ma-
trix, y, This technique, known as L/y factorization, can be applied to
any matrix which has an inverse, and it is far more efficient to solve lin-
ear systems this way, even if they are not sparse, than to compute M-l and
use it to premultiply b. Determining L and U for a given matrix M is equiv-
alent to periorming a Gaussian elimination on M (see Reid, 1971). Once
L and U have been determined,solving is carried out in two steps. The first

step is to solve

Ly=b>b

for y by forward substitution, since, as stated, L is lower triangular.

The second step is to solve
Ux=yYy

by backward substitution (y is upper triangular).

We now perform symbolically a Gaussian elimination on (4) to elim-
inate the first two block rows. We use the term block row to refer to all
the rows associated with a single symbol, thus our coefficient matrix has
four block rows. Egch of these first two block rows represents n equations
where n is very large. After this reduction we shall discover that the
remaining subproblem is a very much smaller QPP, with a Hessian matrix of
size rxr rather than the size (n+r) x (mir) of our original problem. The

reduced QPP will have the structure
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=5 >

LQ O - z

A
St H(QAu +h) =0

p2z0

which is the sane symetric structure as our original problem

W shall show, after the synbolic reduction step, how to perform
the matrix mani pul ations resulting, discovering thereby hQW to solve our
original QPP with considerably |less conmputational effort than one night

expect. In particular we can show that no full matrix of size nxn or nmxm

need ever be dealt with, where n and mare very |arge nunbers.

Synboli ¢ Reduction of the First Two Bl ock Rows

Step 1 Performbl ock columm 1 reductions on the coefficient matrix

in (4) in tw steps:

(a) Prenultiply block row 1 by (J7) 1 it
X X

(b) Mke the (3,1) block element zero by the bl ock
row operation

New Bl ock Row 3 = A d Bl ock Row 3

- Jl X New Bl ock Row 1

The result of this reduction on the augnmented matrix in (4) is:

r— - - - ' |
| 1T 1T 3K b 2J-Tp -1
X XX X XU X X \ X X
[ ]
0 Jx Ju 0 i -8
- 1
0 C -J“J *C C -J *C K-JY9i 1:5'1' ! -b+J7j" b
U U uU X X X U U uU X X U U U K X : U UX x
1
0 K 0 } -h
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Step 2 Performbl ock colum 2 reductions on the above augmented

matrix, in 3 steps:

(a) premultiply block row 2 by J'_'_1
X

(b) Mke the (3,2) block elenent zero by the
bl ock row operation

New Bl ock Row 3 = dd Bl ock Row 3 -

(C - J"j"TC ) x NewBlock Row 2
XU U X XX

(c) Make the (4,2) block elenent zero by the
bl ock row operation
New Bl ock Row 4 = dd Block Row 4 -
Kx X New Bl ock Row 2

The result of this reduction on the above nmatrix is

—— [ ] 1 p—
| i Te 1 oaTe T LT \
X XX , X XU X X X
- - - - - - - : - X -U —————— STt (5)
0 0 1 H Q 1 - q
1 1
1 t A
0 o 1 qr o | _h |
L__ pu—
where
I =T I =7 1
H=(C 31 c) (Cc- 3 3 CcHYd
UU U X Xu UX . U X XX X U
T -1
R=K K%
@ =D J Ju 9 i(VCu xJqu Cx)y ‘]x 9
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Qearly the (rxr) matrix His symmetric. The original Kuhn-Tucker |

condi ti ons becone

HT(Q Au + h) =0 (6)

\M* 0

The last two block rows of the reduced augnented matrix (5) together with
these reduced Kuhn-Tucker conditions represent a reduced PP which has a

Hessian matrix Hwhich is rxr. The reduced QPP is

Mn q'Au + ; Au"HAU (7)

A
Subject to QAu ”~ h
The correspondi ng Lagrange function is
A
L(Au,n) = q'Au+| Au'HAU - p," (QAuU + h)

The necessary conditions for optimality reproduce precisely these last two

bl ock rows and conditions (6).

Conput ational Al gorithmfor Solving the CPP

W shall now devel op a step by step procedure to solve the orig-
inal QPP, using the above probl em"deconposition.™™ W shall note in par-
ticular that nowhere do we need to create and use a full nxn matri x.

Bef ore proceedi ng, however, we need nake one further observation
about Powell's algorithm |In Powell's algorithmor in mnor vari at_i ons
thereof, the matrix Cwhich approxi mates the Hessian natrix is forned by
starting with the identity matrix and performng a quasi-Newon rank 1 up-

date or rank 2 update (in the formof tw rank 1 updates) after each iteration.
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The Hessian matrix is not necessarily positive definite, but it is synnetrip.
Povel | (1977a) uses rank 2 updates and forces Cto be both positive definite
and symmetric after each update, but he points out that the positive definite
requirenent may be relaxed. Symmetry only can be maintained with rank 1
updates. Instead of storing Cinnatrix form it is far nore efficient

to store only its rank 1 updates. W have after "X' updat es

4
C oz 0 w H, T T+
XX C)<u = n 1+2[ XSIX:jV\/’
i=1
Ux  “uu 0 I w | Y7
wher e In and Ir are identity matrices of size nxn and rxr, respectively,

n ! f>l A

and the vector [mf , mF 3 is the i ™ update vector for C

A
V¢ now present the QP al gorithm

1. Develop the L/U factors for J_ such that J_= LU J_represents the
X X

Jacobian matrix for the equations nodeling a chemcal process flowsheet.

As described in an earlier paper by two of the authors (Wsterberg and Berna,
1978), this matrix has a bordered bl ock diagonal formcorresponding to the
structure of the flowsheet. Each block corresponds to the equations for

a single unit. Advantage can be taken of this structure to develop the

factors L and u for J°. J  is nxn, say several thousand by several thou-
X X

sand, in size. The techniques in the earlier paper use bl ock reduction
nmet hods, where each block fits conveniently into the core store of ‘a com

puter, and, w thin each bl ock, use existing sparse natrix codes.




2, W note, in looking through the operations indicated in (5), the repeated

occurrence of the terms A = J-l J and its transpose and v = J-lg. Form
r

X u X
these by sol ving

WKlAV] =LUAV] = [Ju d]

This step is the perforning of a forward and backward substitution using
L and U on each of the r+1 colums in the right-hand side. Since L and
U are both sparse because Jx is and sparse matri x nethods were used to find

L and U this step is not an excessive one.

3. Table 3 lists a nunber of terns which are needed in what follow and

whi ch use the rank 1 update vectors of C

Compute a and s for j = 1,eee |

“ ']
Note that a is avector of length r and s is a scalar.

The nunber of nultiplications required (multiplications count)
for this step is Arn-f-n).

4. W use the definition of Hin (5) and of s in Table 3 to discover

H has the form

H=(I_+£ww ) - A(Ew w')

r UJUj Xj Y
- (Sw WA+ A(l +Sw vT)A
Uj 3 S B

|
AR Y - a iy, - AT

j= J J J

+ A
If one takes advantage of symmetry, this step can be executed in (iHJ§ EFH

mul tiplies.
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Table 3. Notation and Operations Count for Terms

Involving Hessian Matrix C

Symbol Expression Multiplications Count
a_ (r=-vector) ATw rn
X, X
j 3
T
s (scalar) w. v n
v, X,
J J
T
s (scalar) w_ Au r
u, u,
J J
T
s_ (scalar) w,_ Ax n
X, p 3
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I
5. Conpute q = b +ATb + F[W +a ] s.
. M u % _EI=1 u.3 X3 ]

This step requires r(n-hdt) nultiplications; q is a vector rxl.

6. Oorrpute(i)l':ril+KxA

The matrix K is very sparse, often with only 1 to 5 nonzeros per row.
X

Its bordered bl ock diagonal structure permts efficient use of nmass nenory

and requires generally fewer than 5 nr nmultiplications.

7. Solve the reduced QPP in (7) to get Au and \s,
The matrices Q and H are full after all the steps taken and the QPP al go-

rithmneed not, indeed should not, attenpt to take advantage of sparsity

in these matri ces.

8. Conpute Ax = v + A Au
Al though Ais full, this operation requires only nr multiplications.
9. Conpute s and s for j = 1,7 X
“3 *3
The expressions for conputing these scalars are given in Table 3. This step
requires X(r+n) nultiplications. Note that by storing only the updates
for C one may decide to use only the latest 10 to 20 updates if the algorithm
seens to be converging slowy. It is easy to discard old information this

way, so | should never be excessive.
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10. Solve the following expression for A

+s ) - K:P + b

. u X

J A 3

Note that, at most, r Kuhn-Tucker multipliers can be nonzero, therefore
evaluation of the right-hand side requires approximately nf + 5r multipli-
cations. The forward and backward substitutions can be performed block-by-

block as described earlier.

At this point we have accomplished what we set out to do, namely,
solve the original QPP in a modest amount of core. In the next section

we state the entire optimization algorithm.

The Optimization Algorithm (See Powell (1977a))

Step 0: Initialization

i) Set k =0, W = o, v, o, v, = 0 for i =1, °,ntm

(with C = I, the first direction taken is the steepest descent)

ii) Initialize all variables z = [xo, u°]

Step 1: Compute necessary functions and derivatives

i) k=k+1

ii) Evaluate bx’ bu’ Jx’ Ju’ Kx, Ku, g, hy L and U

iii) Solve JVv=-28 and JxA =-J, for v and A, respectively. (This
corresponds to steps 1 and 2 of the decomposition algorithm described

in the preceding section.)

iv) If k< 2 go to Step 3.




Step 2;
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Update C

ii)

ii)

- T
Compute \§ oL 7 =| Px - ( Iy
0z T

u

Y=(%L£) a'(%&) "ol °j=(w:T:WT
=7 =2

4
T=v+ (1-9 z (Wx) o,

j=1 x I,
u g

1 if f\ ~ -2a

where o=
—ﬁ% otherwise
a-6
It
and g = \; 0‘?
>-> 3
j=1
2
L ]
].w T I (Wx\} %
w =1 Wu' *
uVl ’JO'_I
X=1+2
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Step 3: Solve OPP

i) PerformSteps 3 through 10 of the deconposition algorithmdescribed

in the previous section.

ii) Let d = Au and d = Ax
u X

.
iii) Conpute { —e = g i | X{KT
Bz /. AT B A .
=z mbU JU/ \/KU

Step 4: Deternmine step size paraneter, O

1

i) For i =1, ¢« nset ul=max {|X ¥+, -4 (ux + |\ 1}
1

ii) For i =1, «es mset 0= nmax {3 , 2—(wtn + ~1)}

iii) Select the ‘I argest val ue of eye(0,1) for which

AA
t(f(x,u,u) < t(x,u,u)

_ n m
wher e "(xuu):$(xu)+)‘-‘u|g'( u) | - Fu mn {0,h,}
T ' () ‘1{(' 14n ™y
i=1 i=1
A_ + ad
x = x + ad,
A_
u—u+cydu

Step 5: Check for convergence

6 n
i) Let cp = 611 bx] +£25 U] giCx, u)|

*o uy¥ i =l
ii) If (p£ e) print results and go to 6

iii) If (k < (maxi mum nunber of iterations)) go to 2; otherwise print error
nmessage. '

Step 6: STOP
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In our work we have found it to be inportant to pay particul ar
attention to two seem ngly uninportant conmments nmade by Powell (1977a).
The first comrent is with respect to the scaling of variables. In the Bracken
and McCorni ck sanple probl emwhi ch we have included in this paper, the vari-
ables were initially scaled very poorly. The result was that, when we ap-
plied Powell's algorithmto the unseal ed problemthe QPP predicted very
smal | moves for the variables. W then scaled the variables so that they
were all between 0.1 and 10.0; the search converged in 11 iterations. Powell
reports that his nmethod is insensitive to the scaling of the constraints,
and our experience seens to confirmhis observations. W scale the equal -
ity constraints in order to deternine whether they have been converged to
within an acceptable tolerance

The second point worth noting is that Powell uses a dummy vari -
able to insure that the QPP will always be able to find a feasible solution
This variable, £> is constrained between zero and one, and it is multiplied
by a large positive constant in the objective function of the quadratic
program Powell rmnultiplies the right-hand side of each inequality constraint
that has a.positive residual and each equality constraint by (1-8). This
procedure is helpful especially when starting far away from the solution
where the linearizations are nore likely to give rise to a set of inconsis-

tent constraints.

Exanpl e Probl em

Bracken and McCormi ck (1968) describe a sinplified nodel of an
al kyl ati on process. The process is illustrated schematically in Figure

1. Fresh olefins and isobutane are added to the reactor along with a |arge




-23-

=z >
1SORUTAHE

RECYCLE Dq 7
2|

OLEFIN
FEED D d 7
ISOBUTRNE =

BAKEUP
e
FRESY {: :] E

RCI B

FRQCTI ONFt TOR

R HYDROCRAREOH PRODUCT
e

a

C

t

0

r SPENT

T

Figure 1.

RLKYLPTE PRODUCT

—

——

Schemati ¢ D agram of Al kyl ati on Process

(Bracken and McCor m ck,

1969)

e

Cet




-24-

recycl e streamwhich contains unreacted isobutane. Fresh sulfﬁric acid

is added to the reactor to catalyze the reaction, and waste acid is renoved

The reactor effluent is sent to a fractionater where the al kyl ate product

is separated fromthe unreacted isobutane. The formulation used by Bracken

and McCormick is given in Table 3. W converted the inequality constraints

to equalities by introducing slack variables. In our formulation the vari -

ables are all scaled and all divisions have been renmoved fromthe constraints

and their derivatives by introducing new variables as needed. Qur experi-

ence has been that the Newt on- Raphson nethod converges well provided that

there are no poles (e.g. divisions by a variable which could becone zero)

in the constraints or in the Jacobian matrix. Table 4 contains a descrip-

tion of our formulation of the problem and Table 5 contains information

about each of the variables in the problem The optinum sol ution given

in Table 5 is-essentially the same as that reported by Bracken and MCorni ck.
Vesterberg and deBrosse (1973) solved this same problem Their

al gorithm appeared to be superior to others avail able, but the present al go-

rithm converges to the desired solution faster than their algorithm

West erberg and deBrosse require a feasible starting point; to obtain this,

they took 8 iterations with their feasible point algorithm Once feasible

their algorithmrequired 15 iterations to reach the optimum The present

algorithmrequires a total of 11 iterations to reach the optinmmfromthe

initial infeasible point. The present algorithmrequires only 8 iterations

to reach the optinmum from Westerberg and deBrossels first feasible point.

The advantage associated with using the above algorithmis clear;
in only 11 function evaluations the nethod converged to the solution. This
has been our experience with snmall problens; we can obtain an optimm sol u-
tion in about the same nunber of iterations as one normally requires to

obtain a single solution to the set of equality constraints only.
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Table 3. Bracken & McConni ck Formul ati on of Al ylation Process Qotim zation

Nunber of Vari abl es 10
Equality Constraints 3
I nequal ity Constraints 28

Max .063 X, X, - 5.04 x, - .035 x, - 10.00 x* - 3.36 X.
1L Z L £ e 2

Subject to er'nnj' £Xj' £ X ; j =1,-** 10

max J

[X.(1.12 + .13167 xq - .00667 X)] - .99 x, ~ O

- [x(1.12 + .13167 x,, - .00667 X% ] + X /.99 ~ 0

[86.35 + 1.098 xg - .038 X4+ .325(xs - 89)] - .99 x, A O

_ [86.35 + 1.098 Xg - .038 X + .325(xs - 89)3 + x,/.99 A 0
[35.82 - .222 X33 - .9 Xg A O

- [35.82 - .222 X"] + x4/ 19 * 0O
[- 133 +3x;] - W=, 20

- [- 133 + 3 X5] + X1.99 7 O

1.22X4-)(J|_'X5| -0

98, 000 "o
- X -
X4Xg + 1000 X3 6

Xyt x5

xl_
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Table 4. Akylation Process Fornmul ati on as Sol ved by Present Al gorithm

S.t.
$+6,3 Xy X2 - 5.04 X - .35 Xp - X3 - 3.36 Xg = 0.

1.22x,q - X]. - x5:0.

.98 X3 - *5(X4Xg -f* 1°0- +X3) = 0.

1.01 X, + X, - XpXo = 0.

Z J 10
x-(1.12 + .13167x, - .0067 X2 - .99 x, - 5. - O.
: 2 8 y S
X.(1.12 + .13167 x_ - .0067 XA) + x.. -T- .99 - so = 0.
18635 + (1.098 Xg - .038 X;) -7- 100. + .325 (xg - .89) - .99 X,- 54 = O.
©.8635 - (1.098 X, - .038 X -7- 100. - .325 (X¢ - .89) + X» -t .99 - 5,5 O,

35.82 - 22.2 *15- .90 Xy - Ss = O.
135,82 + 22.2 X1+ Xg -7~ .90 - Sg = 0.
-1.33 + 3 X5 - .99 X1qg - s, = 0.

133' 3X__+X|n'7' 99' 80:0

X . £Xx £X i=1,"",10
m nk 1 max

0 £ s. i =1,"-.8

Values for x . and X are given in Table 5.
mn max
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Table 5. Summary of Sample Problem as Solved with Powell's Algorithm
vVariable Lower Bound Upper Bound Starting Value Optimum Value

— — -0.900 -1.765
Xy 0 ' 2.00 1.745 1.704
X, 0 1.60 1.200 1.585
Xq 0 1.20 1.100 0.543
X, 0 5.00 3.048 3.036
xg 0 2.00 1.974 2.000
Xe .85 .93 0.892 0.901
Xq .90 .95 0.928 0.950
Xg 3.0 12.0 8.000 10.476
Xq 1.2 4.0 3.600 1.562
X0 1.45 i.62 9.450 1.535
) 0 —_— 0.000 0.000
8y 0 — 0.000 0.061
S5 0 —— 0.000 0.000
54 0 — 0.000 0.019
Sg 0 I .0.000 0.330
56 0 —_ 0.000 0.000
sS4 0 —_ 0.000 0.000
s 0 —_ 0.000 0.031
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