
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A NEW APPROACH TO OPTIMIZATION OF CHEMICAL PROCESSES

by

T.J. Berna, M.H. Locke & A.W. Westerberg

DRC-06-3-79

January 1979

Department of Chemical Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

This work was supported by NSF Grant ENG-76-80149.

ABSTRACT

Based on recent work reported by Powell, a new optimization al-

gorithm is presented which merges the Newton-Rap hs on method and quadratic

programming. A unique feature is that one does not converge the equality

and tight inequality constraints for each step taken by the optimization

algorithm. Hie paper shows how to perform the necessary calculations ef-

ficiently for very large problems which require the use of mass memory.

Experience with the algorithm on small problems indicates it converges ex-

ceptionally quickly to the optimal answer, often in as few iterations (5

to 15) as are needed to perform a single simulation with no optimization

using more conventional approaches.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSE

PITTSBURGH, PENNSYLVANIA Io2:3

-1-

SCOPE

In optimizing the model of a chemical process one is faced with

solving a nonlinear programming problem containing anywhere from several

hundred to several thousand nonlinear equality and inequality constraints.

Before process optimizers were developed, a designer who wished to optimize

a chemical process would usually adjust one or more of the independent vari-

ables and use the computer to converge the equality constraints (heat and

material balance equations) and to evaluate the objective function. Based

on the results of this simulation, the designer would check many of the

inequality constraints by hand and then would readjust the decision vari-

ables and perform another simulation to get a better and/or feasible result.

Some earlier attempts to design a chemical process optimizer (e.g.

Friedman and Pinder, 1972) mimicked this process by replacing the designer

with an pattern search optimization routine. Although approaches such as

this are reasonably effective at improving the process, they are inefficient

and have difficulty handling the inequality constraints.

Recently Powell (1977a) published an algorithm which drastically

reduces the computational effort required to solve nonlinear programs.

The unique feature of Powell's technique is that.he does not have to con-

verge the equality constraints or tight inequality constraints at each it-

eration. Powell's technique is not suitable as stated for large problems

because it requires that the user solve a very large quadratic programming

problem (QPP) involving a Hessian matrix of the size of the number of prob-

lem variables at .each iteration. Although this method converges rapidly,

it requires too much core storage. We extend Powell's work by developing

a decomposition scheme which permits one

-2-

(1) to solve the same problem but reduce drastically
the storage requirements, and

(2) to take computational advantage of the fact the
optimization is of a system of interconnected
process units.

This paper opens with a brief description of the process optimi-

zation problem and some comments on the more significant algorithms already

available. We then discuss Powell's algorithm, and, starting with his for-

mulation of the problem, we perform the algebra necessary to arrive at a

decomposed problem. We follow this development with a formal statement

of the resulting algorithm and an example problem.

In this paper we rely heavily on an earlier paper by two of the

authors (Westerberg and Berna (1978)) which describes a decomposition tech-

nique for solving large sets of structured linearized equations arising from

modeling chemical processes. We do not attempt to present any convergence

proofs here, because Powell's results are directly applicable. The reader

is referred to Powell (1977b) and Han (1975).

-3-

CONCLUSIONS AND SIGNIFICANCE

There are two major difficulties associated with optimizing a

modern chemical process model: excessive storage requirements and exces-

sive computational requirements. The technique we present in this paper

addresses both of these problems directly. Our method is an extension of

work recently published by Powell (1977a). Powell1s algorithm is based

on the Newton-Raphson method, and it generates a quadratic program at each

iteration to improve the current guess at the solution to the original non-

linear program. The primary advantage of Powell's scheme is that it does

not need to find a feasible solution to the equality constraints (or tight

inequality constraints) at each iteration. The paper demonstrates with an

example that this fact dramatically reduces the computational work involved

in converging to the optimal solution. Unfortunately, Powell's method as

stated becomes impractical for large problems because it requires solving

a quadratic program in all the problem variables and not just in the deci-

sion variables. We show that the modular nature of chemical processes has

allowed us to develop an algorithm which uses mass memory efficiently for

very large problems and which solves a quadratic program at each iteration

in the decision variables only. Therefore, we are applying Powell's algo-

rithm in a way that never requires us to use more than a modest amount of

core. Based on a small number of test problems this algorithm appears to

require about the same number of gradient and function evaluations to ar-

rive at an optimal solution as available nonoptimizing simulation packages

require to obtain a single solution.

-4-

The chemical process optimization problem can be stated as follows

Min $(z)

Subject to g(z) = 0

h(z) £ 0 (Pi)

zeRr

g:Rr

h:Rr

where the constraints represent material and energy balances, equilibrium

relationships, economic factors, etc. For many chemical processes of prac-

tical importance n and m have values anywhere from 1000 to 50,000, and r

might range anywhere up to about 50. Obviously, these problems are very

large.

One technique which has been quite successful for solving highly

constrained nonlinear programming problems is the Generalized Reduced Gra-

dient (GRG) algorithm (Abadie and Carpentier, 1969). This technique uses

the equality constraints (and tight inequality constraints) to eliminate

computationally a large number of variables and equality constraints from

the total set. This procedure reduces the apparent dimensionality of the

optimization problem. At each iteration all of the eliminated constraints

must be satisfied, thus at each iteration the algorithm must solve a very

large set of nonlinear algebraic equations.

Some investigators, notably in the oil industry, have been suc-

cessful in converting problem (Pi) into a large linear programming problem

(LP) by linearizing the constraints and the objective function. Because

large linear programs are relatively easy to solve the LP-based algorithm

solves a sequence of LP's which eventually converge to the desired optimum.

-5-

This technique works well for some problems, but it has a drawback. There

is no information in the algorithm about the curvature of the constraints,

therefore convergence cannot be second order near the solution. Powell

(1978) illustrates this difficulty with a small example.

Another class of optimization algorithms is called exact penalty

function methods. They use an extended Lagrangian function, one which has

a penalty term added to it as well as the constraints with multipliers.

Charalambons (1978) describes these methods and claims they are very effec-

tive, but the extension of these ideas to very large problems does not yet

appear to be available.

From a computational standpoint, we feel the most successful al-

gorithm available may be that recently developed by Powell (1977a). The

total number of gradient and function evaluations required by this algorithm

to obtain an optimal solution corresponds to the number required by many

simulation packages to obtain a single feasible solution. Table 1 illus-

trates how Powell's algorithm compares with the best known algorithms for

solving some small classical problems studied by Colville and others

(Powell, 1977a).

-6-

Table 1. Comparison of Algorithms (Table 1 of Powell, 1977a)

Problem Colville (1968) Biggs (1972) Fletcher (1975) Powell

Colville 1 13 8

Colville 2 112 47

Colville 3 23 10

Post Office — 11
Problem

Powell

39
(4)

149
(3)

64
(5)

30
(4)

37
(5)

6
(4)

17
(16)

3
(2)

7
(5)

7
(6)

The numbers represent the number of times the functions and their gradients

were computed; the numbers in parentheses are the number of iterations.

-7-

Problem Decomposition

For convenience we restate the optimization problem, but this

n r
time we partition the variables into two sets: xeR and ueR .

Min $(x,u)
x,u

Subject to g(x,u) = 0

h(x,u) ^ 0

$:RrH'r -> R (P2)

We linearize the equality and inequality constraints about a cur-

rent guess at the solution, obtaining

j to + ̂ Au - - g
bx bu

(1)
bh . , bh . . .^ Ax + — - Au £ - h
bx1 txx

We approximate the objective function $(x,u) to second order in all the

problem variables

$(x + Ax, u + Au) = $(x,u) + f —=7 -=-̂ 1 /

+ | [ixTAuT] c to (2)

where, as shown by Powell (1977a), C should be the Hessian matrix of the

Lagrange function

L(x,u,X,n) - §(x,u) - XTg - nTh .

-8-

X and \s, are vectors of Lagrange and Kuhn-Tucker multiplers, respectively.

The approximate problem

Min $(x + Ax, u + Au)

subject to constraints (1) is a quadratic programming problem in variables

Ax, Au.

The necessary conditions for solving this approximate problem

are as follows,

1) Stationarity of the Lagrange Function with Respect to Ax and Au

Ax

^ Au J

6x

bu

2) Original Constraints

ML
bx

bu

bx

bu

Au = - g

- h

3) Kuhn-Tucker Conditions

bxT bu

It is these conditions that a QPP algorithm satisfies. At this

point it is convenient to introduce the notation listed in Table 2.

-9-

Table 2. Nomenclature for Partial Derivatives

, b$, b$
X QX U QU

Ox Qu

x x T
 Ku "- 1

6x bu

2 9

c =JCL_ c -JOL.
" — ~T uu bubuT

2 2

c =-A_ c =_fk
xu ^ „ T ux

Note: We assume that C is symmetric (i.e. C. .= C.)

-10-

With this new notation the stationary condition (2) becomes

xx

ux

X

xu

uu

u

K
u

u

0

0

0

0

Ax

Au

-X

[K K I]
L X U

Ax

Au

h

= - b

= - b
u

- g

- h

(3)

Note that the coefficient matrix is symmetric and that the lower right por-

tion of the matrix is zero.

Rearranging the matrix in (3) we get

0

u

0

xx

ux

K

Cxu

Ju

C
uu

Ku

T
K

X

0

T
K

u

0

- X

Ax

Au

Ax

Au

h

= 0

= - b

= - b
v

- - 8

* - h

The coefficient matrix in (4) is very large (2n + r + m) x (2n + r + m)

(n and m may be several thousand each; r may be 1 to 50). This matrix is

reasonably sparse, and each of the blocks has a structure which can be used

to simplify the computational requirements for solving (4).

-11-

A very efficient method for solving large sparse linear systems

of equations of the formMx =b is to factor the matrix M into the product

of a sparse lower triangular matrix, L, and a sparse upper triangular ma-

trix, u. This technique, known as L/u factorization, can be applied to

any matrix which has an inverse, and it is far more efficient to solve lin-

ear systems this way, even if they are not sparse, than to compute M and

use it to premultiply b. Determining L and U for a given matrix M is equiv-

alent to performing a Gaussian elimination on M (see Reid, 1971). Once

L and u have been determined,solving is carried out in two steps. The first

step is to solve

L y = b

for y by forward substitution, since, as stated, L is lower triangular.

The second step is to solve

U x = y

by backward substitution (u is upper triangular).

We now perform symbolically a Gaussian elimination on (4) to elim-

inate the first two block rows. We use the term block row to refer to all

the rows associated with a single symbol, thus our coefficient matrix has

four block rows. Each of these first two block rows represents n equations

where n is very large. After this reduction we shall discover that the

remaining subproblem is a very much smaller QPP, with a Hessian matrix of

size rxr rather than the size (n+r) x (nfr) of our original problem. The

reduced QPP will have the structure

-12-

H

LQ

Q

0

St,

n - g

A

- h

HT(QTAu + h) = 0

which is the same symmetric structure as our original problem.

We shall show, after the symbolic reduction step, how to perform

the matrix manipulations resulting, discovering thereby how to solve our

original QPP with considerably less computational effort than one might

expect. In particular we can show that no full matrix of size nxn or mxm

need ever be dealt with, where n and m are very large numbers.

Symbolic Reduction of the First Two Block Rows

Step 1 Perform block column 1 reductions on the coefficient matrix

in (4) in two steps:

(a) Premultiply block row 1 by (JT)~ ^ j" T

x x

(b) Make the (3,1) block element zero by the block
row operation

New Block Row 3 = Old Block Row 3

T
- J x New Block Row 1

The result of this reduction on the augmented matrix in (4) is:

I

0

0

0

-T
J C
X XX

-T
J C
X XU

u

-T T
J K
X X

C -J J C C -JJ C K -J J __
U U U X X X U U U X X U U U K X

K
u

-J-Tb -1
X X

-8

-b +JTj"Tb
U U X X

-h

-13-

Step 2 Perform block column 2 reductions on the above augmented

matrix, in 3 steps:

(a) premultiply block row 2 by J
x

(b) Make the (3,2) block element zero by the
block row operation

New Block Row 3 = Old Block Row 3 -

(C - JT j" T C) x New Block Row 2
x UU U X XX

(c) Make the (4,2) block element zero by the
block row operation

New Block Row 4 = Old Block Row 4 -

K x New Block Row 2

The result of this reduction on the above matrix is

where

I

0

0

0

-T
J C

X XX

I

0

0

1

1

1

t

1

1

1

1

1

-T
J C

X XU

J'h
X U

H

QT

-T T
J K

X X

0

Q

0

t

f

1

f

1

1

1

t

1

" J x\

" J x l g

- q

A

- h

T — T T — T — 1
H = (C - J J C) - (C - J J C) J J

UU U X XU UX U X XX X U
T - 1

Q = K - K J J
^ U X X U

q = b - J J b - (C - J J C) J gM u u x x v u x u x x x y x b

A - 1

h = h + K J g
X X &

(5)

-14-

Clearly the (rxr) matrix H is symmetric. The original Kuhn-Tucker

conditions become

HT(QT Au + h) =0 (6)

\M * 0

The last two block rows of the reduced augmented matrix (5) together with

these reduced Kuhn-Tucker conditions represent a reduced QPP which has a

Hessian matrix H which is rxr. The reduced QPP is

Min qTAu + - AuTHAu (7)

Subject to QTAu ̂ h

The corresponding Lagrange function is

,n) = qTAu + | AuTHAu - p,T (QTAu + h)

The necessary conditions for optimality reproduce precisely these last two

block rows and conditions (6).

Computational Algorithm for Solving the QPP

We shall now develop a step by step procedure to solve the orig-

inal QPP, using the above problem "decomposition.11 We shall note in par-

ticular that nowhere do we need to create and use a full nxn matrix.

Before proceeding, however, we need make one further observation

about Powell's algorithm. In Powell's algorithm or in minor variations

thereof, the matrix C which approximates the Hessian matrix is formed by

starting with the identity matrix and performing a quasi-Newton rank 1 up-

date or rank 2 update (in the form of two rank 1 updates) after each iteration.

-15-

The Hessian matrix is not necessarily positive definite, but it is symmetric.

Powell (1977a) uses rank 2 updates and forces C to be both positive definite

and symmetric after each update, but he points out that the positive definite

requirement may be relaxed. Symmetry only can be maintained with rank 1

updates. Instead of storing C in matrix form, it is far more efficient

to store only its rank 1 updates. We have after nXlf updates

Cux

Cxu

Cuu

0

0

r w H r T T -i
X. I 1W W J3 XJ V
w I J J

where I and I are identity matrices of size nxn and rxr, respectively,

rn m rn ' f>l^

and the vector [w , w 3 is the i update vector for C.
x u

We now present the QPP algorithm.

1. Develop the L/U factors for J such that J = LU. J represents the
X X X

Jacobian matrix for the equations modeling a chemical process flowsheet.

As described in an earlier paper by two of the authors (Westerberg and Berna,

1978), this matrix has a bordered block diagonal form corresponding to the

structure of the flowsheet. Each block corresponds to the equations for

a single unit. Advantage can be taken of this structure to develop the

factors L and u for J . J is nxn, say several thousand by several thou-
X X

sand, in size. The techniques in the earlier paper use block reduction

methods, where each block fits conveniently into the core store of a com-

puter, and, within each block, use existing sparse matrix codes.

-16-

2, We note, in looking through the operations indicated in (5), the repeated

occurrence of the terms A = J J and its transpose and v = J g. Form
x u r x

these by solving

Jx[A,v] = LU[A,v] = [Ju,g]

This step is the performing of a forward and backward substitution using

L and U on each of the r+1 columns in the right-hand side. Since L and

U are both sparse because J is and sparse matrix methods were used to find

L and U, this step is not an excessive one.

3. Table 3 lists a number of terms which are needed in what follows and

which use the rank 1 update vectors of C.

Compute a and s for j = 1,•••, I
xj vj

Note that a is a vector of length r and s is a scalar.

The number of multiplications required (multiplications count)
for this step is A(rn-f-n).

4. We use the definition of H in (5) and of s in Table 3 to discover

H has the form

H = (I + £ w wT) - AT(E w wT)
UJUj X j Y

- (S w wT)A + AT(I + S w vT)A
U X

I

I + ATA + V (w - a)(w - a)
r L v u. x/v u. x/

j=l J J J J

If one takes advantage of symmetry, this step can be executed in (iH-J&) —^7;—*-

multiplies.

-17-

Table 3. Notation and Operations Count for Terms

Involving Hessian Matrix C

Symbol Expression Multiplications Count

T
a (r-vector) A w r n
x X

s

s

s

(scalar)
i

(scalar)
1

(scalar)

T
V V

Tw Au

T
w1 Ax

n

n

-18-

l

5. Compute q = b + A b + / [w + a] s.
M u x L u. x. j

This step requires r(n-hJt) multiplications; q is a vector rxl.

6. Compute Q = K + K A

The matrix K is very sparse, often with only 1 to 5 nonzeros per row.
x

Its bordered block diagonal structure permits efficient use of mass memory

and requires generally fewer than 5 mr multiplications.

7. Solve the reduced QPP in (7) to get Au and \s,

The matrices Q and H are full after all the steps taken and the QPP algo-

rithm need not, indeed should not, attempt to take advantage of sparsity

in these matrices.

8. Compute Ax = v + A Au

Although A is full, this operation requires only nr multiplications.

9. Compute s and s for j = 1,###,X

The expressions for computing these scalars are given in Table 3. This step

requires X(r+n) multiplications. Note that by storing only the updates

for C one may decide to use only the latest 10 to 20 updates if the algorithm

seems to be converging slowly. It is easy to discard old information this

way, so I should never be excessive.

-19-

10. Solve the following expression for X

rji rp ^~~i m

UL X = Ax +) w (s + s) - K> + b

Note that, at most, r Kuhn-Tucker multipliers can be nonzero, therefore

evaluation of the right-hand side requires approximately nl + 5r multipli-

cations. The forward and backward substitutions can be performed block-by-

block as described earlier.

At this point we have accomplished what we set out to do, namely,

solve the original QPP in a modest amount of core. In the next section

we state the entire optimization algorithm.

The Optimization Algorithm (See Powell (1977a))

Step 0: Initialization

i) Set k = 0 , w = 0, w = 0, u.=0 for i = l,-*#,nfm
/ ' x u I

(with C = I, the first direction taken is the steepest descent)

ii) Initialize all variables z » [x , u]

Step 1: Compute necessary functions and derivatives

i) k = k + 1

ii) Evaluate b , b , J , J , K , K , g , h , L and U

iii) Solve J v = - g and J A = - J for v and A, respectively. (This

X X U

corresponds to steps 1 and 2 of the decomposition algorithm described

in the preceding section.)

iv) If k < 2 go to Step 3.

-20-

Step 2; Update C

i) Compute (~-
v oz

z=z

IT
x

u u

W >
z=z z=z

iii) + (1 - 8) W

where 9=

1 if ft\ ^ -2 a

and

.8a
T

a-6 Y

Jt
V 2> cr
>-> 3

otherwise

i v) 1 w \1
wuVl

I wx\ a.
wu' j

• (;)
JL

U'JH-2

v) X = I + 2

-21-

Step 3: Solve QPP

i) Perform Steps 3 through 10 of the decomposition algorithm described

in the previous section.

ii) Let d = Au and d = Ax
' u x

iii) Compute ' «" * x

A
Z=Z

-m U _

T \

T)
u /

X-

/ T/ K

1 T
V u

Step 4: Determine step size parameter, Of

i) For i = 1, • • • ,n set u.= max {|X. | , -r (u. + |\ | }

ii) For i = 1, • • • ,m set u = max {jx. , — (u. + ̂ .)}

iii) Select the largest value of eye(0,1) for which

A A
t(f(x,u,u) < t(x,u,u)

n m

where ^ (x,u,u) = $(x,u) +) u | g (x , u) | -) u. . min

A
x = x + ad

x
A
u = u + cyd

u

iv) Set

Step 5: Check for convergence

K
 n

i) Let cp = 61 X + 2 , ui|giCx,u)|

*• u w i=l

ii) If (cp £ e) print results and go to 6

iii) If (k < (maximum number of iterations)) go to 2; otherwise print error
message.

Step 6: STOP

-22-

In our work we have found it to be important to pay particular

attention to two seemingly unimportant comments made by Powell (1977a).

The first comment is with respect to the scaling of variables. In the Bracken

and McCormick sample problem which we have included in this paper, the vari-

ables were initially scaled very poorly. The result was that, when we ap-

plied Powell's algorithm to the unsealed problem the QPP predicted very

small moves for the variables. We then scaled the variables so that they

were all between 0.1 and 10.0; the search converged in 11 iterations. Powell

reports that his method is insensitive to the scaling of the constraints,

and our experience seems to confirm his observations. We scale the equal-

ity constraints in order to determine whether they have been converged to

within an acceptable tolerance.

The second point worth noting is that Powell uses a dummy vari-

able to insure that the QPP will always be able to find a feasible solution.

This variable, £ > is constrained between zero and one, and it is multiplied

by a large positive constant in the objective function of the quadratic

program. Powell multiplies the right-hand side of each inequality constraint

that has a positive residual and each equality constraint by (l-§). This

procedure is helpful especially when starting far away from the solution

where the linearizations are more likely to give rise to a set of inconsis-

tent constraints.

Example Problem

Bracken and McCormick (1968) describe a simplified model of an

alkylation process. The process is illustrated schematically in Figure

1. Fresh olefins and isobutane are added to the reactor along with a large

-23-

FRQCTIONftTOR

RLKYLPTE PRODUCT

RCIB

Figure 1. Schematic Diagram of Alkylation Process

(Bracken and McCormick, 1969)

-24-

recycle stream which contains unreacted isobutane. Fresh sulfuric acid

is added to the reactor to catalyze the reaction, and waste acid is removed.

The reactor effluent is sent to a fractionater where the alkylate product

is separated from the unreacted isobutane. The formulation used by Bracken

and McCormick is given in Table 3. We converted the inequality constraints

to equalities by introducing slack variables. In our formulation the vari-

ables are all scaled and all divisions have been removed from the constraints

and their derivatives by introducing new variables as needed. Our experi-

ence has been that the Newton-Raphson method converges well provided that

there are no poles (e.g. divisions by a variable which could become zero)

in the constraints or in the Jacobian matrix. Table 4 contains a descrip-

tion of our formulation of the problem, and Table 5 contains information

about each of the variables in the problem. The optimum solution given

in Table 5 is essentially the same as that reported by Bracken and McCormick.

Westerberg and deBrosse (1973) solved this same problem. Their

algorithm appeared to be superior to others available, but the present algo-

rithm converges to the desired solution faster than their algorithm.

Westerberg and deBrosse require a feasible starting point; to obtain this,

they took 8 iterations with their feasible point algorithm. Once feasible,

their algorithm required 15 iterations to reach the optimum. The present

algorithm requires a total of 11 iterations to reach the optimum from the

initial infeasible point. The present algorithm requires only 8 iterations

to reach the optimum from Wfesterberg and deBrosse1s first feasible point.

The advantage associated with using the above algorithm is clear;

in only 11 function evaluations the method converged to the solution. This

has been our experience with small problems; we can obtain an optimum solu-

tion in about the same number of iterations as one normally requires to

obtain a single solution to the set of equality constraints only.

-25-

Table 3. Bracken & McConnick Formulation of Alylation Process Optimization

Number of Variables 10

Equality Constraints 3

Inequality Constraints 28

Max .063 x,xo - 5.04 x, - .035 xn - 10.00 x^ - 3.36 x,.

Subject to x . . £ x. £ x . j = I,-**, 10J min j j max J

[x.(1.12 + .13167 xQ - .00667 x^)] - .99 x. ^ 0

- [Xl(1.12 + .13167 x_ - .00667 x*] + X./.99 ̂ 0

[86.35 + 1.098 xg - .038 X* + .325(x6 - 89)] - .99 x? ̂ 0

- [86.35 + 1.098 Xg - .038 Xg + .325(x6 - 89)3 + xy/.99 ̂ 0

[35.82 - .222 x1()3 - .9 xg ̂ 0

- [35.82 - .222 x ^] + xg/19 * 0

[- 133 + 3 x?] - .99 0

- [- 133 + 3 x?] + x1Q/.99 ^ 0

1.22 x4 - X]L - x5 - 0

98,000 m Q

x4x9 + 1000 x3 6

X5
X8

-26-

Table 4. Akylation Process Formulation as Solved by Present Algorithm

Min $

s.t.
$ + 6,3 x,x? - 5.04 x- - .35 x - x3 - 3.36 x = 0.

1.22 x, - x - x = 0.

.98 x3 - *6(x4x9 -f" l°0- +
 x
3) = 0.

1.01 xo + x_ - xnxo = 0.
Z J 1 O

x-(1.12 + .13167xo - .0067
1 O

- .99 x. - s. - 0.
1

-x.(1.12 + .13167 x_ - .0067 x^) + x. -7- .99 - so = 0.

.8635 + (1.098 xg - .038 xg) -7- 100. + .325 (xg - .89) - .99 x?- 0.

-.8635 - (1.098 xg - .038 Xg) -7- 100. - .325 (x& - .89) + x? -r- .99 - s4= 0,

35.82 - 22.2 *1Q - .90 xg - s5 = 0.

-35.82 + 22.2 x1Q + xg -7- .90 - s& = 0.

-1.33 + 3 x? - .99 x1Q - s? = 0.

1.33 - 3 x_ + xin -7- .99 - so = 0.

x . £ x. £ x
min. 1 max.

0 £ s± i = l,##-,8

Values for x . and x are given in Table 5.
min max

-27-

Table 5. Summary of Sample Problem as Solved with Powell's Algorithm

Variable

$

Xl

X2

X3

X4

X5

X6

X7

X8

X9

xio

Sl

S2

S3

S4

S5

S6

S7

S8

Lower Bound

0

0

0

0

0

.85

.90

3.0

1.2

1.45

0

0

0

0

0

0

0

0

Upper Bound

2.00

1.60

1.20

5.00

2.00

.93

.95

12.0

4.0

1.62

—

—

— •

—

—

—

—

—

Starting Value

-0.900

1.745

1.200

1.100

3.048

1.974

0.892

0.928

8.000

3.600

9.450

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Optimum Value

-1.765

1.704

1.585

0.543

3.036

2.000

0.901

0.950

10.476

1.562

1.535

0.000

0.061

0.000

0;019

0.330

0.000

0.000

0.031

-28-

ACKNOWLEDGEMENT

This work was funded by NSF Grant ENG-76-80149

-29-

REFERENCES

Abadie, J. and J. Carpentier (1969). "Generalization of the Wolfe Re-
duced Gradient Method to the Case of Nonlinear Constraints,11 in
Optimization, Academic Press (New York) pp 37-47.

Biggs, M.C. (1972). "Constrained Minimization Using Recursive Equality
Quadratic Programming," in Numerical Methods for Nonlinear Opti-
mization, ed. F.A. Lootsma, Academic Press (London).

Bracken, J. and G.P. McCormick (1968). Selected Applications of Non-
linear programming, Wiley and Sons (New York) pp 37-45.

Charlambous, C. (1978). "Some R.ecent Advances in Nonlinear Programming,"
2nd International Symposium on Large Engineering Systems, Proceed-
ings ,

Colville, A.R. (1968). "A Comparative Study on Nonlinear Programming
Codes," Report No. 320-2949 (IBM New York Scientific Center).

Fletcher, R. (1975). "An Ideal Penalty Function for Constrained Opti-
mization," J. Inst. Math. Applies., 15, 319.

Friedman, P. and K.-Pinder (1972). "Optimization of a Simulation Model
of a Chemical Plant," IEC Proc. Des. Dev., JLĴ, 512.

Han, S.-P. (1975). "A Globally Convergent Method for Nonlinear Program-
ming," Report. No. 75-257 (Dept. of Computer Science, Cornell
University).

Powell, M.J.D. (1977a). "A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations," Paper presented at the 1977 Dundee
Conference on Numerical Analysis.

Powell, M.J.D. (1977b). "The Convergence of Variable Metric Methods
for Nonlinearly Constrained Optimization Calculations," Paper
presented at the "Nonlinear programming 3" symposium held at
Madison, Wisconsin.

Powell, M.J.D. (1978). "Algorithms for Nonlinear Constraints that use
Lagrangian Functions," Math. Prog., 14, 224.

Reid, J.K. (ed) (1971). Large Sparse Sets of Linear Equations, Academic
Press (London).

Westerberg, A.W. and T.J. Berna (1978). "Decomposition of Very Large-
Scale Newton-Raphson Based Flowsheeting Problems," accepted for
publication in Computer and Chemical Engineering Journal.

Westerberg, A.W. and C.J. deBrosse (1973). "An Optimization Algorithm
for Structured Design Systems," AlChE J., 1£, (2) 335.

