
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

POLYNOMIALS, CHAO-SEADER AND NEWTON RAPHSON -
THE USE OF PARTIALLY ORDERED PIVOT SEQUENCES

by

Thomas J. Berna & Arthur W. Westerberg

DRC-06-1-79

January 1979

Department of Chemical Engineering
Carnegie-Melion University
Pittsburgh, PA 15213

This work was funded by NSF Grant ENG-76-80149.

ABSTRACT

Imbedded within a typical K-value routine, such as Chao-Seader,

there is usually a cubic polynomial in compressibility factor. In general

the Newton Raphson method, which linearizes and solves iteratively an en-

tire set of nonlinear equations, is an unacceptable method if an imbedded

function has two or more roots in the feasible region, as occurs here.

Corrective action requires temporary replacement of the polynomial by one

or more of the inequality constraints on the higher derivatives while con-

verging toward the solution. This paper shows that, by restricting the

permitted pivot sequence developed to solve the entire set of linearized

equations, one can very simply incorporate and release these constraints

without redeveloping the pivot sequence, a costly procedure when using sparse

matrix codes. The ideas generalize.

UNIVERSITY L!SPA.R::S
' CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA io i '13

1.

SCOPE

One possible method for solving a flash problem is to gather to-

gether all the equations, including those arising in the evaluation of phys-

ical properties, and solve them using a Newton-Raphson based method. The

equations can be written as f (x) = 0 where f and x are vectors of length

n. The Newton-Raphson method is an iterative scheme which linearizes f

about the current point, x(k) and solves for x(k+l) so as to drive f(x(k+l))

to zero. Thai: iss it solves the following for x(k+l):

- f(x(k))

Two advantages associated with using a Newton-Raphson based method are that

the method is easy to use and that it converges very quickly (quadratically)

when it does converge. Two problems associated with the Newton-Raphson

method are that it requires all first derivatives to be continuous near

the solution and that the method indiscriminately converges to any root

when multiple roots exist.

When solving a flash problem, one finds imbedded in the equation

set for estimating vapor fugacity coefficients an equation of state for

the fluid. The Chao-Seader method uses the Redlich-Kwong equation of state

to estimate K-values. The Redlich-Kwong equation is a cubic polynomial

in compressibility factor z, and, when two phases can occur, it has three

roots. The lowest one is the liquid phase compressibility factor, the up-

per is the gas phase compressibility, while the middle one has no physical

meaning.

2.

While it would be desirable to use a Newton-Raphson based method

to solve a flash problem, the fact that the first derivative changes sign

for the cubic polynomial requires that we modify the iteration scheme.

This is true for any problem where one or more functions exhibit multiple

roots. The purpose of this paper is to demonstrate a rather simple strat-

egy which will permit one to use the Newton-Raphson method for such prob-

lems. It involves automatically turning on and off, as needed, the appro-

priate inequality constraints to guide the Newton-Raphson method to the

correct root. A minor change is needed for selecting the pivot sequence

used to solve the linear equations developed for each iteration. The re-

stricted pivot sequence together with a simple strategy to "clip11 certain

variables which are wandering through constraints completes the approach.

3.

CONCLUSIONS AND SIGNIFICANCE

A simple strategy is presented which permits simulation problems

involving functions having multiple roots (such as polynomials) to be solved

via the Newton-Raphson method provided only that

1. The particular root of the function is uniquely
characterized by the signs of a set of inequalities
on higher derivatives.

2. The highest derivative considered does not change
sign over the search space.

Results on three test problems demonstrate the effectiveness of the approach

with convergence rates found which are characteristic of the Newton-Raphson

method. The key feature of the method is that it precludes the need to

redevelop the pivot sequence for the linear equations solved at each iter-

ation when the inequality constraints are active and used temporarily to

replace the original function.

For cubic polynomials, one can analytically locate the inflection

points, and in many cases, the technique described here will seem too com-

plicated for use with these problems. The significance of the method pre-

sented is that it permits one to use a gradient-based iteration scheme on

systems of nonlinear functions where some of the derivatives change sign

in the feasible region. It becomes most effective when used with higher

order polynomials and functions involving exponential terms.

4.

1. Chao-Seader and Newton-Raphson

In the course of solving Chao-Seader flash problems, one discov-

ers imbedded in the equations the Redlich-Kwong equation of state, a cubic

polynomial in the compressibility factor z. Usually this polynomial has

three roots, the lowest one being the liquid compressibility factor and

the uppermost the gas compressibility factor. The middle root has no phys-

ical interpretation. Figure la illustrates.

The root desired when calculating the vapor fugacity coefficient

is the gas compressibility factor root which we see is uniquely character-

ized by three conditions

P3(z) - 0

P^z) * 0 (PI)

t it

The middle root has p~(z) < 0 and the lowest root has p~(z) < 0. In prin-

ciple then, we can find the desired root by placing these two additional

constraints on our problem and solving, ufeing traditional approaches. (For

example, we could solve using penalty functions (see Fiacco and McCormick[2])

or by using an active set strategy (see Abadie[l]).) Our goal, however,

is to use a Newton Raphson based iteration scheme, and we would prefer not

to have to reformulate the problem every time we move one of the constraints

from the active set to the inactive set or vice versa.

Consider the following scheme for solving, where we are using

the Newton Raphson method. We consider only the three equations

5.

P3(
z)

P3(z)

Liquid

Spurious

/

(a) Equation of, Statd

1 i

\

Gas

(b) First Derivative W.R.T. z

(c) Second Derivative W.R.T. z

Figure 1. A Cubic Equation of State and its Derivatives

6.

f2 =

f3 =

f l "

S2 "

S3 "

s .

P3(z)

(P3(2)

(pf;(Z)

= 0

- •)

- «)

0

= 0

= 0

(P2)

Here s9 and s,~ are slack variables which are bounded below at zero, and

c > 0 is a fixed small number. Note this formulation is essentially equi-

valent to our first problem except for the occurrence of fi > 0. If f is

satisfied with s = 0, then p«(z) = e results, and we are slightly to the

right of the minimum (i.e. at point !lan) in Figure la. At this point the

derivative of f.. with respect to z is not zero, a possibility which can

cause computational problems if allowed to occur. An efficient procedure

for computing x(k+l) using the Newton Raphson method is to perform an L/U

factorization of the Jacobian matrix (—— \ A description of this pro-

cedure is included as an appendix for those who are not familiar with the

technique. The method is entirely equivalent to solving by Gaussian elim-

ination where the factor L is the matrix equivalent of the forward elimina-

tion and matrix U the resulting matrix used in the backward substitution

step. Let us examine the effects of using L/U factorization (i.e. Gaussian

T
elimination) as it applies to problem (P2) . The Jacobian matrix bf/&x

has the following zero/nonzero pattern

Az Aso Aso

f.
1

f2

7.

any any self-respecting sparse matrix code would choose the circled pivot

sequence as it causes no fill-in to occur. This pivot sequence says we

should first use the linearized equation for f- to find Az, then f to find

As- and finally f~ to find As,..

Let us now observe the consequences of selecting this pivot se-

quence combined with the intuitive strategy to clip s_ and s. whenever they

are out of bounds as we seek the solution to our problem. We note that

Az is found from the linearized equation for f- irrespective of the values

obtained for As? and As • Thus, if we are near to and are approaching the

middle root in Figure la, we shall continue to approach it. Near this root

we shall find both As and As being clipped because solving f and f will

result in both s« and s being negative. Note that if we were to compute

Az based on the linearized equation for f- we would approach point "a11 in

Figure la. Once at point "a" we could use f- to compute Az, and this pro-

cedure would bring us to the desired root. The procedure for doing this

is as follows:

Step 1

Using a "constraint replacement" strategy, discard momentarily

f1(z) =0 and introduce the active constraint s = 0, giving us the problem

s2 = 0

s2 - (p^z) - e) = 0

S3 " (P^2) - c) = 0

Solving this problem will lead to point "a" in Figure la.

Step 2

Recover the original equation set and solve for Az using the Newton-

Raphson equation. From point "a", we clearly move to the correct root of

P3(z) = 0 . .

8.

The difficulty with the above approach is that we must reformu-

late our problem twic -i in the course of solving. Also, we had to discard

temporarily an equality constraint of the original problem. Problem refor

mulation is at best tedious and at worst extremely time consuming, and we

would like to avoid it.

Now consider the following very unnatural pivot sequence for our

original equation set (P2)

Az

X

X

X

*

where the asterisks indicate that the location will fill-in during the course

of the L/U factorization (i.e. Gaussian elimination). We first pivot on

the coefficient of Az in the linearized equation for f,j. Eliminating the

nonzeros in column 1 below f~ will cause the (f , As3) and (f^, As3) ele-

ments to become nonzero. Thus the coefficient of As- can be used as a pivot

in f2. The (f-, As2) fills in similarly when we pivot the second equation.

In solving we first do the forward elimination just described,

getting finally the upper triangular structure which corresponds to the

U matrix in the L/U factorization

Az

X

0

0

As3

X

X

0

As2

X

X

9.

Performing a backward substitution, we now solve the last equation for As9

and check if this perturbation will cause S- to become negative. If so,

we can immediately select As2 so s is zero. Now the middle euqation is

solved for As~ in terms of whatever value we have given As« — that is,

whether it came from the last equation or by being set to a value to pre-

vent s^ becoming negative. Again if Asvwould cause S- to become negative

we alter its value to cause s~ to be zero. Lastly we solve for Az in terms

of As3-

Examining the behavior of this scheme, we find a very different

result from before. If we are in the vicinity of the middle root in Fig-

ure la, the slack variables s« and s_ would be negative, as both the slope

and the curvature of the cubic equation are negative at this point. Thus

we will find that in the backward substitution step both As^ and As,, will

be clipped, that is, set to -s~ and -s , respectively. The only equation

satisfied of the three will be f- which will, when solved with s = 0, move

us away from the middle root and to the point "b" in Figure la. At this

point As« is no longer clipped, and both equations f~ and f will be sat-

isfied, with s« > 0 and s = 0. Being satisfied with s = 0, f_ moves us

to point "a". At this point all three equations are active, and we will

move directly to the desired upper root.

We note that we never reformulated the pivot sequence, and we

can readily verify that this behavior of moving ultimately to our desired

root occurs no matter where we start with our initial guess for z. What

we did was choose an initial pivot sequence so if As~ was clipped then equa-

tion f~ was not allowed to be violated, while f- and f- were. Also, if

only As^ was clipped, then equations f- and f were not allowed to be vi-

olated. The above is accomplished by forcing a partial ordering onto the

(allowed) original pivot sequence.

10.

If we clip a variable on the back substitution step as indicated,

the pivot equation and potentially any below it may no longer be satisfied

at the resulting solution point. However, any occurring above the pivot

equation can receive any value for the clipped variable and will be exactly

satisfied. The ordering is such that we cannot select s_ as a pivot vari-

able until equation f- is already pivoted, and we cannot select s^ until

both f~ and f are pivoted. We note this ordering by listing for each vari-

able the equations which cannot be violated if the variable is clipped as

indicated (IE = Inviolate Equation).

IE(s3) = {f3}

IE(s2) = £f2,f-3)

Developing the pivot sequence in a sparse matrix code can then proceed by

whatever scheme is desired but modified to refuse s~ as a pivot until after

equation f_ is pivoted, etc. Note the above IE sets force f- to be the

first equation selected, and they force Az to be the pivot variable. (Neither

Aso nor Aso can be used until after fo is used, therefore if fo is not se-

lected, neither As9 nor As,, can be used in the first two pivots.) Equally

f and As^ are forced to be the second pivot equation and variable, respec-

tively, leaving As_ and f for last. It is straightforward to develop an

algorithm to discover when a pivot is being forced without examining all

possible sequences.

11.

2. The General Problem

We can now examine the general implications of the observations

made in Section 1. We are interested in finding values for each of the

n components of the vector x which will drive the n functions f(x) to zero.

Some of the components of x are subject to upper and/or lower bounds; we

let S represent the set of all values for x which satisfy these inequality

constraints. Finally, the convergence criterion will be that the sum of

T
the squares of the residuals, represented by f f be less than some small

positive number, 6. The mathematical expression which describes this prob-

lem is:

Min {cp|cp = fTf; xes} (P3)
x

The Newton-Raphson method for solving (P3) is to generate a sequence {x(k)}

which converges to x, where, at the k iteration, x(k-fl) is found by solving

= - fx(k))
x(k)

The matrix (""^) *s t^ie Jac°b*-an matrix of partial derivatives. The only
bx x(k)

inequality constraints we mentioned when formulating (P3) were simple bounds

on some of the variables. In general, the original problem may also con-

tain a number of nonlinear inequality constraints and some linear inequal-

ities involving more than one component of x. In solving (P3) we find it

convenient to transform these inequalities into equality constraints with

slack variables. These equality constraints are then added to the vector

g so that all constraints in S take the form of simple bounds on the inde-

pendent variables. For discussion purposes, any variable subject to urp=r

12.

or lower vounds will be called a bounded variable (BV). Any BV outside

or on the boundary of S will be called an "active11 bounded variable (ABV) .

While it may seem somewhat cumbersome at first to talk about IE'S, BV1 s

and ABV's, we are convinced that this nomenclature simplifies the overall

discussion. For the reader's convenience these abbreviations are summarized

in Table 1.

Often in the course of a Newton Raphson search, equation (1) pre-

dicts a value for x(k+l) which lies outside of S. Our main objective is to

develop a computationally convenient and effective procedure for handling

this situation. Figure 2 illustrates the case where equation (1) gives

x(k+l) at point A. We require that x(k+l) always lie within S; one reason is

that some functions (e.g. Vx) are simply not defined for x outside of S

(e.g. x < 0). One strategy is to replace i^ 0 or f3= 0 by s^ 0 giving

x(k+l) at B or E (in Figure 2), respectively, problems with this procedure

center around deciding which constraint to release and how to avoid cycling

among the held and released constraints. Another strategy is to find the

intersection of the Newton Raphson step and the violated constraint. This

procedure places x(k+l) at point C in Figure 2. Still another strategy sim-

ply "clips11 any variable which is projected through one of its bounds.

The result of using this strategy is to place x(k+l) at point D in Figure

2. Note that this procedure represents an orthogonal projection into S

from A and gives the best location for x(k+l) in the lease squares sense.

In the course of solving a problem such as a Chao-Seader flash

problem, it becomes desirable to label certain equations as "inviolate equa-

tions11 (IEfs); the consequence is that orthogonal projection back into S

13.

Table 1. Definitions Associated with Partially Ordered Pivot Sequences

Symbol Description

IE(x.) The set of Inviolate Equalities associated with the

variable x#. When developing a pivot sequence, one

must pivot all IE'S in IE(x.) before x may be used

as a pivot.

IE Inviolate Equality. Whenever the Newton based search

procedure predicts a point outside of S, we would like

simply to perform an orthogonal projection back into S.

This is possible in most cases, but when IE's are pres-

ent the projection must lie along the linearized IE'S.

BV Bounded Variable. Any variable subject to upper and/or

lower bounds may be "clipped11 during the Newton-Raphson

iteration scheme; therefore, we flag these variables by

calling them BV's.

ABV Active Bounded Variable. This term refers to a BV which

is about to be clipped; that is, any BV whose next value

is predicted outside of S is termed an ABV.

14.

Current Point x,

Newton Raphson Step

Newton Raphson/Equation 3

Newton Raphson/Equation 2

/ // s / / y / '///'// ////

Figure 2. possible Strategies to Move Back

into the Feasible Region

15.

is not permitted in certain coordinate directions. Projection must lie

along an IE (inviolate equation) whenever an associated ABV (active bounded

variable) occurs in that equation. For example, if x is outside S and f-

and f belong to IE(x), then projection back into '" must lie along the lin-

earized constraints f = 0 and f = 0. We use orthogonal projection where

possible and projection along IE's where required. For problem (P2), f~fi

lE(s^) so we must move to point B in Figure 2. In the next paragraph, we

formally state the algorithm.

Step 0; Initialization

i) Set k = 0, x = x(0)

ii) Set IEFLAG (i,j) = 1 if f.e IE(x) and set to zero otherwise

for all i,j - l,*#-,n.

Step 1: Compute Residuals and Check for Convergence

i) Compute f(x(k)) and fTf

ii) If (fTf £ 4) go to Step 4

iii) If (k > (maximum number of iterations allowed)) go to Step 3

Step 2: Compute x,-

i) Compute -2— at x(k)

ii) Factor —~ into L and U making sure that x. is not pivoted
fcxT J

until all rows in IE(x.) have been pivoted

iii) Solve Lq = -f by forward substitution

iv) Perform backward substitution to solve Uy - q.

When performing the back substitution use y. if IEFLAG

(i,j) is zero, and use z. otherwise. The vector y con-

tains the undipped Newton step and z contains the same

step except that it is clipped where necessary to keep x(kfl)

inside the feasible region.

16.

v) x(k+l) = x(k) + z

vi) k = k + 1

vii) Go to Step 1

Step 3: Convergence Failed

Print error message and go to Step 5

Step 4: Convergence Achieved

Print final results and go to Step 5

Step 5: Stop

We shall explain the purpose of introducing the two vectors y

and z in Step 2(iv) by the following example. Reconsider problem (P2) in

linearized form. Only this time include two additional variables x, and

A A

x- and two linearized constraints f, and f in the following sequence and

with the following total zero/nonzero pattern

h
A
f4

fl

A
f5

Again the asterisks •*' indicate locations which will fill in during the

forward Gaussian elimination step if the pivot sequence illustrated is used.

17.

Suppose we have completed the forward elimination step and have just reached

function f- on the backward substitution step. We discover As has to be

clipped and do so. The effect is, of course, to override the value which

A

would have resulted from using f- . f has already been used to obtain a

value for Ax_ based on equation f- so it too will no longer hold. We now
A

have to backsubstitute using f, to calculate Ax.. Do we use As which f-
A A

gives or the clipped As ? We see that f, and f are really innocent by-

standers to our treachery and are in this example entirely equivalent in
A

original zero/nonzero pattern. It seems therefore f. has a choice where-
A

as f_ was given no such opportunity. Adopting the procedure in Step 2(iv) ,
A A

f, and f are treated equally, both using the value for As- given by using

f- . Only those equations in IE(s), namely f,. and f , must use the clipped

value for As^ which again Step 2(iv) does. So Step 2(iv) is there to treat

all non-inviolate equations equally whether they appear before or after

the clipping of a bounded slack variable in the pivot sequence and to treat

all inviolate equations as proposed earlier. Ax, and Ax. values are not

affected by the clipping and thus the clipping is like an orthogonal pro-

jection from the solution point back to the feasible region with respect
A A

to f. and f . On the other hand f« and f are held inviolate with respect

to clipping As ; that is, we must move back to the feasible region along

these constraints.

3, Multiple-Root Functions

In the previous section we presented an algorithm for carrying

out the modified Newton-Raphson iteration scheme described earlier in this

paper. Before this algorithm can be applied, we need a procedure for set-

ting up the sets of appropriate inviolate equalities which will guarantee

that this new algorithm will converge to the desired root of any function

18.

which exhibits multiple roots. Even if a function has only one real root

in the region of interest, some of its derivatives may change sign, thus

rrising havoc with a standard Newton-Raphson iteration scheme. In order

to apply our method two conditions are necessary:

1. The desired root is uniquely characterized by the
signs of the first P derivatives, and the user
knows these signs ja priori.

st
2. The sign of the P + 1 — derivative is constant for

all feasible values of 3c. The user need not know
this sign.

The second condition can always be met for polynomials, but not all func-

tions have a derivative which does not change sign over the feasible region

of the independent variable, e.g. sin(x), xe[2rr] . For many realistic problems,

P is small and the first condition does not represent a major difficulty.

Given a set of m functions which satisfy conditions 1 and 2, we can use

the following algorithm to define the appropriate sets of inviolate equali-

ties (IEfs).

Step 0; Initialization

i) Label all variables which are subject to upper and/or lower

bounds as bounded variables (BV's).

ii) Set k = m and i = 1

Step 1: Fill IE(x) for the P derivatives of f. as follows

i) If the value of P corresponding to £. is zero, go to Step 2.

ii) For I = 1,***,P write the correct inequalities + f; ' £ + e.

19.

iii) For t = 1,2,###,P introduce slack variables x^ , to gener-

ate equality constraints of the form f, ,:fj - « + x, i = 0

x, - is a BV subject to a lower bound of zero.

iv) For I = 1,2,**',P for each bounded variable x. in constraint

a d d fk+X •" fk+P to the s e t

v) Add f ••• f to IE(x.) for all bounded variables x

which appear in f..

Step 2: Move to the Next Function

i) Set k = k + P; set i = i + 1

ii) If (i £ m) go to Step 1

Step 3; Stop

i) Set n = k

ii) STOP

The effect of using the two algorithms presented here is to guar-

antee that the variable is moved in the proper direction (in spite of the

fact that some derivatives are changing sign) with each Newton Raphson step.

The IE corresponding to the highest derivative will be pivoted before its

slack variable or that associated with any derivatives of lower order. In

this way, if any of the slack variables are clipped, all higher derivatives

will still be satisfied. In contrast, equations corresponding to deriva-

tives of lower order will not be satisfied, but it does no good to satisfy

these equations until those of higher order are all satisfied.

20.

Clearly this strategy hinges only on the fact that we have a set

of equalities for which a hierarchy exists for satisfying them. That is,

there is one constraint which, if not satisfied, makes the remaining con-

straints meaningless — thus they can be momentarily discarded. Once sat-

isfied, then another constraint becomes the dominating one. For a poly-

nomial whose general shape i£ known at the solution, we can always find

such a sequence to force us to the desired root.

4. Examples

In the next examples, all variables were constrained between -100

and 100. All pivots smaller in absolute value than 0.0001 were considered

to be zero, and e was chosen as 0.1. As long as the IE's were pivoted first,

the procedure converged for all legitimate pivot strategies and starting

points, of which a wide variety were tried.

Example 1

We first illustrate the effectiveness of the procedure by apply-

ing it to a cubic polynomial with constant coefficients. We desire the

uppermost root of

f : x1 + x - 5x - 10 = 0

In setting up this problem we follow the algorithm given in Sec-

tion 3. Initially m = 1, but we need to introduce two constraints on the

derivatives of f- :

21.

We set m = 3 and introduce two slack variables corresponding to the two

functions generated by the above inequality constraints

f2 : 3xl + 2xl " 5 " X2 " 6 = °

f3: 6xx + 2 - x3 - e = 0

x2,x3 ^ 0

Step l(iv) creates the following IE sets

IE(x2)

IE(x3)

As indicated by the discussion in Section 1, the only allowable pivot se-

quence is

Row: f3 f2 £«

Column: x- x x

Table 2 compares the results obtained using the standard Newton-Raphson

technique with orthogonal projection (that is, the solution point is found

and then all variables which are out of bounds are simply placed back on-

to their bounds) against the results obtained by using the procedure rec-

ommended here. When the superfluous constraint x- ^ 0 is added to the prob-

lem, the first technique is unable to move away from the origin. It is

clear from Table 2 that the partially ordered pivoting combined with clip-

ping of ABV's during the backward substitution step causes the problem to

converge quickly. This result is because clipping Ax = -9 to zero during

backward substitution in the first Newton-Raphson step caused Ax~ (and then

Ax-) to become large enough to satisfy the constraint on the second derivative.

22.

Table 2« Comparison of Pivoting Strategies for Example 1

Newton Raphson with Orthogonal Projection

Iteration

0

1

2

3

4

5

6

7

1

0

-2

- .67

-1.97

- .52

-1.91

- .13

-1.92

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1.22

0

1

-10

- 4

-6.5

-3.91

-7.27

-3.77

-9.34

-3.97

2

-5

3

-5

2.70

-5.23

2.12

-5.21

2.22

3

2

-10

- 2

-9.82

-1.12

-9.46

0.00

-9.52

Partially Ordered Pivoting with ABV Clipping

Iteration

0

1

2

3

0

2.5

2.53

2.533

0

0

19.36

19.31

0

17

17.21

17.20

10

.63

.05

.003

-5

18.75

.10

.004

3

2

0

-.03

-.002

23.

Example 2

Here ve wish to find the larger root of a quadratic polynomial

with variable coefficients.

Using the algorithm in Section 3, we first set m = 5. The equa-

tions are:

2
L : ax + bx- + c = 0

b +

V cxi + x2

fL: x- + 7L - 1 = 0 .- + 7L

The bounds on the variables are

0 ̂ a

c £ 0

Following the algorithm in Section 3 we find that only £ has a non-zero

value for P; i.e., we are going to add a constraint on the first derivative

of f. For f., P = 1 (first derivative only) so we introduce the following

constraint to guarantee convergence to the upper root of £.

- + b - x - e = O

IE(x3)

IE(a)

24.

The only restriction on the pivot sequence then is that £, be pivoted be-

fore either xo, a or x-. Note the variable b, which also appears in f,,

is not bounded so no inviolate equation set is needed for b.

Table 3 gives the results obtained for this system of equations.

The starting point chosen gives a singular Jacobian matrix of rank 5 initial-

ly. Our convention is to set the perturbation variable corresponding to

a column which cannot be pivoted to zero. When this procedure is used,

the standard Newton-Raphson technique with orthogonal projection is unable

to move away from the origin.

Example 3

Finally, we consider a cubic polynomial with variable coefficients.

We wish to find the largest root. This example is the most closely related

to the Chao-Seader problem of the three examples. The original set of equa-

tions is:

xr 3 2

1: 2 xl + l + C X1 + d = °

f2: a - 2b = 0

f-: 2a + c = 0

f4: 4b - 5d « 0

f : c + dx1 + 4 = 0

a,xx * 0

d £ 0

Table 3. Results for Example 2

I t e r - a b c x i * 2
 X 3 f l f 2 f 3 f 4 f 5 f 6

0 0 0 0 0 0 0 0 0 0 0 - 1 - . 1

1 0 .1 0 1 0 0 .1 - 1 . .1 0 0 0

2 2 .1 - . 1 - 1 . 3#-08 1 3 .1 - 1 . 2 .1 - 1 1 0 -4.2

3 1.55 - . 5 0 .5 .5 1.5 .14 .28 - .25 .5 0 - .55

4 2.032 -.25 -.5954 .7073 .2977 2.309 .23 -.097 -.041 -.121 0 .19

5 1.766 -.2326 -.5561 .6441 .3559 1.912 .027 -.015 -.003 -.002 0 .031 K

6 ' 1.760 -.2311 -.5681 .6377- .3623 1.913 10"4 IO"5 io"5 io"5 0 lo"5

26.

Again, constraints will only be written on derivatives of f-, so only f.

has a value for P greater than zero. Here P = 2 because we require that

both the first and second derivatives be non-negative

+ 2bxx + c -

2b -

The bounded variables a, x ^ x^ x^ and d appear in f^ fg and f^ so we

get the following IEfs

IE(a) =

IE(x2) =

IE(x3) =

IE(d) =

The only restrictions on the pivot sequence are

i) f_ must be pivoted before x-, x9, x^, a or d

ii) fL must be pivoted before x-, x«, a or d.

Table 4 gives the results obtained using the procedure recommended in this

paper. As in Example 2, the standard Newton-Raphson technique with orthog-

onal projection is unable to move away from the origin.

Table 4. Results for Example 3

Iter . a b c d xx x2 x3 ^ f2 f3 f^ f5 ffi f?

0 0 0 0 0 0 0 0 - . 1 0 0 0 4.0 - . 1 0

1 0 .05 .1 0 .1 0 0 .0105 - . 1 .1 .2 4.1 .01 0

2 1.961 .9804 -.1449 .7843 0 0 3.037 .7843 0 3.777 0 3.855 -.2449 -1.176
N

3 .9604 .4802 -1.921 .3841 2.651 3.177 32.05 16.56 0 0 0 1.061 17.60 -15.91

4 1.548 .7291 -2.916 .5833 1.446 12.04 17.61 2.303 0 0 0 .2399 -3.791 -3.598

5 1.621 .8103 -3.241 .6483 1.140 4.846 12.90 .4060

6 1.651 .8255 -3.302 .6604 1.056 3.846 12.02 .037

7 1.654 .8269 -3.308 .6616 1.046 3.755 11.94 10"4

0

0

0

0

0

0

0

0

0

.02

.001

io-5

-2.475

.015

io-4

-.2989

-.015

io-4

28.

REFERENCES

1. Abadie, J. and J. Carpentier, "Generalization of the Wolfe Reduced
Gradient Method to the Case of Nonlinear Constraint,11 in Optimiza-
tion, Academic Press, New York, pp 37-47 (1969).

2. Fiacco, A. and G. McCormick, Nonlinear Programming; Sequential
Unconstrained Minimization Techniques, John Wiley, New York (1968),

3. Reid, J. (ed), Large Sparae Sets of Linear Equations, Academic
Press, London (1971).

ACKNOWLEDGEMENT

This work was funded by NSF Grant ENG 76-80149.

29.

APPENDIX: L/U FACTORIZATION

An efficient technique for solving a system of linear equations

of the form Ax = b is to factor the coefficient matrix A into the product

of a lower triangular matrix L and an upper triangular matrix U. This fac-

torization process is very similar to performing a Gaussian elimination.

The L/U factorization algorithm we used in our test problems is given be-

low. We initialize IP and JP to satisfy the restrictions imposed by the

sets of IEfs, and the only reason for changing the ordering is to avoid

a zero point. This algorithm is for illustrative purposes only.

Step 0: Initialization

i) Set k = 0. Define row and column number index sets IP and

JP, respectively, to contain a pivot sequence which satis-

fies the restrictions imposed by the sets of IEfs.

ii) Set n = 0. (n will count the number of columns which be-

come essentially all zero before a pivot element can be

found in them. These "nonpivot" columns will correspond

to perturbation variables whose values will be left at zero.

The matrix is singular, and this approach is the one most

commonly adopted to handle this case.)

Step 1: Find Next Pivot

i) Set k = k + 1
' P P

, ii) Set j « JP(k)

iii) Set k±= k

iv) Set i = IP(k±)

30.

v) If I a | < e (a small number), reject as next pivot and

go to Step (vi)• Otherwise interchange IP(k) and IP(k)

row numbers and go to Step 2.

vi) Set ki= kj+ 1. If k < n - n , go to Step (iv) . Otherwise

continue.

vii) No pivot is found in this column. Set i = IP(k). Move

all row and column numbers from position k + 1 forward one

position in IP and JP. Then put IP(n) = i, JP(n) - j and

n + 1.o

viii) If k < n - n , return to Step (ii). Otherwise go to Step 3.

Step 2: Perform Elimination Using Current Pivot

i) Set P = a± . Set i = IP(k)

ii) For Jl - k + l,«--f n - nP o

— Set j - JP(J6)

- Set a±J- a±j/P

iii) Set i1 = IP(k), jf - JP(k)

iv) For m = k + l, # - #,n-n
' p ' * o

For n = k + l , # * * n - n
p o

— Set i = IP(m)

— Set j = JP(n)

v) Return to Step 1.

31.

Step 3; Factorization Complete; STOP

The original matrix now has the non-zeros in L stored on and

below the diagonal iri pivot sequence. The non-zeros for U

are stored above the diagonal, except for the diagonal ele-

ments which are all unity.

Once the coefficient matrix has been factored, solving a linear

system is accomplished in two steps. Note that the original right hand

side should be rearranged to conform to the row pivot sequence and the so-

lution vector should be rearranged to conform to the column pivot sequence.

We first solve

L y = b

for y. This is accomplished by working from the first row of L down to

the last row. We then solve

U x = y

to obtain the desired solution x arranged in column pivot sequence. This

second step is most easily accomplished by working from the last row of

U upward. The variables corresponding to zero pivots can be set to any

value; we choose to set them to zero.

