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ABSTRACT

Imbedded within a typical K-value routine, such as Chao-Seader,
there is usually a cubic polynomial in compressibility factor. In general
the Newton Raphson method, which linearizes and solves iteratively an en-
tire set of nonlinear equations, is an unacceptable method if an imbedded
function has two or more roots in the feasible region, as occurs here.
Corrective action requires temporary replacement of the polynomial by one
or more of the inequality constraints on the higher derivatives while con-
verging toward the solution. This paper shows that, by restricting the
permitted pivot sequence developed to solve the entire set of linearized
equétions, one can very simply incorporate and rélease these constraints
without redeveloping the pivot sequence, a costly procedure when using sparse

matrix codes. The ideas generalize.
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e possible method for solving a flash problemis to gather to-
gether all the equations, including those arising in the evaluation of phys-
ical properties, and solve themusing a New on- Raphson based nmet hod. The
equations can be witten as f(x) = 0 where f and x are vectors of |ength
n. The Newt on- Raphson nmethod is an iterative schene which |inearizes f
about the current point, x(k) and solves for x(k+l) so as to drive f(x(k+l))

to zero. Thai: isg it solves the following for x(k+l):
£
(b)(xml) - xp = - 1(x(K)

Two advant ages associated with using a Newt on- Raphson based nethod are that
the nethod is easy to use and that it converges very quickly (quadratically)
when it does converge. Two probl ens associated with the Newt on- Raphson
nmethod are that it requires all first derivatives to be continuous near
| the solution and that the net héd i--ndi sg_ri mr?e;t_ely_c_o_rl_\{er ges to any foot
-vvner-l nuiti-ble roots exist. |

Wien solving a flash problem one finds inbedded in the equation
set for estimating vapor fugacity coefficients an equation of state for
the fluid. The Chao-Seader nethod uses the Redlich-Kwong equation of state
to estimate K-val ues. The Redlich-Kwong equation is a cubic pol ynon all
inconpressibility factor z, and, when two phases can occur, it has three
roots. The lowest one is the liquid phase conpressibility factor, the up-
per is the gas phase conpressibility, while the mddl e one has no physical

neani ng.




Wiile it would be desirable to use a Newt on- Raphson based net hod
to solve a flash problem the fact that the first derivative changes sign
for the cubic polynomal requires that we nodify the iterati on schene
This is true for any problemwhere one or nore functions exhibit miltiple
roots. The purpose of this paper is to denmonstrate a rather sinple strat-
egy which will permt one to use the Newt on-Raphson nmethod for such prob-
lens. It involves automatically turning on and off, as needed, the appro-
priate inequality constraints to guide the Newt on-Raphson nethod to the
correct root. A ninor change is needed for selecting the pivot Sequence
used to solve the linear equations devel oped for each iteration. The re-
stricted pivot sequence fogether with a sinple strategy to "clip' certain

vari abl es which are wandering through constraints conpletes the approach.




CONCLUSI ONS AND SI GN FI CANCE
A sinple strategy is presented which permts sinulation problens
i nvol ving functions having multiple roots (such as polynomials) to be sol ved

via the Newt on- Raphson nethod provided only that

1. The particular root of the function is uniquely
characterized by the signs of a set of inequalities
on hi gher derivati ves.

2. The highest derivative considered does not change
sign over the search space.

Results on threeltest probl ens denonstrate the effectiveness of the approach
wi th convergence rates found which are characteristic of the Newt on- Raphson
nmet hod. The key feature of the method is that it precludes the need to
redevel op the pivot sequence for the linear equations solved at each iter-
ation when the inequality constraints are active and used tenporarily to
repl ace the original function

For cubic polynomals, one can analytically locate the inflection
points, and in many cases, the technique described here will seemtoo com
plicated for use with these problens. The significance of the method pre-
sented is that it permts one to use a gradient-based iteration schene on
systens of nonlinear functions where some of the derivatives change sign
inthe feasible region. It becones nost effective when used w th higher

order polynomals and functions involving exponential terns.




1. (hao- Seader and Newt on- Raphson

In the course of solving Chao-Seader flash problens, one discov-
ers inbedded in the equations the Redlich-Kwong equation of state, a cubic
pol ynomal in the conpressibility factor z. Usually this pol ynom al has
three roots, the |owest one being the liquid conpressibility factor and
the uppernost the gas conpressibility factor. The mddle root has no phys-
ical interpretation. Figure la illustrates.

The root desired when cal culating the vapor fugacity coefficient
is the gas conpressibility factor root which we see is uniquely character-

ized by three conditions

Ps(z) - O
Prz) * O (P1)
n >
Py(2) =2 0
t it
The nmiddl e root has pg(z) < 0 and the | owest root has p‘~’(z) <0. Inprin-

ciple then, we can find the desired root by placing these two additional
constraints on our problemand solving, ufeing traditional approaches. (For
exanpl e, we could solve using penalty functions (see Fiacco and M Corm ck[2])

or by using an active set strategy (see Abadie[l]).) Qur goal, however,

is to use a Newt on Raphson based iteration schene, and we woul d prefer not
to have to reformulate the problemevery tine we move one of the constraints
fromthe active set to the inactive set or vice versa.

Consider the follow ng scheme for solving, where we are using

the Newt on Raphson nethod. W& consider only the three equations .
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Figure 1. A Qubic Equation of State and its Derivatives




| =Pz =0
2 =5y w (P'3(2) -+) =0 (P2)
3 =530 (PR -«) =0

Sye 832 0

Here sq and s; are sl ack variabl es whi ch are bounded bel ow at zero, and
c >0 is afixed snall nunber. Note this forrmulation is essentially equi-

valent to our first problemexcept for the occurrence of fi > 0. |If f2 is

satisfied with S = 0, then p<§(z) = eresults, and we are slightly to the

right of the mninmum(i.e. at point am in Figur_e la. A this point the
derivatiVe of f..l with 'respect to z is not zero, a possibility which can
cause conputational problens if allowed to occur. An e_ffic_i ent procedur e
for -conputing x(k+l') using the New on Fﬁphsoh method is to performan L/U

\be/

cedure is included as an appendi x for those who are not famliar with the

factorization of the Jacobian matrix A description of this pro-
technique. The nethod is entirely equivalent to solving by Gaussian elim
i nati on where the factor L is the matrix e‘quival ent of the forward elim na-
tion and matrix U the resulting matrix used in the backward substitution
step. Let us exanine the effects of using L/U factorization (i.e. Gaussian
elimnpation) as it applies to problem (P2) . The Jacobi an matri x bf_/&iT

has the following zero/nonzero pattern

Az As




any any self-respecting sparse matri x code woul d choose the circled pivot
sequence as it causes no fill-in to occur. This pivot sequence says we
shoul d first use the linearized equation for f—L to find Az, then f2 to find
Asi and finally f; to find As,j.

Let us now observe the consequences of selecting this pivot se-
quence conbined with the intuitive strategy to clip s2 and s3 whenever t hey
are out of bounds as we seek the solution to our problem VW& note that
Az is found fromthe linearized equation for f- irrespective of the val ues
obtained for Asa and As3e Thus, if we are near to and are approaching the
mddle root in Figure la, we shall continue to approach it. Near this root
we shall find both As2 and As3 being clipped because solving f2 and f3 will
result in both s« and s3 being negative. Note that if we were to conpute
Az based on the linearized equation for fz we woul d approach point "a' in
Figure la. Oice at point "a" we could use f-L to conpute Az, and this pro-
cedure would bring us to the desired root. The procedure for doing this

is as foll ows:

Using a "constraint replacenent” strategy, discard nonmentarily

fi1(z) =0 and introduce the active constraint s 5 0, giving us the problem

82=O
Sz - (p"z) - e =0
3" (PA%) - %) =0

Solving this problemw |l lead to point "a" in Figure |a.

Step 2

Recover the original equation set and solve for Az using the Newt on-.
Raphson equation. Frompoint "a", we clearly nove to the correct root of

PS(Z) =0.




The diffic: v with the above approach is that we must reformu-

late our problem twic: in the course of solving. Also, we had to discard

temporarily an equality constraint of the original problem. Problem refor-

mulation is at best tedious and at worst extremely time consuming, and we

would like to avoid it.

Now consider the following very unnatural pivot sequence for our

original equation set (P2)

Az As

f3 (E) b4
f2 X (:) X
*  ®

3 As,

1 X

where the asterisks indicate that the location will f£ill-in during the course
of the L/U factorization (i.e. Gaussian elimination).A We first pivot on

the coefficient of Az in the linearized equation for f3. Eliminating the
nonzeros in column 1 below f3 will cause the (fé, As3) and (fl’ As3) ele-
ments to become nonzero. Thus the coefficient of As3 can be used as a pivot

in f2. The (fl’ Asz) fills in similarly when we pivot the second equation.
In solving we first do the forward elimination just described,
getting finally the upper triangular structure which corresponds to the

U matrix in the L/U factorization

Az As3 As2
f3 X X
f2 0 b4 X
f1 0 0 X




Performng a backward substitution, we now solve the last equation for Asg
and check if this perturbation wll cause Sz to become negative. |If so,

we can imedi ately sel ect Asz_ o] s‘\,2 is zero. Nowthe mddle eugation is
sol ved for As; interns of whatever value we have given AS‘« —that is,
whether it came fromthe last equation or by being set to a value to pre-
vent s’_‘ becom ng negative. Again if As_vvvoul d cause 33 to becone negative
we alter its value to cause SS to be zero. Lastly we solve for Az in terns
of Asjz-

Exam ning the behavior of this schenme, we find a very different
result frombefore. If we are inthe vicinity of the mddle root in Fig-
ure la, the slack variabl es s« and Sy woul d be negative, as both the slope
and the curvature of the cubic equation are negative at this point. Thus
we will find that in the backward substitution step bothﬁAs"_and As,L1 will
be clipped, that is, set to -S3 and -s.,, respectively. The only equation
satisfied of the three will be f'_, which will, when solved with Sy~ 0, nove
us away fromthe mddle root and to the point "b" in Fi'gure la. A this
poi nt As<‘<j is no longer clipped, and both equations f; and f, will be sat-

2
isfied, with ss<>0ands=0. Bei ng satisfiethhszo, f2 noves us

2 2
topoint "a". At this point all three equations are active, and we wll
nove directly to the desired upper root.

V& note that we never refornulated the pivot sequence, and we
can readily verify that this behavior of nmoving ultimately to our desired
root occurs no r_ratter where we start with our initial guess for z. Wat
we did was choose an initial pivot sequence so if As; was clipped then equa-.
tion f; was not allowed to be violated, while f-z and f-L were. Also, if
only As’_\ V\a-s cli pped, thenequations f__; and fz- were not allowed to be vi-

olated. The above_ is acconplished by forcing a partial ordering onto the

(all owed) original pivot sequence.
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If we clip a variable on the back substitution step as indicated,
the pivot equation and potentially any belowit nmay no |onger be satisfied
at the resulti ng sol ution point. However, any occurring above the pivot
“equation can receive any value for the clipped variable and will be exactly
satisfied. The ordering is such that we cannot sel ect s, as a pi vot vari -
able until equation f:1 is already pivoted, and we cannot sel ect s’: until
bot h f; and f2 are pivoted. V¢ note this ordering by listing for each vari -

abl e the equations which cannot be violated if the variable is clipped as

indicated (IE = |Lnviolate Equation).

[E(ss) = {fs4}

£fy, f-3)

I E(s2)

Devel opi ng the pivot sequence in a sparse matri x code can then proceed by
what ever schene is desired but nodified to refuse s3 as a pivot until after
equati on fj is pivoted, etc. Note the above IE sets force f:j to be the

first equation sel ected, ‘and they force Az to be the pivot variable. (Neither
As, nor As, can be used until after f, is used, therefore if f, is not se-

lected, neither Asg nor As,, can be used in the first two pivots.) Equally

'3
fz and As” are forced to be the second pivot equation and variable, respec-

tively, |eaving Asz and f1 for last. It is straightforward to devel op an

algorithmto discover when a pivot is being forced wthout examning all

possi bl e sequences.
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2. The General Probl em

V¢ can now examne the general inplications of the observations
made in Section 1. W are interested in finding values for each of the
n conponents of the vector x which will drive the n functions f(x) to zero.
Sone of the conponents of x are subject to upper and/or |ower bounds; we
let S represent the set of all values for x which satisfy these inequality
constraints. Finally, the convergence criterionwll be that the sum of
the squares of the residuals, represented by fo be less than sone snall
positive nunber, 6. The mathenatical expression which describes this prob-

lemis:

“Mn {gdop = fTF; xes) (P3)
X

The Newt on- Raphson nethod for solving (P3) is to generate a sequence {x(k)}

whi ch converges to Q, where, at the kth iteration, x(k-fl) is found by sol ving

(%] @een -x0 =-ix()
dx “x(k)

-~ .
The matri x Q.ba*‘) xS tale jacopx_an nptrix of partial derivatives. The only
bx™ "x(k) '
inequality constraints we mentioned when fornulating (P3) were sinple bounds

on some of the variables. 1In general, the original problemmay al so con-
tain a nunber of nonlinear inequality constraints and sone |linear inequal-
ities involving nore than one conponent of x. In solving (P3) we find it
convenient to transformthese inequalities into equality constraints with
slack variables. These equality constraints are then added to the vector
g so that all constraints in S take the formof sinple bounds on the inde-

pendent variabl es. For discussion purposes, any variable subject to urp=r
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or lower vounds will be called a bounded variable (BV). Any BV outside

or on the boundary of Swill be called an "active bounded variable (ABV) .
Wi le it may seemsomewhat cunbersone at first to talk about | E'S, BVs

and ABV's, we are convinced that this nonenclature sinplifies the overall

di scussion. For the reader's conveni ence these abbreviations are summarized
in Table 1.

Cften in the course of a New on Raphson search, equation (1) pre-
dicts avalue for x(k+l) which lies outside of S. Qur main objective is to
devel op a conputational ly convenient and effective procedure for handling
this situation. Figure 2 illustrates the case where equation (1) gives
x(k+l') at point A W require that x(k+l) always lie within S, one reason is
that sonme functions (e.g. \;;) are sinply not defined for x outside of S
(e.g. x<0). e strategy is to replace i™ 0 or f3= 0 by s 0 giving
x(k+l) at Bor E (inFigure 2), respectively, problenms wth this procedure
center around deciding which constraint to release and how to avoid cycling
anong the held and rel eased constraints. Another strategy is to find the
intersection of the Newton Raphson step and the violated constraint. This
procedure places x(k+l) at point Cin Figure 2. Sill another strategy sim
ply "clips® any variable which is projected through one of its bounds.

The result of using this strategy is to place x(k+l) at point Din Figure
2. Note that this procedure represents an orthogonal projectioninto S

fromA and gives the best location for x(k+l) in the |ease squares sense.

I'n the course of solving a problemsuch as a Chao- Seader flash
problem it becomes desirable to |abel certain equations as "inviol ate equa-

tions™ (1E's); the consequence is that orthogonal projection back into S




Tabl e 1.

13.

Definitions Associated with Partially Ordered Pivot Sequences

BV

ABV

Description

The set of Inviolate Equalities associated with the
vari abl e Xﬁ' Wen devel opi ng a pivot sequence, one

must pivot all IE' Sin IE(xj) bef or e X_-] may be used
as a pivot.

Inviolate Equality. Wenever the Newt on based search
procedure predicts a point outside of S, we would like
sinply to performan orthogonal projection back into S.
This is possible in nost cases, but when |E s are pres-
ent the projectionnust lie along the linearized | E' S.

Bounded Variable. Any variable subject to upper and/or

| oner bounds may be "clipped® during the Newt on- Raphson

iteration scheme; therefore, we flag these vari abl es by
calling themBV s.

Active Bounded Variable. This termrefers to a BV which

is about to be clipped; that is, any BV whose next val ue
is predicted outside of Sis terned an ABV.
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is not permtted in certain coordinate directions. Projection nust lie
.along an IE (inviolate equation) whenever an associ ated ABV (active bounded
variable) occurs in that equation. For exanple, if x is outside S and f-L
and f , belong to I E(x), then projection back into '* nust lie along the Iin-

2

eari zed constraints flz 0 and f2: 0. W use orthogonal projection where
possi bl e and projection along |E' s where required. For problem (P2), f:fji
IE(SS) SO we nmust nove to point B in Figure 2. In the next paragraph, we

formally state the algorithm

Step O; Initialization

i) Set k =0, x =x(0)

ii) Set IEFLAG (i,j) =1 if fie | E(x,) and set to zero otherw se

J

for all i,j = 1,*% n.

Step 1. Conput e Resi duals and Check for Convergence

i) Conpute f(x(k)) and fTf
ii) If (f'f £ 4) go to Step 4

iii) If (k> (maxi mum nunber of iterations allowed)) go to Step 3

Step 2: Conput e XK.-F.L

£

i) Conpute -2T—at x( k)

ii) Factor b——f_Tinto L and U naeking sure that X ‘is not pivoted

fex

until all rows in IE(xj) have been pivoted

iii) Solve Lgq = -f by forward substitution

iv) Performbackward substitution to solve Wy = q.
VWhen performng the back substitution use y.:l if | EFLAG
(i,j) is zero, and use zj otherwi se. The vector y con-

.tains the undi pped Newton step and z contains the sane

step except that it is clipped where necessary to keep x(kfl)

i nside the feasible region.
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v) Xx(k+l) =x(k) +z

vi) k=k+1

vii) G to Step 1

Sep 3: Gonvergence Fail ed

Print error message and go to Step 5

Step 4. Convergence Achi eved

Print final results and go to Step 5

Step 5: Sop

V¢ shall explain the purpose of introducing the two vectors y
and z in Step 2(iv) by the followi ng exanpl e.” Reconsider problem (P2) in

linearized form nly this time include two additional variabl es X’q. and
A A

5 : . . “ 5. :
x- and two linearized constraints f, and f in the follow ng sequence and

with the followi ng total zero/nonzero pattern

Az 633 Ax4 Asz hxs

Again the asterisks ¢*' indicate locations which will fill in during the

forward Gaussian elimnation step if the pivot sequence illustrated is .used..
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Suppose we have conpleted the forward elimnation step and have just reached
function fl on the backward substitution step. W discover Asz has to be

clipped and do so. The effect is, of course, to override the val ue which
A

i
woul d have resulted fromusing f- . f5 has already been used to obtain a

5 . 1 . .
val ue for Ax_ based on equation f- so it too will no longer hold. V¢ now
A
. . o - 4 2 1
have to backsubstitute using f, to calculate Ax.. Do we use As which f-

2° Py As
gives or the clipped As ? V¢ see that f, and f are really innocent by-
standers to our treachery and are in this exanple en;[ii rely equivalent in

A

ori gi:,nal zero/ nonzero pattern. It seens therefore f. has a choi ce where-
A

aA;s; f_ \Agg gi ven no such opportunity. Adopting the procedurze inStep 2(iv) ,
fg and f are treated equally, bogh using thesval ue for As- given by using
f-. Only those equations inlE(s ), nanely f,. and f , nust use the clipped
val ue for As™ which again Step 2(iv) ddes. So Step 2(iv) is there to treat
all non-inviolate equations equally whether they appear before or after

the clipping of a bounded slack variable in the givot séquence and to treat
all inviolate equations as proposed earlier. Ax, and Ax. val ues are not

affected by the clipping and thus the clipping is like an orthogonal pro-

jectyon fromthe solution point bagk to the feasible region wth respect
A A
- tof. and f . 2O the other hand f« and f are held inviolate wi th respect

toclipping As ; that is, we nust nmove back to the feasible region al ong

t hese constraints.

3, Miltiple-Root Functions

In the. previ ous section we presented an al gorithmfor carrying
out the nodified Newton-Raphson iteration schene described earlier in this
paper. Before this algorithmcan be applied, we need a procedure for set-
ting up the sets of appropriate inviolate equalities which will guarantee

that this new algorithmwill converge to the desired root of any function
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which exhibits multiple roots. Even if a function has only one real root
in the region of interest, some of its derivatives may change sign, thus
rrising havoc with a standard Newton-Raphson iteration scheme. 1In order

to apply our method two conditions are necessary:

1. The desired root is uniquely characterized by the
signs of the first P derivatives, and the user
knows these signs a priori.
2. The sign of the P + IEE derivative is constant for
all feasible values of x. The user need not know
this sign.
The second condition can always be met for polynomials, but not all func-
tions have a derivative which does not change sign over the feasible region
of the independent variable, e.g. sin(x), xe[2nr]. For many realistic problems,
P is small and the first condition does not represent a major difficulty.
Given a set of m functions which satisfy conditions 1 and 2, we can use

the following algorithm to define the appropriate sets of inviolateAequali-

ties (IE's).

Step O0: Initialization

i) Label all variables which are subject to upper and/or lower

bounds as bounded variables (BV's).

ii) Set k =mand i =1

Step 1: Fill IE(xj) for the P derivatives of £, as follows

i) 1If the value of P corresponding to f, is zero, go to Step 2.

i
ii) For £ = 1,°*°,P write the correct inequalities i_fiz) =+ 6.

I T—
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iii) For t = 1,2 " P introduce slack variabl es x’\+, to gener-

wF

. . e Ay .
ate equality constraints of the formf,H‘,v.fJ_ « +_x,x+k =0
X,,- is aBVsubject to a lower bound of zero.

k&
iv) For | =1,2,**" P for each bounded vari abl e x.J in constraint

f1s1+& add floyy on fpqp to the set IE(xj).

v) Add fk+1 oee fk+Pt0 IE(x.J) for all bounded variabl es x

whi ch appear in fi'

3

Step 2: Myve to the Next Function

i) Set k=k+P, seti =i +1

ii) If (i £mM goto Step 1

Step 3; Stop
i) Set n=k
ii) STCP

The effect of using the two algorithns presented here is to guar-
antee that the variable is nmoved in the proper directilon (in spite of the
fact that sone derivatives are changing sign) wth each Newt on Raphson st ep.
The 1E corresponding to the highest derivative will be pivoted before its
slack variable or that associated with any derivatives of lower order. In
this way, if any of the slack variables are clipped, all higher derivatives
will still be satisfied. 1In contrast, equations corresponding to deriva-
tives of |ower brder will not be satisfied, but it does no good to satisfy

these equations until those of higher order are all satisfied.
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Qearly this strategy hinges only on the fact that we have a set
of equalities for which a hierarchy exists for satisfying them That is,
there is one constraint which, if not satisfied, makes the remai ni ng con-
straints meani ngl ess —thus they can be normentarily discarded. ce sat-
isfied, then another constraint becones the dominating one. For a poly-

nom al whose general shape if£ known at the solution, we can always find

such a sequence to force us to the desired root.

4. Exanpl es

In the next exanples, all variables were constrained between -100
and 100. Al pivots snaller in absolute value than 0.0001 were considered
to be zero, and e was chosen as 0.1. As long as the IE s were pivoted first,
the procedure converged for all legitimate pivot strategies and starting

points, of which awide variety were tried.

Exanple 1
Ve first illustrate the effectiveness of the procedure by apply-

ing it to a cubic polynomal with constant coefficients. W desire the

upper nost root of

In setting up this problemwe follow the al gorithmgiven in Sec-
tion 3. Initially m= 1, but we need to introduce two constraints on the

derivatives of f-L:
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V¢ set m= 3 and introduce two slack variables corresponding to the two

functions generated by the above inequality constraints
2
f2: 3X| +2X| n5n X2 n6=o

fai BXx+2 - X3-e=0

X2, X3 A0

Step I (iv) creates the following IE sets

I E(x2)

{£,, £,

| E( X3) [f3}

As indicated by the discussion in Section 1, the only allowabl e pivot se-

guence is

Col um: _ Xl X X

Table 2 conpares the results obtained using the standard Newt on- Raphson
technique with orthogonal projection (that is, the solution point is found
and then all variables which are out of bounds are sinply placed back on-
to their bounds) against the results obtained by using the procedure rec-
omrended here. Wen the superfluous constraint x-l N 0 is added to the prob-
lem the first technique is unable to nove away fromthe origin. It is
clear fromTable 2 that the partially ordered pivoting conbined with clip-
ping of ABV's during the backward substitution step causes the problemto
converge quickly. This result is because clipping Ax2= -9 to z.ero during
backward substitution in the first Newt on- Raphson step caused Ax; (and thén

AX].) to beconme large enough to satisfy the constraint on the second derivati ve.,
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Tabl e 2« Conparison of Pivoting Strategies for Exanple 1

Iteration

Newt on Raphson wi th Ot hogonal

-.67
-1.97

-1.91

-1.92

1.22

Proj ection
B 5B
-10 -5
- 4 3
-6.5 -5
-3.91 2.70
-7.27 -5.23
-3.77 2.12
-9.34 -5.21
-3.97 2.22

Partially Ordered Pivoting with ABV Qi ppi ng

5

0
2.5
2.53

2.533

19. 36

19.31

*q

0
17
17.21

17.20

. 003

18. 75

.10

. 004

N

-10

-9.82

-1.12

-9.46

0.00

-9.52

-. 002
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Exanpl e_2
Here ve wish to find the larger root of a quadratic pol ynom al

wi th variabl e coefficients.

Wsing the algorithmin Section 3, we first set m= 5. The equa-

tions are:

L : ax2+bx- +¢c=0
1 1 1

< odroN
O
+
o
™
1l
Qo

fé_: Xi #77LI2 -1

1
o

The bounds on the variables are:

0=« xl,xzs 1

0N a

cEO

"

Following the algorithmin Section 3 we find that only £l has a non-zero
value for P, i.e., we are going to add a constrai_ nt on the first derivative
of f. For fi’ P=1 (first derivative only) so we introduce the follow ng

constraint to guarantee convergence to the upper root of {ii

fE: Zaxi +b-§-e=0

x320
| E(xs) = {£]}
IE(a) = {£]

IE(x)) = [£]
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The only restriction on the pivot sequence then is that £b be pivoted be-
fore either x,, a or x-. Note the variable b, which also appears in f,,
is not bounded so no inviolate equation set is needed for b

Table 3 gives the results obtained for this systemof equations.
The starting point chosen gives a singular Jacobian natrix_of rank 5 initial-
ly. Qur convention is to set the perturbation variable corresponding to
a colum whi ch cannot be pivoted to zero. Wien this procedure is used,
the standard Newt on- Raphson technique with orthogonal projection is unable

to nove away fromthe origin.

‘Exampl e 3

Finally, we consider a cubic polynomal wth variable coefficients.
W wish to find the largest root. This exanple is the nost closely related

to the Chao- Seader probl emof the three exanples. The original set of equa-

tions is:
X 3 lm_2
1: 2X|+ |+CX1+d=o
fr a-2b=0
f9: 2a+c¢c=0

fa: 4b - 5d « 0
f3: c+dx; +4=0

a Xy * 0




Table 3. Results for Example 2

2 b c Xj *, *3 | 2 '3 "4 '5 '6

0 0 0 0 0 0 0 0 0 0 1 1

0 1 0 1 0 0 1 -1 1 0 0 0
2.1 -1 -1. 3#-08 1 3.1 -1. 2.1 -1 1 o0 -4.2
1.55 -.5 0 5 5 1.5 .14- .28 -.25 5 0 -.55
2.032 -.25 -.5954 . 7073 2977 2.309 .23 097 -.041 -.121 0 . 19‘
1.766 -.2326 -.5561 .6441 . 3559 1.912 . 027 -.015 -.003 -.002 0 .031

1.760 -.2311 -.5681 .6377- .3623 1.913 10"* NoiE io"® io"® 0 | 0"
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Again, constraints will only be written on derivatives of fl’ so only fl
has a value for P greater than zero. Here P = 2 because we require that

both the first and second derivatives be non-negative

2
f6. 3ax1 + 2bx1 + c - x2 - €

f7: 6ax1 + 2b - X = €

X, 20

Xg2¥%4

The bounded variables a, X5 Xy Xg and d appear ?n fl’ f6 and f7 S0 we

get the following IE's
1E(a) = {f6,f7}

IE(x)) = {f, £}
IE(x,) = {£, ;]
IE(x,) = { £}

IE(d) = {§,£)

The only restrictions on the pivot sequenée are

i) f7 must be pivoted before Xys X5, Xg, @ OT d

ii) f6 must be pivoted before Xys X,y @ OF d.

Table 4 gives the results obtained using the procedure recommended in this

paper. As in Example 2, the standard Newton-Raphson technique with orthog-

onal projection is unable to move away from the origin.




Table 4. Results for Example 3

[ter. a b C d Xx X2 X3 N f2 _f_3 f5 fﬁ f?

0 0 0 0 0 0 -.1. 0 0 4.0 -1 0

1 0 .05 0 0 A 0 0 .0105 -1 A 4.1 .01 0

2 1961 .9804 -.1449 .7843 0 0 3037 7843 0  3.777 3.855 -.2449 -1.176

3 9604 4802 -1.921 .3841 2.651 3.177 32.05 16.56 0 0 1061 17.60 -15.91

4 1548 7291 -2.916 .5833 1446 12.04 17.61 2.303 0 0 12309 -3.791 -3.598

5 1621 .8103 -3.241 .6483 1.140 4.846 12.90  .4060  ° 0 02 -2.475 -.2989
.001 .01 -.01

6 1.651 .8255 -3.302 .6604 1.056 3.846 12.02  .037 O 0 o1 015 -015
. 5 . 4 . 4
10- 10- 10-

7 1,654 .8269 -3.308 .6616 1.046 3.755 11.94 10"¢  ©° 0 0 0 0
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APPENDI X: L/ U FACTCR ZATI CN

An efficient technique for solving a systemof |inear equations
of the formAx = b is to factor the coefficient matrix A into the product
of a lower triangular matrix L and an upper triangular matrix U This fac-
torization process is very simlar to perforning a Gaussi an elimnation.
The L/U factorization algorithmwe used in our test problens is given be-
low VW initialize IP and JP to satisfy the restrictions inposed by the
sets of IE's, and the only reason for changing the ordering is to avoid

a zero point. This algorithmis for illustrative purposes only.

Step 0: Initialization

i) Set kp= 0. Define rowand col um nunber index sets |P and
JP, respectively, to contain a pivot sequence which satis-

fies the restrictions inposed by the sets of |E's.

ii) Set n,= 0. (no wi Il count the nunber of cql ums whi ch be-
cone essentially all zero before a pivot elenent can be
found in them These "nonpivot"” colums wll correspond
to perturbation variabl es whose values will be left at zero.,
The matrix is singular, and this approach is the one nost

commonly adopted to handle this case.)

Step 1: Find Next Pivot

i) Set k=k+1
' P P

, i) Set j «JP(kp)

i1i) Set k.= Kk

P
I P(k.)

iv) Set |




+u

Vi)

vii)

viii)

30.

| f Iaijl < e (asmll nunber), reject as next pivot and
go to Step (vi)e Cherw se interchange IP(ki) and IP(kp)

row nunbers and go to Step 2.

Set ki= kj+ 1. |If ki<n— n g go to Step (iv) . Qherw se

conti nue.

No pivot is found in this colum. Set i = IP(kp). Move
all row and col um nunbers fromposition kp+ 1 forward one
positioninIP and JP. Then put IP(n) =i, JP(n) =) and

+ 1.
nol

| kp< n-ngy return to Step (ii). Qherwise go to Step 3.

Step 22 PerformBimnation Using Qurrent Pi'vot

i)

i)

iii)

iv)

v)

Set P=a.. Set i =IPK)

It
For Jl -E+I,«--f n-n0
—Set j - JAJ6)

- %t ai-J' atJ/ P

Set i' =IP(k), j" - JP(k
(p) ] (P)
For m=k + 1, %% n-n
1 * 0
For n =k +1,#%%*n-n
—Set i = IP(M

—Set j = JP(n)

— Set a,.,=na,,~ a *a

ij 13 i3

Return to Step 1.
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Step 3; Factorization Conpl ete; STCP

The original matrix now has the non-zeros in L stored on and
bel ow the di agonal iri pivot sequence. The non-zeros for U

are stored above the diagonal, except for the diagonal el e-
ments which are all unity.

Onhce the coefficient matrix has been factored, solving a |inear
systemis acconplished in two steps. Note that the original right hand
side should be rearranged to conformto the row pivot sequence and the so-
lution vector should be rearranged to conformto the col unm pivot sequence.,
V¢ first solve

Ly=m»>

for y. This is acconplished by working fromthe first rowof L down to
the last row V¢ then solve

Ux =y
to obtain the desired solution x arranged in colum pivot sequence. Thi S
second step is nost easily acconplished by working fromthe last row of
U upward. The variables corresponding to zero pivots can be set to any

val ue; we choose to set themto zero.




