
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

V.-. ,^

PARSING PROLOG TRACES

USING A DCG GRAMMAR

Ephraim Paz

1986

Cognitive Studies Research Paper

Serial No. CSRP. 055

The University of Sussex,
Cognitive Studies Programme,

Ephraim Paz,
Cognitive Studies programme,

University of Sussex

February 1986

Strictly speaking, a Prolog system, regarded as a theorem
produces very succinct answers to queries posed to it : e
or NO. This, naturally, is not very illuminating, and ever
interpreter produces also the values with which the variab
unified in order to reach a positive answer.

In order to make the system's answer even more plausible
relatively easy to devise a mechanism for supplying the execut
of a program, and to present it to the user.

I am currently building a system that will
explanations for results of Prolog program results, w
have many advantages over existing explanation mechanisms
explanations will give better procedural understanding
the program's behaviour and its reasoning process, as well a
insight into the declarative meaning of the predicates an
that constitute it.

A central element of this system is an analysis and
process applied to a Prolog program trace. The parser is
a DCG grammar [PEREIRA & WARREN 80]. This paper will desc
grammar and the data structure that is generated by the
process which utilises this grammar. This data structure is
Explanation, which is an intermediate representation of the exi
and serves as a blue print for the final product of the syst
English explanation.

A brief description of the explanation system will be
section 2 of the paper. Section 3 includes the grammar, desc
parsing process and the building of the Raw Explanation. Sectioi
with the conclusions.

2. THE EXPLANATION SYSTEM.
The general approach employed includes three major elei

extending the expressive power of the language, creatii
explanation by parsing the execution trace according to a gr
traces, and dynamic generation of English explanations from
explanation.

These are the steps taken by the system :

PROGRAM ANNOTATIONS

V
ANNOTATED PROGRAM ("rule" facts)

I
V (interpreter)

TRACE

I
V (parser)

RAW EXPLANATION

I
V (English generation)

ENGLISH EXPLANATION
Extending the expressive power of the Prolog s;

achieved by supplying taxonomies and additional informatii
different elements of the language, like goals, rules, and proc

This information is stored as annotations attached to the i

recncate's Key, the type of a rule (the exact nature of relati
etween a rule's head and its body), and the role of a rule insid
rocedure.

The input for the interpreter is the result of a transformat
f the Prolog source, in which clauses are represented
ccurrences of the predicate (rule/4) :

rule(Type,Role,Head,Body),
A Prolog fact has the constant 'true1 as the last argument,

ddition to the regular functions of a Prolog interpreter,
xtended interpreter used by the system creates a trace of
xecution. The trace includes all the successful invocations
Dais, and records of the instantiation status of all the variables
goal at the moment of invoking that goal. In fact, any Pn

iterpreter could do this and I do not assume anything non-standai
?cause this information is created by the interpreter in any ca:
le fact that I do not interpret the original Prolog clauses but
)ove mentioned extended "image11 is a pragmatic way of combining *

and role annotations with the clauses and facts.

The trace is a tree-structure. The root of this tree is the tr<
P the goal presented as a question to the program. The traces of si
>al which had been activated to achieve this goal are sub-trees.

As an example, consider the following simple program :

:(coo).
i(doo).

"his program will appear as :
*ule(t1,r1,a(X,Y),(b(X),c(Y))).
ule(t2,r2,b(X),d(X)).
ule(_,_,c(coo),true).
kule(_,_,d(doo),true)•

And here is the trace of the goal a(X,doo) : (Indented i
•nvenient reading)

Ctrace(C-,+],t1,r1,a(boo,doo)),
[trace(C-D,t2,r2,b(doo)),

Ctrace(C-],_,_,d(doo))]],
Ct race (OD,_,_,c(coo))]].

This trace will be handed over to the next element in t
stem- the parser that builds the Raw Explanation, which will
scribed in Section 3.

The output of the parsing process is a data-structure which I ca
e Raw Explanation. This data structure will be submitted to
ecialised natural language generator that will produced an Engli
planation according to the structure of the Raw Explanation. Th
nerator will use canned templates for the predicates, rhetorical rul
II direct the building of sentences out of goals or groups of goal
d the system will use different verbs to describe different actio
the interpreter.

3. THE GRAMMAR.
A central element of the explanation system described in tl

seeding section is a program that analyses the execution trace ai

Raw Explanation can be regarded as as a blue pnnt for
explanation, since its contents as well as its structure u
and direct the last phase - that of generating the natura
explanation.

The trace analyser is expressed as a Definite Claus
[Pereira and Warren 80D, and the notation is the Prolog Gr
Notation as it appears in chapter 9 of CCLOCKSIN S MELLI
Because the input is not a linear list but can be a nested I
is a special rule that indicates that if an element is a list
be treated recursively, element by element.

Each rule is combined of left hand side (LHS) and right
(RHS), and looks like this : LHS ~ > RHS. LHS is a
of the form 0(81,82,...an) :T, and RHS is one or more such
possibly followed by Prolog goals surrounded by curly brackets

The connector ":" is declared as a Prolog
op(10,XFX,:). C(a1,a2,...an) is a grammatical category,
arguments a1...an are additional bits of information that
helpful for the explanation- like the type, the role and the
the element described by the category. Examples of categori
trace, head, body, goal, predicate, system predicate, i/o
and specific predicates like cut, write, or user defined
of the executed program.

The second argument of the ":" term is the resulti
tree. It usually starts with the category name and so
arguments, followed by the parse trees of the elements that
this category.

Example :
trace_rule(Type):Crule(Type),H,B3—>trace_head(Type):H,tra
This rule expresses the fact that the trace of a

composed of a trace of a head and a trace of a body, and the
parse tree will be a list starting with the word "rule", with
followed by the lists that will result from parsing the he
body.

Here is a fragment from the grammar, which invo
following main categories:
Itr - legal trace.
t_g - trace of a goal. 1 argument - type(fact or head)
t_r - trace of a rule. 4 arguments:

Instantiation Status of the rule's head.
Rule Type (e.i. recursive, cut-type rule)
Rule Role in procedure (e.i. exception, catch-a
Rule Head.

t_h - trace of a rule head.
t_b - trace of a rule body.
t f - trace of a fact. 4 arguments:

type of fact
Action Type (Generate, Retrieve, or Test)
Role in procedure (e.i. catch-all).
Role in clause (e.i. condition).

The main rules are:
Itr :Cltr, GD — > t_g(Goal) : G.

t_g(F) :F — > t_f(fact, ActionType,Role1,Role2) :F.
t_g(Head) :R — > t_r(Is,RuleType,Rulerole,Head) :R.

t_r(Is,RuleType,Rulerole,Head) :Crule(RuleType),H,BD — >

t_b :B.

_h(Head) : Chead/HeadD — > t_f (head,_,_,head) :P.

_b : Cbody,G|B:i —> t_g(Goal) : G ,t_b : Cbody|B3.
_b : CD ~ > CD.

f(head,,_,head) :Chead,Head3 — > tHeadII,!,{1sJiead(Head».
_ f (f a c t , ActionType,_,_) :[fact(ActionType),FACTD —>

[trace (I S ^ ^ F A C T)] , ! ,
<is_fact(FACT)>,
{find_action_type(FACT,IS,ActionType)>.

s_Jiead(Head) :-rule(__,_,Head,Body),Body = true,
s_f act (Fact) :-rule(_,_, Fact /true).
_cut~>C!3.

Here are some examples of rules that identify and process speci
tterns that appear in the trace:
issss CATCH ALL CASE ======
_g(F) :[F,AuxtreeD ~ > t_f(fact, ActionType,catch_all,_) :F,!,

•Cbui ldaux(F,Auxtree)>.
Catch-all rule : The attribute of role in procedure w

ntioned in Sec.2. This rule demonstrates one of the justificative
•r including this information as additional annotation.

When explaining how the program had come to its conclusion, it n
und quite unclear why this last clause had been chosen. The rest
using this rule is the addition of a sub-tree which consists of t

ibel "chosen because the following cases failed11 and the list
I the other cases in the procedure. A possible refinement of th
lie may include an investigation into the deeper reasons 1
fference between clauses in the procedures - i.e. if all t
ads look alike with just one different argumc
>(X/a)/p(X/b)/..) the difference can be traced down to the specil
gument and explained accordingly.
:s=:S= CUT RULE ============
_r(Is/DecType/Rulerole,cut_rule,Head):Crule(RuleType)/H/Bcond/Bmain]

— >
t_h(Is,T,R,Head) :H,
t_Jb :Bcond,
t_cut,
t_b :Bmain.

The cut rule : If one of the goals in a Rule's body is a cc
i many cases, the goals which appear before the cut serve
•nditions for choosing this rule,and the cut is used for making si
at once the rule has been chosen, if and when it fails no oth
ile will be tried. This is the case when the rules represe
itually exclusive options, (as opposed to the case when they e
dered in increasing generality order)

The cut itself as a goal is not instrumental in the explanatic
nee its function is more of a control or "punctuation symbol
id its trace is dropped from the explanation. The goals th
ecede it get the attribute "condition11 and a possible renderi
ito English of a typical cut rule will be something like z

"Since conditions A and B were satisfied, The rule for ca
was activated, and the tax was calculated according to t

explanation, and this analysis can not be used when a declara'
explanation is required. The basic problem is the lack of declara*
semantics for the cut, and these rules are not recommendat
for the way Prolog should be used, but rather dealing with prog
as they are written in reality),
===== RECURSIVE RULE =====
t_r (Is,DecType,RuleroIe,recursive,Head):Crule(RuleType),H,Brecursiv<

— >
t_h(Is,T,R,Head) :H,
t_b :Cbody|List_of_goals3,
•Crecursive_rel(Head,List_of_goals)>,
{recursive_treatment(B,Brecursive)>.

Recursive Rules : The parser can identify parts of the execu'
trace which had been created by recursive rules. The importance
this fact is two-fold : On the one hand it is illuminating just
add a remark to the effect that a predicate was used recursively
the other hand, a recursive trace of more than, say, two levels
recursion may call for a special handling procedure. In many c<
a whole chain of recursive steps can be "telescoped11 into one gem
statement. Or one could just drop the recursant part of the rule
leave the operand.
===== PROLOG FACT ======
t_f(fact, ActionType,__,_) : [fact (ActionType),FACT] —>

[trace(IS,_,_,FACT)D,!,
{is_fact(FACT)>,
{find_action_type(FACT,IS,ActionType)>.

One of the functions of this rule is to classify the predicate,
first distinction is between user and system predicates, for syj
predicated will have their ready-made templates and explana*
routines. System predicates are then sorted into further sub tyj
and each type will get a special treatment in the final explanat
As an example of a system predicate group is input-output predict
like "write11 or "nl". Such predicates can be omitted in cer
cases (e.i. when a strictly declarative explanation is given).

"is" is a special system predicates which will cause
explanation to produce a clause like "X was calculated as 7 * 3 "
the trace X is 7 * 3.

There are also predicates used for comparison like < or >=
they will drive the explanation system to use the verb "compare".

Another function embedded in this rule is that of creating
action type of a predicate by combining information about
instantiation status with knowledge about its key. The key is
argument whose value determines a unique occurrence of the predict
e.g, if the meaning of father(X,Y) is that X is the father of Y, th<
will be the key). There are three action types: GENERATE, RETRII
and TEST. When a goal is evoked with an uninstantiated key, (as
father(jacob,Y)), one can assume that the function of this goal ii
generate a possible candidate for a solution. When a goal is ev<
with the key already instantiated, but one or more of the o
arguments uninstantiated, the function of the goal is usually
retrieve the missing information and so to "complete"
predicate (as is the case in father(X,benjamin)• If the goal
fully instantiated when called (as in father(jacob,benjamin)),
aim of this action is to test or confirm some fact.

4. CONCLUSION.

DCG rules are a convenient representation for many kinds
iformation. This grammar is used here in a parser that identifi
ructures in a Prolog extended trace.

This paper describes how this representation is used
ipture information and "meta-knowledge" about Prolog prograrr
ie grammar is integrated in a program that analyses a trace of Prol
ogram which had been interpreted by an extended interpreter. 1
ogram produces a blue-print for an explanation for the behaviour
at program. This blue print will be the input for a natural langua
nerator which will produce the final product of the system.

The core of the program is a DCG parser. Once a structure
entified, the Raw Explanation building mechanism takes t
propriate action. This action may be simply an omission
rtain parts of the trace, or more complicated actions li
trieving related information and adding additional parts to t
planation.

Many implicit features, become explicit and can be integrat
the explanation, thanks to the knowledge embedded in t

ammar. Some of the examples mentioned in this paper are the usa
instantiation status to infer the exact nature of action done whi

ifying facts with facts, and the "catch-all" role of a rule, whi
monstrates implicit procedural knowledge utilised by the programme.

The modularity of the grammar representation is ve
nvenient, and additional structures can be added simply by addi
re rules to the grammar. There is also "vertical" modularity - th
rt of the system generates an intermediate data structure th
II be processed by the natural language generator, somewhat alo
e lines recommended in [McDonald,82D.

REFERENCES

CLOCKSIN & HELLISH, 81
Programming jm Prolog
Springer-Verlag

McD0NALD,82 D.D. McDonald
'Natural language Generation ai£ â Computational
Problem; jan Introduction*
in Brady (ed.): Computational Theories of Discoun
MIT Press.

PAZ/85 E.PAZ
A System for Generating Explanations of Prolog
Program Results.
Cognitive Studies Research Paper, University of Si

PEREIRA & WARREN, 80
Definite Clause Grammar Compared with Augmented
Transition Networks
Artificial Intelligence 13(3).

