
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

DIAGRAM PARSING - A NEW TECHNIQUE

FOR ARTIFICIAL INTELLIGENCE

Rudi Lutz

1986

Cognitive Studies Research Papers

Serial No. CSRP.O54

The University of Sussex,
Cognitive Studies Programme,
School of Social Sciences,

lDlE2^illl2i2 §J3£l Motivation

Many applications make use of diagrams to represent objects and/or
knowledge about objects. Examples are electrical circuit diagrams and
the control- and data- flow graphs used to represent programs and
programming knowledge in the MIT Programmer's Apprentice project
[10,11,15]. In many of these applications it is necessary to be able to
systematically recognise how some diagram has been built up by piecing
together other diagrams. This is analogous to the parsing problem for
strings, and this paper will present a generalisation of traditional
linguistic chart parsing techniques to cope with the case where the
object being parsed is some kind of diagram (a flowgraph) and the
grammar is an appropriate type of graph grammar (a flowgraph grammar).

Chart parsing offers many advantages over most other parsing
techniques. Because the actions to be done are on an explicit agenda
the parser is easily able to work from left to right, or from right to
left, or top-down, or bottom-up. Furthermore it is efficient in that it
avoids re-doing work which has already been done, since its basic data
structure (the chart) is essentially a record of everything the parser
has recognised or partially recognised so far. In addition the ability
to parse bottom-up is important for applications in which one either may
not have a complete "grammar", but wishes to recognise as much as
possible, or in which there may be errors in the graph being parsed and
one wishes to recognise as much as possible of what is correct. For
these applications it is often also necessary to obtain information on
all the "near-misses" and partially recognised structures so that advice
can be offered on how to correct the graph. Since chart parsing quite
explicitly builds structures representing this kind of information, the
algorithm discussed here is suitable for these kinds of application.

Definitions

Plex languages and plex grammars were first studied by Feder [4].
Essentially a plex is a structure consisting of labelled nodes having an
arbitrary number, nt of distinct attaching points which can be used to
join nodes together. A node of this kind is called an n-attaching-point
entity (NAPE), and the graph-like structures resulting from joining
several such nodes by their attaching points is called a plex. Attaching
points of NAPEs in a plex are not connected directly together, but are
connected via intermediate points known as tie-points (see Figure 1). A
single tie-point may be responsible for connecting together two or more
attaching points of NAPEs. If the direction of the connections is
important then the plex is known as a directed plex. We will only
consider the special case where each NAPE!s attaching points (from now
on called ports)are subdivided into two mutually exclusive groups, known
as the set of input ports and the set of output ports. Input ports are
only allowed to have incoming connections, and output ports are only
allowed outgoing connections. Although at first sight it would seem that
these are a very special kind of plex, it can easily be seen that
arbitrary plexes (directed and non-directed) can be rewritten as an
equivalent plex of this restricted type so no generality has been lost
(see Figure 2 for details). Webs are the special case in which each
NAPE only has a single input port and a single output port. Directed
graphs are a special case of webs in which every node has the same

-1-

label. Strings are also a special case of web, in which each tie-point
only has one incoming and one outgoing connection. Figure 2 also shows
examples of these various cases. From now on we will however restrict
ourselves to the special case of all these kinds of plex in which each
attaching point of a NAPE is only connected to a single tie-point. This
type of plex is known as a flowgraph and is a generalisation of
Brotsky's definition of the term to allow fan-in and fan-out at tie-
points (Brotsky doesn't actually mention plexes or tie-points as each
attaching-point of a NAPE in his graphs connects directly to one (and
only one) attaching point of another NAPE). Note that in all diagrams of
flowgraphs NAPEs will be drawn with the convention that input attaching
points are on the left and output attaching points are on the right.

Just as a set of strings can be thought of as constituting a
language, so a set of plexes can be thought of as constituting a plex
language. Furthermore it is possible to define analogues of the notions
of grammar and grammar rules, and to speak of the plex language
generated by a plex grammar. Similar remarks apply to flowgraphs, webs,
and graphs etc., and in the case of webs and graphs there is now a large
body of theory associated with these kinds of grammars (see for example
[3,9,12]).

A production in a string grammar essentially specifies how one
string may be replaced by another either in producing strings or in
recognising them. In plex grammars the same is true but we encounter a
difficulty not apparent in the string case which is due to the 2-
dimensional nature of the objects being parsed (or produced). In the
string case a production like :

A => aXYb

applied to a stringdAe (say) results in the string
daXYbe.... , and the question of how the replacement string (in

this case aXYb) is to be embedded in the host string in place of A never
really arises because there is a single obvious (trivial) choice i.e.
whatever is to the left of the A in the original string is to the left
of the replacing string, and similarly on the right. In the graph case
however we no longer have this simple left-right ordering on the NAPEs
and this question of embedding becomes much more complicated. Most of
the discussion of this topic is in the web and graph grammar literature
[3,9,12], but most of it applies (with some slight modifications) to the
flowgraph case as well. One possible way of specifying the embedding is
to specify with each production that all NAPEs in the surrounding graph
which are connected to tie-points in the graph being replaced and which
bear a certain label are to be connected to certain tie-points in the
replacing graph. This is the approach taken in most of the web grammar
literature. An alternative approach (which leads to a nicer theoretical
analysis, since it enables one to bring powerful mathematical tools such
as category theory to bear on the problem [3]) is to specify with each
production which tie-points on the left hand side correspond to which
tie-points on the right and then connect everything connecting to one of
these left hand tie-points (from the surrounding subgraph) to its
corresponding right hand tie-point. This corresponds to a pushout in
the category of flowgraphs and, as stated earlier, leads to some nice
theoretical analyses of the languages in question. (See [3] for further
details). This is the embedding technique used in the work reported in
this paper.

More formally a flowgraph grammar is a 4-tuple G=(N,T,P,S) where

N is a finite non-empty set of NAPEs known as non-terminal NAPEs
T is a finite non-empty set of NAPEs known as terminal NAPEs
P is a finite set of productions
S is a special member of N known as the initial (or start) NAPE

The intersection of N and T must be empty.
If we arbitrarily order the input and output ports of a NAPE then

each NAPE in a flowgraph can be represented in the form of a triple

(NAPE-label, input list, output list)

where NAPE-label is the label on the NAPE, and input list is a list in
which the ith entry is the tiepoint to which the ith input port is
connected. Similarly the output list specifies to which tie point each
of the output ports is connected. Using this convention a complete
flowgraph can be represented as a list (known as a component list) of
such triples.

With the above conventions the productions in a flowgraph grammar
have the general form

A Li Lo ==> C Ri Ro

where

A is known as the left-side structure,represented as a component
list

C is known as the right-side structure, represented as a component
list

Li is the left-side input tie-point list
Ri is the right-side output tie-point list.
Lo is the left-side output tie-point list
Ro is the right-side output tie-point list.

Li and Ri must be of the same length, as must Lo and Ro, and specify how
an instance of the right-side structure is to be embedded into a
structure W containing an instance of the left-side structure which is
being rewritten according to the production. The rewriting and embedding
is done as follows:

Remove the instance of the left-side structure from W and replace it
by an instance of the right-side structure. Now, for each tiepoint X in
Li replace any previous connections from NAPEs in W to X by connections
from the same attaching points of the same NAPEs to the corresponding
tie-point in Ri. Similarly for tie points in Lo and Ro. An example is
shown in Figure 3, together with the component list representation for
the production and the various flowgraphs. Note that in productions the
tie points are labelled by variables, whereas in the actual flowgraphs
being rewritten (or parsed) the tie-points are numbered. Also note that
for flowgraphs one can eliminate the need for explicit storing of Ri and
Ro by simply using the same variable names on the left and right hand
sides of the production to denote corresponding tie-points. From now on
flowgraphs and production rules will be represented by diagrams as these
are easier to grasp, with the understanding that for a programs use they
would be represented as just described above.

In the well-known case of string grammars one can identify different
classes of languages by the the kinds of productions they have. In
particular in a production of the form

X ==> Y

where X and Y represent strings of non-terminal and terminal symbols,
then by considering various restrictions on the form of X and Y one can
arrive at the notions of context-sensitive, context-free, and regular
languages.In a similar fashion one can obtain a heirarchy of flowgraph
languages, such as unrestricted, context sensitive, and context free.
However in the graph case there is also an orthogonal classification
that can be made depending on restrictions on the embedding mechanism.
Further details can be obtained in [3]. For our purposes we will content
ourselves with noting that restricting the productions to have a single
NAPE in their left-side structure gives us the flowgraph equivalent of
context-free string grammars.

This paper will from now on be concerned only with the case of
context-free flowgraph grammars.

Languages

This paper will only give a brief description of chart parsing in
the string case as complete accounts are available elsewhere (e.g.
[14]). However a brief discussion of the string case is helpful in order
to motivate the generalisations needed to extend the chart parsing
technique to flowgraph grammars. Chart parsing is essentially a
technique whereby assertions about what has been found by the parsing
algorithm are kept in a database known as the chart. Such assertions are
called arcs (for reasons which will become apparent later) and are of
two kinds:

Complete (also known as inactive) arcs, and
Partial (also known as active) arcs.

A complete arc is essentially a statement that a complete grammatical
entity (corresponding to some terminal or non-terminal symbol of the
grammar) has been found at some point in the string. Partial arcs are
assertions that part of some grammatical entity has been found at some
point in the string, and these arcs also contain information about what
would need to be found in order to complete the grammatical entity. Each
arc contains the following information:

1) An arc label. This is the name of the grammatical entity
corresponding to the arc, and will normally be one of the terminal
or non-terminal symbols of the grammar.

2) A starting point for the arc.

3) A finishing point for the arc.

4) What other arcs are involved in making up this arc i.e. what
other grammatical entities (and where they are) were used to
recognise this arc.

5) A description of what else needs to be found to complete the arc.
In the case of a complete arc this will be empty.

The essence of the chart parsing strategy can then be stated as follows:

Every time a complete arc is added to the chart a search is made to see

if there are any incomplete arcs needing an arc of the sort just added
at the appropriate place. If so the incomplete arcs are extended and
then added to an agenda to be added to the chart at some appropriate
time. Similarly every time an incomplete arc is added to the chart a
search is made to see if there are any complete arcs around which are
needed by the incomplete arc just added, and if so the arcs are extended
and again added to an agenda to be processed when appropriate. One of
the main issues here is how to organise the chart so that it can be
searched efficiently for appropriate arcs. In the string case it is
sufficient to keep two separate databases, one for the complete arcs,
and one for the incomplete arcs. If one is only going to parse the
string from left to right then it is sufficient to represent each of
these databases by an array of length equal to the number of tie-points
(gaps between the words). Complete arcs are stored in the appropriate
array at the position corresponding to their starting point. Incomplete
arcs are stored in the appropriate array at the position corresponding
to their finishing point. If one is going right to left as well then it
becomes neccessary to index the arcs by their other end as well, and two
more arrays can be used for this purpose. For greater efficiency each
array entry can be a hash table and complete arcs are stored by hashing
on their arc label. Incomplete arcs are stored by hashing on the label
of the first arc needed to extend the Incomplete arc further.

A simple example of bottom-up chart parsing in the string case is
shown in Figure 4, which shows a simple grammar and string to be parsed,
together with the state of the chart at various points after the first
few arcs have been added. Each arc is represented in this figure by an
arc spanning the appropriate part of the string. Each arc is annotated
by its label, and two lists, the first of which represents existing
sub-arcs of the arc, and the second of which denotes what remains to be
found. The chart is initialised by adding a complete arc for each symbol
in the string. When a complete arc is added the productions are scanned
to see if there are any kinds of object which can start with the arc
just added. As an A can start with a c in two ways we add two incomplete
(empty) A arcs looking for [c] or [cA]. As there are c's at two points
in the string these empty arcs are added at both places. Addition of
these incomplete arcs results in addition of further arcs as these
incomplete arcs "pair off1' with the complete c arcs. Some of these new
arcs are complete, while others are incomplete. Figure 4 shows the chart
at this stage and finally at the stage after these new arcs have
resulted in yet more arcs. This process continues until no further arcs
can be added. Note that at no point are arcs thrown away, so the
resulting chart at the end of the process contains information about all
grammatically correct components of the string as well as about all
partial components.

The FJLowgra^h Case

The main change to the algorithm for the flowgraph case is to the
notion of an arc. Rather than an arc spanning some substring of words
in a sentence an arc should now be thought of as a circle surrounding a
subgraph of the graph being parsed. Such circles will be called
segments to avoid confusing arcs with edges of the graph. Segments in
the flowgraph case will consist of the same components as arcs in the
string case, the main change being that the notion of starting and
stopping point must be generalised to allow sets of left-hand (input)
(tie-)points and sets of right-hand (output) (tie-)points. Furthermore
the description of what is needed to complete a segment (in the case of

partial segments) needs to be generalised to an arbitrary flowgraph
structure rather than a simple string. Notice however that this means
that more than one component may be simultaneously required by an active
segment rather than just one as in the string case. The structure needed
will be represented by a component list. With these changes the
algorithm is essentially the same as before but with some added
complexity in the organisation of the chart to enable efficient
retrieval of partial and complete segments. The operation of combining a
partial and a complete segment to make a new segment is also much more
complex in the flowgraph case due to the fact that there are many more
distinctions between different kinds of edges that can be drawn.
Furthermore, in the flowgraph case one has to build in the machinery to
go right to left as well as left to right. This is due to the 2
dimensional nature of the structures being recognised which means that
it is possible to bypass some structure when going left to right
resulting in a need to look for things to the left of the structure so
far recognised. Figure 5 shows an example of this.

The main change to the organisation of the chart is now that each
segment has to be entered in several places since it now has sets of
starting and finishing tie-points. So complete segments are entered into
the chart indexed by each of its input and output tie-points, and hashed
by its label. Partial segments are also entered into the chart indexed
by their input and output tie-points, and hashed by the labels of the
segments they need which connect immediately to what has been found so
far. Note that for efficiency segments are entered into separate arrays
corresponding to input ports and output ports, just as in the string
case.

The main algorithm is now more or less the same as in the string
case. Again there is a change due to the fact that more than one tie-
point can be on the leading "edge" of a flowgraph so that when parsing
top-down it is neccessary to add empty segments for each possible sub-
segment connected to input tie-points of the segment required. When
parsing bottom-up it again may be neccessary to add more than one
segment for each complete segment added, even if only one production has
the complete segment connected to its input tie-points, since the
production may have more than one occurrence of this type of segment
connected to its inputs.

Entry of segments into the chart has already been described. The
only major part of the algorithm still to be described is now the
process of joining a partial segment and a complete segment to form a
new segment. Figure 6 shows a partial segment being joined to a complete
segment to make a new segment (the enclosing box). Input and output
tie-points (i.e. those by which the segment is allowed to connect to the
surrounding flowgraph) of a partial segment will be described as active
if the segment itself is still seeking other components attached to
these tie-points. They are inactive otherwise. All input and output
tie-points of a complete segment are inactive. On connecting the two
segments all the inactive tie-points of the partial segment remain
inactive. Some of its active tie-points will correspond to tie-points of
the complete segment (this is where the two segments actually join).
Other active tie-points may remain active since the segment is still
looking for other segments to attach to them. Of the complete segment's
(input and output) tie-points some have already been mentioned i.e.
those connecting directly to the partial segment. Others will become new
inactive tie-points of the resulting segment since it will not be
looking for anything to attach to them. However other (input and
output) tie-points of the complete segment may now become active (viewed

as belonging to the new segment, since it may now expect other segments
to attach to them in order to complete itself. Provided all these
distinctions are kept clear there is no great difficulty in the joining
operation. Of course, in the case where the new segment is complete i.e.
is seeking nothing further, all its (input and output) tie-points will
be inactive. Note that this reduces to the normal string chart parsing
algorithm if the input flowgraph is a string.

BSl§li2fi 19. 2£J2§£ parsing techniques

In its top-down strictly left-to-right form chart parsing of context-
free string languages corresponds to Earley' algorithm [2]. This was
generalised by Brotsky [1] to parsing flowgraphs of the kind described
here, except that his algorithm could not cope with fan-in or fan-out at
tie-points. The. algorithm described here is exactly equivalent to
Brotsky's algorithm for the top-down case restricted to the same class
of flowgraph languages i.e. those in which each tie-point is connected
to exactly one input port of a NAPE and to exactly one output port of
another NAPE. The equivalence arises because the segments built by the
chart parsing algorithm can be put into a one-to-one correspondence with
the (Earley-type) items built by Brotsky!s algorithm. However the
approach taken here can also easily run bottom-up (which is important
for many applications as discussed earlier) but can also cope with
languages in which there is fan-in and/or fan-out. Furthermore it is
quite happy to have segments sharing structure, which can only be
handled in Brotsky's algorithm by having some "meta-level" component
with knowledge about when structure sharing might be appropriate (e.g.
in programming when results of some computation are passed to more than
one place) looking at items on the agenda and taking appropriate action.

Con^exitj; Analysis

I have been unable to reach any firm conclusions on the complexity
of the algorithm presented. It is clear that in the string case its
complexity is the same as Earley!s algorithm (when operating top-down)
and its worst case is 0(n**3). The way one arrives at this is
essentially by looking at how many arcs can start (or end) at a given
tiepoint of the string . This is 0(n) at the first tiepoint, O(n-l) at
the second and so on. This gives 0(n**2) altogether. When any of these
is added to the chart there are in the worst case 0(n) arcs it may be
able to pair with and hence have to look at, giving a total of 0(n**3)
operations. The obvious generalisation of this to the graph case arises
from noticing that arcs in the string case are really connected
subgraphs of the string regarded as a graph, and so its worst case
complexity is dependent on the answer to the question "How many
connected subgraphs does a graph have? ". In the case of a complete
graph where every node is connected to every other node every subset of
the nodes forms a connected subgraph, so in this case at least the
algorithm could take exponential time. So are there any useful
categories of graphs more complex than strings for which the worst case
complexity is less than exponential? The answer to this does not appear
terribly hopeful, for even quite simple graphs such as that in Figure 7
can have an exponential number of connected subgraphs since every subset
of the set of nodes B can be made into a distinct connected subgraph by
adding appropriate nodes from the set A, and hence this graph has at
least 2**(n/2) connected subgraphs. However it may be that the
generalisation from substrings of a string to arbitrary connected

subgraphs is not the right one. Furthermore the algorithm appears to
work well enough in practice, and this may be another example of the
well-known result that although Earley's algorithm is 0(n**3) in theory
no-one has managed to produce a grammar which actually takes more than
0(n**2). Finally in many applications the graphs being parsed can be
divided quite naturally into smaller pieces which can be parsed
independently, and one can then parse the whole graph on the basis of
the results of these sub-parses. This certainly seems to be the right
approach for programmers apprentice applications where the program falls
naturally into loops and procedures etc. and the graphs corresponding to
these should be analysed first, as suggested by Waters [15].

Applications

A. Logic Circuit Analysis.

The algorithm described above has been used to recognise circuits
such as that shown in Figure 8. The grammar used was that in Figure 9.
Although this grammar is not recursive it should be noted that the
algorithm can cope with recursive productions quite easily. The
implementation of the algorithm allows one to specify that certain gates
are commutative in their inputs and the algorithm has been modified
slightly to allow diagrams which differ only in which of two (or more)
commutative input ports tie-points are connected to. Other than this
change the algorithm is essentially "pure". To extend this to deal with
more general kinds of electrical circuit (analog as well as digital) we
need to introduce something like Sussman's concept of slices [13]. The
changes to the algorithm are similar to those needed for overlays in the
program understanding case. This is discussed below.

B. Surface Plan Analysis and Program Debugging

Control- and data-flow graphs (known as plan diagrams) have been
used to represent programs and programming knowledge in the MIT
Programmers Apprentice project [10,11,15], and subsequently in other
work concerned with analysing and debugging programs [5,6,7,8]. In this
approach the source program is translated into a control- and data flow
graph called the surface plan. Then a large library of "programming
cliches" also represented in this form is used to abstract up from the
surface plan to a high level description of the program.

Although the basic algorithm as described above can cope with
recognising cliches in the surface plan, the full plan diagram formalism
as described in [12] also includes the notion of overlays. These provide
multiple viewpoints of objects, and enable one to talk of a list say not
only as a list, but also as a set if the list is being used to represent
a set. In this case the operation of inserting a new element into a list
can also be viewed as that of adding a new element to a set (or bag).
Some of the relevant plans and overlays are shown in Figures 10 and 11,
and part of a surface plan which can be recognised as being an
implementation of a set addition operation by means of splicing a new
element into a list is shown in Figure 12. Note that this plan quite
explicitly alters the cdr function so that it has a new value on some
elements of the list, and also alters the car function so that the new
pair being spliced in has the appropriate value (the one added to the
set) as its value. This paper will not explain in full the meaning of
these diagrams, except to note that overlays are similar to productions
in that they specify how some flowgraph may be replaced by another in

the parsing process. However they include annotations to describe h(
some parts (usually tie-points) of the flowgraph are to be firs
rewritten according to various data overlays (which are not shown in t]
figure) and this can often result in new tie-points not present in tl
original graph being added to the flowgraph. For instance the use <
the overlay in Figure 10 rewrites an iterator consisting of two tic
points (subject to various conditions) as a single tie-poii
(representing a thread which is essentially a linear digraph) n<
equivalent to either of the two original tie-points. The parser mui
keep track of where these new tie-points came from so that two overl<
segments, one coming from a plan having certain tie points as output:
and the other coming from a plan having the same tie-points as inpui
can be connected up properly. Data overlays are applied when a comple
segment is added to the chart and essentially checks that varioi
constraints on what constitutes a valid use of the overlay ai
satisfied. Once these have been done other overlays such as the on<
shown can be applied. Those interested in more details about th
representation of programming knowledge are referred to [10]. A full<
description of this and the use of this mechanism for program debuggii
as proposed in [7] will be discussed in a subsequent paper.

Both the original "pure" algorithm and the modified version for t]
programming understanding work have been implemented in POP-11 runnii
under POPLOG on a VAX-750, and they can do both the examples describ<
in this paper as well as all the examples described in Brotsky's pap<
[1]. It is hoped that this technique will find many other applicatioi
in AI.

Acknowledgements

I am grateful to Richard Lewis for discussion on the question of h<
many connected subgraphs a graph has.

A NAPE wi th 4 ett i
points and label Xy

NAPE 2

NAPE 1

Tie-poir

NAPE 3

NAPE 4

Figure 1 A NAPE and a simple plex i l lustrat ing
connection of NAPEs via tie-points

Undirected plex Directed Equivalent

Plex wi th incoming and
outgoing edges at each
attaching point.

•C
Web

Equivalent plex with twice
as many attaching points
separated into those with
incoming edges and those
with outgoing

Corresponding
Plex

Directed
Graph Corresponding

Plex

abcdef

String
a n-
Corresponding Flowgraph

Figure 2

T1
w A

T?
V

T2

T1

a =

.,.„, KD
I—

T5
U

D

[A [T 1 T23IT7J1 ==> [[a[T2][T3 T5J] lb [T 1 T3HT4]] [c [T4][T6]1 [b [T

c

Ir

113]lie I

3

•

4

2][4]] [A

A

[3 4][5]]

i

Ic [51(6]]]

6
Plex before
production
applied

8

Plex after prod
applied

!3]J [c [2][4]] [a 141(7 911 [b [3 .7][8]] [c [8][10il [b (9 10j[5]] [c [5][6]]]

Figure 3

Aa

c

cA
cca

Initial Chart

Chart after adding
first few partial
arcs

Next few stages
of the parsing
process

0
Al][c]

AlJfcA]

AlcllA]

kA[Hc]
AlHcAJ

8

Alllc]
AlHcAl

Figure 4 Showing first few stages of
chart narsinn fnr ctrinn race,

T2

T1
#

a

b

3

T4
— • —

#—
T5

c

b
r

Complete c

The partial segmt
requires a compis
segment c to Us

Figure 5

w Inactive

Id inactive
is

New
Active tn

7*' Complete ' ')

New Partial Segment

\

" ^yfr- ^*»*

Connect to old
Active Outs,

Connect to
Old Active ins

New Active
Out

Part ia l , J

JOld Active
Outs

Old
Active Ins

New lnacti>

Old tnactiv<

Figure 6
Joining A Partial Segment and a Complete Segment to
Make a New Partial Segment.

Set of N/2 nodes B

Set of N/2 nodes A

qure 7 A Graph with N nodes and at least 2N Connected Subgraphs

Or

Or

Or

T8
i i

T2
Not &

Not

T4

T6

Or

14

Or

T1

• T 2

T3

\

<
FA

T-

~ 1 T 5

T1O

T1 1 <
FA

T
M

M

T

Figure 9 A Plex Grammar for 3-Bit Addition Circuits

T

Plan SDiicein

Iterator

as Thread

Internal-
Thread-Add

Overlay
Splicein as In'
Thread-Add

Iterator as

Thread

Figure 10

Internal-
Thread-Add Updatefn

Plan Internal-Labelled-
Thread-Add

Labelled-Thread

as Set

Internal-
Thread-Add Updatefn Set-Add

1
Labelled-Thread

as Set

Figure 1 1

New Following Previous New
cdr Pw Pair Pair car Value

t t t
Pointer to list

Updatefn

inermediate cdr

Updatefn

New car

New cdr

Figure 12

References

3. Brotsky, D.C. An Algorithm for Parsing Flow Graphs. Technical Report
AI-TR-704 MIT Artificial Intelligence Laboratory 1984.

2. Earley, J. An Efficient Context-Free Parsing Algorithm. CACM 13(2) pp.
94-102 (1970).

3. Ehrig H. Introduction to the Algebraic Theory of Graph Grammars (A Survey
Graph Grammars and their Application to Computer Science and Biology, (eds.
Claus, V., Ehrig, H., and Rozenberg, G.) Lecture Notes in Computer Science
Springer-Verlag (1979).

4. Feder, J. Plex Languages. Information Sciences, Vol. 3 (1971) pp. 225-24]

5. Lutz, R.K. Towards an Intelligent Debugging System for Pascal Programs: i
Research Proposal. Open University Human Cognition Research Laboratory
Technical Report No. 8 April 1984.

6. Lutz, R.K. Program Debugging by Near-Miss Recognition and Evaluation. Prc
ECAI 1984.

7. Lutz, R.K. Program Debugging by Near-miss Recognition and Symbolic
Evaluation. Cognitive Science Research Paper CSRP 44, University of Sussex
1985.

8. Laubsch J. , Eisenstadt M.
Towards an Automated Debugging Assistant for Novice Programmers.
Proc. Artificial Intelligence and Simulated Behavior Conference Amsterdam
1980

9. Pfaltz, J.L., and Rosenfeld, A. Web Grammars. Proc. IJCAI 1 (1969) pp.
609-619

10. Rich C. Inspection Methods in Programming. MIT Artificial Intelligence
Laboratory AI-TR-604 June 1981.

11. Rich, C. and Shrobe, H. Initial Report on a LISP Programmers' Apprentice
IEEE transactions on Software Engineering. SE-4(6) pp. 450-467 (1978).

12. Rosenfeld, A. and Milgram, D.L. Web Automata and Web Grammars. Machine
Intelligence 7 pp. 307-324 (eds. Meltzer, B. and Michie, D.) Edinburgh
University Press 1972.

13. Sussman, G.J. Slices at the Boundary Between Analysis and Synthesis.
Artificial Intelligence and Pattern Recognition in Computer Aided Design (e<
Latombe) North-Holland (1978).

14. Thompson, H. and Ritchie, G. Implementing Natural Language Parsers.
Artificial Intelligence: Tools, Techniques, and Applications pp.245-300 (eds
O'Shea, T. and Eisenstadt M.) Harper and Row, 1984.

15. Waters, R.C. Automatic Analysis of the Logical Structure of Programs. Ml
Artificial Intelligence Laboratory AI-TR-492 December 1978.

