
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 6 - 1 1 0

Concurrency and Availability as
Dual Properties of Replicated Atomic Data

Maurice Herlihy
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

19 February 1986

Abstract

A replicated object is a typed object that provides a set of operations to its clients. A quorum for an
operation is any set of sites whose co-operation suffices to execute that operation. An operation's
quorums determine its availability, and constraints on quorum assignment determine the range of
availability properties realizable by replication. This paper compares the constraints on availability
and concurrency imposed by three classes of atomicity mechanisms, respectively encompassing
generalized two-phase locking, multiversion timestamping, and hybrid techniques. An analysis of the
constraints on quorum assignment necessary to maximize the concurrency permitted within each
class shows that only the class encompassing hybrid mechanisms is undominated: (1) Hybrid
schemes permit more quorum assignments than timestamping schemes, even though they place
incomparable constraints on concurrency. (2) Hybrid and locking schemes place incomparable
constraints on quorum assignment, even though hybrid schemes support more concurrency. (3)
Timestamping and locking schemes are incomparable with respect to both concurrency and quorum
assignment. (4) Bounding the maximum depth of transaction nesting tightens constraints on
concurrency for ail three classes, but reduces the constraints on quorum assignment for hybrid
schemes only. (5) Bounding the number of versions retained by multiversion timestamping schemes
reduces concurrency but enhances availability.

Copyright © 1986 Maurice Herlihy

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract NOOO39-85-C-0134.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

1

1. Introduction
Most pessimistic mechanisms for implementing atomicity in distributed systems fall into three broad

categories: two-phase locking schemes (e.g. [12, 20, 29]), timestamping schemes (e.g. [28, 27, 26]),

and hybrid schemes employing both locking and timestamps (e.g. [6, 8,1, 2]). This paper proposes a

new criterion for evaluating these mechanisms: the constraints they impose on the availability of

replicated data. Our results suggest that hybrid schemes may be the most promising as a basis for

constructing highly available and highly concurrent distributed systems.

Our analysis of availability is based on quorum consensus replication [19,17]. A replicated object is a

typed object that provides a collection of operations to its clients. Associated with each operation is a

set of quorums, which are collections of sites whose cooperation suffices to execute the operation.

An operation's quorums determine its availability, and constraints on quorum assignment determine

the range of availability properties realizable by replication. An analysis of the object's data type

specification yields a set of constraints on quorum assignment necessary and sufficient to ensure the

correctness of the replicated implementation. This replication method systematically exploits type-

specific properties of data to support better availability and concurrency than conventional methods

in which operations are classified only as reads or writes.

The three-part classification of atomicity mechanisms is formalized using a model developed by Weihl

[32], generalized here to encompass nested transactions. Each category is identified with a local

property of objects that suffices to ensure the atomicity of a system encompassing multiple objects.

Static atomicity encompasses the timestamping mechanisms cited above, strong dynamic atomicity

encompasses the locking mechanisms, and hybrid atomicity encompasses the hybrid mechanisms.

These properties are type-specific; constraints on concurrency are expressed in terms of the abstract

operations provided by the data type, not in terms of primitive read and write operations. Hybrid and

static atomicity support incomparable levels of concurrency, hybrid atomicity permits more

concurrency than strong dynamic atomicity, and static and strong dynamic atomicity support

incomparable levels of concurrency. These relations are shown in Figure 1 -1.

The constraints on concurrency and availability (i.e. quorum assignment) cannot be minimized

simultaneously [17]. At one extreme in the availability/concurrency trade-off, all three properties

support the same minimal set of constraints on quorum assignment, each at suboptimal levels of

concurrency. This paper considers the other extreme, comparing the constraints on quorum

assignment necessary to realize the optimal level of concurrency permitted by each property. In

practice, optimal schedulers are unlikely to be cost-effective, since the complexity of recognizing all

permissible interleavings may outweigh the benefit of the additional concurrency (c.f. [25, 26]).

Nevertheless, a thorough understanding of this limiting case is a necessary step in understanding the

2

entire range of trade-offs, which in turn is helpful for evaluating the alternative atomicity properties.

Choosing the local atomicity property around which a distributed system will be organized is an

important design decision; the property must be established in advance, and once made, it is difficult

to change.

This paper presents the following results:

1. Although hybrid and static atomicity are incomparable with respect to concurrency, they
are comparable with respect to quorum assignment: any quorum assignment that
supports full static atomicity also supports full hybrid atomicity, but not necessarily vice-
versa. Thus, maximizing concurrency under hybrid atomicity permits a wider range of
availability trade-offs than under static atomicity.

2. Although hybrid atomicity permits strictly more concurrency than strong dynamic
atomicity, they are incomparable with respect to concurrency; each supports quorum
assignments the other does not.

3. Static and strong dynamic atomicity are incomparable with respect to both concurrency
and availability.

4. Under hybrid atomicity, constraints on quorum assignment can be relaxed by bounding
the maximum depth of transaction nesting. The smaller the bound, the larger the set of
permissible quorum assignments. By contrast, quorum assignments for static and
dynamic atomicity are unaffected by transaction nesting.

5. Under static atomicity, constraints on quorum assignment can be relaxed by bounding
the number of out-of-date object versions retained. The fewer the versions, the larger the
set of permissible quorum assignments.

These relations are illustrated schematically in Figures 1-2,1-3, and 1-4.

These results show that there is a complex relation between the availability and concurrency

supported by various atomicity properties. Availability and concurrency are neither completely

independent nor completely dependent: one cannot simultaneously minimize the constraints on

both, but tightening the constraints on one does not necessarily relax the constraints on the other.

Instead, we argue that availability and concurrency are best considered as complementary properties,

each permitting comparisons the other does not. A complete analysis of an atomicity property should

take both into account. Finally, of the properties considered here, only hybrid atomicity is

undominated with respect to both availability and concurrency, suggesting that hybrid techniques

merit further scrutiny as a basis for implementing atomicity in distributed systems supporting high

levels of availability and concurrency.

3

S e r i a l

Figu re 1 • 1: Concurrency

Figure 1-2: Availability

Figure 1-4:
Static Atomicity: Concurrency (L) and Availability (R) for Bounded Versions

5

2. Related Work
Numerous replication methods for files have been proposed. Methods that preserve serializability in

the presence of site crashes but not communication failures include SDD-1 [16], Available Copies

[15], and Circus [7]. Methods that tolerate partitions include those proposed for the ISIS system [4],

by Gifford[14], by Eager and Sevcik [9], by Abbadi, Skeen, and Cristian [10], and by Abbadi and

Toueg [11].

The replication method considered in this paper differs from the methods cited above in two

important respects. First, rather than classifying operations only as reads and writes, our method

systematically exploits type-specific properties of the data to provide more effective replication.

Second, rather than using distinct mechanisms for replication and concurrency control, our method

integrates both functions in a single mechanism. Although independent methods are simpler,

integrated methods support better concurrency.

A quorum-consensus replication method for directories has been proposed by Bloch, Daniels, and

Spector [5]. The quorum-consensus file replication methods of Gifford and of Eager and Sevcik can

be generalized to exploit type information [19,18]. The replication method considered here is the

consensus scheduling method of [17], which is described in more detail below. Garcia-Molina and

Barbara [13] have proposed criteria for evaluating the fault-tolerance provided by quorum consensus

methods.

A formal model for replicated databases proposed by Bernstein and Goodman [3] can be used to

show the correctness of several file replication methods, but it is not immediately applicable to

techniques in which replicated objects are not represented by multiple copies, and information about

operations cannot be captured by a simple read/write classification. As discussed above, the

atomicity properties investigated here were identified by Weihl[31]. Our generalization of these

properties to nested transaction systems employs formalisms proposed by Lynch [23]. Our

discussion of bounded versions draws on work of Papadimitriou and Kannelakis [26].

3. Model of Computation

3.1. T ransact ions

A distributed system consists of multiple computers (called sites) that communicate through a

network. The physical components of a distributed system can fail independently: sites can crash,

and communication links can be interrupted. Nonetheless, the data managed by a distributed

program may be subject to consistency constraints that must be preserved in the presence of failures

and concurrency. Such constraints can apply not only to individual pieces of data, but also to

6

distributed sets of data. For example, a distributed banking system might be subject to the constraint

that the books balance: money is neither created nor destroyed, only transferred from one ledger to

another. A widely-accepted approach to ensuring consistency is to make the activities that manage

the data atomic. Atomicity encompasses two properties: serializability and recoverability.

Serializability [25] means that the execution of one activity never appears to overlap (or contain) the

execution of another, while recoverability means that the overall effect of an activity is all-or-nothing:

it either succeeds completely, or it has no effect. Atomic activities are called transactions.

Instead of treating transactions as monolithic entities, it is often useful to provide hierarchically

structured nested transactions or subtransactions [24, 28]. A subtransaction's commit is dependent

on that of its parent; aborting the parent will undo the child's effects. A transaction's effects become

permanent only when it commits at the top level. A transaction can commit only when all its

subtransactions have either committed or aborted.

Let TRANS denote a universal set of transactions. Transactions have an a priori tree structure, with a

distinguished transaction U as the root. For a transaction A distinct from (7, let parent (A) denote A's

unique parent, anc(A) and desc(A) denote A's ancestors and descendants (which include A),

proper-anc(A) and proper-desc(A) denote A's proper ancestors and descendants (which do not

include A), and lca(A,B) denote the least common ancestor of A and S. Let siblings denote the set

{(A,B) € TRANS 2 / parent (A) = parent(B)}.

3.2. Serial and Concur rent Speci f icat ions

The basic containers for data are called objects. Each object has a type, which defines a set of

possible states and a set of primitive operations that provide the (only) means to create and

manipulate objects of that type. For example, a File might provide Read and Write operations, and a

FIFO Queue might provide Enq and Deq operations.

An event is a paired operation invocation and response (e.g. Enq(x)/Ok() or Deq()/Empty()). A serial

history for an object is a sequence of events that models a computation in the absence of failures and

concurrency. An object's serial specification is its set of legal serial histories. For example, the serial

specification for a FIFO queue includes all and only histories in which items are enqueued and

dequeued in first-in-first-out order. A system is a set of objects. A serial history for a system is a

sequence of steps of the form [x e], where x is an object, and e is an event of x. A serial history for a

system is legal if the subhistory associated with each individual object is legal. Serial histories are

denoted by lower-case italic letters (g, h).

A concurrent history for a system is a sequence of steps of the form: [x e A], [begin A] , [commit A], or

7

[abort A], where x is an object, e an event, and A a transaction. Concurrent histories are denoted by

upper-case italic letters (G, H). A concurrent history is well-formed if it satisfies the following

properties:

• Each transaction begins exactly once, after its parent has begun, but before executing
any other steps.

• Each transaction commits at most once, executing no steps after it commits.

• No transaction both commits and aborts.

• Invocations and responses are associated only with leaf transactions.

• No transaction commits until all its children have either committed or aborted.

For brevity, we will sometimes omit begin steps from examples. Henceforth, all concurrent histories

are assumed to be well-formed.

Let H be a concurrent history for a system, and let commit(H) be the set of transactions that have

committed in H. A transaction 8 has committed to A in H if anc(B) D proper-desc(lca(AtB)) C

commit(H). Let perm(H) be the subhistory of transactions committed to the top level transaction U. A

partial o r d e r » C siblings is linearizing if it totally orders all siblings in TRANS . A linearizing order thus

induces a total order (also denoted by » on the events of the leaf transactions. A concurrent history

is serializable if there exists a linearizing order » that reorders leaf transactions' object-event pairs to

form a legal serial history. A concurrent history H is atomic if perm(H) is serializable.

A concurrent specification is atomic if each history in the specification is atomic. We assume all

histories permitted by a specification are prefix-closed: any prefix of a legal history is itself a legal

history. To model schedulers that have no advance knowledge of transactions, we assume that an

active transaction can choose to commit at any time. A concurrent specification S is on-line atomic if

it is atomic, and whenever H is in S and H' = Hm[x commit A] is well-formed, then H' is also in S. All

specifications considered here are assumed to be on-line and prefix-closed.

A system encompassing multiple objects is not necessarily atomic just because each individual object

in the system is atomic. A property 9 is a local atomicity property [32] if a system is atomic provided

that each individual object satisfies 9. If a system-wide local atomicity property is agreed on in

advance, then objects can be implemented independently subject only to the constraint that each

implementation satisfies the system's local atomicity property. This paper compares and evaluates

alternative local atomicity properties.

8

3.3. Quorum Consensus Replication

A more complete discussion of quorum consensus replication appears in [17]. A replicated object is

an object whose state is stored redundantly at multiple sites. Replicated objects are implemented by

two kinds of modules: repositories and front-ends. Repositories provide long-term storage for the

object's state, while front-ends perform operations for clients. Front-ends correspond roughly to

transaction managers and repositories correspond roughly to data managers [2].

Event orderings are determined by logical clocks [21], which provide a simple and efficient technique

for extending the natural partial order of events in a distributed system to a total order.

El

0:00 begin A

0:02 Enq(x)/Ok() A

0:04 begin C
0:05 Enq(z)/Ok() C
0:06 commit A

B2
0:00 begin A
0:01 begin B
0:02 Enq(x)/Ok() A
0:03 Enq(y)/Ok() B

0:06 commit A
0:07 abort B

Figure 3-1:

B3

0:01 begin B

0:03 Enq(y)/Ok() B
0:04 begin C
0:05 Enq(z)/Ok() C

0:07 abort B
A Replicated Queue

A replicated object's state is represented as a log, which is a sequence of entries, each consisting of

a timestamp, an event, and a transaction identifier. The log entries are partially replicated among the

repositories. Figure 3-1 shows a schematic representation of a queue replicated among three

repositories.

It should be emphasized that logs are intended to serve as a conceptual model for the replicated data,

not as a literal design for an implementation. As discussed in [19], objects can be represented more

compactly and efficiently when replication is implemented on top of an arbitrary atomicity mechanism.

Whenever a repository accumulates a prefix of the object's complete history, that prefix can be

replaced by a single timestamped version of the object. Each repository thus stores a single version

together with a (potentially incomplete) sequence of log entries with later timestamps. Section 7

discusses how compaction techniques interact with particular atomicity properties.

A client executes an operation by sending the invocation to a front-end. The front-end merges the

logs from an initial quorum for the invocation to construct a view. If the view indicates that no

synchronization conflicts exist, the front-end chooses a response legal for the view, appends a

timestamped entry to the view, and sends the updated view to a final quorum of repositories for that

event.

9

Two conditions are necessary to execute an operation: the client must locate an available front-end

for the object, and the front-end must locate a quorum of available repositories. Because front-ends

can be replicated to an arbitrary extent, perhaps placing one at each client's site, the availability of a

replicated object is dominated by the availability of its repositories. Consequently, each operation's

availability is determined by its quorums, and constraints on quorum assignment determine the range

of availability properties realizable by quorum consensus replication.

As discussed below, constraints on quorum assignment are expressed as requirements that certain

initial and final quorums intersect. If each initial quorum for an invocation is required to intersect

each final quorum for an event, then their levels of availability are inversely related, because if the

quorums for one are made smaller (increasing availability) then the quorums for the other must be

made correspondingly larger (decreasing availability). The weaker the constraints on quorum

intersection, the wider the range of realizable availability properties.

We close this section with a precise definition of the constraints governing quorum assignment. Let

>- be a relation between invocations and events. Let e.inv denote the invocation part of the event e.

Informally, a subhistory is closed under >- if whenever it contains a step [e A] it also contains every

earlier step [e' A'] such that e.inv >- e\ where neither A nor A' have aborted. More precisely, let H(i)

denote the /-th step of H.

Definit ion 1: G is a closed subhistory of H under >- if there exists an injective order-
preserving map s such that G(i) = H(s(i)) for all / in the domain of G, and if e.inv >- e\ H{j)
= [e A], /-/(/') = [e* A'], y > /', s(i) = /, and neither A nor A' has aborted, then there exists P
such that s(/') = p.

Informally, >- is an atomic dependency relation if a response to an invocation is legal for a complete

history whenever it is legal for a closed subhistory that includes the events on which the invocation

depends. More precisely, let denote concatenation:

Definition 2: A relation >- between invocations and events is an atomic dependency
relation if

G • [e A] is legal implies that H • [e A] is legal
for all events e and all legal concurrent histories H, whenever G is a closed legal subhistory
containing all events e' such that e.inv >- e'.

A relation is a serial dependency relation if H and G are replaced by serial histories. Of principal

interest are minimal dependency relations, having that property that no smaller relation is an atomic

dependency relation. The basic correctness condition for quorum consensus replication is the

following, which is proved in [17]:

Theorem 3: A replicated object satisfies a concurrent specification S if and only if the
quorum intersection relation is. an atomic dependency relation for S.

Because the constraints on quorum intersection are expressed directly in terms of the concurrent

specification, and not the serial specification, it is an immediate consequence of this theorem that

10

concurrency and availability are interdependent properties. This paper explores that

interdependence in more detail.

4. Local Atomicity Properties
This section introduces four local atomicity properties [31]: serial atomicity, hybrid atomicity, static

atomicity, and strong dynamic atomicity. For a fixed serial specification, we then consider the atomic

dependency relations induced by the largest concurrent specifications satisfying each of these

properties. These dependency relations represent the constraints on availability induced by

maximizing the concurrency permitted by each property. In the next section, we compare these

constraints.

Although Definition 2 fully characterizes a concurrent specification's atomic dependency relations, it

may be difficult to apply this definition directly to particular data types. For hybrid, static, and strong

dynamic atomicity, we give alternative characterizations in which the constraints on quorum

intersection are expressed directly in terms of the object's serial specification. The alternative

characterizations are easier to work with, and facilitate direct comparisons.

We will make extensive use of the following lemma.
Definition 4: Let G and H be histories, and e an event. G is a false view of H for e if G is a
subhistory of H such that Gm[e A] is legal but H*[e A] is not.
Lemma 5: If >- is not an atomic dependency relation, then there exist legal histories G
and H and events e and e' such that G is a closed subhistory of H missing only e', it is false
that e.inv >- e', and G is a false view of H for e.
Proof: Suppose G is missing k events of H. Consider the sequence of histories {H.| / =
0,...,/<}, where HQ = G, Hk = H, and H.+1 is derived from H. by restoring its earliest missing
step.

If there exists an / such that H. is legal but Hj+1 is not, then H. can be written as GQ
9G1

m[e2

4 2] « G 2 , and H / + t as GQ*[e1 A1]9G1
9[e2 >A2]»G2, where GQ

9[e1 A1]9G1 is legal, and G 0 *[e f

4 7] * G 7
[e 2

 A2^is n o t - B u t G o # G f i s a c , o s e d l e 9 a l subhistory of GQ
m[e1

 A
1]mG1 containing

all events related to e2.inv by >-, proving the lemma.

Otherwise, suppose H. is legal for all / between 0 and k. Because HQ
m[e A] is legal and

H

k ' i e A] i s n o t » there must exist an / such that Hf
m[e A] is legal but H.+ ;*[e A] is not. This H.

is a closed legal subhistory of Hj+1 containing all e' such that e.inv e', proving the
lemma.

11

4.1. Serial Atomicity

Perhaps the simplest local atomicity property is to prohibit all interleaving, requiring transactions to

execute serially, and to be serializable in the order they execute. While serial atomicity is clearly not a

practical foundation for concurrency control in a distributed system, it provides a convenient baseline

for evaluating more practical techniques. Let Serial(T) denote the set of strictly serial concurrent

histories for the serial specification T, and let Serial *(T) denote the set of serial dependency relations

for T. Serial*(T) need not have a unique minimal element [19].

4.2. Hybr id Atomicity

Hybrid atomicity encompasses techniques that combine locking with timestamps [6, 8,1, 2].
Definition 6: Let H be a concurrent history, and let A and B be committed sibling
transactions. The linearizing order is defined as follows: B ^ > H A if B's commit step
follows A's. H is hybrid atomic if PermiH) is serializable in the order ! » H .

Let Hybrid(T) denote the largest hybrid atomic concurrent specification for the serial specification

T. Let Hybrid*(T) denote the set of atomic dependency relations for Hybrid(T). A hybrid serialization

of a concurrent history H is a serial history constructed by committing some set of active transactions

in H and serializing them in the order of their commit steps. A concurrent specification is on-line

hybrid atomic if and only if each history's hybrid serializations are legal.

An event tree is a tree of events. Event trees model the status of a concurrent computation as follows:

e' is an ancestor of e if the transaction that executed e' has committed to the transaction that

executed e. An event tree t is legal if all serial histories generated by preorder traversals of t are legal.

If t is a tree, and e a leaf event in f, let t/e denote t with e removed.

Definition 7: The relation > - H between invocations and events is defined as follows: e.inv
> - H e' if there exists a tree t having e and e' as leaf events, where f/e, f/e\ and t/e/e1 are
legal, but t is not.

Theorem 8: >^ H is the unique minimal element of Hybrid*(T).
Proof : The proof has two parts: we first show that every element of Hybrid*(T) contains
> - H , and then that > - H is itself a member of Hybrid*(T).

For the first part, let t be an event tree, and e and e' leaf events of t satisfying the
conditions of Definition 7. Pick a preorder numbering e 7 ,e 2 , . . . ,e n for the events of f, where
e' = ef and e = e$. Let {B.} be a set of transactions with the property that if e. =
parent(e^.), then B. = parent(B.). Because operations can be executed only by leaf
transactions, let {A.} be a set of transactions with the property that B { = parent(A.). Let the
concurrent history G be:

12

begin

commit

begin An

enAn

commit 4
n

including all the A. in order except for Af and /Ag. G, G*[e r Af]t and G # [e s /*s] are each in
Hybrid(T) because each of their hybrid serializations is a prefix of a (legal) preorder
traversal of f/eVe, f/e, or f/e' respectively. G - [e r >A W e c A J is not in Hybrid(T), however,

i i 5 S

because f is not legal, thus G is a false view of H for e.
For the second part, we assume G is a false view of H for e, where G is missing only e\ and
conclude that e.inv >^ H e\ Construct the following event tree f from the active and
committed events of Hm[e A]. Associate with each such event its least active ancestor
transaction. (For committed events, the least active ancestor is U.) Events with the same
least active ancestors are ordered in f by their serialization order, and others inherit the
tree ordering of their least active ancestors.

Let V be the tree consisting of the events of f, but with the following modified parent
relation:

parent'(e") = if parent(e") e' then parent(parent(e'))
else parent(eM)

Informally, f makes e' a leaf without otherwise changing the structure of f by "splitting"
the transaction that executed e1 into two subtransactions. We claim that V/e is legal,
arguing by induction on the number of descendants of e' in f. The result is immediate if e'
has no descendants in f, because then f/e = f/e, which is legal. Otherwise, let e M be a

r ~* leaf descendant of e3 in f. By induction, t'/e/e" is legal. But it is false that e".inv > - H e\
because e" follows e' in H, G is closed under > - H , and G includes e" but not e\ Since
f'/e/e", V/e/e\ and fVe/e'/e" are legal, so is f'/e.< Finally, since f/e , f/e\ and f'/e/e*
are legal, but f is not, it follows that e.inv >-u e\

4.3. Static Atomicity

Static atomicity encompasses multiversion timestamping techniques [28, 27, 26].
Definition 9: Let H be a concurrent history, and let A and B be committed sibling
transactions. Define the linearizing order > s as follows: B » s A if B's begin step is later
than A's. H is static atomic if Perm(H) is serializable in the order > g .

Let Static(T) and Static *(T) be defined by analogy to Hybrid(T) and Hybrid *(T). An element of

Static*(T) is called a static dependency relation, and a static serialization of a concurrent history H is

a serial history constructed by committing some set of active transactions in H and serializing them in

the order of their begin steps. H is on-line static atomic if and only if all its static serializations are

legal.
Definition 10: The relation > - s between invocations and events is defined as follows: if
there exist serial histories hv hr and h3 such that ftf •A?2

#Ai3 is legal, and either:

1. h1
9e,*h2

9h3 and h1*h2
9emh3 are legal, but h1

9ei*h2
9e9h3 is illegal, or

13

2. ft7
#e#/?//?3 and h^h^e}*h3 are legal, but h^emh2

9eimh3 is illegal,

then e.inv > - s e ' .
Theorem 11: > - s is the unique minimal element of Static*(T).
Proof: The proof has two parts: we first show that every element of Static *(T) contains
> - s , and then that > - s is itself a member of Static *(T).

The first part proceeds by contradiction. We will show that any relation >- that fails to
satisfy the first condition of the theorem cannot be in Static*(T). (The argument when >-
fails to satisfy the second condition is almost identical, and is omitted for brevity.) If h is a
serial history, let [h A] denote the concurrent history in which transaction A executes each
event in h in turn. Let hv A?2, h3, e, and e' be histories and events satisfying Definition 10,
and let H be the following static atomic concurrent history:

begin A
begin B
begin C
begin D
begin E
h 1 A
commit A
h 2 C
commit C

commit E
e ' B

Let G include all but the last step. G is a subhistory of H closed under but G is a false
view of H for e, thus >- is not an element of Static*(T).

We now show that > - s is itself an element of Static*(T). Let G be a false view of H for e,
where G is missing a single event e\ Assume the illegal static serialization of H*[e A] has
the form hf&'h^e'h^ (A similar contradiction can be derived by assuming the illegal
serialization has the form h^eh^e^h^) The serial histories hfh^h^ h1*e'mh2*h3' and
hi'h2*e*h3 a r e , e g a l a s s t a t i c serializations of G, H, and G # [e A], implying that e.inv >^ s e'.

4.4. Strong Dynamic Atomicity

Strong dynamic atomicity is a generalization of locking schemes based on commutativity [12, 20, 29].

Two serial histories h and h' are equivalent (denoted h h') if they cannot be distinguished by any

future computations: Irs is legal if and only if h'9s is legal for all sequences of events s.
Definition 12: Let H be a concurrent history, and let A and B be committed sibling
transactions. Define the partial order » D as follows: B » D A if fl executes an event after
A commits. A concurrent history is strong dynamic atomic if it is serializable in every
linearizing order consistent with » D , and if all such serializations are equivalent. (> D is
not itself a linearizing order.)

Let Dynamic(T) and Dynamic*(T) be defined in the usual way. A dynamic serialization of a concurrent

history H is constructed by committing some set of active transactions in H and serializing them in an

order consistent with » n .

14

Definition 13: Two events e and e' commute if for all serial histories h, whenever h*e and
Ire' are both legal, then tre9e' and h*e'*e are equivalent legal histories.
Definition 14: The relation >^ D between invocations and events is defined as follows: if e
and e' do not commute, then e.inv > - D e'.

Lemma 15: If H and H*[e A] are concurrent histories in Dynamic(T), and h' and h are
dynamic serializations of H*[e A\ and H respectively, then h% ~ h*e.
Proof: Because A is active, H*[e A] has a dynamic serialization h"*e in which A is
serialized last, where h" is a dynamic serialization of H. Because H is in Dynamic(T), all
dynamic serializations of H are equivalent, thus h" ~ h, and h* ~ tre.
Theorem 16: >^ D is the unique minimal element of Dynamic*(T).
Proof: The proof has two parts: we first show that every element of Dynamic *(T) contains
> - D , and then that > - D is itself a member of Dynamic *(T).

If e and e' do not commute, there exists a history h such that h*e and h*e' are both legal,
but either h9e*e' and h*e'me are not equivalent or neither is legal. Let H be the following
concurrent history:

h A
Commit A
e ' B

and let G include all but the last event. G is a false view of H for e.

To show that > - D is itself in Dynamic*(T), we assume G is a false view of H for e, where G is
missing only the event e\ and we derive a contradiction from the assumption that there
exist serialization orders > and compatible with > D that do not produce equivalent
legal serializations of H9[e A], Let h and h' be their respective serializations of H, g and g'
their serializations of G.

We claim that h ~ g • e\ The proof is by induction on the number of steps that follow [e*
B] in H. If [e* B] is the last step in H, the result follows from Lemma 15. Suppose e1 is
followed by a single step. The result is immediate if that step is a Commit or Abort,
because no new dynamic serializations are introduced. Otherwise, H = G 0

[e ' B] # [e" C]
and G = GQ

9[e" C] . Let gQ be the dynamic serialization of GQ induced by > . The serial
history g 0

e n is legal, since it is equivalent to g (Lemma 15), and g 0
e ' is legal as adynamic

serialization of GQ
9[e* 8] . Because G is closed under > - D , e J and e" commute, thus h ~

g 0 *e , # e" ~ g 0
e , , # e ' ~ g • e\ As a serialization of G # [e A], g*e is legal. Because e and e*

commute, g • e' • e ~ h • eis legal. An analogous argument shows that g , # e ' » e ~ h'me is
legal. But because H is in Dynamic(T), h c~ h\ hence h'me ~ tre, a contradiction.

5. Comparisons
In this section we compare the constraints on availability and concurrency imposed by the local

atomicity properties defined above. These comparisons show that availability and concurrency have

a complex relation: they are neither completely independent nor completely dependent. Instead, they

are complementary properties: each permits comparisons the other does not.

5.1. Serial Atomicity vs . The Others

Of the local atomicity properties considered here, strict serialization imposes the strongest

constraints on concurrency and the weakest constraints on quorum assignment. Clearly, Serial(T)

lies in the intersection of Hybrid(T), Dynamic(T), and Static(T). We now show that any atomic

dependency relation is a serial dependency relation, but not necessarily vice-versa.
Theorem 17: Hybrid*(T), Dynamic*(T), and Static*(T) are each subsets of Serial*(T), and
there exist T for which the inclusion is strict.

Proof: Let >~ be any relation between invocations and events that is not in Serial*(T). Let
g and h be serial histories such that g = gQ*g1 is a subhistory of h = gQ

me)%g1 closed
under >-, such that g is a false view of h for e. If H = [gQ A] # [e ' A]*[g1 A] and G = [gQ

A H g f
 A L then G is a false view of H for e in all three of Hybrid{T), Static(T), and

Dynamic(T).

To see that the inclusion is strict, consider an Account data type that provides two
operations: Credit and Debit. Credit increments the account balance:

C r e d i t = O p e r a t i o n (s u m : D o l l a r) .
Debit attempts to decrement the balance:

D e b i t = O p e r a t i o n (s u m : D o l l a r) S i g n a l s (O v e r d r a w n) .
If the account balance is less than the amount to be debited, the invocation returns with an
exception, leaving the account balance unchanged.

Under strict serialization, each initial quorum for Debit must intersect each final quorum for
Credit and for Debit, as shown in Table 5-1. For an Account replicated among n identical
sites, strict serialization permits Tn/21 distinct quorum assignments: Debit requires any m
sites, where m > n/2, and Credit requires any n-m + 1 sites.

Hybrid, static, and strong dynamic atomicity each place additional constraints on quorum
assignment, as shown in Table 5-2. Because initial and final Credit quorums must
intersect, the number of distinct quorum assignments is reduced from Tn/21 to exactly
one: both Credit and Debit require a majority.

Credit/Ok Debit/Ok Debit/Overdraft
Credit

Debit X X

Table 5-1: Quorum Intersections for Serial(Account)

Credit/Ok Debit/Ok D< Debit/Overdraft
Credit X X
Debit X X

Table 5-2: Quorum Intersections for Hybrid(Account),Static(Account),
and Dynamic(Account)

16

5.2. Hyb r id vs . Static Atomicity

Hybrid(T) and Static(T) are incomparable: each admits interleavings the other does not. One might

therefore assume that Hybrid*(T) and Static*(T) would either be incomparable or identical, but

instead Static*(T) is a subset of Hybrid*(T), and there exist T for which the inclusion is strict. In short,

every quorum assignment that supports full hybrid atomicity also supports full static atomicity, but not

vice-versa.

Theorem 18: For all T, Static*(T) C Hybrid*(T).
Proof: Let e.inv > - H e\ By Definition 7, there exists an event tree t having e and e' as leaf
events, such that t is illegal, but f/e, f/e\ and f/e/e' are each legal. The illegal preorder
traversal of t can be written as either h1

9e,mh2
9e9h3 or /?7*e#/72*e,#/?3. The histories hv h2%

and h3, and the events e and e' satisfy Definition 10, thus e.inv > - s e\
Theorem 19: There exists a T such that Hybrid*(T) <Z Static*(T).
Proof: By example. A Prom is a container for an item. When a Prom is created, it is
initialized with a default value, and its contents can be overwritten, but not read. Once the
Prom has been sealed, its contents can be read but not written. There are three
operations:

W r i t e = 0 p e r a t i o n (i t e r n) S i g n a l s (D i s a b l e d)
stores a new item in the Prom if it has not been sealed, otherwise an exception is signaled.

Read = 0 p e r a t i o n () R e t u r n s (i t e m) S i g n a l s (D i s a b l e d)
returns the item in the Prom if it has been sealed, otherwise an exception is signaled.

Seal s 0 p e r a t i o n ()
enables Reads and disables Writes. It has no effect if the Prom has already been sealed.

By Theorem 8, the unique minimal atomic dependency relation for Hybrid(Prom) is given in
Table 5-3. To illustrate why Read invocations do not depend directly on successful Write
events, we derive a contradiction from the assumption that t is an event tree and r and w
are successful Read and Write events such that f, r, and w satisfy Definition 7. If t/r is
legal, then there are no Seal events in f, because the leaf event w cannot be serialized after
a Seal. If t/w is legal, however, then there must exist a Seal event in t that is an ancestor of
r, because r can only be serialized after a Seal.

By Theorem 11, > - s requires quorums for successful Read and Write operations to intersect, as

shown in Table 5-4. These additional constraints translate directly into constraints on availability.

Consider a Prom replicated among n identical sites to maximize the availability of the Read operation.

Hybrid atomicity permits Read, Seal and Write quorums respectively consisting of any one, n, and one

sites, while static atomicity would require Read, Seal and Write quorums to consist of any one, n, and

n sites. In this example, static atomicity significantly reduces the availability of the Write operation.

17

Seal/Ok Write/Ok Read/Disabled Read/Ok

Read X

Write X

Seal X y

Table 5-3: Quorum Intersections for Hybrid(Prom)

Seal/Ok Write/Ok Read/Disabled Read/Ok

Read X X

Write X X

Seal X X

Table 5-4: Quorum Intersections for Static(Prom)

5.3. Hybr id vs . Strong Dynamic Atomicity

Since » H is compatible with > D , it follows that Dynamic(T) C Hybrid(T), thus hybrid atomicity

supports more concurrency than strong dynamic atomicity. For example, consider a FIFO Queue

providing Enq and Deq operations. Hybrid(Queue) permits concurrent Enq events, because either

commit order yields a serializable history, but Dynamic(Queue) does not, because the commit orders

yield inequivalent histories. One might therefore expect that any quorum assignment that supports

hybrid atomicity would also support static atomicity, but instead Hybrid *(T) and Dynamic*(T) are

incomparable: each admits quorum assignments the other does not. On the one hand, hybrid

atomicity obviates the need for certain quorum intersections because interleavings that had to be

avoided under strong dynamic atomicity are no long illegal. On the other hand, hybrid atomicity

introduces certain additional constraints on quorum intersection by making it necessary to

distinguish between interleavings that never could have arisen under static atomicity.

Theorem 20: There exist T such that Dynamic*(T) and Hybrid*(T) are incomparable.
Proof: By example. An object of type DoubleBuffer consists of a producer buffer and a
consumer buffer, each capable of holding a single item. The object is initialized with a
default item in each buffer. The DoubleBuffer type provides three operations:

Produce = O p e r a t i o n (i t e r n)
copies an item into the producer buffer,

T r a n s f e r = O p e r a t i o n ()

copies the item currently in the producer buffer to the consumer buffer, and
Consume = O p e r a t i o n () Returns (i t e m)

returns a copy of the item currently in the consumer buffer.

The minimal element of Dynamic*(DoubleBuffer) is shown in Table 5-5, while the minimal
element of Hybrid*(DoubleBuffer) is shown in Table 5-6. These dependency relations are
incomparable: each permits quorum assignments the other does not.

18

Produce/Ok Transfer/Ok Consume/Ok

Produce

Transfer

Consume

X

X

Tab le 5-5: Quorum Intersections for Dynamic(DoubleBuffer)

Produce/Ok Transfer/Ok Consume/Ok

Produce

Transfer

Consume

X

X

X

X

Tab le 5-6: Quorum Intersections for Hybrid(DoubleBuffer)

5.4. Static v s . Strong Dynamic Atomicity

Static(T) and Dynamic(T) are incomparable. We close this section by showing that Static*(T) and

Dynamic*(T) are also incomparable. It is an immediate consequence of Theorems 18 and 20 that

there exist T such that Dynamic*(T) (£ Static*(T).
Theorem 21: There exist T such that Static*(T) (t Dynamic*(T).
Proof: By example. Consider a FIFO Queue that provides Enq and Deq operations. By
Theorem 11, > - s is the relation shown in Table 5-7, while by Theorem 16, however, >~D is

Enq

Deq

the relation shown in Table 5-8.

Enq/Ok Deq/Ok

X

X

Deq/Empty

X

Tab le 5-7: Quorum Intersection for Static(Queue)

Enq

Deq

Enq/Ok

X

X

Deq/Ok

X

X

Deq/Empty

X

Tab le 5-8: Quorum Intersection for Dynamic(Queue)

19

6. Bounded Transaction Nesting
Nested transactions enhance concurrency by permitting a transaction to be decomposed into parallel

subtransactions. Nested transactions also facilitate fault-tolerance, since a subtransaction can be

aborted without aborting its parent. Nevertheless, we show here that nested transactions incur a cost

in availability for hybrid atomicity, although not for static or strong dynamic atomicity.

Let Hybrid n(T) be the collection of onl ine hybrid atomic histories for T in which the depth of

transaction nesting does not exceed n. Because Hybrid n(T) is a proper subset of Hybrid n + ^ T) , which

is in turn a proper subset of Hybrid(T), the bounded-depth hybrid atomic specifications for T form a

strict infinite hierarchy with respect to constraints on concurrency:

Hybrid^T) C Hybrid 2(T) C ... C Hybrid(T) (1)

The greater the maximum depth of transaction nesting, the greater the set of permissible

interleavings.

Any quorum assignment correct for Hybrid n + 1 (T) must also be correct for Hybrid n(T), thus the

bounded-depth hybrid atomic specifications for T also form an infinite hierarchy with respect to

constraints on availability.

Hybrid*(T) C ... C Hybrid 2*(T) C Hybrid/O") (2)

Here, however, the ordering of the hierarchy is reversed: the greater the maximum depth of

transaction nesting, the smaller the set of permissible quorum assignments.

In this section we show that this hierarchy is strict. Note that Theorem 8 does not hold for Hybrid n(T),

because the proof required the ability to "split" part of a transaction into two subtransactions,

potentially increasing the maximum depth of transaction nesting.

L e f t (n) R i g h t (n)

L e f t (n - l) R i g h t (n - l)

/
/

L e f t (O) R i g h t (O)

Figu re 6-1 : The Tree t
n

Theorem 22: For all n, there exists a T such that Hybrid n(T) <£ Hybrid n (T).

20

Proof: Let t be the event tree shown in Figure 6-1. (For brevity, responses to invocations
are omitted.) A partial preorder traversal of t is defined as follows:

1. Visit the root.

2. Visit the subtrees rooted at zero, one, or both of the root's children.

The history generated by a partial preorder traversal is the history constructed by
concatenating the events of t in the order visited. Let Tree[n] be the serial specification
consisting of the histories generated by partial preorder traversals of t , and let Tree'[n] be
the specification constructed by removing from Treefn] the "forbidden" history:

Left(n) • Left(n-1) •... • Left(0) • Right(O) • ... • Right(n-I) • Right(n),
generated by the complete left-to-right preorder traversal of t .

Let >- denote the unique minimal element of Hybrid*(Tree[n]). We claim that it is false
that Right(O) > - n Left(0). The argument proceeds by induction on n. The result is
immediate when n = 1. Otherwise by Theorem 8, there exists an illegal event tree t with
Right(O) and Left(0) as leaves, such that f/Right(0), f/Left(0), and //Right(0)/Left(0) are
legal. Let V be the subtree of t rooted at but excluding Left(n). The tree V has Right(O) and
Left(0) as leaves, fVRight(O), fVLeft(O), and f'/Right(0)/Left(0) are legal for Tree[n-1], but
f is not, thus Right(O) > - n A Left(0), contradicting the induction hypothesis.

Let >- ' denote the unique minimal element of Hybrid*(Tree'[n]). Since fn/Right(0),
fn/Left(0), and fn/Left(0)/Right(0) are each legal, but f n is illegal for Tree'[n], Right(O) > - n '
Left(0) by Theorem 8.

Let G be a false view of H for Right(O), where G is missing only the event Left(0). We show
that A, the transaction executing Right(O), must be nested to a depth greater than n. A
concurrent history can fail to be in Tree'[n] in two ways: by having a serialization that is
not a partial preorder traversal of l , or by having the forbidden history as a serialization.
H#[Right(0) A] must be in Tree[n], since G is closed under >- , therefore tf#[Right(0) A]
must have the forbidden history as a hybrid serialization.

For 1 > i > n, let L. and R. be the least active ancestors of the transactions that executed
Right(/) and Left(/) in H. L. and R. cannot be the same transaction, because the forbidden
history serializes Left(0) and Right(O) between them. R. cannot be an ancestor of L ; l

because Right(/) must then be serialized before Left(/), ruling out the forbidden history as a
possible serialization. L. cannot be an ancestor of R.% because if R. commits before A,
Left(/) would be serialized before Right(/), which would be serialized before Right(O), an
ordering not permitted by any preorder traversal.

L. + 1 must be an ancestor of both L. and Rp since Left(/+ 1) precedes Left(/) and Right(/) in
every traversal of t . Since L. is concurrent with R. and L. . is committed to Rn L. i and L. * n / / / + / i i + i i
cannot be the same transaction, and therefore L.+1 is a proper ancestor of L.. The depth
of L n is at least one, hence the depth of L 1 is at least n.

For both static and strong dynamic atomicity, we have the same dual hierarchies.

Static^T) C Static 2(T) C ... C Static(T)

21

Static 4(T) C ... C Static2*(T) C Static,*(T)

Dynamic^T) C Dynamic 2(T) C ... C Dynamic(T)

Dynamic*(T) C ... C Dynamic2*(T) C Dynamic,*^)

Here, however, the inclusions of Static ^ (T) in Static n*(T) and Dynamic n + 1*(T) in Dynamic n(T) are

not strict. The proofs of Theorem 11 and 16 actually show slightly stronger results: if >^ s is not a

subset of then >~ is not an element of Static, *(T), and similarly, if >~D is not a subset of >-, then >-

is not an element of Dynamic1*(T). Under static and strong dynamic atomicity, quorum assignment is

insensitive to transaction nesting.

7. Bounded Versions
The log compaction technique proposed in [19] for serial computations is readily applied to hybrid

and strong dynamic atomicity. Whenever a repository has acquired a prefix of an object's committed

state (or a log equivalent to such a prefix), it may replace that prefix with a single timestamped

version. This compaction is possible because both hybrid and strong dynamic atomicity have the

property that once a transaction A has committed at a repository, any later transaction that visits that

repository is serializable after A. Static atomicity, however, is not so well-behaved. Since a

transaction can be serialized arbitrarily far "in the past," support for full static atomicity requires

retaining a complete locj of events for active and committed transactions. For example, a file must

retain a record of every Read and Write event. The record of Write events is necessary to

accommodate an out-of-order Read, and the record of Read events is necessary to ensure that an

out-of-order Write does not invalidate a value read by another transaction. A similar problem arises

for a bank account, where it is necessary to keep a complete record of credits, debits, and attempted

overdrafts to permit transactions to insert new events at arbitrary points in the committed history.

To circumvent this difficulty for files, Reed [28] suggested discarding all but the n most recently

written file versions, for some fixed number n. The choice of n reflects a direct trade-off between

concurrency (the set of permitted interleavings) and space (the volume of data representing the file).

Papadimitriou and Kannelakis [26] have examined the trade-offs between efficiency and concurrency

imposed by such a restriction.

How can the n-version limitation be extended to replicated objects other than files, objects

represented by logs rather than versions? The key observation here is that the bound on the number

of versions reflects a bound on how far the physical ordering of events may diverge from their

serialization ordering. An n-version file does not permit a Read event to be serialized before the n-th

physically preceding Write, and similarly for Write events. Such constraints establish a "horizon"

before which transactions may no longer be serialized. Any prefix of a log that represents the object's

22

committed state prior to the horizon can be replaced by a single timestamped version. As the horizon

advances, later entries are merged with the version and discarded.

The principal difficulty in generalizing the n-version limitation to arbitrary objects is recognizing which

event orderings are important. For example, restricting the relative ordering of Read events places

additional constraints on quorum assignments without facilitating log compaction. By contrast,

restricting the relative ordering of Read and Write events permits older versions to be discarded

without further restricting quorum assignment. In this section, we introduce a generalization of the

n-version limitation satisfying the following properties:

• For files, one can discard all but the most recent n committed versions.

• For objects of arbitrary type, an appropriate prefix of the committed state can be
compacted into a single timestamped version.

• The ability to compact the committed state introduces no extraneous constraints on
quorum assignment.

Definition 23: A symmetric relation - between events is an conflict relation if

g*e is legal implies that ft*e is legal
for all events e and all legal serial histories ft, whenever g is a closed legal subhistory
containing all events e' such that e ~ e\

Such a relation is minimal if no smaller symmetric relation is a conflict relation. The proof of Lemma 5

is easily extended to yield:
Lemma 24: If - is a minimal conflict relation and e ~ e\ then e and e' can be relabeled so
that there exist legal serial histories ft = g1

9eimg2 and g = g1
9g2, such that g is a closed

subhistory of ft, and g # e is legal but ft#e is not.

Informally, one step is out-of-order with respect to another if their events are related by ~ and their

physical order differs from their serialization order.
Definition 25: Pick a minimal conflict relation ~. The step [a A] is out-of-order with
respect to [to B] in the concurrent history H if a ~ to, [a A] follows [to B] in /-/, but B > s A.

The restriction of the out-of-order relation to events related by ~ will ensure that the n-version

restriction imposes no extraneous constraints on quorum intersection.
Definition 26: A concurrent history H is n-version static atomic if it is static atomic, and
no step is out of order with respect to n or more steps.

Let Static n(T) denote the largest n-version static atomic concurrent specification for the serial

specification T, and let Static" *(T) denote its set of atomic dependency relations. (Each of these

domains depends on the original choice of conflict relation.)

For Staticn(File), Read and Write events conflict, thus a transaction cannot read before the n-th most

recent Write event, and earlier committed versions can be discarded. For Static n(Account), Debit

events conflict and Credit and Debit events conflict, thus a Credit event cannot be serialized before n

Debit events, and a Debit event cannot be serialized before n Credit or Debit events. An account can

23

(3)

(4)

be represented as single balance followed by a sequence of Credit and Debit entries. (Adjacent

Credit events can be further consolidated.)

Static n(T) is a proper subset of Static" * 1 (T) , which is in turn a proper subset of Static(T), thus we

have the infinite strict hierarchy:

Static1 (T) C Static 2(T) C ... C Static(T)

We now show that there exists a dual infinite hierarchy:

Static*(T) C ... C Static2*(T) C Static1 *(T)

Moreover, each inclusion is strict for certain types.

Lemma 27: If >^ n is an element of Static"*(T) and e ~ e\ then e.inv > - n e' and e\inv >-n e.
Proof: Since ~ is minimal, there exists e, e\ gv and g2 satisfying the properties of Lemma
24. Consider the history H:

begin A
begin B
begin C
begin D
g1 A
commit A
g 2 C
commit C
e' B

Let G be the history including all but the last step. H, G, and G9[e D] are in Static 1(T), and
hence in Static n(T), but G is a false view of H for e, hence e.inv >-" e\ Similarly, replacing
e' by e in H yields e\inv >-n e.

Theorem 28: The hierarchy 4 is valid, and for each inclusion, there exists a T for which
the inclusion is strict.

Proof: First, we show that if > - n + 1 is an element of Static" + 1 *(T) , then it is an element of
Static"*(T). Let H be in Static n(T), and let G be a subhistory of H closed under >-" + 1

containing each event e' such that e.inv >^ n + 1
 e \ We claim that if G9[e A] is in Static n(T),

then so is H*[e A]. Because G9[e A] is in Static" + 1 (T) , so is H9[e A], and since G contains
all events related to e by ~, H9[e A] must also be in Static"(T).

We next show that the inclusions are strict. Consider the following generalization of the
Prom data type introduced above. A Prom[i] is a container for an item, providing Write,
Read, and Seal operations. Prom[i] differs from Prom as follows: Seal disables Writes, but
Reads are enabled only after / Seal operations have been executed. Prom is equivalent to
Prom[1].

Let ~ be the following minimal conflict relation:

Seal()/Ok() Read()/No() Write(x)/Ok()
Seal()/Ok() X X
Read()/No() X
Write(x)/Ok() X

Let >- denote the relation between invocations and events induced by the following

24

Seal
Read
Write

Seal()/Ok()
X
X
X

Read()/No()
X

Write(x)/Ok()
X

relation: We claim that >- is an element of Static" *(Prom[n]), but not of
Staticn*(Prom[n-1]).

The only part of >~ that requires scrutiny is the relation between successful Reads and
Writes. Suppose G is a false view of H under >- missing a Write. G*[Read()/OK(x) A] is
legal only if G includes n Seal events committed to A. If H is in Static"(Prom[n]), then the
missing Write cannot be out of order with respect to all n Seals. It must precede at least
one Seal, and since G is closed under the Write must appear in G, a contradiction. If H
is in Staticn(Prom[n-1]), however, then the missing Write can follow the n-1 Seals, thus >-
is not an element of Staticn*(Prom[n-1]).

8. Conclusions
Atomicity in a decentralized distributed system is ensured by choosing a local atomicity property that

every atomic object must satisfy. For example, the Swallow distributed data storage system is based

on static atomicity [27], and Argus [22] and TABS [30] are based on strong dynamic atomicity.

Choosing such a local atomicity property is a design decision of critical importance, since the

decision must be taken in advance, and once made, it is difficult to change. An inappropriate choice

may place unnecessary restrictions on the availability and concurrency realizable within the system.

This paper has introduced a new criterion for evaluating local atomicity properties: the constraints

they impose on quorum assignment. A comparison of the constraints on quorum assignment

necessary to maximize concurrency under static, hybrid, and strong dynamic atomicity shows that

availability and concurrency are complementary properties, each permitting comparisons the other

does not. Although static and hybrid atomicity place incomparable constraints on concurrency,

hybrid atomicity places fewer constraints on quorum assignment. Although hybrid atomicity places

fewer constraints on concurrency than strong dynamic atomicity, they place incomparable

constraints on quorum assignment. Bounding the maximum depth of transaction nesting tightens

constraints on concurrency for all three properties, but reduces the constraints on concurrency for

hybrid atomicity alone. Bounding the number of "versions" retained under static atomicity reduces

concurrency but enhances availability. Hybrid atomicity is thus the only property undominated with

respect to both availability and concurrency. Although such optimally concurrent schedulers are

unlikely to be cost-effective in practice, an understanding of the trade-offs they impose is a

prerequisite for achieving a systematic understanding of the fundamental constraints governing

availability and concurrency for replicated data.

25

References
[1] Bernstein, P., Goodman N., and Lai, M.-Y.

Two-part proof schema for database concurrency control.
In Proc. Fifth Berkeley Workshop on Distributed Data Management and Computer networks.

February, 1981.

[2] Bernstein, P. A., and Goodman, N.
A survey of techniques for synchronization and recovery in decentralized computer systems.
ACM Computing Surveys 13(2):185-222, June, 1981.

[3] Bernstein, P. A., and Goodman, N.
The failure and recovery problem for replicated databases.
In Proceedings, 2nd Annual Symposium on Principles of Distributed Computing. August,

1983.

[4] Birman, K. P., Joseph, T. A., Raeuchle, T., and Abbadi A. E.
Implementing fault-tolerant distributed objects.
In Proc. 4th Symposium on Reliability in Distributed Software and Database Systems.

October, 1984.

[5] Bloch, J . J . , Daniels, D. S., and Spector, A. Z.
Weighted voting for directories: a comprehensive study.
Technical Report CMU-CS-84-114, Carnegie-Mellon University, April, 1984.

[6] Chan, A., Fox, S., Lin, W. T., Nori, A., and Ries, D.
The implementation of an integrated concurrency control and recovery scheme.
In Proceedings of the 1982 SIGMOD Conference. ACM SIGMOD, 1982.

[7] Cooper, E. C.
Circus: a replicated procedure call facility.
In Proceedings 4th Symposium on Reliability in Distributed Software and Database Systems,

pages 11-24. October, 1984.

[8] Dubourdieu D. J .
Implementation of distributed transactions.
In Proceedings 1982 Berkeley Workshop on Distributed Data Management and Computer

Networks, pages 81-94. 1982.

[9] Eager, D., L., and Sevcik, K. C.
Achieving robustness in distributed database systems.
ACM Transactions on Database Systems 8(3):354-381, September, 1983.

[10] El-Abbadi, A., Skeen, D., and Cristian, F.
An efficient, fault-tolerant protocol for replicated data management.
In Proceedings, 4nd ACM SIGACT-SIGMOD Conf. on Principles of Database Systems. 1985.

[11] El-Abbadi A., and Toueg, S.
Availability in Partitioned Replicated Databases.
Technical Report TR 85-721, Dept. of Computer Science, Cornell University, December, 1985.

[12] Eswaran, K.P, Gray, J .N, Lorie, R.A., and Traiger, I.L.
The notion of consistency and predicate locks in a database system.
Communications ACM 19(11):624-633, November, 1976.

26

Garcia-Molina, H. and Barbara, D.
How to assign votes in a distributed system.
To appear in JACM.

Gifford, D. K.
Weighted voting for replicated data.
In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM SIGOPS,

December, 1979.

Goodman, N., Skeen, D., Chan, A., Dayal, U., Fox, S, and Ries, D.
A recovery algorithm for a distributed database system.
In Proceedings, 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March,

1983.

Hammer, M. M., and Shipman D. W.
Reliability mechanisms in SDD-1, a system for distributed databases.
ACM Transactions on Database Systems 5(4):431-466, December, 1980.

Herlihy, M. P.
Availability vs. atomicity: concurrency control for replicated data.
Technical Report CMU-CS-85-108, Carnegie-Mellon University, February, 1985.

Herlihy, M. P.
Using Type Information to Enhance the Availability of Partitioned Data.
Technical Report CMU-CS-85-???, Carnegie-Mellon University, April, 1985.

Herlihy, M. P.
A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems 4(1), February, 1986.

Korth, H. F.
Locking primitives in a database system.
Journal of the ACM 30(1), January, 1983.

Lamport, L.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (7):558-565, July, 1978.

Liskov, B., and Scheifler, R.
Guardians and actions: linguistic support for robust, distributed programs.
ACM Transactions on Programming Languages and Systems 5(3):381 -404, July, 1983.

Lynch, N. A.
Concurrency control for resilient nested transactions.
In Proc. 2nd ACM Symposium on Principles of Database Systems. March, 1983.
Revised version to appear in Advances in Computing Research.

Moss, J . E. B.
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, Massachusetts Institute of Technology Laboratory for

Computer Science, April, 1981.

Papadimitriou, C.H.
The serializability of concurrent database updates.
Journal of the ACM 26(4):631 -653, October, 1979.

27

Papadimitriou, C.H., and Kanellakis, P.
On concurrency control by multiple versions.
ACM transactions on database systems 9(1):89-99, March, 1984.

Reed, D. P., and Svobodova, L.
SWALLOW: a distributed data storage system for a local network.
In Proceedings of the International Workshop on Local Networks. August, 1980.

Reed, D.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

Schwarz, P. and Spector. A.
Synchronizing shared abstract types.
ACM Transactions on Computer Systems 2(3):223-250, August, 1984.

Spector, A. Z., Butcher, J . , Daniels, D. S., Duchamp, D. J . , Eppinger, J . L., Fineman, C. E.,
Heddaya, A., Schwarz, P. M.
Support for distributed transactions in the TABS prototype.
Technical Report CMU-CS-84-132, Carnegie-Mellon University, July, 1984.

Weihl, W.
Data-dependent concurrency control and recovery.

In Proc. 2nd Annual Symposium on Principles of Distributed Computing. August, 1983.

Weihl, W.
Specification and implementation of atomic data types.
Technical Report TR-314, Massachusetts Institute of Technology Laboratory for Computer

Science, March, 1984.

