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Abstract

'Strong'AI* claim that suitably programmed corn-
ers can manipulate symbols that THEY understand
defended, and conditions for understanding dis-
ced. Even computers without AI programs exhibit
ignificant subset of characteristics of human
•rstanding. To argue about whether machines can
.LY understand is to argue about mere defini-
>al matters. But there is a residual ethical
stion.
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Introduction

ing cabinets contain information but understand
ting. Computers are more active than cabinets,
so are copiers and card-sorters, which under-
id nothing. Is there a real distinction between
•rstanding and mere manipulation? Unlike
inets and copiers, suitably programmed computers
>ar to understand. They respond to commands by
forming tasks; they print out answers to ques-
ts; they paraphrase stories or answer questions
jt them. Does this show they attach meanings to
>ols? Or are the meanings 'derivative1 on OUR
'rstanding them, as claimed by Searle(£10D)? Is
. understanding missing from simulated under-
id ing just as real wetness is missing from a
jlated tornado? Or is a mental process like cal-
ition: if simulated in detail, it is replicated?

•gue that there is no clear boundary between
igs that do and things that do not understand
>ols. Our ordinary concept of 'understanding*
>tes a complex cluster of capabilities, and dif-
?nt subsets of these may be exhibited in dif-
>nt people, animals or machines. To ask 'which
necessary for REAL understanding?1 is to attri-
i spurious precision to a concept of ordinary
judge.

tead of answering either 'YES1 or 'NO* to the
>tion whether suitably programmed computers can
•rstand, we note that within the space of possi-
'behaving systems' (including animals) there
infinitely many cases, some sharing more

tures with human minds, some fewer. The impor-
t task is to analyse t*v nat <? and the implica-
•>s of these simit* :v and differences,
hout

assuming existing English words can label the c
adequately.

Dennett £23 thinks we can justifiably take
'intentional' stance towards any machine or or
ism whose behaviour thereby becomes easier
predict or explain. Searle £103, £113 retorts
behaviour is not enough, alleging that a suit
program could make a system appear to unders
Chinese when it doesn't really, e.g. if Searlc
inside executing the programs. In £183 I show
he actually attacks an extreme and implau!
thesis, namely that ANY 'instantiation' of a i
able program would understand. But he is right
suggesting that actual behaviour is not what me
concepts refer to. How the behaviour is produce
relevant. There are significantly different way
which the same behaviour might be generated,
instance a huge lookup table, prepared b>
extraordinarily foresightful programmer who am
pated all our questions, could.pass a collectic
behavioural tests. But it might produce r
surprises later, because no finite set of JM:
tests can establish the powers required for pas
a wider range of possible tests. Since there
indefinitely many counterfactual conditional st
•tents that are true of us, but which would nc
true of such a machine, we would be unwise to
on it in future simply because it has work*
far, without knowing the basis for success.

Attributions of mentality imply coherent beha\
and reliability, as friends, enemies, colleaj
or goal achievers. There are different kinds
unreliability. One kind would exist in a mac
whose computations depended on co-operation c
(speeded up) human interpreter performing mill
of steps, as in Searle's experiment. Tiredr
boredom, cussedness, and mere slips could ei
interfere. This supports Searle's claim that
tality presupposes machinery with the right ci
powers (though not his other conclusions).

The lookup table
cannot rely on
The same applies,
programs: human-
of tests does not
behaviour would
situations. This
grams to date.

is unreliable in a deeper way:
it to deal with the unanticipi
to a lesser degree, to less r
like performance in any finite
justify the assumption that
be convincing in other poss
is painfully evident in AI

So, taking the intentional stance on pi
behavioural grounds (Turing's test), is potenti
risky. We must adopt what Dennett calls the 'dc



stance1 for a better justification of our ascrip-
tions of intentionality, understanding, etc. A
machine must not Merely produce appropriate
behaviour, but Must satisfy the design requirements
for understanding. Could a machine do this?

The main features of human understanding are
sketched below. We'll find important aspects of our
ordinary concept of 'understanding' in simple com-
puters, even without AI programs. Requirements for
richer human-like capacities are also described.
There are no reasons for doubting that machines can
satisfy them.

The Semantic Linkage Problem

A central issue is the 'semantic linkage problem':
how can a person, or machine, take one thing as
referring to or describing another? AI work on
language and image understanding often relies on
translation into some internal representation. But
if the machine itself does not understand the
internal representation, we have not progressed
much beyond filing cabinets. If all understanding
requires translation we risk an infinite regress.
Ultimately something must be interpreted as mean-
ingful in its own right. How? It is implausible
that existing AI story 'understanders' really can
think about parties, political events, or pas-
sionate murders, despite printing out sentences
about them after reading stories. If a symbol-user
U uses a symbol S to refer to some object 0, then
it seems that U must have some other way of relat-
ing to 0, attending to 0, thinking of 0, etc.,
besides using S. This 'semantic linkage' problem
pervades recent analytical philosophy (E.g. See
£173, £63, £33). It is ignored in work on formal
semantics, and both linguistics and psychology seem
to have little to say about it. It is complicated
by the fact that 0 can be remote from U, or even
long dead, or imaginary, which rules out direct
causal connections between U, S and 0, as neces-
sary. We shall see that when 0 is part of U (e.g. a
location in U's memory, an internal action U can
perform, an internal pattern U can test for), the
link may be a comparatively simple causal relation-
ship. My conjecture is that more sophisticated
types of meaning and reference are possible only on
the basis of this 'internal' semantics.

What jjs understanding £ language?

I use the word 'language' loosely as equivalent to
'notation1, 'representational scheme1, 'symbol sys-
tem* etc. Very roughly, a language L is a system of
symbols used by some agent U in relation to a world
W. A full analysis would distinguish different
kinds of: (a) symbol media, (b) symbol systems, (c)
mechanisms for manipulating symbols, (d) symbol
users, (e) worlds, and (f) purposes for which sym-
bols might be used. This paper discusses only a
subset of this rich array of possibilities.

Symbols are structures that can be stored, compared
with other structures, searched for, etc. They may
be physical structures, like the marks on a piece
of paper, or virtual symbols, i.e. abstract struc-
tures in a virtual machine, like 2-0 arrays in a
computer (See £153). They may be internal or

external. They need not be sepai
objects or events, since a single
may 'carry* different signals simult*
network of active nodes may have s
superimposed in its current state. S
maps, descriptions, representations
including computer programs, and non
bols, like parentheses and other syn
(In fact, anything at all can be use

A language L contains symbols u
represent or refer to entities, pr
tions, events, processes, or actions
W. The word 'used' may suggest that
purposes. However, this is not a ne
tion, since a plant "uses" water in
without having any explicit goal, o
can tell that U uses a symbol S to
0, by discovering that some signific
the conditions listed below are sati
see that in the more elaborate ca
involved.

The symbols need not be used for ext
cation. Meaning and understanding ar
(e.g. C7D> to be essentially concern
icat ion between language users. As
this is a mistake, since understands
nal language -*•-..••
symbolism fc
ing plans,
is prior in
to individi
of an exter
tions. In s

•Repres

Objects in
cal object
rules). Th
Like symb
world, emt
tual mach
Many prog
virtual
etc. Simi
embedded

The s;

Instead
defining
underst*
tions '
symbols
world W
define
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concepi
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titute a model for a significant subset of the
oms* implicitly defining mentalistic concepts.
ke simulations of (e.g.) tornadoes, people out-
the model can relate to the Model as to the
thing (though some may find this distasteful).

ibot may obey commands, answer questions, teach
things. But a simulated tornado will not make

wet or cold. Anyone who objects that this is
enough can be challenged to describe precisely
is missing. Appeals to mystery, or to unana-

tble kinds of mental or spiritual stuff are
scussable.

I see that computers can manipulate internal
ictures and use them as symbols associated with
>rld W consisting of both entities within the
line and more abstract entities like numbers and
>ol~patterns. Later, the discussion addresses
>rence to an 'external* world.

otypical conditions for \± jto use refer to

is a set containing simple and complex symbols,
ie latter being composed of the former, in a
'incipled fashion, according to syntactic
lies.

; condition is satisfied by most computer
juages, though machine codes generally have very
)te syntactic rules and structures. Rules may be
kicit in procedures.

associates some symbols of L with objects in W,
d̂ other symbols with properties, relations, or
:tions in W.

>mputer can associate 'addresses* with a world V
taining locations in its memory . (or in a virtual
Vine) and their contents and relationships. The
sols cause processes to be directed to or influ-
?d by specific parts of the system. Some of the
DOIS specify which processes - i.e. they name
ions.

ious sorts of properties and relations nay be
DO Used in a machine language, e.g. equality of
tent, neighbourhood in the machine, arithmetic
at ions, having a bit set, etc. Symbols indicat-
tests that produce a boolean result, name pro-
ties and relationships.

if U is a simple computer, the basic semantic
at ion is causal:
5 refers to 0 for u" =

*S makes U*s activities relate to or involve
0*,

re 0 may be an object, property, relation or
B of action.

tructions have imperative meanings because they
tematically cause actions to occur. Roughly,
S denotes action A to U' * *S makes U do A*

ending on how rich the language is, S and A may
e independently variable components, e.g.
ect, instrument, manner, location, time, etc.

In computers Imperative meaning is oasic:
denoting expressions are often instructions to
pute a value. This low level meaning depends
direct causal connections within the machine. L
we discuss non-imperative denotation.

* Some of the objects referred to in world V
abstract, like numbers.

Computers can use certain symbols to denote nun
because they are manipulated by arithmetical
cedures and used as loop counters, address in
ments, array subscripts etc. Thus the machine
count its own operations, or the elements of a
that satisfy some test. The way a Machine does
is typically very close to the core of a y
child's understanding of number words - they
just a memorised sequence used in certain cour
activities. So:

•S refers to a number, for U' «
*S belongs to a class of symbols which U i
pulates in a manner characteristic of cc
ing, adding, etc.'

* What a complex symbol S expresses for U de;
on its structure, its more primitive compor
and some set of interpretation rules relatec
the syntactic rules U uses for L. (C53)

This is true of many computer languages. E.g.
is denoted by a complex arithmetical expressioi
a complex instruction, depends on what the j
denote, and how they are put together accordir
the syntactic rules of the language.

* U can treat the symbols of L as 'objects',
can examine them, compare them, change 1
etc., though not necessarily Consciously.

This applies to computers. Symbolic patterns
to refer can also be referred to, coup,
transformed, copied, etc. E.g. two patterns ma:
tested for equality, or overlap, or set inclui
An address can be incremented to get the next
tion. It is not clear whether other animals c<
r\t^6 to treat their internal symbols as obji
This may be a pre-requisite for some kin<
learning.

* Certain symbols in L express conditionally.

This is the key to «uch creative thinking or |
ning, and to flexibility of action. tie can di:
guish (a) 'if used in conditional imperatives
'if used as the standard boolean (t
functional) operator and <c) •if used in ci
tional assertions, (c) is not found in the sim<
computer languages.

Conditional imperatives are found in machines :
'if (or some equivalent) when combined with e1

able expressions permits or suppresses act
depending on the evaluation.

* By examining W, U can distinguish formulas
that assert something true from those asse
something false.

Computers typically use symbols to denote 't



values1 (•true1 and •false1 or "1• and '0 1).
Boolean operations e.g. 'or1, 'and', 'not* are also
represented, by symbols that trigger actions
transforming inputs to outputs consistently with
truth-tables. The 'result1 is taken as a truth-
value partly because of its role in conditional
imperatives. The sense in which computers can exam-
ine their internal states to assign a truth-value
is fairly clear, though how they check arithmetical
statements requires deeper analysis.

If U assigns truth-values to symbols in a manner
that depends on the state of world W, the symbols
can be thought of as representing factual proposi-
tions, that so and so is the case in W. Wore gen-
erally,

•For U, S means P is the case1 =
•in certain contexts the expression S causes U
to do certain things only if P is the case,
otherwise not1

We have yet to see how a machine can treat 'true9

and 'false* as more than just formal duals.

* U can detect that stored symbols contain errors
and take corrective action, e.g. noting that two
descriptions are inconsistent and finding out
which to reject.

Something like this occurs in programs that attempt
to eliminate wrong inferences derived from noisy
data, e.g. in vision, and in plan-executors that
check whether the assumptions underlying the
current plan are still true. Here we find support
for a richer conception of a truth-value than just
a pair of arbitrarily chosen symbols, if 'true'
connotes surviving tests, and 'false' rejection.
More on this later.

* A complex symbol S with a boolean value may be
used for different purposes by U, for instance:
questioning (specifying information to be found
by lookup, computation, or external sensing),
instructing (specifying actions), asserting
(storing information for future use).

ye have seen how, in a computer, S can function as
a primitive question, in a conditional instruction
where action depends on the answer to the question.
In low level machine languages there is not usually
the possibility of using the same symbol to express
the content of an imperative as in "Make S true".
I.e. machine codes do not have 'indirect impera-
tives' with embedded propositions. However, AI
planning systems have shown how in principle this
can be done, at least in simple cases, assuming the
initial availability of direct imperatives.

Apart from a few exceptions like Planner, Conniver
and Prolog, most computer languages include
requests and instructions, but not assertions: fac-
tual statements assimilated to some store of
beliefs. However, it is easy to allow programs to
record results of computations or externally sensed
data, or even results of self-monitoring. Recom-
putable information may be stored simply for easy
access, as people store multiplication tables.

Whether U uses S as a question, an assertion, or an

instruction, will depend on context*
the content of an assertion in
(•store(S)*), a question in another (
or •lookup(S)1), and an instruction
('achieve(S)1). I.e. role is dete
rather than form or content.

* U can make inferences by deriving n
I from old ones, in order to
semantic relation (e.g. proofs pr
refutations demonstrate falsity).

Work in AI has demonstrated mechanis
this, albeit in a restricted and mos
fashion so far. Human forms of infe
some of the functional architecture d
in connection with motives, and also
a much wider range of representatio
so far addressed (£153).

* L need not be a fixed, static, syst
be extendable, to cope with expa
ments.

One source of language change in peop
cation with others using differen
deeper source is situations that p
describe.

Many computer languages are extenda
dialogue systems are beginning to
machine may extend its own language
need. But deep concept formation is
off. It is not clear which animals c
cannot extend their internal lang
this, certain other forms of learning
sible. (More on language change below

* U may use symbols of L to formulate
poses, or intentions; or to repres
cal possibilities for purposes of
prediction.

Simple versions of this sort of thing
existing AI planning systems.

Without a functional architecture su
tinctions between beliefs, desires, p
tions, etc., a machine cannot assign
the way that we do. Merely storing in
deriving consequences, or executing
leaves out a major component of hum
ing, i.e. that what we understand ma
For information to matter to a ma
have to have its own desires, prefer
dislikes, etc. This presupposes t
modules whose function is to create o
- motive generators. Full flexibi
motive-generator generators. Deciding
require motive comparators and moti
generators. This is a complex story,
a little more detail in CUD. When d
tions, plans, preferences, etc. a
through experience, perhaps over ma
undermines the claim that a Machine
only desires of the programmer o
machine, unlike existing computers, w
bols in L for its purposes.



:e of behaving systems. Does a machine 'REALLY1

?rstand without all this? Well/ it could 'under-
id* well enough to be an utterly slavish ser-
t. It could not, however^ be entrusted with
is requiring creativity and drive, like Managing
irge company or a battle force, or Minding chil-

language may be used for communication between
idividuals. This adds new requirements £183)/
lich are irrelevant to our present concerns.

Recapitulation

the conditions so far listed for U to use a
?uage L in relation to a world W are consistent
i U being a computer. Several do not even
jire AI programs, since modern computers are
It able to use.symbols to refer to a world U
taining numbers/ locations in memory, the pat-
ns of symbols found in those locations/ proper-
s and relations of such patterns/ and actions
t change W.

Delations between program elements and things in
computer's world define a primitive type of

^ing that the computer itself attaches to sym-
s. Its use of the symbols has features analogous
simpler cases of human understanding, and quite
atched by filing cabinets. So, it does not
erpret symbols merely derivatively: the causal
ations justify our using simplified intentional
criptions, without anthropomorphism.

Reference to inaccessible objects

have seen how machines can refer to their own
ernal states, to numbers, and to symbolic pat-
ns, i.e. what Woods £183 calls a 'completely
essible' world. In order to be useful as robots,
friends, they will need to refer to external
ects, events, locations, etc. The problem of
ernal semantic linkage is harder to deal with,

a system use symbols to describe objects, pro*
ties, and relationships in a domain to which it
no direct access, and only incomplete evidence,
that it can never completely verify or falsify
tements about the domain? (Compare philosophers
unobservables in science, e.g. £83)).

ey idea is that implicit/ partial/ definitions
g. in the form of an axiom system) enable new
efined concepts to be added to a language,
mpare £13) on 'meaning postulates'. Woods'
stract procedures' seem to be the same thing.)

instance, a collection of axioms for Euclidean
metry, in the context of a set of inference pro-
ures, can partially and implicitly define con-
ts like 'line1, 'point1, 'intersects'/ etc. The
oms constrain the set of permissible models.
Uarly, a congenitally blind person may attach
nings to colour words not too different from
se of a sighted person/ because much of the
ning resides in rich interconnections with con-
ts shared by both/ such as 'surface9/ 'edge'/
ttern1/ 'cover1/ 'stripe'/ 'harmonise'/ etc.

can generalise this. In A.I. vision programs/

find data-structures and procedures for manipu
ing them. If the structures are also used to g
actions and predict their consequences/ that ii
citly gives them semantic content/ by constrai
the class of possible environments that c
coherently close the feedback loops, just as i
of axioms restricts the set of possible models,
with axioms/ the constraints may not defi
unique Model.

Causal embedding JS. >n environment

Does external reference require external ci
links? One may be able to use sensors dete<
light/ sound or pressure from external objects,
Mechanical devices that act on objects. But d'
links ^rt often not possible. For instance we
refer to events remote in space and time/ and
to hypothetical objects in hypothetical situat
So direct causal connections to X are not neces
for reference to X.

Causal links May differ in kind. Consider
Machines running programs P1 and P2, the fi
connected to TV cameras and Mechanical arms,
well as a VDU, and the latter only to a VDU.
pose P1 is able to use its sensory-motor link:
referring to the external world/ and P2 con
all of P1 except portions of the program reqi
for interacting with the cameras and arms. P
learn about the world either through its ca»
or from another agent through the VDU. P2 has
the VDU/ but can think about the same world/ I
blind and paralysed person who can talk and li
and like paleontologists talking about pre-his
Causal links can be more or less direct/ an
convey More or less rich information. Communic
via another agent is indirect, and generally
vides limited but abstract information/ but v
still a causal link/ like fossil records.

So, using symbols to formulate descriptions o
external world does not require that the i
actually be directly sensed and acted on by
specific symbol-user, though the internal syi
and procedures Must be rich enough to support
processes. However/ some causal link is requir
symbols are to refer to particular phy
objects, tike the Tower of London, or physical
perties found in our world, such as magne
Without causal connections with the environm
thinker could only think (existentially quant.i
thoughts about an abstract possible world/ pe
a generalisation of our world/ but not about
world/ or things in it* Causal links, whethe
sense organs or other agents, can help to pin
reference down to this world. They can reduc
extent of ambiguity of reference, though they i
totally remove it/ as shown by old philosop
arguments in support of scepticism (see Straws

Extending 'mentalese': concept learning

A language May be extenctd by the addition of
axioms and procedure partially and impli
defining some new p n <e symbols/ and modi
the meanings of oU ». The history of con
of science and Mat cs shows that not



newly-acquired concepts need be translatable into
one's previous synbolisn. E.g. 'nass' in Einstein's
physics is not definable in Newtonian terns. Physi-
cists use concepts not explicitly definable in
terns of tests that nay be applied to sensory data.
Using theories and inconclusive tests, they infer
descriptions including synbols that are only par-
tially defined. An intelligent nachine or organisn
is in the sane sort of relation to the world as is
a scientific community.

So new synbols nay be learnt without being
translatable into old ones. After such learning,
there is no clear functional distinction between
the original concepts and the accreted language: we
can nenorise- facts, fornulas »r)6 instructions in
English, instead of always having to translate into
'mentalese'. Hence, contrary to Fodor, different
hunans (or nachines) nay use different •nentalese1

even if they all started off the sane.

The essential incompleteness ££ senantics

Not every descriptive or referential synbol U
understands nust be one to which U can relate real-
ty directly, using perceptual or other causal
links. The symbol-system L nay nake contact with
reality, e.g. through U's sense-organs and actions,
only at relatively scattered points, and only in
indirect ways (like the connection between reality
and our concepts of 'atom', 'the renote future1,
•another person's nind1, 'Julius Caesar', 'the
interior of the sun1, and so on). People with dif-
ferent points of contact with reality store nuch
the same general information about large chunks of
the world, because their inference procedures per-
mit them to extrapolate beyond what they have
already learned, and we very likely have biological
constraints built into us that, together with
social processes, lead us to similar extrapolations
from fragmentary evidence. However, convergence is
clearly not guaranteed, and its absence nay go
undetected for some time C93. If machines are to
communicate successfully with us, the designers
will have to understand these constraints and how
they work.

If a new symbol is introduced using axioms that
partially implicitly define it, then it can only be
used with a partial meaning, and sentences contain-
ing it will not have determinate truth- and
falsity-conditions. Such meanings nay be inherently
incomplete, if the concepts are indefinitely
extendable by adding new theoretical assumptions
about the nature of the reality referred to. This
incompleteness is evident in theoretical concepts
of science, but can also be demonstrated in ordi-
nary concepts. This is an inevitable fact about
the semantics of a language used to represent
information about external objects, concerning
which only partial, inferred, infornation is avail-
able, via sense organs, instrunents, hearsay,
books, fossil records, etc. In a sufficiently com-
plex system, even the language used for describing
its own internal state will have this kind of
indeterminateness and completeness, because of the
problems of internal access sketched in chapter 10
of C12D.

How can truth and falsity be disi

Although I have shown that computers
use boolean operations and booleai
not clear how to distinguish a '
'false' boolean value, since their i
puter nay be totally symmetrical. Tl
say that 1 stands for 'true1 and 0 ft
that certain synbols are interpreted
•if, etc. But the duality of prop*
implies that there is as nuch basis '
nanipulations for treating 1 as ''
•true', 'and' as 'or', 'or' as 'and'
•unless*. What else is required for
asynnetry between the synbol for *1
synbol for 'false'?

Assertions can be stored, but nere si
introduce an asynnetry between *tru<
since false as well as true staten<
stored, with explicit boolean in<
different data-bases.

In Prolog-like languages, it night s<
is a clear distinction between trui
between 'and' and 'or9, and so on, i
derivations signifying truth, fail
falsity. However, this is not suffit
tinguish truth and falsity, since \
sion C on the basis of premisses
equivalent to refuting the disjunct*
on the basis of the falsity of C.

We have seen one source of asynmetry,
that can check stored assertions c
always blindly assuming then correct:
form of self-consciousness. Truth c
then associated with having the capac
thorough checking. But the connecti
pie, for the process of checking
errors.

Another source of asymmetry is a 'ri
vent ion1. Instead of storing values
explicitly, adopt a convention that
boolean indicators is redundant: i
nerely by the presence of a fornula i
tion store or a connunication. 'Tn
then drop out of the 'object language
partly redundant netalinguistic cone*

A deeper asynnetry lies in connec
beliefs and autononous motives. Trt
boolean value of those beliefs (store
which (generally) enable desires to t
rational planning. Again the connecti
pie, for a true belief combined wi
prenisses, or an invalid inference, t
disastrous plan. Moreover, what fulfi
nay turn out to subvert another far i
one. I believe that further investiga
that by adopting the design stance we
old and apparently enpty philosop
with new fruitful analyses with inpor
tions for the design of intelligent s

Conclusion

By adopting a 'design stance', we



ify the question whether machines themselves
understand symbols, or whether meanings of sym-

in a computer are only derivative. It is not
igh that machines appear from the outside to
c human understanding: there must be a reliable
s for assuming that they can display under-
ding in an open-ended range of situations/ not
anticipated by the programmer. 1 have briefly
ribed structural and functional design require-
s for this, and argued that even the simplest
uters use symbols in such a manner that/
pendently of how PEOPLE interpret the symbols,
machines themselves (unlike cabinets and

ers) associate meanings of a primitive sort
i them. Internal uses of symbols are primary.

ve shown that a machine may use symbols to
r to its own internal states and to abstract
cts; and indicated how it might refer to a
d to which it has only limited access, relying
he use of axiom-systems to constrain possible
Is, and .perception-action loops to constrain
ible completions. These constraints leave mean-
partly indeterminate and indefinitely extend-

'. Causal links reduce some of the indeter-
cy. (All these topics require far more detailed
ussion.)

full range of meaningful uses of symbols by
m beings requires a type of architectural com-
ity not yet be achieved in AI systems. There is
known obstacle to such developments in princi-
though further research may reveal insuperable
icult ies.

:ead of listing necessary and sufficient condi-
is for understanding I argued that there is a
>lex set of prototypical conditions, different
ets of which may be exemplified in different
id Is or machines, yielding a complex space of
ible systems which we are only just beginning
explore. Our ordinary concepts, like 'under-
tding* are not suited to drawing global boun-
es within such a space. At best we can analyse
implications of various different designs, and

capabilities they produce, or fail to produce.

i we have shown in detail how like or unlike a
»n being some type of machine is, there remains
>sidual seductive question, namely whether such
tachine really can be conscious, really can feel
>, really can think etc. Pointing inside your-

at your own pain (or other mental state) you
'Does the machine really have THIS experi-
??'. This sort of question has much in common
> the pre-Einsteinian question, uttered pointing
a location in space in front of you: •will my
jer really be in THIS location in five minutes
>?' in both cases it is a mistake to think that
e really is an 'entity* with a continuing iden-
', rather than just a complex network of rela-
iships. The question about machines has an extra
»nsion: despite appearances, it is ultimately an
cat question, not just a factual one. It
jires not an answer but a practical decision on
to treat the machines of the future, if they
•e us any choice.
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