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Motivated by the need to locate and identify objects in
three dinensional CT images, an optimal registration nethod
for matching two and three dinensional deforned inmages has
been devel oped. This nethod was wused to find optimal
mappi ngs between CT inages and an atlas inmage of the sane
anatony. . Using these nmappings, object boundaries from the

atlas were superinposed on the CT inmages.

A cost function of the form DEFORVMATION - SIMLARITY is
associated wth each mapping between the two i mges. The
mappi ng obtained by our registration process is optimal with
respect to this cost function. The registration process
sinmulates a nodel in which one of the images nade from an
elastic material 1is deformed wuntil it matches the other
inagé. The cross correlation function which neasures the
simlarity between the two imges serves as a potenti al
function from which the forces required to deform the inage
are derived. ° The deformation part of the cost function is
neasured by the strain energy of the deformed i nage.
Therefore, the cost function of a mapping is given in this

nodel by the total energy of the elastic inmage.
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xae opti mai mappi ng I's oot amea oy ti nal ng cne
equilibrium state of ‘the elastic image, which by definition
corresponds to a local mninmumof the total energy. The
equilibrium state is .obtained by solving a set of partia
differential equations taken from the I|inear theory of
el asticity. These equations are solved iteratively using
the finite differences approxinatioh on a grid whi ch

descri bes the mapping.

The image function in a spherical region around each
grid point is described by its projections on a set of
ort hogonal functions. - The cross correlation function
between the image functions in tw regions is conputed from
these projections which, serve as the conmponents of a
feature vector associated wth the grid points. In each
iteration step of the process, the values of the projections
are  nodified according to the currently approximated

def or mati on.

The nethod was tested by registering several two and
three dinmensional image pairs. It can also be used to
obtain the optiml mapping between two regions from a set of
corresponding points . (with and without error estimates) in

t hese regions.
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CHAPTER 1 INTRODUCTION

1.1 Optimal Registration

There are numerous applications of picture processing
in which two similar images are matched with each other.
The purpose of.the matching process is to find the mapping
between the two 1images. For each point 1in one of the
images, this mapping specifies the corresponding point (the
similar point) in the other image. 1In rare cases, one image
is an exact replica of the other, and the mapping between

the two can be described by a translation and a rotation.

In most cases one image is a distorted version of the
other in geometry and gray scale. There are even
applications where the two 1images belong to different
objects. In these <cases the notion of a unique mapping
between the two becomes meaningless. The purpose of our
registration process is to find the optimal mapping between
two similar but distorted images. To define an optimal
mapping, a cost function which associates a value with each
mapping 1is wused. An optimal mapping is one which

corresponds to a minimum (or a maximum) of this function.
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registration methods according to the constituents of the

cost function.

In the first type, called plastic registration in this
work, the «cost 1is a function of only the similarity. The
optimal mapping of this type maps each point in one region
to 1its most similar (*) point in the other image. 1In the
second type, called elastic registration, the <cost 1is a
function of both the similarity and the deformations. This
function can be written as:

COST = DEFORMATION - SIMILARITY.
The optimal mapping of this type corresponds to the minimum
of this function, that is, to a low value of deformation and

a large value of similarity.

Both of these registration types have some advantages
and disadvantages over each other. Plastic registration, at
least in principle, is not uniquely defined for many image
pairs. This is the case when some regions within the images
lack sufficient details for unique identification of their
points. The computation time is large since every region in
one image has to be matched 1in this  process with every
region 1in the other image to f£ind its best placement. 1If,
as a result of noise, an error occurs in this process, the

(*) Here an intuitive notion of similarity is used.
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resulting mapping will contain unrealistic and 1large

deformations.

In elastic registration, the transformed image obtained
by the optimal mapping will not be in most cases an exact
copy of the other image. This could be the case even if it
1s possible to find a simple transformation that will
produce such a copy. The reason for this is the
contribution of the deformation term to the total cost.
Thus for example, if the two images differ only by a scale
change, the optimal mapping will be a smaller scale change

than the real one.

The method déveloped in this work combines the two
types 1in order to take in some of the advantages and leave
out the disadvantages. This was achieved by dividing the
mapping 1into two parts: global mapping and local mapping.
The global part of the mapping 1is obtained by plastic
registration, while the local part is obtained by elastic

registration.

The global mapping was restricted in our application to
be affine mapping which includes tramslation, rotation and
scale changes in three orthogonal directions. Because of
this restriction none of the problems associated with the
plastic registration cam occur. By absorbihg without any

cost the global differences between the two images, we can



a4Ll0Lld LO use tne elastlc registration metnod ror tnhe local

parts of the mapping.

Beside its simplicity, the reasons for restricting the
global mapping to an affine transformatiéns are based on
physical comsiderations. Global translation and rotation
are wusually the result of the position and orientation the
object relative to the scanner (camera). Scale changes
could result from differences 1in the resolutions along
different axes and also from different object sizes. All
other changes, on the other hand, are too anredictable to

be included in the global mapping.

In the more general case, a more general global mapping
can be used. The choice of this mapping, in our opinion,
should depend upon the application. For example, in
matching stereo 1images the projective mapping would be a
more appropriate choice, since 1t could account for the
difference between 1images taken from planar objects. The
local mapping in this case would account for difference

between the images due to the non-planarity of the objects.

To develop an elastic registration method we need the
following tools:

a. A quantitatife measure for the deformation.

b. A quantitative measure for similarity between

deformed images.




c. A procedure that uses the above neasures for

obtai ning the optinml mpping*

To develop a procedure for conputing the optinal
mappi ng, we used as a nodel a physical system that simnulates
a manual registration process. Assune that the object from
which the image was taken is nmade from an elastic material.
By applying external forces we can change the shape of this
object so that it will becone nore simlar to a reference
object. Let us assune that the external forces are derived
from a scalar potential function which at each point is
proportional to the simlarity (*¥) between a small region
around the point and the ~corresponding region in the

ref erence object.

As a result of these forces the object 1is deforned
until an equilibrium state is achieved between the externa
forces and the welastic (internal) restoring forces. An

equilibrium state of a physical system corresponds to a
| ocal mininum of the total energy, which in this case is the
sum of the potential energy and the strain (deformation)

ener gy e

Therefore, if the deformation is measured by the strain
energy, the equilibrium state corresponds to a local mninmm
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(*) It is assunmed that the proportionality constant is
negati ve. '
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of the cost function. If there are several possible
equi librium states, the one reached by the system depends
upon the initial state. Intuitively, if the initial state
is <close to the global mninum the probability of reaching
it is greater. In the inplenentation, if the state reached
by the process is not acceptable by the user, he can change

the initial state manually.

To nmake the global mapping a plastic process,. t he
energy required to obtain that state is not included fn t he
total energy. By changing the elastic constants of the
object it is  possible to <change the ratio between the
simlarity part and the deformation part of the cost
functi on. Thus, we can neke Ithe nodel nore plastic in

nature or nore elastic.

In the equilibrium state, the sum of the internal and
external forces acting on each point in the object is zero.
If the internal forces are linear functions of t he
def or mat i on, a set of three linear partial differential
equations to be satisfied in the equilibriun1 state can Dbe
obt ai ned* These equations can be solved iteratively for a
fiqite set of points arranged in a regular grid. The
mapping of points wthin the cells of the grid can be

obtai ned by interpolation.



Gven an initial approximation for the optiml mappi
(placenent) of the grid points, our nethod attenpts
improve it in the following way. The image function in
spheri cal region around each grid point is matched with t
image function in regions near the current placement in t
other image* A quadratic function describing the simlar
between the two inmages as a function of the displacene
form the current placenent is conputed* From this functio
the external forces acting on the grid point are derived a
a new placement in which the 'internal and the extern
forces are equal but opposite is conputed* This-procesé

repeated for the entire grid until convergence is achieved

To reduce the anount of conputation, the image functi
in t he spheri cal regions around each grid point
represented by a small set of features. These features a
the projections of the image function on a set of orthogon
basis functions. As the image is deformed by the abo
process, it is no longer correct to neasure the siml ar!
using the original i mge function. A nore appropria
nmeasurenent should be done by deformng the image funct

according to the current approximtion of the mapping.

To avoid the need to reconpute the features from t
defornmed image, which would take a considerabl e anount
time, we have selected a particular set of basis functio

which enable us to nodify the projections by using only f
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oper ati ons.

The registration -nethod can also be used to register
two images when a set of corresponding points in themis
given as data* In this case the force acting on each point
is a linear function of the distance between the placenent
of a point and the position of its correspondi ng point. | f
di fferent estimates of the error are associated wth
different pairs, the force on each point is weighted by the
associated error. Moreover, it is possible to acconmodate
error estimates with asymetric spati al di stribution, i.e.
different errors in different directions. Thus, this nethod
can be viewed as a generalization of the Iéast squar es

met hode

1.2 Overview

Most applications of image processing deal wth two
di mensi onal images taken from three dinmensional objects.
Many of them involve the problem of obtaining t hree
di mrensional information from the two di nmensional i nage. In
our application the inn.ge is already in three dinensions and
the problens which we have tried to solve are to identify
objects in such an image and to find their boundari es.
Chapter 2 describes these problens and the way in which our

registration nmethod can help to solve them
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Mat ching two dinensional inmages is a common technique
in inmage processing* A. large nunber of matching nethods
were devel oped by others* My of them are tailored to a
particular type of applications. Thus, in matching a pair
of stereo images it is usually assuned that the differences
between the two can be accounted for by different anounts of
hori zontal translation only. Chapter 3 contains a survey of
the inportant matching techniques along with their nerits

and shortcom ngs*

In chapter 4 we present an elenentary treatnment of the
theory of elasticity. This theory provides us with the
necessary tools to neasure deformations and wth t he
equi librium equations* The foundations of this theory were
devel oped during the eighteenth and nineteenth centuries*
The general equations of equilibrium were deduced by Navier
in 1821 using an oversinplified nodel which has only one
el astic constant* The correct form of these equations were
di scovered by Cauchy in 1822* In 1837 Geen showed that

these equations correspond to a state of m ni mum energy*

Chapter 5 deals wth the problem of nmeasuring the
simlarity between the images under deformation* A method
based on describing the image function by its projections on
a set of orthogonal functions is presented* The idea is a
very conmbn one, but its wuse to conpute t he Cross

correlation function is novel* A set of simlar functions
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(in two dimensions) was used by Hueckel [HUECKEL 1971] to

detect edges in two dimensional images.

The iterative solution to thé registration problem 1is
described in chapter 6. The solution is based on the finite
differences approximation. The main problem in the
iterative process is the derivation of the external forces.
To obtain a useful registration method, we had to abandon
the normal assumption of elasticity that these forces do not
depend on the deformations. Equipped with a method to
handle this problem, we describe the solution to the
registration problem when the set Nof matching points 1is
given as the input data. In the last sec;ion of this

chapter we discuss the problem of boundary conditions.

Implementation details and problems are the subjects of
chapter 7. The t;pics discussed there include the selection
of mesh size for the grid, the size of the regions to be
matched by the program, the global and the local matching

processes, and the elastic constants.

The optimal registration method developed in this work
was tested by registering (matching) several pairs of two
and three dimensional images. The results of these tests

are presented in chapter 8.
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Chapter 9 contains a summary of the dissertation, a
onpari son of our registration nethod with other nethod§,

nd suggestions for future research*



CHAPTER 2  MOTI VATI ON

2.1 Three Di nensional inages

Wthin the last’ decade several types of t hree
di mensi onal inmaging devices have been put into commobn use in
clinical practice. These devices, which are genérically
called Conputed Tonmography ( CT ) scanners, reconstruct via
mat hemat i cal conputations transverse sections, or slices of
the scanned object fromits X-ray projections [HERVAN 1979].
A section reconstructed by these CI scanners is a tw
di mensional array of voxels (volume picture elenments) that
contain values proportional to the absorption of the X-ray
beam by matter at the corresponding locations in the object.
This absorption is related to the specific densify of the
matter and therefore the array is a density imge of a slice
from the object. By stacking several parallel slices on top
of each other a three dinensional density image (voxels

array) is obtained.

Unli ke conventional imges which contain information
only about the visible surfaces of the objects in the scene,

the CT image contains density information about the entire
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volume being scanned. The s;andard way of displaying the
three dimensional image section by section 1is good -enough
for tumor detection, which is the main clinical use of these
scanners. However the 1low resolution of these image
sections and the <complexity of the anatomical structure
often makes it very difficult to identify some of the
objects that are present in the image and to find their

boundaries.

The theoretical resolution of CT images is proportional
to the square of the radiation dose used to obtain the X=-ray
projections. Increasing the radiation dose can cause damage
to the tissues. Therefore, there is a limit below which one

cannot reduce the volume of the voxels in the CT images.

To obtain sharp images with good horizontal and density
resolution wunder these restrictions, the thickness of each
slice must be made rather large. Scanners of high quality
can produce CT sections of the brain that have a horizontal
resolution of about 1 mm, but the vertical resolution 1is

about 8 mm.

Other difficulties arise when the <clinician tries to
visualize the structure of the anatomical objects in the
image or the spatial relations among them. It is a well
known phenomenon that a variety of different section shapes

results when even a simple object 1is' sliced in different
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directions. As a result, the task of mental reconstruction
of the geometrical structure of objects from their sections

requires a high level of training and is subject to human

errore.

For example, the human brain has, to a certain
approximation, a reflection symmetry about the plane that
passes between the left and the right hemispheres. Certain
ésymmetries between the two halves are symptoms used in
medical diagnostics. When the CT sections are not
perpendicular to this symmetry plane, they will contain in
general asymmetric images. The task of deciding whether the
observed asymmetry is real or only a result of the sectional

orientation is sometimes a difficult one.

A simple aid to the visualization task could be
provided by a system capable of reslicing the three
dimensional image through different planes [GLENN 1977].
While an easy task 1in general, reslicing is difficult to
perform in this particular case because of the thickness of
the CT slices. Reslicing algorithms work by interpolating
values between voxels of the original image. If the slices
are thick, as CT sections are, and their density resolution
is low, the resulting images will contain objects with
broken ©boundaries and their resolution will be even lower
then that of the original images. Even with 4dimproved

resolution the number of possible reslicing planes needed



for the task could be too I|arge*

The best aid to the visualization task could pr obably
be provided by a system that can display the surfaces of a
sel ected subset of anatomi cal structures in the imge* The
three dinensional surfaces <can be displayed on a two
di mensi onal screen using perspective projection, hi dden
surfaces renoval algorithnms, and shading techniques* If the
clinician could manually select the objects to be displayed
and could also rotate the inmage in three dinensional space,
he could easily perceive their shapes* To create this type
of image, the system nust know the geonetrical structure of

the objects in the inage*

The geonetrical structure of the patient's anatony is
of great inportance in many nedical applications* Radiation
t herapy, in which a radiation source is placed inside or
outside the body so as to radiate a tunor site, requires
this knowl edge to mnimze the radiation damage to other
ti ssues* Simlarly, planning a brain surgery requires this
know edge to locate lesions very precisely in order to

mnimze the damage to the normal brain*

Anot her  application area  where t he geonetrica
structure of the patient's brain is requfred, is the
interpretation of Positron Em ssion Tonography (PET)* These

imges, which Ilike CI inages are also given as three



dimensional voxels arrays, contain data about the metabolism
rate 1in the brain. To interpret these images the clinician

has to superimpose the patient’s anatomy map on the PET

image.

2.2 Surfaces Construction

Methods for obtaining the surface structure of objects
from their three dimensional images fall into two groups:

region growing methods and boundary detection methods.

Rhodes [RHODES 1979] develope@ an algorithm for three
dimensional region growing. Using a manually seeded voxel
his algorithm tests adjacent voxels first in the same slice
and later 1in the slices above and below, it then adds them
to the region set if they possess the same density level as

the seed voxel within some tolerance

Artzy et al developed a fast' algorithm for surface
construction [ARTZY 198l1]. They have translated the problem
into one of transversing a directed graph, the nodes of
which are the faces of voxels separating the inside of the
region from its outside. A region is defined as a connected

set of voxels that have the same density value.
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Both of the above methods use the density 1level of a
voxel as a criterion for deciding whether the voxel belongs
to the region or not. When the density resolution of the
image 1is 1low these methods cannot be vused. They were
successfully used to reconstruct the bone structure in the
image because their density 1is much different from the
density of soft tissues. If only the bone structure 1is
sought, 1images with high spatial resolution can be obtained

at the expense of the density resolution.

Many algorithmé are available for automatic detection
of boundaries in two dimensional images [DAVIS 1975]. Their
performance in processing CT images is rathér poor Dbecause
in many cases the boundaries of objects in thick slices are
not well defined. Methods which wuse information from
adjacent slices to guide the search and following of

boundaries in a slice produce better results.

Liu [LIU 1977] developed a boundary detection method
for three dimensional 1images wusing a three dimensional
gradient operator. The connectivity property of the
boundaries was wused to reduce their thickness and fo
eliminate unconnected edges. The effectiveness of this
algorithm depends on the complexity of the objects in the

image and on the angle between the surface and the slice.



To 1improve the performance of boundary detection
algorithms, interactive corrections and guidance methods
were 1incorporated 1into some systems [SUNGUROFF 1978].
Interactive methods are expensive to use because of the
human involvement. Their performance depends wupon the
capability of the operator to visualize the structure and to
identify the objects in the image, a task that these methods

are not supposed to rely upon but to aid.

When the set of the desired boundaries is found it 1is
possible to use them as a skeleton on which the surfaces are
spanned like a skin. Sunguroff et al [SUNGUROFF 1978] wused
B-splines to interpolate curves between boundaries on
different sections. The physician can interactively modify
the points through which these curves pass. The resulting

wire frame mesh is displayed under different rotations.

Since the objects’ boundaries in each slice are stored
in the computer as a sequence of points it is possible to
construct the surface as a set of triangular tiles. Each
tile has two adjacent boundary points from one slice and one
boundary point from the other slice as vertices. Getting

the surface requires a method for selecting the vertices.

Keppel [KEPPEL 1975] and later Fuchs at al [FUCHS 1977]
reduced this problem to that of finding a path in a directed

graph. Fuchs et al associated a cost function (such as the



tile area) for each possible tile and developed an algorithrn
that finds the optimal tiling with respect to this cost
function. A faster algorithm that gives suboptimal results

was developed by Cook [COOK 1980].

The above algorithms cannot be used without
modifications when an object has a single closed boundary ir
one slice and two or more <closed boundaries on the next
slice. Christiansen et al [CHRISTIANSEN 1978] have
developed an interactive method for handling this branching
problem. The wuser of their system has to supply a

connecting point between the two boundaries.

Branching is not the only problem of surface tiling
algorithms. When the shape of an object boundary on one
slice is not similar to its shape in the next slice, or even
when they are similar but one is translated with respect to
the other, automatic methods for tiling do not perform well
enough. To solve this problem the above system allows the
user to segment the boundaries into several sectionse. The
system separately constructs the tiling for each pair of

corresponding sections.



2.3 External Knowledge

When the number of objects in each slice is more than
few, there 1is also the problem of object identification
Except for some objects that can be automatically identifi

by their densities, the rest have to be identified manuall

There are two possible directions for dimproving ¢t
performance of these systems. The first 1is to devel
better algorithms to do the job. The second 1is to supp
the system ‘with external knowledge about the anatom
structure of the objects in the image. In 1interacti
systems the wuser supplies this knowledge by guiding t

system in its operations.

External knowledge can be helpful if the structure
the objects 1in one CT image is not significantly differe
from their structure in other images. Methods that u
external knowledge have to find except for true anomali
only the small individual variations between one person a
another. Although the shapes of the interesting objects m
be known in many d1image processing applications, the

geometrical relations may be different.

In medical applications this is not the case. Firs
the same objects are present in all images of the sa
anatomy and have similar shapes. Secondly, the geometric

relations among the intermal objects are also similar. F
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example, all human brains contain the same organs that have
similar shapes and geometrical relations. The same 1s true
for almost any other part of the body. The anatomy of the
human body can be described and studied in general because

of these similarities.

The very first problem in using external knowledge 1is
that of representation. The high 1level approach is to
describe the objects using common shape primitives which can
be adjusted to fit a particular instance of the object by
changing some parameters. Although several such
representations were developed we do not know of any such
system that can be wused to identify objects with such

complex shapes as human organs.

Even 1f such a system is developed there is still the
problem of describing geometrical relations. While a method
for dealing with a similar problem was developed by O‘rourke
[O’ROURKE 1980], it does not handle the problem of
preventing objects from intersecting each other. The amount
of research that has yet to bé done in this area led us to

look for a different solution.

Although it is difficult to find a general
representation system for complex structures, it is easy to
find a simple one for each case. A three dimensional array

of voxels with high resolution will serve our purpose. This
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representation can be constructed from a high resolution CT
image taken from post mortem material. Using an interacti?e
method, every object in each slice can be identified and its
boundaries traced. Assigning a unique object number to each
voxel in the image and storing the average density of each
object in an auxiliary table will complete the task. This
task has to be done only ounce and therefore the amount of
manual work involved is not essential. In the rest of this

work, this reference image will be called the anatomy atlas.

The assumption underlying this work was that every
brain has the same topological structure and that there
exists a continuous mapping (transformation) between the
anatomy atlas constructed in the above way from a "normal"
anatomy and any other CT image (with equal resolution) of
the same anatomy taken from a different person. The goal of
this work was to develop a practical method for obtaining
this mapping. The process of obtaining this mapping is

called image registration.

Once a mapping is found, every piece of structural
information can be mapped from one 1image to the other.
Object identification on the CT image is achieved by finding
for each wvoxel 1in the 1image the 1dentificétion of the
corresponding voxel in the atlas. Assuming tﬁat a surface
representation has been developed for thg atlas, it can be

deformed by this mapping and then displayed on a screen.
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Quantitative information, such as the volpme of an object
can be computed from the mapping and the ivolume of the
object in the atlas. The approach of this work was to
convert a set of difficult problems into a single problem,

that of finding the mapping between the anatomy atlas and

the image.

While several registration techniques for two
dimensional images are available, they cannot be effectively
adopted for our three dimensional case because of three main
problems. Three dimensional 1images contain much more
picture el;ments then two dimensional images. Since the
computation time of these methods 1s at least quadratic in
the number of pixels, the time required for three
dimensional images 1s unpracticably 1large. The large
thickness of the CT images i1s another problem that cannot be
handled by the available methods. Finally, most of these
methods were designed for a particular application, such as
the processing of stereo 1images, and therefore they can

handle only certain types of mappings.



CHAPTER 3 | MAGE REG STRATI ON TECHNI QUES

3*1 Introduction

Qur method for obtaining the geonetrical structure of
an anatony fromits CT image is based on finding the mapping
from the anatony atlas to the sensed inage. For each point
in the atlas, this mapping specifies the correspondi ng point
in the image and vice versa* The process of finding the
mappi ng bet ween t wo simlar images is called imge

regi stration or matching.

Wiile we do not know of any other inplenentation of

t hree di mensi onal i mge registration, this process is

simlar to the registration of two dinensional images, in

principle at least* Two di nensional registration is very

common in inmage processing* Its applications include the

processing of stereo inages to obtain the depth of points in

the imge, detection- and identification of objects, t he

construction of a single image from nultiple sensors and

many ot hers* This chapter contains a survey of t he

“inmportant techniques used for. inage registration along wth

their problems* Because of these problenms, we could not use
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them and had to develop a new method.

The process of 1image registration involves t
elements: local matching of a single point, and glob:
registration of the entire image. While in principle o1
can get a mapping by finding the matching point for ea
point in one image, this process takes too much time and
Ssubject to errors. If the mapping 1is assumed to |
continuous one Ean use this property to speed up the sear

and to reduce the number of misregistrations.

3.2 Local Matching

The common method for matching a single point is oft
done by template (pattern) matching which is an elementa:
part of many image processing techniques. A template
usually given as a rectangular array of pixels with 2n-
rows and 2m-1 columns (*). The template can contain
simple pattern such as an edge, a line or a spot pattern, «
a complex pattern representing an object such as a characte
symbol or even a piece of a picture. [ROSENFELD 197¢
contains many templates'commonly used for edge detection

noise cleaning, contrast enhancement, etc.

(*) Any other template shape <can be embedded in
rectangular array £illed with zeros.



Page 40

The purpose of the template matching process 1is tc
compute, for each point in the picture, a value proportional
to the similarity of the image in a window around the point
to the template. Similarity is measured by computing the

cross correlation function given by:
n m
C(k,1) = }:: E:: T(i,3) I(i+k,j+1)
imen j=-m

where T is the template array and I is the image array, or

by the normalized cross correlation function given by

C(k,1)
NC(k,1l) =
n m 773 n m Yo
2 2
DI B R mE
i==n j=-m iz=en j=-m
The term

n m
L e

i=en j=-nm
is constant for a given template and therefore has to be
computed only once or can even be ignored. The range of the
normalized cross correlation is from -1 to +1, and the wvalue

of +1 is obtained if and only 1if
I(i+k,j+1) = ¢ T(1,])

for all i“'n,oo,n and j”'m’oo’mo
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Since the tenplate is matched with nmany points it is oi
I mportance to reduce the tinme for each matching. Wen th(
tenplate and the window are far from simlar it nmay b<
possible to detect this fact using only a few pixels. Thi*
idea notivated the devel opnent of the sequential decisioi
technique [BARNEA 1972]. Using this technique the process
of computing the cross correlation value for a test point i*
aborted if sonme error function beconmes Jlarger than <
predeterm ned threshold. This error function is a measur e

of the difference between the two w ndows.

Adj acent pixels in an inmage are usual |y hi ghl ]
correl at ed, I.e. the inmage is a slowy varying function
Therefore, the cross correlation function has a broad peak
Random noise in the image wll reduce the maxi num val ue oi
the cross correlation and will also <cause a broad peak
Sel ecting the best matching point when the correlation peal

Is broad can be a problem

This problem can be partially solved by convolving th<
imges with whitening filters designed to maxim ze the cross
correlation peaks. These filters can be f ound tr,
considering the statistical properties of the inmage and th<
noi ses [PRATT 1974]. This process requires the conput at i oi
of t wo sets of eigenvalues and eigenvectors of thi
covariance matrices of the t wo I mages. Under th<

simplifying assunption that the inages can be nodel ed a;
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separabl e Markov processes w thout noise, the whitening

filter for a two dinensional inmages is given by:

p? -ptl+ ) P o\
—ptl+p?)y  (14p) 2 -p(l+pD)?

o2 -p(14p2) o2

where p denotes the adjacent pixels correlation. By setting

p*l this filter degenerates into the Laplacian operator.

If noise is present or if the statistics of the input
data differ from the statistics used in the design of the
filter, the performance of this correlator could be worse

than that of the basic correl ator

A low cost nmethod for sharpening the correlation peaks
iIs the statistical correlation function [HANNAH 1974]. In
this nethod the average value of the image function in each
region is subtracted from the image function in the
normalized cross correlation expr essi on. Thi s Cross
correlation function obtains its maxinum value if and only

i f
1(1,3) - a + c-T(i+k,j +1)

for all i and | in. the matching regions. Thus, this
function 1is suitable when differences in gain and offset

between the two inages are expected.
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_ The idea of reducing the correlation between adjacent
pi xel s was used by Marr and Poggi o [NRHQ 1979] in devel opi ng
a theory of human stereo'vision.. In this theory the inage
is reduced by filtration to a line drawn image. The only
information left for matching is the presence or absence of
an edge, and the orientation of the edge elenents. Thus the
width of the correlation peak in the direction nornmal to the
edge is only one pixel. On the other hand the peak is very

wi de along the edge.

Wen the two inmages to be registered differ from each
other not only by a translation but also by a rotation or
scal e change the above <cross «correlation function is no
longer a good neasure of simlarity. This can be easily
seen if we consider the matching of tw edges which are
rotated wth respect to each other. In such a case, it is
possible that the region with the highest value of the cross

correlation will be far from the truly correspondi ng region.

To measure simlarity between deformed inmages, one
needs to use features which are invariant under deformation.
This idea was behind the devel opnent of a matching technique
based on seven nor mal i zed and i nvari ant nonent s
[ SADDADI  1978] . The invariant nonments contain information
about the radial distribution of the intensity of the inmage
around the <center of the wndow.  Since t he radi al

distribution 1is orientation independent these nonments are
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invariant under rotation. If the moments are also

normalized by the size of the window, they are invariant

under scale change.

Tests of this mgthod indicate that it 1is relatively
expensive 1in ‘computation time for high resolution images,
and also inferior in performance to other methods. The main
problem with the invariant features is their 1low
selectivity, that is, they match too well with wrong windows

beside the right one.

3.3 Global Registration

An early 1image registration process using template
matching 1is described in [HANNAH 1974]. The two images to
be registered were a pair of stereo 1images. In stereo
matching, 1if the two cameras are properly aligned, most of
the difference between the two images can be accounted for
by a translation along the rows of the arrays. To find the
disparity between the images, a small region from one 1image
is used as a template, and a.search is conducted ian the
other image to find the point with the highest cross

correlation.



If the matching is to be done for every point in th
i mage the anmount of conputation will be enornous. To reduc
the search area for each point, the continuity assunptio
about the mapping can be used* This assunption inplies tha
two close points in one image will be mapped into two clos
points in the other imge* Thus, after a pair of matchin
points is found, a point adjacent to one of themis selecte
in one imge and mtched against a small search are
adj acent to the corresponding point in the other image
VWile this assunption reduce the search area and hence th
time, relying on it can cause an error in the wmtching o
one point to be propagated to other points. On the othe
hand, if the first pair is properly matched, this proces

will prevent large errors in matching the other pairs*

Anot her approach to reducing the search time based o
t he continuity assunption is the Herarchical Searc
[WONG 1978]¢ In this technique the search is conducted on
set of inmages that are increasingly higher in resolution an
larger in size (nunber of pixels)* The inage of the highes
resolution is the original imge, and the others ar
obt ai ned recursively by sanpling the previous inmage (using
suitable low pass filter) at a lower rate* The searc
begins with the |owest resolution inage which contains onl
a small nunber of test points* One or nore approxi mat

| ocations of good match for each point are selected* Th
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vicinities of these locations become the search area for the

next resolution level.

A second method based on hierarchical processing (gross
to fine) is the method of cooperative channels
(GRIMSON 1980]. In this method, based on the theory of
human stereo vision [MARR 1979], the two images are passed
through edge detecting operators of /different spatial
frequency resolutions. The edge operators are designed so
that the probability of detecting two edges within one

channel width is very small.

Starting‘with a low resolution operator, gross edges
are detected in each of the two images. A process that
matches edge elements from one image with edge elements of
the same orientation in the other image is applied. The
size of the search region for each edge element is
determined from the width of the edge detecting operator.
The process is then repeated for the next channel using the
approximated displacement from the wider channel. This
method 1is very effective for high resolution images

differing by a translation in a known direction.

The techniques considered up to this point are suitable
for registering images that differ by 1little or no
geometrical deformation at all. One possible way to

register a geometrically distorted 4image 1is to perform



various geometrical transformation on one of the images and
then match it with the other one in order to select the best
deformation. This "Rubber Mask"™ method [WIDROW 1973] 1is
practical only 1f the number of possible deformatiomns is
small and a good initial guess for the right deformation 1is

available [ROSENFELD 1976].

If unlimited amounts of geometrical deformations are
allowed, almost any two pictﬁres can be made to match each
other. Therefore, one has to limit the deformation at the
expense of matching goodness. A method based on this idea
was proposed and tested by Fischler et al [FISCHLER 1973].
In this method one of the images is represented by a small
set of templates (windows) interconnected by springs. The
goal of the method is to find a placement for the tgmplates
and springs network so that each template will match the
corresponding window 1in the other image while requiring as
little tension in the springs as possible. Solving this
problem takes, in general, an exponential time with respect

to the number of templates.

An algorithm~with polynomial execution time and space
was developed [FISCHLER 1973] for a particular structure of
the springs networke. In this particular structure the
templates and the springs form a linear chain. This
algorithm can also be used with a more <complex springs

network, but the solution obtained from it is not guaranteed
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to be optimal or even close to it. Nevertheless some good

results were obtained for small networks of templates and

springs.

For this method to work at all, ome should be able ﬁo
match each template with a window independently of the
geometric deformation of the spring network. Thus one needs
to use features describing the templates which are at least
iavariant wunder rotation, perhaps features like the
invariant moments. In Fischler’s implementation it was
assumed that the global parameters dqscribing the rotation
and scale transformation are supplied by the template
matching process. This information is difficult to obtain

from the cross correlation process.

Another probley with Fischler®s method is caused by the
effect of scale difference on the spring tension. It should
be noted that while linear in the number of templateé, the
algorithm is quadratic in the number of pixels in the image

and is therefore very slow for images of high resolution.

An iterative technique for gradually updating the local
registration of two deformed (two dimensional) images was
developed by Burr [BURR 1979]. Starting from two grossly
registered 1images, this method looks for the nearest point
in the other images that have similar features. This search

is done for every point in both images. Since this search



Page 35

is not reliable a new displacement (translatiom) value for‘
each point 1is computed as thé Gaussian average of the
displacements of all the neighboring points in the same
image plus the average displacements of all the points in
the other image that were matched with points 1in the same
neighborhood. This averaging process results in a
continuous deformation and it eliminates wmany of the

matching errorse.

The two mappings obtained by such a step are then used
to deform the two images and the process is then repeated
with a smaller neighborhood. Since the matching has to be
done on every point (in both of the images), and a pair of
new images has to be created in each step, this method 1is
very expensive in computation and can be used only for small

images.

3.4 Bidimensional Regression

Since the number of picture elements is very large even
in two dimensional 1images to allow the matching of every
point, attempts were made to find the mapping using only a
small number of ©pairs of matching points. The approach
usually taken, calle& Polynomial Wrapping [WONG 1977], is to
describe the mapping by a set of multivariate polynomials.

In this method, points in one image described by a pair of
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coordinates (X,Y) in the two dimensional case are mapped
points in the other image with the coordinates (U,V) by t

two polynomials

n n
a cxd. ¢k
oo DT e

j=o0 k=o0
and
n n
- N
e DL e
j=o0 k=o

If the number of matching pairs 1s sufficient, the 1lea
squares approximation can be used to find the coefficient.

of these polynomials.

The main advantages of this method are 1its simplici
and generality. Its disadvantages include uﬁrealist:
oscillations of the polynomials 1in areas lacking dat:
difficulty 1in providing interpretation for the numeric:
coefficients and numerical instability due to the roundi:
errors encountered in estimating the coefficients of ﬁig
order polynomials [TOBLER 1977]. Also, there is no coupli:
between the two polynomials and as a result the mapping
not always one to one. The method does not lend itself
hierarchical techniques, or to 1ncremental computatio:
because the addition of even a single pair of points c:

significantly change some of the coefficients.



This method 1is wuseful when there exists a mode
tailored to the application that describes the mapping
Thus for example, when two sensors from two different vie
points are wused to obtain the two images, the projectiv
transformation described by linear functions (in homogeneou
coordinates) is an appropriate model. Therefore this metho

is often used for sensor calibration.

A method for obtaining a smooth mapping from a set o
corresponding pairs of points was developed by Toble
[TOBLER 1978]. In this method called bidimensiona
regression the mapping 1s presented by a deformed grid o
points. Thus there is no need to use explicit functions t:
represent the mapping. The mapping values of points that d.
not fall on the grid points are obtained by linea

interpolation within each cell of the grid.

The method is an iterative one and works as follows
Given a data point within a grid cell, the mapping of th
four corners of this cell are used to find the 1interpolate
mapping of that point. If the result is different from th.
actual observation, it can be made exact by changing th
mapping of one or more of the cormer points. There ar:
infinitely many ways 1in which this <c¢an be done, an
therefore some <conditions can be imposed. Tobler’s choic
was that the mapping of each cormer would be as <close a

possible to a weighted average of the mappings of it
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i ei ghboring nodese

The advantages of this method are the snooth rmapping
nmd the good fit to the observations. The di sadvant ages
.nclude the possibility of folds 1in the mapping, the
.nability to aséign di fferent weights to different

)bservations or to control the anount of deformation in the

| appi nge



CHAPTER 4 THE ELASTIC MODEL

4.1l Analysis of Deformation

When the relative position of points in an object 1is
changed, we say that the objects is strained. The change in
the relative position of the points 1s <called deformation.
It 1is also possible to change the position of points within
the object without deformation and such changes are called
rigid transformations. The first part in the analysis of
deformation deals with separating the rigid transformation

from the pure deformation.

Consider a region within an object and let P and Q be
two points 1inside this region. To describe the changes in
the position of these points we will wuse a cartesian
coordinate system fixed 1in space. Let us assume that the
origin of this system coincides with the point Q before any
changes occur. Using this system let us denote the

coordinates of P and Q before the changes by:

X(P) = ( X, (P), X,(P), Xy(P) )

X(Q) = ( X;(Q), X,(Q), X3(Q) )

- 39 -
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and their coordinates after the changes by:

U(P) - ( Ui(P)¢ Ux(P)¢ Us(P) )

U(Q) - ( U(Q+ U(Q, U(Q )

W are concerned here with continuous changes only, and
therefore we can assune that Ui(F5 (for i*1,2,3) are
continuous functions and have as many continuous derivatives
as wll be required* It is also assunmed that these
functions represent a one to one transformation and have a
single val ued ‘i nver se. Because of the continuity we can
expand these function around the point Q using the _Taylor's

expansi on. Thus, we can write:

3 .
r— du.(Q
) AAX

U(P) » U (Q +
1 X L— j
=1

( Xs(P) - Xo(Q ) + ..
J J

Let us denote for brevity:
U, (Q

M . (Q) =
13 DX
3

The assunption that the functions Ui(P) have a single val ued

inverse inplies that:

det ( M, ,(Q) ) # 0

3

and we can also assune that det ( hﬂifig ) > 0, inplying
that the deformation cannot be an inverted (mrror) inmage

(i.e. reflection). The continuity assunption also inplies
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that Mij(Q) are continuous functions of Q. This property
will be used later to separate the global part of the

mapping from the local parts.

When the region is small enough the linear part of this
expansion 1s a sufficient approximation for our purpose.
The linear transformation is called an affine transformation
and 1t contains both rigid transformation and deformations
(*). The rigid part can be divided again into a translation
and a rotation. The translational part is given by the
vector U(Q). The mat?ix M(Q) contains both the rotational
part and the pure deformation part. To separate these two
parts let us tentatively write:

3

Mg = Z ik Ry

k=1

where the matrix ( Rij ) describes the rotation and the

matrix (D ) describes the deformation.

i3

To make this into a unique decomposition, we need a

definition of pure deformation. If the matrix ( D ) has -

ij

three real eigenvalues it represents a scale change in three

non coplanar directions, and therefore can be considered as

(*) The affine transformations are restricted in that
parallel 1lines mwmust transform 1into ©parallel lines. The
general linear transformation is the projective
transformation where the only restriction is that straight
lines transform into straight lines.



a deformation. This requirenent however is not sufficient
to ensure a unique decomnposition. If we require that the
scale changes will be in three orthogonal directions, then
the deconposition 1is wunique up to a rotation of the axes.
This requirenent is satisfied if and only if the wmatrix

( Dij ) is a symetric one.

To show that such a deconposition is always possible
( for det (M > 0 ) let us consider the change in the length
of a vector after the affine transformation described by M
Let X - | Xl’ Xi’ >f, ) be the vector bef ore t he
transformation and u- ( 0n, U, W) after t he

transformation. The length of U is given by:

3
length®>( U ) - 2_7-_”i uj -
-1
3 3 3
SO (IR IC O (REPE N
i »l k-1 1-1

3 3
B (Rl (I
k-1 1-1
where the elenents of A are given by:

= YR
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Thus Ais a real symetric matrix and therefore has three
real eigenvalues ( E.l ) and three orthogonal eigenvectors
( \ ) If X is one of these eigenvectors, i.e?* X * \g_

t hen
length?( U(Ti) ) - E.+ length?( Y, )

Let us now change the coordinate systeminto a new one in
which the eigenvectors of A are along the axis* Let us

tentatively select D in this coordinate system to be:

[{*[ o o)
0 JVE. 0
0 0 Ve,

D =

and therefore R is given by:

-1
Re MD

To conplete the proof we have to show that this R represents
a pure rotation. If we apply Ron Y, (i-1,2,3), D wll
only change their 'lengths and Mwill restore their |engths*
Therefore R preserves the length of three orthogonal vectors
and can bnl y be a rotation and reflection* T_he | at er

possibility can be reject ed because:

det ( R) * det ( M) « det ( D> ) > 0.



For a small enough region we can approximate a general
continuous transformation by a single affine transformation.
When the object is large we <can- divide it into several
regions, each of them small enough for the linear
approximation represented by U(Q) and M(Q) where Q 1is
convenietly chosen as the center of the region. We will now
show that the linear approximation for each region <can be
decomposed into two parts. The first part will be the same
for all the regions and therefore will be called the global
transformation. The second part will vary from region to
region and will be called local transformation (or

deformation).

Let 0 be a distinguished point in the object (the
center of the image, for example). For every point Q in the

object we can write:

U(Q) = U(0) + AU(Q)
M(Q) = {AM(Q)} M(0)
where
AU(Q) = U(Q) - U(0)
AM(Q) = M(Q) M~ (0)

This 1s always possible because det ( M(O) ) > O. When
Q = 0 then AM(Q) = I (where I is the unit matrix). Because

of the continuity assumption AM(Q) is also continuous and
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therefore for small | Q- O | the diagonal elenents of AM(Q
are close to one, while the off diagonal elenments are clos<

to zero*

In our application the global transfornmation is done b;
a plastic process* That is, we do not include the straii
energy required by the global transformation in the cos
function. Therefore, we can assune that the object ha;
al ready been transforned by the gl obal transformation an<
continue with the analysis of the |ocal deformations. I
this analysis UQ and MQ wll represent the |ocal

transformati on.

Again we need to deconpose the transformation into t
rotational part and a pure deformation part. This tim
however, since the off diagonal elenents of the Mare snai:
the deconposition can be done in a sinple way. Let us

wite:

MQ » D(Q + R(Q

wher e
M . + M. 1 Ju i
D._-(il Ii).-(_#_r+b_1)
Y 2 2 d'xj aXi
( M, - M. ) 1 ou, auj ‘
13 2 2 OX X,

Thus D is a symmetric matrix and R an antisymmetric one.
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Upon introducing the vector R whose conponents are:

Rl = 3132’ Rz = R13 and R?, - R21

we can see that the effect of the transformation given Dby

the matrix R is:

0 -R3 R2 /X| \ /y,>§<3, * R3-x2
R3 0 -Rl . Xz - ngxii n Rn)(g - R x X
-R, Ry 0 x3 _ Rl-xz - Rz-xl

Thus the change in X due to Ris orthogonal to X and to R
That effect 1is the same to the first approximation as a

rotation of X along the vector R by the amount of | R |

Since D is a symetric matrix it has three real

ei genval ues - E.1 and three orthogonal eigenvectors - Y':.

sati sfying:
D-Y: « E.-Y; ( for i»,2,3 ).

The three eigenvalues are called the principal extensions of

the strain, and the eigenvectors are the principal axes of

it.

The assunption that the deformation represented by M

(and D) is a small one, neans that the principal .extensions

are close to unity. If we wite:

Ei~1+e1
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then for small deformations the dilation of the region (the
volume change) 1is given by:

dv’ - dv
Q =

= (1l +e,) (1l + e,) (1l +e,) -1 =
dv 1 2 3

Given the diagonal representation of D we can examine a few

types of simple deformations.

The simplest type of deformation arises when the
deformation' matrix 18 position 1independent and is called
homogeneous deformation. There are several subtypes of the
homogeneous deformation. The first one 1is a simple

expansion (or contraction) characterized by:
e = e, = e, = e,
The dilation in this case 1is:
9 = 3e

Another subtype of the homogeneous deformations is the
simple shear obtained when the extension along one principal
axis 1s equal in magnitude but opposite 1in sign to that

along another axis, and the third is zero, i.e.



The third one 1s a deformation with zero dilation

characterized by

e, = e, = - - ¢
2 3 !

and is called dilationless stretch.

4.2 The Equilibrium Equations

Given the mathematical description of the deformation
of an object we mnow turn our attention to the relations
between the strain and the forces that cause then. There
are two types of force that act on the points within the
object. The first are the external forces which in our
application are derived from the similarity between the two
images which serves as a potential energy function. The
second type of force is the internal (elastic) force which
is caused by the deformations in the objects. These forces
keep the object together and tend to oppose the deformations

and are called stresses.

While the external forces can be described by a three
component vector F(X,Y,2), the stress can be described by a
symmetric tensor with six compohents. To see why the stress
1s a tensor and not a vector consider a plané passing

through a point in the object. The matter on one side of



this plane exerts a force which is a three component vector
on this plane. One component is normal to the plane and the
two others are parallel to the plane. The two tangential
components are called shear stresses. To completely specify
the stresses on a point we need ¢to consider three
intersecting planes and therefore we get nine components.

Let us denote this tensor by the matrix S = ( Sij ).

In the equilibrium state, the sum o0f the forces at
every point 1s zero and so is the resultant moment. Since
the external forces do not contribute ¢to the moment, the
resultant moment of the stresses 1s zero and therefore it
has to be a symmetric tensor. The sum of the intermnal
forces 1is given by the integral of the normal component of
the stresses on the surface of a small region around the

point. Using Gauss’s theorem which states that:
S_ds = Div § dv

we can get the equation:
3

oS
F, + Z—_ —31J .0 (for i=1,2,3)
ij
j=1
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The assunption that the relations between the stresses
and the strains are.linear known as Hooke's |aw, can be used
to express the stress .by neans of the strains. Using a
coordi nate system in which the deformation matrix is

di agonal the stress matrix is also diagonal and therefore we

can write:
3
511' E Aij e._1
=1
If the object (*) is made of isotropic and honobgeneous
mat eri al , only two independent constants will remain in the
above equations which <can be witten in a gener al

coordi nates system as:
Sy - AC{+e,+ .3 +2 ( D -&j,)_

where A and F are the Lane's elastic constants of t he

mat eri al .
These equations state that when the material IS
stretched in one direction it will shrink in the other two

directions. The quantity

(*) The object being discussed in this chapter is the nedia
carrying the picture and not the one of which the picture
was taken.
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is called Young's modulus and it denotes the ratio between

the tension on the object and its stretch in the sane

direction* The ratio of lateral shrink to |ongitudinal
stretch
— A
L- -
2 (A+ji)
is called Poisson's ratio. For all physical substances

hydrostatic pressure tends to dimnish the volume and it
follows that A is positive. If the object is inconpressible

the Poisson's ratio is one-half.

Replacing the stresses by t he strains in t he
equi librium equat i ons we get t he foll ow ng t hree

differential equations:

Je
PV2uj * (R+ A . +F -0 (for i-1,2,3)

These equations are associated with the name of Navier

4.3 Conpatibility and Boundary conditions

There are two fundanental boundary value problens in
elasticity. The first is to deternmine the distribution of
the displacenents in the object when the external forces are
given inside the object, and the positions of the object

boundaries are prescribed functions. This type of problem
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is known in general as the Dirichlet problem The second
probl em known as the Neumann problem is simlar except that
instead of specifying the positions of the boundaries, the
distribution of the forces on the surfaces of the object is
gi ven. It is also possible to mx the tw problens and
prescribe the position of parts of the boundary and the

external forces on the other parts*

There are no restrictions on solving the Dirichlet
problem when the functions that specifies the positions of
the boundaries are continuous* On the other hand, t he
Neurmann probl em does not always yield a unique solution. To
ensure a solution two requirenents have to be net* First,
the distribution of forces should be such that the resultant
forces and nmonents wll vanish. The second requirenent
consists of a set of six additional partial differential
equations that have to be satisfied. These equations are
known as t he Bel tram - M chel conpatibility equations
[ SOKOLNI KOFF 1956] . These equati ons are satisfied
automatically when the forces are derived from a harnonic

potential function.

Al t hough the Neumann problemis nore difficult to solve
it has an advantage in our application. Since we do not
have an a priori know edge about the boundary position, and
can only find the external forces that act on the object we

would like to let the registration process run wthout them



In our application the partial differential equations are
solved by a numerical method and the forcés are given 9only
at the points of a grid. Since it is always possible to
interpolate a harmonic function through a finite set of
points, we <can assume that the compatibility equations are

satisfied in our case.

There are two more points about these equation that
should be noted. First, the solutions of many problems in
elasticity are either exactly or approximately 1independent
of the value chosen for Poisson’s ratio [SOKOLNIKOFF 1956].
This fact suggests that an approximate solution may be found
by choosing a Poisson’s ratio simplifies the problem. The
two common values often used are zero and one~quarter which

i

correspond to A = 0 and A = r,i

Another possible simplification comes from the
principle of Saint-Venant and is used frequently in
practical applications of elasticity. This principle
asserts that different distributions of stresses within a
region which are statically equivalent (the resultants force
and moment are the same) will have approximately the same
effects on the state of the stresses far enough from that
region. This principle implies that if the boundaries are
far from the volume of interest, the particular distribution

of force on it will have little effect on that volume.



CHAPTER 5 MEASURING SIM LARITY BETWEEN | MAGES

5.1 _lntroduction

A basic requirenment from any registration nethod is the
capability of measuring the simlarity between two imges.
In particular, in our application we need to neasure the
simlarity under different deformations (transformations) of
the i mges. It is also desirable that these neasurenents
not take too nuch conputation tinme, since they have to be
performed many tinmes. In this chapter we describe a nethod
that was developed in this work for fast estimation of the

simlarity between two inage regions under deformations.

Wien two functions I (P) and J(P) over the same region R

are given, the follow ng distance measure:
h!
{“(‘ 1(p)y - J(P) |“eri LIn(n>0)

can be used to express the anount of msnmatch between the
two. The comon values of n are 1, 2 and CO, where the |ast

one corresponds to:

MAX | 1(P) - J(P) |
R



Page

In inmage processing applications it is often the c;
that different and unknown gains and offsets are used
obtain the images. Therefore it is advant ageous
normalize the image functions by subtracting the aver.
value of the image function from itself and to use

normal i zed cross correlation as given by:

[(l(P)-l)'(J(P)-J)df
C =

l&f,‘ Y
R J R

J

where | and J are the average values of these functioi
The range of values of this nmeasure is between -1 and +1 <

value of 1 is obtained if and only if
[(P) - a + b"J(P)
for all P in R

In inmage processing the image functions are given
their digitized values on the points of a rectangu
sanpling lattice. An approximation nethod is theref<
required to conpute the integrals in the cross correlat:
expression. \Wen the sane lattice of points is used
sanpl e the two functions the sinple approxinmation

replacing the integrals by suns over the lattice points:
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n % n /2
{Z(I(P)-I)z}.{Z(J(P)-J)Z}
L 1
1a1 1=1

is often used*

Al though it is clear that only in sone rare cases
one assune that the sane sanpling lattice is used for
two i mages, this approximation 1is wused successfully
several image registration applications* The reason for
usefulness is the high correlation between nost adjac
points in inmages* That neans that for nost areas in
image, the imge is a slowy varying function and as |ong
the corresponding points of the tw lattices are cl
enough the errors introduced by the above approxi mation

smal | »

Wen one of the pictures is a deforned version of
other we can no longer wuse this approximtion wth
affecting the quality of the registration process*
chapter 4 we pointed out that if the region is small eno
the effects of the deformation on the region can
approximated by a rotation and scale changes in th

or t hogonal di rections* The errors introduced by th
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deformations on the digitized cross correlation can be seen

in the following diagram:

!
9
Lq\ 1y | 45| 16

\

3 4 /15| 16
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The left image contains a deformed version of the marked
region 1in the right image. Using the digitized cross
correlation we will multiply the values of the pixels in the
two images with the corresponding indices. It is clear that
large errors could result from this process 1f adjacent

pixels have different wvalues.

If M(P) is the mapping between the two regions then the
right way to measure the similarity is by computing the
cross correlation (or other matching measure) between I(P)
and J(M(P)). Using the same example as in the previous
diagram, the new sampling grid is shown in the following

diagram:
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Unfortunately, M(Pi) is usually not one of the sampling
points and therefore an interpolation 1is required. 1In
practice, two methods of interpolations can be used. In the
first method, the interpolated value for each pixel is taken
from the nearest pixei in the original image. This kind of
interpolation 1is wused when the image resolution is high.
For images of low resolution, this method is too c¢rude and
the results are no better than those without interpolation.
The second kind is the linear interpolation in which the
value of the pixel is computed by fitting a linear function
to the pixels in the neighborhood. In three dimensional
images even a linear interpolation is a complicated and time

consuming process.
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Instead of performing the 1interpolation for every
single point, it is also possible.to reconstruct the image
function for a given region, and then to use the explicit
expression of the function for computing its values at M(Pi)
for all i. Altermatively, the required integrals can be
computed directly from their explicit expressions. This
process can be simplified if a set of ‘orthogonal functions
in the region R is used to express the image function. This

alternative is discussed in the next section.

5.2 The Orthogonal Profections

The set of all the plecewise continuous functions over
the region R is a Hilbert space. We define a norm on this

space by:

| £,8 | = IW(P) £(P) g(P) dr
R

where £(P) and g(P) are any two functions and W(P) 1is a

weight function satisfying:

0 < Jn Wdr < @©.
R

Let { H,(P) ¢ J = 0,1,2,¢c. } be a complete set of

3

orthonormal functions over R defining a Cartesian basis for

this space. That 1is:
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| Hi , Hj | = £W(P) Hi(P) Hj(P) dr = gij

(for all i and j). A function £(P) over R can be described

by its projections on this basis as the infinite sum

=)

Fj Hj
0
Fj = | £, Hj | = J: W(P)'f(P)'Hj(P) dr

The normalized cross correlation of the two functions

and g(P) can be computed from their projections by:

| £,8 |
C(f’g) = - - =
| £, 1" | g.g I
)
Z 17
j=o
= pos ] '/2 oy ) '/7_
NI I DI
j=o0 J=o

An approximation for C(f,g) is obtained by truncating

infinite sums to finite ones.

£f(P)

the



To find the projections of the image function we have

to compute the integrals:
Ij -J: W(P) I(P) Hj(P) dr

for j=0,1,... . Obviously, since I(P) is given only by its

values at the points of the sampling lattice { P, }, these

i

integrals can only be approximated by:

Ij = Z W(Pi)-I(Pi)~Hj(Pi)

PiER

'Similar to the case of direct evaluation of the cross
correlation, the region R may contain fractions of pixels at

its boundary as in the following diagram:

P N

~__ |7

Ignoring the effects of this phenomenon can cause additional

errors 1in the approximation. One way of reducing these
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errors is to use regions that contain more pixels. As the
number of pixels 1s increased the ratio between the number

of complete pixels to the number of partial pixels becomes

sSmaller.

Another way té reduce these errors 1s to take into
account the partial contributions of these partial pixels to
the integrals. A simple way of doing this is to divide each
pixel 1into smaller ones with the same value. This has a
similar effect to that of increasing the number of pixels in

the region.

In practice this method canm be used 1in the following
way. Let Ri be the common region of R and the pixel that

contains Pi, we can define Hj(1i) by:

H, (i) = ‘jh W(P) H,(P) dr .
3 R, 3

The projection of the image function I(P) over Hj(P) is now

given by:
n
Ij = Z:: Hj(i)-I(Pi)
i=1

If the shape of the region and 1its relative position
are fixed with respect to the sampling grid, it is possible

to construct tables of Hj(i). Using these tables, only one
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multiplication per pixel 1is required £for computing l'j

regardless of the complexity of the H,(P) and W(P).

3

When the relative position of the region and the
sampling grid of the image function 1is variable, the weight
function W(P) can be used to reduce the errors caused by
fractional pixels at the boundary of R. If W(P) is chosen
so that it vanishes toward the periphery of R, the relative
contributions of the boundary pixels to the integrals is

decreased and so is the error.

One of the main concermns in every registration method
is the amount of time required by the process. When the
direct method for computing the cross correlation 1is used,
processing time 1is proportional to the number of pixels in
the region R. When the projections on orthogonal functions
are used, the time 1is proportional to the number of the
projections and the time required to compute them. Since
the number of projections required for a good approximation
of the image function 1is usually much smaller than the
number of pixels 1in the region, a significant amount of

saving 1s possible.

It should be noted that the time required to compute a
projection in the above method is about the same as. the time
to compute one cross correlation without projections. Thus

1f the average number of cross correlations per pixel is
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more than twice the number of projections, this method has

the advantage in time.

There is another way of computing these projections
which 1in some cases <can take less time. This method is
based on the convolution theorem in the frequency domain.
To use this theorem let us consider a projection on a
particular base function as a function of the position of

the region <center. Denoting this function by I (Rc) where

J

Rc stands for the region center, we get:
*
I (R = I(P-R H,(P) d
j(RY fR< ) Hy(B) dp

By the convolution theorem:

F{V(IYP-Rc) Hj(P) dp } = F? I(P) ) - F{ Hj(P) }

Therefore, if we define Hj(P) to be identically zero outside

the region R, we can compute I (Rc) for the entire image by:

B

I(R,) = F'( F{ I(P) } - F{ H

j (P) }}

3

Since F{ H,(P) } can be given as data, and F{ I(P) } needs

]
to be computed only once for the projections, the time to
compute Ij(Rc) for the entire image is about the same as the

time for one Fourier transform.
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The number of complex operations per pixel in the image
using the Fast Fourier Transform is about logzm where m 1is
the number of voxels in the image. If the image contains
1283 voxels and a complex operation takes the same time as a
single integer operation, about 85 operations per.voxel are
required. If the region contains 83 voxels, six projections
can be computed at the same time it takes to compute one
cross correlation. This method is wuseful when it |is
possible to save all the projections in memory or in disk.
In our implementation both of these resources were limited

and we could not use this method.

5.3 The Base Functions

Even when the shape of the region and the weight
function are given, there are infinitely many possigle sets
of orthonormal basis functions. It 1is possible to take
advantage of this and to select a particular set of base
functions that will possess some additional useful
properties. As we have shown in chapter 4 an affine mapping
can be decomposed into a trauslation, a rotation and a pure
deformation. While it 1is possible to recompute the
projections under any transformation of the base functions
directly, the question is whether these projectiéns can be

computed from the untransformed set in a simple and cheap
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Translation is not a problemif the set of projections
for each point is given, and very little can be done about
the scale changes* |In many cases the effects of the pure
deformation can be ignored as they are usually small* Let
us therefore -examne the possibility of conputing the

proj ections under different rotations.

It is clear that we have to restrict the shape of the
regi on* If the region has the rectangular shape chosen
usual Iy for convenience, then under different rotations, it
will contain different lattice points. Therefore, a disk
shaped region for matching two di nmensional i mges, and a
sphere shaped regioq in the three dinensional case, should

be used*

If the base functions were invariant under rotations,
the projections would also have this property. It was
already pointed that a set of invariant features can be
obtai ned [SADJADI 1978]* These features contain information
only about the fadial distribution of the image functions
and therefore are not sufficiently selective. A different
way to say this is that a set of orthogonal functions that
are invariant under rotation is not conplete. A conplete
set of base function should also contain orientation

dependent functionse
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When the set of base functions is complete any function
can be represented by it. In particular a transformed base
function can also be represented as a linear combination of
untransformed functions. Since 1integration 1is a linear
operation a projection of the 1image function on a
transformed base function can be writtem as a linear
combination of the original projections. A problem that can
prevent us from obtaining the new projections in this way,
is the number of the available projections. TIf the 1linear
combination for a given projection 1includes projections
which were not computed, the method cannot be wused or the

results will suffer from truncation errorse.

To prevent this problem the set of base functions for
representing the image functions in a sphere is based on the
solid spherical harmonics functions (*). This set has the
property that it is divided into subsets of functions which
are closed under rotations. That 1is, 1f the coordinate
system is rotated, each member of a subset can be written in
the new coordinate system as a 1linear combination of the
original members of the same subset. Another property of
these functions is that each subset contains functions of
the same frequency spectrum, 1i.e. the 'number of zero
crossings 1is the same for all the subset members.

(*) For an extensive treatment of these functions see
[HOBSON 1931].
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In spherical coordinates (r,9,¢) the non negative

spherical harmonics can be written as:

n | sin n
Y m(r,9,¢) = r Pn m(cos e) co8 m¢ = r Qn m(9,¢)

n,

» ’

where P n 2Te Legendre’s associated functions of the first
’

kind. The functions Qn,m for m=-n,...,n satisfy:
27T AT
U sin® Qn’m(9,¢) Qk’l(9,¢)d9d¢ = Cn,m<g;k ol
By substituting X, Y and Z for r sin® cos$, r sin® sind and
r cos8 respectively, expressions for the spherical harmonics
as polynomials in X, ¥ and Z are obtained. Any polynomial

function of degree n can be written as a linear combination

of the terms:

2 4
Yn,m > T Yn-2,m » T Yn-&,m 2ottt
- n
the last term being " Y1 m °F T Yo according as n 1is odd
b4
or even. Thus one can construct a complete set of

orthogonal functions in a sphere by multiplying the
spherical harmonics by polynomials of even powers of r. The
exact form of these polynomials depends wupon the weight

function W(r). For W(r) = 1 the first ten functions are:

H = C-1
o
B = ¢ )% x

= c.(5)"
H, = C-(5)™% ¥
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=4}

c-(5)™ 2

B, = C(5.7)""* XY

Hy = C-(5-7)% 1.2

By = C-(5-7)"*»%-Z

Hy = C-(5-7)"%« (X% Y?) [ 2

Hg = C-(5+7/3)'% (X + ¥ - 2 79

Hy = C-(3 7)™ (3 - 5-(X + Y +2%)) | 6

where C is a nornmalization constant. In the inplenmentation
the projections are stored as integers and C is selected so

that the full range of these integers will be used.

In the case of two dinensional inmages the first nine

functions are:

HO - Cel
M) » C o2 X
H2 = C‘Z'Y

Hp - Ce«(3)'"-(2 r?2 - 1)

Hi - Ce(6)'" (X - YY)

K- C-(.6)'"% 2 -X-Y

He - C-(2)Y- (3-r% - 2) -2-X
"H - C ()M (3 r - 2)-2 1Y
Ho - C'(1O"*. (6 -r* - 6-17 + 1)

(0]

These functions have zero crossings which are simlar to
those of the functions used by the Hueckel's edge |ocating

operators described in [HUECKEL 1971] and [HUECKEL 1973].
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5.4 Rotating the Projections

The base functions which depend only on r are invarian
under rotation and so are the projections on them. The bas:¢
functions that contain the spherical harmonic Yl n ? tha

’

is, those functions that contain X, Y or Z ( Hl, HZ and H.
are examples) transform under rotatiomn like the component:

of a vector. Therefore we get:

Ié = (J:I(P)'HQ(P) dp =

3 3
-fRI(P) Z Ry By (P) dp = Z Ry 1
j’l j:l

for k=1,2,3.

To find the behavior of the second group of functions:

that includes H H H H and H let us define ¢

4’ 5° 6’ 7 8
symmetric temsor Aij by:
A = X +X for 1,3j=1,2,3.

Under rotations the components of this temsor transform by:

3

3
A1 7 § Rk % 'z Ry % =
1=1

k=1
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303
- Zklk""jf“m
k-1 1-1

This can also be witten in matrix notation as:

A - RART
Since we can express the functions Hh - H, by the conponents
of A we can find their transfornmation. Because two matri X

multiplications are required to transform A a |arge nunber
of nultiplications and additions are required to obtain the

transformed projections*

Fortunately, in our application the local rotations are
smal|l enough to enable us to use an approximtion for then#
In chapter 4 we pointed out that for small deformations the
rotational part of the affine transformation is given by the
antisymmetric part of the affine matrix. If the three
conmponents of the antisymetric part are witten as a vector
R - (Fg,F§9Rz) the length of which is assuned to be very
smal | conpared with the unit vector then the correspondi ng

rotation matrix is given by:



Ignoring terms which are quadratic inm the compoanents of R we

get:
14 = I4 + Rx'I6 - Ry~15 -2 Rz-I7
Ij =I5+ R.-(I, =/3:Ig) + RI, - R, I¢
Ip I, -R I, + R - (I, + J’é’»xs) + R+ I
I7 = I7 -.RX'IS - Ry'I6 + 2-RZ'I4
Ip = Ig + (3R I - ERy-I6
The projections of two dimensional images are

transformed by

Ii = Il-cose + Iz-sine
Ié =-Il~sin9 + Iz~cos9
Ia = 14-c0329 + Is'sinZQ
Ig =-14-sin29 + Is-cosze
Ié = 16-c059 + I7-sin9
I; =-16-sin9 + I7'cose

where © is the angle of rotation.

5.5 Invariant Features

It is also desirable to be able to define an 1intrinsic
coordinate system for each region. If the projections are
computed in this system instead of the common coordinate

system of the entire image, a set of rotational invariant



features for each region will be obtained. This set of
features 1is useful for the initial stage of the registration
process when the global rotation between the two images 1is

not yet known.

To explain the notion of an intrinsic coordimate system
let us consider an example from the case of two dimensional
images. If a regiqn contains a single edge dividing it into
two subregions of different gray levels, then the normal to
this edge passing through the center of the region (if only
one such normal exists) defines an intrinsic orientation for
the region. A coordinate system whose origin is at the
region center and one of its axes coincides with this normal

can be established.

In the three dimensional case a single 1line 1s not
sufficient since the other two axes can rotate around it.
To define an intrinsic coordinate system for three
dimensional regions a method from the theory of classical
mechanics 1s used. The region 1s considered as an object
whose density 1is given by the iﬁage function. The inertia

tensor of this object is defined by:

2 -
I, = f;( Sij rt - XX, ) dr (for 1,§ = 1,2,3)

The components of this tensor can be easily computed from

the projecﬁions of the region.



Since this tensor is Hermitian it has three real
eigenvalues and three orthogonal eigenvectors. If the three
eigenvalues are different, their eigenvectors can be used as
the coordinate axes. The identification of the three axes
is done by sorting the eigenvectors according to the
magnitude of their eigenvalues. Four different right hand
coordinate systems are possible because the sign of the
eigenvectors is arbitrary. To select a unique sign for each
of them, the vector from the region center to the center of
mass 1is wused. The sign of two eigenvectors is selected by
requiring that their scalar product with this vector will be
positive. The sign of the last vector is selected so that a

right hand system is obtained.

It is also possible that two or even three -eigenvalues
will be equal, or that the center of mass will be located at
the center of the region. 1In these cases we cannot select a
unique coordinate system without using additional
information. These cases occur when the image function has
some symmetries i1in the region. For example, two equal
eigenvalues (or almost equal) can occur when the region
contains subregions of different densities and the shape of
the boundary between them is invariant under a rotation in a
direction that 1s ©perpendicular to the boundary. In this
case the specific orientation of the two axes parallel to

the boundary does not make any difference. Since the
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ntrinsic coordinate system is used only during the first
tage of the matching process, problematic regions can be

gnored.



CHAPTER 6 _ _THE | TERATI VE SOLUTI ON

6.1 The Finite Difference Method

In the introduction we have described a nodel for
registering a pair of deformed images. The nodel sinulates
a process in mhiph an elastic object (one of the images) is
deformed by forces derived from a potential function (given
by the simlarity between the two images). The equilibrium
state between the internal and external forces corresponds
to the optinal régistration* A set of partial differential
equations that are satisfied in the equilibrium state was
given. In this chapter we describe a nunerical procedure to

solve these equations in the context of image registration

Let us denote the coordinates of a point in one of the
i mages bef ore t he deformations by (XY, 2), and its
coordinates after the deformation by (U, V,W. In the

equilibrium state the values of (U VW are given by the

sol uti ons of:

Y]

JX

2
CI‘7
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RL

2
CIVW'FCZ—D—;‘PFz“O

where Cl and 02 are the elastic constants of the material, ©

is the volume expansion at the point (X,Y,Z) given by:

QU OV JW
+ +
X 0Y oz

and Fx, Fy and Fz are the three components of the external

force.

In most cases including ours, these equations cannot be
solved analytically, and therefore a numerical method must
be used. In the finite difference method, a rectangular
grid 1s placed on the the region of interest and the
equations are solved by finding the values of the functions
(U,V,W) at the grid points. Let us denote the grid points

by the triplets (i,j,k). The grid is constructed so that:
X(i,j,k) = i-h , Y(i,j,k) = j-h , Z2(i,i,k) = k-h

where h is the mesh size. The values of U, V and W at these

points will be denoted by U(i,j,k), V(i,j,k) and W(i,j,k).



Page 7

Assuming that U, V and W are analytic functions vwithi
the 1image region, 1t is ©possible to approximate thei
derivatives at any point by their values at adjacent points
To find these approximations we use the Taylor’s expansion

of these functions at the point (i,j,k). Thus for example:

JU(L,1,k) k% Pu(L,i,k)
U(i+l,j,k) = U(i,j,k) + h: + —- 7 + e
0X 21 ox°
dU(1,1,k) b FU(L,1,k)
U(i-1,3,k) = U(1,5,k) = he + — —t e
X 21 OX

From these equations we get by subtraction:

QU(1i,i,k)

OxX

S [U(i+l,3,k) = U(i-1,3,k)] / 2h + O(h>)

and by addition:

Yu(i,1,k)
sz

= [U(i+1,3,k) - 2 U(1,j,k) + U(i-1,j,k)] / h

2 4 oo

To simplify these expressions we can choose the units of th
coordinates system so that h = 1. Using similar expression:
for U(1,j+1,k) and U(i,j,k+l) we can get an approximatio

for the Laplacian of U(i,j,k):
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V2U(1,3,k) = [ U(i+l,§,k) + U(i=1,3,k) + U(L,j+1,k) +
+ U(i,j-1,k) + U(i,j,k+1) + U(i,j,k=1)

- 6 U(1,5,k) ]

In our application the distance between adjacent grid points
is quite large and therefore we will use an approximation
based on the wvalues of the functions at nineteen grid

points:

sz(i,j,k) = [ 2U(4i+1,3,k) + 2U(i-1,3,k) + 2U(i,j+1,k)
+ 2U(i,3=-1,k) + 2U(i,j,k+1l) + 2U(i,j,k-1)
+ U(i+1,3+1,k) + U(i+1l,j=-1,k) + U(i-1,3+1,k)
+ U(i-1,3-1,k) + U(i+1l,j,k+l) + U(i+l,j,k=-1)
+ U(i-1,3,k+1) + U(i-1,J,k=1) + U(i,j+1,k+1)
+ U(i,j+l,k=-1) + U(i,j-1,k+1l) + U(L,j-1,k=-1)

- 24U(i,j,k) ] / 6

This approximation has the advantage of providing a smoother

solution.

The second term in the equations <can be approximated
by:
08
- = [ 4U(i+1,]3,k) + 4U(1i-1,3,k) - 8U(i,3,k) +
9% + V(i+1l,j+1,k) - V(i-1,3+1,k) + V(i-1l,3-1,k)
- V(i+1l,j-1,k) + W(i+l,j,k+1l) - W(i=-1l,j,k+1l)

+ W(i-1l,j,k=1) = W(i+l,j,k=1) 1 / &
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If the external forces at each grid point denoted by
Fx(i,j,k), Fy(i,j,k) and Fz(i,j,k) are given, three linear
equations can be written for each internmal grid point. If
the values of U, V and W at the boundary points are also
known, we will get a system of 3n linear equations with 3n
unknowns, wheré n 1s the number of intermal points. In
principle at least, this system of linear equations <can be

solved by direct methods.

In practice the number of grid points is so large that
an 1iterative method must be used. When an iterative method
is used, each equation from the set is dealt separately. A
different wunknown is selected 1in each equation, and the
equation 1s then solved for the selected unknown wusing the
values from the previous approximation for the other
unknowns. In the Gauss - Siedel method, the new wvalue for
this unknown 1is immediately used in the solution the other
equations. In the Jaccobi’s method, 1its wuse 1s deferred
until all the other equations are also solved. An iteration
step counsists of one such solution for each equation in the
set. These steps are repeated until the process coaverges,
i.e. wuntil there is (almost) no difference between the

values obtained for each unknown 1in two consecutive steps.
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A sufficient (but not necessary) condition for the
convergence of these two nethods is that the coefficient of
the selected unknown in each equation will have at |east the

sane magnitude as the sum of magnitudes of all the other

coefficients in its equation (*). This condition is called
the weak dom nant diagonal. | f Cﬁ * 0 in the differential
equations, the set of I|inear equations can be separated into

three - i ndependent sets each involving only one of the
functions U V or W The weak dom nant diagonal condition
is satisfied when the selected unknown in the equation
obtained for the point (i,j,k), is the value of the function

at that point.

From the two nmethods the first one (Gauss - Siedel)
will usually converge faster. Another advantage of it, is
that no additional storage is required for holding the new
value of the unknowns. On the other hand, the process is
nore sensitive to errors (which can occur in our case) and
as we wll see Ilater <can also cause sone problenms in

conputing the external forces.

There are several nethods for accel erating t he
cohvergence of these iterative processes [YOUNNG and GREGORY

1973]. They are particularly inportant when the initial

() The <condition also requires that in at |east one
equation inequality will hold. The equations that satisfy
the inequality are those that contain values at the boundary
poi nt se
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approximation is far from the solution. Similar effects to
these acceleration methods (over relaxation) can be obtained
in our case simply by changing the elastic constants during

the process.

When C, # 0, it is not possible to separate the 3n
equations 1into three independent sets and the weak dominant
diagonal condition is no 1longer satisfied. The coupling
between the equations requires wus to solve the three
equations for each point before moving to the next point.
As for the —convergence, it depends upon the values of the
terms that approximate the mixed derivatives. When the
deformations are small, these terms are also small and so is
their influence on the process. For 1large deformations

these terms can sometimes prevent the convergence.

6.2 The External Forces

The main difficulty in solving the set of equations of
our model 1is <caused by the external force terms. This
difficulty is the result of two problems. The first one 1is
caused by the lack of an explicit expression for these
terms. The second and the more important one 1is the fact
that in our model, the extermal forces depend on (X,Y,Z) and

also on (U,V,W).
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In nost of the problens in elasticity, the deformations
are caused by forces acting only on the boundaries of the

objects, and therefore these terns are identically zero at

the internal points. In other problens, where the externa
forces act on the entire object, such as those that involve
the gravitational force, it is usually assuned that the

deformati ons are small enough so that these forces have the
sane values both in the defornmed state and the undeforned

st ate.

In our nodel the forces are derived from a potentia
function given by the simlarity between the two inages
(wth a negative sign) . The simlarity is measured in our
nodel by the bross correlation between the density function
in a region around (X Y,Z) in one inmge and the density
function in a region around (U V,W in the other imge.
Therefore the simlarity is a function of (X Y,Z U V,W and
so are the forces. The dependency of the cross correlation
function on (U V,W is too strong to be ignored. It is also
possible that the initial approximtion (obtained from the
gl obal mapping) for (U V,W wll be quite far from the
equi l i brium values for some grid points. In these cases the
conputed values for the forces could even have the wong

si gn.
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To handle this problem we have wused the Lagrang
model of elasticity in which the external forces at e
point are functions of the deformed position of that poi
Thus for each grid point the similarity is a function
(U,v,W). The dependency of this function on. (X,Y
required to obtain the gradient 1is only through
functions U(X,Y,Z2), V(X,Y,Z) and W(X,Y,Z). Denoting

similarity function by C(i,j,k,U,V,W) we can write:

JdC(1,j,k,U(X,Y,2),V(X,Y,2),W(X,¥,2))

F_(i,j,k) = -
X X
Jc U JC OV oc oW
= . <+ 1 + .
Ju 00X Jv X W Ox
OC(i,j,k,U(X,Y,2),V(X,Y,2),W(X,Y,2))
Fy(19j9k) = =

oY
Jc  Ju Jc OV JdCc oW
OU. DY T 3 Oy T bw. oy

JC(i,j,k,U0(X,Y,2),V(X,Y,2),W(X,Y,2))

F,(1,3,%) -

dc du  Jdc JV  Jc oW
Ju Dz+ v sz oW Oz

To compute these expressions for different values
(U,V,W) we need to have an expression for C(i,j,k,U,V,
If a direct method for solving the set of equations has b

used, the expression for C would have to be accurate fo
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large range of (U, V,W. Wen an iterative process is used,
the possible <changes in the values of (U V,W are small.
Therefore, an approximation of C in a small region only is

requirede

It was already said that the simlarity between two
regi ons is a function of the defornmation. That is,
C(i,j,k,UV, W depends on the values of (U V,W at the point
(i,j,k) and also on their values at other points. In the
approximation of small deformation, the dependency i's
through the deformation matrix which contains the first
derivatives of U V and W Wien these derivatives are
approximated by finite differences, their expressions do not
contain uci,j, k), V(i,j, k) and Wi, j, k) but only
UCi £, j £, K+l V(idl, 4, k) and Wi +1, ) +1, k+l )
Therefore, in a small region around the point (i>,k) the
simlarity function can be conputed wusing a fixed

deformation natri X.

O course, it is only possible to conmpute C(i,j,k) for
a small nunber of values of (U V,W in any region. From the
values of C(i,j,k) at those points in the region we can get
an analytic expression for C(U V,W wusing the |east square
approximation. The sinplest approximation - a function
linear in U V and Wwould result in constant force terns.
Wien the values of (U V,W are close to the point of maximm

simlarity, the correlation function will have a peak. In
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this case the direction of the force vector is changed as
result of small changes in (U V,W. This can cause 1
iterative process to oscill ate around t hat poi i

Therefore, a quadratic approximtion written as:

C»C +C-U+ C-V+C*W+ C s« U> + C -V> + C_ -W-
0 u Vv W uu A\YAY W

+ 2C * U-V + 2C_» VW + 2C e« W U.
uv VW wu
is nmore appropriate*

When we substitute t he approxi mations for 1
derivatives of U V and Winto the definitions of the fore

we get:

F (1,3,k) = t UCi+l,j, k) - UCi-1,j,k) ] <[ Cuu-U(ij, k)
+ Co' V(i,j,K) + CowWi,j,k) +C [/ 2]

+ [ V(i""l,j:k) - v(i-lij!k) 1-[ Cu 'U(isj.’k:

v
+ Cy-V(i,], k) +C\,W-V\(ifj,k)+Cvf2]
+ [ W(i+l,j,k) = W(i=-1,3,k) 1-{ Cuw'U(i,j,kf

Cy V(i i, K) +C Wi, j, k) +C [ 2]

+

Fy(i ,J, k) - [ UCi,j+, k) - UG j-1oKk) T Cuu" UCT, k)

+

Cov-V(I,j, k) + CowrWI,j, k) +C /| 2 ]
+ [ V(L,j+1,k) = V(i,i=1,k) 1-[ C .y UL, 4,k
T Oy V(L,3,k) + C w(i,i,k) + ¢, / 21
+ [ W(isj+1:k) hnd W(i,j"l,k) ]'[ Cuw' U(l ,j,k

+ Cow V(i,j,k) + Cuw-Wi,j,k) + Co /2]
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Fz(i,j’k) = | U(igj,k'*'l) - U(i,j:k‘l) 11 Cuu'U(ixj’k-)

+ Cuy V(i,3,k) + C W(i,j,k) +C /2]

+ [ V(i,j,k+1) = V(i,],k=-1) ][ CuV'U(i,j,k)

+ CVV'V(i,j,k) + va°W(i,j,k) + CV / 2]

+ [ W(i,3i,k+1)

W(i,j,k=1) 1.1 cuw-U(i,j,k)

* C o V(i,3,k) + C_ +W(L,j,k) +C/ 2]

These terms introduce more coupling between the sets of
equations for U, V and W and also make them nonlinear. The
nonlinearity is not a serious problem, since the equations
are solved by an iterative.method which can handle it. It
can only affect the convergence of the process. The problem
caused by the presence of U(i,j,k), V(i,j,k) and W(i,j,k) in
all the three equations for the point (i,j,k), is handled by
solving in each step of the iteration the three equations

for every point simultaneously.

The main problem with the quadratic approximatiomn 1is
caused by the fact that 1t does not always represent a
function with a peak. That is, the surfaces of constant
value of C are not always ellipsoids. While in principle at
least this should not happen, in practice when the least
square approximation is used, this can happen quite often.

To handle these cases, we need the tools to detect them.
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The position of the peak (or the extremum) of this

function is given by:

grad C(U,V,W) = 0

The values of (U,V,W) at this point are the solution of the

following system:

o
=
+
o

<
<
+
o

c
=

]

1
(o)
~
N

C ‘U+C _+*V+C_ W= =0¢C_/ 2
uw vw ww w

For these equations to have a solution the determinant of
the coefficient matrix should not wvanish. In real
applications, the vanishing of the determinant 1is a very
rare casé, unless all the coefficients are zeros. Given the
solution of these equations, it is possible to translate the

origin of the coordinates to that location and to obtain an

expression which does not contain the linear terms.

The mixed terms ( Cu *y-v, C w-V'W and Cuw-U'W ) can be

v v

eliminated by rotating the coordinate system. The
coefficients of the quadratic terms that remain after this
rotation are the eigenvalues of the above matrix. The
quadratic expression for C represents an ellipsoid 1if all

the eigenvalues of this matrix are positive. The necessary

and sufficient conditions for this are:
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c +C + C__+C + C_ -C - C - C - C > 0

Cuu' CVV. CWW + 2 .CUV. CVW. CWU.

- C 'Gz - C ~C2 - C -Cz >0
uu  vVw vV uw ww uv

The last expression is the coefficients determinant. These
conditions are obtained by considering the three invariants
of the bilinear form and noting that their signs must be the

1

same as in the diagonal representation.

When one or more of these eigenvalues 1s negative, the
correlation funétion has a minimum along the direction of
the corresponding eigenvector. This can happen 1in two
cases. The first is when the region used to approximate C
contains a real minimum of C. The other case 1is when the
eigenvalue was small and became negative as a result of the
approximation. A small eigenvalue often happens when the
region contains an edge. In this case tangential components

of the force relative to the edge can vanish.

The problem in using the quadratic expression for C 1is
caused by negative eigenvalues. In this case the force
becomes stronger as the distance from the extremum point
becomes larger. This will cause unrealisticly large changes
in (U,V,W) in a single 1iteration step. To prevent this
problem we need only set the +value of the negative

eigenvalue to zero. This process consists of finding the
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rotation matrix that transforms the bilinear form into a
diagonal one, setting the negative eigenvalues to zero and
finally transforming the diagonal form into the original
coordinates. This process consumés a relatively 1large
amount of time, but in most cases it results in a faster

convergence of the iteration process.

6.3 Three Dimensional Regression

Up to this. point it was assumed that every point in the
image is equally important. This assumption is justified in
this work although for some points in the image it is easier
to locate their —corresponding point in the other image.
These distinguished points usually have a sharper peak in
the <c¢ross correlation function than the othersl Therefore,
the external forces that act on them are stronger than the
external forces that act on the others when they are at the

same distance from their “true’ placement.

There are however many applications where it is
required to £find the optimal mapping based on a set of a
relatively small number of corresponding pairs of points in
the two 1mages, instead of the entire set of points in the
image. These corresponding points could for -example be

located by special operators or could be entered as data
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It is also possible in these <cases that a .different
values of error estimates will be associated with each pair
of data points. These error estimates specify the
probability of finding the ‘true’ point (in one of the
images) at a gi§en distance from the data point. When the
probability distribution 1is symmetric its shape 1is usually

described by thé Caussian:
EXP (=~ r2/ GJ)
where r is the distance from the data point.

The assumption about the symmetry of the probability
distribution 1is often made because of the difficulties an
handling the more general case of asymmetric distribution

given by:
Pr(U,V,W) = EXP ( - E(U - U’,V = V', W - W") )

where E 1is a second degree polynomial representing
ellipsoids centered at (U’,V°,W") (*). This type of
registration problem is very common in many areas. Tobler
called this problem in the two dimensional case by the name
of bidimensional regression [TOBLER 1977], and gave an ad
hoc method for obtaining a smooth solution without
considering the errors.
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(*)The conditions that the surfaces obtained from E = const
are three dimensional ellipsoids are given in section 5.2.



Qur method can be used to obtain an optiml mapping
wth or without these error estinmates. Before delving into
the details let us first discuss the cost function to be
m ni m zed by thé optimal mapping. We will first assume that
no error estimates are present, we will also leave out the
deformation part of the mapping and assune that the mapping
is represented by three polynomals Ptf Pv and Pw. let us
dendte by (Xn1Ym’%h) t he codrdinates of the point in one

imge and by (U ,V W) the coordinates of its correspondi ng
m m m

poi nt in the other imge. Using the least squares
approxi mati on nmeans the mnimzation of the followng error

function:

ERROR’

' 2
+ [Wm - owxmstszm)] }

When error estimates are available and the probability
distribution is symetric each termin the sumis multiplied
by a weight which is the wdth of the corresponding
Gaussian. Wen the distribution is asymetric but the error
function becones

N

—
ERROR? - ) EU - UV o VW - W)

s

where E is the sane second degree polynom al that appears in
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the exponent of the probability distribution.

The cost function that is minimized in our method 1is

COST = DEFORMATION + ERROR2

As in the matching, we associate the second term with the
potential function £from which the -external forces are
derived. The solution of this problem 1is obtained by
solving the three partial differential equations without the
need to give an explicit expression for the deformation
part. The solution of these equations is again obtained by
the finite difference approximation using a rectangular grid

of points.

If the point (Xm,Ym,Zm) falls on a grid point then we
can easily get the components of the extermal forces at that
point. More often however, the data points will not fall on
the grid points ©but in a cell whose vertices are the grid
points. In such a <case some sort of 1interpolation 1is

required. Let (i,j,k) be a grid point such that:

X(i-1,3,k) < xm < X(i+1l,j,k)
Y(i,j-1,k) < Ym < Y(i,j+1,k)

2(1,3,k=1) < 2 < 2(i,j,k=1)

we will use the following notation:
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A= 0 oxm o X(i, ), k) )
AT, = Uy vk

AZp = Doz v oy 3100 )

U (1od0k) = L UG+, 3,k) © y(i-1,j,0) ] / 2
Uy aduk) = 0 yex, 341, - U(id-1,0 1 1 2
Y3k = L UL, k41 - Ui, j,k-1) | / 2

and W

and simlar expressions for v,. Vy,

Using |inear approximation we can wite:

VX Ym' 2 T Y(i»J. k) + AX UMi.j.k) +.Y U 5si,j,k)
+AZ U (1,5,k)

VX Ym Zm = V(i.J»k) + AX VAi.j. k) +"YV§i,j, k)
+AZ YV (1,5,k)

V\(XT.’Y ,Zm) = W(i,i,k) + AX W«(j.‘?ﬁ*‘-k»}-/'f' AV wof4 4, k)

i m . »ngJL,
+ Az V\/Z(i,j,k)

- The conponents of the external force at (i,j>x) are given

by :

F (1,5,k) = Ji;- U (1,5,k) + s: v o(L,3,k) + or W (1,5,k)
m m m

Fy(i,j,k) = -i—;: Uy(i,j,k) + oF Vy(i,j,k) + i:m Wy(i.:l,k)

Fz(i,j,k) = O: Uz(i,j,k) + D: Vz(i,j,k) + —§-:— wz(i.j,k)

m
m m
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where the expressions for U(Xm,Ym,Zm), V(Xm,Ym,Zm) and
W(Xm,Ym,Zm) are substituted after the differentiation for
Um’ Vm and Wm respectively. These expressions are linear in
U(i,j,k), V(i,j,k) and W(i,j,k) but are quadratic in the
others. When there are several data points within the grid
cells that have the point (i,j,k) as one of their corners
the total force is simply the sum of their contributions.
Grid points tﬁat are not corners of cells with data points

have no external force to act on them. Their positions will

be determined by the internal forces only.

To solve the equations obtained in this way we wuse an
iterative method. Again, the three equations for each grid
point are solved simultauneously to increase the convergence
rate of the method. Unlike the <case where the ‘true’
position of each grid point 1is unknown and the <correlation
function has to be computed again in each step using a
lengthy process, here we can store the expressions for the
forces and just recompute them each time using the new

values of the unknowns.
)

There is only one more point tﬁat should be mentioned
here. If the Gauss - Siedel iterative method is used, it is
possible that the placement of one point will be moved so
far from 1its previous placement, as to change the sign of
the partial derivatives. To avoid any problems from this

Jaccobi’s method should be used.



D4 boundary onditions

The Dirichlet boundary conditions specifying the U, V
and W at the boundary grid points are the easiest to use.
They are also the most restrictive, 1.e. they have the
largest effects on the solution. These values <can be
obtained from the global mapping. Since the global mapping
is only a linear approximation to the optimal mapping, it is
not necessarily a good one for every point on the boundary.
As a result, one can expect to get larger errors near the

boundary which can affect the entire registration.

There 1is, however, a way to reduce their effects on the
solution in the region of interest. One siamply has to make
the grid larger than the image, so that the boundary grid
points whose values are fixed will be far away from the grid
points where the solution is important. The price for this
solution 1s paid by the additional computations required by

the extra points.

The Neumann boundary conditions of specifying the
derivatives of U, V and W at'the boundary grid points have
the advantage in our application. These conditions can also
‘be obtained from the global mapping. Thus, 1if the global

mapping is given by:
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v / i o\ Q11 €12 Ci3 X\
VI m [S20] * %21 S22 83 Y
Wi €30 €31 Gz Gy
then
iZZ = G . jZE ; c s wea Jﬁy = G
Dx 11 v 12 aZ 33
In our inplenmentation, the boundary points of the grid Ilie

on the faces of a rectangular box. Assuming that one of
-these faces contains the points (O j,k), the X-derivative of

Uon this face can be approxi mated by:

JUC0,1,k)

Jx

= [U(l,j,k) = U(Osj:k)] = G

11

Simlar expressions can be witten for the X-derivatives of
V and W It seens |ike we have obtained one equation for
each additional unknown (in this example: U(O,j,k)), but in
fact, the system of all the equations does not necessarily
have a unique solution (*)e If however the forces are
functions of (U V,W as is the case here, a unique solution

wll result*

Since only one boundary <condition is sufficient for
obtaining the value of U(0,j,k) it is clear that we cannot

use the other conditions. This can result in | ar ge

O M W ey pul R iy g G A wy AN A N A W AN S N S SN uE Ak R el AR gy e A N T TRV VR R Wy SR MU Y R T AN WS W AR

(*) This a general property of the Laplace equations.
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di spl acements of the boundary points. To mnimze this

probl em we change the above condition into:

U(Osj)k)- [U(lyjsk) - Glll / 3 + [U(Ooj+1sk)

+ U(0,3=-1,%k) + U(0,j,k+1) + U(0,3i,k~1)] / 6

whi ch nmakes U(O, j,k) be the average of the above requirenent

and the follow ng two:

At the edges of the boundary box, for exanple, at. th«
points (0,0,k) the <conditions used in our inplenentatiof

ar e:

U(o,0,k) - [WI,0,k) - G + UO0,I1,k) - Gl / 3
+ [U(0,0,k+l) + U0,0,k-1)] / 6

Finally, the conditions at the vertex (0,0,0) of th<

boundary box is:

U(0,0,0) - tU(',0,0) - G o+ U(0,|,0) - Gp2
+ U(0,0,1) - Gia] / 3

Simlar conditions are used for V and Wand for the othei

boundary points.



CHAPTER 7 IMPLEMENTATION

7.1 General Considerations

The registration method described in this work 1is
general one and can be used to register any pair of simila:
images. The 1implementation of this method was howeve:
tailored to our particular application. While in othe:
application areas, each time a new pair of images it
registered, in our case, one image of the pair is always th
same and only the other one is new. The fixed image is the
atlas and the new one is the CT image. It is possible t«
take advantage of this fact to reduce the amount of

computation required by the process.

The most time consuming action of our registratior
process 1is the computation of the projections of the image
function on the orthogonal base. Since the atlas image 1i:
always the same, 1its projections need to be computed onl;
once and they can be saved on a disc or a magnetic tape
Becaﬁse of this, the process was designed to use projection:
on more points in the atlas image than points in the C

image.
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Wiile it is possible to store the projections of a
many regions as one nmay want, there is a price for it
Because the size of the computer nmenory is limted, it i
not usually possible to keep the entire set of projection
in menory and therefore an overlay structure is required
Even when large conputers are used the nenory is paged, an
only sonme of the pages are kept in the main nenory. Si ne
the projections are wused again and again, they have to b
read from the paging device many times. This operation se

a limt to the nunber of regions that could be used.

The nunber of regions in the CT inage is the same a
the nunber of (internal) grid points. This nunber i;
determned by the inmage size and the nesh size. Thi
resolution of the mapping depends on the nesh size since th<
mappi ng of points other then the grid points can only b<
found by interpolation. A lower limt on the effective nesl
size is inposed by the resolution of the image through th<

size of the correlation regions.

In order to take into account the deformation of thx
image in the simlarity neasurenents, the projections of th
i mage function on the orthogonal base should be nodified (o
reconputed) according to the deformation. The deformatio
within a region is approximated in our method by the Iinea
deformation matrix and the elenents of this matrix ar

approximted by finite differences. For each grid poin
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(ifj>k) these approximations contain the mapping val ues at
the (ixl,j+1,k+l) grid points. Therefore, the radius of the
spheri cal region in which the linear approximation is valic
is close to the distance between two grid points. Thi s
radius should on the other hand be greater than the
resolution of the CI inmage or else only the proj ecti<:)n 01
the constant function (Ho) wll not be identically zero.
The thickness of the CI slices used to test our nethod was
8mm Therefore, we have used a grid with an 8mm nesh size

and regions with a radius of 12mm

The nunber of useful projections for each regiot
depends on the size of the region and on the anount oi
detail (texture) within a region. The nmagnitudes of the
projections decrease wth the nunber of zero crossings
(frequency) of the corresponding base functions. The
relative contribution of the different projections to the
cross correlation function is proportional to the square ol
their values. To limt the error in this function to about
one percent, only those projections whose nmagnitude is
greater than one tenth of the Jlargest projections an
required. Being limted by the size of the conputer nenory
we have nostly used only the first four projections from th<
set given in section 5.3. Increasing the nunber o:
projections did not produce significant effects on th<

resulting mapping.
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7.2 The d obal WNMappi ng

The first step in the registration process is to find
the global nmapping* This is done by placing a grid on the
CT image and conputing the projections for  each grid point.
W assunme that the two images are already grossly registered
so that both the scales and the orientations- of the tw are
simlar. If this is not the case, then the grid placed on
the CT image is scaled and rotated according to our best

know edge-

Based on our estimate of the simlarity between the two
imges we can set a limt to the displacenent between the
two. ‘This limt is used to define the size of the search
area in the atlas. For each point in the grid a search is
conducted to find the nost simlar point within the search
area in the atlas. The simlarity is nmeasured by the cross
correlation of the corresponding projections. A weight s

assigned to each internal grid point by:
wii,j,k) « EXP(-d?(i,j,k))

where d(i,j,k) is the distance between the best position of
the point (i,j,k) and the aver age positions of the best

points obtained for its six neighbors.
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From these weighted positions a global mapping is
computed wusing the 1least squares approximation. TIf the
deformation matrix of this mapping 1is close to the unit
matrix, the global mapping is accepted and the elastic part
0of the registration process can begin. Otherwise, a mnew
grid based on this mapping is put on the CT image and the
projections are computed wusing the new grid as the
coordinate system. Using the new projectioﬁs the searcﬁ
process 1s repeated and a new deformation matrix is computed

again.

The iterative process of finding the global mapping 1is
repeated until there is (almost) no difference between two
successive mappings. Recomputing the new projection 1is
required only if the global mapping contains large
deformations. If the global mapping is mostly a rotation
and translation the new projections can be easily obtained
from the old ones using the procedure described: in section

)

5.4.

It should be noted that the reliability of this process
depends to a great extent on the images themselves. If the
images contain sufficient details so that many points can be
uniquely identified during the search process, the resulting
mapping 1is quite good. In other cases the particular point
selected as the most similar ome to any grid point depends

on the order in which the search 1is conducted. A useful



Page 104

Strategy 1is to select from the set of equally similar points

the one which requires the smallest displacement.

7.3 Local Matching

After the global mapping 1is either computed or
estimated, the main step of the registration process can
start. The main problem in this step is to £find 1in each
iteration <cycle and for each grid point the components of
the external force. To find these components we need 1in
this method to £find the quadratic approximation to the

similarity (cross correlation) function.

Since it 1s possible to evaluate this function only for
those points for which the projections are available, we
have to use the least squares approximation method. In
order that this approximation will be useful it should
represent a function that has a wmaximum point near the
‘true’ placement of the grid point. The assumption that the
cross correlation function <can be approximated by a
quadratic expression with negative eigenvalues (*) 1is
usually valid only in a small region around the maximum.
When values at points which are far from the peak are used,

(*) The eigenvalues are related to the second derivatives of
the function which are negative at the point where the
function attains its maximum.



Page 105

the quadratic approximation obtained from the least squares
method <can represent a variety of functions with undesired
properties for our process. If the peak of the function 1s
too narrow compared with the mesh size of the atlas grid,
this situation will occur frequently. Making the mesh size
smaller will force wus to conduct a lengthy search for the
peak. Another related problem is that for many points
instead of a peak the function has a plateau, and therefore

there is no point in searching it.

A method was therefore required to determine whether
the program should search for a peak and if so a way to
reduce the search time. The cross correlation function has
a peak only if there is one in the autocorrelation function.
This function could have a peak 1if the sum of the magnitudes
of projections other than Io (the projection on the constant
function) is greater than zero. The 1larger this sum 1is
compared with 1Io, the more narrow 1is the peak. This
property can be used to sharpen the peak by omitting Io from
the c¢ross correlation or to make it wider by assigning a
larger weight to Io and smaller ones to the others. In the
extreme case we would like to use only the Io term, but in
this case we have to compute the similarity by the absolute

value of the difference between the Io’s at the two points.
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When the peak is wide, a coarse grid «can be . used to
approximate the similarity function. If the quadratic
approximation obtained in this way has negative eigenvalues,
we can find the position of its maximum. If it does not
have a peak, no external forces will be applied to that grid
point. Using a fine grid around this point and a small
weight for Io, the program recomputes a new quadratic
approximation for the similarity function. Of course, the
same atlas grid is used for these two approximations, but in

the former case the program uses every Nth point in it.

When the second approximation is computed, the signs of
its eigenvalues are tested. A positive eigenvalue can cause
the iteration process to diverge as the the force in the
direction of the corresponding eigenvector pulls the point
away. This force becomes larger and larger as the solution
runs away from the right place. Therefore a positive
eigenvalue should be zeroed if the approximation 1is to be
used. Since a transformation that <can cause round off
errors 1s applied to the coefficients of the similarity
function, the program changes the positive or zero

eigenvalues to a small negative value.

The number of points used by the least squares .method
is 43 = 64 1in the three dimensional implementation and
42 = 16 in the two dimensional case. It 1s -easier to

compute the approximation and also the errors are smaller 1if
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a coordinate system in which the points are symmetricall;
distributed around the origin. The <change to another

coordinate system is trivial.

It is clear that this process takes a <considerablc
amount of time and therefore its use should be economized.
Since in each iteration step the placement of each gric
point <can only be changed by a small amount as 1its
neighboring points are holding it back, the same
approximation can be used during several iterations. Wher
the iterative process converges, new approximations are
computed. These are used to improve the mapping by further

iterations.

To obtain the improved approximations the Cross
correlation function 1s computed using modified values for
the projections. These modifications are done by the method
described in section 4.4. using the approximated mapping tc
find the rotation vector. If the amount of pure deformation
is too large they should be recomputed by changing the
region shape to the appropriate ellipsoid and deforming the
orthogonal base functions. In our implementation
recomputations were not required. By avoiding this process
we could divide the process into several tasks that could

fit the available memory.



Page 10¢

The equilibrium position for each point in eact
iteration 1s first <computed in the absence of external
forces. The similarity function 1is transformed to E
coordinates system in which this point is the origin. The
components of the extermal force are obtained in this
system. The three equilibrium equations rewritten for the
displacements from this origin are solved simultaneously,
and the solutiéns are saved until the equations for all the
other internal grid points are also solved (Jaccobi’s
iteration method) . This prevents the possibility of
obtaining the wrong sign for the derivatives of the mapping
which could happen if a new placement for a grid point cross
over an old placement of its neighbor. At the end of the
iteration <cycle the new values are also used to compute the

mapping of the boundary points.

7.4 The Elastic Constants

Selecting the values of the elastic constants 1s also a
point which deserves some discussion. The partial
differential equations and as a result the finite difference
equations can be simplified by setting A + P = 0. When the
two images to be matched contain many details, the solution
is influenced mainly by the external forces. In such cases

this simplification does not have undesired effects. When



Page 109

the 1images <contain large areas lacking details the process

behaves in the two dimensional case differently than in the

three dimensional case.

The reasons for this can be seen by considering Hooke’s
law 1in a coordinate system in which the strain matrix is
diagonal. 1In the two dimensional case this law 1s written

as:
Si = )\'(el + e2) + Z-P-ei
Setting A + p = 0 we get:
S1 = P-(el - ez) and 82 = }.x~(e2 - el)

Thus in the absence of any stress deformations are still
possible provided thak they have the same sign and
magnitude. This phenomenon is of <course very undesirable
because 1t c¢can cause spontaneous shrinking or expansion in

regions /lacking details.

Setting A + p o= 0 in the three dimensional case, we
will get:

Sp = pCep —ep-ey)

g = prisep v ey - ey

3 = p-(-e) - ey +ey)

[72]
]

[72]
]

and the only solution when
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is:

The behavior of an object with this property 1is <certainly

strange as can be seen by setting

In respouse to a force pushing in one direction the object

will shrink in the other two directions.

Setting A = 0 is the next simple <choice as only one
constant is left. We have found that in two dimensional
case a negative value for A (-P <A <0 ) can sometimes
produce better looking results. The three dimensional
examples that where tested contained enough details to allow

us to use A\ = —F without problems.

A suitable value for p depends also on the amount of
detail in the images. When the amount of detail is large
the peak of the cross éorrelation function is narrow and the
forces are strong. A small value for P in this case could
cause problems 1f the program finds a peak 1in the wrong
place. This is more likely to happen during the first few
iterations. Thus the best way is to start with a large

value for F and to decrease it as the process converges.



CHAPTER 8 RESULTS

The optimal registration nethod developed in this work
was tested by registering (matching) several pairs of two
and three dinensional images* The results of these tests

are presented in this chapter.

In each exanpl e, one of the imges is <called the
reference inmage and the other is called the test inmage. The
reference images contain sever al objects each of them is a
connected set of pixels having the sane density (gray)
val ue. In the two dinensional cases an object is defined by
a set of points on its outer boundary. The boundary of the
object is obtained by joining these points wth straight
l'ines. The object consists of all the pixels inside this

boundarye

In one of the three dinensional exanples, the objects
were defined as set of pixels whose coordinates satisfy
certain inequalities. In the other three di mensi ona
exanple the reference image (the atlas) was constructed by

stacking a set of two dinensional inmages (slices).



In the tests, a grid with a nmesh size of eight pixels
was placed on the test images and the optimal placement of
these grid points were conputed by the registration process.
The placement of points other than the grid points were
conputed using linear interpolation. The inverse mapping,
that is the point in the test inmage which corresponds to a
given point in the reference imge, is obtained by |ocating
the point in the test -inmage whose mapping point is the

nearest one to the point in the reference inmage.

In the two dinmensional exanples the inverse mapping was
used to deform a rectangular grid representing the reference
image (the reference grid) which was then superinposed on
the test inmage. The inverse napping was also used to find
the mapping of the boundary points defining the objects.
The superinposed boundaries were obtained by drawing |ines

bet ween consecutive boundary points.

A different nethod of presentation was wused in the
t hree di mensi onal exanpl es. Pictures of the three
di mensi onal structures from several view poi nts wer e
generated by making sone of the objects opaque and the
others transparent. The reconstructed images were obtained
from the reférence i mge using the mapping conputed in the
regi stration processes, and the results were displayed in

the sane way as the reference images.



Xn tne ursc exanple, <z ¥F&=2 Ve EEE . memmmamam e
synthetic imges shown in figure 1, was used. The righ
hand side of figure la contains the reference inmage and th
left hand side contains the test image that was registere
with it. Figure Ib contains the result of the registratio
process. The left hand side of figure Ib shows the deforne
reference grid superinposed on the test i mge. The righ
hand side of figure Ib shows the deformed boundaries of th

objects in the reference inage superinposed on the tes

i mage.

[AG Y

Figure la. Synthetic inmages for registration.
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Figure lb. Results of registration.

The same pair of synthetic 1image wused in the first
xample was also used in the second example, but this time,
oise was added to the test image. The gray values of the
hite ©background, the large gray ellipse and the four small
iack objects are: 200, 125 and 50 respectively. The noise
evel added to each pixel of the test image was a randomly
enerated number in the range ([(-50, 50]. Figure 2a shows
he noisy test 1image (left hand side) and the reference
mage. Figure 2b contains the results of matching the noisy
est 1image with. the reference image. There is hardly any

ifference between these results and those shown in figure

b.
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Figure 2a. Synthetic images with noise.
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Figure 2b. Results of registration.



A different pair of synthetic images was wused 1in the
next example shown in figure 3a, where the test image is onmn
the left side and the reference image is on the right side.
The results of the registration process are shown in figure
3b. A large amount of grid deformation can be seen in the
lower right region of the gray ellipse. As a result of
this, there 1is some disparity between the superimposed

boundary and the edge of the ellipse in this region.

Figure 3a. Synthetic images for registration.
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Figure 3b. Results of registration.

Figure 4a shows the same two images from the previous

example except that a noise was added to the test image.

Figure 4b shows the results of registering this pair of

images, and like the first example, they are almost the same

as those obtained for the clean test image.
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Figure 4a. Synthetic-'imges w th noise,
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Figure 4b* Results of registration.
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Figures 5a, 6a, 7a and 8a contain four CT images of a
human brain (the 1left hand side of each figure) together
with their corresponding atlas (reference) images (the right
hand side). The atlas images contain the ventricles, the
caudate, the thalamus and the putamen. The rest of the
brain was taken as one object with a single demsity value.
The regions around the brain, both in the CT and in the
atlas 1images have the density value of a bone. Figures 5b,
6b, 7b and 8b show the results of registering these pairs.
In most <cases the boundaries of the anatomic objects are
properly placed. Some misregistrations occurred in regions
where the atlas and the CT images have different density
values (for example, at the boundary of the brain near the
central sulcus and the lateral sulcus where the CT images

contain dark regions).



Figure 6a. A CT slice with its atlas inagee-

Figure 6b. Results of registration.
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Figure 7a. A CT slice withﬂk
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Figure 7b. Results of registration.
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Figure 8a. A CT slice with its atlas image.
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Figure 8b. Results of registration.
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The nekt two examples are of the three dimensiona
registration. In the first one synthetic images were use
both for the reference 1image and for the test 1image
Figures 9a-9c¢ show three views of the reference object ar
the test object. Each object contains a barbell inside
torous within an ellipsoid. The test image differs from tt
reference image by the lengths of the ellipsoi@ axes, by tt
shape and orientation of the torous, and by a rigi
transformation (a translation and a rotatiomn) of tl

barbell.

OBJIECT <EFERENCE

Figure 9a. Three dimensional objects.
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OBJECT REFERENCE

Figure 9b. Three dimensional objects.

OBJIECT FEFERENCE

Figure 9c. Three dimensional objects.
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Figures 10a-10c show the six slices of the test object
(image) that contain ﬁhé torous. These simulated CT images
were created by averaging the densities of slices whose
thickness were 8 pixels. An image made of 20 such slices
stacked on top of each other was registered with the
reference object. Figures lla-llc show three views of the
deformed reference object (the reconstructed images) next to
the original test object. Figures l12a-12c show three views

of the reconstructed object next to the reference object.

SLICE NO. 8 ' SLICE NO. 9

E ‘Figure 10a. Simulated CT slices.
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SLICE NO. 18 SLICE NO. 11

SLICE NO. 12 ' SLICE NO. 13

e i s e i et b e = s 2 i < e

Figure 10c. simulated CT slices.
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RECONSTRUCTED ORIGINAL
IMAGE IMAGE
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Figure llb. The reconstructed and the original objects.'
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Figure 12a. The reconstructed and the reference
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objects.
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Fi gure

Figure 12c. The reconstructed and the reference objects-
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It is clear that the shape of the reconstructed object
falls between the shape of the original object and the
reference object* The shapes of the reconstructed ellipsoid
and the. reconstructed torous are quite close to the shapes
of their corresponding objects in the original . inmage but
larger errors occurred in the reconstructed barbell* These
errors are due to the | arger deformations required to

translate the barbell through the torous*

The final exanple 1is the registration of an inage
obtained by stacking fifteen CT slices with the anatony
atlas of the brain* The atlas wused in this exanple was
constructed from thirty slices wth a thickness of 4 mm
each* Four of the slices in this atlas are shown in figures
5a, 6a, 7a and 8a* Six views of the atlas as a three
di mensi onal sem -transparent object are shown in figures
13a-13c*  Four viems‘of the reconstructed brain are shown in

figures 1l4a and 14b*
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FRONT S TEN

FERR %IEW

Figure 13b. Three dinensional atlase.
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13c. Three di nensi ona
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Fi gure atl as.»

TOP VIEW SIDE YIEW

Figure 14a. The reconstructed brain



FECOMSTRIICTED BFHIN

F| gﬂr:e. 14thhe ._r-eco.r\;t_;l;c-:_t"ed brain.

Figure 15 shows the top view of the reconstructed brain
(left hand side of the figure) and the top view of the atlas
(right hand side). By conparing these two views it is
possible to see that the reconstructed brain is rotated
-(anti-clockw.se) wth, respect to the atlas and that the left
side of the reconstructed brain is closer to the viewer than
the right side (thellil.‘eft side is bright.er th‘éh the right
si de) . Unfort_ﬁnately, it was not possible to judge the
accuracy of the reconstructed brain since the CT i mages

where taken froma living person.
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Figure 15. The reconstructed brain and the atl as.



CHAPTER 9 __ CONCLUSI ON

o*1 Sunmmary

The work described in this dissertation was notivated
by the need to |locate objects and their boundaries in three
di mensi onal i mges obtained by stacking successive CT
i mages* This task is difficult- because of the conplexity of

the anatom c structure and al so because of the poor quality

of the CT- inages. Automatic methods that do not use
external sources of know edge had only |imted success in
the past. The wuse of external know edge usually requires

sophi sticated prograns and conplex know edge representation
t echni ques* Wiile in the long run this approach is very

prom sing, in the short run there are very few results*

In this work, the external know edge was represented
sinply by another three dinensional inmage - the atlas inage*
By registering the CT inage with the atlas inmage, a napping
between the tw is obtained* This mapping enables us to
superi npose the boundaries from the atlas on the CT inage

and 'use- them as approximations for the true boundari es*

- 136 -
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The major problem that we had to solve was that of
finding the mapping. When the differences between the two
images cannot be accounted for by a rigid transformation
only, there 1is some freedom in selecting the mapping. The
mapping 1s evaluated by the similarity of the transformed
image to - the othef image and by the amount of deformation.
By defining a cost function that contains these two +values

we can define an optimal mapping.

To obtain this optimal mapping we need tools to measure
the similarity under different &eformations and the
deformations themselves. Given these, an efficient
procedure to locate the minimum cost is necessary. When the
image is treated as an array of points, even a simple
version of this problem 1is extremely ‘difficult to solve
[FISCHLER 1973]. 1If instead we treat it as a continuum we

can use the theory of elasticity for the problem.

Taking the similarity as the potential function from
which forces are derived to deform the image, we can use
Navier’s equations to solve the problem even without giving
an explicit expression for the deformation. These equations
are solved by an iterative method on a grid of points. The
mapping 1s described by the placements of the grid points.
Approximate values of these can be wused 1in computing the

similarity under deformation.
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The similarity is measured by the cross correlation of
the 1image functions in two regions. This operation, which
- is repeated many times during any registration process,
consumes the largest part of the computation time. To save
time we have expressed the image functioﬁ in a region by its
projections on a set of orthogonal functions. Less than a
dozen projections are usually sufficient for the process, he
computation time. To save time we have expressed the image
function in a region by 1its projections on a set of
orthogonal functions. Less than a dozen projections are
usually sufficient for the process, instead of the more than
several hundred pixels that are contained in the region.
Using the solid spherical harmonics as the set of orthogonal
functions, it became possible to compute these projections
in a simple and fast way under different rotations from the

original set of projections.

Our registration method is also very useful in finding
the mapping between two 1images when a set of pairs of
corresponding points are available. Not only is the mapping
obtained by our method optimal, but it is also possible to
vary the ratio between the defofmation and the fitting of
the data. This mapping can also take into account different
error estimates for each-observation and these errors can

have asymmetric probability distribution.
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9.2 Relationship To Oher Methods

Most of other registration nethods contain two parts,
one dealing with with the |ocal aspects of the natchfng and
"the other with the gl obal " ones* The task of the first part
is to Iobate a set of corresponding points that will be used
by the second part to conpute the nmapping. The task of the
second (or. gl obal) " part is conplicated by the errors that
the first part makes. These errors are the results of-
distortion in gray |evel, geonetrical deformations, noise in
t he i mages énd i nsufficient details for uni que

identification.

Most nethods rely on the assunption that the mapping is
continuous -in handling these errbrs* The assunption is used
either by fitting a |ow degree polynomal to the data or by
averaging the disblacenents of adjacent points. In both
cases, no attenpt is made to estinmate the errors. Only
Fischler's nethod [FISCHLER 1973] uses a cost function
contai ning both the matching goodnéss as an estimtion of

the error and the deformati on.

Cooperation between the two parts, that is the guidance
of the local mtching process, is mnimal, while it is
cl ear that the simlarity bet ween the images is a function
of the conputed mapping, only Burr [BURR-1979] uses an

iterative nethod to inprove the correlation neasure. He
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does it by deforming the two images after every iteration

Step.

Our registration method 1is a generalization of
Fischler’s, Burr’s and Tobler’s [TOBLER 1978] methods. We
have used a cost function similar to that of Fischler,l a
grid to represent the mapping as Tobler does, and the
similarity is computed 1in every 1iteration based on the
mapping obtained in - the previous iteration. The
contribution of this work is not just in combining these
ideas 1into an efficient method, but also in significantly

improving each one of them.

The model of a spring chain used by "Fischler and
Elschlager is too simple for an effective measure of
deformation. A triangulated network of springs would be
much better but their method cannot handle it in a
polynomial time. The deformation part of our cost function
is based on a model of a continuous solid. Even the finite
grid used for the itérative solution contains (in the three
dimensional case) several thousands of points compared with
less than a dozen in their model. The mapping obtained by
our method 1is optimal and theirs only in the case of the

linear chain.
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Burr has to deform the two 1images in each 1iteration
step. Our method has only to deform the projections for the
points of one grid whose total number 1s much less the the
number of pixels in the image. The use of these projectionmns
also enable us to compute the similarity between two regions
by only a few operations and therefore we have a significant
speed advantage over methods wusing direct method for

computing the cross correlations.

Tobler’s method does not use the error estimates that
are associated with each pair of observation and it is also
not possible to vary the stiffness of the grid. In our
method the stiffness: of the grid is easily changed by
varying one or two elastic constants. In that respect it 1is
similar to varying the degree of the multivariate polynomial
that represents the mapping. The error in each observation
is estimated from the cross correlation function and the
resulting mapping is optimal in the same sense as the 1least

squares method.

9.3 Suggestions For Future Research

Three directions for further research are suggested
here. The first deals with improving the atlas so that the
ugse of our method for locating object boundaries in three

dimensional CT 1images can be tested more thoroughly. The
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second 1s the improvement of the method so that larger
deformations could be handled. The third direction is the

study of other possible applications of the registration

method.

The main difficulty that we had in the application of
the registration method is due to the lack of a good atlas.
The construction of a good atlas turn out to be more
difficult than we had expected. In our opinion a good #tlas
should contain two versions. One which resembles as much as
possible a CT 1image in 1its density levels. The other
version should contain the structure of the object
boundaries. The representation of this version should
enable reslicing of the atlas through curved surfaces.
These slices will be superimposed on the CT image. Two
versions are required because certain parts of the anatomy
,for example the skin that encloses the brain, have high

enough density to appear in the image while their structure

cannot be represented easily and is not required.

The assumption underlying our registration method 1is
that the deformation part of the mapping is small. This
assumption is not aiways justified, but the main reason for
making it was 1ts simpliecity. If this assumption is not
used, the equilibrium equations become nonlinear and
therefore much more difficult ¢to solve. Nevertheless,

nonlinear (or finite) deformations are part of the theory of



elasticity and such problens are treated in the literature

[ GREEN 1968] and [GREEN 1970]).

An inportant application which could benefit from this
method is the processing of stereo inmages and in particul ar
the generation of topographic maps from aerial inmges* The
| arge size of of these images and their high resoiution make
their processing by other methods difficult* Using only a
smal | . nunber of projections for correlation our method can

be fast enough for this purpose*

Anot her application that could per haps be devel oped
followng a “method similar to the elastic mat ching, is the
construction of smooth surfaces from a given set of points*
By nDdeIing the surface as an elastic sheet that is pulled

by the points, an optimal fitting could be achi eved*
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