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Motivated by the need to locate and identify objects in

three dimensional CT images, an optimal registration method

for matching two and three dimensional deformed images has

been developed. This method was used to find optimal

mappings between CT images and an atlas image of the same

anatomy. Using these mappings, object boundaries from the

atlas were superimposed on the CT images.

A cost function of the form DEFORMATION - SIMILARITY is

associated with each mapping between the two images. The

mapping obtained by our registration process is optimal with

respect to this cost function. The registration process

simulates a model in which one of the images made from an

elastic material is deformed until it matches the other

image. The cross correlation function which measures the

similarity between the two images serves as a potential

function from which the forces required to deform the image

are derived. The deformation part of the cost function is

measured by the strain energy of the deformed image.

Therefore, the cost function of a mapping is given in this

model by the total energy of the elastic image.
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xae optimai mapping is ootamea oy tinaing cne

equilibrium state of the elastic image, which by definition

corresponds to a local minimum of the total energy. The

equilibrium state is obtained by solving a set of partial

differential equations taken from the linear theory of

elasticity. These equations are solved iteratively using

the finite differences approximation on a grid which

describes the mapping.

The image function in a spherical region around each

grid point is described by its projections on a set of

orthogonal functions. The cross correlation function

between the image functions in two regions is computed from

these projections which, serve as the components of a

feature vector associated with the grid points. In each

iteration step of the process, the values of the projections

are modified according to the currently approximated

deformation.

The method was tested by registering several two and

three dimensional image pairs. It can also be used to

obtain the optimal mapping between two regions from a set of

corresponding points (with and without error estimates) in

these regions.
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CHAPTER 1 INTRODUCTION

1*1 Optimal Registration

There are numerous applications of picture processing

in which two similar images are matched with each other.

The purpose of the matching process is to find the mapping

between the two images. For each point in one of the

images, this mapping specifies the corresponding point (the

similar point) in the other image. In rare cases, one image

is an exact replica of the other, and the mapping between

the two can be described by a translation and a rotation.

In most cases one image is a distorted version of the

other in geometry and gray scale. There are even

applications where the two images belong to different

objects. In these cases the notion of a unique mapping

between the two becomes meaningless. The purpose of our

registration process is to find the optimal mapping between

two similar but distorted images. To define an optimal

mapping, a cost function which associates a value with each

mapping is used. An optimal mapping is one which

corresponds to a minimum (or a maximum) of this function.
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j.t is possiDie co aistxnguisn between two basic types or

registration methods according to the constituents of the

cost function.

In the first type, called plastic registration in this

work, the cost is a function of only the similarity. The

optimal mapping of this type maps each point in one region

to its most similar (*) point in the other image. In the

second type, called elastic registration, the cost is a

function of both the similarity and the deformations. This

function can be written as:

COST - DEFORMATION - SIMILARITY.

The optimal mapping of this type corresponds to the minimum

of this function, that is, to a low value of deformation and

a large value of similarity.

Both of these registration types have some advantages

and disadvantages over each other. Plastic registration, at

least in principle, is not uniquely defined for many image

pairs. This is the case when some regions within the images

lack sufficient details for unique identification of their

points. The computation time is large since every region in

one image has to be matched in this process with every

region in the other image to find its best placement. If,

as a result of noise, an error occurs in this process, the

(*) Here an intuitive notion of similarity is used.
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resulting mapping will contain unrealistic and large

deformations.

In elastic registration, the transformed image obtained

by the optimal mapping will not be in most cases an exact

copy of the other image* This could be the case even if it

is possible to find a simple transformation that will

produce such a copy. The reason for this is the

contribution of the deformation term to the total cost.

Thus for example, if the two images differ only by a scale

change, the optimal mapping will be a smaller scale change

than the real one*

The method developed in this work combines the two

types in order to take in some of the advantages and leave

out the disadvantages. This was achieved by dividing the

mapping into two parts: global mapping and local mapping.

The global part of the mapping is obtained by plastic

registration, while the local part is obtained by elastic

registration•

The global mapping was restricted in our application to

be affine mapping which includes translation, rotation and

scale changes in three orthogonal directions. Because of

this restriction none of the problems associated with the

plastic registration can occur. By absorbing without any

cost the global differences between the two images, we can



arxora co use tne elastic registration method for the local

parts of the mapping.

Beside its simplicity, the reasons for restricting the

global mapping to an affine transformations are based on

physical considerations. Global translation and rotation

are usually the result of the position and orientation the

object relative to the scanner (camera). Scale changes

could result from differences in the resolutions along

different axes and also from different object sizes. All

other changes, on the other hand, are too unpredictable to

be included in the global mapping.

In the more general case, a more general global mapping

can be used. The choice of this mapping, in our opinion,

should depend upon the application. For example, in

matching stereo images the projective mapping would be a

more appropriate choice, since it could account for the

difference between images taken from planar objects. The

local mapping in this case would account for difference

between the images due to the non-planarity of the objects.

To develop an elastic registration method we need the

following tools:

a. A quantitative measure for the deformation.

b. A quantitative measure for similarity between

deformed images.



c. A procedure that uses the above measures for

obtaining the optimal mapping*

To develop a procedure for computing the optimal

mapping, we used as a model a physical system that simulates

a manual registration process. Assume that the object from

which the image was taken is made from an elastic material.

By applying external forces we can change the shape of this

object so that it will become more similar to a reference

object. Let us assume that the external forces are derived

from a scalar potential function which at each point is

proportional to the similarity (*) between a small region

around the point and the corresponding region in the

reference object.

As a result of these forces the object is deformed

until an equilibrium state is achieved between the external

forces and the elastic (internal) restoring forces. An

equilibrium state of a physical system corresponds to a

local minimum of the total energy, which in this case is the

sum of the potential energy and the strain (deformation)

energy •

Therefore, if the deformation is measured by the strain

energy, the equilibrium state corresponds to a local minimum

(*) It is assumed that the proportionality constant is
negative.



Page 6

of the cost function. If there are several possible

equilibrium states, the one reached by the system depends

upon the initial state. Intuitively, if the initial state

is close to the global minimum, the probability of reaching

it is greater. In the implementation, if the state reached

by the process is not acceptable by the user, he can change

the initial state manually.

To make the global mapping a plastic process, the

energy required to obtain that state is not included in the

total energy. By changing the elastic constants of the

object it is possible to change the ratio between the

similarity part and the deformation part of the cost

function. Thus, we can make the model more plastic in

nature or more elastic.

In the equilibrium state, the sum of the internal and

external forces acting on each point in the object is zero.

If the internal forces are linear functions of the

deformation, a set of three linear partial differential

equations to be satisfied in the equilibrium state can be

obtained* These equations can be solved iteratively for a

finite set of points arranged in a regular grid. The

mapping of points within the cells of the grid can be

obtained by interpolation.



Given an initial approximation for the optimal mappi

(placement) of the grid points, our method attempts

improve it in the following way. The image function in

spherical region around each grid point is matched with t

image function in regions near the current placement in t

other image* A quadratic function describing the similar!

between the two images as a function of the displaceme

form the current placement is computed* From this functio

the external forces acting on the grid point are derived a

a new placement in which the internal and the extern

forces are equal but opposite is computed* This process

repeated for the entire grid until convergence is achieved

To reduce the amount of computation, the image functi

in the spherical regions around each grid point

represented by a small set of features. These features a

the projections of the image function on a set of orthogon

basis functions. As the image is deformed by the abo

process, it is no longer correct to measure the similar!

using the original image function. A more appropria

measurement should be done by deforming the image functi

according to the current approximation of the mapping.

To avoid the need to recompute the features from t

deformed image, which would take a considerable amount

time, we have selected a particular set of basis functio

which enable us to modify the projections by using only f
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operations.

The registration method can also be used to register

two images when a set of corresponding points in them is

given as data* In this case the force acting on each point

is a linear function of the distance between the placement

of a point and the position of its corresponding point. If

different estimates of the error are associated with

different pairs, the force on each point is weighted by the

associated error. Moreover, it is possible to accommodate

error estimates with asymmetric spatial distribution, i.e.

different errors in different directions. Thus, this method

can be viewed as a generalization of the least squares

method•

1.2 Overview

Most applications of image processing deal with two

dimensional images taken from three dimensional objects.

Many of them involve the problem of obtaining three

dimensional information from the two dimensional image. In

our application the ima.ge is already in three dimensions and

the problems which we have tried to solve are to identify

objects in such an image and to find their boundaries.

Chapter 2 describes these problems and the way in which our

registration method can help to solve them.
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Matching two dimensional images is a common technique

in image processing* A large number of matching methods

were developed by others* Many of them are tailored to a

particular type of applications. Thus, in matching a pair

of stereo images it is usually assumed that the differences

between the two can be accounted for by different amounts of

horizontal translation only. Chapter 3 contains a survey of

the important matching techniques along with their merits

and shortcomings*

In chapter 4 we present an elementary treatment of the

theory of elasticity. This theory provides us with the

necessary tools to measure deformations and with the

equilibrium equations* The foundations of this theory were

developed during the eighteenth and nineteenth centuries*

The general equations of equilibrium were deduced by Navier

in 1821 using an oversimplified model which has only one

elastic constant* The correct form of these equations were

discovered by Cauchy in 1822* In 1837 Green showed that

these equations correspond to a state of minimum energy*

Chapter 5 deals with the problem of measuring the

similarity between the images under deformation* A method

based on describing the image function by its projections on

a set of orthogonal functions is presented* The idea is a

very common one, but its use to compute the cross

correlation function is novel* A set of similar functions
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(in two dimensions) was used by Hueckel [HUECKEL 1971] to

detect edges in two dimensional images.

The iterative solution to the registration problem is

described in chapter 6. The solution is based on the finite

differences approximation. The main problem in the

iterative process is the derivation of the external forces.

To obtain a useful registration method, we had to abandon

the normal assumption of elasticity that these forces do not

depend on the deformations. Equipped with a method to

handle this problem, we describe the solution to the

registration problem when the set of matching points is

given as the input data. In the last section of this

chapter we discuss the problem of boundary conditions.

Implementation details and problems are the subjects of

chapter 7. The topics discussed there include the selection

of mesh size for the grid, the size of the regions to be

matched by the program, the global and the local matching

processes, and the elastic constants.

The optimal registration method developed in this work

was tested by registering (matching) several pairs of two

and three dimensional images. The results of these tests

are presented in chapter 8.
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Chapter 9 contains a summary of the dissertation, a

omparison of our registration method with other methods,

nd suggestions for future research*



CHAPTER 2 MOTIVATION

2.1 Three Dimensional images

Within the last decade several types of three

dimensional imaging devices have been put into common use in

clinical practice. These devices, which are generically

called Computed Tomography ( CT ) scanners, reconstruct via

mathematical computations transverse sections, or slices of

the scanned object from its X-ray projections [HERMAN 1979].

A section reconstructed by these CT scanners is a two

dimensional array of voxels (volume picture elements) that

contain values proportional to the absorption of the X-ray

beam by matter at the corresponding locations in the object.

This absorption is related to the specific density of the

matter and therefore the array is a density image of a slice

from the object. By stacking several parallel slices on top

of each other a three dimensional density image (voxels

array) is obtained.

Unlike conventional images which contain information

only about the visible surfaces of the objects in the scene,

the CT image contains density information about the entire

- 12 -



volume being scanned. The standard way of displaying the

three dimensional image section by section is good enough

for tumor detection, which is the main clinical use of these

scanners* However the low resolution of these image

sections and the complexity of the anatomical structure

often makes it very difficult to identify some of the

objects that are present in the image and to find their

boundaries•

The theoretical resolution of CT images is proportional

to the square of the radiation dose used to obtain the X-ray

projections. Increasing the radiation dose can cause damage

to the tissues. Therefore, there is a limit below which one

cannot reduce the volume of the voxels in the CT images.

To obtain sharp images with good horizontal and density

resolution under these restrictions, the thickness of each

slice must be made rather large. Scanners of high quality

can produce CT sections of the brain that have a horizontal

resolution of about 1 mm, but the vertical resolution is

about 8 mm.

Other difficulties arise when the clinician tries to

visualize the structure of the anatomical objects in the

image or the spatial relations among them. It is a well

known phenomenon that a variety of different section shapes

results when even a simple object is sliced in different
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directions. As a result, the task of mental reconstruction

of the geometrical structure of objects from their sections

requires a high level of training and is subject to human

error •

For example, the human brain has, to a certain

approximation, a reflection symmetry about the plane that

passes between the left and the right hemispheres. Certain

asymmetries between the two halves are symptoms used in

medical diagnostics. When the CT sections are not

perpendicular to this symmetry plane, they will contain in

general asymmetric images. The task of deciding whether the

observed asymmetry is real or only a result of the sectional

orientation is sometimes a difficult one.

A simple aid to the visualization task could be

provided by a system capable of reslicing the three

dimensional image through different planes [GLENN 1977].

While an easy task in general, reslicing is difficult to

perform in this particular case because of the thickness of

the CT slices. Reslicing algorithms work by interpolating

values between voxels of the original image. If the slices

are thick, as CT sections are, and their density resolution

is low, the resulting images will contain objects with

broken boundaries and their resolution will be even lower

then that of the original images. Even with improved

resolution the number of possible reslicing planes needed



for the task could be too large*

The best aid to the visualization task could probably

be provided by a system that can display the surfaces of a

selected subset of anatomical structures in the image* The

three dimensional surfaces can be displayed on a two

dimensional screen using perspective projection, hidden

surfaces removal algorithms, and shading techniques* If the

clinician could manually select the objects to be displayed

and could also rotate the image in three dimensional space,

he could easily perceive their shapes* To create this type

of image, the system must know the geometrical structure of

the objects in the image*

The geometrical structure of the patient's anatomy is

of great importance in many medical applications* Radiation

therapy, in which a radiation source is placed inside or

outside the body so as to radiate a tumor site, requires

this knowledge to minimize the radiation damage to other

tissues* Similarly, planning a brain surgery requires this

knowledge to locate lesions very precisely in order to

minimize the damage to the normal brain*

Another application area where the geometrical

structure of the patient's brain is required, is the

interpretation of Positron Emission Tomography (PET)* These

images, which like CT images are also given as three



dimensional voxels arrays, contain data about the metabolism

rate in the brain. To interpret these images the clinician

has to superimpose the patient's anatomy map on the PET

image•

2.2 Surfaces Construction

Methods for obtaining the surface structure of objects

from their three dimensional images fall into two groups:

region growing methods and boundary detection methods•

Rhodes [RHODES 1979] developed an algorithm for three

dimensional region growing. Using a manually seeded voxel

his algorithm tests adjacent voxels first in the same slice

and later in the slices above and below, it then adds them

to the region set if they possess the same density level as

the seed voxel within some tolerance

Artzy et al developed a fast algorithm for surface

construction [ARTZY 1981]. They have translated the problem

into one of transversing a directed graph, the nodes of

which are the faces of voxels separating the inside of the

region from its outside. A region is defined as a connected

set of voxels that have the same density value.
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Both of the above methods use the density level of a

voxel as a criterion for deciding whether the voxel belongs

to the region or not. When the density resolution of the

image is low these methods cannot be used. They were

successfully used to reconstruct the bone structure in the

image because their density is much different from the

density of soft tissues. If only the bone structure is

sought, images with high spatial resolution can be obtained

at the expense of the density resolution.

Many algorithms are available for automatic detection

of boundaries in two dimensional images [DAVIS 1975]. Their

performance in processing CT images is rather poor because

in many cases the boundaries of objects in thick slices are

not well defined. Methods which use information from

adjacent slices to guide the search and following of

boundaries in a slice produce better results.

Liu [LIU 1977] developed a boundary detection method

for three dimensional images using a three dimensional

gradient operator. The connectivity property of the

boundaries was used to reduce their thickness and to

eliminate unconnected edges. The effectiveness of this

algorithm depends on the complexity of the objects in the

image and on the angle between the surface and the slice.



To improve the performance of boundary detection

algorithms, interactive corrections and guidance methods

were incorporated into some systems [SUNGUROFF 1978].

Interactive methods are expensive to use because of the

human involvement. Their performance depends upon the

capability of the operator to visualize the structure and to

identify the objects in the image, a task that these methods

are not supposed to rely upon but to aid.

When the set of the desired boundaries is found it is

possible to use them as a skeleton on which the surfaces are

spanned like a skin, Sunguroff et al [SUNGUROFF 1978] used

B-splines to interpolate curves between boundaries on

different sections* The physician can interactively modify

the points through which these curves pass. The resulting

wire frame mesh is displayed under different rotations.

Since the objects' boundaries in each slice are stored

in the computer as a sequence of points it is possible to

construct the surface as a set of triangular tiles. Each

tile has two adjacent boundary points from one slice and one

boundary point from the other slice as vertices. Getting

the surface requires a method for selecting the vertices.

Keppel [KEPPEL 1975] and later Fuchs at al [FUCHS 1977]

reduced this problem to that of finding a path in a directed

graph. Fuchs et al associated a cost function (such as the



tile area) for each possible tile and developed an algorithm

that finds the optimal tiling with respect to this cost

function. A faster algorithm that gives suboptimal results

was developed by Cook [COOK 1980]•

The above algorithms cannot be used without

modifications when an object has a single closed boundary in

one slice and two or more closed boundaries on the next

slice. Christiansen et al [CHRISTIANSEN 1978] have

developed an interactive method for handling this branching

problem. The user of their system has to supply a

connecting point between the two boundaries.

Branching is not the only problem of surface tiling

algorithms. When the shape of an object boundary on one

slice is not similar to its shape in the next slice, or even

when they are similar but one is translated with respect to

the other, automatic methods for tiling do not perform well

enough. To solve this problem the above system allows the

user to segment the boundaries into several sections. The

system separately constructs the tiling for each pair of

corresponding sections.



2.3 External Knowledge

When the number of objects in each slice is more than

few, there is also the problem of object identification

Except for some objects that can be automatically identifi

by their densities, the rest have to be identified manuall

There are two possible directions for improving t

performance of these systems. The first is to devel

better algorithms to do the job. The second is to supp

the system with external knowledge about the anatom

structure of the objects in the image. In interact!

systems the user supplies this knowledge by guiding t

system in its operations*

External knowledge can be helpful if the structure

the objects in one CT image is not significantly differe

from their structure in other images. Methods that u

external knowledge have to find except for true anomali

only the small individual variations between one person a

another. Although the shapes of the interesting objects m

be known in many image processing applications, the

geometrical relations may be different.

In medical applications this is not the case. Firs

the same objects are present in all images of the sa

anatomy and have similar shapes. Secondly, the geometric

relations among the internal objects are also similar. F
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example, all human brains contain the same organs that have

similar shapes and geometrical relations. The same is true

for almost any other part of the body. The anatomy of the

human body can be described and studied in general because

of these similarities.

The very first problem in using external knowledge is

that of representation. The high level approach is to

describe the objects using common shape primitives which can

be adjusted to fit a particular instance of the object by

changing some parameters. Although several such

representations were developed we do not know of any such

system that can be used to identify objects with such

complex shapes as human organs.

Even if such a system is developed there is still the

problem of describing geometrical relations. While a method

for dealing with a similar problem was developed by O'rourke

[O'ROURKE 1980], it does not handle the problem of

preventing objects from intersecting each other. The amount

of research that has yet to be done in this area led us to

look for a different solution.

Although it is difficult to find a general

representation system for complex structures, it is easy to

find a simple one for each case. A three dimensional array

of voxels with high resolution will serve our purpose. This
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representation can be constructed from a high resolution CT

image taken from post mortem material. Using an interactive

method, every object in each slice can be identified and its

boundaries traced. Assigning a unique object number to each

voxel in the image and storing the average density of each

object in an auxiliary table will complete the task. This

task has to be done only once and therefore the amount of

manual work involved is not essential. In the rest of this

work, this reference image will be called the anatomy atlas.

The assumption underlying this work was that every

brain has the same topological structure and that there

exists a continuous mapping (transformation) between the

anatomy atlas constructed in the above way from a "normal"

anatomy and any other CT image (with equal resolution) of

the same anatomy taken from a different person. The goal of

this work was to develop a practical method for obtaining

this mapping. The process of obtaining this mapping is

called image registration.

Once a mapping is found, every piece of structural

information can be mapped from one image to the other.

Object identification on the CT image is achieved by finding

for each voxel in the image the identification of the

corresponding voxel in the atlas. Assuming that a surface

representation has been developed for the atlas, it can be

deformed by this mapping and then displayed on a screen.
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Quantitative information, such as the volpe of an object

can be computed from the mapping and the

object in the atlas. The approach of

volume of the

this work was to

convert a set of difficult problems into a single problem,

that of finding the mapping between the anatomy atlas and

the image*

While several registration techniques for two

dimensional images are available, they cannot be effectively

adopted for our three dimensional case because of three main

problems* Three dimensional images contain much more

picture elements then two dimensional images* Since the

computation time of these methods is at least quadratic in

the number of pixels, the time required for three

dimensional images is unpracticably large* The large

thickness of the CT images is another problem that cannot be

handled by the available methods* Finally, most of these

methods were designed for a particular application, such as

the processing of stereo images, and therefore they can

handle only certain types of mappings*



CHAPTER 3 IMAGE REGISTRATION TECHNIQUES

3*1 Introduction

Our method for obtaining the geometrical structure of

an anatomy from its CT image is based on finding the mapping

from the anatomy atlas to the sensed image. For each point

in the atlas, this mapping specifies the corresponding point

in the image and vice versa* The process of finding the

mapping between two similar images is called image

registration or matching.

While we do not know of any other implementation of

three dimensional image registration, this process is

similar to the registration of two dimensional images, in

principle at least* Two dimensional registration is very

common in image processing* Its applications include the

processing of stereo images to obtain the depth of points in

the image, detection and identification of objects, the

construction of a single image from multiple sensors and

many others* This chapter contains a survey of the

important techniques used for image registration along with

their problems* Because of these problems, we could not use

- 24 -
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them and had to develop a new method.

The process of image registration involves t\

elements: local matching of a single point, and glob*

registration of the entire image. While in principle 01

can get a mapping by finding the matching point for eat

point in one image, this process takes too much time and :

subject to errors. If the mapping is assumed to 1

continuous one can use this property to speed up the searc

and to reduce the number of misregistrations.

3.2 Local Matching

The common method for matching a single point is oft*

done by template (pattern) matching which is an elemental

part of many image processing techniques. A template j

usually given as a rectangular array of pixels with 2n-

rows and 2m-1 columns (*). The template can contain

simple pattern such as an edge, a line or a spot pattern, c

a complex pattern representing an object such as a charact*

symbol or even a piece of a picture. [ROSENFELD 197(

contains many templates commonly used for edge detectiot

noise cleaning, contrast enhancement, etc.

(*) Any other template shape can be embedded in
rectangular array filled with zeros.
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The purpose of the template matching process is to

compute, for each point in the picture, a value proportional

to the similarity of the image in a window around the point

to the template. Similarity is measured by computing the

cross correlation function given by:

n m

) }

where T is the template array and I is the image array, or

by the normalized cross correlation function given by

NC(k,l)
m t/t n m

The term

n m

i»-n j^-m

is constant for a given template and therefore has to be

computed only once or can even be ignored. The range of the

normalized cross correlation is from -1 to +1, and the value

of +1 is obtained if and only if

for a l l i » - n , . * , n and j « - m , • • 9 m »



rage *<

Since the template is matched with many points it is oi

importance to reduce the time for each matching. When th(

template and the window are far from similar it may b<

possible to detect this fact using only a few pixels. Thi*

idea motivated the development of the sequential decisioi

technique [BARNEA 1972]. Using this technique the process

of computing the cross correlation value for a test point i*

aborted if some error function becomes larger than <

predetermined threshold. This error function is a measure

of the difference between the two windows.

Adjacent pixels in an image are usually highl]

correlated, i.e. the image is a slowly varying function

Therefore, the cross correlation function has a broad peak

Random noise in the image will reduce the maximum value oi

the cross correlation and will also cause a broad peak

Selecting the best matching point when the correlation peal

is broad can be a problem.

This problem can be partially solved by convolving th<

images with whitening filters designed to maximize the cross

correlation peaks. These filters can be found tr

considering the statistical properties of the image and th<

noises [PRATT 1974]. This process requires the computatioi

of two sets of eigenvalues and eigenvectors of thi

covariance matrices of the two images. Under th<

simplifying assumption that the images can be modeled a;



Page 28

separable Markov processes without noise, the whitening

filter for a two dimensional images is given by:

o
2 ,,^ 2, 2 \-p (1 +p ) p \

(1+p2)2 -p(l+p2)2

where p denotes the adjacent pixels correlation. By setting

p*l this filter degenerates into the Laplacian operator.

If noise is present or if the statistics of the input

data differ from the statistics used in the design of the

filter, the performance of this correlator could be worse

than that of the basic correlator.

A low cost method for sharpening the correlation peaks

is the statistical correlation function [HANNAH 1974]. In

this method the average value of the image function in each

region is subtracted from the image function in the

normalized cross correlation expression. This cross

correlation function obtains its maximum value if and only

if

1(1,J) - a + c-T(i+k,j + l)

for all i and j in the matching regions. Thus, this

function is suitable when differences in gain and offset

between the two images are expected.
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The idea of reducing the correlation between adjacent

pixels was used by Marr and Poggio [MARR 1979] in developing

a theory of human stereo vision. In this theory the image

is reduced by filtration to a line drawn image. The only

information left for matching is the presence or absence of

an edge, and the orientation of the edge elements. Thus the

width of the correlation peak in the direction normal to the

edge is only one pixel. On the other hand the peak is very

wide along the edge.

When the two images to be registered differ from each

other not only by a translation but also by a rotation or

scale change the above cross correlation function is no

longer a good measure of similarity. This can be easily

seen if we consider the matching of two edges which are

rotated with respect to each other. In such a case, it is

possible that the region with the highest value of the cross

correlation will be far from the truly corresponding region.

To measure similarity between deformed images, one

needs to use features which are invariant under deformation.

This idea was behind the development of a matching technique

based on seven normalized and invariant moments

[SADJADI 1978]. The invariant moments contain information

about the radial distribution of the intensity of the image

around the center of the window. Since the radial

distribution is orientation independent these moments are
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invariant under rotation. If the moments are also

normalized by the size of the window, they are invariant

under scale change*

Tests of this method indicate that it is relatively

expensive in computation time for high resolution images,

and also inferior in performance to other methods. The main

problem with the invariant features is their low

selectivity, that is, they match too well with wrong windows

beside the right one.

3*3 Global Registration

An early image registration process using template

matching is described in [HANNAH 1974] • The two images to

be registered were a pair of stereo images. In stereo

matching, if the two cameras are properly aligned, most of

the difference between the two images can be accounted for

by a translation along the rows of the arrays. To find the

disparity between the images, a small region from one image

is used as a template, and a search is conducted in the

other image to find the point with the highest cross

correlation.



If the matching is to be done for every point in th

image the amount of computation will be enormous. To reduc

the search area for each point, the continuity assumptio

about the mapping can be used* This assumption implies tha

two close points in one image will be mapped into two clos

points in the other image* Thus, after a pair of matchin

points is found, a point adjacent to one of them is selecte

in one image and matched against a small search are

adjacent to the corresponding point in the other image

While this assumption reduce the search area and hence th

time, relying on it can cause an error in the matching o

one point to be propagated to other points. On the othe

hand, if the first pair is properly matched, this proces

will prevent large errors in matching the other pairs*

Another approach to reducing the search time based o

the continuity assumption is the Hierarchical Searc

[WONG 1978]• In this technique the search is conducted on

set of images that are increasingly higher in resolution an

larger in size (number of pixels)* The image of the highes

resolution is the original image, and the others ar

obtained recursively by sampling the previous image (using

suitable low pass filter) at a lower rate* The searc

begins with the lowest resolution image which contains onl

a small number of test points* One or more approximat

locations of good match for each point are selected* Th
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vicinities of these locations become the search area for the

next resolution level.

A second method based on hierarchical processing (gross

to fine) is the method of cooperative channels

[GRIMSON 1980]. In this method, based on the theory of

human stereo vision [MARR 1979], the two images are passed

through edge detecting operators of different spatial

frequency resolutions. The edge operators are designed so

that the probability of detecting two edges within one

channel width is very small.

Starting with a low resolution operator, gross edges

are detected in each of the two images. A process that

matches edge elements from one image with edge elements of

the same orientation in the other image is applied. The

size of the search region for each edge element is

determined from the width of the edge detecting operator.

The process is then repeated for the next channel using the

approximated displacement from the wider channel. This

method is very effective for high resolution images

differing by a translation in a known direction.

The techniques considered up to this point are suitable

for registering images that differ by little or no

geometrical deformation at all. One possible way to

register a geometrically distorted image is to perform



various geometrical transformation on one of the images and

then match it with the other one in order to select the best

deformation. This "Rubber Mask11 method [WIDROW 1973] is

practical only if the number of possible deformations is

small and a good initial guess for the right deformation is

available [ROSENFELD 1976].

If unlimited amounts of geometrical deformations are

allowed, almost any two pictures can be made to match each

other* Therefore, one has to limit the deformation at the

expense of matching goodness* A method based on this idea

was proposed and tested by Fischler et al [FISCHLER 1973] •

In this method one of the images is represented by a small

set of templates (windows) interconnected by springs* The

goal of the method is to find a placement for the templates

and springs network so that each template will match the

corresponding window in the other image while requiring as

little tension in the springs as possible* Solving this

problem takes, in general, an exponential time with respect

to the number of templates*

An algorithm with polynomial execution time and space

was developed [FISCHLER 1973] for a particular structure of

the springs network* In this particular structure the

templates and the springs form a linear chain. This

algorithm can also be used with a more complex springs

network, but the solution obtained from it is not guaranteed
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to be optimal or even close to it* Nevertheless some good

results were obtained for small networks of templates and

springs.

For this method to work at all, one should be able to

match each template with a window independently of the

geometric deformation of the spring network. Thus one needs

to use features describing the templates which are at least

invariant under rotation, perhaps features like the

invariant moments. In Fischler's implementation it was

assumed that the global parameters describing the rotation

and scale transformation are supplied by the template

matching process. This information is difficult to obtain

from the cross correlation process.

Another problem with Fischler's method is caused by the

effect of scale difference on the spring tension. It should

be noted that while linear in the number of templates, the

algorithm is quadratic in the number of pixels in the image

and is therefore very slow for images of high resolution.

An iterative technique for gradually updating the local

registration of two deformed (two dimensional) images was

developed by Burr [BURR 1979]• Starting from two grossly

registered images, this method looks for the nearest point

in the other images that have similar features. This search

is done for every point in both images. Since this search
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is not reliable a new displacement (translation) value for

each point is computed as the Gaussian average of the

displacements of all the neighboring points in the same

image plus the average displacements of all the points in

the other image that were matched with points in the same

neighborhood. This averaging process results in a

continuous deformation and it eliminates many of the

matching errors.

The two mappings obtained by such a step are then used

to deform the two images and the process is then repeated

with a smaller neighborhood. Since the matching has to be

done on every point (in both of the images), and a pair of

new images has to be created in each step, this method is

very expensive in computation and can be used only for small

images .

3.4 Bidimensional Regression

Since the number of picture elements is very large even

in two dimensional images to allow the matching of every

point, attempts were made to find the mapping using only a

small number of pairs of matching points. The approach

usually taken, called Polynomial Wrapping [WONG 1977], is to

describe the mapping by a set of multivariate polynomials.

In this method, points in one image described by a pair of



coordinates (X,Y) in the two dimensional case are mapped i

points in the other image with the coordinates (U,V) by ti

two polynomials

ZZ
and

n n

V »

1»o k-o
Z Z v

If the number of matching pairs is sufficient, the lea*

squares approximation can be used to find the coefficient*

of these polynomials.

The main advantages of this method are its simplicit

and generality. Its disadvantages include unrealisti

oscillations of the polynomials in areas lacking dat*

difficulty in providing interpretation for the numeric*

coefficients and numerical instability due to the roundir

errors encountered in estimating the coefficients of hig

order polynomials [TOBLER 1977]• Also, there is no couplir

between the two polynomials and as a result the mapping i

not always one to one. The method does not lend itself t

hierarchical techniques, or to incremental computatioi

because the addition of even a single pair of points a

significantly change some of the coefficients*



This method is useful when there exists a mode!

tailored to the application that describes the mapping

Thus for example, when two sensors from two different viei

points are used to obtain the two images, the projectiv*

transformation described by linear functions (in homogeneous

coordinates) is an appropriate models Therefore this metho<

is often used for sensor calibration.

A method for obtaining a smooth mapping from a set o:

corresponding pairs of points was developed by Toblei

[TOBLER 1978] • In this method called bidimensiona:

regression the mapping is presented by a deformed grid oJ

points. Thus there is no need to use explicit functions t<

represent the mapping* The mapping values of points that d<

not fall on the grid points are obtained by lineai

interpolation within each cell of the grid.

The method is an iterative one and works as follows-

Given a data point within a grid cell, the mapping of the

four corners of this cell are used to find the interpolatec

mapping of that point. If the result is different from th<

actual observation, it can be made exact by changing th<

mapping of one or more of the corner points. There ar<

infinitely many ways in which this can be done, anc

therefore some conditions can be imposed. Tobler's choic<

was that the mapping of each corner would be as close a*

possible to a weighted average of the mappings of it!
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ieighboring nodes•

The advantages of this method are the smooth mapping

md the good fit to the observations. The disadvantages

.nclude the possibility of folds in the mapping, the

.nability to assign different weights to different

)bservations or to control the amount of deformation in the

lapping•



CHAPTER 4 THE ELASTIC MODEL

4.1 Analysis of Deformation

When the relative position of points in an object is

changed, we say that the objects is strained. The change in

the relative position of the points is called deformation.

It is also possible to change the position of points within

the object without deformation and such changes are called

rigid transformations. The first part in the analysis of

deformation deals with separating the rigid transformation

from the pure deformation.

Consider a region within an object and let P and Q be

two points inside this region. To describe the changes in

the position of these points we will use a cartesian

coordinate system fixed in space. Let us assume that the

origin of this system coincides with the point Q before any

changes occur. Using this system let us denote the

coordinates of P and Q before the changes by:

X(P) » ( X ^ P ) , X2(P), X3(P) )

X(Q) » ( X1(Q), X2(Q), X3(Q) )

- 39 -
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and their coordinates after the changes by:

- ( U 1(P) f U 2(P) f U3(P) )

- ( U L(Q) f U 2(Q), U3(Q) )

We are concerned here with continuous changes only, and

therefore we can assume that U (P) (for i*l,2,3) are

continuous functions and have as many continuous derivatives

as will be required* It is also assumed that these

functions represent a one to one transformation and have a

single valued inverse. Because of the continuity we can

expand these function around the point Q using the Taylor's

expansion. Thus, we can write:

3
r— du (Q)

U,(P) » U. (Q) + ) ^ ( X (P) - X.(Q) ) + .•.
1 x L— ^ J J

Let us denote for brevity:

SU.(Q)

Dx

The assumption that the functions U.(P) have a single valued

inverse implies that:

det

and we can also assume that det ( M..(Q) ) > 0, implying

that the deformation cannot be an inverted (mirror) image

(i.e. reflection). The continuity assumption also implies
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that M. (Q) are continuous functions of Q. This property

will be used later to separate the global part of the

mapping from the local parts.

When the region is small enough the linear .part of this

expansion is a sufficient approximation for our purpose.

The linear transformation is called an affine transformation

and it contains both rigid transformation and deformations

(*)• The rigid part can be divided again into a translation

and a rotation. The translational part is given by the

vector U(Q). The matrix M(Q) contains both the rotational

part and the pure deformation part. To separate these two

parts let us tentatively write:

3

k-1

where the matrix ( R., ) describes the rotation and the

matrix ( D. ) describes the deformation.

To make this into a unique decomposition, we need a

definition of pure deformation. If the matrix ( D ) has

three real eigenvalues it represents a scale change in three

non coplanar directions, and therefore can be considered as

(*) The affine transformations are restricted in that
parallel lines must transform into parallel lines. The
general linear transformation is the projective
transformation where the only restriction is that straight
lines transform into straight lines.



a deformation. This requirement however is not sufficient

to ensure a unique decomposition. If we require that the

scale changes will be in three orthogonal directions, then

the decomposition is unique up to a rotation of the axes.

This requirement is satisfied if and only if the matrix

( D ) is a symmetric one.

To show that such a decomposition is always possible

( for det (M) > 0 ) let us consider the change in the length

of a vector after the affine transformation described by M.

Let X - ( X-, X-, X, ) be the vector before the

transformation and U - ( 0^, U2, U3 ) after the

transformation. The length of U is given by:

3

length2 ( U ) - 7_ ui ui

i-1

3 3 3

Yl Yl Mik xk Yl
i»l k-1 1-1

3 3

Yl x* Yl AKI
 xi

k-1 1-1

where the elements of A are given by

Yl Mik Mn
k-1
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Thus A is a real symmetric matrix and therefore has three

real eigenvalues ( E. ) and three orthogonal eigenvectors

( Y )• If X is one of these eigenvectors, i.e* X * Y.,

then

Iength2( U(Ti) ) - E± • Iength
2( Yt )

Let us now change the coordinate system into a new one in

which the eigenvectors of A are along the axis* Let us

tentatively select D in this coordinate system to be:

[{*[ o o \

o
L

0\ °
and therefore R is given by:

R • M-D .

To complete the proof we have to show that this R represents

a pure rotation. If we apply R on Y± (i-1,2,3), D will

only change their lengths and M will restore their lengths*

Therefore R preserves the length of three orthogonal vectors

and can only be a rotation and reflection* The later

possibility can be rejected because:

det ( R ) * det ( M ) • det ( D~* ) > 0.



For a small enough region we can approximate a general

continuous transformation by a single affine transformation*

When the object is large we can divide it into several

regions, each of them small enough for the linear

approximation represented by U(Q) and M(Q) where Q is

convenietly chosen as the center of the region. We will now

show that the linear approximation for each region can be

decomposed into two parts* The first part will be the same

for all the regions and therefore will be called the global

transformation. The second part will vary from region to

region and will be called local transformation (or

deformation)•

Let 0 be a distinguished point in the object (the

center of the image, for example). For every point Q in the

object we can write:

U(Q) » U(0) +

M(Q) - {&M(Q)>«M(O)

where

- U(0)

M(Q)«lTl(O)

This is always possible because det ( M(0) ) > 0. When

Q * 0 then AM(Q) m I (where I is the unit matrix). Because

of the continuity assumption ^M(Q) is also continuous and
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therefore for small I Q - 0 | the diagonal elements of

are close to one, while the off diagonal elements are clos<

to zero*

In our application the global transformation is done b;

a plastic process* That is, we do not include the straii

energy required by the global transformation in the cos

function. Therefore, we can assume that the object ha;

already been transformed by the global transformation an<

continue with the analysis of the local deformations. Ii

this analysis U(Q) and M(Q) will represent the local

transformation.

Again we need to decompose the transformation into t

rotational part and a pure deformation part. This tim<

however, since the off diagonal elements of the M are smai:

the decomposition can be done in a simple way. Let us

write:

M(Q) » D(Q) + R(Q)

where

( M. . + M.. ) 1
D - il li . - ( _ ± +
1J 2 2 d

( M - M.. ) 1 c)U

1 3 2 2 OX <)X±

Thus D is a symmetric matrix and R an antisymmetric one.
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Upon introducing the vector R whose components are:

R1 '32 1 3 and R3

we can see that the effect of the transformation given by

the matrix R is:

-R.

-R2 Rx

/ Xl\ /VX~ *2 ' X 3

R 3 ' x i " R r x
3 x i rx3 - R x X

Thus the change in X due to R is orthogonal to X and to R.

That effect is the same to the first approximation as a

rotation of X along the vector R by the amount of | R | •

Since D is a symmetric matrix it has three real

eigenvalues - E. and three orthogonal eigenvectors - Y.

satisfying:

D-Y± « E±-Yi ( for i»l,2,3 ).

The three eigenvalues are called the principal extensions of

the strain, and the eigenvectors are the principal axes of

it.

The assumption that the deformation represented by M

(and D) is a small one, means that the principal extensions

are close to unity. If we write:
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then for small deformations the dilation of the region (the

volume change) is given by:

dv' - dv

dv
(1 + e.)- (I +. e,).(l + «,) - 1 A

' el + e2 + e3 •

Given the diagonal representation of D we can examine a few

types of simple deformations.

The simplest type of deformation arises when the

deformation* matrix is position independent and is called

homogeneous deformation. There are several subtypes of the

homogeneous deformation. The first one is a simple

expansion (or contraction) characterized by:

e ' el • e2 * e3

The dilation in this case is:

4 « 3e

Another subtype of the homogeneous deformations is the

simple shear obtained when the extension along one principal

axis is equal in magnitude but opposite in sign to that

along another axis, and the third is zero, i.e.

el ' ~e2 ; e3



The third one is a deformation with zero dilation

characterized by

1
62 * e3 = " I el

and is called dilationless stretch*

4.2 The Equilibrium Equations

Given the mathematical description of the deformation

of an object we now turn our attention to the relations

between the strain and the forces that cause them* There

are two types of force that act on the points within the

object. The first are the external forces which in our

application are derived from the similarity between the two

images which serves as a potential energy function. The

second type of force is the internal (elastic) force which

is caused by the deformations in the objects. These forces

keep the object together and tend to oppose the deformations

and are called stresses.

While the external forces can be described by a three

component vector F(X,Y,Z), the stress can be described by a

symmetric tensor with six components. To see why the stress

is a tensor and not a vector consider a plane passing

through a point in the object. The matter on one side of



this plane exerts a force which is a three component vector

on this plane. One component is normal to the plane and the

two others are parallel to the plane. The two tangential

components are called shear stresses. To completely specify

the stresses on a point we need to consider three

intersecting planes and therefore we get nine components.

Let us denote this tensor by the matrix S * ( S ).

In the equilibrium state, the sum of the forces at

every point is zero and so is the resultant moment. Since

the external forces do not contribute to the moment, the

resultant moment of the stresses is zero and therefore it

has to be a symmetric tensor. The sum of the internal

forces is given by the integral of the normal component of

the stresses on the surface of a small region around the

point. Using Gauss's theorem which states that:

ds - I Div S dv

we can get the equation:

3

V i1
F + \ ±1 » o (for i-1,2,3)
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The assumption that the relations between the stresses

and the strains are linear known as Hooke's law, can be used

to express the stress .by means of the strains. Using a

coordinate system in which the deformation matrix is

diagonal the stress matrix is also diagonal and therefore we

can write:

3

If the object (*) is made of isotropic and homogeneous

material, only two independent constants will remain in the

above equations which can be written in a general

coordinates system as:

Stj - A C t + e2 + .3) + 2f ( D±j - xj

where A and u are the Lame's elastic constants of the

material.

These equations state that when the material is

stretched in one direction it will shrink in the other two

directions. The quantity

p ( 3 A • + 2 n )
E » J !

A + 11

(*) The object being discussed in this chapter is the media
carrying the picture and not the one of which the picture
was taken.



is called Young's modulus and it denotes the ratio between

the tension on the object and its stretch in the same

direction* The ratio of lateral shrink to longitudinal

stretch

— A

2 ( A + ji )

is called Poisson's ratio. For all physical substances

hydrostatic pressure tends to diminish the volume and it

follows that A is positive. If the object is incompressible

the Poisson's ratio is one-half.

Replacing the stresses by the strains in the

equilibrium equations we get the following three

differential equations:

PV 2 ui + (P + A) + F± - 0 (for i-1,2,3)

These equations are associated with the name of Navier.

4.3 Compatibility and Boundary conditions

There are two fundamental boundary value problems in

elasticity. The first is to determine the distribution of

the displacements in the object when the external forces are

given inside the object, and the positions of the object

boundaries are prescribed functions. This type of problem
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is known in general as the Dirichlet problem. The second

problem known as the Neumann problem is similar except that

instead of specifying the positions of the boundaries, the

distribution of the forces on the surfaces of the object is

given. It is also possible to mix the two problems and

prescribe the position of parts of the boundary and the

external forces on the other parts*

There are no restrictions on solving the Dirichlet

problem when the functions that specifies the positions of

the boundaries are continuous* On the other hand, the

Neumann problem does not always yield a unique solution. To

ensure a solution two requirements have to be met* First,

the distribution of forces should be such that the resultant

forces and moments will vanish. The second requirement

consists of a set of six additional partial differential

equations that have to be satisfied. These equations are

known as the Beltrami-Michel compatibility equations

[SOKOLNIKOFF 1956]. These equations are satisfied

automatically when the forces are derived from a harmonic

potential function.

Although the Neumann problem is more difficult to solve

it has an advantage in our application. Since we do not

have an a priori knowledge about the boundary position, and

can only find the external forces that act on the object we

would like to let the registration process run without them.



In our application the partial differential equations are

solved by a numerical method and the forces are given only

at the points of a grid. Since it is always possible to

interpolate a harmonic function through a finite set of

points, we can assume that the compatibility equations are

satisfied in our case.

There are two more points about these equation that

should be noted. First, the solutions of many problems in

elasticity are either exactly or approximately independent

of the value chosen for Poisson's ratio [SOKOLNIKOFF 1956].

This fact suggests that an approximate solution may be found

by choosing a Poisson's ratio simplifies the problem. The

two common values often used are zero and one-quarter which

correspond to A * 0 and A * R*

Another possible simplification comes from the

principle of Saint-Venant and is used frequently in

practical applications of elasticity. This principle

asserts that different distributions of stresses within a

region which are statically equivalent (the resultants force

and moment are the same) will have approximately the same

effects on the state of the stresses far enough from that

region. This principle implies that if the boundaries are

far from the volume of interest, the particular distribution

of force on it will have little effect on that volume.



CHAPTER 5 MEASURING SIMILARITY BETWEEN IMAGES

5.1 Introduction

A basic requirement from any registration method is the

capability of measuring the similarity between two images.

In particular, in our application we need to measure the

similarity under different deformations (transformations) of

the images. It is also desirable that these measurements

not take too much computation time, since they have to be

performed many times. In this chapter we describe a method

that was developed in this work for fast estimation of the

similarity between two image regions under deformations.

When two functions I(P) and J(P) over the same region R

are given, the following distance measure:

- J(P) |n dr i 1 / n (n > 0)

can be used to express the amount of mismatch between the

two. The common values of n are 1, 2 and CO , where the last

one corresponds to:

MAX | I(P) - J(P) |
P€R

- 54 -
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In image processing applications it is often the c;

that different and unknown gains and offsets are used

obtain the images. Therefore it is advantageous

normalize the image functions by subtracting the aver.

value of the image function from itself and to use

normalized cross correlation as given by:

( I(P) - I ) • ( J(P) - J ) dr

- i )2 a*r|j < J<p) - J >2 dr|

where I and J are the average values of these functioi

The range of values of this measure is between -1 and +1 <

value of 1 is obtained if and only if

I(P) - a + b'J(P)

for all P in R.

In image processing the image functions are given

their digitized values on the points of a rectangu!

sampling lattice. An approximation method is theref<

required to compute the integrals in the cross correlat:

expression. When the same lattice of points is used

sample the two functions the simple approximation

replacing the integrals by sums over the lattice points:
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Yl (x<v - I ) • ( J(PjL) - J )

is often used*

Although it is clear that only in some rare cases

one assume that the same sampling lattice is used for

two images, this approximation is used successfully

several image registration applications* The reason for

usefulness is the high correlation between most adjac

points in images* That means that for most areas in

image, the image is a slowly varying function and as long

the corresponding points of the two lattices are cl

enough the errors introduced by the above approximation

small•

When one of the pictures is a deformed version of

other we can no longer use this approximation with

affecting the quality of the registration process*

chapter 4 we pointed out that if the region is small eno

the effects of the deformation on the region can

approximated by a rotation and scale changes in th

orthogonal directions* The errors introduced by th
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deformations on the digitized cross correlation can be seen

in the following diagram:
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The left image contains a deformed version of the marked

region in the right image. Using the digitized cross

correlation we will multiply the values of the pixels in the

two images with the corresponding indices. It is clear that

large errors could result from this process if adjacent

pixels have different values.

If M(P) is the mapping between the two regions then the

right way to measure the similarity is by computing the

cross correlation (or other matching measure) between I(P)

and J(M(P)). Using the same example as in the previous

diagram, the new sampling grid is shown in the following

diagram:
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Unfortunately, M(P.) is usually not one of the sampling

points and therefore an interpolation is required^ In

practice, two methods of interpolations can be used. In the

first method, the interpolated value for each pixel is taken

from the nearest pixel in the original image. This kind of

interpolation is used when the image resolution is high.

For images of low resolution, this method is too crude and

the results are no better than those without interpolation.

The second kind is the linear interpolation in which the

value of the pixel is computed by fitting a linear function

to the pixels in the neighborhood. In three dimensional

images even a linear interpolation is a complicated and time

consuming process.
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Instead of performing the interpolation for every

single point, it is also possible to reconstruct the image

function for a given region, and then to use the explicit

expression of the function for computing its values at M(P.)

for all i. Alternatively, the required integrals can be

computed directly from their explicit expressions. This

process can be simplified if a set of orthogonal functions

in the region R is used to express the image function* This

alternative is discussed in the next section.

5.2 The Orthogonal Projections

The set of all the piecewise continuous functions over

the region R is a Hilbert space. We define a norm on this

space by:

| f,g | - J W(P) f(P) g(P) dr

where f(P) and g(P) are any two functions and W(P) is a

weight function satisfying:

0 < W dr < 00 .

Let < H.(P) : j « 0,1,2,... } be a complete set of

orthonormal functions over R defining a Cartesian basis for

this space. That is:



R
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W(P) Hj[(P) HjCP) dr » O±i

(for all i and j). A function f(P) over R can be described

by its projections on this basis as the infinite sum

CO
\

f -

j-o

where

f. W(P) -f (P)-H (P) dr
3R

The normalized cross correlation of the two functions f(P)

and g(P) can be computed from their projections by:

i f , g i
C(f,g) - —

.f iYt- 1 8 , 8 r

CO

j-0

J-o y ^ J - o

An approximation for C(f,g) is obtained by truncating the

infinite sums to finite ones*



To find the projections of the image function we have

to compute the integrals:

W(P) H.(P) dr

for j*0,l,..# Obviously, since I(P) is given only by its

values at the points of the sampling lattice { P }, these

integrals can only be approximated by:

ll •

Similar to the case of direct evaluation of the cross

correlation, the region R may contain fractions of pixels at

its boundary as in the following diagram:

\

/

\

J
Ignoring the effects of this phenomenon can cause additional

errors in the approximation. One way of reducing these
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errors is to use regions that contain more pixels. As the

number of pixels is increased the ratio between the number

of complete pixels to the number of partial pixels becomes

smaller•

Another way to reduce these errors is to take into

account the partial contributions of these partial pixels to

the integrals. A simple way of doing this is to divide each

pixel into smaller ones with the same value. This has a

similar effect to that of increasing the number of pixels in

the region.

In practice this method can be used in the following

way. Let R. be the common region of R and the pixel that

contains Pi, we can define Hj(i) by:

W(P)-H (P) dr .
J

The projection of the image function I(P) over H (P) is now

given by:

v ± ) > I ( Ft :

If the shape of the region and its relative position

are fixed with respect to the sampling grid, it is possible

to construct tables of H.(i). Using these tables, only one
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multiplication per pixel is required for computing I,

regardless of the complexity of the H.(P) and W(P)«

When the relative position of the region and the

sampling grid of the image function is variable, the weight

function W(P) can be used to reduce the errors caused by

fractional pixels at the boundary of R. If W(P) is chosen

so that it vanishes toward the periphery of R, the relative

contributions of the boundary pixels to the integrals is

decreased and so is the error.

One of the main concerns in every registration method

is the amount of time required by the process* When the

direct method for computing the cross correlation is used,

processing time is proportional to the number of pixels in

the region R* When the projections on orthogonal functions

are used, the time is proportional to the number of the

projections and the time required to compute them. Since

the number of projections required for a good approximation

of the image function is usually much smaller than the

number of pixels in the region, a significant amount of

saving is possible*

It should be noted that the time required to compute a

projection in the above method is about the same as the time

to compute one cross correlation without projections* Thus

if the average number of cross correlations per pixel is
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more than twice the number of projections, this method has

the advantage in time.

There is another way of computing these projections

which in some cases can take less time. This method is

based on the convolution theorem in the frequency domain.

To use this theorem let us consider a projection on a

particular base function as a function of the position of

the region center. Denoting this function by I.(R ) where

R stands for the region center, we get:

I,(R ) - I I*(P-R ) H.(P) dp

By the convolution theorem:

f.
F{ I(P-Rc) H^P) dp > - F< I(P) } • F< H^P) }

Therefore, if we define H.(P) to be identically zero outside

the region R, we can compute I.(R ) for the entire image by:

Ij(Rc) - F~'< P< I(P) > • F< H^CP) }>

Since F{ H (P) > can be given as data, and F{ I(P) } needs
J

to be computed only once for the projections, the time to

compute Ij(Rc) for the entire image is about the same as the

time for one Fourier transform.
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The number of complex operations per pixel in the image

using the Fast Fourier Transform is about log^m where m is

the number of voxels in the image. If the image contains
3

128 voxels and a complex operation takes the same time as a

single integer operation, about 85 operations per voxel are

3
required. If the region contains 8 voxels, six projections

can be computed at the same time it takes to compute one

cross correlation. This method is useful when it is

possible to save all the projections in memory or in disk.

In our implementation both of these resources were limited

and we could not use this method.

5.3 The Base Functions

Even when the shape of the region and the weight

function are given, there are infinitely many possible sets

of orthonormal basis functions. It is possible to take

advantage of this and to select a particular set of base

functions that will possess some additional useful

properties. As we have shown in chapter 4 an affine mapping

can be decomposed into a translation, a rotation and a pure

deformation. While it is possible to recompute the

projections under any transformation of the base functions

directly, the question is whether these projections can be

computed from the untransformed set in a simple and cheap
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way-

Translation is not a problem if the set of projections

for each point is given, and very little can be done about

the scale changes* In many cases the effects of the pure

deformation can be ignored as they are usually small* Let

us therefore examine the possibility of computing the

projections under different rotations.

It is clear that we have to restrict the shape of the

region* If the region has the rectangular shape chosen

usually for convenience, then under different rotations, it

will contain different lattice points. Therefore, a disk

shaped region for matching two dimensional images, and a

sphere shaped region in the three dimensional case, should

be used*

If the base functions were invariant under rotations,

the projections would also have this property. It was

already pointed that a set of invariant features can be

obtained [SADJADI 1978]* These features contain information

only about the radial distribution of the image functions

and therefore are not sufficiently selective. A different

way to say this is that a set of orthogonal functions that

are invariant under rotation is not complete. A complete

set of base function should also contain orientation

dependent functions•
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When the set of base functions is complete any function

can be represented by it. In particular a transformed base

function can also be represented as a linear combination of

untransformed functions. Since integration is a linear

operation a projection of the image function on a

transformed base function can be written as a linear

combination of the original projections. A problem that can

prevent us from obtaining the new projections in this way,

is the number of the available projections. If the linear

combination for a given projection includes projections

which were not computed, the method cannot be used or the

results will suffer from truncation errors.

To prevent this problem the set of base functions for

representing the image functions in a sphere is based on the

solid spherical harmonics functions (*)• This set has the

property that it is divided into subsets of functions which

are closed under rotations. That is, if the coordinate

system is rotated, each member of a subset can be written in

the new coordinate system as a linear combination of the

original members of the same subset. Another property of

these functions is that each subset contains functibns of

the same frequency spectrum, i.e. the number of zero

crossings is the same for all the subset members.

(*) For an extensive treatment of these functions see
[HOBSON 1931].
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In spherical coordinates (r,9,<j>) the non negative

spherical harmonics can be written as:

where P are Legendre's associated functions of the first
n,m a

kind* The functions Q for m«-n,«*.,n satisfy:
n, m

(9,<|>) Qf , (9, *)d©d4> - C O , 0
n,m >T k,l n,m nk ml

By substituting X, Y and Z for r sin9 cos<i>, r sin9 sintj) and

r cos9 respectively, expressions for the spherical harmonics

as polynomials in X, Y and Z are obtained. Any polynomial

function of degree n can be written as a linear combination

of the terms:

Yn,m ' r Yn-2,m ' r Yn-4,m >

the last term being r Y- or r Y according as n is odd
l, m o

or even* Thus one can construct a complete set of

orthogonal functions in a sphere by multiplying the

spherical harmonics by polynomials of even powers of r. The

exact form of these polynomials depends upon the weight

function W(r)• For W(r) » 1 the first ten functions are:

H - C -1
o

Hx - C «(
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- C

C'(5.7)'/4-X-Y

C -(5 -7)'*»X-Z

C -(5 -7)'* • (X2- Y 2) / 2

C -(5 • 7/3)IA. (X2 + Y2 - 2 Z2)

C -(3 •7)'/x. (3 - 5-(X2 + Y2 + Z 2)) / 6

where C is a normalization constant. In the implementation

the projections are stored as integers and C is selected so

that the full range of these integers will be used.

In the case of two dimensional images the first nine

functions are:

H
o

H l

H 2

- C

» c

- c

•1

•2

•2

•X

•Y

H3 - C •(3)'
/l-(2 r2 - 1)

H4 - C«(6)'A- (X 1 - Y 1)

H5 - C -(.6)'k- 2 -X -Y

H 6 - C -(2) 1 / l- ( 3 - r 2 - 2) -2-X

' H? - C -(2) l / l- (3 -r 2 - 2 ) - 2 -Y

H. - C '(lO)'*. (6 -r 4 - 6-r 2 + 1)
O

These functions have zero crossings which are similar to

those of the functions used by the Hueckel's edge locating

operators described in [HUECKEL 1971] and [HUECKEL 1973].
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5.4 Rotating the Projections

The base functions which depend only on r are invariant

under rotation and so are the projections on them* The base

functions that contain the spherical harmonic Y. , that

is, those functions that contain X, Y or Z ( H , H and H,

are examples) transform under rotation like the components

of a vector. Therefore we get:

K ' J R
I ( P ) < H ; ( P ) dp

3 3

KP) .v~ Rkj-Hj(p> dp = y
fR

for k-1,2,3.

To find the behavior of the second group of functions

that includes H^, Hj, Hg, H7 and HQ let us define i

symmetric tensor A by:

A - X±« X for i,j-l,2,3.

Under rotations the components of this tensor transform by:

3 3

k-1 1-1
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Ik jl kl

k-1 1-1

This can also be written in matrix notation as:

TA' - R-A'R

Since we can express the functions H, - Hg by the components

of A we can find their transformation. Because two matrix

multiplications are required to transform A a large number

of multiplications and additions are required to obtain the

transformed projections*

Fortunately, in our application the local rotations are

small enough to enable us to use an approximation for them#

In chapter 4 we pointed out that for small deformations the

rotational part of the affine transformation is given by the

antisymmetric part of the affine matrix. If the three

components of the antisymmetric part are written as a vector

R - (R ,R 9R ) the length of which is assumed to be very

small compared with the unit vector then the corresponding

rotation matrix is given by:

/ 1

- R
z

\
R

y

R
z

1

- R
X

-R \
y\

Rx

1 /



Ignoring terms which are quadratic in the components of R we

get:

" 2 V X7
; - i5

X7 ' l7 -

Ry' ( I7

The projections of two dimensional images are

transformed by

I' » Ij-cose + I2*sine

II --1,'Sine + I2«cose

i; * I7-cos2e + I,--sin2e
4 4 5

Ii » I.-cose + I-'
0 0 /

II —I.•sin© + I--cose
/ o /

where e is the angle of rotation.

5*5 Invariant Features

It is also desirable to be able to define an intrinsic

coordinate system for each region. If the projections are

computed in this system instead of the common coordinate

system of the entire image, a set of rotational invariant



features for each region will be obtained* This set of

features is useful for the initial stage of the registration

process when the global rotation between the two images is

not yet known.

To explain the notion of an intrinsic coordinate system

let us consider an example from the case of two dimensional

images. If a region contains a single edge dividing it into

two subregions of different gray levels, then the normal to

this edge passing through the center of the region (if only

one such normal exists) defines an intrinsic orientation for

the region. A coordinate system whose origin is at the

region center and one of its axes coincides with this normal

can be established.

In the three dimensional case a single line is not

sufficient since the other two axes can rotate around it.

To define an intrinsic coordinate system for three

dimensional regions a method from the theory of classical

mechanics is used. The region is considered as an object

whose density is given by the image function. The inertia

tensor of this object is defined by:

I ± j » / < b±i r - X^Xj ) dr (for i,j = 1,2,3)

The components of this tensor can be easily computed from

the projections of the region.



Since this tensor is Hermitian it has three real

eigenvalues and three orthogonal eigenvectors. If the three

eigenvalues are different, their eigenvectors can be used as

the coordinate axes. The identification of the three axes

is done by sorting the eigenvectors according to the

magnitude of their eigenvalues. Four different right hand

coordinate systems are possible because the sign of the

eigenvectors is arbitrary. To select a unique sign for each

of them, the vector from the region center to the center of

mass is used. The sign of two eigenvectors is selected by

requiring that their scalar product with this vector will be

positive. The sign of the last vector is selected so that a

right hand system is obtained.

It is also possible that two or even three eigenvalues

will be equal, or that the center of mass will be located at

the center of the region. In these cases we cannot select a

unique coordinate system without using additional

information. These cases occur when the image function has

some symmetries in the region. For example, two equal

eigenvalues (or almost equal) can occur when the region

contains subregions of different densities and the shape of

the boundary between them is invariant under a rotation in a

direction that is perpendicular to the boundary. In this

case the specific orientation of the two axes parallel to

the boundary does not make any difference. Since the
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ntrinsic coordinate system is used only during the first

tage of the matching process, problematic regions can be

gnored •



CHAPTER 6 THE ITERATIVE SOLUTION

6.1 The Finite Difference Method

In the introduction we have described a model for

registering a pair of deformed images. The model simulates

a process in which an elastic object (one of the images) is

deformed by forces derived from a potential function (given

by the similarity between the two images). The equilibrium

state between the internal and external forces corresponds

to the optimal registration* A set of partial differential

equations that are satisfied in the equilibrium state was

given. In this chapter we describe a numerical procedure to

solve these equations in the context of image registration.

Let us denote the coordinates of a point in one of the

images before the deformations by (X,Y,Z), and its

coordinates after the deformation by (U,V,W). In the

equilibrium state the values of (U,VfW) are given by the

solutions of:

- 76 -
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W + C2 — +
0 Z

where C, and C~ are the elastic constants of the material, 0

is the volume expansion at the point (X,Y,Z) given by:

c)x D Y C)Z

and F , F and F are the three components of the external

force•

In most cases including ours, these equations cannot be

solved analytically, and therefore a numerical method must

be used* In the finite difference method, a rectangular

grid is placed on the the region of interest and the

equations are solved by finding the values of the functions

(U,V,W) at the grid points. Let us denote the grid points

by the triplets (i,j,k). The grid is constructed so that:

X(i,j,k) - i-h , Y(i,j,k) « j-h , Z(i,j,k) - k-h

where h is the mesh size. The values of U, V and W at these

points will be denoted by U(i,j,k), V(i,j,k) and W(i,j,k).



Page 71

Assuming that U, V and W are analytic functions withii

the image region, it is possible to approximate thei:

derivatives at any point by their values at adjacent points

To find these approximations we use the Taylor's expansion;

of these functions at the point (i,j,k)» Thus for example:

±»i tk) h h U(i.j ,k)

C)X 2!

2e>U(l,J,k) h
+

21

From these equations we get by subtraction:

2h + 0(h3)

and by addition:

- 2 U(i,j,k) + U(i-l,j,k)] / h2 + 0(h4)

To simplify these expressions we can choose the units of the

coordinates system so that h • 1. Using similar expressions

for U(i,j+l,k) and U(i,j,k+1) we can get an approximatioi

for the Laplacian of U(i,j,k):
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V2U(i,j,k) - C U

- 6 U(i,j,k) ]

In our application the distance between adjacent grid points

is quite large and therefore we will use an approximation

based on the values of the functions at nineteen grid

points:

\72U(i,j,k) = [ 2

- 24U(i,j,k) ] / 6

This approximation has the advantage of providing a smoother

solution.

The second term in the equations can be approximated

by:

Ox

+ W(i-l,j,k-l) - W(l+l,j,k-l) ] / 4
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If the external forces at each grid point denoted by

F (i,j,k), F (i,j,k) and F (i,j,k) are given, three linearx y z

equations can be written for each internal grid point* If

the values of U, V and W at the boundary points are also

known, we will get a system of 3n linear equations with 3n

unknowns, where n is the number of internal points. In

principle at least, this system of linear equations can be

solved by direct methods.

In practice the number of grid points is so large that

an iterative method must be used. When an iterative method

is used, each equation from the set is dealt separately. A

different unknown is selected in each equation, and the

equation is then solved for the selected unknown using the

values from the previous approximation for the other

unknowns. In the Gauss - Siedel method, the new value for

this unknown is immediately used in the solution the other

equations. In the Jaccobi's method, its use is deferred

until all the other equations are also solved. An iteration

step consists of one such solution for each equation in the

set. These steps are repeated until the process converges,

i.e. until there is (almos't) no difference between the

values obtained for each unknown in two consecutive steps.



Page 81

A sufficient (but not necessary) condition for the

convergence of these two methods is that the coefficient of

the selected unknown in each equation will have at least the

same magnitude as the sum of magnitudes of all the other

coefficients in its equation (*). This condition is called

the weak dominant diagonal. If C« • 0 in the differential

equations, the set of linear equations can be separated into

three independent sets each involving only one of the

functions U, V or W. The weak dominant diagonal condition

is satisfied when the selected unknown in the equation

obtained for the point (i,j,k), is the value of the function

at that point.

From the two methods the first one (Gauss - Siedel)

will usually converge faster. Another advantage of it, is

that no additional storage is required for holding the new

value of the unknowns. On the other hand, the process is

more sensitive to errors (which can occur in our case) and

as we will see later can also cause some problems in

computing the external forces.

There are several methods for accelerating the

convergence of these iterative processes [YOUNG and GREGORY

1973]. They are particularly important when the initial

(*) The condition also requires that in at least one
equation inequality will hold. The equations that satisfy
the inequality are those that contain values at the boundary
points•
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approximation is far from the solution. Similar effects to

these acceleration methods (over relaxation) can be obtained

in our case simply by changing the elastic constants during

the process.

When C2 $ 0, it is not possible to separate the 3n

equations into three independent sets and the weak dominant

diagonal condition is no longer satisfied. The coupling

between the equations requires us to solve the three

equations for each point before moving to the next point.

As for the convergence, it depends upon the values of the

terms that approximate the mixed derivatives. When the

deformations are small, these terms are also small and so is

their influence on the process. For large deformations

these terms can sometimes prevent the convergence.

6.2 The External Forces

The main difficulty in solving the set of equations of

our model is caused by the external force terms. This

difficulty is the result of two problems. The first one is

caused by the lack of an explicit expression for these

terms. The second and the more important one is the fact

that in our model, the external forces depend on (X,Y,Z) and

also on (U,V,W).
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In most of the problems in elasticity, the deformations

are caused by forces acting only on the boundaries of the

objects, and therefore these terms are identically zero at

the internal points. In other problems, where the external

forces act on the entire object, such as those that involve

the gravitational force, it is usually assumed that the

deformations are small enough so that these forces have the

same values both in the deformed state and the undeformed

state.

In our model the forces are derived from a potential

function given by the similarity between the two images

(with a negative sign) . The similarity is measured in our

model by the cross correlation between the density function

in a region around (X,Y,Z) in one image and the density

function in a region around (U,V,W) in the other image.

Therefore the similarity is a function of (X,Y,Z,U,V,W) and

so are the forces. The dependency of the cross correlation

function on (U,V,W) is too strong to be ignored. It is also

possible that the initial approximation (obtained from the

global mapping) for (U,V,W) will be quite far from the

equilibrium values for some grid points. In these cases the

computed values for the forces could even have the wrong

sign.
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To handle this problem we have used the Lagrang

model of elasticity in which the external forces at e

point are functions of the deformed position of that poi

Thus for each grid point the similarity is a function

(U,V,W). The dependency of this function on (X,Y

required to obtain the gradient is only through

functions U(X,Y,Z), V(X,Y,Z) and W(X,Y,Z). Denoting

similarity function by C(i,j,k,U,V,W) we can write:

F ( i , j , k )
x

,j,k,U(X,Y,Z),V(X,Y,Z),W(X,Y,Z))

Oc cIV c)C Ow
. + , + .

c)u Ox ^)v <)x Ow Ox

O c ( i , j , k , U ( X , Y , Z ) , V ( X , Y , Z ) , W ( X , Y , Z ) )
r ( i , j , k ) -

7

Dc <)u
Ou t)Y t)v O Y C)W D Y

Dc(i,j,k,U(X,Y,Z),V(X,Y,Z),W(X,Y,Z))
F (i,j,k) -
z' Z

Dc Du <)c civ
c)u c)z ()v Dz . c) w

To compute these expressions for different values

(U,V,W) we need to have an expression for C(ifj,k,U,V,

If a direct method for solving the set of equations has b

used, the expression for C would have to be accurate fo
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large range of (U,V,W). When an iterative process is used,

the possible changes in the values of (U,V,W) are small.

Therefore, an approximation of C in a small region only is

required•

It was already said that the similarity between two

regions is a function of the deformation. That is,

C(i,j,k,U,V,W) depends on the values of (U,V,W) at the point

(i,j,k) and also on their values at other points. In the

approximation of small deformation, the dependency is

through the deformation matrix which contains the first

derivatives of U, V and W. When these derivatives are

approximated by finite differences, their expressions do not

contain U(i,j,k), V(i,j,k) and W(i,j,k) but only

U(i±l,j±l,k+l)f V(i+l,j+l,k+l) and W(i+1,j+1,k+l)•

Therefore, in a small region around the point (i>j,k) the

similarity function can be computed using a fixed

deformation matrix.

Of course, it is only possible to compute C(i,j,k) for

a small number of values of (U,V,W) in any region. From the

values of C(i,j,k) at those points in the region we can get

an analytic expression for C(U,V,W) using the least square

approximation. The simplest approximation - a function

linear in U, V and W would result in constant force terms.

When the values of (U,V,W) are close to the point of maximum

similarity, the correlation function will have a peak. In
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this case the direction of the force vector is changed as

result of small changes in (U,V,W). This can cause 1

iterative process to oscillate around that poii

Therefore, a quadratic approximation written as:

C » C + C - U + C - V + C * W + C • U 2 + C -V2 + C -W 2-
o u v w uu vv ww

+ 2C * U-V + 2C • V»W + 2C • W-U.
uv vw wu

is more appropriate*

When we substitute the approximations for 1

derivatives of U, V and W into the definitions of the fore

we get:

t U(i+l,j,k) - U(i-l,j,k) ] •[. C u u-U(i fj,k)

+ Cuv'V(i,j,k) + Cuw-W(i,j,k) + Cu / 2 ]

Cvv-V(i,j,k) + C v w-W(i fj,k)

+ C -V(i,j,k) + C -W(i,j,k) + C / 2 ]
vw ww w

F (i,J,k) - [ U(i,j+l,k) - U(i.j-l.k) ]•[ Cuu'U(i,j,k)

+ Cuv-V(l,j,k) + Cuw-W(l,j,k) + Cu / 2 ]

Cuw-U(i,j,k

Cvw-V(i,j,k) + Cww-W(i,j,k)
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Cuv-V(I,j,k) + Cuw-W(i,j,k)

Cvw-W(i,j,k)

Cuv-U(i,j,k)

cuw-u(i,j,k)

-I- C -V(i,j,k) + C -W(i,j,k) 4- C / 2 ]

These terms introduce more coupling between the sets of

equations for U, V and W and also make them nonlinear. The

nonlinearity is not a serious problem, since the equations

are solved by an iterative method which can handle it. It

can only affect the convergence of the process. The problem

caused by the presence of U(i,j,k), V(i,j,k) and W(i,j,k) in

all the three equations for the point (i,j,k), is handled by

solving in each step of the iteration the three equations

for every point simultaneously.

The main problem with the quadratic approximation is

caused by the fact that it does not always represent a

function with a peak. That is, the surfaces of constant

value of C are not always ellipsoids. While in principle at

least this should not happen, in practice when the least

square approximation is used, this can happen quite often.

To handle these cases, we need the tools to detect them.
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The position of the peak (or the extremum) of this

function is given by:

grad C(U,V,W) - 0

The values of (U,V,W) at this point are the solution of the

following system:

C - U + C • V + C .w - - C / 2uu uv uw u

C - U + C - V + C -W « - C / 2uv vv vw v

C - U + C * V + C •W « - C / 2uw vw ww w

For these equations to have a solution the determinant of

the coefficient matrix should not vanish. In real

applications, the vanishing of the determinant is a very

i

rare case, unless all the coefficients are zeros. Given the

solution of these equations, it is possible to translate the

origin of the coordinates to that location and to obtain an

expression which does not contain the linear terras.

The mixed terms ( C -U-V, C -V-W and C -U-W ) can be
uv vw uw

eliminated by rotating the coordinate system. The

coefficients of the quadratic terms that remain after this

rotation are the eigenvalues of the above matrix. The

quadratic expression for C represents an ellipsoid if all

the eigenvalues of this matrix are positive. The necessary

and sufficient conditions for this are:
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C + C + C > 0uu vv ww

C *C + C -C + C -C - C - C2 - C2 > 0uu vv vv ww uu ww uv vw uw

C • C • C +2-C 'C -Cuu vv ww uv vw wu
2 2 2

- C • G - C • C - C *C > 0
uu vw vv uw ww uv

The last expression is the coefficients determinant• These

conditions are obtained by considering the three invariants

of the bilinear form and noting that their signs must be the

same as in the diagonal representation.

When one or more of these eigenvalues is negative, the

correlation function has a minimum along the direction of

the corresponding eigenvector. This can happen in two

cases. The first is when the region used to approximate C

contains a real minimum of C. The other case is when the

eigenvalue was small and became negative as a result of the

approximation. A small eigenvalue often happens when the

region contains an edge. In this case tangential components

of the force relative to the edge can vanish.

The problem in using the quadratic expression for C is

caused by negative eigenvalues. In this case the force

becomes stronger as the distance from the extremum point

becomes larger. This will cause unrealisticly large changes

in (U,V,W) in a single iteration step. To prevent this

problem we need only set the value of the negative

eigenvalue to zero. This process consists of finding the
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rotation matrix that transforms the bilinear form into a

diagonal one, setting the negative eigenvalues to zero and

finally transforming the diagonal form into the original

coordinates. This process consumes a relatively large

amount of time, but in most cases it results in a faster

convergence of the iteration process.

6.3 Three Dimensional Regression

Up to this* point it was assumed that every point in the

image is equally important. This assumption is justified in

this work although for some points in the image it is easier

to locate their corresponding point in the other image.

These distinguished points usually have a sharper peak in

the cross correlation function than the others. Therefore,

the external forces that act on them are stronger than the

external forces that act on the others when they are at the

same distance from their 'true' placement.

There are however many applications where it is

required to find the optimal mapping based on a set of a

relatively small number of corresponding pairs of points in

the two images, instead of the entire set of points in the

image. These corresponding points could for example be

located by special operators or could be entered as data
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It is also possible in these cases that a .different

values of error estimates will be associated with each pair

of data points. These error estimates specify the

probability of finding the 'true' point (in one of the

images) at a given distance from the data point. When the

probability distribution is symmetric its shape is usually

described by the Gaussian:

EXP (- r2/ <T2)

where r is the distance from the data point.

The assumption about the symmetry of the probability

distribution is often made because of the difficulties an

handling the more general case of asymmetric distribution

given by:

Pr(U,V,W) » EXP ( - E(U - U',V - V',W - W ) )

where E is a second degree polynomial representing

ellipsoids centered at (U',V',W) (*) . This type of

registration problem is very common in many areas. Tobler

called this problem in the two dimensional case by the name

of bidimensional regression [TOBLER 1977], and gave an ad

hoc method for obtaining a smooth solution without

considering the errors.

(*)The conditions that the surfaces obtained from E * const
are three dimensional ellipsoids are given in section 5.2.



Our method can be used to obtain an optimal mapping

with or without these error estimates. Before delving into

the details let us first discuss the cost function to be

minimized by the optimal mapping. We will first assume that

no error estimates are present, we will also leave out the

deformation part of the mapping and assume that the mapping

is represented by three polynomials P , P and P . let us

denote by (X ,Y ,Z ) the coordinates of the point in onem m m

image and by (U ,V ,W ) the coordinates of its corresponding
m m m

point in the other image. Using the least squares

approximation means the minimization of the following error

function:

N
E R R O R 2 - > < [ U - P f ( X , Y , Z m ) ] 2 + [ V m - P T ( X . Y . Z ) ] 2

/ m u i n u i i n m v m r n m

When error estimates are available and the probability

distribution is symmetric each term in the sum is multiplied

by a weight which is the width of the corresponding

Gaussian. When the distribution is asymmetric but the error

function becomes

N

ERROR2 - ) E(U - U',V - V',W - W')/ m m* m m m m

m* 1

where E is the same second degree polynomial that appears in
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the exponent of the probability distribution.

The cost function that is minimized in our method is

COST - DEFORMATION + ERROR2

As in the matching, we associate the second term with the

potential function from which the external forces are

derived. The solution of this problem is obtained by

solving the three partial differential equations without the

need to give an explicit expression for the deformation

part. The solution of these equations is again obtained by

the finite difference approximation using a rectangular grid

of points.

If the point (X ,Y ,Z ) falls on a grid point then we
m m m

can easily get the components of the external forces at that

point* More often however, the data points will not fall on

the grid points but in a cell whose vertices are the grid

points. In such a case some sort of interpolation is

required. Let (i»j»k) be a grid point such that:

we will use the following notation:



AX
.

Xm " X(i,j,

Y
m - Y(i,j,l

Zm " z<i.J.l

z
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- U(i-l,j,k) ] / 2

U<±,J+l,k) - U(ifJ-l,k) ] / 2

- U(i,j,k-1) j / 2

and similar expressions for v,. Vy, ^ ^ ^ a n d

Using linear approximation we can write:

U ( Xm' Ym' Z« ) = U(i»J.k) + AX U^i.j.k) + AY U (i,j,k)

V(Xm'Ym'Zm) = V(i.J»k) + AX V^i.j.k) + ^Y V (i,j,

W(X ,Y ,Z )
" i m m — « • . - - * - » - / • / i * » f V J L , j

W (i,j,k)

The components of the external force at (i,j>k) a r e g i v e n

by :

m

m m

m
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where the expressions for U(X ,Y ,Z ), V(X ,Y ,Z ) and
m m m m m m

W(Xm,Ym>Zm) are substituted after the differentiation for

Um* Vm a n d w respectively. These expressions are linear in

U(i,j,k), V(i,j,k) and W(i,j,k) but are quadratic in the

others. When there are several data points within the grid

cells that have the point (i,j,k) as one of their corners

the total force is simply the sum of their contributions.

Grid points that are not corners of cells with data points

have no external force to act on them. Their positions will

be determined by the internal forces only.

To solve the equations obtained in this way we use an

iterative method. Again, the three equations for each grid

point are solved simultaneously to increase the convergence

rate of the method. Unlike the case where the 'true'

position of each grid point is unknown and the correlation

function has to be computed again in each step using a

lengthy process, here we can store the expressions for the

forces and just recompute them each time using the new

values of the unknowns*

There is only one more point that should be mentioned

here. If the Gauss- Siedel iterative method is used, it is

possible that the placement of one point will be moved so

far from its previous placement, as to change the sign of

the partial derivatives. To avoid any problems from this

Jaccobi's method should be used.



o*4 Boundary Conditions

The Dirichlet boundary conditions specifying the U, V

and W at the boundary grid points are the easiest to use.

They are also the most restrictive, i.e. they have the

largest effects on the solution. These values can be

obtained from the global mapping. Since the global mapping

is only a linear approximation to the optimal mapping, it is

not necessarily a good one for every point on the boundary.

As a result, one can expect to get larger errors near the

boundary which can affect the entire registration.

There is, however, a way to reduce their effects on the

solution in the region of interest. One simply has to make

the grid larger than the image, so that the boundary grid

points whose values are fixed will be far away from the grid

points where the solution is important. The price for this

solution is paid by the additional computations required by

the extra points.

The Neumann boundary conditions of specifying the

derivatives of U, V and W at the boundary grid points have

the advantage in our application. These conditions can also

be obtained from the global mapping. Thus, if the global

mapping is given by:
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In our implementation, the boundary points of the grid lie

on the faces of a rectangular box. Assuming that one of

these faces contains the points (O,j,k), the X-derivative of

U on this face can be approximated by:

Similar expressions can be written for the X-derivatives of

V and W» It seems like we have obtained one equation for

each additional unknown (in this example: U(O,j,k)), but in

fact, the system of all the equations does not necessarily

have a unique solution (*)• If however the forces are

functions of (U,V,W) as is the case here, a unique solution

will result*

Since only one boundary condition is sufficient for

obtaining the value of U(0,j,k) it is clear that we cannot

use the other conditions. This can result in large

(*) This a general property of the Laplace equations
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displacements of the boundary points. To minimize this

problem we change the above condition into:

which makes U(O,j,k) be the average of the above requirement

and the following two:

- o , — 2 - o .

At the edges of the boundary box, for example, at. th«

points (0,0,k) the conditions used in our implementatior

are:

U(0,0,k) - [U(l,0,k) - Gu + U(0,l,k) - G12] / 3

+ [U(0,0,k+l) + U(0,0,k-l)] / 6

Finally, the conditions at the vertex (0,0,0) of th<

boundary box is:

U(0,0,0) - tU(l,O,O) - Gu + U(0,l,0) - G12

+ U(0,0,l) - G13] / 3

Similar conditions are used for V and W and for the othei

boundary points.



CHAPTER 7 IMPLEMENTATION

7*1 General Considerations

The registration method described in this work is <

general one and can be used to register any pair of similai

images. The implementation of this method was howevei

tailored to our particular application* While in othei

application areas, each time a new pair of images it

registered, in our case, one image of the pair is always th«

same and only the other one is new. The fixed image is th<

atlas and the new one is the CT image. It is possible tc

take advantage of this fact to reduce the amount oi

computation required by the process.

The most time consuming action of our registratioi

process is the computation of the projections of the image

function on the orthogonal base. Since the atlas image is

always the same, its projections need to be computed onl;

once and they can be saved on a disc or a magnetic tape

Because of this, the process was designed to use projection*

on more points in the atlas image than points in the Cr

image.

- 99 -



Page 10

While it is possible to store the projections of a

many regions as one may want, there is a price for it

Because the size of the computer memory is limited, it i

not usually possible to keep the entire set of projection

in memory and therefore an overlay structure is required

Even when large computers are used the memory is paged, an

only some of the pages are kept in the main memory. Sine

the projections are used again and again, they have to b

read from the paging device many times. This operation se

a limit to the number of regions that could be used.

The number of regions in the CT image is the same a,

the number of (internal) grid points. This number i;

determined by the image size and the mesh size. Thi

resolution of the mapping depends on the mesh size since th<

mapping of points other then the grid points can only b<

found by interpolation. A lower limit on the effective mesl

size is imposed by the resolution of the image through th<

size of the correlation regions.

In order to take into account the deformation of th<

image in the similarity measurements, the projections of thi

image function on the orthogonal base should be modified (o

recomputed) according to the deformation. The deformatio

within a region is approximated in our method by the linea

deformation matrix and the elements of this matrix ar

approximated by finite differences. For each grid poin
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(ifj>k) these approximations contain the mapping values at

the (i±l,j+1,k+l) grid points. Therefore, the radius of the

spherical region in which the linear approximation is valic

is close to the distance between two grid points. This

radius should on the other hand be greater than the

resolution of the CT image or else only the projection 01

the constant function (Ho) will not be identically zero.

The thickness of the CT slices used to test our method was

8mm. Therefore, we have used a grid with an 8mm mesh size

and regions with a radius of 12mm.

The number of useful projections for each regiot

depends on the size of the region and on the amount oi

detail (texture) within a region. The magnitudes of the

projections decrease with the number of zero crossings

(frequency) of the corresponding base functions. The

relative contribution of the different projections to the

cross correlation function is proportional to the square oi

their values. To limit the error in this function to about

one percent, only those projections whose magnitude is

greater than one tenth of the largest projections an

required. Being limited by the size of the computer memory

we have mostly used only the first four projections from th<

set given in section 5.3. Increasing the number o:

projections did not produce significant effects on th<

resulting mapping.
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7.2 The Global Mapping

The first step in the registration process is to find

the global mapping* This is done by placing a grid on the

CT image and computing the projections for each grid point.

We assume that the two images are already grossly registered

so that both the scales and the orientations- of the two are

similar. If this is not the case, then the grid placed on

the CT image is scaled and rotated according to our best

knowledge•

Based on our estimate of the similarity between the two

images we can set a limit to the displacement between the

two. This limit is used to define the size of the search

area in the atlas. For each point in the grid a search is

conducted to find the most similar point within the search

area in the atlas. The similarity is measured by the cross

correlation of the corresponding projections. A weight is

assigned to each internal grid point by:

w(i,j,k) « EXP(-d2(i,j,k))

where d(i,j,k) is the distance between the best position of

the point (i,j,k) and the average positions of the best

points obtained for its six neighbors.
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From these weighted positions a global mapping is

computed using the least squares approximation. If the

deformation matrix of this mapping is close to the unit

matrix, the global mapping is accepted and the elastic part

of the registration process can begin. Otherwise, a ne*

grid based on this mapping is put on the CT image and the

projections are computed using the new grid as the

coordinate system. Using the new projections the search

process is repeated and a new deformation matrix is computed

again.

The iterative process of finding the global mapping is

repeated until there is (almost) no difference between two

successive mappings. Recomputing the new projection is

required only if the global mapping contains large

deformations. If the global mapping is mostly a rotation

and translation the new projections can be easily obtained

from the old ones using the procedure described in section

5.4.

It should be noted that the reliability of this process

depends to a great extent on the images themselves. If the

images contain sufficient details so that many points can be

uniquely identified during the search process, the resulting

mapping is quite good. In other cases the particular point

selected as the most similar one to any grid point depends

on the order in which the search is conducted. A useful
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strategy is to select from the set of equally similar points

the one which requires the smallest displacement.

7.3 Local Matching

After the global mapping is either computed or

estimated, the main step of the registration process can

start* The main problem in this step is to find in each

iteration cycle and for each grid point the components of

the external force. To find these components we need in

this method to find the quadratic approximation to the

similarity (cross correlation) function.

Since it is possible to evaluate this function only for

those points for which the projections are available, we

have to use the least squares approximation method. In

order that this approximation will be useful it should

represent a function that has a maximum point near the

'true' placement of the grid point. The assumption that the

cross correlation function can be approximated by a

quadratic expression with negative eigenvalues (*) is

usually valid only in a small region around the maximum.

When values at points which are far from the peak are used,

(*) The eigenvalues are related to the second derivatives of
the function which are negative at the point where the
function attains its maximum.
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the quadratic approximation obtained from the least squares

method can represent a variety of functions with undesired

properties for our process. If the peak of the function is

too narrow compared with the mesh size of the atlas grid,

this situation will occur frequently. Making the mesh size

smaller will force us to conduct a lengthy search for the

peak. Another related problem is that for many points

instead of a peak the function has a plateau, and therefore

there is no point in searching it.

A method was therefore required to determine whether

the program should search for a peak and if so a way to

reduce the search time. The cross correlation function has

a peak only if there is one in the autocorrelation function.

This function could have a peak if the sum of the magnitudes

of projections other than Io (the projection on the constant

function) is greater than zero. The larger this sum is

compared with Io, the more narrow is the peak. This

property can be used to sharpen the peak by omitting Io from

the cross correlation or to make it wider by assigning a

larger weight to Io and smaller ones to the others. In the

extreme case we would like to use only the Io term, but in

this case we have to compute the similarity by the absolute

value of the difference between the Io's at the two points.
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When the peak is wide, a coarse grid can be used to

approximate the similarity function. If the quadratic

approximation obtained in this way has negative eigenvalues,

we can find the position of its maximum. If it does not

have a peak, no external forces will be applied to that grid

point. Using a fine grid around this point and a small

weight for lo, the program recomputes a new quadratic

approximation for the similarity function. Of course, the

same atlas grid is used for these two approximations, but in

the former case the program uses every Nth point in it.

When the second approximation is computed, the signs of

its eigenvalues are tested. A positive eigenvalue can cause

the iteration process to diverge as the the force in the

direction of the corresponding eigenvector pulls the point

away. This force becomes larger and larger as the solution

runs away from the right place. Therefore a positive

eigenvalue should be zeroed if the approximation is to be

used. Since a transformation that can cause round off

errors is applied to the coefficients of the similarity

function, the program changes the positive or zero

eigenvalues to a small negative value.

The number of points used by the least squares method

is 4 « 64 in the three dimensional implementation and

2
4 * 16 in the two dimensional case. It is easier to

compute the approximation and also the errors are smaller if
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a coordinate system in which the points are symmetrically

distributed around the origin. The change to another

coordinate system is trivial.

It is clear that this process takes a considerable

amount of time and therefore its use should be economized.

Since in each iteration step the placement of each grid

point can only be changed by a small amount as its

neighboring points are holding it back, the same

approximation can be used during several iterations. When

the iterative process converges, new approximations are

computed. These are used to improve the mapping by further

iterations.

To obtain the improved approximations the cross

correlation function is computed using modified values for

the projections. These modifications are done by the method

described in section 4.4. using the approximated mapping to

find the rotation vector. If the amount of pure deformation

is too large they should be recomputed by changing the

region shape to the appropriate ellipsoid and deforming the

orthogonal base functions. In our implementation

recomputations were not required. By avoiding this process

we could divide the process into several tasks that could

fit the available memory.
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The equilibrium position for each point in each

iteration is first computed in the absence of external

forces. The similarity function is transformed to a

coordinates system in which this point is the origin. The

components of the external force are obtained in this

system. The three equilibrium equations rewritten for the

displacements from this origin are solved simultaneously,

and the solutions are saved until the equations for all the

other internal grid points are also solved (Jaccobi's

iteration method). This prevents the possibility of

obtaining the wrong sign for the derivatives of the mapping

which could happen if a new placement for a grid point cross

over an old placement of its neighbor. At the end of the

iteration cycle the new values are also used to compute the

mapping of the boundary points.

7.4 The Elastic Constants

Selecting the values of the elastic constants is also a

point which deserves some discussion. The partial

differential equations and as a result the finite difference

equations can be simplified by setting A + p • 0. When the

two images to be matched contain many details, the solution

is influenced mainly by the external forces. In such cases

this simplification does not have undesired effects. When
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the images contain large areas lacking details the process

behaves in the two dimensional case differently than in the

three dimensional case.

The reasons for this can be seen by considering Hooke's

law in a coordinate system in which the strain matrix is

diagonal. In the two dimensional case this law is written

as :

Si " ̂  '(el * e2>} * 2 T ei

Setting A + u - 0 we get:

S. » 11 -(e. - e^) and S2 =» p*(
e
2 ~ e i)

Thus in the absence of any stress deformations are still

possible provided that they have the same sign and

magnitude. This phenomenon is of course very undesirable

because it can cause spontaneous shrinking or expansion in

regions ̂ lacking details.

Setting A + u « 0 in the three dimensional case, we

will get:

i i i *» <J

and the only solution when
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is:

pk ss o so aft
e l e l e 3 0 #

The behavior of an object with this property is certainly

strange as can be seen by setting

S 3 q q m q =s 0

In response to a force pushing in one direction the object

will shrink in the other two directions.

Setting A a 0 is the next simple choice as only one

constant is left. We have found that in two dimensional

case a negative value for /\ (-u < A < 0 ) can sometimes

produce better looking results. The three dimensional

examples that where tested contained enough details to allow

us to use A • -U without problems.

A suitable value for u depends also on the amount of

detail in the images. When the amount of detail is large

the peak of the cross correlation function is narrow and the

forces are strong. A small value for u in this case could

cause problems if the program finds a peak in the wrong

place. This is more likely to happen during the first few

iterations. Thus the best way is to start with a large

value for u and to decrease it as the process converges.



CHAPTER 8 RESULTS

The optimal registration method developed in this work

was tested by registering (matching) several pairs of two

and three dimensional images* The results of these tests

are presented in this chapter.

In each example, one of the images is called the

reference image and the other is called the test image. The

reference images contain several objects each of them is a

connected set of pixels having the same density (gray)

value. In the two dimensional cases an object is defined by

a set of points on its outer boundary. The boundary of the

object is obtained by joining these points with straight

lines. The object consists of all the pixels inside this

boundary•

In one of the three dimensional examples, the objects

were defined as set of pixels whose coordinates satisfy

certain inequalities. In the other three dimensional

example the reference image (the atlas) was constructed by

stacking a set of two dimensional images (slices).

- Ill -



In the tests, a grid with a mesh size of eight pixels

was placed on the test images and the optimal placement of

these grid points were computed by the registration process.

The placement of points other than the grid points were

computed using linear interpolation. The inverse mapping,

that is the point in the test image which corresponds to a

given point in the reference image, is obtained by locating

the point in the test image whose mapping point is the

nearest one to the point in the reference image.

In the two dimensional examples the inverse mapping was

used to deform a rectangular grid representing the reference

image (the reference grid) which was then superimposed on

the test image. The inverse mapping was also used to find

the mapping of the boundary points defining the objects.

The superimposed boundaries were obtained by drawing lines

between consecutive boundary points.

A different method of presentation was used in the

three dimensional examples. Pictures of the three

dimensional structures from several view points were

generated by making some of the objects opaque and the

others transparent. The reconstructed images were obtained

from the reference image using the mapping computed in the

registration processes, and the results were displayed in

the same way as the reference images.



. 4.4. «-».*.%*«.*%-xn tne ursc example, <±

synthetic images shown in figure 1, was used. The righ

hand side of figure la contains the reference image and th

left hand side contains the test image that was registere

with it. Figure lb contains the result of the registratio

process. The left hand side of figure lb shows the deforme

reference grid superimposed on the test image. The righ

hand side of figure lb shows the deformed boundaries of th

objects in the reference image superimposed on the tes

image.

• t

Figure la. Synthetic images for registration.



Figure lb. Results of registration*

The same pair of synthetic image used in the first

xample was also used in the second example, but this time,

oise was added to the test image. The gray values of the

hite background, the large gray ellipse and the four small

lack objects are: 200, 125 and 50 respectively. The noise

evel added to each pixel of the test image was a randomly

enerated number in the range [-50, 50]. Figure 2a shows

he noisy test image (left hand side) and the reference

mage. Figure 2b contains the results of matching the noisy

est image with the reference image. There is hardly any

ifference between these results and those shown in figure

b.
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Figure 2a. Synthetic images with noise

Figure 2b. Results of registration.



A different pair of synthetic images was used in the

next example shown in figure 3a, where the test image is on

the left side and the reference image is on the right side.

The results of the registration process are shown in figure

3b. A large amount of grid deformation can be seen in the

lower right region of the gray ellipse* As a result of

this, there is some disparity between the superimposed

boundary and the edge of the ellipse in this region.

Figure 3a. Synthetic images for registration.
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Figure 3b* Results of registration*

Figure 4a shows the same two images from the previous

example except that a noise was added to the test image*

Figure 4b shows the results of registering this pair of

images, and like the first example, they are almost the same

as those obtained for the clean test image*
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Figure 4a. Synthetic images with noise

Figure 4b* Results of registration.
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Figures 5a, 6a, 7a and 8a contain four CT images of a

human brain (the left hand side of each figure) together

with their corresponding atlas (reference) images (the right

hand side)* The atlas Images contain the ventricles, the

caudate, the thalamus and the putamen. The rest of the

brain was taken as one object with a single density value.

The regions around the brain, both in the CT and in the

atlas images have the density value of a bone* Figures 5b,

6b, 7b and 8b show the results of registering these pairs.

In most cases the boundaries of the anatomic objects are

properly placed* Some misregistrations occurred in regions

where the atlas and the CT images have different density

values (for example, at the boundary of the brain near the

central sulcus and the lateral sulcus where the CT images

contain dark regions).



Figure 6a. A CT slice with its atlas image

Figure 6b. Results of registration.
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Figure 7a• A CT slice with itsatlas image*

Figure 7b. Results of registration.



Page 123

Figure 8a. A CT slice with its atlas image

Figure 8b. Results of registration.
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The next two examples are of the three dimensiona

registration* In the first one synthetic images were use

both for the reference image and for the test image

Figures 9a-9c show three views of the reference object an

the test object* Each object contains a barbell inside

torous within an ellipsoid* The test image differs from th

reference image by the lengths of the ellipsoid axes, by th

shape and orientation of the torous, and by a rigi

transformation (a translation and a rotation) of tti

barbell*

Figure 9a* Three dimensional objects*
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Figure 9b# Three dimensional objects

Figure 9c. Three dimensional objects.
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Figures lOa-lOc show the six slices of the test object

(image) that contain the torous. These simulated CT images

were created by averaging the densities of slices whose

thickness were 8 pixels. An image made of 20 such, slices

stacked on top of each other was registered with the

reference object. Figures lla-llc show three views of the

deformed reference object (the reconstructed images) next to

the original test object. Figures 12a-12c show three views

of the reconstructed object next to the reference object*

' Figure 10a. Simulated CT slices*
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Figure 10b. Simulated CT slices

Figure 10c* simulated CT slices
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Figure lla. The reconstructed and the original objects

Figure lib* The reconstructed and the original objects
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Figure lie. The reconstructed and the original objects.

Figure 12a. The reconstructed and the reference objects
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Figure 12b. The reconstructed and the reference objects

Figure 12c. The reconstructed and the reference objects
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It is clear that the shape of the reconstructed object

falls between the shape of the original object and the

reference object* The shapes of the reconstructed ellipsoid

and the reconstructed torous are quite close to the shapes

of their corresponding objects in the original image but

larger errors occurred in the reconstructed barbell* These

errors are due to the larger deformations required to

translate the barbell through the torous*

The final example is the registration of an image

obtained by stacking fifteen CT slices with the anatomy

atlas of the brain* The atlas used in this example was

constructed from thirty slices with a thickness of 4 mm

each* Four of the slices in this atlas are shown in figures

5a, 6a, 7a and 8a* Six views of the atlas as a three

dimensional semi-transparent object are shown in figures

13a-13c* Four views of the reconstructed brain are shown in

figures 14a and 14b*
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Figure 13a. Three dimensional atlas*

Figure 13b. Three dimensional atlas
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Figure 13c. Three dimensional atlas.

Figure 14a. The reconstructed brain



Figure 14b. The reconstructed brain.

Figure 15 shows the top view of the reconstructed brain

(left hand side of the figure) and the top view of the atlas

(right hand side). By comparing these two views it is

possible to see that the reconstructed brain is rotated

(anti-clockwj.se) with, respect to the atlas and that the left

side of the reconstructed brain is closer to the viewer than

the right side (the left side is brighter than the right

side). Unfortunately, it was not possible to judge the

accuracy of the reconstructed brain since the CT images

where taken from a living person.
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Figure 15. The reconstructed brain and the atlas.



CHAPTER 9 CONCLUSION

9*1 Summary

The work described in this dissertation was motivated

by the need to locate objects and their boundaries in three

dimensional images obtained by stacking successive CT

images* This task is difficult because of the complexity of

the anatomic structure and also because of the poor quality

of the CT images. Automatic methods that do not use

external sources of knowledge had only limited success in

the past. The use of external knowledge usually requires

sophisticated programs and complex knowledge representation

techniques* While in the long run this approach is very

promising, in the short run there are very few results*

In this work, the external knowledge was represented

simply by another three dimensional image - the atlas image*

By registering the CT image with the atlas image, a mapping

between the two is obtained* This mapping enables us to

superimpose the boundaries from the atlas on the CT image

and use them as approximations for the true boundaries*

- 136 -
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The major problem that we had to solve was that of

finding the mapping. When the differences between the two

images cannot be accounted for by a rigid transformation

only, there is some freedom in selecting the mapping. The

mapping is evaluated by the similarity of the transformed

image to the other image and by the amount of deformation.

By defining a cost function that contains these two values

we can define an optimal mapping.

To obtain this optimal mapping we need tools to measure

the similarity under different deformations and the

deformations themselves. Given these, an efficient

procedure to locate the minimum cost is necessary. When the

image is treated as an array of points, even a simple

version of this problem is extremely 'difficult to solve

[FISCHLER 1973]• If instead we treat it as a continuum we

can use the theory of elasticity for the problem.

Taking the similarity as the potential function from

which forces are derived to deform the image, we can use

Navier's equations to solve the problem even without giving

an explicit expression for the deformation. These equations

are solved by an iterative method on a grid of points. The

mapping is described by the placements of the grid points.

Approximate values of these can be used in computing the

similarity under deformation.
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The similarity is measured by the cross correlation of

the image functions in two regions. This operation, which

is repeated many times during any registration process,

consumes the largest part of the computation time. To save

time we have expressed the image function in a region by its

projections on a set of orthogonal functions. Less than a

dozen projections are usually sufficient for the process, he

computation time* To save time we have expressed the image

function in a region by its projections on a set of

orthogonal functions. Less than a dozen projections are

usually sufficient for the process, instead of the more than

several hundred pixels that are contained in the region.

Using the solid spherical harmonics as the set of orthogonal

functions, it became possible to compute these projections

in a simple and fast way under different rotations from the

original set of projections.

Our registration method' is also very useful in finding

the mapping between two images when a set of pairs of

corresponding points are available. Not only is the mapping

obtained by our method optimal, but it is also possible to

vary the ratio between the deformation and the fitting of

the data. This mapping can also take into account different

error estimates for each observation and these errors can

have asymmetric probability distribution.
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9.2 Relationship To Other Methods

Most of other registration methods contain two parts,

one dealing with with the local aspects of the matching and

the other with the global ones* The task of the first part

is to locate a set of corresponding points that will be used

by the second part to compute the mapping. The task of the

second (or global) part is complicated by the errors that

the first part makes. These errors are the results of

distortion in gray level, geometrical deformations, noise in

the images and insufficient details for unique

identification.

Most methods rely on the assumption that the mapping is

continuous in handling these errors* The assumption is used

either by fitting a low degree polynomial to the data or by

averaging the displacements of adjacent points. In both

cases, no attempt is made to estimate the errors. Only

Fischler's method [FISCHLER 1973] uses a cost function

containing both the matching goodness as an estimation of

the error and the deformation.

Cooperation between the two parts, that is the guidance

of the local matching process, is minimal, while it is

clear that the similarity between the images is a function

of the computed mapping, only Burr [BURR 1979] uses an

iterative method to improve the correlation measure. He
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does it by deforming the two images after every iteration

step •

Our registration method is a generalization of

Fischler's, Burr's and Tobler's [TOBLER 1978] methods. We

have used a cost function similar to that of Fischler, a

grid to represent the mapping as Tobler does, and the

similarity is computed in every iteration based on the

mapping obtained in the previous iteration. The

contribution of this work is not just in combining these

ideas into an efficient method, but also in significantly

improving each one of them*

The model of a spring chain used by Fischler and

Elschlager is too simple for an effective measure of

deformation* A triangulated network of springs would be

much better but their method cannot handle it in a

polynomial time. The deformation part of our cost function

is based on a model of a continuous solid. Even the finite

grid used for the iterative solution contains (in the three

dimensional case) several thousands of points compared with

less than a dozen in their model. The mapping obtained by

our method is optimal and theirs only in the case of the

linear chain.
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Burr has to deform the two images in each iteration

step* Our method has only to deform the projections for the

points of one grid whose total number is much less the the

number of pixels in the image* The use of these projections

also enable us to compute the similarity between two regions

by only a few operations and therefore we have a significant

speed advantage over methods using direct method for

computing the cross correlations*

Tobler's method does not use the error estimates that

are associated with each pair of observation and it is also

not possible to vary the stiffness of the grid* In our

method the stiffness of the grid is easily changed by

varying one or two elastic constants* In that respect it is

similar to varying the degree of the multivariate polynomial

that represents the mapping* The error in each observation

is estimated from the cross correlation function and the

resulting mapping is optimal in the same sense as the least

squares method*

9*3 Suggestions For Future Research

Three directions for further research are suggested

here* The first deals with improving the atlas so that the

use of our method for locating object boundaries in three

dimensional CT images can be tested more thoroughly* The
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second is the improvement of the method so that larger

deformations could be handled* The third direction is the

study of other possible applications of the registration

method.

The main difficulty that we had in the application of

the registration method is due to the lack of a good atlas*

The construction of a good atlas turn out to be more

difficult than we had expected* In our opinion a good atlas

should contain two versions* One which resembles as much as

possible a CT image in its density levels* The other

version should contain the structure of the object

boundaries* The representation of this version should

enable reslicing of the atlas through curved surfaces*

These slices will be superimposed on the CT image* Two

versions are required because certain parts of the anatomy

•for example the skin that encloses the brain, have high

enough density to appear in the image while their structure

cannot be represented easily and is not required*

The assumption underlying our registration method is

that the deformation part of the mapping is small* This

assumption is not always justified, but the main reason for

making it was its simplicity* If this assumption is not

used, the equilibrium equations become nonlinear and

therefore much more difficult to solve* Nevertheless,

nonlinear (or finite) deformations are part of the theory of



elasticity and such problems are treated in the literature

[GREEN 1968] and [GREEN 1970]).

An important application which could benefit from this

method is the processing of stereo images and in particular

the generation of topographic maps from aerial images* The

large size of of these images and their high resolution make

their processing by other methods difficult* Using only a

small number of projections for correlation our method can

be fast enough for this purpose*

Another application that could perhaps be developed

following a method similar to the elastic matching, is the

construction of smooth surfaces from a given set of points*

By modeling the surface as an elastic sheet that is pulled

by the points, an optimal fitting could be achieved*
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