
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A SYSTEM FOR GENERATING

EXPLANATIONS OF PROLOG

PROGRAM RESULTS

Ephraim Paz

1985

Cognitive Studies Research Paper

Serial No. CSRP. 048

The University of Sussex,
Cognitive Studies Programme,

A SYSTEM FOR GENERATING EXPLANATIONS OF PROLOG PROGRAM RESULTS.
Submitted to the Third International Conference on Logic Programming

Ephraim Paz,
Cognitive Studies programme,

University of Sussex

ABSTRACT:
The better explanation a system can give for its results, the more

useful it is. Results of PROLOG programs may appear quite cryptic to
naive users, and even experienced programmer may be puzzled by the
result, especially if some time has passed since they wrote the
program.

This paper outlines a suggestion for a system that will
generate explanations for results of PROLOG programs, which will have
many advantages over existing explanation mechanisms. The system will
use different verbs for describing actions done by the interpreter,
and different explanations for different rule types. It will
intelligently prun some steps in the execution trace of the program,
and will employ rhetorical rules for creating English explanations.

The general approach will include three major elements:
extending the expressive power of the language, creating a raw
explanation by parsing the execution trace according to a grammar of
traces, and dynamic generation of English explanations from this raw
explanation.

SECTION 1. INTRODUCTION
1.1 RESTRICTIONS ON KNOWLEDGE REPRESENTATION IN PROLOG.
1.2 USING A SIMPLE TRACE AS AN EXPLANATION.

SECTION
2.1
2.2
2.3
2.4

SECTION
3.1
3.2
3.3

SECTION

2. THE SYSTEM.
AN EXAMPLE.
FEATURES OF THE EXPLANATION
AN OVERVIEW OF THE SYSTEM.
TARGET USER.
3. ADDITIONAL INFORMATION AND ITS
PROCEDURE LEVEL
RULES.
60ALS.
4. CONCLUSION

USE

SECTION 1. INTRODUCTION
Strictly speaking, a PROLOG system, regarded as a theorem prover,

produces very succinct answers to queries posed to it: either YES
or NO. This, naturally, is not very illuminating, and every PROLOG
interpreter produces also the values with which the variables were
unified in order to reach a positive answer.

In order to make the system's answer even more plausible, it is
relatively easy to devise a mechanism for supplying the execution trace
of a program, and to present it to the user.

This paper outlines a suggestion for a system that will
generate explanations for results of PROLOG programs, which will have
many advantages over existing explanation mechanisms.

The first section describes some problems of representing
knowledge in PROLOG, and goes on to explain the shortcomings of using
the execution trace of a program as an explanation of its results. The
second section outlines the proposed system, and in the third I
discuss additional information it requires, how this information
will be obtained, and how it will be utilised for the generation of
better explanations.

1.1 LIMITATIONS OF KNOWLEDGE REPRESENTATION IN PROLOG.
PROLOG is a highly parsimonious language. Its syntax is very

simple, uniform and restricted, as is the inference mechanism. The
elegance and power of PROLOG lies in these characteristics of the
language, but they impose also some limitation on representing
knowledge in PROLOG programs. In the process that starts with
representing knowledge as a PROLOG program and ends with the final
solution or proof, essential information is either lost or becomes
implicit. This section describes some of the reasons for this situation.

Representing a problem by using just one uniform knowledge
representation construct poses some limitations on the resulting
representation. In the case of PROLOG, all knowledge is represented
either as "rules11 or as "facts11. DAVIS [DAVIS,80] describes the
general problems of knowledge - representation systems that use
rules as the basic uniform representation unit. One of these problem is
this: Knowing the mechanism that will be used for invoking the

relations or stare OT auairs, ana uniess mere are some
annotations, the original meaning is quite hard to reconstruct. So, it
is sometimes the case that literals in a rulefs body are not simply
conjoined, but they actually represent another logical structure
(e.g. implication).

Having just one uniform syntactic way of representing relations
between predicates (the rule construct), the exact relations between
the head and the body of rules are implicit and obscure.

1.2 USING A SIMPLE TRACE AS AN EXPLANATION.
The trace of the successful unifications done by the PROLOG

interpreter may be considered as a good first approximation for an
explanation of the reasoning done by a PROLOG program. Existing
explanation mechanisms like [HAMMOND,823, CCLARK,82], and [WALKER,83]
are in most cases just little more than the execution trace. In this
section I will point at some of the reasons why this explanation is far
from being satisfactory.

A trace that includes all the steps taken by the interpreter can
be much too laborious as it includes also the cases where unification
failed, and this can be after many successful steps. If, on the other
hand, we give only the steps that have succeeded, some useful
information ^s lost (e.g. when a case really succeeded just because
the earlier ones failed as in having a last, default case in a
procedure).

The role a predicate plays in the reasoning may vary, according
to its Instantiation Status (which arguments are instantiated when the
predicate is activated). A simple trace gives us only the final
bindings of the predicate, and this information is lost. From the
declarative point of view, some literals in the body of a rule may be
more essential in establishing the truth of the head, a fact which
is not taken into consideration in existing explanation mechanisms.

The trace might include many parts which are not interesting, like
steps taken for "book-keeping" (e.g. incrementing an index during a
recursive call), or the specific way some system predicates are
operating. In other cases, the information may, as a rule , interest
only a certain type of user - like in the case of "normalisation"
rules which change, let's say, the order of the arguments in a
predicate, and may be interesting to a programmer but not to someone
whose main interest is in the reasoning process. The solution taken by
Walker in [WALKER,833 is to select only certain predicates to be
included in the explanation, but this solution is not adequate in
this case, because different occurrences of the predicate may
have different roles and importance.

A PROLOG program may have two interpretations: declarative and
procedural. Having one uniform explanation form may result in poor
intelligibility - emphasising always just one aspect of the program.

SECTION 2, THE SYSTEM.
In this section I give an example of the kind of explanation I

expect to get from my system, and some ways in which this explanation
is better then explanations one may expect to get from existing
explanation mechanisms. This is followed by an overview of the proposed
system and its target user.

2.1 AN EXAMPLE.
Consider the following simple program:

same_den(Country, Other):-
density(Country/ Densityl),
density(Other, Density2),
Other = Country,
similar(Density1, Density2).

density(Country, Density):-
pop(Country, Pop),
area(Country, Area),
Density is Pop/Area.

similar(Ni,N2):- N1 <N2, simi lar(N2,ND.
similar(N1,N2):- M =:= N1 - N2,

N =:= M/N1,
N < 0.05.

pop(china, 825). pop(belgium, 582). pop(japan, 58).
area(china, 3380). area(belgium, 1139). area(japan, 114),

A GOAL:
?-same d e n (j a p a n , X) .

THE ANSWER:
yes. X=belgium.

THE TRACE:
same den(japan, belgium).

density(japan/ 0.508)
pop(japan, 58).
area(japan, 114).
0.508 is 58/114.

density(belgium, 0.514).
pop(belgium, 586).
area(belgium, 1139).
0.514 is 586 / 1139

japan=belgium
simiLar(0.508, 0.514)

0.508<0.514
similar(0.514, 0.508)

0.006 is 0.514 - 0.508.
0.011 is 0.006/0.514.
0.01K0.05.

SAMPLE EXPLANATIONS:
To the question HOW? (i.e. HOW

following explanation will be given:
EXAMPLE I.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

was the answer derive

EXAMPLE II.
user: HOW 6b?
system: The density of belgium was calculated as 0.514.

This was done in the following way:
6b.1) The population of Belgium (582) was retrieved from the

database.
6b.2) The area of Belgium (1139) was retrieved from the database.
6b.3) The density was calculated as 582/1139 (=0.514).

EXAMPLE III.
user: WHY 2
system: (i.e. WHY is it true that the population density of japan is

0.508)
The population density of japan is 0.508 because
density is defined as population/area
and the population of japan is 58
and the area of japan is 114.

2.2 FEATURES OF THE EXPLANATION
(Numbers in brackets refer to lines of the trace)
The user may control the level of details by asking to go deeper

into one statement, and there are two flavours of explanation -
HOW prompts a procedural explanation, and WHY a declarative one.

The first explanation is built of 4 phrases, but they do not
correspond to the goals in the top same^density rule. The second
goal in the rule was expanded into two phrases, while the third
goal, (japan=belgium), was omitted, because the role of this goal
is of secondary importance, namely checking for exceptions. The last
phrase does not correspond to line (11), but to the "normalised11

version of the "similar" predicate, which had been executed is
lines (13)-(16). (This can be recognised by the reverse order of the
numbers 0.514 and 0.508 in phrase 3 of explanation I).

In the procedural explanations (I & II), different verbs are
used to describe the way goals are satisfied - verbs like
"calculate", "suggest" and "compare". The verbs are chosen according to
the goal type which was computed according to information about the
instantiation status of the arguments and the predicated keys.

In the third, declarative, explanation, the fact that the
"density" rule is a definition helps in explaining the relationship
between its body and the head. The order of the phrases does not follow
the order of the goals in the rule, but is determined by their relative
importance.

2.3 AN OVERVIEW OF THE SYSTEM.
The general approach will include three major elements:

extending the expressive power of the language, creating a raw
explanation by parsing the execution trace according to a grammar of
traces, and dynamic generation of English explanations from this raw
explanation.

classifications. The grammar will reflect the acceptable ways of
combining elements in each level. A. Bundy CBUNDY,84D mentions some
common schemas that appear in PROLOG programs. One goal of the system
is to identify such schemas, (either by getting the schema as an
annotation in the source or as a result of parsing the trace) , and
use this information to direct the explanation process.

The trace tree of a program execution will be parsed according
to the grammar, and parts of the trace that will be identified will be
handed over to the appropriate explanation routine.

So, for example, there will be a certain way of explaining the
results of a "case analysis" procedure, or a specialised routine for
handling the trace of a recursive rule. On a lower level,
rhetorical rules will direct the building of sentences out of
groups of goals, and the system will use different verbs to
describe different uses of terminal goals.

2.4 TARGET USER.
The target user of the system may come from one of two classes - end

users and programmers. End users may use the system for two reasons -
for getting better understanding of the way the program functions, and
for getting deeper insight into the knowledge that lies underneath it.
Programmers will usually use it as a debugging aid - and can also
benefit from the annotation system, using it for documentation
purposes. No specific assumptions are taken regarding the expertise
of the user, and the fact that different levels of explanation are
available enables the user to decide for himself about the exact
level of details he gets.

SECTION 3. ADDITIONAL INFORMATION AND ITS USE

3.1 PROCEDURE LEVEL
The highest level of annotation is the procedure level. In

addition to giving names to procedures, it is sometimes important to
state the roles of the different occurrences of the predicate. (It
may be argued that a PROLOG program should be written so that rules
are independent and order should not play a role in their meaning, but
many times this ideal is not achieved, and this system is trying to
explain programs as they are written).

For example, a procedure may be built as a number of cases, and
possibly end with a "catch all" predicate. If, for example, the third
occurrence of the predicate succeeded, the system will add to its
explanation the fact that the preceding cases failed. If the "catch-all"
case succeeds, the dynamic approach and additional information
regarding the procedure are even more vital, because the isolated
fact that succeeded may be virtually meaningless.

3.2 RULES.
In standard PROLOG syntax all rules are treated equally.

Additional knowledge about the type of rule can help in creating
better explanations. Some rule types describe the declarative

Sometimes the type indicates the syntactic structure of a rule, as
in different types of RECURSIVE RULEs. The type of the rule will
control the template through which it will be explained (in the example
in sec 2.1 there are templates for a definition and for action rules).
In the case of recursive rule, a special routine should be called and
the recursant part will be omitted. Other rule types like normalisation
rules can be simply omitted from the explanation.

3.3 GOALS
3.3.1 GOAL TYPES.
A terminal of the Raw Explanation represents the trace of a goal

that has no sub goals. Such a goal can be one of three types: A
special case in a procedure, a system predicate, or a fact from the
database.

Some terminals can be better explained not on the isolated
predicate level, but in the wider context of the procedure of
which they form a component, like the TERMINATION CLAUSE in a
recursion, (which can usually be dropped), or a CATCH ALL case in a
case-analysis, as was mentioned in the preceding section.

System predicates can usually be omitted from the explanation,
with the exception of arithmetics and comparison predicates - in many
cases they may be instrumental in the explanation, and we give them
the types CALCULATE and COMPARE. If there are more than one or two
CALCULATE predicates in one rule, it may be advisable to use an
explanation that gives the formula rather than show the actual
calculation.

The last class of goals are facts. Sometimes a goal is used to
generate a possible solution, some goals are called partly instantiated
and are used to retrieve values of one or more variables, and
sometimes the goal is already fully instantiated when called, and it
is activated just in order to confirm the truth of a predicate.

I have developed a way of finding this "action_type" of the
goal by combining knowledge of the "key11 of the predicate, (the
argument position the value of which determines a unique occurrence
of the predicate in the database) and its Instantiation Status (which
arguments were instantiated when the predicate was activated).

This classification can give us in many cases the best verb to
describe the action done by the interpreter and the types of the
terminals may even bubble up and give types to the goals that evoked
them. When, for instance, we have only calculations as sub goals, we
can assume that the top goal is also "calculate".

3.3.2 DECLARATIVE IMPORTANCE
Looking at a use of a rule as a declarative statement, that is as

a true statement with all the variables instantiated, not all the
elements in the body bear the same importance in relation to the head.
Some of the literals in the body may be only conditions, others can
appear as a means of screening exceptions, while just one or two
literals are the main part of the rule. Take, for example the rule :

same_den(Country, Other):-

because it is just a means for rejecting unwanted answers for "Other".
(1) and (2) serve to retrieve information for the main part, and
thus they do not deserve to appear as equal constituents of the
explanation, but rather in an auxiliary role. This will help in
choosing the best rhetorical strategy for building the sentence that
will explain the proof.

As the final phase of the explanation generation will be the
generation of English sentences from PROLOG predicates, the programmer
should also provide a template for each predicate - the way he wishes it
to be expressed in English. For example, the predicate

fly(From, TO, Airline, Flight_Number) might have the following
template: "One can fly from From to To, using Airline flight number
Flight_number".

SECTION 4. CONCLUSION
The better explanation a system can give for its results, the more

useful it is. Results of PROLOG programs may appear quite cryptic to
naive users, and even experienced programmer may be puzzled by the
result, especially if some time has passed since they wrote the
program.

This paper has described the outlines of a system for
generating explanations of results of PROLOG programs. The
system will provide explanations which have several benefits over
existing explanation mechanism, like using different verbs for
describing actions done by the interpreter, different explanations for
different rule types, inclusion of additional parts of a procedure,
intelligent pruning of some steps in the execution of the program,
and employing rhetorical rules for creating English explanations.

This is achieved by adding information as annotation to the
program, general knowledge the system has about PROLOG, and dynamic
generation of the final explanation.

The execution trace is parsed according to a grammar
based on classification of goals, rules and procedures, and the
parsed trace directs routines that generate an English explanation.

BUNDY,84

CLARK,82

DAVIS/80

HAMM0ND,82

WALKER,83

WALLIS/82

REFERENCES
A.BUNDY
Simple PROLOG Prototypes
University of Edinburgh
Code Note 6, August 84.

K.L. Clark & F.G. McCabe
•Prolog:A Language for Implementing Expert Systems'
MACINE INTELLIGENCE v.10 ed. J.E.HAYES, MICHIE,D &
Y.PAO John Wiley & Sons, 1982

R.DAVIS
•Meta-Rules: Reasoning About Control1

Artificial Intelligence V.15 pp.179-222

P.Hammond
Logic Programming for Expert Systems
technical report: DOC 82/4 Imperial College.

A. Walker
Automatic Generation £f Explanations _
From Knowledge Bases
RJ 3481 (41238) IBM Lab San Jose Cal.

Results

J.W.Wallis, E.H.Shortliffe
•Explanatory Power for medical Expert Systems:
Studies in the Representation of Causal Relationships
for Clinical Consultation1 Methods of Information
in Medicine V.21, 127-136

