
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

POPLOG AND THE LEARNER:

An artificial intelligence programming
environment used in education

Benedict du Boulay, Mark Elsom-Cook,
Tom Khabaza, Josie Taylor

CABINET]

Cognitive Studies Research Paper

Serial No* CSRP.O56

The University of Sussex,
Cognitive Studies Programme,
School of Social Sciences,
Falmer, Brighton BN1 9QN

Poplog and the learner:
An artificial intelligence programing environment used in education

Benedict du Boulay
Mark Elsom-Cook

Tom Khabaza
Josie Taylor

Cognitive Studies Programme,
University of Sussex.

1. Introduction

This paper describes the Poplog system, developed in the Cognitive
Studies Programme at the University of Sussex, together with some of the
research on learning and using programming languages and environments
that is currently in progress in this laboratory. The system is being
used in many universities and polytechnics as well as in industrial
research laboratories. Versions for both UNIX and VMS are available and
it runs on VAX machines as well as a variety of systems based on the
M6S000 range of processors, such as the SUN and the Hewlett Packard
workstations.

There are three current research projects of particular relevance to
Poplog. First, because of the many on-line files a user may have real
difficulty in locating the particuTar file that is believed to contain
helpful information for the problem in hand. The "Kelp File Finder"
project is attempting to address the issue of determining the mapping
between a user query and a given help-file. The second project is
concerned with the programming language Prolog. This project is
investigating the difficulties that certain novices face in learning
Prolog. This language is becoming widely used and there may be sore
disparity between the apparent simplicity of its syntax and the ease
with which it car: be learnt. The final project, "An intelligent program
checker", is concerned with Pascal rather than Prolog. A system is
being developed in Prolog and POP-11 to help novices in their early
steps in Pascal by providing a program that can comment usefully about
their programming errors, whether they be syntactic, semantic or
logical.

The paper starts with a brief description of Poplog more from the point
of view of students rather than that of systems programmers. The
following sections briefly describe the three projects indicated above.

2. What is Poplog?

Poplog is a general purpose programming environment which provides
incremental compilers for Prolog, POP-11 and Common Lisp integrated with
a screen editor, VED, and other useful program development tools. The
communication between these three core languages is intimate in that
each compile down into a common virtual machine language (which itself
is compiled). It is thus possible, as in the "Intelligent Program
Checker" project, described below, to write short inter-communicating
sections of code in say POr-ll and Prolog to exploit the best features
oC each. It is also possible to prototype a system first in Prolog (for
clarity), . and then move to a faster version written in POP-11 while

staying al 1-the-whi le in the same enviror.rr.ent. Sections of code in other
languages, such as Tortran, can be Jinked in making it possible to write
multi-language systems.

Much of the system is written in POP-3! itself, including the editor.
This means that it is not only powerful but also easy to modify for
particular users. POP-IS is an interactive language with capabilities
similar to Lisp but with a syntax much more like Pascal. It can be used
a?, a genera- purpose programming language, though its main use so far
has been in research and teaching in artificial intelligence. Hardy
(1984) provides a more wide-ranging description of the system, and
especially its use as a POP-11 and multi-language environment. Gibson
(19S4) gives an excellent introduction to programming in POP-11 and a
more complete description can be found in Barrett et al. (1985).

The screen editor plays a central role. It is used as a delivery
vehicle for tutorial information and software as well as for the more
traditional roles of constructing and editing both programs and text
(such as students' assignments). Although VED is not a fully-fledged
structure editor (in the "authoritarian" sense that would allow the
contents of the edit buffer to be navigated only as structure) it does
have knowledge of programs as well as text. So it is possible to call a
pretty-printer to rearrange either text or programs to make them more
readable or to compile some part or all of the buffer. Many of the
most frequently used editor commands are associated with individual
function keys, and VED also responds to commands entered on a special
"command line" as well as to commands typed directly and preceded by
typing the <escape> key. Both features can be tailored to suit
different groups of users (or individual users). It is possible to
communicate with the underlying operating system through VED, though
many of the more useful commands are fielded by VED itself in a way that
exploits the system to better advantage.

Incremental compiling

The notion of incremental compiling (as opposed to traditional
compiling) is important in reducing the time and labour associated with
the plan-code-test-debug cycle. By allowing pieces of program, either
complete procedures and functions or even individual commands to be
compiled and tested individually and then automatically linked into the
growing code one reduces the wasted time consumed when other parts of
the program are needlessly re-corr.piled after some small change to a
subsidiary procedure. This gives very nearly the flexibility of an
interpreted system but produces programs that run much faster. The
compilers can be called from within VED, so that one frequently used
mode of work is to "get into" VED and then conduct the whole program
development process from there, editing and then compiling code as need
be or using the other half of the screen to trace and debug the growing
program.

Two other features of Poplog are relevant here. The first is the very
large amount of tutorial text and software that has been built up over
several years by the lecturers who have used the system for courses at
various levels, from entertaining school pupils on Open Days to
providing examples of advanced parsing techniques for graduate students.
The tutorial text files are called "Teach" files and the software files
are called "Library" files. The Library files enable complex new

ir.d cannibalised at will using the screen editor.

The other useful feature is the large amount of online documentation
about the systeir. itself and about the languages that can be used. It is
easy to ask for help about soire language feature (if you know how to
find the name of the appropriate file) and so get some text and some
pointers to other files that might be useful.

All these files are not without their drawbacks. Their sheer number
make the task of finding what one wants difficult (especially if as a
beginner one is not sure of what exactly one wants to know or of how the
information might be arranged in the system). A related problem is that
of trying to keep the system under proper control by providing useful
cross-links and making sure that new features are correctly integrated
into the existing complex web of helpful references. Work on these
issues is described in section 4.

3. Using Poplog in Teaching

The Zarge amount of online documentation, together with the many library
and utility programs makes Poplog a very useful teaching device. Many
of our courses have a strong practice] element in that students are
expected to be able to understand, extend and eventually formulate
programs to carry out AT tasks such as parse English sentences,
interpret representations of visual scenes or demonstrate some other
expertise. The Cognitive Studies Programme runs a number of
undergraduate degrees including "Computing and Artificial Intelligence".
It also povides a context for this degree and others in Linguistics,
Philosophy and Psychology by introducing them to the study of human
cognition frorr all these different perspectives. Various post-graduate
degrees are also offered including a 1 year SERC sponsored "conversion"
M.Sc. in Knowledge-Based Systems as well as degrees based on research.

Our students arrive with widely varying levels of experience in
computing and technical subjects in general. This has meant that the
Poplog development team has had to take seriously the notion that the
system would be used both by beginners as well as by very experienced
people who use it for their research in artificial intelligence. Many of
our students have no background in computing and have always studied
"Arts" subjects. One way that we try to induct the more timid of them
into computing is by introducing them to the Poplog editor. This they
use both as a word-processor and as a means of navigating around some of
the initial teaching material. While this may seem an inefficient use
of resources and time it is a much less threatening way to start than
being plunged into writing programs. Another advantage is that students
can progress at their own pace through the materials, becoming more
familiar with the system all the while.

There are no "intelligent" teachers lurking inside Poplog. Many of the
teaching files suggest activities that the students might try, give them
pieces of program to run and so on, but the system itself does not
evaluate the outcome of their experiments. There are good reasons for
this choice. First it is extremely difficult to build effective

computer tutors. Second we wish to emphasise that the system is a tool
for the students' (and our) use and not muddle up the interactions with
issues to do with evaluation. Given the difficulties of building tutors
it seemed better to put effort into reeking the facilities powerful and
convenient to use. The intelligence is in their design rather than in
their responsiveness to the user. However we are interested in
intelligent systems as such as the later discussion on "help file"
finding and program checking will show.

Tailoring the environment

Once the students are logged in the system executes a "login" file which
immediately puts them in a specially tailored Poplog environment that
almost completely instates them from the underlying VMS system or UNIX
system if they wish. In some cases the chosen environment is the screen
editor VED working on a special file called "output" in which all I/O
from their programs is stored. There are login files provided for all
the different courses that we teach. They may put the system a special
state at the start (as above) or set up default pathways to preferred
Teach and Library files. This means that the system scans the Teach and
Library directories in a given order depending on the value that has
been set, thus making certain files available to some courses but not to
others. Similar start up files are associated with other parts of the
Poplog system. For example the system will execute a user's file
associated with VED when the editor is first called after login if such
a file exists. By this means many of the faculty (and some of the more
advanced students) interact with a version of VED, POP-11 or Prolog
tailored to their own needs.

Staff and students have access to cursor addressable terminals with
limited graphics capabilities (such as Visual 200's and Visual 55's).
VED enables two files to be independently displayed on the screen at
once, which makes both word-processing and program-development easy.
This is the best that can be achieved at present with the terminals that
we have available but we are in the process of developing a full
windowing mechanism for Poplog implementations on machines with bit-
mapped graphics, such as the SUN workstation. It is possible to have
more windows on a dumb VDU but they are too small.

The first work that most students do on the system is to call onto the
screen a Teach file that, explains how to navigate around files by moving
the cursor in any direction in varying sized leaps. This is achieved
by typing the command "teach" on the VED command line. This will have
the effect of filling up the half of the screen with tutorial text.
The cursor will be placed at the beginning of the new file and all
subsequent editing commands and keys take effect on that file. Thus the
earliest experience that such a student has is really about using the
system as a word-processor.

The screen editor works on the principle that what you see is what you
get and that anything typed in using the ordinary keys is entered in the
file at the cursor position, other text moving along and down to make
way for it as the default (though text can replace what is on the screen
iT one wishes). A file can be traversed in any direction at will in
either small or large jumps, including scrolling sideways. There are
function keys to delete characters, words and lines and to carry out
other editing tasks. A simple "undo" mechanism is available for

accidental deletions. A contiguous portion of a file can be marked with
a vertical bar that appears down the extreme]eft hand side of the file.
This marked range can then be deleted, moved elsewhere, moved to another
file, compiled and so on with ease.

At some stage the student will have two files on the terminal screen,
the output file (say) and a teach file. The student can jump the cursor
back and forward between the files in order to work on one or the other.
It is a!so possible to arrange for the window on one of the files to
grow to fill the whole screen (the other file is still active and can be
called back if necessary). Text can be copied from one file to another
if needed using the range marking facilities mentioned above. More than
two files can be made active at any one time, possibly a teach file, a
file containing a student program and the output file, for example.
However only two can be shown at once and means are provided for
choosing easily which these two should be.

Once the student has become reasonably proficient in navigating around
the file system and within files the work on programming in Prolog or
PO?-!1 itself can begin. There are a number of library packages to help
students build powerful systems quickly as well as to provide examples
of standard techniques in artificial intelligence. Thus there are
tutorial versions of various expert system types, production rule
interpreters, visual scene interpreters, parsing and grammar 'packages
and so on. On occasion it has been possible to "bolt" together a number
of these library packages to build, relatively easily, a fairly powerful
system. An example is a system which can interpret commands for a
simulated robot stated in English, undertake the necessary planning,
carry out the actions commanded and display the results using simple
graphics.

4. Finding the documentation that you need.

Al Environments and the help file finding problem.

AT programming for research purposes is usually exploratory in nature;
that is, the activity of programming is used to explore problems which
are ill-defined, to clarify these problems, and to explore possible
solutions. This is in contrast to the approach traditional in
computing, where good practice requires that a problem be well defined,
and its solution well understood, before this solution is embodied in a
program.

In computing environments designed for this style of use, it has been
found particularly useful to provide extensive on-line documentation.
This allows the users to explore the on-line environment in the same
exploratory fashion in which they use the environment to explore some
other area. This applies both to the novice programmer, who may be
learning the basic concepts of computer programming, and to the expert
programmer who may want to use some facility of the environment whose
details are unfamiliar.

Pop.og's on-line documents, collectively referred to as the "help
files", number some one to one and a half thousand. Each help file has
a "type", which is one of "teach", "help", "ref" or "doc" - these
specify different categories of help files, and a name which specifies
the subject of the document. Tor example, the help file called "teach

define" would be a tutorial guide to defining procedures in POP-ll. A
r.aire such as this can give only so much information; for example, "teach
define" /right have been about defining POP-ll procedures, but it might
a]so have been about defining Prolog predicates, defining production
rules in a production system, or defining the action associated with
some key sequence in VED. Furthermore, if the name of the required file
is not known, it is very difficult for an inexperienced used to guess
what its name might be, especially for a novice who may not be familiar
with computing terminology. Even an expert may have great difficulty
with terminology, because taking a technical term out of context can
deprive it of most of its meaning; for example a help file called "help
delete" might explain how to delete files from a directory, lines from a
file, items from a data-structure, or one of many other kinds of
deletion.

To some extent, problems with the names of help files can be alleviated
by the systematic use of cross-references between help files. These
effectively form a menu system embedded in the help file system, which
allows the the help file author to produce help files that contain, in
addition to ordinary text, menus of other help files. Thus the
documentation can be structured so that the user can arrive at the
required document by selecting a succession of menu entries, instead of
having to know the name of the required document in advance.

However, there are further problems in using the help file system, due
to the manner in which the Poplog system was developed. Like other AI
environments, Pop!!ojj is an extensible system, and the languages that it
provides, the environment and the documentation have all "grown" with
use, rather than having been carefully planned from the outset (see
Khabaza. 2S33 for further discussion of this feature). This lack of
organisation in its development has led to the documentation being
"lumpy*', or uneven; some features of the system are well documented,
some poorly, and some not documented at all, or documented in surprising
places.

The problems associated with not knowing whether a feature exists,
whether it is documented, and what the documentation is called are
collectively known as the "help file finding" problem.

The Help File Finder project.

This project was conceived as investigating the ways in which AI
techniques could help to solve the help file finding problems described
above. There are two basic threads in its motivation: one practical, to
solve the problem of providing good on-line documentation, and one
theoretical, to study the cognitive processes of computer users.

The project has suggested a number of directions for research on
improving the Poplog documentation system. The simplest of these is to
experiment with more sophisticated keyword systems than that currently
provided. The current help file naming scheme can be thought of,
roughly, as "one keyword/one file". Some improvements might be gained
by allowing many keywords to be associated with a single file, and the
keywords associated with different files to overlap. For example, a
help file on deleting files might have the keywords "delete file", while
a help file on deleting items from a list might have "delete list".

The system of cross-references between help files, mentioned above,
leads to a "network-structured" menu system. A major problem with such
systems is that when introducing a new node (in Poplog, a new help
file), the authors must insert cross-references to the new entry in all
the relevant files, many of which may not be known to them. To aid this
process, a system for examining the network of help file cross-
references is being developed. This will form a tool for help file
authors, to he]p them integrate a new help file into the menu system, or
improve the existing menu system.

A third suggestion to arise from the project is that of "dynamic help
files". These are help files which, rather than consisting of static
text, are generated and transformed by an active system, using some
stored framework. This allows the information displayed in a given help
file to be tailored to the requirements of the user. The system of
dynamic help files would form an "augmented discrimination net"; a
discrimination net because the ultimate aim of traversing the net would
be to find the required help file, and "augmented", because traversing
the arcs of the net triggers some work, such as the creation of a
tailored menu.

Finally, the project has been considering the feasibility and problems
of an expert system with knowledge and inference capabilities in the
domain of. progrerrrr.ing systems. This endeavour is particularly relevant
to the aim of studying the cognitive processes of computer users,
because producing such a system requires the modelling of human
computing expertise. However, reasoning about the activity of
programing is still poorly understood; preliminary study has shown that
the amount and variety of knowledge used by a human expert, even in
limited areas such as list processing or editing, is very large,
comparable with the knowledge bases of the most advanced expert systems.

5. An Intelligent Program Checker

Everyone has their own favourite horror stories about the awful,
incomprehensible error messages that novice programmers have to cope
with (du Boulay & Matthew, 1984). One of the advantages of a system like
Poplog is that it is entirely feasible to develop tools for helping
students learn conventional languages like Pascal.

The "Intelligent program checker" project is a move in the direction of
incorporating Intelligent Tutoring Systems into Poplog. Because of the
limitations of our current understanding of tutoring system design
(mentioned earlier), the program checker does not attempt to carry out
the whole tutoring task; instead it focusses on mechanisms for reasoning
about programs and diagnosing bugs. This is a central component for any
tutoring system for programming.

The program checker is intended to provide the novice programmers with
the sort of information about errors which they could expect to receive
by consulting an expert. By embodying such expertise within the system,
the pupils have the advantage of immediate feedback on errors, without
the intimidating (and expensive) overhead of having an actual expert
programme** looking over their shoulders.

This task is not suited to a standard expert-system approach, since it
involves reasoning usinc nsany different sorts of knowledge (and meta-

knowledge), and providing explanations of this reasoning process which
are meaningful to the pup:].

At its lowest level, the program checker isolates and identifies
syntactic bugs in the program. By using techniques related to natural
language processing methodology, the system manages to accurately locate
errors and, in most cases, to suggest corrections which are consistent
with the intentions of the pupil. This is in direct contrast to
traditional compilers which often report errors to be some considerable
distance froir. their actua] location, and do not offer corrective advice
(or if they do, a least-errors correction is used, which is typically
far from the program which the pupil intended).

Other errors which the program checker detects are less easy to
separate, but may loosely be regarded as forming a continuum of
"semantic errors" of an increasingly problem-dependent nature. The
simplest semantic errors involve comparing a formal semantic description
of each statement with the way in which that statement has been used by
the programmer. Following this, analyses of interactions between
statements and of algorithms used by the programmer are performed. When
this has been done, the actual behaviour of the program is compared with
the stated goals of the program (normally supplied by a human teacher).

At present, only the syntactic level of analysis has been fully
implemented. It exists within Pop:og and is currently oriented towards
teaching Pascal. Since the language infomation is separable from the
rest of the system, versions of the system for other languages are easy
to produce. POP-12 and C versions are currently being added.

The program checker itself is written in a mixture of POP-11 and Prolog.
Essentially, the well-defined algorithms are implemented in POP-31 for
speed, while the facilities for reasoning about the state of the parser
are implemented in Prolog. Extensive use is made of the applications
interface to the VED editor: the pupil is shown the program in one
window while maintaining an interactive dialogue with the program
debugger in the other window. This permits a much richer debugging
interaction (for example, both pupil and program checker can "point" to
pieces of the program which they wish to discuss).

6. Understanding Prolog Programmers

Prolog has suddenly become a most fashionable language accompanied by
some rather ambitious claims about the ease with which it may be learnt.
While these kind of claims are quite usual for any language, Prolog
seems to be something of a special case because of its apparent relation
to logic and English (Taylor, 1984).

Proponents of Prolog claim that as Prolog is based on first-order
predicate logic it is easier to learn than other more conventional
programs--ng languages, because this type of logic has developed from the
formalisation of human rational thinking, rather than from the logic
governing machine operations. Furthermore, the logical basis allows for
a declarative interpretation of programs which can be expressed in
natural language. These are dubious claims since independently conducted
psychological experiments have demonstrated (a) that people have
considerable difficulty understanding and using logic and (b) that using

natural language within the formal domain of logic leads people to
commit various kinds of reasoning errors. In fact there is considerable
overlap in the literature on the psychology of deductive reasoning and
the Human Factors literature which looks specifically at people trying
to learn programming languages. This may be attributed to the fact that
in both areas we are look:rig at people trying to work within the
constraints of a sometimes counter-intuitive formalism, and they do not
find this ei^he:^ easy or 'natural!1.

We have instigated a project at Sussex, using the version of Prolog in
the Poplog system, which aims to gather empirical data, focussing on the
following major issues relating to the learnability of Prolog. First,
are the declarative semantics really of any use to the beginner, or are
they merely a red herring? Second, does the presence of natural language
in the programming domain help, or obstruct the learning process by
obscuring the underlying formalism? Third, what kinds of models of
Prolog do beginners construct for themselves, and how far do they
diverge from an adequate model?

In order to put these questions into a broader context we are also
examining the behaviour of Prolog experts and experts in other languages
(e,g. POP-31 or Pascal) who are learning Prolog. For data collection we
have written a program within the Poplog system which automatically logs
end stores interactive sessions at the terminal, inside the editor
(VED). A second program Is used to replay the logfile by substituting
the characters stored in the file for the normal keyboard input to VED.
Thus, at replcy time, VED behaves as it did for the experimental subject
when the logging took place.

Our data K:11 be of use to the varied ?ro2og communities and any
software and online teaching materials developed as a result of this
work vcijl be made available as part of the Poplog system to UK.
educational establishments.

7. Conclusions

Poplog has the following nice features. It provides a powerful screen
editor integrated carefully into a system containing incremental
compilers for Prolog, POP-11 and Lisp. It is used a both a general
software development environment as well as a specialist environment for
teaching and research in artificial intelligence. Probably its most
pleasing characteristic is the way that it enables working prototypes to
be quickly built and tested by allowing new sections of code to be both
tried out and linked in quickly and easily.

Of course there are still things to be done. There is extensive on-line
documentation but its coverage can be patchy and the cross-referenecing
could, and is, being improved. The split screen facility is an enormous
improvement on systems that allow only a single activity to be displayed
at one time, but it is only a step towards a fully-fledged window
mechanism. This will realised on the single user workstations with
br't -mapped graphics that are now being used extensively. At the time of
writing {July, 1983) the Common Lisp implementation is in the final
stages of completion. This wil: replace the existing small Lisp
implementation in the system. Though even this small system has been
used for useful development work by at least one of our customers.

Because we use the Popiog system ourselves for teaching and research,
there is a constant drive to provide better features and to worry about
how to teach its use to beginners. The research projects that have been
described in this paper are just three from a comprehensive programme of
research in artificial intelligence and related topics currently uderway
in the University of Sussex.

8. Acknowledgements

The Pop!02 system was developed by a team of people including Aaron
SIoman, Jon Cunningham, Steve Hardy, John Gibson and Chris Mellish. It
has been adopted as part of the SERC/Alvey IKBS Infrastructure and is
marketed by System Designers. The "Intelligent Program Checker"
project, the study of "Novices Learning Prolog" and the "Help File
Finder" project are all supported by grants from SERC/Alvey. The "Help
Tile Finder" project is directed by Professor Aaron Sloman.

9. References

Barrett R., Ramsay A. & Sloir.an A. POP-:! 1: a practical language for
artificial intelligence, Chi Chester: Ellis Horwood, 1985

du Boulay, B & Matthew I. Fatal error in pass zero: how not to confuse
novices Behaviour and Information Technology, 3, 2, 109-118 (1984).

Gibson J. POP-11: an A.I. programming language, in New horizons ^n
£f*iL£IL£i22JLL computing, edited by Yazdani M. , Chichester: Ellis
Ilorwood, 1984.

Hardy S. A new software environment for list-processing and logic
programming, in AXLIJMCJ.CLI int.eH,i^erice: tools, techniques and
applications, edited by O'Shea T. & Eisenstadt M., New York: Harper
and Row, 1984.

Khabaza T. Towards and intelligent help file finder, in Artificial
jntelligence programming environments, edited by Hawley R.,
Chichester: Ellis Horwood, 1985.

Taylor J. Why novices will find Prolog hard, in proceedings of ECAI-84,
European conference jji artificial intelligence, Pisa, 1984.

10

