NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

POPLOG AND THE LEARNER:

An artificial intelligence programming
environment used in education

Benedict du Boulay, Mark Elsom-Cook,
Tom Khabaza, Josie Taylor

1986
ABINET]

Cognitive Studies Research Paper
Serial No. CSRP.056

The University of Sussex,
Cognitive Studies Programme,
School of Social Sciences,
Falmer, Brighton BN1 9QN

Puplog and the learner:

An artificial Intelllgence programrming environmenti used education

[9
o

Benecdict du Doulay
¥ark Elsom-Cook
Toxr Khabeze
Josie Tay.or

Cognitive Stucdies Programme,
University of Sussex.

1. Introduction

This paper describes the Poplog system, developed in the Cognitive
tudies Programre at the University of Sussex, together with some of the
research on lezrning and using programmin languages and environments
thaet is currently in progress in this laboratory. The system is being
used in many universities and poliytechnics as well as in industrial
research leboratories. Versions for both UNIX and VNS are available and
: ¢ on VAN machines as well as a variety of systems based on the
V68000 range of processors, such as the SUN and the Hewlett Packard
workstations.

There are
Poplog.
¢ifficul
helpful
project
between e
concerned w
investigetin £:
Prolog. oe is hecoring widely used and there may be sore
Cisperity betw he epparent sigplicity of its syntax and the ease
with wiich It can be learnt. The final project, "An intelligent program
checker”, is concerned wit Pasczl rather than Prolog. A system is
being developed iIn Prolog and PCP-1i to help novices in their early
steps in Pascal by providing a program that can comment usefully about
their programming errors, whether they be syntactic, semantic or
logicel.

current research projects of particular relevance +to
, because of the many orn-line files a user may have reec!
locating the pzrtiiculer file that is believed to contain
rmetion for the probler in hand. The "Felp File Finder"
K ‘ress ihe issue of determining the mapping

2 given help-file. The sccond project is
wing language Prolog. This project is
e

[I
2
o Mg}
oD
ct D

0 Fy bote b

~t+
«

3
o 03

Vi
0N e

s thet certain novices face in learning

:

et

The paper starts with a brief description of Poplog more from the point
of view of students rather than that of systems programmers. The
following sections brieflly describe the three projects indicated above.

2. What is Poplog?

Popiog is a general purpose programming environment which provides
incremental compilers for Prolog, POP-11 and Common Lisp integrated with
a screen editor, VED, and other useful program development tools. The
comrunication between these three core languages is intimate in that
each corpile down into a common virtual mechine language (which itself
is compiled). It is thus possible, as in the "Intelligent Prograr
Checker"” project, described below, tc write short inter-communicating
sections of code in say POF-1! and Prolog to exploit the best features
of each. It Is also possible to prototype a system first in Prolog (for
clarity), . and then move to @a faster version written in POP-11 while

'

steying ell-the-while in the same environment. Sections of code in cther
languages, such as Tortran, can be linked in making it possible to write
multi-ianguage systems.

Nuch of the system is written in PCP-11 itself, including the editor.
This mears that it is not only powerfu! but also easy to modify for
particular users. POP-11 is an interactive language with capabilities
sinilar to Lisp but with a syntex much more like Pascal. It can be used
as a general purpose programming language, though its mein wuse so far-
has been In research and teaching in artificial intelligence. Hardy
(1984) provides a more wide-ranging description of the system, and
especially its wuse as a POP-11 and multi-language environment. Gibson
(1984) gives an excellent introduction to programming in POP-11 and a
more comrplete description can be found in Barrett et al. (1985).

The screen editor plays a central role. It is wused as a delivery
vehicle for tutorial information and software as well as for the more
traditional roles of constructing and editing both programs and text
(such as stucents' assignments). Although VED is not a fully-fledged
structure editor (in the "authoritarian" sense that woulid allow the
contents of the edit buffer to be navigated only as structure) it does
have knowledge of programs as well as text. So it is possible to call a
pretty-printer to rearrange either text or programs to make them more
readable or to compile some part or all of the buffer. ¥any of the
most freguently usec editor commends are associated with individual
function keys, and VED also responds to commands entered on a special
"commané line" as well as to commands typed directly and preceded by
typing the <escepe> key. Both fecilures can be tailored to suit
cifferent groups of users (or individual users). It is possible to
communicate with the underlving operasiing system through VED, <though
many of the more useful commands are fielded by VED itself in a way that
exploits the syster to better adventage.

Incremental compiling

The notion of incrementel compiling (as opposed to traditional
compiling) is important in reducing the time and labour associated with
the plan-code-test-debug cycle. By allowing pieces of program, either
complete procedures and functions or even individual commands to be
compiled and tested individually and then automatically linked into the
growing code one reduces the wasted time consumed when other parts of
the program are needlessly re-compiled after some small change to a
subsidiary procedure. This gives very nearly the flexibility of an
interpreted system but produces programs that run much faster. The
compilers can be called from within VED, so that one frequently used
mode of work is to "get into" VED and then conduct the whole program
development process from there, editing and then compiling code as need
be or using the other half of the screen to trace and debug the growing
program.

Two other features of Poplog are relevant here. The first is the very
large amount of tutorial text and software that has been built up over
several years by the lecturers who have used the system for courses at
various levels, from entertaining school pupils on Open Days to
providing examples of advenced parsing techniques for graduate students.
The tutorial text files are called "Teach"” files and the software files
are celled "ILibrary” files. The Library files enable complex new

2

programs to be built out of existing programs with a consequent saving

of labour and possible increase in modularity and clarity. They also
erab’e students to do interesting things fast. The contents of the Teach
and Library files are very easily accessible and can be scanned, edited
and cannzbalised a2t will using the screen editor.

The other useful feature is the large amount of online documentation
zhout the system itself and about the languages that can be used. It is
easy to ask for help about some languazge feature (if you know how to
find the name of the appropriate file) and so get some text and some
pointers to other files that might be useful.

All these files are not without their drawbacks. Their sheer number
make the task of finding what one wants difficult (especially if as a
beginner one is not sure of what exactly one wants to know or of how the
information might be arranged in the system). A related problem is that
of trying to keep the systen under proper control by providing useful
cross-links and making sure that new features are correctly integrated
into the existing complex web of helpful references. Work on these
issues is described in section 4.

3. Using Popliog in Teaching

The large amount of online docurentaztion, together with the many library
and utility programs mcxes Poplog 2 very useful teaching device. Many
of our courses heve a strong practical element in that students are
expected to be ablie to understand, extend and eventually formulate
prograrms Lo carry out AI tasks such as parse English sentences,
interpret representations of wvisual scenes or demonstrate some other
experiise. The Cognitive Studies Programme runs a number of
uncergracuate degrees including "Computing and Artificial In;e’ligence"
It 2lso povides a context for this degree and others in Lingui SLJCS»
Philosophy and Psychology by introducing them to the study of huran
cognition from all these different perspectives. Various post-graduate
degrees are also offered including a 1 year SERC sponsored "conversion"
¥.Sc. in Knowledge-Based Systiems as well as degrees based on research.

Our students arrive with widely varying 1levels of experience in
computing and technical subjects in general. This has meant that the
Poplog development team has had to take seriously the notion that the
syster would be wused both by beginners as well as by very experienced
people who use it for their research in artificial intelligence. Many of
our students have no Dbackground in computing and have always studied
"Arts" subjects. One way that we try to induct the more timid of them
into computing is by introducing them to the Poplog editor. This they
use both as a word-processor and as a means of navigating around some of
the initial teaching material. While this may seem an inefficient use
of resources and time it is a much less threatening way to start than
being plunged into writing programs. Another advantage is that students
can progress at their own pace through the materials, becoming more
familiar with the system all the while.

There are no "intelligent" teachers lurking inside Poplog. Many of the
teaching fijes suggest activities that the students might try, give them
pieces of prograr to run andé so on, but the system itself does not
evaitate the outcome of their experiments. There are good reasons for
this choice. First it is extremely difficult to build effective

conputer tutors. Second we wish to enphasise that the systemis a too
for the students' (and our) use and not muddle up the interactions wth
issues to do with evaluation. Gven the difficulties of building tutors
it seened better to put effort i'nto reeking the facilities powerful and
convenient to wuse. The intelligence is in their design rather than in

their responsiveness to the user. However we are interested in
intelligent systens as such as the later discussion on "help file"
finding and program checking will show

Tail oring the environnent

Once the students are logged in the system executes a "login" file which
imediately puts them in a specially tailored Poplog environnent that

alnmost completely instates them from the underlying VM5 system or UN X
system if they w sh. In some cases the chosen environnent is the screen
editor VED working on a special file called "output” in which all /0
from their prograns is stored. There are login files provided for all

the different courses that we teach. They may put the system a special

state at the start (as above) or set up default pathways to preferred
Teach and Library files. This means that the systém scans the Teach and
Library directories in a given order depending on the value that has
been set, thus making certain files available to sone courses but not to
ot hers. Simlar start up files are associated with other parts of the
Popl og system For exanple the system wll execute a wuser's file
associated with VED when the editor is first called after login if such
a file exists. By this means many of the faculty (and some of the nore
advanced students) interact wth a version of VED, POP-11 or Prolog
tailored to their own needs.

Staff and students have access to cursor addressable terminals with
l[imted graphics capabilities (such as Visual 200's and Visual 55's).
VED enables two files to be independently displayed on the screen at
once, which makes both word-processing and program devel opnment easy.
This is the best that can be achieved at present with the terminals that
we have available but we are in the process of developing a full
wi ndowi ng nechani sm for Poplog inplenentations on nachines wth bit-
mapped graphics, such as the SUN workstation. It is possible to have
nore wi ndows on a dunb VDU but they are too snall

The first work that nmost students do on the systemis to call onto the
screen a Teach file that, explains how to navigate around files by moving
the cursor in any direction in varying sized |eaps. This 1is achieved
by typing the comrand "teach" on the VED command line. This wll have
the effect of filling up the half of the screen wth tutorial text.
The cursor wll be placed at the beginning of the new file and al

subsequent editing comrands and keys take effect on that file. Thus the
earliest experience that such a student has is really about using the
system as a wor d- processor.

The screen editor works on the principle that what you see is what you
get and that anything typed in using the ordinary keys is entered in the
file at the cursor position, other text nmoving along and down to nake
way for it as the default (though text can replace what is on the screen
iT one wishes). A file can be traversed in any direction at wll in
either small or Jlarge junps, including scrolling sideways. There are
function keys to delete characters, words and lines and to carry out
other editing tasks. A sinple "undo" nechanism is available for

accidental deletions. A contiguous portion of a file can be marked wth
a vertical bar that appears down the extreme]Jeft hand side of the file.
This marked range can then be del eted, noved el sewhere, noved to another
file, conpiled and so on with ease.

At sone stage the student will have two files on the ternminal screen,
the output file (say) and a teach file. The student can junp the cursor
back and forward between the files in order to work on one or the other.
It is also possible to arrange for the wi ndow on one of the files to
grow to fill the whole screen (the other file is still active and can be
called back if necessary). Text can be copied fromone file to another
i f needed using the range marking facilities nmentioned above. More than
two files can be made active at any one tine, possibly a teach file, a
file containing a student program and the output file, for exanple
However only two can be shown at once and nmeans are provided for
choosing easily which these two should be.

Once the student has becone reasonably proficient in navigating around -
the file system and within files the work on progranmng in Prolog or
PO?-11 itself can begin. There are a nunber of library packages to help
students build powerful systens quickly as well as to provide exanples
of standard techniques in artificial intelligence. Thus there are
tutorial versions of various expert system types, production rule
interpreters, visual scene interpreters, parsing and grammar 'packages
and so on. On occasion it has been possible to "bolt" together a nunber
of these library packages to build, relatively easily, a fairly powerfu
system An exanple is a system which can interpret conmands for a
sinmulated robot stated in English, wundertake the necessary planning
carry out the actions comanded and display the results using sinple
gr aphi cs.

4. Finding the docunentation that you need
Al Environnents and the help file finding problem

AT programming for research purposes is usually exploratory in nature;
that is, the activity of progranming is used to explore problens which

are ill-defined, to clarify these problems, and to explore possible
sol uti ons. This is in contrast to the approach traditional in
conputing, where good practice requires that a problem be well defined,

and its solution well understood, before this solution is enbodied in a
program

In conputing environments designed for this style of use, it has been
‘found particularly wuseful to provide extensive on-line docunmentation

This allows the users to explore the on-line environnent in the same
exploratory fashion in which they use the environment to explore some
other area. This applies both to the novice progranmer, who may be
learning the basic concepts of conmputer progranming, and to the expert
programer who may want to use sone facility of the -environment whose
details are unfamliar

Pop’og's on-line docunents, collectively referred to as the "help
files", nunber some one to one and a half thousand. Each help file has
a "type", which is one of "teach",” "help", "ref" or "doc" - these
specify different categories of help files, and a name which specifies
the subject of the document. Tor exanple, the help file called "teach

S

defire” would be a tutoriel guide to defining procedures in POP-11. A
nare such as this can give only so much information; for example, "teach
cefine” might have been about defining POP-11 procedures, but it might
aiso have been about defining Prolog predicates, defining production
rules in a production system, or defining the action associated with
some Key sequence in VED. Furthermore, if the name of the required file
is not known, it is very difficult for an inexperienced used to guess
whet Its name might be, especially for a novice who may not be familiar
with computing terminology. Even an expert may have great difficulty
with terminoliogy, because taxking a technical term out of context can
deprive it of most of its meaning; for example 2 help file called "help
delete” might expiain how to delete files from a directory, lines from a
file, items from a data-structure, or one of many other kinds of
deletion.

To some extent, problems with the names of help files can be alleviated
by the systematic wuse of cross-references between help files. These
effectively forrm a menu systier embedded in the help file system, which
allows the the help file author to produce help files that contain, in
acdition to ordinary texti, menus of other help files. Thus the
documentation can be structured so that the user can arrive at the
reguired documeni by seleciling a succession of menu entries, instead of
havirng to Know the name of the required document in advance.

However, there are further problems in using the help file system, due
to the manner in which the Poplog system was developed. Like other AI
environrenis, Poplog Is an extcensible system, and the languages that it
provides, - the environment and the documentation have all "grown" with
use, rather than having been carefully planned from the outset (see
Krabeaze, 1883 for further discussion of this feature). This lack of
organisetion in its development has Jed to the documentation being
"lumpy", or uneven; sore features of the system are well documented,
some poorly, and some not documented at all, or documented in surprising
places.

The problems associated with not knowing whether a feature exists,
whether it 1is documented, and what the documentation is called are
collectively known as the "help file finding" problem.

The Help File Finder project.

This project was conceived as investigating the ways in which AI
techniques could help to solve the help file finding problems described
above. There are two basic threads in its motivation: one practical, to
solve the roblem of providing good on-line documentation, and one
theoretical, to study the cognitive processes of computer users.

The project has suggested a number of directions for research on
improving the Poplog documentation system. The simplest of these is to
experiment with more sophisticated keyword systems than that currently
provided. The current help file naming scheme can be thought of,
roughly, as "one Keyword/one file". Some improvements might be gained
by allowing many keywords to be associated with a single file, and the
keywords associated with cifferent files to overlap. For example, a
help file on deleting files might have the keywords "delete file", while
a help file on deleting items from a list might have "delete list".

The system of cross-references between help files, mentioned above,
leads to a "network-structured” menu system. A major problem with such
systenrs is that when introducing a2 new noce (in Poplog, a new help
file), the authors must insert cross-references to the new entry in all
the relevant files, many of which may not be known to them. To aid this
process, a system for examining the network of help file cross-
references is being developed. This will form a tool for help file
authors, to help them integrate a new help file into the menu system, or
improve the existing menu system.

A third suggestion to arise from the project is that of "dynamic help
files". These are help files which, rather than consisting of static
text, are generated and transformed by an active system, using some
stored framework. This allows the information displayed in a given help
file to be tailored to the requirements of the user. The system of
dynamic help files would form an “augmented discrimination net"; a
discrimination net because the ultimate aim of traversing the net would
be to find the reguirecd help file, and "augmented", because traversing
the arcs of the net triggers some work, such as the creation of a
tailored menu.

Tinally, the project has been corsidering the feasibility and problems
of an expert system with knowlecdge and inference capabilities in the
dorain of . prograrming sysiers. This endeazvour is particularly relevant
to the eaim of studying the cognitive processes of computer users,
because producing such & syster requires the modelling of huran
computing expertise. However, reasoning about the activity of
programming is still poorly understood; preliminary study has shown that
the amount and variety of Kknowledge used by a human expert, even in
lirmited areas such as Jlist processing or editing, is very large,
comparable with the knowlecge bases of the most advanced expert systems.

5. An Intelligent Programr Checker

Everyone has their own favourite horror stories about the awful,
incomprehensible error messages that novice programmers have to cope
with (du Boulay & Matthew, 1984). One of the advantages of a system like
Poplog is that it is entirely feasible to develop tools for helping
students learn conventional languages like Pascal.

The "Intelligent program checker"” project is a move in the direction of
incorporating Intelligent Tutoring Systems into Poplog. Because of the
Jimitations of our current understanding of tutoring system design
(mentioned earlier), the program checker does not attempt to carry out
the whole tutoring task; instead it focusses on mechanisms for reasoning
about programs and diagnosing bugs. This is a central component for any
tutoring system for programming.

The program checker is intended to provide the novice programmers with
the sort of informaztion about errors which they could expect to receive
by consulting an expert. By embodying such expertise within the systen,
the pupils have the advantage of Imrediate feedback on errors, without
the intimidating (and expensive) overhead of having an actual expert
progranren looking over thelr shoulders.

This tesk is not suited to a standard expert-syster approach, since it
Involves reasoning using many different soris of knowledge (and metia-

-3

knowledge), anc providing explanations of this reasoning process which
are meaningful to the pupll.

At Its lowest level, the program checker isolates and identifies
syntactic bugs in the program. By using techniques related to natural
language processing methodology, the system manages to accurately locate
rrors and, in most cases, to suggest corrections which are consistent
with the intentions of the pupil. This is in direct contrast to
traditional compilers which often report errors to be some considerable
distance from their actual location, and do not offer corrective advice
(or if they do, a least-errors correction is used, which is typically
far from the program which the pupil intended).

Other errors which the program checker detects are less easy to
separate, but may loosely be regarded as forming a continuum of
"semantic errors” of an increasingly problem-dependent nature. The
simplest sementic errors involve comparing a formal semantic description
of each staterent with the way in which that statement has been used by
the programmer. Following +this, analyses of Jinteractions between
statements and of eigorithrs used by the programmer are performed. When
this has been done, the actual! behaviour of the program is compared with
the stated goals of the progranm (normelly supplied by a humen teacher).

At preseni, only thce syntactic level of analysis has been fully
impileterted. It exists within Poplog and is currently oriented towards
teaching Pascal. Since the language infomation is separable from the
rest of the system, versions of the system for other languages are easy
to produce. POP-11 and C versions are currenily being added.

The program checker itself is written in a mixture of POP-11 and Prolog.
Issentially, the well-defined algorithms are implemented in POP-11 for
speed, while the facilities for reasoning about the state of the parser
are implemented in Prolog. Ixtensive use is made of the applications
interface to the VED editor: the pupil is shown the program in one
window while maintaining an interactive dialogue with the program
debugger in the other window. This permits a much richer debugging
interaction (for example, both pupil and program checker can "point" to
pieces of the program which they wish to discuss).

6. Understanding Prolog Programmers

Prolog has suddenly become a most fashionable language accompanied by
some rather ambitious claims about the ease with which it may be learnt.
While these kind of claims are quite wusual for any language, Prolog
seems to be something of a special case because of its apparent relation
to logic and English (Taylor, 1984).

Proponents of Prolog claim that as Prolog is based on first-order
precicete logic it 1is easier to learn than other more conventional

formalisatior of humarn rational thinking, rather than from the logic
soverning machine operations. Turthermore, the logical basis allows for
a cdeclarative interpretction of programs which can be expressed in
nutural lengusgce. These are dublous claims since independently conducted
psychologicel experiments heave demonstreted (a) that people have
considerable difficulty understanding and using logic and (b) that using

8

natural language wthin the formal domain of |ogic |eads people to
commt various Kinds of reasoning errors. In fact there is considerable
overlap in the literature on the Psychology_of deductive reasoning and
the Human Factors literature which [|ooks sBeC|f|caIIy at people trying
to learn progranmng |anguages. This may be attributed to the fact that
in both areas we are lookitig at people trying to work wthin the
constraints of a sometines counter-intuitive formalism and they do not
find this ei“he:” easy or 'natural!".

W\ have instigated a project at Sussex, using the version of Prolog in
the Poplog system which ainms to gather enpirical data, focussing on the
fol | ow ng naqor issues relating to the learnability of Prolog. First,
are the declarative semantics realuy of any use to the beginner, or are
they merely a red herring? Second, does the presence of natural |anguage
in the progrann1n? ~domain help, or obstruct the learning process Y
obscurlng the underlying formalisn? Third, what kinds of nmodels o
Prolog do beginners construct for themselves, and how far do they
diverge from an adequate nodel ?

In order to put these questions into a broader context we are also
exam ning the behaviour of Prolog experts and experts in other |anguages
(e,g. POP-31 or Pascal) who are learning Prolog. For data collection we
have witten a programw thin the Poplog system which automatically |ogs
end stores interactive sessions at the termnal, inside the editor
(VED). A second program Is used to replay the logfile by substituting
the characters stored in the file for the normal keyboard input to VED.
Thus, at replcy tine, VED behaves as it did for the experinmental subject
when the logging took place.

Qur data K'11 be of use to the varied ?ro2og comunities and any

software and online teaching mterials developed as a result of this

work vcitjl be made available as part of the Poplog system to UK.
educational establishments.

7. Concl usions

Popl og has the follow ng nice features. It provides a powerful screen
editor integrated carefully into a system containing increnenta

conpilers for Prolog, POP-11 and Lisp. It is wused a both a genera

sof tware devel opnent environment as well as a specialist environnent for
teaching and research in artificial intelligence. Probably its nost
gleaslnﬁ characteristic is the way that it enables working prototypes to
e quickly built and tested by allow ng new sections of code to be both
tried out and linked in quickly and easily.

O course there are still things to be done. There is extensive on-line
documentation but its coverage can be patchy and the cross-referenecing
could, and is, being |nﬁroved. The split screen facility is an enornous
I nprovenment on systems that allow only a single activity to be displayed
at one tine, but it is only a step towards a fully-fledged w ndow
nmechani sm This wll realised on the single user workstations wth
br't - mapped graphics that are now belnE_used extensively. At the time of
witirng {July, 1983) the Common Lisp inplementation is in the fina

stages of conpletion. This wl: replace the existing small Lisp
inplementation in the system Though even this snall system has been
used for useful development work by at |east one of our custoners.

-
2

Because we use the Popiog system ourselves for teaching and research,
there is a constant drive to provide better features and to worry about
how to teach its use to beginners. The research projects that have been
described in this paper are just three from a conprehensive progranme of
research in artificial intelligence and related topics currently uderway
in the University of Sussex.

8. Acknow edgenent s

The Pop! 02 system was developed by a team of people including Aaron
Sl oman, Jon CQunni ngham Steve Hardy, John G bson and Chris Mellish. It
has been adopted as part of the SERC/Alvey IKBS Infrastructure and is
mar ket ed by System Designers. The "Intelligent Program Checker"
project, the study of "Novices Learning Prolog" and the "Help File
Finder" project are all supported by grants from SERC/ Alvey. The "Help
Tile Finder" project is directed by Professor Aaron Sl onan.

9. References

Barrett R, Ranmsay A & Sadr.an A PQP-:! 1: a practical language for
artificial intelligence, Chi Chester: HEIlis Horwood, 1985

du Boulay, B & Matthew |I. Fatal error in pass zero: how not to confuse
novi ces Behaviour and |nformation Technology, 3, 2, 109-118 (1984).

G bson J. POP-11: an A.l. programming |anguage, in New horizons "n
EB*LELE 2 conputing, edited by Yazdani M , Chichester: Elis
Il orwood, 1984.

Hardy S. A new software environment for list-processing and |logic
programming, in AxuJmci.col int.eHierice: toals, techniques and

applications, edited by OShea T. & Eisenstadt M, New York: Harper
and Row, 1984.

Khabaza T. Towards and intelligent help file finder, in Artificial
jntelligence pr ogr ami ng environnents, edited by Hawey R,
Chi chester: Ellis Horwood, 1985.

Taylor J. Wy novices will find Prolog hard, in proceedings of ECAI -84,
European conference jji, artificial intelligence, Pisa, 1984.

10

