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Introduction

2 5Kolmogorov 9 introduced two measures of complexity for

finite sequences based on the length of minimal descriptive

programs, which he employed in a new concept of tf randomnesstf .

Chaitin, independently, introduced a similar measure for the

same purpose. The author has subsequently introduced a third
4

measure of the same type. In this section these measures are

defined and comments are made regarding some properties of the

measures. The following section contains some results concerning

a natural hierarchy for infinite sequences constructed using the

third of the above mentioned measures. The structure of hierarchies

using the other measures is not considered explicitly although the

corresponding questions may receive as interesting, or even more

interesting, answers within these other hierarchies.

We shall be concerned with only binary strings (i.e., finite

sequences) and (infinite) binary sequences. Sequences are

represented by x or y and strings by u , v , x , y or z

where the superscript specifies the length of the string. The

initial segment of length n of a sequence x is called the

n-prefix of x and notated, in context, by xn. Also p and

q denote strings whose lengths are then denoted by l(p) and

l(q). X denotes the set of all strings and N denotes the set of

positive integers. Finally, the capital letters A and B denote

partial effectively computable functions, or algorithms, from X

to X (or from XxN to X in proper context) and should be
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regarded dually as partial recursive functions and also as lf computerstf

which (perhaps) yield a certain output string when given a certain

input string, or program, and optionally a tf stopping rulen .

The Kolmogorov complexity (or K-complexity) of x with

respect to algorithm A is given by

KA(x
n) = min l(p)

A A(p)=xn

if there exists a string p such that A(p) = x 9 otherwise

The (restricted) Kolmogorov conditional complexity (or

conditional complexity) of xn with respect to algorithm A

is given by

KA(x
n|n) = min l(p)

A A(p,n)=xn

if there exists a string p such that A(p5n) = x 3 otherwise

KA(x
n|n) = oo.

The adjective n restrictedn is applicable because in the

original definition x may be conditioned by objects other than

the length of x .

The interest in the (restricted) conditional complexity is

due to work of Martin-Lof. He develops an analytical tool by

which he shows that strings of sufficiently high conditional

complexity asymptotically have all the standard properties expected

of a random sequence.
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Let us consider a natural interpretation of each measure. The

K-complexity represents the length of the shortest program which

when run on !l machinen A produces xn. The conditional complexity

represents the length of the shortest program which when run on

Tt machinen A which is told when to halt produces' string xn.

More precisely, in the conditional complexity measure algorithm A

receives as input a program p and a positive integer n the

latter of which may be used by A or p to help define x ,

most obviously by determining the length of x . Thus this informa-

tion of up to Log n(= log2n) bits need not be supplied by the

program p as is required in the K-complexity measure. The

above interpretation, however, does not forbid the use of the

information contained in n also for the determination of the

pattern of O's and l!s in the output sequence. The behavior

of the conditional complexity supports this interpretation on

4
this point. It is easily seen that for any n an arbitrary string

x of highest conditional complexity (approximately equal to n)

can be n lengthenedM by adding 0!s to form a string yr of

length r so that the conditional complexity of yr is a

predetermined constant (independent of n). Here r is the inte-

ger whose binary expansion is x .
4

The author introduced a third measure of complexity which

would reflect the interpretation where the positive integer is

simply a halt command and would also have the related property that

the complexity of the entire string would never be less than that

of an initial part. For convenience in giving the definition,
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we write uX-< v3 if i <1 j and u1 is the first i bits of

v-3. The uniform complexity of xn with respect to the algorithm

A is given by

K,(x ;n) = min l(p)
D(A,xn)

where

D(A,xn) = {p|A(p,i) = x\xX-< xn
5 a l l i £ n}

if D(A5x
n) is non-empty, otherwise

KA(x
n;n) = oo.

2

There are several basic properties noted by Kolmogorov

which apply to all three measures. We state them in terms of the

uniform measure.

1. There exists a universal algorithm B such that for an arbitrary

algorithm A and for all xn

J\_ \ X *TL) J^ JXa \ X ,Tl) + C

where c depends only on A and B.

2. If B, and B2 are two universal algorithms then there

exists a constant c such that

| Kg (xn;n) - Kg (xn
;n)| <; c

1 i

holds for all x11.

3. There exists a constant c such that

K(xn;n) £ n + c

for all xn.



4. Less than 2r strings of length n satisfy

K(xn;n) < r.

Alternately, property 4 states that for any constant c

K(xn;n) ^ n - c holds for at least 2n(l-2"c) strings of length

n. Thus almost all strings of length n have their complexity

close to n.

Property 1 states that any two universal algorithms differ

only by an additive constant. Thus we can suppress our dependence

on a particular underlying algorithm by M readingt! our results

only up to the additive constant. Agreeing to this, we may choose

an arbitrary universal algorithm as our underlying algorithm. We

write K(xn;n) for K^(xn;n) if B is our chosen standard (and

likewise for the other measures). By choosing the underlying

algorithms for the conditional and uniform complexity measures the

same we observe K(x |n) <£ K(x ;n). Also, it is readily seen that

K(xn;n) <^ K(xn) + c for an appropriate constant c. It can be

4
shown that for infinitely many n

K(xn;n) - K(xn|n) ~ Log n

holds for some x n, yet for each constant c there is a constant

d such that for all n

(xn|K(xn;n) ^ n - c} c (xn|K(xn|n) ^ n - d}.

We now consider some complexity properties of sequences; here

x represents the n-prefix of sequence x. Clearly, x is a

recursive sequence if there exists a constant c such that for



infinitely many n 9 K(x
n;n) <^ c. For the conditional complexity

we have that x is recursive if for some constant c and for all

4
n , K(x |n) <£ c as shown by Meyer. Conversely, x is recursive

implies a constant upper bound on the complexity of x for

either of the above measures.

We define x to be a random sequence if and only if there

exists a constant c such that K(xn;n) > n - c for infinitely

many n. A present weakness of this definition is that it has not

been established (to the author!s knowledge) that all sequences

included by this definition possess the standard properties associa-

ted with randomness, such as the law of large numbers or the law of

the iterated logarithm. A perhaps more reasonable definition might

seem to be achieved by replacing M for infinitely many nlf by

11 for all but finitely many n!! . Martin-Lof has shown this

condition is satisfied by no sequence, whereas it is easily seen

that the given definition is satisfied by M almost allf! sequences

(see the next section). The author conjectures that the standard

properties of randomness are satisfied by this set of sequences.

There is heuristic support that the definition is a suitable one.

Unfortunately, although the relationship between these measures

1 2 5
of complexity and the notion of randomness * ' is the most exciting

aspect of this notion of complexity, it is beyond the scope of this

paper. It will be seen in the next section that the definition

is conveniently expressed in the notation of the hierarchy considered.

To better understand the invariance of the set defined, it would

*
See the Note on page 14.
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be desirable to know if the K-complexity can replace the uniform

complexity in the definition without altering the defined set of

sequences. Using a theorem stated earlier, we observe we can

replace the uniform complexity by the conditional complexity in the

definition and obtain the same set of sequences.

There is a further important comparison to be noted between

the conditional complexity and the uniform complexity. We shall

notate by xn the string of length n obtained by reversing the

norder of bits of x . Thus 1100 = 0011. Clearly for an appropriate

constant c, |K(xn|n) - K(xn|n)| < c holds for all xn. (This

property and its importance was pointed out to the author by

Martin-Lof in a private communication.) This relationship above

holds if x denotes any recursive permutation of x . Thus the

conditional complexity of x may be regarded as bounded by the

conditional complexity of its least complex permutation plus the

cost of the permutation. This is certainly a natural property for

a measure of n information contentn to possess when evaluating

complete units of patterns.

It is easily observed that the uniform complexity lacks this pro-

perty. For let xn be a string with the last bit a 1 such that

K(xn;n) ~ n. Let ym = 011011100. . . x11 denote the string of

concatenated successive binary integers through x11. Then

K(y ;m) = c, a constant independent of m^ yet

K(y ;m) J> K(x ;n) ~ n > Log m - Log Log m as x < y and the

uniform complexity is a monotonic non-decreasing function over the

second argument. We conclude it is impossible for a constant to
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exist which bounds the difference in uniform complexity of

n _ n - _ - n
x and x for all x .

Thus the conditional and uniform complexity measures are

incompatible in their characteristics and must serve different

purposes. When a string is considered as an isolated unit, it

seems desirable to judge the complexity, conditioned by a given

length n, by the lowest complexity of any permutation plus the

cost of the permutation, and with full use of ft nn as a partial

codification of the distribution of 0fs and lfs. This is

accomplished by the conditional complexity. If the string is

viewed as a part of a nested collection of strings (i.e., of any

two members, one is a prefix of the other) and a reflection of the

information content of the generating process is sought, the uni-

form complexity seems more satisfactory. In the latter situation

the conditioning value tf nn is often viewed as imposed upon

the process from outside as a stopping rule only. In summary,

the uniform complexity reflects the complexity of generating an

ordered string uniformly, meaning that any program describing a

string outputs an initial portion of the string if terminated

earlier. The consideration of the complexity of infinite sequences

using a conditioned complexity of their n-prefixes as intermediate

readings is one situation where the uniform complexity seems quite

suitable.
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A hierarchy for infinite sequences

A natural hierarchy of complexity for infinite binary

sequences is suggested by each of the previously mentioned

complexity measures. We shall consider exclusively the uniform

measure. The hierarchy is defined as follows. For every non-

decreasing function f: N - N there is a class Cf of infinite

sequences x defined by

x € Cf <=> K(x
n;n) £ f (n) , Vn J> nQ(x) .

That is, C.p consists of those x with all but a finite number

of their n-prefixes bounded by f.

We restate in this notation several statements of the preceding

section concerning the uniform measure. Any constant function c

defines a class C which contains only those recursive sequences

defined by a program of length less than or equal to c. Also,

there exists a constant c such that C , contains all infinite
n+c

sequences. It follows directly from the counting property that if

g is an unbounded function and f(n) = n-g(n) is non-decreasing

then Cf has measure 0 under the standard product measure with

(Lt(O) = (Lt(l) = 1/2 as coordinate measure.

A sequence x is seen to be random as defined previously

if and only if there exists a constant c such that x / C

It follows from the result in the previous paragraph that the set

of random sequences has measure 1. An open problem is whether or not

there exists a (non-decreasing) function f defining a class

consisting of precisely all non-random sequences. Such an f would

be of form f(n) = n-g(n) for a very slow growing unbounded function g.
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We will note later the existence of an analogous function defining

the class of all recursive sequences.

It is informative to locate familiar non-recursive sequences in

the hierarchy to serve as landmarks. Perhaps the most obvious

question is whether there is a non-trivial class Gf containing

the characteristic sequences of all r.e. sets. The classes C^

with f(n) = (l+€)Log n for any € > 0 qualify by the following

fact. JEf x _i£ an r.e. sequence then K(xn;n) <£ Log n + c for some

constant c (dependent on x). This is seen as follows. If x

contains an infinite number of l!s (otherwise result is immediate),

let recursive function h(i) enumerate without repetition the

lfs of the sequence. We specify an algorithm A and a program

p such that A(p,i) = x1, for x1-<xn. The algorithm obtains

integer j from p, calculates h(l), h(2), ... , h(j), forms

the binary string of length i with lTs precisely at the values

of h(k), k <; j, and prints the sequence. The number j, chosen

such that h(j) <^ n but k > j implies h(k) > n, can be

reported by p in length Log j. Thus

KA(x
n;n) £ Log n

or

K(x ;n) <£ Log n + c.

for a suitable c.

Certain subsets of r.e. sequences whose distinguishing

property is a denseness of lrs (or 0 Ts), such as sequences
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characterizing simple or hypersimple sets, perhaps are contained

in smaller (" lower" ) classes. Rather than report the last value

below n of the enumerating function, the program might report

the number of 0fs (or lrs) less than n. This information in

itself is insufficient in general to meet the uniformity condition

(but would suffice as a device to lower the bound on the conditional

complexity). If one could establish that the spacing between 0fs

is increasing with n, however, it would suffice to code into

the program the length of the run of l!s which includes the n—

component, together with the number of 0Ts preceding this run.

This approach can yield a shorter description of a sequence.

Sequences which are not r.e. but have few 0fs in them can

often be shown to fall in a small class, with f(n) ~ 0(Log n),

by having the program explicitly report the location of the

occurrences of the 0fs. In general, tricks which reduce bounds

on complexity are hard to find for sets of sequences specified in

usual terms. Bounding the complexity seems difficult even for

individual sequences. The science (art?) of seeking economical

descriptions (programs) of finite approximations, by initial seg-

ments, of non-recursive sequences promises to be quite challenging.

As the r.e. sequences all appear within a rather small class

in the sense that Log n < n, we might inquire about slightly

11 less constructive11 sequences, sequences characterizing sets

recursive in any r.e. set. We call such sequences ZL-sequences.

Our results are inconclusive here but we can show the following.
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If g J^ <a (total) recursive function such that S 2 9( ' < »,
k=l

then there exists .a ^-sequence x such that K(xn;n) > n - g(n)

for all n > n , for some positive integer n . For example,

(l-fe)Log n is a suitable g for any e > 0. Thus f (n) ~ n

and we see the complexity of /^-sequences can be quite high.

Further information is given by the following theorem.

For any partial recursive function g defined on an infinite

doma in D and unbounded on D there exists a. A^- sequence x

such that K(xn;n) > n - g(n) infinitely often on D.

The proofs of the two theorems are similar and reasonably

direct. Use is made of the fact that for a given k and r the

set {xk|K(xk;k) £ r) is r.e.

It should be noticed that no /^-sequence asserted to exist,

by the above statements is definitely a random sequence although

this is, of course, not precluded. The statements do assert that

if the Ao-sequences are not random they have complexity characteris-

tics n very closeM to that of a random sequence. We conjecture

that there is a A2""sec5uence which is a random sequence and,

indeed, it would be very interesting should there not be such

a /^-sequence. To date the various definitions of randomness

based on the explicit concern for recursive (or r.e.) strategies

have yielded A>-sequences which are random. (Examples are the

random sequences defined by the sequential test concept of Martin-Lof

or by attempts to root the von Mises notion of randomness in

recursive function theory. )
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Finally, we consider several properties of the hierarchy

which concerns the smallest classes Cf containing non-recursive

sequences.

Every non-decreasing unbounded recursive function f defines

a complexity class C,- with a continuum of members'.

This is clearly not true if f is a bounded function as

such classes include only recursive sequences. The proof uses the

existence of an algorithm which t! placesn the i— bit of a

string of length n at that integer where the i— jump of f

occurs, and fills in with zeros.

There exists ja non-recurs ive sequence y such that y e C~

for every non-decreas ing unbounded recursive f.

This asserts the existence of a sequence whose uniform

complexity grows slower than any unbounded monotonic recursive

function. The proof uses a Rado-type (t! Busy Beaver11 ) function.

There exists a. non-decreas ing unbounded function E such that

x e C <=* x is recursive.
iii — — •

Recall that any non-decreasing unbounded function defines

a class which contains all the recursive functions and that no

constant function can define such a class. This theorem asserts

that the set of recursive sequences itself forms a class. Further,

the theorem states that no non-recursive sequence can have its

uniform complexity measure grow strictly slower than a certain

minimum growth rate with respect to n. This is also a n gap"

theorem stating that there exist non-decreasing functions f and

g such that, say, (f(n))2 < g(n), all n, yet Cf = C . The

WJ1CT UBRJfflT
CMWE81E-MELLM u H i V t i t ^
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definition of E uses the fact that for each n there is an integer

s such that if any two programs of length at most n calculate

the same sequence of length s, they calculate the same infinite

sequence.

An open problem is to characterize E. It seems reasonable

to expect that E can be expressed in terms of the Rado Tf Busy

Beaverff function. If this is true, then E is a tight bound

in that sequences exist with complexity growth rate about that of

E. Otherwise one might ask if there is a (non-trivially) faster

growing function than E defining the same class as E. Mentioned

before is the question of the existence of a function f which

separates the random sequences as E separates the recursive

sequences. Finally, it should be recalled that the definition of

Mr

random sequence adopted here itself requires formal justification.

Note: Martin-Lof has pointed out to the author that sequences 5
random in the sense given here are random in the sense of his paper.
Thus it-follows that all the standard properties of randomness hold
for the random sequences defined above. This definition (expressed
in terms of the conditional complexity) apparently was first
proposed informally by Martin-Lof in 1965 and recently used by Kolmogo-
rov in a recent set of lectures given in Moscow.
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