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| nt r oducti on

%5

Kol nogor ov i ntroduced two nmeasures of conplexity for

finite sequences based on the length of mninmal descriptive

tf

prograns, which he enployed in a new concept of randommess''

Chaitin, ¥

I ndependent |y, introduced a simlar neasure for the

sane purpose. The author has subsequently introduced a third
neasure of the sane type.4 In this section these neasures are
~defined and coments are nade regardi ng sone properties of the -
measures. The follow ng section contains some results concerning

a natural hierarchy for infinite sequences constructed using the
third of the above nentioned neasures. The structure of hierarchies
using the other neasures is not considered explicitly although the
correspondi ng questions nmay receive as interesting, or even nore
Interesting, answers within these other hierarchies.

We shall be concerned with only binary strings (i.e., finite
sequences) and (infinite) binary sequences. Sequences are
represented by x or y and strings by ! v x2y®? or B
where the superscript specifies the Iength of the string. The
initial segnent of length n of a sequence x is called the
n-prefix of x and notated, in context, by x". Also p and
g denote strings whose lengths are then denoted by I(p) and
I (gq). X denotes the set of all strings and N denotes the set of
positive integers. .Finally, the capital letters A and B denote

partial effectively conputable functions, or algorithns, from X

to X (or from XxN to X in proper context) and should be
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| f

regarded dually as partial recursive functions and al so as conput er st'

whi ch (perhaps) yield a certain output string when given a certain

tf

i nput string, or program and optionally a st oppi ng rul e"

The Kol nbgorov conplexity (or K-conplexity) of X2 with

respect to algorithm A is given by

Ka(x") = mn I (p)
A A(p) =x"
if there exists a string p such that A(p) = x%  otherw se

KA(xn) = o,

The (restricted) Kol nobgorov conditional conplexity (or

conditional conplexity) of x" wth respect to algorithm A

is given by
Ka(x"[ n) = mn I (p)
A A(p, n) =x"
if there exists a string p such that A(psn) = x;  otherw se
Ka( x"| n) = oo

_'The adjective "restricted” is applicable because in the

s

original definition™ X may be conditioned by objects other than

the |l ength of x ™ |
The interest in the (restricted) conditional conplexity is

due to work of I\/hrtin-Lb'f.5 He devel ops an anal ytical tool by

whi ch he shows that_strings of sufficiently high conditiona

conplexity asynptotically have all the standard properties expected

of a random sequence.
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Let us consider a natural interpretation of each neasure. The

K-conplexity represents the length of the shortest programwhich

Ll n

when run on machi ne” A produces x". The conditional conplexity

represents the length of the shortest programwhich when run on

Tt n

machine” A which is told when to halt produces' string x".

More precisely, in the conditional conplexity neasure algorithm A
receives as input a program p and a positive integer n the

| atter of which may be used by A or p to help define x9,

nmost obviously by determiningthe length of x™ Thus this inforna-
tion of up to Log n(= logyn) bits need not be supplied by the
program p as is required in the K-conplexity measure. The
above interpretation, however, does not forbid the use of the

informati on contained in 'n also for the determ nation of the

pattern of Os and |'s in the output sequence. The behavior

of the conditional cbnplexity supports this interpretation on

this point. It is easily seeﬁ' that for any n an arbitréry string
x®  of hi ghest conditfonal conmplexity (approximately equal to n)
can be " | engt hened" by adding 0's to forma string y" of

length r so that the conditional conplexity of y" is a

predet erm ned constant (independent of n). Here r 1is the inte-
" ger whose binary expansion is x™

The author4 introduced a third neasure of conplexity which
woul d refl ect the.interpretation where the positive integer is
simply a halt command and woul d al so have the rel ated property that
t he conplexity of the entire string would never be [ess t han t hat

of an initial part. For convenience in giving the definition




vvhe_r'e C
2. | B_L and B,

exi sts a constant ¢

4
we wite ut< v if i

i <1j and u' is the first i bits of
-.3

v-°>.  The _uni formconplexity of x" wth respect to the algorithm
A is given by
Ky (Xim) =mn I(p)
D( A, x™
wher e
DAXY) = {plA(p,i) = x\x*-< x"s all i £ n}
if D(Asx")

IS non-empty, otherwise
Ka(x"; n) = oo

2
basi c properties noted by Kol nogorov
t hree measures.

There are several

whi ch apply to all W state themin terns of the
uni f or m measur e.
1. There exists a universal algorithm B such that for an arbitrary

algorithm A and for all x"

" hal
NV X FTL) a~r IX AV X | TI) + C
depends only on, A and B.

are two universal algorithns then there

such that

IKgl(X”;n) - Kg (x".n)|

s ¢
[

holds for all x*.

3.

There exists a constant c¢ such that

K(x"n) £n+ c

for all x".




4., Less than 2" strings of length n satisfy
K(x";n) <.

Al ternately, property 4 states that for any constant ¢
K(x";n) A" - ¢ holds for at least 2"(1-2"°) strings of length
n. Thus alnost all strings of length n have their conplexity
close to n.

Property 1 states that any two universal algorithnms differ
only by an additive constant. Thus we can suppress our dependence
on a particular underlying algorithmby M reading' our results
‘only up to the additive constant. Agreeing to this, we nay choose
an arbitrary universal algorithmas our underlying algorithm W
wite K(x";n) for Kr(x"™;n) if B is our chosen standard (and
i kewi se for the other measures). By choosing the underlying
_algorithns for the conditional and uniformconplexity nmeasures the
sane we observe K(x Tn) §£‘K(xn;n). Also, it is réadily seen t hat

K(x";n) <A K(x") + ¢ for an appropriate constant c¢. It can be

shqmn4 that for infinitely many n

K(x";n) - K(x"|n) ~Logn
holds for sone x", yet for each constant ¢ there is a constant
d such that for all n
(x"| K(x";n) A n - c} c (xX"IK(x"In) ~n - d}.

W now consi der sone conplexity properties of sequences; here
n . .
X represents the n-prefix of sequence x. Cearly, x 1is a

recursive sequence if there exists a constant ¢ such that for




infinitely many ng K(x"; n) é} c. For the conditional conplexity
we have that x is recursive if for some constant c¢ and for all
n, K(i“|n)_<£ c as shown by beerA' Conversely, x 1is recursive
i nplies a constant upper bound on the conplexity of x> for

ei ther of the above neasures.

W define x to be a random sequence if and only if there
exists a constant ¢ such that K(x";n) >n - ¢ for infinitely
many n. A present weakness of this definition is that it has not
been established (to the author's know edge) that all sequences
included by this definition possess the standard properties associ a-
ted with randommess, such as the |law of large nunbers or the |aw of
the iterated |logarithm A perhaps nore reasonable definition m ght

seem to be achi eved by réplacing Mfor infinitely many n'f by

1 for all but finitely many n'' . Martin-L0f® has shown this
“condition is satisfied by no sequence, whereas it is easily seen

| ' sequences

that the given definition is satisfied by ™al nost al
(see the next section). The author conjectures that the standard
properties of randommess are satisfied by this set of seguences.

There is heuristic support that the definition is a suitable one.

Unfortunately, although the relationship between these neasures

of conplexity and the notion of randomess 12.5

I's the npost exciting
aspect of this notion of conplexity, it is beyond the scope of this
paper . It will be seen in the next section that the definition

I's conveniently expressed in the notation of the hi erarchy consi der ed.

To better understand the invariance of the set deaned, it would

See the Note on page 14.




be desirable to know if the K-conplexity can replace the uniform
complexity in the definition without altering the defined set of
sequences. Using a theorem stated earlier, we observe we can
repl ace the uniformconplexity by the conditional conplexity in the
definition and obtain the sane set of sequences.

There is a further inportant conparison to be noted between
the conditional conplexity and the uniformconplexity. W shall

notate by x" the string of length n obtained by reversing the

order of bits of x". Thus 1100 = 0011. Clearly for an appropriate

constant ¢, |K(x"|n) - K(x"|n)] <c holds for all x". (This
property and its inportance was pointed out to the author by

Martin-LOf in a private comunication.) This relationship above

holds if x™ denotes any recursive pernutation of x™  Thus the

condi tional conplexity of X2 may be regarded as bounded by the
conditional conplexity of its |east conplex pernutation plus the
cost of the permutation. This is certainly a natural property for
a measure of " information content” to possess when eval uating
conplete units of patterns.

It is easily observed that the uniformconplexity lacks this pro-
perty. For let x" be a stringwith the last bit a 1 such that

K(x";n) ~n. Let y™= 011011100. . . x denote the string of

concat enat ed successive binary integers through ;Ej Then
K(ym;n) = ¢, a constant independent of nt yet

K(F;n) N K()?l ;n) ~n >Log m- Log Log m as >P<_3f—“ and the
uniforn1cohp|exity IS a nonotonic non-dgcreasing function'over t he

second argunent. W conclude it is inpossible for a constant to




exi st whi ch bounds the difference in uniformconplexity of

n n ; - n
X and x for atl X .

Thus the conditional and uniformconplexity nmeasures are
Inconpatible in their characteristics and nust serve different
pur poses. When a string is considered as an isolated unit, it
seens desirable to judge the conplexity, conditioned by a given
length n, by the lowest conplexity of any pernutation plus the
cost of the pernutation, and with full use of ' n" as a parti al
codification of the distribution of 0's and Ifs. This is
acconpl i shed by the conditional conplexity. |If the string is
viewed-as a part of a nested collection of strings (i.e., of any
two nenbers, one is a prefix of the other) and a reflection of the

i nformation content of the generating process is sought, the uni-

formconplexity seens nore satisfactory. In the latter situation
the conditioning value ' n" is often viewed as inposed upon
the process fromoutside as a stopping rule only. I n summary,

the uniform conplexity reflects the conplexity of generating an
ordered string uniforn1ytlneaning t hat any program describing a
string outputs an initial portion of the string if term nated
earlier. The consideration of the conplexity Qf infinite sequences
using a conditioned conplexity of their n-prefixes as internediate
readings is one situation where the uniformconplexity seens quite

sui t abl e.




A hierarchy for infinite sequences

A natural hierarchy of conplexity for infinite binary
sequences i s suggested by each of the previously nmentioned
conpl exity neasures. W shall consider exclusively the uniform
nmeasure. The hierarchy is defined as follows. For every non-
decreasing function f: N- N there is a class G of infjnite

sequences x defined by
X € G<>K(x";n) £f(n), VnJI>ngXx).

That i s, QP consists of those x wth all but a finite nunber
of their n-prefixes bounded by f.

W restate in this notation several statenents of the preceding
section concerning the uniformmeasure. Any constant function c
defines a class Cé whi ch contains only those recursive sequences

defined by a programof length less than or equal to .c. Also,

there exists a constant ¢ such that C , contains all .infinite
n+c

sequences. It fol | ows directly fromthe counting property that if

g ‘is an unbounded function and f(n) = n-g(n) is non-decreasing

then G has nmeasure 0 wunder the standard product neasure with
(L(Q@ = (u(l) = 12 as coordinate neasure.

A sequence X is seen to be random as defined previously
if and only if there exists a constant c¢ such that x/ C*¢
It follows fromthe result in the previous paragraph that the set
of random sequences has neasure 1. An open problemis whether or not
there exists a (non-decreasing) function f defining a class
consisting of precisely all non-random sequences. Such an f would

be of form f(n) = n-g(n) for a very slow growi ng unbounded function
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W will note later the existence of an anal ogous function defining
the class of all recursive sequences.

It is informative to locate fam liar non-recursive sequences in
the hierarchy to serve as |andmarks. Perhaps the npbst obvious
question is whether there is a non-trivial class q cont ai ni ng
the characteristic sequences of all r.e. sets. The classes C%
with f(n) = (I+€)Log n for any € > 0 qualify by the follow ng

fact. JE x _if anr.e. sequence then K(x";n) <£ Log n+c for sone

constant ¢ (dependent on x). This is seen as follows. If X
contains an infinite nunber of |I's (otherwise result is imediate),
et recursive function h(i) enunmerate without repetition the

| 's of the sequence. W specify an algorithm A and a program

p such that A(p,i) = xi, for x!-<x". The al gori t hm obt ai ns
integer | from p, calculates h(l), h(2), ... , h(j), forns
the binary string of length i wth |T7s precisely at the val ues

of h(k), k<, j, andprints the sequence. The nunber |, chosen
such that h(j) <*n but k > j inmplies h(k) >n, can be
reported by p in length Log j. Thus

Ka(x";n) £ Log n
or

n,
K(x7;n) <€ Log n + c.

for a suitable c.

Certain subsets of r.e. sequences whose distinguishing

property is a denseness of I's (or 0Ts), such as sequences
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characterizing sinple or hypersinple sets, perhaps are contained
in smaller (" lower" ) classes. Rather than report the |ast val ue
below n of the enunerating function, the programm ght report
the nunber of 0's (or 1's) less than n. This information in
itself is insufficient in general to nmeet the uniformty condition

(but would suffice as a device to |lower the bound on the conditional

conpl exity). |f one could establish that the spacing between 0's
is increasing wwith n, however, it would suffice to code into
the programthe length of the run of I's which includes the ﬁb—

component, together with the nunber of 0's preceding this run
Thi s approach can yield a shorter description of a sequence.
Sequences which are not r.e. but have few 0's in themcan
of ten be shown to fall in a small class, with f(n) ~ O(Log n),
by having the programexplicitly report the |ocation of the
occurrences of the 0fs. In general, tricks which reduce bounds
on conplexity are hard to find for sets of sequences specified in
usual terms. Bounding the conplexity seens difficult even for
i ndi vi dual sequences. The science (art?) of seeking econoni ca
descriptions (prograns) of finite approximations, by initial seg-
ments, of non-recursive sequences prom ses to be quite challenging.
As the r.e. sequences all appear within a rather small class
in the sense that Log n <n, we mght inquire about slightly
11 | ess constructive' sequences, sequences characterizing sets
recursive in any r.e. set. W call such sequences Z%-sequences.

Qur results are inconclusive here but we can show the foll ow ng.
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1f g J~ <a (total) _recursive function _such that S 27 kY ooy,
k=l

then there exists —a -seguence x -such that K(x";n) >n - g(n)
+or aH n > no, For sore posttive +nteger no.  For exanpl e,
(I-fe)Log n is a suitable g for any e > 0. Thus f(n) ~n
and we see the complexity of [/2-sequences can be c{uite hi gh.
Further information is given by the follow ng theorem

dormar D  and unbeunded-on- D there—exists—a- Al-sequenree X
sueh +hat K(x";n) >n - g(n) —npHAteby often en D

The proofs of the two theorens are simlar and reasonably
direct.. Use is nade of the fact that for a given k and r the
set  {x¥|K(x*:k) £r) is r.e.

It should be noticed that no /”"-sequence asserted to exist,
by the above statenents is definitely a random sequence al though
this is, of course, not precluded. The statenents do assert that
if the A¢-sequences are not random they have conplexity characteris-
tics "very close™ to that of a random sequence. W conjecture
that there is a A2""®°°°5"*"°® which is a random sequence and,
indeed, it would be very interesting should there not be such
a /”"-sequence. To date the various definitions of randommess
based on the explicit concern for recursive (or r.e.) strategies
have yi el ded A-sequences which are random (Exanmpl es are the
random sequences defined by the sequential test concept of Martin- LE)'f5
or by attenpts to root the von Mses notion of randonmess in

~r

recursive function theory. )
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Fihally, we consider several properties of the hierarchy
whi ch concerns the smallest classes G containing non-recursive
sequences.

Every non-decreasi hg unbounded recursive function f defines

a conplexity class C; with a continuum of menbers'

This is clearly not true if f is a bounded function as
such classes include only recursive sequences. The proof uses the
exi stence of an algorithmwhich ' places" the ithit of a
string of length n at that integer where the i“Ljunp of f

.occurs, and fills inwth zeros.

There exists ja_non-recursive_sequence y such that vy e C;

for every non-decreasing unbounded recursive f.

This asserts the existence of a sequence whose uniform

conplexity grows slower than any unbounded nonotonic recursive

function. The proof uses a Rado-type (' Busy Beaver!! ) function. ’

There exists a._non-decreasing unbounded function E such that

X e C-<¥ X is recursive.

Recal | that any non-decreasi ng unbounded function defines
a class which contains all the recursive functions and that no
constant function can define such a class. This theorem asserts
that the set of recursive sequences itself fornms a class. Further,
the theorem states that no non-recursive sequence can have its
uni form conpl exity neasure grow strictly slower than a certain
mnimmgrowmh rate with respect to n. This is also a " gap"
theorem stating that there exist non-decreasing functions f and

g ‘such that, say, (f(n))? <g(n), all n, yet G =Cg. The

WJICT UBRUIIT
CMWESLE-MELLM  uHiVtit
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definition of E wuses the fact that for each n there is an integer
s such that if any two prograns of length at nost n calculate
the sane sequence of length s, they calculate the sane infinite
sequence.

An open problemis to characterize E. It seens reasonable
to expect that E can be expressed in terms of the Rado ™ Busy
Beaver'" function. If this is true, then E is a tight bound
in that sequences exist with conplexity growh rate about that of
E. OQherwise one mght ask if there is a (non-trivially) faster
growi ng function than E defining thg sane class as E. Mentioned
before is the question of the existence of a function f which
separates the random sequences as E separates the recursive

sequences. Finally, it should be recalled that the definition of

M
random sequence adopted here itself requires formal justification

Note: Martin-Lof has pointed out to the author that sequences 5
random in the sense given here are randomin the sense of his paper.
Thus it-follows that all the standard properties of randommess hold

for the random sequences defined above. This definition (expressed

in ternms of the conditional conplexity) apparently was first

proposed informally by Martin-LOf in 1965 and recently used by Kol nogo--
rov in a recent set of lectures given in Mdscow.
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