
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Sesame: The Spice File System

Mary R. Thompson

Robert D. Sansom

Michael B. Jones

Richard F. Rashid

11 December 1985

Abstract

Sesame provides several distinct but interelated services needed to allow protected sharing of data and
services in an environment of personal and central computers connected by a network. It provides a smooth
memory hierarchy between the local secondary storage and a central file system. It provides a global name
space and a global user authentication protocol.

Technical Report CMU-CS-85-172

Copyright © 1985 Carnegie-Mellon University

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order 3597,
monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government

Table of Contents

1 Introduction
2 Name Service

2.1 Overview
2.2 Structure of a directory
2.3 Names

2.3.1 Syntax
2.3.2 Versions
2.3.3 Canonical form of names

2.4 Symbolic Links
2.5 Access control
2.6 Deleting Names
2.7 Recovering expunged names
2.8 Migration policy

3 File Service
3.1 Overview
3.2 Implementation and use of files
3.3 File Service functions

4 Authorization Service
4.1 Overview
4.2 Access Groups
4.3 Rights on Access Groups

5 Verification Service
5.1 Overview
5.2 Establishing a connection
5.3 Proving identity
5.4 Passwords and Secure Connections

Acknowledgements
A. Directory fields
B. File header fields
C. Access Group Information
D. Summary of Sesame calls
References

1

1 Introduction

Sesame is a distributed file system designed and implemented as part of the Spice Project at the Computer

Science Department of Carncgic-Mcllon University. It is not just a file storage service but provides as well

most of the interlatcd services needed to allow protected sharing of data and services in a network of personal

and central computers. It deals with issues of user verification both locally and between machines, name

lookup services for a variety of typed objects, archiving of files to more stable media as well as the

fundamental functions of reading and writing files. Sesame is currently ainning as an alternative file system

in the Spice environment on three central machines and a dozen or so user machines. Archival and retrieval

to tertiary storage is still under development, but the rest of the system as described in this document is

complete.

The Spice environment has the following characteristics:

• It is a user community of 200 to 300 faculty, staff and graduate students.

• Many members of the community have personal Spice machines with the speed of at least 1MIP
and a reasonable amount of secondary storage, e.g. 24 megabytes. There may be several different
kinds of machines.

• Some Spice machines are shared among a small number of users.

• Some Spice machines are available for public use.

• All the Spice machines in the environment are connected by one or more local networks.

• Also on the local network are two or more secure central machines with larger amounts of
secondary and archival storage.

The goals of the Sesame File System are:

• Secure and reliable storage and migration of users' files on local secondary storage, central
secondary storage and archival storage.

• Protected sharing of files and services among users.

• Uniform naming for data and services.

• Uniform access to data regardless of what level of storage it is on.

• Very high availability of basic system (no system-wide downtime).

Sesame is implemented as a set of co-operating processes running on local workstations and secure central

machines. Establishing a user's identity and giving him access to the services of Spice is conceptually divided

2

into two parts: Authorization and Verification. Authorization services are those functions that manage the

data base of authorized Spice users. Verification services arc those functions that allow dynamic verification of

a user's identity to Sesame and other Spice servers. Authorization services are provided by Central

Authorization Servers running on secure machines. Verification services are provided by local and central

verification servers. Only a Central Verification Server running on a secure machine can be trusted to provide

a user's identity to a remote machine. Thus most of the service is provided by the Central Verification Server.

The Local Verification Server can only provide verification between processes on the local machine and

limited verification service when no Central Verification Server is available.

Name lookup and file storage and retrieval services are provided by local and central Name/File Servers.

The code of the local and central servers is identical. Differences in various policy tables and access rights on

certain directories can provide any necessary differences in behavior between a central server and a local

server.

This document primarily explains the services that are provided by Sesame. It also presents a general

description of the information that is kept in order to give the reader a general idea of how Sesame is

implemented.

2 Name Service

2.1 Overview

The Name Service provides a global name space for all objects or services intended to be available to users

of the Spice environment. The Name Service must maintain a large data base and respond quickly to requests

for service. As a result of these requirements there is a Name Server running on each machine with the local

Name Server able to satisfy the majority of requests that come from local processes. The global name space is

partitioned into disjoint sections with only one Name Server at a time having the rights to modify each

partition.

The Name Service provides six primary functions:

1. It maps names chosen by users to unique identifiers.1

2. It provides a directory structure that aids users in organizing their files in a logical manner.

3. It aids sharing of files by supporting shared directories and provides control over the extent of this
sharing.

In most cases this can be interpreted as "typically translates a file name to an internal file identifier.'

3

4. It maintains type information on all named objects.

5. It provides access control on all named objects.

6. It maintains information on caching policy for names and files on a per directory/subtree basis.

These services are provided independently of the services provided by the File Service. Consequently, it is

possible to use the name space as a repository for names that have nothing to do with files. One such use,

described in section 2.2, is to provide a network-wide naming scheme for communication ports. Directory

entries and symbolic links are treated as typed objects by the Name Server and so have the standard access

control and caching mechanisms applied to them. The Name Server also allows a user to define his own types

of objects which may be entered into the global name space and managed with the standard Name Server

primitives.

The global name space provided by Sesame appears to the user as a hierarchy of directories, similar to that

in the Unix 2 file system [5]. This directory hierarchy can be viewed as a rooted graph with non-terminal

nodes corresponding to directories and terminal nodes corresponding to names of entries in directories. An

arbitrary path from the root to a leaf specifies the entry name at the leaf unambiguously (but not necessarily

uniquely). Similarly, an arbitrary path from the root to an internal node unambiguously specifies a directory.

Such a specification of a file or directory name is called an absolute pathname.

The global name space is maintained by several secure Central Name Servers on central machines, and by

the less secure Spice Name Servers on the Spice machines. In order to share the work among many server

processes the name space is partitioned along directory boundaries. This partitioning is done dynamically.

That is, a Name Server may check out a directory from the current maintainer and may return the directory

when it no longer wishes to maintain it. A directory that has been checked out is marked as primary directory

and that server is granted the exclusive right to make modifications in that directory. A Name Server may

also have cached directories which are partial or complete copies of directories and may be used only for

looking up information.

When a given Name Server does not have the primary directory for a name lookup in its domain it can

either use its cached directory if one is present or it can search for the primary copy of the directory. A cached

directory may be used if the request is to get information and the caching policy for that directory allows its

use. If the primary directory is required there are several ways to search for it. The cached directory may

contain a hint as to what machine has the primary directory. The local Name Server may ask all the central

Unix is a trademark of Bell Laboratories

4

Servers that it is connected to if they have the primary copy. A central Server that has a cache of the directory

will return its hint for where the primary directory is. if the primary directory exists on a private workstation

that is turned off the search will fail. In that case the best complete cache will be used for reading information,

and all modify requests will fail.

In general users are advised to keep objects that arc intended to be shared in directories that are always

maintained by one of die Central Name Servers. These servers are always available and are searched first for

unknown directories. A user may keep his unshared files in directories that are checked out to the Spice

Name Server on that his machine in order to get more efficient access to them. It is possible for one user to

access files on another user's machine, but the search for the file may take longer and will fail if the remote

machine is turned off.

2.2 Structure of a directory

Conceptually, a directory is a list of entries, each entry being a mapping from a entry name to a typed entry

value. In the great majority of cases the entry value will be of type File. This represents the simplest situation,

where a name in a directory is directly mapped to the internal file identifier (FID) of a file. Since entries are

merely mappings, it is perfectly possible and meaningful for a given file to have many names associated with

it, in the same or different directories. Normally file accesses are done by name rather than by FID, since

access control and caching policy is done on the basis of names. If the user has the right to do a LookupName

and obtain the FID from the name however, he can then read the file by FID.

Subdirectories have entries of type Directory in their parent directories. There is no user available data

associated with directories. A successful name lookup on a directory entry merely returns the fact that a

directory of that name exists.

A third kind of entry is of type Symbolic Link. The value of a symbolic link is the absolute pathname of an

entry in some directory and is used like a macro in a programming language. When the Name Server

encounters a symbolic link while trying to resolve a name reference, it continues the search using the

pathname corresponding to the symbolic link, thereby effectively performing a macro expansion. This may

be applied recursively. See section 2.4 for more details.

Another type of entry value is a Spice Interprocess Communication Port (IPC port). This feature is used to

provide a simple name to IPC port mapping service so that users who wish to share IPC ports can remember

names rather than IPC ports. Looking up an agreed upon name in the global name space will yield an IPC

port which can then be used for whatever purposes are necessary.

5

To assist users who wish to use the Name Server for non-standard purposes, a special range of user-defined

entry types is recognized by the Name Server. Entries of these types arc 256 byte records whose values arc

neither checked nor interpreted by the Name Server. Entries of this type may be entered or looked up in

directories just as entries of type FID. It is expected that higher-level mechanisms will check and interpret

these entries suitably.

2.3 Names

2.3.1 Syntax

An absolute pathname is written as a " / " followed by die entry names, in order of traversal, of nodes

encountered while traversing that path, with the " / " character serving as a name separator. Entry names

accepted by the Name Server may be of arbitrary length and may contain any of the any printable ASCII

character. The version number (if specified) follows the terminal entry name, and is delimited by a " # "

character. The version number may be either a positive decimal integer, or one of the keywords: Low, High,

New, or A l l . The character is an abbreviation for the keyword A l l .

Name matching is not normally case distinctive. The original case is however, preserved. Successive enters

of names which are equivalent (other than case) cause additional versions to be created, with the case being

taken from the original version.

If it necessary to enter names that are to be case distinctive (e.g. to match names on a foreign file system that

are case distictive such as Unix), then each component of the name that has significant cases may be

surrounded by single quotation marks. Once two names differing only by case have been entered, they can

only be matched properly by quoting each case significant component. If unquoted components are entered

they will match the "first" name found.

Two primitives, ScanNames and ScanCacheNames permit wildcarding in the terminal component of the

absolute pathnames that they accept as input Two forms of wildcarding are recognized within entry names.

A "*" character in a name will match zero or more arbitrary ASCII characters. A "?" character will match

exacdy one arbitrary ASCII character. Both forms of wildcarding may be used within one name.

Additionally, the #A11 option performs version number wildcarding.

Two special names are recognized in every directory. They are "." and Rather than being entered into

the name space, these names are actually macros which expand in pathnames. The name "." merely refers to

the directory itself. The name refers to the directory's parent directory. Usage of".." in the root directory

is illegal.

6

Some examples of legal pathnames arc:

/ S p i c e / S o u r c e / O r e g a n o / O r e g a n o . P a s
/ U s e r / J o n e s / X Y Z / a b c . . . x y z # 8 9 3 0
/ U s e r / J o n e s / F i n g e r . P l a n # L o w
/Sp ice_Sys te rn /Mai 1_Sys te rn /EtherNet /Mai 1e r .Run
/ S p i c e / S o u r c e / N u t m e g / ? ? ? N u t * . Pas#Al1
/ ' U n i x ' / * N a m e s ' / ' A R E V c a s e / ' D i S t l n C t l v E '
/ U s e r / J o n e s / S o u r c e / . . / B i n a r y /

Note: While the Name Server itself requires full paths from the root directory to the terminal nodes to be

specified for all operations, the user in most cases is not burdened with this chore. User interface code

provides such abstractions as a current directory which specifies initial path elements of a name, as well as

search lists, logical names, and other name-related functions. [2] Thus, the user usually is able to specify

abbreviated pathnames relative to the current directory or an explicit logical name. Certain programs, it is

presumed, will also choose to use an implicit search list when looking up names.

2.3.2 Versions

The naming mechanism supported by the Name Server reflects the expectation that most users will view

individual files and possibly other objects as being members of families rather than as isolated entities. For

instance, modifying existing files will typically lead to the creation of a sequence of files, closely related yet

distinct from each other. These files are certainly distinct yet they only represent snapshots in the life history

of what would be called a file in conventional file systems.

The Name Server captures this view by composing a full entry name from two parts: a family name and a

version number. The family name is a text string that identifies a family of entry names. Version numbers are

integers used to distinguish between members of a family. The version numbers of the members of a family

reflect the chronological order in which the members were entered into the directory.

It is often the case that a user wishes to refer to a particular distinguished version of a name without

bothering to remember or find out what its version number is. Moreover, the particular version number

desired is influenced by the nature of the call. The Name Server therefore adopts the convention that a name

without a version number refers to a distinguished version appropriate to the specific call. The set of

distinguished versions recognized are as follows:

Low the least non-deleted version number of a name currently in the directory

High the greatest non-deleted version number of a name currently in the directory

New a new version one greater than the greatest (deleted or non-deleted) version in the
directory is to be created

7

AH for calls that allow wildcarding, this returns all versions

For most calls a vcrsionlcss name refers to the highest version. For diosc calls which enter a new name such

as EnterName and WriteFile* an unspecified version results in a new version number one greater than the

highest. Finally, in the DeleleName call, the default version number is the lowest. Bear in mind diat the user

may always override the default version number by eidier providing a specific positive integer version

number, or by explicitly requesting one of die above distinguished "versions".

Directories and symbolic links are both exceptions to the normal naming scheme in that they may have only

family names, and no version numbers. Keeping multiple versions of directories would vastly complicate die

global name space and the name syntax without adding much reliability. A checkpoint file is kept instead for

each directory. In the case of links, the complexity of die name syntax required to determine if a version

number should be applied to the link name or to the expanded object name was too complicated to be worth

the small increase in recoverability of keeping old versions of links around. (See sections 2.3.1 and 2.4 for

more details.)

A final caveat on versions: the proper use of version numbers is up to the user. A malicious (or merely

foolish) user may enter totally unrelated files as versions of a family. Version numbers will dien be of dubious

value.

2.3.3 Canonical form of names

When absolute pathnames are returned from the name server to the user, they are always returned in a

canonical form. This form is as follows:

• Symbolic links are expanded (unless being returned as the terminal component of a pathname).

• Version numbers are returned as decimal integers with no leading zeros following the terminal
pathname component and version delimiter. Directories have a trailing directory delimiter.
Symbolic links have no punctuation following following their terminal component.

2.4 Symbolic Links

As already outlined in section 2.2, symbolic links may be entered into directories, and serve as macros which

expand into other names when they are used. The value of a symbolic link must be a versionless absolute

pathname. The actual semantics of symbolic links differ slightly depending upon their use. The usual rule is

that whenever a link is encountered in a pathname, either as an imbedded or terminal component, that the

link is expanded. This means, for instance, that ordinarily an EnterName (and consequendy WriteFile) which

references a symbolic link's name will enter a new version of the name which the link points to, and not make

an new entry under the link's name. Similarly, a DeleleName will ordinarily delete the name pointed to by

the link, and not the link itself. This behavior is consistent with both Multics [3] and Unix [6] symbolic links.

8

rlTiere arc however, cases where one needs to talk about a link itself, and not die object pointed to by a link.

Forms of TeslName, l.ookupName, EnterName, DeleleName, Rename and Copy Name are provided to

override the default behavior, and actually reference links themselves radicr tiian referencing through links.

Finally, since ScanNames is an operation on an entire directory and not on individual names, any symbolic

links in a directory are returned as such, and are not expanded.

As already stated in section 2.3.2, symbolic links may not be entered with version numbers. Thus, a version

number following a name which is a symbolic link is applied to die macro-expanded name, and not to the

link's name. Whenever a link itself is being referenced without being expanded, a version number should not

be specified.

Although an argument can be made that one might want the default behavior to "write on" rather than

"write through" a link, Sesame provides that capablilty with the CopyName primitive.

CopyName(OldName,NewName) makes a copy of the entry for OldName with the name NewName. In the

case of files, for instance, the FID would be copied and entered under the new name as well as the old. Note

that this does not make a copy of the file data, it only makes two names for the same file. Then any

subsequent WriteFile(name) requests would enter a new version for the name specified, but leave the copy

under the other name untouched. Compare this to the behavior of making a link to the file by

Lmk(LinkName, OldName). Now when a WriteFile(LinkName) is performed LinkName is expanded to be

OldName, and a new version of OldName is entered. Thus unlike the CopyName case, links cause both names

to refer to the changed version. Thus Sesame effectively provides die semantics of both "write through" and

"write on" links.

2.5 Access control

Corresponding to each name is an associated access control list, which is a mapping from access groups to

access rights on the object. When a user requests an operation on an object, the Name Server examines the

entries corresponding to each of the user's access groups in the access control list on that name. If any

combination of these access groups possesses sufficient rights to perform the requested operation on the

object, the access check succeeds and further processing of the request occurs. Otherwise access is denied.

The access rights for a particular access group are defined by a collection of bits describing the operations

which may legally be performed on the object by members of that access group. The set of access bits for a

file is divided into system access bits and auxiliary access bits. Logically, one can view a file as having two

access control lists: system and auxiliary. System access bits are interpreted by the Name Server. Auxiliary

access bits are stored with the name but normally have no meaning to the Name Server; they are interpreted

only by the programs or subsystems using them. The Name Server uses auxiliary access bits on directories to

implement its own access checks.

9

The system access bits arc:

Supersede a new version of this name may be added

Delete

Visible

Lookup

Copy

Read

GetSysAccess

GctAuxAccess

SetSysAccess

SetAuxAccess

the entry name and object may be physically deallocated. This right is also implied by
DeleteNames permission in the name's directory.

the name will match a wildcarded pathname. If this bit is not set the name may still be
used, but will not be returned by the ScanNames call unless the user has ReadNames
permission on the name's directory.

the value, e.g. FID or port, of the name may be returned.

the value, e.g. FID or port, of the name may be copied to another name.

the object entered under the name may be "read". For a file this right allows the user to
read a file by name, even though he may not have the Lookup right necessary to retrieve
the file's FID from the name. For a link, this right allows the user to use the link's
pathname value to continue the name resolution.

the system access control list may be examined

the auxiliary access control list may be examined

the system access control list may be modified

the auxiliary access control list may be modified

The Name Server controls access to directories as well as to the individually named objects. The Name

Server uses the auxiliary access bits on the access control list of a directory entry to define a set of access rights

for that directory.

The directory auxilary access rights are:

CreateNames new names may be added to the directory

DeleteNames names may deleted from the directory (see section 2.6)

ReadNames the directory names and name types may be examined

UseNames objects in the directory may be searched for and referenced. UseNames in the directory is
required along with the appropriate rights on the object for any action on an object

GetDefAccess the default directory access control list may be examined

SetDefAccess the default directory access control list may be modified.

10

ChcckoutDir the directory may be placed in the exclusive domain of this user, so that all update and
search requests must be routed through his Name Server.

Unlike conventional file systems, there is no notion of "ownership" of a directory. All access control is

done via the access control list of the directory, and tliis list may be used to give a set of users equal rights on

the directory. In some sense one can say that the "owners" of a directory are the access groups which have all

rights on the directory. Thus, a set of users may collectively "own" a directory and share its use.

To assist in the sharing of files, every directory contains system and auxiliary default access control lists. The

purpose of the default access control lists is to automatically provide an access control lists for names entered

in that directory. When a name is entered in a directory the access control list is set in one of the following

ways.

• The user may provide an access control list in the WriteFile or EnterName call.

• If no access control list is provided then: -

o If a previous version exists, the access control list from the highest existing (non-deleted)
version is used.

o If no previous version of the name exists, the default access control list is used.

• The user may subsequently call Set Access to change the access control list

A set of users having access to a common directory may set up the default access lists so that the mere entering

of a name in that directory causes the corresponding file to be accessible to everyone in that set

2.6 Deleting Names

In order to allow easy recovery from the not uncommon user mistake of deleting the wrong names, a delete

name request is implemented as a delayed action. When the delete request is made, the name is flagged in the

directory as deleted and a request is queued for future removal. If the name remains deleted until the

removal request comes due, then the name is removed from the directory and the object is removed from the

local disk if there is no other name referring to it. A directory must be empty before it can be deleted.

If a subsequent undelete of the name occurs before the removal time arrives, the delete flag is reset and it

appears as if the name was never deleted at all. To force immediate removal of deleted names an

ExpungeName operation on the directory is provided. Once removed, the entry name and FID can only be

recovered via a retrieval request from the Archive Server (see section 2.7). Non-file type entries cannot be

recovered. Users will, in general, never direcdy use the ExpungeName operation except in unusual

circumstances.

11

2.7 Recovering expunged names

Corresponding to every directory is a Archived Name Index. This is a data base to which only die Archive

Server has direct access. Kach time a file is sent to die Archive Server its name (only one name per file) is

entered in a Name Index. The Name Indices are never deleted or truncated, but may be migrated to off-line

storage. Sesame supports a file retrieval service which can be used to recover die file that corresponded to a

given pathname on a certain date and time.

2.8 Migration policy

A migration policy data base is kept local to each machine. Information is kept there about the way to

manage objects on the local disk. There is one piece of global information in the policy table. This is die

Default Partition list. This is a list of disk partitions on which to store files if no other partition is specified.

All other policy information is kept on a per directory or subtree basis. Thus when descions are to be made

about a file, the policy that applies to its most immediate superior directory that can be found in die policy

table is used. The first time Sesame is started on a machine, it creates a policy entry for the root. That policy

applies to all files until entries for more directories are created. The migration policy on a machine is setable

by the administrator of that machine. In the case of a personal Spice machine this is the owner. In the case of

public Spice machines or the central service machines this is the system administrator.

The parameters kept for each subtree are:

• Whether or not to archive files. If archiving is not allowed the files are kept only locally.

• Whether or not files are to be automatically removed from the local machine. If migration is not
allowed the files will always be available on the local disk.

• The caching policy for names and files which may be one of the following:

UseCache When a remote name is referenced use cached information about that name if
any exists otherwise get the information from the remote directory and enter it
in the locally cached directory. This is the recommended setting for directories
that are large and only some of the entries are of interest.

CacheEntire When the first name in this directory is referenced, cache all the names in the
directory. Then subsesquent references to any name in the directory can be
handled locally. Recommended for heavily used directories and directories that
are placed on search lists.

UsePrimary Keep a cache of referenced names, but do not use it unless the primary
directory is not available. Recommended for directories where the most current
version of rapidly changing files is needed, but where old versions are better
than none.

NoCache Always go to primary directory, keep no names or files cached on the local
machine. Recommended for directories containing files too large to be cached
on the local disk or where older versions are not better than none.

12

• Archival time delay (i.e. die delay between when a file is created locally and when it is copied to
the next more secure File Server).

• Removal time delay (i.e. the delay between a delete name request and the removal of the name
and possibly the object).

• Cache refresh time delay (i.e. how long the cached names may be used before a request triggers a
call to the primary directory to update all the cached values).

• The name of the partition on which to place files with this pathname. This partition is used when
a file is created on or migrated to this machine. The name may be a single disk partition or may be
specified as Dcfault.Partition in which case the member of the default partition list which has the
most space on it at the time at the file creation is used.

3 File Service

3.1 Overview

The basic function of the File Service is storing files on the local disk and retrieving files from the local disk

or from any other machine in the Spice environment. A file is simply a collection of constant data that can be

named by a single unique identifier. Thus a unique file identifier, (FID), refers to a unique collection of data.

Possession of a FID logically implies the possession of the data. Writing a file causes a new FID to be

generated.

In order to store a very large number of files and to be able to retrieve them quickly, the global file space is

spread among all the machines on the network. In fact, copies may be kept on many different machines for

files that are used frequently. Since a FID refers to a unique set of data any copy of a file that matches the

FID being sought can be used. There is no need to check last modified dates or versions at this level. That

type of checking is done at the name lookup stage.

A File Server is running on e x h machine that has secondary storage and that server has primary

responsibility for all the files on its storage medium. The servers running on local Spice machines are referred

to as Spice File Servers, those on the central machines controlling the main large capacity secondary storage

media are called the Central File Servers, and those on the central machines controlling the tertiary storage

are called Archival File Servers. All of these servers are running the same basic software.

3.2 Implementation and use of files

A File Server keeps a table of the FIDs of all the files on its disk, and can return data for only those files.

The FID consists of a random, unique part and a hint part that specifies on what disk pack the file might be

found. If a local File Server fails to find the file locally it forwards the request to its preferred Central File

Server. The Central File Servers keep a table of packids and servers who have the packs mounted. A Central

13

File Server will first look for a copy of the file on its local disk, and dicn sec if it has a port to server that

corresponds to the packid hint in die FID. If so die request is forwarded to that server. If not the request is

forwarded to a Central Archive machine.

In order to efficiently implement large, sparse files, the File Server can recognize areas of a file or virtual

memory that have never been referenced or have been explicitly cleared. These areas of a file take no space

on disk or in physical memory, but logically contain all zeroes.

The Pile Service interface assumes that both it and its users have available a large amount of virtual

memory and demand paging such as die Accent3 Kernel [4] provides. Unlike a more conventional file system,

the only way to modify file data is:

• To read the entire file into virtual memory, (this is a mapping operation and no data transfer takes
place).

• Make the desired data modifications in virtual memory, (this creates new pages containing the
modified data).

• Write out the endre piece of virtual memory (this writes out only the modified pages and creates a
new file consisting of those pages plus the non-modified pages of the original file).

3.3 File Service functions

The basic function of the File Service is to take a FID and return the data that it references, and to put new

data from virtual memory into a file and to return the new FID. The file server must be able to retrieve and

store data both on its local disk, and/or forward the data to another file server which controls the storage on

another disk. Files on the local disk are stored as permanent Spice segments. Thus all direct disk I/O is done

by the Accent Kernel and not by the file server.

The File Service functions are:

• to locate and return files stored on the local disk.

• to forward requests for files that are not found on the local disk.

• to keep track of the total disk space that is used and to remove files from the local disk when it is
getting full.

• to maintain some additional information about files on the local disk, such as file size, creation,
local access date, author ID, local reference count, etc.

Accent is a trademark of Carnegie Mellon University

14

4 Authorization Service

4.1 Overview

A user gains access to the resources and services of Sesame and other Spice services by being a member of

one or more Access Groups as defined in section 4.2. It is the responsibility of the Authorization Service to

maintain the access group lists. The Authorization Servers implementing this service must be secure and

available. Thus the Authorization Service is provided by servers running on at least two of the trusted central

machines, all maintaining the same replicated data base. Maintaining a consistent replicated authorization

database is practical because it is infrequently updated. There is no local Authorization Server, so a user on a

detached node is not able to call any of the authorization primitives.

4.2 Access Groups

An access group defines a subset of users to whom privileges may be awarded or from whom privileges may

be revoked. There are two types of access groups: primary access groups and secondary access groups. Each

user of Sesame is the sole member of exactly one primary access group. Since there is a one-to-one

relationship between primary access groups and users, the terms "user" and "user's primary access group" are

used interchangeably in this document Primary access groups may only be created by the system

administrator - a highly privileged user. Secondary access groups may be created by any user and can consist

of a list of primary and secondary access groups. Only primary access groups may login.

A user may belong to any number of secondary access groups and, at any instant of time, the protection

environment of a user is defined by the union of the rights of all the access groups of which he is a verified

member (see Section 5.1) . The user may establish a restricted sublogin to deliberately deprive himself of

certain rights: for example, while debugging a file manipulation program, a user may not wish to have Delete

privileges on a sensitive file.

An access group is uniquely identified by a 32 bit integer called the access group ID. Each access group also

has a name and this name must also be unique. For primary access groups, this is the name under which a

user logs in to the Verification Server. Access groups may be renamed, but their IDs cannot be altered. In

addition each access group may be given a jullname which is typically used to provide a more descriptive

name of the group. The other important information associated with each access group is a list of which other

groups this group is a member, and, for secondary access groups only, a list of the members of this group.

(For more details on information associated with access groups see appendix C.) Every user is automatically a

member of the group called ALL: the default group consisting of all Sesame users.

While primary access groups are restricted to having exactly one member, there is no restriction on either

15

the number or type of members of secondary access groups. Thus it is possible to construct a hierarchy of

secondary access group by allowing a secondary access group to have members which arc other secondary

access groups. The membership relationship is transitive and a user effectively belongs to more access groups

than just the ones of which he is a direct member. Consequendy to find what rights a user has, the

authorization server must compute the reflexive transitive closure of the user's memberships. This

computation is normally done at login time and yields a list of all die groups of which that user is a member.

Thus the user's access rights are the union of the access rights of each group in the access group list. When a

user logs in to die Verification Server (see the next section), the private connection returned to him has

associated with it this membership list

4.3 Rights on Access Groups

An access group is protected against unauthorized modification by an access control list mechanism. Each

access group has an access control list associated with it and this list consists of a set of access group IDs and

the rights that each of them has on diat access group. The access rights are:

• AddMembers: members may be added to a secondary group.

• DeleteMembers: members may be removed from a secondary group.

• DeleteGroup: a group may be deleted (or renamed).

• CliangePassword: the password of a primary access group may be changed.

• ChangeFullName: the full name of an access group may be changed.

• GetAuxAccess: the access control list for a group may be read.

• SetAuxAccess: the access control list for a group may be modified.

5 Verification Service

5.1 Overview

The Verification Service provided by Sesame permits the verification of a user's identity (in cooperation

with the authorization service) and the registration of tokens with which users can prove their identity to other

Spice services. The initial verification of a user is done by presenting a login name and password to a

verification server. The user sends this information to a Local Verification Server, which is assumed to be

running on the user's machine. The local server then encrypts this information and forwards it to a Central

Verification Server which performs the actual authentication. The software on the Central Verification Server

is trusted to check the authenticity of the users and can also be trusted to provide verification between users

on different machines. The Local Verification Servers can be used to provide verification between processes

on the local machine and also to provide a limited verification service when the Central Verification Servers

are unavailable.

16

Since it is important that there should always be a verification service available, there will be Central

Verification Servers running on at least two of die trusted machines. All of die central servers retain the same

dynamic information and communicate with each other to maintain consistency. In particular all login and

registration request must be reflected to all of die Central Verification Servers. This reflection is the

responsibility of the Central Verification Server to which the request is initially addressed. Since all the

central servers have the same information, verification requests can be directed to any central server.

5.2 Establishing a connection

To establish a secure connection with a Central Verification Server, a login message, consisting of a Sesame

user name and an encrypted login code (see Section 5.4), is sent to the server's public port. Normally this

connection is established when a user logs into a local machines, but it may occur explicitly at the request of

the user. The login request made by the user, whether explicit or implicit, is sent to die Local Verification

Server, which then constructs the login code and forwards the request to a Central Verification Server. A

successful login results in a private port being established for the user at the Verification Server. The user can

use the private port to make further authenticated requests to the server. The server associates this private

port with the user's identity and with the list of access groups (see Section 4.2 above) of which the user is a

member.

The connection to the Verification Server is terminated by sending a logout message to the user's private

port. This deallocates the private port, deallocates any private ports created by sublogin requests, and

removes any state associated with the user. The verification connection may also be broken implicitly by

events such as a time-out caused by the user's machine crashing.

5.3 Proving identity

Other servers in Spice need to be able to identify a client process that is requesting service or access to a

resource, so that the server can identify what access rights the client has to the service or the resource. The

Verification Server provides a registration service for this purpose. Once a user has a private port connection

to a Verification Server, the user can register ports that he has created. The user can then present a registered

port to a server as a token of his identity. To determine the user's identity, the server verifies the registered

port via its own connection to the Verification Server and receives back the user's name and a list of access

groups to which the user belongs.

Sometimes a server is required to do work on behalf of a user and this work requires access to a user's

resource at a second server. To allow the first server to access the user's resource, the user must pass it a

registered port. But doing this produces the undesirable result of the first server obtaining access to all of the

user's resources at all servers. To avoid this problem the user must give the first server a registered port which

17

only allows access to the resources that the first server needs to access. To obtain such a registered port the

user must first perform a restrict operation which results in a private port associated with a subset of the user's

access groups. Registering a port via this new private port results in a port which can be used as a token

representing the restricted rights and can be safely passed to die first server.

5.4 Passwords and Secure Connections

Because the network is considered a public medium, some care is taken not to transmit secrets such as

passwords in clear text. The general mechanism is to use a secure connection between network servers. The

sender turns on die secure bit in the message type word, which tells the network server to send die message

encrypted. Each network server must know the correct encryption key for talking to every other network

server with which it is in communication.

Shortly after the Spice machine comes up, the owner of die machine logs in to die central system. This

login message (SendLogin) is sent before a secure channel is established, since it is part of the handshake

between the new host and the central, secure hosts. The local system chooses a random encryption key. The

login message consists of the user's name in plain text and the name and encryption key encrypted with the

password that the user has typed in. Passwords are stored by die Central Verification Server on a secure

machine. The Central Verification Server uses the stored password to decrypt die login code and find out the

encryption key. The presence of name in the encrypted message provides enough redundancy for the Central

Verification Server to know that the message was actually encrypted with the correct password. Thus

passwords act as the initial encryption key for communication between the user and the Central Verification

Server. Now both parties to the central login can inform their local network server of the new network

server's encryption key without ever sending that key or the password in cleartext. Subsequent logins to the

central machine can be distinguished from the initial login because they will be sent encrypted whereas the

initial login code was sent in an unencrypted message.

18

Acknowledgements

The authors wish to acknowledge die contributions of George Robertson, M Satyanarayanan and Mike

Accctta who are co-authors of die Central File System [1] design from which Sesame has evolved, and to

Gene Ball and Peter Hibbard who took part in a number of the design meetings and initial critiques. During

the implementation stage Jeff Eppinger made significant suggestions for improving the robustness of the

distributed servers. Credit is also due to members of the Perq Systems Accent group, who have been involved

in die review process and initial implementation effort. There special credit is due to David Golub, who has

actively worked with us on file system issues. The authors also wish to express their appreciation to the

members of the CMU Department of Computer Science, in general, and the members of die Spice group, in

particular, for their comments on die design and on diis document.

19

[he following table summarizes the information in the name data base (directory structure).

• Directory information

o Default access control list

o Default number of versions of names to retain

o Directory status (primary or advisory)

o Synchronization dme (if primary, time directory was last modified; if cached, time directory
was last updated from primary)

o Network name of server with primary directory (hint)

o Port to server with primary directory (may be null)

Entry Information

o Name of Entry -- just this component of the pathname for the entry

o Version Number of Entry

o Status of Entry - undeleted/deleted

o Retention Count - number of versions to retain

o Access Control List list of access control groups and rights

o Entry Type - one of {File, Directory, Symbolic Link, IPC Port, User Defined, Empty}

o Entry Data - variant dependent upon entry type. Contents are listed for each entry type:

File the File ID

Directory no contents. A directory entry has no user readable or writable
components in the normal sense. He can only manipulate them through
name name server calls. Thus the user's calls will view the data for a
directory as an empty variant field. The hidden representation is what is
actually being described in this appendix.

Symbolic Link the substitute pathname

IPC Port index of the IPC port and date that port was entered

User Defined A block of storage 255 bytes long

A. Directory fields

20

B. File header fields

The following table summarizes the information that the File Server keeps about each of the files on its

local disk.

• Global information

o File ID

o File Size

o Advisory Data Format

o Author ID

o Creation Date

o File Print Name

• Local information

o Last Access Date

o Has Been Archived

o Do Not Remove

o Reference Count

o Segment ID

o Storage Map

The next table specifies the fields that are returned by the SesGetFileHeader primitive.

• File size

• Data format

• Print name

• Author ID

• Creation Date

• Access Date

21

C. Access Group Information

For every access group in the system the Authorization Servers maintain the following information:

Access Group ID a 32 bit integer that uniquely identifies tliis access group. Used instead of Access
Group Name wherever a fixed length identification is needed for the access group,
such as in die access control list for files.

Access Group Name a unique name that identifies this access group. For primary access groups this is
the login name of die corresponding user.

Full Name the full descriptive name of die access group. For primary access groups this will
be the full name of the corresponding user. The full name need not be unique.

Group Type

Password

Primary or Secondary.

For primary access groups this is the login password. It is not present for
secondary access groups.

Members List the list of direct (i.e., without applying transitive closure) members of this access
group. It is not present for primary access groups.

Membership List the list of access groups of which this access group is a direct member.

22

D, Summary of Sesame calls

Name Service Functions

Function SubRcadFilc(ScrvPort: Port;var APathName: APath.Name; var Data: File.Data;
var Data.Cnt: long): GeneralReturn;

Function SesReadFile(ServPort: Port;var APathName: APath.Narne;var Data: File.Data;
var Data.Cnt: long;var DataFormat: Data.Format;
var Creation Date: Intcrnal.Timc;var NameStatus: Name.Status

): GeneralReturn;

Function SesReadBoth(ServPort: Port;var APathName: APath.Name;var Data: File.Data;
var Data.Cnt: long;var FileHeader: File.Header;
var NameStatus: Name.Status): GeneralReturn;

Function SubWriteFile(ServPort: Port;var APathName: APath.Name; Data: File.Data;
Data.Cnt: long; DataFormat: Data.Format;
var CreationDate: Internal.Time): GeneralReturn;

Function SesWriteFile(ServPort: Port; var APathName: APath.Name; Data: File.Data;
Data.Cnt: long; DataFormat: Data.Format;
PrintName: Print.Name; AccessFlags: Access.Flags;
ACLp: pAccControlList; ACLp.Cnt: long;
var CreationDate: Internal.Time): GeneralReturn;

Function SesSetCreationDate(ServPort: Port;var APathName: APath.Name;
CreateDate: Internal.Time): GeneralReturn;

Function SesGetFileHeader(ServPort: Port;var APathName: APath.Name;
var FileHeader: File.Header): GeneralReturn;

Function SubLookUpName(ServPort: Port;var APathName: APath.Name;
var EntryType: Entry.Type;var EntryData: Entry.Data;
var NameStatus: Name.Status): GeneralReturn;

Function SesLookUpName(ServPort: Port;var APathName: APath.Name;
NameFlags: Name.Flags;var EntryType: Entry.Type;
var EntryData: Entry.Data;var NameStatus: Name.Status

): GeneralReturn;

Function SubTestName(ServPort: Port;var APathName: APath.Name;
var EntryType: Entry.Type; var NameStatus: Name.Status

): GeneralReturn;

Function SesTestName(ServPort: Port;var APathName: APath.Name;
NameFlags: Name.Flags;var EntryType: Entry.Type;

23

var NamcStatus: Namc.Status): GcncralRcturn;

Function SubHnterNamc(ScrvPort: Port;var APathNamc: APath.Name;
HntryTypc: En try .Type; Kn try Data: Entry. Data

): GcncralRcturn;

Function ScsEntcrNamc(ScrvPort: Port;var APathNamc: APath.Name;
NameFlags: Name.Flags; Entry Type: Entry .Type;
Entry Data: EntryJData: AccessFlags: Access.Flags;
ACLp: pAccControlList; ACLp.Cnt: long): GencralRcturn;

Function SubDeleteName(ServPort: Port;var APatliName: APath.Name): GencralRcturn;

Function SesDeleteName(ScrvPort: Port;var APathName: APath.Name;
NameFlags: Name.Flags; ExpungeFlag: boolean

): GeneralReturn;

Function SesUndcleteName(ServPort: Port;var APathName: APath.Name;
NameFlags: Name.Flags): GeneralReturn;

Function SesExpungeDirectory(ServPort: Port;var APathName: APath.Name
): GeneralReturn;

Function SubReName(ServPort: Port;var OldAPathName: APath.Name;
var New APathName: APath.Name): GeneralReturn;

Function SesReName(ServPort: Port; var OldAPathName: APath.Name;
NameFlags: Name.Flags;var NewAPathName: APath.Name

): GeneralReturn;

Function SubCopyName(ServPort: Port;var OldAPathName: APath.Name;
var NewAPathName: APath.Name): GeneralReturn;

Function SesCopyName(ServPort: Port;var OldAPathName: APath.Name;
NameFlags: Name.Flags;var NewAPathName: APath.Name

): GeneralReturn;

Function SesScanNames(ServPort: Port;var WildAPathName: Wild.APath.Name;
NameFlags: Name.Flags; EntryType: Entry.Type;
var DirectoryName: APath.Name;var EntryList: Entry.List;
var EntryList.Cnt: long): GeneralReturn;

Function SesGetRetentionCount(ServPort: Port;var APathName: APath.Name;
var RetCount: integer): GeneralReturn;

Function SesSetRetentionCount(ServPort: Port; var APathName: APath.Name;
RetCount: integer): GeneralReturn;

Function SesGetDefRetentionCount(ServPort: Port;var APathName: APath.Name;
var RetCount: integer): GeneralReturn;

24

Function ScsSctDcfRctcntionCount(ScrvPort: Port;var APathName: APath.Name;
RctCount: integer): GeneralReturn;

Function SesConnect(ServPort: Port; RcgPort: Port;var NSPort: Port
): GeneralReturn;

Function SesDisconnect(ServPort: Port): GeneralReturn;

Function SesSynchronize(ServPort: Port): GeneralReturn;

Function SesReconnectCFS(ServPort: Port): GeneralReturn;

Caching Policy Functions

Function SesSetDirPolicy(ServPort: Port;var APathName: APath.Name;
PolicyRecord: MP.Record): GeneralReturn;

Function SesGetDirPolicy(ServPort: Port; var APathName: APath.Name;
var PolicyRecord: MP.Record;var inherited: boolean

): GeneralReturn;
Function SesDelDirPolicy(ServPort: Port; var APathName: APath.Name): GeneralReturn;

Function SesGetDefaultPartList(ServPort: Port;var DefPartList: APath.Name
): GeneralReturn;

Function SesSetDefaultPartList(ServPort: Port; DefPartList: APath.Name
): GeneralReturn;

Cache Control Functions

Function SesScanCacheNames(ServPort: Port;var WildAPathName: Wild.APath.Name;
NameFlags: Name.Flags; EntryType: Entry.Type;
var DirectoryName: APath.Name;var EntryList: Entry.List;
var EntryList.Cnt: long): GeneralReturn;

Function SesPurgeCache(ServPort: Port;var APathName: APath.Name): GeneralReturn;

Function SesUpdateCache(ServPort: Port;var APathName: APath.Name): GeneralReturn;

Function SesCheckoutDir(ServPort: Port;var APathName: APath.Name): GeneralReturn;

Function SesCheckinDir(ServPort: Port;var APathName: APath.Name): GeneralReturn;

25

Access Control Functions

Function ScsGctAcccss(ScrvPort: Port; var APathName: APath.Name;
NameFlags: Name.Flags; AcccssFlags: Access.Flags;
var AccList: pAccControlList; var AccListCnt: long

) : GeneralReturn;

Function SesSetAccess(ServPort: Port;var APatliName: APath.Name;
NameFlags: Name.Flags;AccessFlags: Access.Flags;
AccList: pAccControlList;AccListCnt: long

) : GeneralReturn;

Function SesCheckAccess(ServPort: Port;var APathName: APatli.Name;
NameFlags: Name.Flags;AccGrpList: Access.lD.List;
AccGrpListCnt: long;var Rights: RightsMask

) : GeneralReturn;

Function SesGetDefAccess(ServPort: Port;var APathName: APath.Name;
AccessFlags: Access.Flags;var AccList: pAccControlList;
var AccListCnt: long): GeneralReturn;

Function SesSetDefAccess(ServPort: Port;var APathName: APath.Name;
AccessFlags: Access.Flags;AccList: pAccControlList;
AccListCnt: long): GeneralReturn;

Function SesCheckDefAccess(ServPort: Port; var APathName: APath.Name;
AccGrpList: Access.ID.List;AccGrpListCnt: long;
var Rights: RightsMask): GeneralReturn;

File Service Functions

Function FS.SubReadFile(ServPort: Port;DelayedReplyPort: Port;var FID: File.ID;
var Data: File.Data;var Data.Cnt: long): GeneralReturn;

Function FS.ReadBoth(ServPort: Port; DelayedReplyPort: Port;
var FID: File.ID; var FSHeader: File.Header;
var Data: File.Data; var Data.Cnt: long)

: GeneralReturn;

Function FS.WriteFile(ServPort: Port;Data: File.Data;Data Cnt: long;
DataFormat: long;PrintName: Print.Name;AuthorID: Group.ID;
NonMigrate: boolean;PartName: DevPartString;
var FID: File.ID;var CreationDate: Internal.Time

): GeneralReturn;

Function FS.SetCreationDateServPort: Port; FID: File.ID;
CreateDate: Internal.Time): GeneralReturn;

Function FS.GetFSHeader(ServPort: Port; DelayedReplyPort: Port;

26

var FID: File.ID;
var FSHcadcr: File.Header)

: GeneralReturn;

Function FS_DcleteFile(ServPort: Port; FID: File.ID; force: boolean)
: GeneralReturn;

Function FS.IncRefCnt(ServPort: Port; FID: File.ID): GeneralReturn;

Function FS_DecRefCnt(ServPort: Port; FID: File.ID): GeneralReturn;

Function FS.MountPartition(ServPort: Port; PartName : DevPartString;
PartPort: Port; PTSegNum: SegID; PartS: long;
PartE: long; DefPartList: APath.Name): GeneralReturn;

Function FS.DismountPartition(ScrvPort: Port; PartName: DevPartString)
: GeneralReturn;

Authorization Service Functions

function AuthorConnect (PublicPort: port; ValidPort: port;
var ARPort: port): GeneralReturn;

function CreateGroup (ARPort: port; AccGpName: UserNameString;
AccGpType : AGType; FullName : FullNameString;
var AccGpID: Group.ID): GeneralReturn;

function ChangePassword (ARPort: port; UscrName : UserNameString;
OldPwd, NewPwd : PassWordString): GeneralReturn;

function ChangeFullName (ARPort: port; UserName : UserNameString;
FullName : FullNameString): GeneralReturn;

function DeleteGroup (ARPoit: port; AccGpName: UserNameString)
: GeneralReturn;

function RenameGroup (ARPort: port; OldName, NewName : UserNameString)
: GeneralReturn;

function AddToGroup (ARPort: port; ModGroup, AddGroup : UserNameString)
: GeneralReturn;

function RemoveFromGroup (ARPort: port; ModGroup : UserNameString;
RemGroup : UserNameString): GeneralReturn;

function TrGroupName (ARPort: port; AccGpName : UserNameString;
var AccessGpType : AGType; var AccGpID : Group.ID;

27

var Fullnamc : FullNamcString): GcncralRcturn;

function TrGroupID (ARPort: port; AccGplD : Group.ID;
var AcccssGpType : AGType; var AccGpName : UserNameString;
var Fullname : FullNamcString): GcncralRcturn;

function ListMcmbcrs (ARPort: port; AccGpName : UserNameString;
TransClos : boolean; ListOpt: ListOptions;
var NameList: Access.Name.List; var NameList.Cnt: long;
var IDList: Access.ID.List; var IDList.Cnt: long)

: GeneralReturn;

function ListMemberships (ARPort: port; AccGpName : UserNameString;
TransClos: boolean; ListOpt: ListOptions;
var NameList: Access.Name.List; var NameList.Cnt: long;
var IDList: Access.ID.List; var IDList.Cnt: long)

: GeneralReturn;

function ListGroups (ARPort: port; ListOpt: ListOptions;
var NameList: Access.Name.List; var NameList.Cnt: long;
var IDList: Access.ID.List; var IDList.Cnt: long)

: GeneralReturn;

function GetAuxAccess (ARPort: port; OnGroupName : UserNameString;
OfGroupName : UserNameString; var right: ASRight)

: GeneralReturn;

function SetAuxAccess (ARPort: port; OnGroupName : UserNameString;
right: ASRight; OfGroupName : UserNameString;
add : boolean): GeneralReturn;

function GetPassword (ARPort: port; UserName : UserNameString;
var Password : PassWordString; var User.ID : Group.ID)

: GeneralReturn;

function ListRights (ARPort: port; AccGpName : UserNameString;
var IDList: Access.ID.List; var IDList.Cnt: long;
var RightsList: Access.ID.List; var RightsList.Cnt: long)

: GeneralReturn;

Verification Service Functions

function Sendlogin (VSPort: port; Username : UserNameString; Code rLoginCode;
var PrivatcPort: port; var User.ID : Group.ID;
var GroupIDs: Access.ID.List; var GroupIDS.Cnt: long)

: GeneralReturn;

function Locallogin (VSPort: port; UserName : UserNameString;

28

Password : PassWordString; var PrivatcPort: port)
: GeneralReturn;

function Logout (VSPort: port): GeneralReturn;

function Register (VSPort, UserPort: port): GeneralReturn;

function DeRegister (VSPort, UserPort: port): GeneralReturn;

function Restrict (VSPort: port; CanRestr, KnowsUscrName, Remove : boolean;
IDs : AccessJDJList; IDs.Cnt: long;
var NewPort: port; var RestJDs : Access.ID.List;
var Rest.IDs.Cnt: long): GeneralReturn;

function Verify (VSPort, UserPort: port;
var UserName : UserNameString; var UserlD : Group.ID;
IDoption : ListOptions; var IDs : Access.ID.List;
var IDs.Cnt: long): GeneralReturn;

function VS CVSReConnect (VSPort: port; CVSPort: port) : GeneralReturn;

References

29

[1] Accctta, M., Robertson, G„ Satyanarayanan, M. and Thompson, M.
The Design of a Central File System for a Local Network.
Technical Report CMU-CS-80-134, Department of Computer Science, Carnegie-Mellon University,

1980.

[2] Spice Documentation Group.
The Spice Programmers^ Manual: The Server Manual.
Technical Report, Department of Computer Science, Carnegie-Mellon University, 1984.

[3] Organick, E.I.
The Multics System: an Examination of its Structure.
MIT Press, Cambridge, Mass., 1972.

[4] Rashid, R. F. & G. G. Robertson.
Accent:A comunicalion oriented network operating system kernel.
Technical Report CMU-CS-81-123, Department of Computer Science, Carnegie-Mellon University,

April, 1981.

[5] Ritchie, D. M. and Thompson, K.
The UNIX Time-Sharing System.
Bell System Technical Journal, July-August, 1978.

[6] McKusick, Joy, Leffler, Fabry.
A Fast File System for UNIX.
Technical Report Draft of September 6,1982, Computer Systems Research Group, University of

California, Berkeley, 1982.

