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1. Introduction

The existence of fair arbiters and formal specifications for them was a major topic of discussion at
the Workshop. One of the many results discussed is that it is possible to create a fair arbiter by
adding output delays to a mutual exclusion element[1]. This work builds on that result by
investigating the basic fairness properties of mutual exclusion elements and combinations thereof.
Rather than working with a particular mutual exclusion element, we abstract the behavior of a class of
such elements using a choice set model and a probabilistic specification of the choice inherent in
mutual exclusion. This allows us to capture the choice behavior of a mutual exclusion element in a
probabilistic structure containing finite and infinite traces. To analyze such structures we employ
techniques from the mathematical discip!ihe of measure theory, and in particular the measure
theoretic treatment of probability. The major result from this analysis is that mutual exclusion
elements are fair under a strong probabilistic notion of fairness. This notion is similar to the standard
notions used in [1]; its major advantage is that unlike the standard notions, it can be analyzed using
probability and measure theory techniques. A complete introduction and explanation of measure
theory is neither possible nor desirable in this context; the interested reader is urged to consuit a
standard text such as[3]). Similarly we assume a familiarity with the common notions of fairness
discussed in [1].

2. Modeling Mutual Exclusion Elements

A mutual exclusion element enforces mutual exclusion among grants to concurrent competing
requests for a shared resource. For the present we consider only two input mutual exclusion
elements; generalizations to larger elements and arbiters containing multiple mutual exclusion
elements will be discussed in a later section. To quantify the fairness of a mutual exclusion element,

there are three facets of its behavior that must be madeled:

e Which requests are granted in what order?
» What are the possible choices for each grant?

e For those grants that require a choice between requests, how is that choice made?

We use a choice set model for the first two items and a probabilistic model for the final item; these
models are discussed in the following sections. For a two-input mutual exclusion element we denote

the competing requests by o and My and their corresponding grants by 9 and g,



2.1. Choice Sets

For an individual grant by a mutual exclusion element, we define the choice set to be the set of
outstanding requests that could be granted (including the request actually granted). To analyze
fairness we consider sequences of such grants and corresponding choice sets. Since previous work
has shown that infinite notions of fairness are necessary for delay-insensitive arbitration ameng
independent processes [1], we restrict our attention to infinite sequences. Therefore our choice set
model of an arbiter is the set of all infinite sequences of {grant,choice set>. We call such a sequence
an infinite choice sequence,

Because any two-input mutual exclusion element makes dichotomous choices between competing
inputs, it must exhibit metastable behavior. One can intuitively understand metastable behavior as
that of a man sitting on a fence who cannot decide on which side of the fence the grass is greener
and therefore remains on the fence. The corresponding behavior of circuits (making no choice
because both are equally attractive) is real and has been demonstrated for synchronizers, arbiters,
and related circuits [2). Just as the man will eventually get off the fence, a well-designed circuit will
eventually make a choice; there is no upper bound on the time required to make this choice, but it is
known to be exponentially distributed [4]. In the correspondence of our choice set model with any
actual mutual exclusion element, we require that any non-singleton choice set correspond to

metastable behavior,

2.2. Probabilistic Behavior
The final aspect of mutual exclusion element behavior that we need to model is the mechanism of
making choices among elements of a choice set. For this work we adopt the following simplifying

assumptions:

« In any sequence of choices, ail choices are mutually independent.

e If a choice set contains both reguests, then there are fixed probabilities for each request
(ro,r1) to be granted, and these probabilities are identical for all such choice sets.

These assumptions formalize our requirement that two-element choice sets correspond to metastable
behavior, and model metastable behavior as essentially invariant over choices by fixing the
probabilities associated with each grant for a given mutual exclusion element. We denote these
probabilities by p, and Pys and note that their sum must be 1. In practice one would expect these exit

or resolving probabilities to have values close to 0.5 [5).

Minor variations of these probabilities do not change our results, but drastic variations (such as one

of the probabilities becoming zero) invalidate the resuits. Chaney has observed short term



dependencies in exit probabilities among choice sets for some flip-flops [6]; in the absence of long-
term dependencies we rely on the law of averages to remove any short-term effects from our analysis
of infinite sequences of choices (i.e. our first assumption above is justified in part because we are
interested only in infinite sequences of choices; it may be an unwarranted assumption for short finite
sequences). Finally, Sproul! has noted that although these assumptions are reasonable for well-
designed mutual exclusion elements, there are pitfalls in designing MOS mutual exclusion elements
that may produce elements that violate these assumptions. The major potential problem is that every
wire in a MOS circuit has capacitance and therefore memory properties, including the wires used to
cross-couple the inverting gates in a mutual exclusion element; the inadvertant introduction of
memory in these wires can produce a mutual exclusion element that unfairly favors one of its requests
[7]. This is one of the many areas in which appropriate care and diligence are required on the part of
the circuit designer.

2.3. Fairness and its Analysis

To analyze the fairness of a mutual exclusion element we need consider only its choice behavior
when there is a choice to be made; therefore from any choice set sequence we are interested in the
unique subsequence consisting solely of choice sets containing both requests. Such a subsequence
is completely specified by the sequence of grants because all the choice sets are identical.
Furthermore, we are interested only in such subsequences which are infinite: if this subsequence is
finite, then after some finite point in the original sequence every request is immediately granted {i.e.
each choice set is of size 1, therefore that request is the granted request). This is certain to be fair
under an infinite notion of fairness as it excludes starvation. A consequence of our modeling
assumptions is that the likelihood of any such subsequence or collection thereof depends solely upon
the probakilities Py and p, corresponding to the grant choices in the subsequence(s).

We now define fairness for both choice set sequences and mutual exclusion elements.

Definition 1: Weak Fairness for Sequences: A choice set seguence is fair iff any
continually asserted request is eventually granted {i.e. the sequence is fair iff for any
request appearing in any choice set, EITHER the corresponding grant appears in that or a
subsequent sequence element, OR there is a subsequent choice set in which the request
does not appear).

When applied to our two-element choice set subsequences this requires that every request
eventually be granted in the subsequence; this is a stronger condition than requiring every reguest to
be granted in the corresponding original sequences. The following definition employs this stronger

condition.
Definition 2: Probabilistic Fairness far Mutual Exclusion Elements A mutual



exclusion element M is fair if the probability of unfair infinite two-element choice
subsequences in the space of all infinite two-element choice subsequences is zero.

Weak fairness for a mutual exclusion element requires that every continually asserted request
eventually be grant'ed [1}; the above definition implies the similar condition that every continually
asserted request be granted with probability 1. The difference between these two conditions is that
the latter allows unfair behavior with probability zero. in a finite domain of possible behaviars, zero
probability behaviors cannot occur; for an infinite domain the corresponding condition is that within
any infinite sequence of randomly chosen behaviors from the domain, a behavior of probability zera
may appear at most finitely many times. Although the difference between this condition and an event
never occurring can be of great theoretical importance, we believe that it is relatively unimportaht in
practice; in both cases the probability of a request not being grantedis zerb, and this is an adequate

notion of fairness for most purposes.

To establish our desired result on the fairness of mutual exclusion elements we need to consider the
probability of unfair infinite two-element choice sequences (an infinite set) within the space of all
infinite two-element choice sequences {(another infinite set). Towards this end we now discuss

measure theory, which provides a rich set of tools for this task,

3. Measure Theory

Measure theory is a branch of mathematics concerned with functions that produce the ’size’ of sets;
these set functions are called measures. A primitive example of a measure for intervals of the real
number line is the function that produces the length of the interval. Measures are most interesting
and most useful when the sets involved are infinite; this is precisely the situation that we are
considering in analyzing the fairness of mutual exclusion elements. The particular class of measures
we use are often called probability measures because they determine the measure of a set by the
probability of the 'events’ it contains. (The quoted terms are for the reader’s intuition only; we do not

intend to provide formal definitions.)

3.1. introduction
This section presents a quick introduction to measure theory abstracted from [3]. Further details
can be found there. This section may be skipped on first reading, as it is necessary only for the proof

of the main result.

Rings and o-rings are the mathematical objects on which measures are defined.
Definition 3: Rings and algyebras of Sets: A ring of sets is a non empty class R of



sets which is closed under the formation of set unions and differences. Formally a non-
empty class Ris aring iff

Forall K¢eR and FeR, EUFecR and F— FeR

A g-ring of sets is a ring of sets closed under the formation of countable unions.
Formally a ring of sets S is a o-ring iff

if EieS for i=12, ... then U; 1I’E'I.e':.?

A(n) (o-Jalgebra is a (o-)ring that contains the union of all its elements. An equivalent
definition of a(n) (o-}algebra is that it is a {o-)ring that is closed under set complementation
of its individual elements,

This work relies primarily upon o¢-algebras;  the other rings and algebras are used to present the

definitions and resuits of measure theory in full generality.

A measure is a function that 'measures’ the 'size' of sets in a ring. We now formally define this

concept:
Definition 4: Measure: An extended real valued function is a function whose range is
% U {T 0. 0} where B denotes the real numbers.

A set function is a function whose domain is a class of sets (a ring or an algebra for
example).

An extended real valued set function p defined on a class E is countably additive if, for
every disjoint sequence {En} of sets in E whose union is also in E, we have

o0
UL E) = ;»(E)

A measure is an extended rea! valued, non-negative, and countably additive set function
u, defined on a ring R such that u(@} = 0.

For an algebra A, let X be the union of all sets in the algebra. Then a measure u is totally
“inite iff (X} is finite.

Probability measures are always totally finite because the set X includes all possible 'events’, and the
probability of at feast one 'event’ occurring is 1. (i.e. for a probability measure p, not only is u(X)
finite, but in fact p(X) = 1).

Any measure on any ring satisfies the following property, called countable subadditivity: for every
sequence {E{.} of sets in ring R whose union is also in R the following is true:
o0
[v o I
w(U2 )< u(E)
i=1
The difference between this and countable additivity is that the sequence {1:"{} was of disjoint sets in

the definition of countable additivity, whereas the sequence is this definition need not be disjoint; this



results in the equality of countable additivity being replaced by the inequality contained in the above
definition.

Our desired result requires reasoning from probabilities of individual choices to probabilities of
sequences of choices. In a probability domain, we would state that different universes of choice are

involved; the corresponding objects in measure theary are called measure spaces.

Definition 5: Measure Spaces: A measurable space is a set X and a o-ring § of
subsets of X such that US = X. A subset £ of X is measurable iff £ belongs to the o-ring
S.

A measure space is a measurable space (X,S) and a measure u on 5. A measure space
(X,S.u) is totaily finite iif the measure p is totally finite.

In most cases it causes no confusion to denote a measure space or measurable space by the same
symbol as the underlying set X; if it is necessary to call attention to the specific space involved, we

use the notation (X,S) for measurable spaces and (X,S,u} for measure spaces.

3.2. Product Measures

To prove our main result we define a measure space corresponding to a single choice, and then
extend to sequences of choices by taking cartesian products, The basic result we need from
measure theory is the existence of the product probability measures on cartesian products. To state
this theorem we need the following additional definitions and results. Alt results from measure tHeory

are stated here without proof; the proofs can be found in [3].

Theorem 6: If E is any class of sets, then the ciass of rings containing E has a unique
minimal element. In addition the class of g-rings containing E also has a unigue minimal
element. )

Definition 7: Generated Rings: In view of the preceding theorem, we define the ring
generated by E to be the unique minimal element of the class of rings containing E and
denote it by R(E). Similarly we define the ¢-ring generated by E to be the unigue minimal
etement of the class of o-rings containing E and denote it by S(E).

For the following if {Xl.} is an infinite sequence of sets, then X denotes their cartesian product,

X = Hle,-- On this basis we can define the remaining concepts that are needed to state the main

result of this section.
Definition 8: Measurability for Cartesian Products: For each set X’., let St. be a
Z-algebra of subsets of X, and let u be a measure on §, such that Jul.(X'.) =1.

A rectangle is a set of the form ]‘[?:lAr. where A, C X forall / and A,= X, foraltbuta
finite number of values of i. A measurable rectangle is a rectangle for which each A;is a
measurable subset of X .



A subset of X' = Hf:lX‘. is measurable iff it belongs to the o-ring (which is actually a
o-algebra) generated by the ctass of measurable rectangles. We denote this o-algebra by

00
S=1'Ii=1$l..

The next definition defines useful terms and notations for dealing with products.of measure spaces.

Definition 9: Cylinders: Let J be any subset of /, the positive integers. Then two
points (in X), x = (xl.xz, ..)and y= (_yl,yz, ...)agree on Jif X =y for every j in J. We

write this as x= y (/).

A set E in X is called a Jcylinder if x=y (/) implies that x and y either both belong or
both do not belong to E. '

o0
i=n+1

Finally we adopt the shorthand x = TI X: for non-negative n. This allows us to

write any J-cylinder E as 4 x X? where AC HLIX‘. for some n,

The following theorem is the principle measure-theoretic result necessary to prove our main

fairness result,
Theorem 10: Existence of Product Measures: If {Xi'si“u'i} is an infinite sequence .
of totally finite measure spaces with p.i(X‘.) = 1, then there exists a unique measure 1 on

the o-algebra S = H:; §; with the property that for every measurable set E of the form
AxX™,
BE) ={(p X X YA

The measure u is called the product of the given measures [T and the measure space
(X,S,p) is called the cartesian product of the given measure spaces,

4. Fairness of Mutual Exclusion Elements

4.1. The Basic Result

Our model characterizes mutuai exclusion elements by their resolving probabilities from the
metastable state (po,p1). For real mutual exclusion elements one would expect these probabilities to
be close to 0.5, but it is unreasonable to assume that they are hoth exactly 0.5 for all mutual exclusion
elements; one would expect slight variations around 0.5. From a thearetical standpaoint, the size of
the interval around 0.5 that contains these probabilities is immaterial as long as zera is excluded. In
other words, expanding that interval from a smail area around 0.5 to the entire open unit interval
between 0 and 1 changes neither the results nor their proofs, despite our expectation that the
probabilities do not lie in most of the interval. Excluding 0 and 1 as probabilitfes requires that the

metastable state exhibit an indecision among possible choices: admitting 0 and 1 allows the situation



in which the same request is almost always granted in any conflict, and thus the corresponding

mutual exclusion element cannct possibly be fair. Our main result is the following:
Theorem 11: Any mutual exclusion element for which Pq and p, are not zero is fair
under our model and definitions.

Proof: According to our definition of fairness, it is sufficient to show that the probability
of the set of unfair infinite two-element choice sequences is zero. For arbitrary positive
probabilities Po and p, {such that P+ Py = 1) we proceed as follows:

Corresponding to a single choice we define the choice measure space C = (C\T,n c) as:
o C = {9,9,}
o T = {B{9,}.{9,}.{9,9,}}

op (2) = 0, ({9,]) = Py p {9, = Py l{9y9,D = Py + P,

C is a totally finite measure space such that p C(C) =1, C corresponds directly to a single
choice from the two-element choice set. .

For all positive integers i, let P, = C. Now let (P.S,p) be the cartesian product of the P,..

From theorem 10, we conclude that the probability measure g on P is well defined. P is
therefore the probability measure space of infinite two-element choice sequences.

Lemma: Every point in Pis measurable and has measure zero,

Proof: Consider an arbitrary one point subset of P, {x}. x is the infinite sequence
(xl.xz, ...) where each xfe{go,g1}. Forn>0, letJ = {12....,n}. Then (xl. - +.x, ) defines
a Jn-cylinder EJ1 which contains {x}. More precisely we have

~A® — % '

{x}= nn:lEn - (Un=1En’)
where A’ denotes the complement of the set A. S is a g-algebra, hence it is closed under
complementation and countable union by definition. Since all of the Eﬂ are in S it follows

from the equalities above that {x} € S, therefore {x} is measurable by definition.

To find the measure of {x}, assume without loss of generality that p, 2 p,. From theorem
10 and the definition of the measure space P, we know that the measure of En is

H?=1 -“‘c("‘i)' Under our assumption on p, and p,, this quantity is bounded from above by

(pg)" Since {x}CE, for all n we conclude that
p{xh < lim inf(py"
A= 00
Since (po)" is a geometric series with common ratio Py and 0< Py < 1, the lim inf and the

limit are identical and equal to 0. As a measure p must be non-negative, therefore
p{xh =0 {J Lemma.

Lemma: The set of unfair infinite two-element choice sequences is countable.



Proof: An unfair infinite two-element choice sequence must fail to grant some
continuously asserted request. The requires that after some finite point the sequence
becomes either g, repeating or 9, repeating. Such sequences can be enumerated by

enumerating their prefixes (assuming the last element af the prefix is the first element of
the repeating portion) and casting out duplicates as part of the enumeration process.

J Lemma.

Since the set of unfair infinite two-element choice sequences is countabile, it is a
countable disjoint union of the sets containing its individual elements. Each of these sets
has measure zero by the first lemma, therefore the entire set of unfair infinite two-slement
choice sequences also has measure zero because any measure is countably additive.
This proves the theorem. 0

4.2, Extension to Larger Elements

Having proved our main result for two input mutual exclusion elements, we now extend it to targer
mutuzl exclusion elements. The major new idea in this proof is the introduction of the excluded
choice sets, a useful class of sets that includes the Cantor Set. We intormally discuss our
methodology before presenting the extended proof.

As the number of inputs increases, the complexity of our choice set model also increases. To avoid
changing tr'1e spirit of our approach it is necessary to extract subsequences corresponding to each of
the finitely many possible muiti-element choice sets; each choice set corresponds to a different
measure space and product space, so the proof that the unfair sequences have measure zero must
now be performed once for each multi-element choice set. For choice sets containing exactly two
elements the proof has been given above, but for choice sets containing more than two elements, the

set of unfair sequences becomes uncountable requiring a slightly more sophisticated approach.

For choice sets centaining three or more elements the main theorem above is still true, but its proof
involves the infinite sequence analog of the Cantor Set and related sets; we refer to these as excluded
choice sets, and note that they are needed to prove the larger choice set versions of the lemmas in
the original proof.

Definition 12: Excluded Choice Sets: For a choice set C and an excluded set E C C,
the n'™ excluded choice set, XE(C) for nz0, is the set of infinite sequences of elements

from C such that no element of E occurs in the subsequence starting at the nt? position,
(The 1* excluded set forbids the occurrence of elements of E, the 3™ allows them to occur
only in the first lwo positions, etc.).

One of thase sets corresponds to the mathematical addity known as the Cantor Set. The Cantor Set

is constructad by taking the unit interval from zero to one including endpoints and deleting its open
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middle third {the interval from 1/3 to 2/3 without endpoints), then deleting the open middle third from
the two intervals thus formed and so on ad infinitum. The Cantor Set is an uncountable nowhere
dense set of measure zero which contains all of its limit points; as such it is a common
counterexample in mathematics. In our framework the Cantor set corresponds to xil}({0,1 .2}1) where
each infinite sequence is considered as the ternary expansion of a number, in the unit interval
between 0 and 1 inclusive. To our knowledge, this is the first use of the Cantor Set in computer

science,

For an n-input mutual exclusion element, we denote the requests, grants and respective
probabilities by {ro, e ,rn_1}, {go, e ,gn_1}.'and {pu, cen ,pm}. We can now state and prove the

generalized theorem. . )
Theorem 13: Any n-input mutual exclusion element for which all of {po. e ,pm} are
non-zero is fair under our model and definitions.

Proof: Based on our above discussion, it suffices to show that for any choice set
containing more than one element, the probability of unfair infinite choice sequences from
all the elements is zero. Let n be the size of an arbitrary such set, and without loss of
generality assume that it contains {go,...,g n_1}. For arbitrary positive probabilities

{Pg: - - P4} SUCh that Zin__: p, = 1 we proceed as follows:

Corresponding to a single choice we detine the choice measure space C = (C.T._u.c) as:
o (= {goa v !gn.1}

o T = ¥(C),the powerset of C.

. p.c(A) = ENA p, for A€T.
|
Cis a totally finite measure space such that ,uc(C) = 1. C corresponds directly to a single

choice from the n-element choice set.

For all positive integers i, let P,= C. Now let (P.S.u} be the cartesian product of the ;.
Theorem 10 implies that the probability measure p on P is well defined, P is therefore the

probability measure space of infinite n-element choice sequences.

Lemma: The set of unfair infinite n-element choice sequences is the countable non-
disjoint union of the of XE(C) where E ranges over all singleton sets consisting of exactly
one element from C and m ranges over the positive integers.

Proof: An unfair infinite n-element choice sequence must fail to grant some
continuously asserted request, say r.. Such a sequence is in XE_}(C) yvhere m is the

1

sequence position at which starvation begins.
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Conversely, any element of XZ;,}(C) for m positive must fail to grant the request r. after
1

position m, and is therefore unfair. O Lemma,
Lemma:
Forg,e {90' .+ 8,1} and m positive, XZ, }(C) is measurable in P and has measure zero.
i

Proof: For k>0, let (/,={mm+],... m+k=1}. Let Ek be the measurable J,-cylinder
defined by exciuding g; from the positions in Jk. Ek contains the desired excluded choice
set. More precisely we have

m oo ~ [=+] N
X{g-,}(c) =M By = U EY)

where A’ denotes the complement of theset 4. Sis a a-algebra, hence it is closed under
complementation and countable union by definition. Since all of the Ek are in S it follows

from the equalities above that x?g }(C‘) €S, therefore X?g }(C )is measurable by definition.
i i

To find its measure, let P, be the smallest probability in {po. el ,pm}. From theorem 10
and the definition of the measure space P, we know that the measure of Ek is

Hf,‘:] u(C- {gz.}). This quantity is bounded from above by (1-pi)". Since XE;_}(C)QEk for
I
all k we concluds that

m N k
(CH= lim inf(1-p
P'(X{gi} e ;)

Since (1-pj)k is a geometric series with common ratio 1-pJ. and 0 < 1-pj<1, the lim inf and
the limit are identical and equal to 0. As a measure & must be non-negative, therefore

p.(x'{"g_}(C)) =0. O Lemma.
3

From the above two lemmas we know that the set of unfair infinite n-element choice
sequences is a countable non-disjcint union of sets of measure 0. Since p is both non-
negative and countably subadditive, the set of unfair infinite n-element chaice sequences
has measure 0. This proves the theorem. (]

This completes the proof of our main fairness theorem for mutual exclusion elements with three or
more inputs. We now consider the implications of this result for {multi-input) arbiters implemented
with more than one mutual exciusion element.
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5. Fairness of Multiple Input Arbiters

This section builds upon our fairness result for mutual exclusion elements to establish a general
fairness result for arbiters containing one or more mutual exclusion elements. As with our approach
to mutual exclusion elements, we first define an abstract model of such arbiters and then prove our
main result within the framework of that model. Throughout this section we are most interested in-
asynchronous arbiters, i.e. those arbiters that impose no timing constraints on the presentation of the
requests among which they arbitrate, and continte to function in the absence of requests from one or
more connected processes. Qur model and resuit are general enough to be applicable‘outside this
domain, but they do not apply to prioritized or daisy chain arbiters in which one request has absolute
priority over ancther. Such arbiters must favor a request of higher priority over one of lower priority;

this can result in starvation of the lower priority request.

5.1. Modeling Arbiters

Common design and implementation techniques for multipie input arbiters use multiple mutual
exclusion elements arranged in a hierarchical or ring formation. A request from one process using
the arbiter must then be granted by one or more of these elements before actually being granted by
the arbiter., We assume for this work that the arbiter has been correctly designed to implement mutual

exciusion and prevent internai deadlock.

The two main methodologies for designing multi-input arbiters using multiple (usually two-input)

mutual exclusion elements are the hierarchical and ring methodologies.

» A hierarchical arbiter uses multipie levels of mutual exclusion elements and surrounding
circuitry to reduce the number of requests to two which are finally arbitrated by a top-
level mutual exclusion element. Thus, a particular reques't entering the arbiter must
obtain a fixed sequence of grants cuiminating in the grant from the top-level element to
receive a grant from the arbiter.

e A ring arbiter arranges mutual exclusion elements and suirounding circuitry in a ring
around which a single token or privilege travels. Possession of the token or privilege
gives a ring element the right to issue a grant to its attached request; absence of the
token requires a request to obtain it, or a wait for it. The mutual exclusion slement is
needed in each ring element to arbitrate betwean holding the token to grant a pending
request at that element and passing the token along the ring so that some other pending
request may be granted. Thus a request must obtain grants from ail the mutual exclusion
elements required to pass the token around the ring to the corresponding element, and
finally from that element itself. This sequence of required grants depends upon the token
position when the reguest is made; since the ring has a fixed number of elements, there
are finitely many possible positions and therefore finitely many such seguences are
possible.
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Based on the above, our model of arbiters is that for each process connected to the arbiter there
are one or more finite sequences of mutual exclusion elements from which grants must be obtained in
order to cause the arbiter to grant a request from that process. For any particuiar request from a
process, exactly one of these sequences is appropriate; this sequence is determined by the state of
the arbiter (token position in the case of a ring) when the request is made.

5.2. Fairness Result
The following definition of fairness is the probabilistic analog of the standard notion of weak
faimess. We again emphasize that these two notions are very similar; a fairness result using this

definition all but establishes weak fairness for arbiters.

Definition 14: Probabilistic Weak Fairness for Arbiters: ) JAn arbiter is
probabilistically weakly fair if any continually asserted request is eventually granted with
probability 1.

Using our model and this definition, we can prove the following result:

Theorem 15: All arbiters represented by our model are fair in the weak probabilistic
sense.

Proof: Let r be an arbitrary request and M,,....M_ the corresponding sequence of.

mutual exciusion elements from which grants must be obtained to grant r. Qur result on
mutual exclusion element fairness implies that M1 will eventually grant r with probability 1,

thus allowing it to be presented to M2, which eventually grants it with probability 1, etc.
Finally r is presented to Mn which eventually grants it with probability 1, thus causing the

arbiter to grant r. Multiplying these probabilities produces the result that r is eventually
granted with probability 1 as in the definition of probabilistic weak fairness. Since r was
arbitrary this establishes the theorem. , a

We believe that this theorem essentially settles the weak fairness question for arbiters; essentially
any non-prioritized asynchronous arbiter that has or will be designed fails under our model, and is
therefore fair under our definition of fairness. This definition is close enough to weak fairness to
essentially settle the weak fairness question for arbiters.

6. Conclusion

In this paper we have considered the fairness of mutual exclusion elements, the mast important
building block for any arbiter. A probabilistic choice set maodel has been introduced to capture the
choice behavior of such elements. Using this mode! on infinite sequences we have defined a
probabilistic notion of fairness, and shown that mutual exclusion elements are fair in general,
provided that a simple assumption about their probabilistic behavior is satistied, (Any well-designed

mutual exclusion element does satisfy the assumption.) We have also extended this result to
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establish the fairness of a wide class of arbiters including virtually all known non-prioritized multi-
input designs. This essentially settles the weak fairness question for non-prioritized arbiters; in

general such arbiters are fair in a sense that is very close to the standard notion of weak fairness.
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