
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-100

Problems with Concurrent Prolog

Vijay A. Saraswat
Carnegie-Mellon University

May 1985.
(Revised January 1986)

Abstract In this paper I argue that pure Horn logic does not provide the correct con
ceptual framework for concurrent programming. In order to express any kind of useful
concurrency some extra-logical apparatus is necessary. The semantics and proof systems
for such languages must necessarily reflect these control features, thus diluting the essential
simplicity of Horn logic programming.

In this context I examine C o n c u r r e n t P r o l o g as a concurrent and as a logic pro
gramming language, highlighting various semantic and operational difficulties. My thesis
is that C o n c u r r e n t P r o l o g is best thought of as a set of control features designed to
select some of the many possible execution paths in an inherently non-deterministic lan
guage. It is perhaps not a coherent set of control and data-features for the ideal concurrent
programming language. It is not a Horn logic programming language because it docs not
distinguish between derivations and refutations, because of its commitment to don't care
indeterminism. As a result, soundness of the axioms does not guarantee a natural notion
of partial correctness and the failure-as-negation rule is unsound. Because there is no don't
know determinism, all search has to be programmed, making it a much more procedural
rather than declarative language.

Moreover, we show that its proposed '? ' (read-only) annotation is under-defined and
there does not seem to be any consistent, reasonable way to extend its definition. We
propose and justify alternate synchronisation and commitment annotations.

This research was sponsored by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory Un
der Contract F33G15-84-K-1520. The views aud conclusions contained in this document
are those of the authors and should not be interpreted as representing the oflicial policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

1

CONTENTS

1. I n t r o d u c t i o n 4
1.1. Logic programming 4
1.2. Logic programming languages 4
1.3. Concurrent logic programming languages 5
1.4. C o n c u r r e n t P r o l o g 6
1.5. This paper 6

2. C o n c u r r e n t P r o l o g 6
2.1. Spawning guard systems 7
2.2. The environment for a guard system 8

2.2.1. The literal interpretation 8
2.2.2. Difficulties with it . . . 9
2.2.3. Possible justification for flat systems 9
2.2.4. But we would like multiple producers! 10
2.2.5. Conclusion 10

2.3. The commitment mechanism 11
2.3.1. Two-phase commit 11
2.3.2. Eager commit 11
2.3.3. Eager commit needs no global ' bindings 13
2.3.4. Is eager commit realistic? 13
2.3.5. Justification of restrictions in two-phase commit 13

2.4. Execution of bodies 13
2.5. Other 'features' of C o n c u r r e n t P r o l o g 14
2.6. Fairness 14

3 . T h e r e a d - o n l y (?) a n n o t a t i o n 15
3.1. Unification is order-dependent 17
3.2. Spurious suspensions 17
3.3. Unification of X? with Y 17

3.3.1. Obscure code 17
3.3.2. Freezing active goals 18
3.3.3. Unifying X against X? 18
3.3.4. c ? ' remains unintuitive 18

3.4. Unification of X? and Y? 19
3.4.1. Unification of X? with X? 19

3.5. Conclusion: the '? ' is difficult to understand 20

4. T h e i n p u t - o n l y (j) a n n o t a t i o n 20
4.1. The 'J/ annotation 20
4.2. Examples exhibiting expressivesness of '] , ' 21

4.2.1. Multi-use predicates in CP[1, |] 22
4.3. The 4f' annotation 23
4.4. A formal definition 24

2

4.5. Simulating ' ? ' with and T 25

5. Fa i lu re in C o n c u r r e n t P r o l o g 27

6. A l t e r n a t e c o m m i t o p e r a t i o n s 28
6.1. The parallel don't-know commit or the '&' annotation 29
6.2. The sequential don't-know commit or the ' \ ' annotation 29
6.3. Interrelationships between various interpretations of commit 29
6.4. Why have don't know commits? 30
6.5. The role of don't-care commit 30

7. A m e t a - i n t e r p r e t e r in C P [! , | , &] 31
7.1. The meta-interpreter 31

7.1.1. Why there is no simple C o n c u r r e n t P r o l o g meta-interpreter . . 32
7.2. An interpreter for C o n c u r r e n t P r o l o g ? 32

8. A c k n o w l e d g e m e n t s 32
8.1. Historical Note 32

3

TABLES

Table 1. The P r o l o g program for ?-unification. (See Reference 8.) 16

Table 2. A C P [| , t , |] program for '?'-unification 26

Table 3. A CP[| , | ,&;] meta-interpreter 31

1 Introduction 4

1 . I n t r o d u c t i o n

The notion of (Horn) logic programming is predicated on the so-called procedural
interpretation of Horn logic. It is essentially the discovery that sets of definite clauses can
be thought of as defining (in a mutually recursive fashion) inductive sets with a finite basis
(corresponding to the set of 'facts').

Definite clauses are rules of the form
a! A . . . A a n a n > 0

where the a t-,a are atomic formulas in some first-order language without equality, any
free variables in which are assumed to be universally quantified over the whole clause and
a i , . . . a n is called the body of the clause and a its head. Given a set of ground atoms, such
a rule says that if there is any instance of the rule such that (the instances of) a» are in
that set, then (the instance of) a too is in that set. The smallest such set is then taken to
be the set inductively defined by the program. It is also the initial Herbrand model of the
theory so that one has the nice property that some (ground) atom a is in this set (denoted
SSp) iff £ f= a, where £ is the set of all the rules.

1 . 1 . L o g i c p r o g r a m m i n g
The programming language interpretation of Horn logic is then the realisation that

in order to determine whether an atom (also called a goal) a £ SSp, one can look for
a rule which has an instantiation which matches a and then determine, recursively, if
the (instantiated) atoms in the body are in SSp. This simple technique determines,
operationally, a tree of possibilities with nodes labelled by goals: label the root with the
initial goals, select one of them and let the node have as many sons as there are clauses
whose heads will match the goal and then let the new nodes be labelled with the bodies
of those clauses, with the match applied to them. (If there were more than one goal
in the initial query, copy the rest of them, and also apply the match to them). The
process terminates when there are no more goals left to be matched and the 'answer' is
the composition of all the matches on the path from the root to this leaf.

This tree is also called an SLD-refutation tree for the given query, and, while other
operational representations are possible, SLD-refutation is more or less a canonical way
of representing the execution of a goal. Thi3 is because it is sound and complete: some
instance of a goal is in SSp iff the goal is the root of a successful SLD-tree. Moreover, if
one SLD-tree is successful, all are [1].

Each predicate can thus be thought of as a recursive procedure, defined non-
deterministically (because there can be more than one rule whose head could match an
atom and because there can be more than one atoms in the body of a clause) and mu
tually recursively. The only 'primitive' in this language is procedure call via matching,
everything else is progammed in terms of it. (Note that typically most general unifiers cire
used for matching, though this is not essential.)

1 . 2 . L o g i c p r o g r a m m i n g l a n g u a g e s
From a programming language point of view, such a frame-work oilers choice-

nondeterminism in a natural fashion. But because of the widespread perception that

1 Introduction 5

such non-determinacy is good for specification, but can lead to inefficient algorithms, it is
thought necessary to provide some control mechanisms which would guide the search for
a proof. A coher.ent set of such 'control features' constitutes a Horn logic programming
language, and the first of these was P r o l o g . P r o l o g is a sequential and deterministic
approximation to the non-deterministic model: it searches for a proof by following a depth
first path through the search tree, backtracking when it encounters a failure, that is, when
there is no clause whose head will match the selected goal. The essential control feature
that P r o l o g introduced was sequentiality both in deciding which rule one should try next
(the OR-decision) and in deciding which of a set of goals to try first (the AND-decision).
While it can be shown (e.g. [l]) that the AND-decision is in a sense academic because if
there is a proof given some choice, then there is a proof given any choice, the choice is still
important because it determines the size of the search space.

1 . 3 . Concurrent logic programming languages

Concurrent searches of the proof space are also possible. At the very extreme, one can
have disjoint parallelism: to find the proof of a set of goals, find the proof of all of them
independently, form their cross-product and select those which agree on the values they give
to shared variables. For a given goal, to find a proof, try in parallel all the clauses which
match it and return all the proofs that are found on each branch. Such a computation
scheme is, however, combinatorially explosive, hence not very tractable. One would like
the bindings for shared variables produced in the proof of one goal to be made immediately
available to the other goals because this could reduce their branching factor: the set of
clauses whose heads match an instantiated version of an atom is contained in the set
which matches the atom. This introduces the notion of advisory communication: advisory
because the receiving goal is free to ignore the communication until it has computed its own
set of bindings for its variables. Advisory communication does not guarantee improvement
in performance.

A plausible next step would be to introduce authoritative communication: the receiving
goal cannot proceed until it receives bindings on (some) shared variables. In a concurrent
programming language with authoritative communication, a programmer can force the
execution of a highly indeterministic goal to suspend until enough information is obtained
to focus the search for a solution.

It would seem therefore that to make any effective use of concurrency to speed up the
search process, one would need to introduce some form of control. Ideally we would like
this control mechanism not to cut off any successful paths bu* only failure and infinite
paths. That , of course, is impossible: there cannot be any such effective and general
scheme. Any general purpose control scheme, e.g. like Pro log ' s would, in general, have to
be incomplete to be useful, i.e. not exhaustive. The problem then becomes one of defining
the semantics of these control structures. Briefly, given a query and a program with control
structures, one would like to know which SLD-derivations of the pure program are allowed
by the control structures. (To start with, one assumes that the control annotations would
be sound, i.e they would not sanction any computation sequence which does not reflect an
SLD-derivation. But see also Section 2.6 on fair computations.)

2 Concurrent Prolog 6

1.4. Concurrent Prolog
In the following we will examine one such proposed set of control structures, the

language C o n c u r r e n t P ro log , originally defined in [17]. The control structures presented
therein essentially create a non-deterministic data-flow like language, where channels may
be passed as values. In order for the lanuage to be a useful concurrent language, a number
of control 'features' are needed, which take the language farther and farther away from
pure Horn logic, and they cannot be given any kind of logical semantics. Reasoning about
such programs is going to be concerned much more with the semantics of these control
structures rather than with the logic of the underlying axioms, and hence it is doubtful
what is gained by sticking to a Horn logic frame-work. While such control annotations
seem to provide a useful operational frame-work, they do not seem to provide any new
insights into the nature of concurrent computation.

Interest in the language C o n c u r r e n t P r o l o g was generated because it has been .
claimed, in a number of papers, that this language is suitable for expressing a variety
of interesting programming paradigms ([18], [19], [20]).

1.5. This paper
The rest of the paper is organised as follows. First, we assume familiarity with [17] and

a general familiarity with the concepts of logic programming. In Section 2 we examine the
informal semantics of the don't care commit operation presented in [17]. In Section 2.6
we introduce the notion of OR-fairness and exhibit a simple countably non-deterministic
C o n c u r r e n t P r o l o g program. In Section 3 we discuss various problems with the read
only annotation, whose semantics we show to be under-defined and unneccesarily complex.
In Section 4 we propose an alternate annotation, the input-only annotation ' j ' , which
is essentially a w a i t primitive and give a formal definition. In Section 5 we point out
that , contrary to claims in the literature, the c | ' commit may not be read declaratively
as a conjunction because of its don't care nature: a query may terminate in failure even
though there is a successful refutation which satisfies the constraints imposed by the control
annotations. In Section 6, we develop two alternate commit operators (' \ ' and '&;') and
justify the soundness of the negation-as-failure rule for them. In Section 7, we use one of
these, the parallel don't know commit to write a simple meta-interpreter for the language
C P [| , | , &] , i.e. the AND- and 0i?-parallel Horn logic programming language with the
extra-logical annotation c | ' and the c | ' and '&;' commitment operations.

This paper may be seen as laying the ground work for [14] where we develop a formal
operational model for C P [| , |,&] using the eager forms of the don't care and don't know
comn.its and the input-only annotation.

2 . Concurrent Prolog

In the following we discuss the informal semantics of C o n c u r r e n t P r o l o g as defined in
[17]. It must be kept in mind that this semantics is an informal, English description of the
operational semantics of C o n c u r r e n t P ro log , and, in places, ambiguous and imprecise.
When forced to make a decision between conflicting interpretations, we try to choose an

2 Concurrent Prolog 7

interpretation which is 'in the spirit of things' and consistent with the other decisions that
we have taken.

C o n c u r r e n t P r o l o g adds two control structures to the Horn logic framework: the
'? ' , or read-only annotation, and the ' | ' or don't care commit.

A C o n c u r r e n t P r o l o g program is a set of guarded clauses. Each guarded clause is
of the form:

a «- | bu...bm (fc,m > 0)

where the a,g t-,6 t are atomic formulaes or atoms for short. <7i,...<fc is the guard for the
clause and &i. . . 6 m the body. We will adopt the convention that any sequence of atoms
a i . . . a„ : n > 0 stands for t r u e when n = 0.

The atoms are defined as usual for any first-order language with constant, function
and predicate symbols. In addition we assume that the language has a pre-defined unary
function symbol which will be written in postfix notation.

The presence of '? ' in a term is supposed to indicate constraints on the terms that it
can unify with. In the following we quote from [17], page 11:

The unification of terms containing read-only variables is an extension
to normal unification. The unification of a read-only term X? with a term
Y is defined as follows. If Y is a non-variable, then the unification succeeds
only if X is non-variable, and X and Y are recursively unifiable. If Y is
a variable then the unification of XI and Y succeeds, and the result is a
read-only variable. The symmetric algorithm applies to X and Y1.

In [17], the author also gives a P r o l o g progam implementing this unification, which
we will call ?-unification. This program is given in Table [1]. We will discuss the problems
with this definition in Section 3. At this point, it is sufficient to note that the intent of the
'? ' definition seems to be that if XI attempts to unify with an instantiated term, then this
attempt will suspend until X is instantiated. It is also important to note that the intent
of this definition is that most general unifiers are being computed. In pure Horn logic
programming, it is convenient, but not necessary to assume most general unifiers. Indeed
the semantics of the inductively defined set that we have given in Section 1 assumes a
ground unifier, rather than a most general unifier. It follows that we cannot attempt to
capture the semantics of a C o n c u r r e n t P r o l o g program by any transformation over sets
of ground atoms.

The rest of the description of C o n c u r r e n t P r o l o g in [17] is given in terms of 'A sketch
of a distributed C o n c u r r e n t P r o l o g interpreter'. Thus, unfortunately, the semantics
of C o n c u r r e n t P r o l o g is given in terms of this implementation, which is written in a
sequential language and employs one specific kind of scheduler. It is not immediately
clear which of the features of the interpreter are essential, (i.e. part of C o n c u r r e n t
P r o l o g semantics) and which are just implementation details assumed for this particular
implementation.

2.1. Spawning guard systems
A guarded clause is supposed to function analogously to a guarded-command. Execu

tion of a program begins with the presentation of goals <— q\,... qv. Each of these qi will

2 Concurrent Prolog 8

be called an AND-sibling of the other. Each goal tries to reduce itself to other goals by
unifying against the head of a clause.

A (variant of a) clause a <— G\B. is a candidate for reduction for goal <&,1 < i < n
if $ — mgu ?(a,<7 t) exists. The sequence of goals 9(G) 1 is then invoked. This is done, in
parallel, for all the candidate clauses for a goal gt-. Each of these guard systems for a given
goal will be called OR-siblings of each other. Note that 0 is not applied to the other q
goals at this time.

Each of these guard systems contains goals, which, in turn, may invoke other guard
systems, and hence a whole hierarchy of goals can be built up, depending on the control
annotations in the atoms involved. Communication of variable bindings between these
sub-systems is governed by the commitment mechanism.

2 . 2 . The environment for a guard system
In [17], pp. 12, the author writes

The communication between these systems is governed by the commitment
process. Subsystems invoked by a process A [i.e. goal A] have access only
to variables that occur in A. As long as a process A does not commit to
a reducing clause, these [guard] systems can access only read-only variables
in A,2 and all bindings they compute to variables in A which are not read
only are recorded on privately stored copies of these variables, which is not
accessible outside of that subsystem.

Taken literally such a definition of the enviornment of a guard system presents prob
lems.

1. What is a read-only variable? Uptil now, only read-only instances of variables have
been defined, namely those decorated with a annotation. Is X a read-only
variable in p(X,-X7)?

2. occurrences now seem to have yet another meaning. If a binding {X i—• a, Y »->
6} is being created by the environment of a goal p(X, F?) , then it would seem that
to the guard systems for p(X> V?) only the binding {Y f—> 6} is available because X,
not being *?'-annotated in the original call, is inaccessible to subsystems spawned
by the goal until it commits.

3. What happens to variables (e.g. V) that occur in a goal g and arc unbound at call-
time, but subsequently become instantiated to W ? ' ? Will subsequent bindings for
W be communicated to the guard systems?

2 .2 .1 . T h e l i teral i n t e r p r e t a t i o n

In the following (without any justification !) let us assume that the intended interpre
tation of 4 X is a read-only variable in a goal a) is that 'X has some occurrence in a which
is '?' annotated^.

XrT\\c environment in which the guard sys tem is called is dicsussed in the next section.

2 Italics in quoted text indicate my emphasis . [Text in *[]', such as this , is my text.] Otherwise all the
quotations are literally correct.

2 Concurrent Prolog 9

A strict interpretation of the quoted text would then require the following interpreta
tion, which we will call two-phase commit 3 :

• When unifying a goal against a clause-head, maintain a separate 'global' environ
ment for this goal which contains bindings for variables textually occurring in the
goal at the time of invocation.

• When the environment changes the bindings of some of these variables by instan
tiating them, update the global bindings to reflect this. Then determine if the
variable(s) changed were read-only when the goal was initially invoked. Communi
cate the bindings of all such variables to the guard systems for this goal.

2.2.2- Difficulties w i t h it

Such an interpretation seems hard to justify. It limits drastically the information that
can be exchanged between the environment of a goal and its guard systems, and is really
contrary in spirit to the idea that as much information as possible should be shared so as
to avoid redundant searches for incorrect solutions.

Moreover, under this interpretation, one cannot write some simple programs. For
example, one cannot write a general program which first inputs any two lists of terms and
then, all at once, produces some indeterminate merge of these two lists.
E x a m p l e 1: Consider the followring program as a candidate:

merge([A|X] , Y, [A|Z])<- merge (X? ,Y, Z) | t r u e .
merge(X, [A|Y] , [A|Z])<- merge(X,Y?,Z) | t r u e ,
m e r g e ([] . Y, Y) .
merge (X , [] , X) .

This will not work, e.g. with the call ?-merge (D?, E?, F) , produce(D), p roduce(E) .
where p roduce /1 may produce its values one at a time. Assume that when the merge goal
is invoked, D and E are unbound. Then the first time D (say) gets a value e.g. {D
this value will be communicated to the guard systems for merge, but subsequent values for
G will not! Hence the system will remain 'dead-locked'. ®

If it is indeed thought desirable that the programmer should have control over which
variables in the goal allow subsequent bindings from the environment to be transmitted
into the guard system then it is advisable to have some other extra-logical annotation
to express this. Overloading the ' ? ' with different meanings makes programming very-
obscure and difficult.

2 .2 ,3 . Poss ib le jus t i f i ca t ion for flat s y s t e m s

If we do not allow such complex guard systems as in Example 1, then one sceiuirio
in which this restriction seems meaningful is if all those variables in a goal which are
not '?'-protected will have their bindings created by the execution of this goal. Then,
since no other goal (i.e. the environment) could be creating bindings for these non-read
only variables, the question of propogating these values to the guard systems is academic.

3 because information transfer between the environment and a guard system takes place principally in two
phases: at spawn t ime and at commit t ime

2 Concurrent Prolog 10

But this is a very strict interpretation in which every variable occurring in some AND-
conjunctive system can have exactly one 'producer'-occurrence: in all the others it must
be explicitly read-protected.

2.2.4. B u t we wou ld like mu l t i p l e p r o d u c e r s !

However, as pointed out in [17], one would, in general like to allow multiple generators
for the bindings of a given variable. In such cases, it makes sense to propogate the bindings
for non-read-only-annotated variables to the guard systems so as to help them choose the
value of the variable which has now been declared as the 'final' one, from other possibilities
which axe now guaranteed to end in failure. Here is the canonical example.

E x a m p l e 2: Consider the program:

p (a) .
p (b) .
? -p(X) , p(X) .

Both the p(X) goals will spawn off two guard-systems, with each terminating successfully
in the bindings {X H-> a} and {X *-> 6} respectively. One of these will commit for each
p(X) goal. Suppose the first one commits for the first goal. Now the binding {X H-» a} is
published by the first goal. But since X is not read-only annotated in its only occurrence
in the second p(X) goal, the binding of X will not be visible to the two guard systems for
this goal. The second one can then commit, leading to failure.

On the other hand, if the binding {X i—> a} was communicated to the guards of the
second goal, then the second guard-system would not be able to commit, because it has
inconsistent bindings, thus giving the result {X H-> a } . Similarly the result {X *-> 6} is a
possibility, but failure is not. ®

2.2 .5 . Conc lus ion

Therefore, making a distinction between variables that are read-only in a goal and
those that axe not is then a source of spurious failures, i.e. failures that are caused not by
the logic of the program but the way search is carried out for a proof. We feel that the
aim of any logic programming language should be to facilitate search for a proof and to
keep such failures to a minimum.

Accordingly we propose another kind of commit, an eager comrut. The aspect of
this commit 4 relevant here is that when the environment creates bindings, these will
be communicated to all guard systems without regard to whether they affect read-only
variables or variables that were present when the goal was originally invoked etc. Under
such an interpretation, information is shared as soon as it is available. However, as we
shall see later such eager sharing leads to problematic interactions with the semantics of
'? ' , which allow for dynamic creation of read-only variables.

discussed in more detail in Section 2.3.2

2 Concurrent Prolog 11

2.3. The commitment mechanism
There must exist some clauses whose guards axe empty, otherwise no guard system

can ever terminate. Assume then that the guard system 9(G) has been solved successfully,
i.e. has terminated with the answer substitution cr. For example, if 9(G) was empty (i.e.
t r u e) it may immediately terminate with the answer substitution 9. If more than one
guard systems for a given goal have terminated successfully, exactly one of them is chosen
to commit, by some mutual exclusion algorithm. Quoting again from [17]:

Upon commitment to a clause A : — the private copies of variables as
sociated with this clause are unified against their public counterparts, and
if the unification succeeds the body system B of the chosen clause replaces
A... After gaining such a permission [to commit], the unifier attempts to
unify the local copies of its variables against the corresponding global copies.
If successful, then the commitment completes successfully... When commit
ting, the unifier is not required to perform the unification of the public and
private copies of variable as an 'atomic action'. The only requirement is that
the unification be 'correct', in the sense that it should not modify already
instantiated variables, which can be achieved in a shared memory model
with a test-and-set primitive.

2 . 3 . 1 . T w o - p h a s e c o m m i t

Under two-phase commit, three things can happen when a successfully terminated
guard system is selected to commit: its bindings are either compatible with the global
bindings, or incompatible, or lead to a suspension due to read-only violations.

This raises the question: why should a terminated guard system be chosen before its
bindings are checked against the global bindings? If there is a pre-commit stage in which
the bindings of the terminated guard system are checked against the global bindings, then
one can prevent such guards from committing as would lead to an immediate spurious
failure. Similarly, if on checking it is discovered that committing these bindings would
lead to suspension, it certainly makes sense to allow other successfully terminated guards
a chance to commit. Discussion of such a pre-commit phase is conspicuously lacking in
[17]. If the intention in [17] was to have a two-phase commit, then a pre-commit seems
essential. 5

2.3.2. E a g e r c o m m i t

A pre-commit stage can be avoided under eager commit. In this scheme, when a guard
system commits, its unification with the 'global bindings' i3 done atomically, and these
bindings are conveyed 'instantly' to all the guard systems for the goal. (Note that a guard
system may actually have an hierarchy of goals: the bindings are communicated through
all levels of the hierarchy)

The reason for publishing bindings atomically and conveying them instantly should be
apparent from the following example.

5 a m i , incidentally, gives another justification to the name 'two-phase commit '

2 Concurrent Prolog 12

E x a m p l e 3: Consider the same program as in Example 2. Each of the two p(X) goals
spawn off two guards. Let, for both the first one compute the binding {X b} and for the
second {X H-> a } . Now assume all four guard systems are ready to commit. Suppose for
the first goal, the first guard system has been selected to commit. Then, before it attempts
to publish its bindings, the second guard system for the second goal has been selected to
commit. Failure will now ensue.

On the other hand, suppose publication is atomic. Now, when the first guard for the first
goal commits, the new 'global' value of X is communicated to the guard systems of the
second goal. Now the second guard system for this goal cannot commit because it has
inconsistent bindings. Hence the system is guaranteed to succeed, with either the values
{X 6} or {X H-> a}. ®

Now the notion of 'conveying' must be defined more carefully. It is clear that if the
new committed binding is incompatible (i.e. does not unify with) the binding given by a
goal in the guard system, then the goal should be considered inconsistent and not allowed
to continue: the guard system it is a member of should fail. (This is the analogue of not
allowing incompatible bindings to commit in the pre-commit phase of two-phase commit,
except that here a goal is aborted as soon as it is discovered that it is not compatible with
global bindings).

It should also be clear that in general the binding being committed could have some
?-terms in it: hence the unification done at commit time will have to be ?-unification. So
there is a possibility that this unification may cause a read-only violation and some action
akin to a suspension may have to be taken.
E x a m p l e 4: Consider the program:

?-p(X) , q(X) .
p (Z ?) .
q (a) : - s (b) | t r u e .
s (b) .

Consider the following sequence of events. The goal q(X) reduces, creates the binding
{X H—> a} and spawns the guard system s (b) . Now p(X) reduces and commits, creating
the binding {X »-> Z?}. Now, under eager commitment, the binding of X must be 'made
available' to the guard for the goal q(X) and hence the unification of Z? with a must be
attempted. But such a unification should cause the suspension of something. ®

What has happened is that the goal q(X) reduced under the assumption that it was
going to create a value for the unguarded variable X. But then the goal p(X) also created
a value for X. If p(X) had bound X to an instantiated term, then this binding could have
been checked against the bindings (Lere only one) created for X by the guard systems for
q(X) and allowed only those guard systems to proceed which had a compatible value. But
since p(X) produces the binding {X i—> Z?} this means that some other goal (here none)
is going to produce the value for Z in the future and the value of X must be whatever is
produced then. Presumably, one should now freeze all the guard systems of q(X) which
have guessed a value for X (and its descendants) because they w e r e not supposed to. (In
this case the guard system a(b) must be frozen because one of the bindings created by
its parent goal q(X) when unifying agains the head of this clause is now realised to have
incurred a read-only violation.)

2 Concurrent Prolog 13

As should also be clear from this discussion, such a situation could arise only because
read-only annotated variables can be created at run-time under the present semantics of
?-unification. In our opinion the above example clearly demonstrates the undesirability of
such behaviour with respect to an eager commit. Later (in Section 4) we will present an
other extra-logical synchronisation annotation ' j . ' for which the bindings being committed
will always refer to pure terms, so that at commit time only pure unification needs to be
done, and there is no possibility of freezing active guard systems.

2 .3 .3 . E a g e r c o m m i t needs no 'global* b ind ings

If the above rules are followed, it is also easy to see that, in fact, no 'global bindings' are
needed. Instead, a (local) environment can be associated with each goal, so that looking
up the value of a variable means checking its value in this environment. Hence lookup
is fast, but, of course, commit is slower because it has to traverse the entire processor
sub-trees of AND-siblings. A formal operational model using these ideas is presented in
[14].

2.3.4. Is eager c o m m i t rea l i s t ic?

There might be some questions about how bindings can be published so as to be made
available to all goals simultaneously, e.g. if the program is being executed in a distributed
network. Our point is that it is upto the language to specify the desired behaviour, and
upto an implementation to achieve it. Here we have chosen to stick as closely as possible
to a Horn logic programming model and prefer its simplicity, even if it might incur some
expense at implementation time. Of course, bindings do not have to be made available
immediately, as long as the implementation guarantees that it would behave as if they were.
For example, each goal might need to keep the other guard systems around and backtrack,
if its proposed solution was found incompatible with some previously announced binding
which hadn't yet made it to the goal.

2 .3 .5 . Jus t i f i ca t ion of r e s t r i c t i ons in t w o - p h a s e c o m m i t

The possibility of an active guard system being suspended because of the creation of
a read-only annotated variable has not been discussed in [17] at all and is the only reason
why we suspect that two-phase commit, unmotivated though it seems, might have been
the intended interpretation there. By restricting the bindings propogated into the guard
systems to be bindings for variables initially read-only annotated, it is ensured that no
suspensions of active guard systems may arise.

On the other hand, if it is ascertained that any conjunctive system has at most one
producer instance (i.e. non ?-annotated instance) of each variable, then as discussed earlier,
it is not necessary to restrict the propogation of bindings to ?-annotated variables in order
to ensure that no active guard systems are frozen.

2.4. Execution of bodies
When a guard system for a goal successfully commits its bindings, the body goals of

the clause variant have to be executed in the new environment. As before, there must

2 Concurrent Prolog 14

exist some clauses whose body is empty (i.e. t r u e) , otherwise the execution of no body-
system will terminate. When a body system does terminate, with answer-substitution cr,
say, execution continues with the AND-siblings of the original goal, with a reconciled with
their environments. If there are no AND-siblings, then execution terminates with a the
answer-substitution. .

2.5. Other 'features' of Concurrent Prolog
In the literature on C o n c u r r e n t P ro log , one also finds the use of some other control

primitves, which are listed here for the sake of completeness. A semantics for C o n c u r r e n t
P r o l o g should include a formal definition of these predicates and point out their relation
ships with one another. Most of these primtives are very operational in nature and, just
as it is the case for the corresponding primitives in P r o l o g , it is difficult to rationalise
their presence in a 'logic' programming language.

v a r / 1 : The goal var(X) succeeds immediately if X is a variable, and fails otherwise.
While v a r / 1 is present also in P r o l o g , it is a source of semantic difficulty
here in that, with ylj/VD-fairness, it allows countable non-determinism. See
Section 2.6.

w a i t / 1 : The goal wait(X) suspends until X is instantiated, and then succeeds. This
is essentially equivalent to the ' j ' annotation we introduce later.

o therwise/O: The definition, given in [18] states that an otherwise/O goal can occur
only as the only goal in a guard and the intended semantics is that this goal
succeeds if and when all other guard systems for the parent goal fail.
Note that any attempt to give a 'logical' interpretation to otherwise must
deal with the problem of the meaning of failure in C o n c u r r e n t P r o l o g .

In [17], another predicate dif f /2 is also used, but its semantics is not clearly defined
in an implementation-independent fashion.

It is also worth noting that the author of [17] has also introduced the notion of stability
of C o n c u r r e n t P r o l o g implementations. Our position is that since stability is not a
property of the language definition, advantage cannot be taken of its properties when
proving properties (e.g. bounded response time) of C o n c u r r e n t P r o l o g programs. It is
also not relevant to the current discussion which is about the semantics of C o n c u r r e n t
P r o l o g .

2.6. Fairness
An important point that is not mentioned in [17] is that of OR-fairness. It is implied

that all the guard systems are spawned off in parallel and that no further action is taken
until one of them is ready to commit. But this just specifics what can happen, not what
will The notion of OR-fairness says that all the guards will be allowed to advance if
they can advance: no guard will be discriminated against. If in a system of guards some
can terminate successfully, then at least one will. So if one guard system executes a non-
terminating sequence of computations, and another one a finite successful sequence, then
the second one wins, i.e. will be selected to commit, other thigs being equal. While it is
not explicitly stated so in [17], one assumes that this is the desired behaviour.

3 The read-only (?) annotation 15

If this is the intended interpretation (which is plausible, see comment on pp.48, [17].)
then commitment is analogous to a local a m b operator [8] in that of all guard execution
sequences it chooses successfully terminating ones in preference to non-terminating ones
or those that terminate in failure. We can make use of this local angelicism in writing
the following uncountably nondeterministic program which is guaranteed to terminate,
but whose output cannot be bounded a priori by any integer. Such a program cannot
be written in pure Horn logic, which has only choice-nondeterminism, which, by Konig's
lemma, is bounded.

E x a m p l e 5: Consider:

p (s (X)) «- p(X) | t r u e ,
p(0) <— t r u e | t r u e .

Given the query <— p (X) . , by OR-fairness, the only execution that is cut off is the one in
which each p(X) goal chooses the first clause repeatedly on every incarnation. Hence the
set of possible answers is {s n (0) |n > 0} and the query always terminates. ®

The similar issue of AND-fairness has been discussed in the context of Horn logic
programming in [7]. Intuitively the idea here is that in a conjunctive system of goals, if
one of them can make a transition (e.g. by committing or reducing against clauses), then
it utimately will: that is, it will not be consistently ignored.

L e m m a 1: Given AND-fairness, the var annotation c | 1 is sufficient to write a countably
non-deterministic Horn logic program, without assuming OR-fairness.

P r o o f 1: Here is the program:
p(X) <— p (X , S t o p) , s t o p (S t o p) .
p (s (X) , S top t) <- p (X , S t o p) .
p (0 , s t o p) .
s t o p (s t o p) .

Parenthetically, we note that the reason we need the *f' annotation and cannot do with
the 'J , ' annotation (to be introduced in Section 4) is that in these languages, a variable can
become bound, but never unbound. The annotation prevents some action from taking
place until a variable becomes bound and the '1° after a variable becomes bound. Hence
the c | ' is able to cut off a potentially infinite number of solution paths: the 'J , ' can only
delay, perhaps indefinitely, it cannot prevent. Hence in the above example, we need the
ability to stop, i.e. not examine any further branch, at some time in the future and return
some result. The cf' is tailor made for that.

3 . The read-only (?) annotat ion
We now turn to a discussion of the semantics of the read-only annotation. In the

following, X and Y represent variables and T, T i , . . . represent compound terms, i.e. terms
of the form f{Xi,..., Xn) where n > 0 and the Xi are terms.

First, let us recall that in C o n c u r r e n t P r o l o g processes are goals, and the input
and output channels for the process are represented by the occurrences of variables in the
atomic formula representing the goal. The only action that can be taken by a goal is to

3 The read-only (?) annotation 16

unify(X,Y)<-
(va r (X) ; v a r (Y)) , ! , X=Y.

unify(X?,Y) <-
! , nonvar(X) , un i fy(X,Y) .

unify(X, Y?) <-
! , nonvar(Y) , un i fy(X.Y) .

unify([X|Xs] , [Y|Ys]) <-
! , un i fy(X.Y) , un i fy (Xs .Ys) .

u n i f y ([] . []) «- ! .
unify(X,Y) 4 -

X=. . [F|Xs] , Y=. . [F|Ys] , unify(Xs.Ys) .

Table 1: The P r o l o g program for ?-unification. (See Reference 8.)

unify against the head of a clause. This unification typically would lead to an instantiation
of various variables in the goal. However it is undesirable that variables that are supposed
to represent input channels should be instantiated. Also, a clause typically implements
some kind of a (possibly multi-valued) function from its input arguments to its output
arguments and hence it is unwise for process reduction to continue until values for the
input arguments arc available. Both of these objectives are sought to be achieved by the
introduction of the 'read-only annotation' (?) which can decorate instances of a terms in
goals and clause heads and whose semantics is specified in Table [l] and in Section 2.

One can attempt to justify the decision to suspend when unifying X? against T by
saying that it effectively allows a goal to do a case on the possible inputs that might be
provided via the variable X. That is, the environment may instantiate X to any one of
T , T i , T 2 . . . and then only the guard systems for clauses which have the correct term will
be invoked. But this is useful only in the special case in which XI occurs in the goal and
the T{ in clause-heads. Even for such occurrences of annotated variables, the following
conditions seem necessary:

Condition 1. At runtime, in every goal, if even one occurrence of a variable is read-only,
then all instances are read-only. (Hence that variable may legitimately be
considered a read-only variable in the call). This corresponds to the normal
restrictions in data-flow languages that an input stream to a process cannot
also be an output stream.

Condition 2. In every clause-head if even one occurrence of a variable is read-only, all
occurrences of that variable should be read only.

Condition 3. If a variable is read-only annotated at some occurrence in a clause-head, then
ensure that all goals that would reduce via this clause have a variable at that
occurrence.

Condition 2 is symmetric to Condition 1, but for ?-occurrences in goals, a restriction
corresponding to Condition 3 is not required; this is a fundamental difference between the
use of ? in goals and in clause-heads in C o n c u r r e n t P ro log .

In the following we discuss why these conditions seem indicated and the problems that
arise even if they arc followed.

3 The read-only (?) annotation 17

3.1. Unification is order-dependent
Typically to unify compound terms Ti and T 2 , one checks the functors are the same

(i.e. they have the same name and the same no. of arguments) and then unifies the
corresponding arguments in the two terms in any order. This no longer works, e.g.
un i f y (f (X?, X), f (a , a)) suspends if the first arguments are matched before the second
but succeeds otherwise. The semantics hitherto presented does not consider this at all.
The program in Table [1] assumes a left-to-right order of unification of arguments, but it
is not clear if this is an artifact of the implementation or is the desired semantics. If it is
the desired semantics, then it is yet one more point of departure from logic programming,
and it is not clear whether enough benefits accrue from this commitment to justify the
loss in semantic simplicity.

One other possible semantics could be that all the arguments axe unified in parallel.
In that case un i fy (f (X?,X) , f (a , a)) would succeed because unification of the first ar
guments would remain suspended while the unification of the second arguments succeeds
with the binding {X a} and then causes the unification of the first arguments to re
sume and succeed, resulting in unf iy (X? , X), f (a , a)) succeeding with the bindings
{X h-» a} . This is the interpretation we prefer because it is consistent with the behaviour
of the system ?-g(X?) , h(X) . when the only clauses in the program are g(a) . and h (a) .
L e m m a 2: Conditions 1 &; 2 axe necessary and sufficient syntactic restrictions, to ensure
order-independence of ?-mgu. That is, if Conditions 1 & 2 are satisfied then two ?-
annotated terms have a ?-mgu with left to right scan iff they have an ?-mgu with any
scan.

3.2. Spurious suspensions
The view ?-as-input-designator is useful only for occurrences in goals (i.e. in bodies

of clauses) not in heads of clauses. This is because if X? occurs in the head of a clause
at argument i, and argument i in the goal is a constant, suspending till X gets a value
is, in general, meaningless because the only way a binding for X can be generated is by
executing some goal in the body of the clause. But that cannot be done if unifying X?
against a compound term suspends.

This deadlock can only be avoided if parallel unification is assumed and Condition 2
is violated, i.e. there is also an occurrence of X in the clause-head which may (possibly in
the future) match an instantiated term.

3.3. Unification of X? with Y
This raises the issue of why unifying X? with Y should be defined to yield the binding

{Y »-* X?}. Originally the view of was as an occurrence-specific annotation, but this
definition causes all occurrences of Y to be annotated. This seems difficult to justify,
considering the original motivation for as being a synchronising mechanism. It leads
to the following problems:

3 .3 .1 . O b s c u r e code

Because annotations can be propogated at run-time, a static analysis of clauses for a

3 The read-only (?) annotation 18

predicate is not enough to define its behaviour: its meaning depends upon the annotations
of the arguments to the goal. This makes proofs of properties of programs difficult.

3 .3.2. F reez ing a c t i v e goals

If a goal has an occurrence of a variable X in it, this X can be converted into a read-only
copy of some other variable by another conjunctive goal which also has an occurrenceof
X. One kind of problem that it can raise for eager commit has already been discussed in
Example 4. It is easy to concoct more examples where freezing active goals can have very
unexpected consequences.

Note that this problem was not caused because of the appearance of a ?-annotated term
in the head of a clause. The same situation would have arisen in Example 4 if instead of
the clause p(Z?) we had the clause p(Y,Y) and the call p(Z?,X) instead of p(X).

3 .3 .3 . Uni fy ing X a g a i n s t X ?

The P r o l o g program for u n i f y / 2 will loop because P r o l o g does not have the oc
currence check. On the other hand, according to the definition given above for the case
XI — y , X should now become a read-only version of X in all its occurrences (here in its
occurrence hi p(X)) so that there will be no more producers for X left arid the system is
sure to deadlock.

An alternative possibility is to let the unification of X with X? succeed with no binding
being generated.

L e m m a 3: Conditions 1 & 2 are necessary and sufficient to ensure that no call of the
form uni fy(X?,X) , for some variable X arises as a result of any call to u n i f y / 2 .

3 .3.4. r e m a i n s u n i n t u i t i v e

Even if we were to define that unify(X?,X) should succeed with no bindings being
generated, some systems of goals may still exhibit rather unintuitive behaviour.

E x a m p l e 6: Consider the program

X=X.

and the query ?- Y=a, Y=X?, Y=X. Intuitively, this query should mean that Y has a pro
ducer (the first goal, which can produce the binding {Y H-> a}), has read only access to
another variable (X) and also has 'full' (i.e. read- and write-access, to X. One would then
imagine that this query should succeed with the bindings { Y H a , I K a }, This will
happen, however, only if either the first or the third goal executes first.

If Y=a executes first we next have the system ?- a=X?, a=X. Now the goal a=X? is blocked
because of read-only violations, but the goal a~X can succeed, leading to the system ?-
a=a? . which will succeed.

If Y=X succeeds first, we will have the system ?-X=a, X=X?. in which both the goals can
succeed, and in either order.

3 The read-only (?) annotation 19

On the other hand, if the goal Y=X? were to succeed first, we would have the system ?-
X?=a, X?=X. in which the second goal can succeed, but the first must remain deadlocked!
®

A goal system such as ?- Y=a, Y=X?, Y=X. may seem rather contrived as it stands,
but such sub-systems can easily arise during the execution of complex goals. What is
unintuitive about this example is that even though one may think that a variable Y is
being given full access to another variable X (via a goal such as X=Y), in reality such access
may be denied, for example if earlier the variable Y had been given read-only access to X.
In C o n c u r r e n t P r o l o g read and write accesses are not additive!

This is just one of the many pitfalls that a beginning C o n c u r r e n t P r o l o g programmer
has to beware of and it arises because there is no consistent, intuitive interpretation for
the behaviour of c ? \

3.4. Unification of X? and Y?
What happens in the case where X? has to be unified against Y?? The informal

description of ?-unification does not discuss this case. According to the u n i f y / 2 program
in Table [1], un i f y (X?, Y?) fails. This program was taken from an implementation in which
such failure leads to busy-waiting: hence we should think of the failure as meaning that
the at tempt to unify X? against Y? should suspend. In fact this unification will remain
suspended (i.e. the calls continue to fail) until both X and Y have been instantiated to a
value, when these values will be recursively unified.

There is really no a priori justification for causing unification of X? — Y? to suspend
until both X and Y get values and then to recursively unify them. It is as justified
as allowing the unification of X? with Y? to succeed with X unified with Y, without
suspending. Of course, these two definitions lead to different behaviours 6 .

Suffice to note here that suspending unification of X? — Y? until both X and Y are
unified would lead to deadlock in case one of these variables occurs in a clause head (and
hence all its occurrences are also in the clause head). This partly justifies Condition 3.

On the other hand assuming the second definition of X? — Y? unification, if a goal
contains an occurrence of X? and is unified against a clause head which contains a Y? in
that argument position, then the result is as if the process becomes a producer for the
channel, even though it was earlier passed just a read-only reference at run-time. Thus if
a process always wants write-access to a channel, it can do that by placing a X? at the
argument position in the clause-head where it expects the channel to be supplied. In this
fashion,a process has to make fewer assumptions about the behaviour of its environment
at run-time. But deadlock may also ensue. See Section 3.2.

3 .4 .1 . Un i f i ca t ion of XI w i t h XI

According to the first definition, this unification should suspend until X gets a binding,
when it would be checked against itself! This seems even more difficult to justify. On the
other hand, by the second definition, this would immediately succeed with no bindings
being created.

6 an<l have boon discussed by the author in more* detail in [12]

4 The input-only ([) annotation 20

3.5. Conclusion: the is difficult to understand
To sum up, then, I would argue that the intuitive interpretation of '? ' as a 'read-only'

designator makes sense in only some of the many possible ways in which it can be used. If a
user is supposed to think of the '? ' precisely as designating which occurrences of variables
are 'read-only', then perhaps the language should then provide syntactic restrictions which
encourage (or maybe even sanction only) such use. Conditions 1-3 are a step in that
direction.

Moreover the definition of the '? ' given in [17] is not even complete. There seem
to be a vaxiety of ways in which to complete the definition 7 and none seem to have a
clean motivation. Rather these definitions lend themselves to singularly obscure use as
evidenced by the series of programs by the author in [10] and [13] which show how to use
each of three different versions of the read-only annotation (proposed in [11] and [12]) to
provide a weak simulation of v a r / 1 and hence obtain programs for the bounded merge
predicate. 8

In the next section we outline two synchronisation primitives, the 'input-only' annota
tion ' J ' and the 'output-only' v a r / 1 annotation i J [\ We show how we can use both these
primitives to simulate ?-unification, but the '? ' alone cannot be used to get the behaviour
of either of these primtives because it is much too powerful.

4. The input-only (j) annotat ion

In order to use the non-determinism inherent in Horn logic to model specify and
implement concurrent algorithms, it is essential to have a wait facility, which forces a goal
to suspend until it receives bindings for some of its variables from the environment. In the
following we propose and justify such an annotation to control communication of bindings
between conjunctive goals.

This annotation has been inspired by the discussion of problems with the read-only
annotation in the last section. Annotations similar to this have previously been discussed in
the literature on logic programming: indeed given the problem of communication between
conjunctive goals, the design space of solutions is rather small. But, typically, the semantics
of such constructs is not precisely defined and a plethora of such constructs is proposed.
On the contraray, we propose ' | ' as a replacement for the '?'-annotation: the new language,
called C P [j , |] , has a much simpler semantics but all the original C o n c u r r e n t P r o l o g
programs hitherto published can be translated simply into it.

4.1. The ; | ? annotation
First we will assume that unification of two compound terms T\ and T2 is carried

out by checking if T\ and T> have the same functor and arity and then unifying their
corresponding arguments in parallel.

7 c . g . see some of the proposals in [11] and [12] by Tony Kusalik, Udi Shapiro, Jacob Levy and the author

8 S o m e of these programs need further the assumption of strict /liVD-fairness.

4 The input-only ([) annotation 21

The ' j ' annotation can only decorate instances of terms in the head of a clause. If
a term (variable or constant or compound term) T[occurs in the head of a clause, then
unification of T j with V, where V is a variable will suspend and remain suspended until
V has been instantiated (to a constant or a possibly non-ground compound term), after
which the unification of the terms T and V will be attempted.

Like the '? ' , the 'J , ' is not inherited by embedded terms, that is, it applies only to the
term instance textually indicated in the program. However, if ' j ' annotates a term ¿1 inside
a term £, then it must also annotate all sub-terms of t which contain ¿1 (including i). In
fact, we will define an embedded occurrence of a ' J , ' to be shorthand for just such a series
of ' j ' annotations in the term. (The atom at the head of a clause is always j-annotated.)
This restriction is necessary to prevent occurrences of unify(X, f (a j)) which does not
make sense because a sub-term cannot be required to be present unless the super-term
is also required to be present. This design decision essentially precludes the creation of
'protected embedded channels'.

In so far as a term V J, will suspend when unifying against a variable, the meaning of
' | ' is similar to the meaning of w a i t / 1 . (See Section 2.5.)

Here are some simple properties of this notation:
• un i fy (Y | , Xj) can never occur.
• unify(Y, Yj,) can, and suspends till Y is instantiated.
• There is no 'inheritance* of 'J , ' via uni fy(X| ,Y) like there is for unify(X?,Y).
• The 'J , ' annotation can never 'occur' in any goal at runtime.

With ' I ' each clause decides what is to be input to it. In other words the ' j ' annotation
is used to restrict the goals for which a clause is applicable by specifying which terms in
the goal need to be instantiated.

If all the clauses have the same pattern of input specifications, then the 'J , ' annotations
could be removed in favor of a mode-specification for the predicate. Since nested '] , '
annotations are allowed within a term, in general it is not possible to remove ' j ' annotations
in favour of mode declarations. (Of course, every program annotated with the Dec-10
Prolog ' + ' (input) or '? ' (dont-know) annotations can be rewritten using ' j ' annotations;
hence ' ! ' is more 'general'.)

4.2. Examples exhibiting expressivesness of 4 j '
E x a m p l e 7: This is the canonical example of two operations on a variable that is treated
like a channel.

• s e n d / 3 . Equivalent mode s e n d (+ , ? , ?)
send(Message | , [Message|Channel] , Channel) .

Typically, a call to send/3 would be ' . . . send (Message, Channel, NewChannel)
. . . ' . The send/3 goal waits until the environment instantiates the variable Message
and then 'sends' it down Channel by unifying it against a list whose first element is
Message and the rest is a new list, the NewChannel.

• r e c e i v e / 3 Equivalent mode is r e c e i v e (? , + , ?) .
rece ive(Message , [Message | NewChannel]j, NewChannel).

4 The input-only (I) annotation 22

Complementary to send /3 , r e c e i v e / 3 occurs typically as a call c . . . r e
ce ive (Message, Channel, NewChannel) . . . ' . It succeeds only when Channel is
instantiated by the environment to a list. The first element of the list is then taken
to be the current Message, and the rest of the list is now NewChannel.®

E x a m p l e 8: merge/3. Equivalent mode is merge(+,+,?).
merge([A|X] | . Y, [A|Z]) : - merge(X, Y, Z) .
merge(X, [A |YJ1 , [A|Z]) : - merge(X, Y, Z) .
m e r g e (n i l ! , Y» Y).
merge (X, n i l J,, X) .®

E x a m p l e 9: p l u s / 3 . No single equivalent mode declaration.
p l u s (X I . T l , Z) : - Z i s X+Y.
p l u s (X | , Y, Z |) : - Y i s Z-X.
p lus (X, Yj, Z j) : - X i s Z-Y.®

4*2.1. M u l t i - u s e p r e d i c a t e s in C P [| , |]

The following program expresses behaviour that would be difficult, if not impossible, to
express in C o n c u r r e n t P r o l o g , G H C ([23]) or P a r l o g ([2]) which axe all concurrent logic
programming languages whose extra-logical annotations emasculate the notion of a logical
variable. It follows that in order to exploit stream yliVD-parallelism and OR-parallelism
it is not necessary to do away witht the logical variable, which must be regarded as one
of the original contributions of logic programming to programming language theory. In
C P [! , |,&] it is still possible to have 'multi-use' predicates as in P r o l o g .

E x a m p l e 10: p /4 . The partitioning program.
p([Next | R e s t] , P i v o t , [Next | L e s s] , More) : -
Next < Pivot | p (Res t , P i v o t , Less , More).

p([Next | R e s t] , P i v o t , Less , [Next | M o r e]) : -
Next > Pivot | p (Res t , P i v o t , Less , More).

p (n i l | , P i v o t , n i l , n i l) .
p (n i l , P i v o t , n i l j / 1 , n i l) .
p (n i l , P i v o t , n i l , n i ! / l) .

Next! < P i v o t ! : - Next : < P i v o t .
Next! > P i v o t ! : " W e x t : > P i v o t .

In this program : < /2 and : > /2 are built in arithmetic predicates.

The power of this program lies in the fact that it will work 'correctly 5 independent of
whether it is consuming/producing any combinations of its arguments. Consider specifi
cally the following queries, on all of which it works correctly:

0. ? - p ([l , 2 , 3 , 4 , 5] , 2 , Leq, Geq) . = >
{ Leq H-> [1 , 2] , Goq H-> [3 ,4 ,5] } or

4 The input-only (I) annotation 23

{ Leq h-> [1] , Geq h-> [2 , 3 , 4 , 5] } .

1. ? - p ([l , 2 , 3 , 4 , 5] , 2 , [1 , 2] , [3 , 4 , 5]) . = >
t r u e .

2 . ? - p ([l , 4 , 2 , 3 | X] , 2, [One, Two,2], [4 , 3 , 5]) . = >
{ I H [2 , 5] , One H-> 1, Two h-+ 2 } or
{ X »-> [5 , 2] , One >-* 1, Two H-> 2 } .

3 . ?-p(X, 2 , [1 . 1 , 2] , [3 , 5 , 6 , 2]) .
{ X H-> any merge of [1 , 1 , 2] and [3 , 5 , 6 , 2] } .

4 . ?-p(X, 2 , [1 , 1 0 2 , 2] . [3 , 5 , 6 . 2]) . = >
f a i l .

One can think of a p (Big, P i v o t , Leq, Geq) goal as essentially being a transducer which
needs a value for P ivo t before it can be activated, and then monitors its three streams
(Big, Leq Geq) until it gets a value down any one of them. It then dispatches that value
to the appropriate stream. If it receives a n i l down any channel, it terminates. Other
termination conditions (e.g. the clause p(X, P i v o t , n i l j , X) .) are also possible. ®

The reason the above example 'works' is because when a p /4 is unified against the
head of the first two clauses essentially pure unification is being done. The ' j ' annotations
in the heads of the next three (base) clauses ensure that they are never used until and
unless one of the three streams is closed. Pure unification may be done in C o n c u r r e n t
P r o l o g too by not using any '?'-annotations in the program, but then there would be no
way in a C o n c u r r e n t P r o l o g program to specify that a clause should not be considered
until some extra bindings are made available.

As far as the languages P a r l o g and G H C are concerned, they cannot express such
behaviour because of their insistence on using matching rather than unification.

Another advantage of c j * over is that never causes the creation of annotations
at run-time. Hence the eager commit defined earlier does not cause active goals to be
suspended, because, it can easily be seen, with C | J once a goal is unblocked, it remains
unblocked. We believe that 4 j'-unification should also be easier to implement.

4.3. The <T' annotation
One can show that with the various definitions of discussed in the last section, it

is possible to simulate v a r / 1 , assuming strict AiVZMairness, and hence to get a countably
non-deterministic program. 9 This is not possible with the j-armotation, which is therefore
less powerful than '? ' . In practice, however, the |-annotation avoids the contentious issues
with and presents a simple, clean and powerful primitive.

To get the entire functionality of ?', v a r / 1 must also be used. Its usefullness can be
enhanced if it is also treated like an annotation (' | \ say) which can occur only in the heads
of clauses. Again, it annotates just the occurrence of the Term it is textually adjacent to.

°Scc [13] for a program that presenta a hounded merge program using 4 ? ' and strict y lMMairness .

4 The input-only ([) annotation 24

As before, if cf' annotates a term tL inside a term t, then all subterms of t which contain
¿1 (including t) axe presumed to be ' ! ' decorated (so that unify (A, f (V|)) will suspend
until A is instantiated to an f / i term). As usual this obviates the creation of 'protected
embedded channels'.

The unification Termt-X succeeds only if X is a variable and results in X being unified
with Term. If X is not a variable, then Termf-X fails, though this must be regarded as a
control failure. Operationally this means that the given clause cannot be used at all for
the given goal. 1 0 Termj-X never suspends.

This definition of the semantics of 4 | ' is ambiguous because it does not state what
should happen in the situation when it is possible to unify a term ti with a term ¿2? which
contains a subterm t\ such that the subterm of ¿1 unifying with ¿1 m a Y be a variable
if unification is done in some specific order and may not be, if it is done in some other
order. For example, with the above definition, the unification of f (Y, Y) with f (a , a f)
may succeed if unification is attempted from right to left, but will fail otherwise. In such
situations, we will define the unification to have failed, thus preferring not to succeed when
there is a possibility of failure.

Note that nested occurrences of 'f' do not make sense.

E x a m p l e 1 1 : o foo(f o o f) | is meaningless.

• f 0 0 (foo |) match any of the following terms: X, foo(X).

a f 0 0 (f o o f) ! w iH match any of the following terms: f 0 0 (X) . ®

4.4. A formal definition
We present here a formal definition of the { | ' -annotat ion.
In this section, we will think of terms as trees, that is, as partial functions from the set

of all possible paths (i.e. finite and infinite sequences of natural numbers) to a co-domain
C j _ , where C is the set of node-labels. If the function is not defined for a given argument,
we will take its value to be J_. Then terms are trees over the co-domain of function symbols
and variables. [Sec [3], though only elementary definitions are used here.]

We can now define annotations to be simply trees over the domain { t rue} j , with the
interpretation that the (node specified by the) path I is annotated by p iff p(l) = t r u e .
However, we would also like to insist that if a term is annotated then all its super-terms
are also annotated. Hence this definition:

Defini t ion 1: An ^ - a n n o t a t i o n is a tree p : Nu —• {true}j_ such that

VZ.p(f) = t r u e => V/' C l.p(l') = t r u e

where C is the {is-a-prefix-of' relation between sequences. ®

We will represent by _L the annotation which is undefined everywhere.
In order to say that a term t is annotated by p, we must ensure that the annotated

node exists. Hence:

Note , on the contrary, that 'J/ unifications fail iff the corresponding normal unifications fail.

4 The input-only ([) annotation 25

Defini t ion 2: An annotation p is app l i cab le to a term t iff VLp(l) = t r u e £(/) 7^ _L.<g)
We would now like to give the semantics of an annotated term. The annotations serve

to restrict the set of terms with which the annotated term can unify. Consider a term s
annotated by p and a term t. First we would like to express the notion of a most general
unifier for 3 and t which ignores all the annotated nodes in s and the corresponding nodes
in £, if they exist.

Defini t ion 3: The p-restricted m g u of two terms 3 and £, denoted by m g u r (p , s, £), where
p is an annotation applicable to 5 , is the most general substitution 6 such that

Vl.p[l}1ttTue=>(e(S))[l} = (0(t))[l}

where by 0(s) we mean the term obtained by applying substitution 9 to the term s. ®

N o t e 1:
m g u (s , t) =i mgu r (_L, 3, t)

According to the intuitive meaning of c j ' , we must ensure that all annotated terms
unify against non-variable terms. This means that when unifying a term s against t where
5' an annotated sub-term of s is to be unified against V the corresponding sub-term of t,
we cannot proceed until and unless t1 is instantiated. Therefore if t1 is instantiated, we can
ignore the annotation on s*. So a simple strategy for finding the most general unifier of
the term .9 annotated with p and the term t is to start by unifying all the sub-terms of s
which are not j-protected by p against the corresponding sub-terms of i, i.e. by computing
m g u r (p , 3, t). If this leads to instantiating a variable in t which has a corresponding sub-
term in s that is j-protected, then we can remove this annotation and start again. The
process terminates when there are no more c J , ' annotations left to remove. Hence:

Defini t ion 4: The mgu^ of two terms s, t with p an annotation applicable to s, (notated
by mgi i | (p , 5, t)) exists whenever there exists n > 0 such that Tn{p) = J_ where T is a
transformation on annotations given by

\/i T(v)(i) = { t r u e P ^ = t r u e A m g u ' (p ' 5 j e v

J \ ± otherwise

When it exists, m g u j p , = m g u r (T n (p) , 5, t) = m g u r (i _ , s , t) = mgu(s,i).<g>

In [14] we give a different definition by adding, to a conventional transition system for
computing most general unifiers, a single transition for ^-decorated terms.

4.5. Simulating '?> with ' j ' and ' T '
In this section we show that given c j ' and c f it is possible to simulate ^'-unification by

presenting a C P [1 , | , |] program which does that (Table 2). A query unify(X,Y) where
the terms X and Y could be *?'-annotated will suspend iff the ''.''-unification of the terms X
and Y will suspend. It will succeed iff '?'-unification succeeds, and will bind the variables
in the two terms to whatever value '?'-unification would have bound them too. It fails iff
'T'-unification fails.

4 The input-only ([) annotation

/* Program for ?-unification, (cf Table 1)

The predicate =/2 represents normal (i.e. (?'-free) unification. We assume
this unification respects the occurs check. In what follows it is used just
to unify a variable against a term. It may be defined as if by Clause 0:

0.*/ X=X.

/* In Clauses 1 and 1'. we need to put X=Var in the guard and not in the
body so as to avoid incorrect failure due to occurs-check for goals such as
unify(?(X) , X) for which Clause 3 should succeed. Note that Clauses
1 and V work also to unify X? against Var. (We do not need to check
that X is not of the form Term? because of properties of ^-unification.)
1.*/ unify(X, V a r j) : - X = Var I t r u e .

/ * ! ' . * / unifyCVarj , X) : - X = Var | t r u e .

/* When unifying ? (X) against a functional term T, wait until X is in
stantiated before proceeding.

2.*/ u n i f y (? (X |) i , T i) : - un i fy (X , T) .
2' .*/ u n i f y (T j , ? (X | H) : - unifyOT, X) .

/* Unifying lists.
In Clause 3, we need to put un i fy (X ,R) in the guard so as to maintain left

to right order of evaluation. If the arguments to a functional term are to
be unified in parallel, then un i fy (X ,R) should be put in the body.

3 . * / u n i f y ([X | Y] | , [R | S U) : - un i fy (X , R) I unify(Y, S) .
/ * 4 . * / u n i f y (n i l | , n i l |) .

/* Unifying functional terms.
Use P ro log ' s =. . / 2 to convert the term into a list. (Constants are 0-ary

functions.)
5.*/ u n i f y (X i ,

X / ? (P) , X X l i s t , Y ^ ?(Q) , Y = . . Y l i s t |"
u n i f y (X l i s t , Y l i s t) .

/* Unifying X with X? or X? with X? should succeed immediately:
6.*/ u n i f y (? ((X l a) t) . ? ((X | a) t)) .

/ * 7 . * / u n i f y (? ((X | a) T) . (X | a) t) .
/ * 7 ' . * / u n i f y ((X | a) T . ? ((X | a) T)) .

Table 2: A C P [j , | , |] program for 'T'-unification.

5 Failure in C o n c u r r e n t P r o l o g 27

This program is almost a direct translation of the P r o l o g program given in [17] which
purported to be the semantics of '?'-unification. It differs from it in distinguishing be
tween suspension and failure, in avoiding unnecessary sequential over-commitment and in
handling the issues raised in Section 3.

Specifically, it preserves the left-to-right order of evaluation, allows unify(X?,X)
(and its symmetric counterpart) to succeed, allows unify(X?,X?) to succeed and causes
unify(X?,Y?) to suspend until the principal functors of X and Y axe known and then to
recursively unify X with Y. The other variants of '?'-unification discussed in [11] and [12]
can similarly be programmed in C P [j , |> |]«

Note that in this program we choose to write the term X? in the more conventional
P r o l o g notation ?(X) (strictly, ' ? ' (X)) .

We also use a ' ! / 2 ' annotation (Clauses 2,3,3 ') . This annotation is closely related
to the unary *!' annotation ({ | /1 ') we have hitherto been using and its semantics is fully
specified in [15]. Suffice to note here that the effect of the annotations in the head of Clause
2 is to ensure that it will unify only against goals of the form un i fy (? (Var) , ? (Var))
where Var i3 a variable: goals of the form unif y (? (Var) , ? (Varl) will suspend until some
other process instantiates Var to Varl (or vice versa). Because of the 'f' annotations the
clause cannot be used if Var is a functional term.

Similarly only goals of the form unif y(? (Var) , Var) can succeed against the head of
Clause 3.

5 . Failure in Concurrent Prolog
The semantics of C o n c u r r e n t P r o l o g can be given by specifying which SLD-

derivations are admissible, given a query and a program. Because of its don't care non-
determinism, committing can only be locally angelic, i.e it chooses values for its free vari
ables such that its guard executes successfully, but its body may still fail for the chosen
values. Moreover, if a goal a occurs in a system of goals a, 6, c (say), the values committed
by a successful guard for a clause for a may cause b (and hence the whole guard system)
to fail, even though there exists value(s) for the variables common to a and 6 for which
they both succeed.

E x a m p l e 12: Consider the program:
p (a) .
p (b) .
q (a) .
q (c) .
r <- q(X), p(X) | t r u e .

The query ? - r . may fail. For example, the q(X) goal in the guard for r may commit with
the binding {X H-» C } . The goal p (c) will then fail so that the guard system fails, cind the
query ? - r . fails even though there is a value of X which would cause the query to succeed.
®
We contend that the reason C P [J , |] is not a logic programming language is because it
does not distinguish failed admissible SLD-derivations from admissible SLD-refutations,

6 Alternate commit operations 28

i.e. it is possible for a C P [j , |] query to terminate in failure even though there may be
a successful refutation of the query, given the ' j ' control annotations. Thus C P [| , |] is
not even potentially complete. For example, P r o l o g , which is potentially complete, will
never terminate in failure until and unless there is no solution for the given query, given
the sequential search process (which is also enough to guarantee that there is no solution
given the pure clauses, i.e. no control structure assumed). This implies that the same
query may have a succesful execution sequence, as well as a failed exceution sequence:
in pure Horn logic, as in Prolog, these two sets (denoted by S S and FF) are necessarily
disjoint.

This means:
• Validity of unannotated axioms is not sufficient for partial correctness: a given

query will assuredly succeed (or loop) only if all finite admissible SLD-derivations
are refutations, which is a very strong condition.

• There can be no notion of negation-as-failure even with respect to admissible deriva
tions, (i.e. at best we can hope that negation means that no admissible derivation
for the query is a refutation... even that is not compatible with 4 | \)

• Many Horn logic axiom definitions cannot be used in C P [J,, |] , in the sense that no
version of these axioms, suitably annotated to form a legal C P [| , |] program, has
a meaning that is compatible with their logical semantics.
As an illustration, no version of the axioms:

p (X ,Y) : - t (X , Y) .
p (X ,Y) : - p (X,Z) , p (Z .Y) .

annotated with ' J ' and l | ' annotations can be guaranteed to work correctly (i.e.
compute the transitive closure of p/2) for an arbitrary (Horn) definition of p /2) .

For example, consider the program:
/ * i . * / p (0 , l) .
/ * 2 . * / p (0 , 2) .
/ * 3 . * / p (l , 3) .
/ * 4 . * / t (X l , Y |) : - p(X,Y) | t r u e .
/ * 5 . * / t (X j , Y j) : - p (X,Z) , t (Z , Y) | t r u e .

The query ? - t (0 , 3) . may fail because in Clause 5, the goal p(X,Z) may commit to
Clause 2 (p(0 ,2) .) .

Perhaps one can look for a logical characterisation of the strong success set (that
is the set of all those ground atoms on which the given CP[|] will always succeed).
For sure SSSp C SSp and the degree to which it is smaller reflects the constraints on
existential search because of the don't care commit. For example for the above pro
gram, SSSp = {p(0,1) , p (0 , 2) , p (l , 3) , t (0 , l) , t (0 , 2) , t (1 , 3) } whereas SSP =
S S S p U { t (0 , 3) } .

6 . Alternate commit operations
There are two simple alternate interpretations for 'commit' which distinguish between

6 Alternate commit operations 29

successful and unsuccesful admissible derivations.

6.1. The parallel don't-know commit or the annotation
If ' | ' can be thought of as the 'don't care' commit, then '&' is the 'don't know' commit.

It interpretes 'commit' as 'publish bindings'. It does not delete 0/2-siblings, but instead
continues to follow them, allowing multiple commits of guard systems. Each commit is
to a different copy of the rest of the environment. In effect whereas a : - g | b . extends
some admissible refutation of g by an admissible refutation for b to return one (selected
from possibly many) refutation for a, a : - g & b . extends every admissible refutation of
g by an admissible refutation for b and returns all of them as refutations for a, thereby
avoiding a local commitment to one refutation of a. Therefore, executing a query ends in
failure only if all admissible derivations are finite and failing, just as for P r o l o g . In fact,
we show in [14] that negation as failure is sound for C P [J , , &] so that for every program
SSnFF=Q.

A completely formal description of & is given in [14]. A partial correctness semantics is
given in [16]. Here we simply note that the language CP[&] , that is the language in which
every clause body contains an &c commit operator, but no clause head is j -annotated, has
the same operational interpretation (and hence abstract semantics) as the corresponding
pure logic program. Hence it is possible to write every set of Horn axioms as C P [J., |,&]
programs, with the computed meaning being the same as the desired meaning.

6.2. The sequential don't-know commit or the ; \ ' annotation
Interpretes 'commit' as 'publish bindings and freeze 0i2-siblings'. Here one admissible

SLD-derivation is followed until it terminates. If it terminates in success, nothing is done.
Failure induces backtracking. For partial correctness, the exact backtracking scheme used
(chronological, dependency-directed) is not important, as long as it can be guaranteed
that the system will not terminate in failure as long as even one admissible SLD-derivation
path has not been pursued. That is, no finite SLD-derivation is admissible unless it is a
refutation or else all admissible derivations axe finite and failing. 1 1

6.3. Interrelationships between various interpretations of commit
L e m m a 4: Given a C P program and a query, the set of possible (successful) answers to
a query is the same if the commit operator is interpreted as ' | ' , '&' uniformly throughout
the program. That is, the success sets for corresponding programs in the two languages
are the same.

This is proved in [14]. It is easy to see that the intention of '&' is to cut down the set
FF, and not the set SS. With the ' \ ' commit operator the issue is more complex because
some of the successful answers may be unreachable because of intervening infinitary paths
(as in the case of P ro log) .

The elementary relationships between interpreting the commit operator as ' | ' , '&' and
' \ ' uniformly in a program are as follows:

L l N o t e that pragmatically, the backtracking strategy may be quite important and will determine the character
of the language.

6 Alternate commit operations 30

C P [|, |] Execution of a query always terminates in success iff all admissible derivations
are finite and refutations.

C P [i , \] Execution terminates in failure only if all admissible derivations are finite and
none is a refutation. If a query terminates in failure for a C P [| , \] , it will
always terminate in failure for the corresponding C P [| , |] program.

Execution of a query always terminates in success iff there is an admissible
refutation. (This is true only if we assume OR-fairness and that execution
stops as soon as one answer is found for the top-level query, or equivalently if
all top level queries are of the form ? - a i , . . . a n | t r u e .)

6.4. Why have don't know commits?

As in P r o l o g , allowing implicit search allows the user to write powerful but inefficient
programs. It is our contention that one of the novel aspects of Horn logic programming
is this capability to specify an implicit search: it is this capability which allows simple
logic specifications of complex operations. Thus, for example, much of the work done on
constraint-based computation [21] can be carried out hi an AMD-parallel, 0i2-backtracking
framework (i.e. in C P [! , \]) or in an AMD-parallel, 072-parallel framework (i.e. in C P [|
,&]). As noted in [18], CP[? , |] is a poor framework for such computations.

E x a m p l e 13: Consider the following C P [j , | , &] program

p r o d (X l , Y i , Z) : - Z i s X*Y I t r u e .
prodCXj,, Y, ZJ,):- X =/= 0 | Y i s Z/X.
prod(X, Y | , Z |) : - Y =/= 0 | X i s Z/Y.
prod(X, Y, Z j) : - l e s s (X . Z) , l e s s (Y , Z) , Z := X*Y | t r u e .
Z := Xj*Yj:- Z i s X*Y.

Assume that l e s s / 2 is defined as a generator as if by the collection of clauses
l e s s (i # , j#) : - t r u e & t r u e , for each value of i # and j # such that z # < j# and
that i s / 2 is a primitive for evaluating arithmetic operations. This program can then
'solve' ?- prod(X,X, 16) . to give X=4 by generating and testing possible values for X. For
a finer control on the generation process, a sequential OR may be used. <g)

More examples of this kind are to be found in the author's thesis proposal ([15]).

6.5. The role of don't-care commit

In this language the c | 5 should be used just as the cut is used in Pro log : to signal
determinate solutions or to select one of many possible answers when it is known that
any one of them will suffice. There is definitely a place for the in concurrent Horn logic
programming languages; but we balk from investing it with crucial importance as has been
done in other CLP languages. 1 2

In fact a commonly hold belief in concurrent Horn logic programming circles was that 'committed choice
non-determinism is the crucial feature that makes stream and-parallelism implementable*. Through the
don't know commits we hope to have shown that it is not neceswiry to give up stream and-parallelism.

C P [1 , &]

7 A meta-interpreter in C P [| , |, &;] 31

X = I : - I / Y$.
un i fy (Xj , Y) : - X =Y | t r u e .

c p (G j) : -
c l ause ((Goa l : - Guard I Body)) ,
un i fy(Goal , G),

e x e c u t e - a l l (G u a r d) | e x e c u t e - a l l (B o d y) .

c p (G j) : -
c l ause ((Goa l : - Guard & Body)) ,
un i fy (Goa l , G),
e x e c u t e - a l l (G u a r d) & e x e c u t e - a l l (B o d y) .

cp(t r u e j ,) : - t r u e I t r u e .
e x e c u t e - a l l (• , • (O n e , R e s t) j) : -

t r u e | cp(One), e x e c u t e - a l l (R e s t) .
e x e c u t e - a l l (t r u e j) : - t r u e | t r u e .

Table 3: A C P [J , , | , &] meta-interpreter.

7 . A meta-interpreter in C P [| , |,&]
Finally, to show the expressive power of the language C P [| , | , &] we present here

a simple meta-interpreter. Note that it is not possible to give as simple an interpreter
for C P [| , |] in C P [| , |] . This interpreter can be extended to give an interpreter for
C P [u , I , &] i n C P [| , t , | , &] .

7.1. The meta-interpreter
We define a predicate cp /1 which takes as input a goal and solves it. The user-program

is added in as clauses of the form:
c l ause ((Head:-Guard */, B o d y)) : - t r u e &c t r u e , where:

• All instances of ' j ' in Head are replaced by '$ ' , which will be regarded as a unary
post-fix function symbol,

• Guard and Body are sequences of goals of the form '{ffi,.. . <7n}'«
In addition we alsc have the following axioms (which can be added automatically) for
every functor f / n , (n > 0) in the user-program, the axioms:

f (X l , . . . X n) | = f (Y l , . . . Y n) $: - XI = Y l , . . .Y l=Yn | t r u e .
f (X l , . . . X n) $ = f (Y l , . . . Y n) i : - XI = Yl , . . .Y l=Yn | t r u e .

(Note that we could give an alternative definition using =. ./2 as in Table 2.)
Then the interpreter is given by the program in Table 3.
The 'built-in' predicate ^ /2 used in the program has the following semantics: a query

X Y suspends until the principle functors of X and Y are known, it then succeeds

8 Acknowledgements 32

iff the functors are not identical. Note that in the above program whenever a ^ /2 goal
executes the principal functors of its two arguments are known.

7 .1 .1 . W h y t h e r e is n o s imple C o n c u r r e n t P r o l o g m e t a - i n t e r p r e t e r

The reason one cannot write as simple an interpreter for CP[j , |] is that in CP[j , |] one
cannot add the user-program as a list of c l a u s e / 1 clauses to the interpreter as we have
done because then a call to c lause ((Head : -Guard|Body)) would succeed at most once,
selecting some c l a u s e / 1 clause at random whereas we would like to select all clauses in
parallel and execute their guards concurrently, i.e. we don't know which clause we want.
Hence we are forced to represent the program explicitly as an argument to the interpreter,
as a list of clauses and that makes any meta-interpreter very messy.

Note that in [9], Meirowsky gives just such a meta-interpreter for F l a t C o n c u r r e n t
P r o l o g . This meta-interpreter makes use of a c l a u s e / 2 predicate which is assumed to be
pre-defined such that a goal c l ause (Goa l , Clauses) succeeds iff Goal is instantiated to
a goal and returns in Clauses a list of all the candidate clauses in the user program for
Goal.

This is precisely the point we made earlier: because there is no don't know determinism
in C o n c u r r e n t P r o l o g , all search has to be programmed, making the language much more
procedural rather than declarative.

7.2. An interpreter for Concurrent Prolog?
Given that we can specify the semantics of '?'-unification in C P j j , f, |] it may seem

as if we can write a simple interpreter for C o n c u r r e n t P r o l o g in C P [| , T > |) &] along
the lines of the program given in Section 7. We would try to do this by using the same
program, but with the definition of u n i f y / 2 given in Table 2 instead of the definition of
u n i f y / 2 given above. Such an attempt will not succeed because in C o n c u r r e n t P ro log ,
in effect, c?'-unification occurs at two places. One place is the unification of a goal with
the head of a clause, and this we can take care of by using the alternate definition of
u n i f y / 2 . The other place where unification happens in C o n c u r r e n t P r o l o g is when an
0i2-parallel guard system commits bindings to the /lAfi>sibIings of the parent goal. In
C o n c u r r e n t P r o l o g , as discussed in Section 3.3.2, this can lead to some previously active
goals and guard systems being frozen. This cau never happen in any C P language, where,
by definition, ordinary unification is done at commit time.

8. Acknowledgements
Many thanks to Larry Rudolph and Steve Brookes for helpful discussions. I am also

thankful to Tony Kusalik, Ehud Shapiro, Jacob Levy and other correspondents of the
Prolog Digest for responding to a discussion on some of the issues raised herein and to
Steve Gregory for his comments on an earlier versi6n of this paper.

8.1. Historical Note
This paper was first written up in May 1985 and circulated privately in the concurrent

8 Acknowledgements 33

logic programming community. Some of this material has earlier appeared in the P r o l o g
Diges t , and was a subject of much discussion. It turned out that some of these points
had been made earlier by Tony Kusalik privately in discussions with Ehud Shapiro and
the ICOT Group. Meanwhile K. Ueda from ICOT also had written up his critique of
C o n c u r r e n t P r o l o g and this came out in June 1985 as [22]. This present version, which
is the first to be published, is essentially a revision of the paper circulated in May 1985
with some additional expositions, examples and elaborations.

8 Acknowledgements 34

REFERENCES

[I] Apt, K.R., van Emden, M.H., 'Contributions to the theory of logic programming',
JACM, vol. 29, No.3, July 1982, pp 841-862.

[2] Clark, K.L., Gregory, S., TARLOG: parallel programming in logic', Res report
DOC 84/4, Imperial College, (revised June 1985).

[3] Courcelle, B., 'Fundamental properties of infinite trees', Theoretical Computer
Science, 25 (1983) 95-169.

[4] Hellerstein, L., Shapiro, E.Y. 'The MAXFLOW experience', International Sympo
sium on Logic Programming, Atlantic City, New Jersey, February, 1984.

[5] JafFar, J., Lassez, J.-L., Maher, M.J. 'A theory of complete logic progams with
equality', Technical Report 43, June, 1984, Department of Computer Science,
Monash University.

[6] Jones, N.D., Mycroft, A., 'Stepwise development of operational and denotational
semantics for Prolog', Proceedings of the 1984 International Symposium on Logic
Programming, Atlantic City.

[7] Lassez, J.-L., Maher, M.J. 'Closure and fairness in the semantics of programming
logic', Theoretical Computer Science 29 (1984) 167-184.

[8] McCarthy, J. 'A basis for a mathematical theory of computation', in Computer
Programming and Formal Systems ed. Braffort, P. and Hirschberg, D., North-
Holland Amsterdam, 1963.

[9] Mierowsky, C 'Design and Implementation of Flat Concurrent Prolog', CS84-21,
Weizmann Institute of Science, December, 1984.

[10] P r o l o g Diges t Volume 3, Issue 6, 28 Feb 1985.
[II] P r o l o g Diges t Volume 3, Issue 7, 5 Mar 1985.
[12] P r o l o g Diges t Volume 3, Issue 8, 11 Mar 1985.
[13] P r o l o g Diges t Volume 3, Issue 9, 18 March 1985.
[14] Saraswat, V.A., 'An operational semantics for Concurrent Prolog', in preparation.
[15] Saraswat, V.A., 'Concurrent logic programming languages', Thesis proposal, Com

puter Science department, Carnegie-Mellon University, November 1985.
[16] Saraswat, V.A. 'Partial correctness semantics for C P [j , (,&]', Proceedings of the

Fifth Conference on Foundations of Software Technology and Theoretical Computer
Science, New Delhi, December 1985, Springer-Verla-g LNCS 206.

[17] Shapiro, Ehud Y., 'A subset of Concurrent Prolog and its interpreter', CS83-06,
Weizmann Institute technical report.

[18] Shapiro, E.Y., Takeuchi, A., 'Object oriented programming in Concurrent Prolog',
New Generation Computing, 1 (1983) 25-48.

[19] Shapiro, E. Y., 'Systems programming in Concurrent Prolog', POPL, 1984.
[20] Shapiro, E. Y., 'Systolic programming: a paradigm of parallel processing', Proceed-

ings of the Fifth Generation Computer Systems Conference, 1984.

8 Acknowledgements 35

[21] Steele, G.L., 'The definition and implementation of a programming language based
on Constraints' , PhD Thesis, EECS Department, M.I.T., August, 1980.

[22] Ueda, K. 'Concurrent Prolog re-examined', ICOT TR-102 Draft, June 1985.

[23] Ueda, K., 'Guarded Horn Clauses', ICOT Technical report TR-103, June 1985.

