
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Extending a Capability Based System 
into a Network Environment 

Robert D. Sansom, Daniel P. Julin and Richard F. Rashid 

24 April 1986 

Abstract 
The Mach operating system supports secure local communication within one node of a distributed system 
by providing protected communication capabilities called Ports. The local port-based communication 
abstraction can be extended over a network by Network Server tasks. The network servers effectively act 
as local representatives for remote tasks by implementing an abstraction of Network Ports. To extend the 
security of the port-based communication abstraction into the network environment, the network servers 
must protect both the messages sent over the network to network ports and the access rights to network 
ports. This paper describes in detail the protocols used by the network servers to support protection. 

Technical Report CMU-CS-86-115 

Copyright © 1986 Robert D. Sansom, Daniel P. Julin and Richard F. Rashid 

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA order 
#4864, monitored by Space and Naval Warfare Systems Command under contract N0039-85-C-0134, and 
by an IBM Graduate Fellowship. 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as representing the policies, either expressed or implied, of the Defense Advanced Research 
Projects Agency, the IBM Corporation or the US Government 



Table of Contents 
1. Introduction 
2. Local Capability Scheme 
3. Network Communication 
4. Mechanisms for Protecting Network Communication 

4.1. Protecting Message Data 
4.2. Protecting against Active Attacks on Messages 
4.3. Secure Transmission of Network Port Access Rights 
4.4. Detecting Network Port Death 

5. Protocol Details 
5.1. Transfer of Send Rights 
5.2. Transfer of Receive Rights 
5.3. Searching for a Network Port 

5.3.1. Port Search Procedure 
5.3.2. Implicit Transfer of Receive or Ownership Rights 

5.4. Case Analysis of Protocols 
5.4.1. No Rights 
5.4.2. Send Rights 
5.4.3. Receive or Ownership Rights 

6. Discussion 
6.1. The Cost of Security 
6.2. Implementation Issues 

7. Conclusions 
Acknowledgements 



1. Introduction 
Systems such as DEMOS [3], Hydra [1] and Accent [8] pioneered the use of capabilities to provide 

access to communication channels. Communication channels protected in this way - DEMOS links, 
Hydra mailboxes and Accent ports - could in turn be used to represent protected access to resources or 
service objects managed by user-level processes. Several commercial offerings, for instance the MBOS 
operating system developed by ELXSI Corp., have also followed this strategy. The flexible protection 
mechanisms offered by the coupling of communication channels with capabilities have allowed these 
systems to implement a variety of security policies within a single computer node. 

While techniques for implementing capabilities in a single computer system have long been 
established [9], little has been done to extend capability systems - especially those based on message 
communication - beyond a single uniprocessor or tightly coupled multiprocessor into a network 
environment. With the exception of Accent, network operating systems research has tended to emphasise 
connectivity and communication speed over security issues. The V Kernel [4], for example, supports 
extremely fast network transmission times for messages but provides neither security for the transmission 
of data by a process nor protection from malicious data transmitted by other processes. 

As the size of networking environments have grown from tens to thousands of nodes and as network 
operating systems have begun to make the transition from research tools to production computing 
environments, the need to extend local node security mechanisms, such as capabilities, into the network 
environment has become apparent At Carnegie Mellon this need for increased security has led us to 
extend the original Accent model of transparent network communication to include the secure exchange 
of communication capabilities and data. This work has been incorporated into a new multiprocessor 
operating system which is the logical successor to Accent: the Mack kernel [2]. Mach is 4.3 BSD UNDC1 

binary compatible and has been adopted within the CMU Computer Science Department as the standard 
multiprocessor and uniprocessor operating system on VAX mainframes and workstations. As of March 
1986, Mach was operational on the four processor VAX 2 11/784, as well as members of the Micro VAX 2 

family. 

The Mach kernel's capability system is defined in such a way that it can be extended transparently into 
the network environment by user-level Network Server tasks. Such an extension offers many advantages: 
it supports higher-level protection mechanisms for the distributed system; it maintains the semantics of 
the local capability system in the distributed system environment; and it naturally provides secure 
communication channels between tasks on different nodes of the system. 

lUnix is a trademark of AT&T Bell Laboratories. 2VAX and MicroVAX are trademarks of Digital Equipment Corporation. 



In this paper we will show how the protocols used by Mach's network servers maintain the same 

security guarantees over the network as the Mach kernel provides within one node of the system. The 

network server protocols protect both communication between tasks on different nodes and access rights 

to ports. They thus provide a secure network communication abstraction which can be used as the basis 

for higher-level security protocols such as authentication and authorisation of users and servers. These 

higher level security services are discussed in a companion paper [10]. 

2. Local Capability Scheme 
The Mach operating system kernel supports a secure local Inter-Process Communication (IPC) 

abstraction based on communication capabilities called Ports. Ports are kernel objects on which 

messages can be queued or dequeued. Tasks are the basic unit of resource grouping in Mach and can only 

access a port if they hold a local capability for that port Since tasks execute in protected virtual memory 

address spaces3, they can only affect other, unrelated tasks by using the communication facilities. The 

Mach kernel protects access to ports and allows tasks to hold one or more of the following access rights to 

a port: 
• receive - only one task at a time may hold receive access to a port. A task with receive 

access to a port is allowed to dequeue messages that have been queued on the port 
• ownership - only one task at a time may hold ownership access to a port. A task with 

ownership rights to a port will acquire the receive rights to the port should the receiver4 die. 
Should the owner die, then the receiver acquires the ownership rights. By default, the 
ownership and receive rights are held by the same task. However, splitting; the ownership 
and receive rights provides some degree of fault tolerance. 

• send - many tasks may hold send access to a port. A task with send access to a port is 
permitted to queue messages on the port provided that the port's queue is not full. When 
both receive and ownership rights to a port are deallocated, the Mach kernel informs senders 
of the death of the port. 

A task can only gain access to a port by receiving the access rights in a message sent to it by the kernel or 

by another task that already holds rights to the port Send rights to a port can be transferred by a sender as 

well as the port's receiver or owner. Furthermore, both receive and ownership rights can move between 

tasks. 

The Mach kernel provides three basic security guarantees for ports and messages: 
1. Only the task holding receive rights to a port can obtain a message sent to that port. 
2. Only tasks with send rights to a port can send messages to that port. 
3. A message sent to a port is revealed only to the source and destination tasks. 

3Mach actually allows tasks to share memory with their children but this does not affect the semantics of the IPC abstraction. 

4Note that we commonly refer to the task holding receive rights to a port as the receiver and, correspondingly, to the sender 
owner. 

2 



These security guarantees allow an object model of computation, in which ports represent protected 

objects, to be implemented securely. A user-level task managing a protected object will create a port to 

represent access to that object, and securely pass send rights for that port to a client. The client can then 

invoke an operation on the object by sending a message to the port The Mach kernel guarantees that the 

port representing the object cannot be fraudulently obtained by a malicious task. 

3. Network Communication 
By itself, the Mach kernel does not provide any mechanisms to support inter-process communication 

over the network. However, the definition of Mach IPC allows for communication to be transparendy 
extended by user-level tasks called, by convention, Network Servers. Network servers effectively act as 
local representatives for tasks on remote nodes. Messages destined for ports with remote receivers are 
actually sent to the local network server as shown in Figure 3-1. 

Node 1 Node 2 

Network Server Network Se rve r 
Sent to #10068 \ 

local remote _ ^ local remote 
7 10068 - Simplex Connection — $ 5 10068 

> / 
/Sent to m / 1 / Sent to #5 

A 
Task A O 

Task B 

Task A on Node 1 sends a message locally to Port #7. A believes that it is sending the message to task B, but really the message 
is sent to the local Network Server. This Network Server receives A's message and translates local Port #7 into Network Port 
#10068. It notes that Network Port #10068 resides on Node 2 so it forwards the message to the Network Server on Node 2. 
When it receives the message, the Network Server on Node 2 translates Network Port #10068 into local Port #5 and sends the 
message to this port The message arrives at its destination which is Task B. (Note that this example is a simplified description of 
the activity of mapping ports since it omits the mapping that is done by the kernel of each node when a message is sent between 
the user task and the Network Server.) 

Figure 3-1: Sending a Message across the Network 

Moreover, when a task sends a message to a destination port on another node, the forwarding of the 



message is transparent to the sender. In other words, the sender has no direct means of determining 

whether the eventual destination port is local to its node or is actually on a remote node. 

To support the forwarding of messages between nodes, the network servers collectively implement an 

abstraction of Network Ports. A network port represents a port to which tasks on more than one node 

have access. Each network port is known by its Network Port Identifier. A network server maintains a 

mapping between those network ports that are accessible to tasks on its node and the corresponding local 

ports. Thus, for instance, if a local task has access to a port that represents access to a remote server, the 

network server will maintain a mapping between the local port and the network port that represents access 

to the remote server. In addition, just as local tasks hold access rights to local ports, so do network 

servers hold access rights to network ports. In particular, each network server holds receive rights to 

those network ports for which the receive rights to the corresponding local ports are held by local tasks. 

Send and ownership rights to network ports are handled in the same way except that send rights to a 

network port may be held by many network servers. 

In operation, when a network server receives a message from a task trying to send a message to a 

remote destination port, it maps the local destination port into a destination network port identifier. The 

network server then derives the address of the destination node from the network port identifier and sends 

the message over the network to this node. The destination network server, on receiving the network 

message, maps the network port identifier into a local destination port and forwards the message to its 

ultimate destination. A network server must examine messages sent or received over the network to. 

determine whether they contain port access rights and, if so, update the mapping between local and 

network ports. Network servers can recognise ports in messages because messages consist of a sequence 

of typed data objects. 

In order to transmit messages between themselves, network servers split messages into datagrams 

which are transmitted over the network using a network level protocol (currently the DoD Internet 

Protocol [5]). Each network message is uniquely identified by a combination of the source node identifier 

and a time-stamp. Datagrams forming one message are numbered in sequence so that they can be 

reassembled in the correct order by the destination network server, and so that duplicate and lost 

datagrams can be detected. The actual protocol used is a variation of Richard Watson's delta-t 

connectionless transport protocol [11], 

4 



4. Mechanisms for Protecting Network Communication 
Malicious nodes can potentially compromise the security of messages and ports in a variety of ways: 

• a node can illicitly read messages being transmitted between network servers, 
• a node can disrupt or replay the messages sent between network servers, 
• a node can fraudulendy pretend to have send rights to a network port, 

• a node can masquerade as the receiver of a network port and thus receive messages destined 
for the real receiver, or 

• a node can cause another node to believe that a network port has died, thereby depriving that 
node of access to the port. 

Furthermore, ports cannot be used tQ represent protected access to services and resources unless the 
underlying network port abstraction is secure. 

These threats to the security of messages and ports can be prevented if: 

• the data transmitted between network servers can be protected, 
• active attacks on message streams can be prevented, 

• access rights to network ports can be securely transferred between network servers 
• the network server holding receive or ownership rights to a network port can be correctly 

identified, and 

• the death of a network port can be securely detected. 

Thus, the network servers must support all of these functions if they are to provide a secure network port 
abstraction. 

4.1. Protecting Message Data 

Messages transmitted over the network are protected by encrypting them. We use a secret key 

encryption scheme, similar to DES [6], in which encryption keys are maintained for each pair of network 

servers in active communication. Messages sent to the receiver are encrypted by the secret key shared 

only by the sending node and the receiver's node. These keys are distributed by a trusted, central Key 
Distribution Server using a variation of the Needham and Schroeder key distribution protocol [7]. 

4.2. Protecting against Active Attacks on Messages 

Encryption by itself is not enough to prevent active attack on messages. Such attacks involve the 
reordering, duplication or modification of datagrams or the replay of network messages. All of these 
attacks are prevented by the transport level mechanisms provided for both protected and unprotected 
communication in combination with data encryption. Datagram sequence numbers detect reordering and 
duplicating. Checksums on datagrams prevent modification attacks. Time-stamps and message sequence 
numbers can be used to detect message replays. 

5 



4.3. Secure Transmission of Network Port Access Rights 
Secure exchange of data between network servers does not imply that network port access rights are 

protected. To protect access rights to network ports, network servers must be able both to transfer the 
rights between themselves securely and identify a network port's receiver and owner correcdy. More 
specifically, these requirements mean that a network server must be able to: 

• authenticate a network server which claims to have send rights to a network port, 
• locate the network server currently acting as the receiver for a network port, 
• re-locate the new network server which is the receiver for a network port after receive rights 

to the port have been migrated between nodes, and 
• authenticate a network server as the legitimate receiver for a network port. 

A network server must also be able to locate and authenticate a network port's owner. In general, the 

same procedures can be used for locating and authenticating both owners and receivers. 

The ability to authenticate a network server claiming access to a port depends on the structure of the 

network port identifier. A network port identifier consists of: 

• a 64-bit Public Unique Identifier (PUID) used primarily to locate a new receiver, 
• a 64-bit Secret Identifier (SID) used to represent send rights, 
• the address of the network port's receiver, and 
• the address of the network port's owner. 

For convenience, a network port identifier is written as: 
[PUBD, SID, Receiver, Owner] 

Each network server is responsible for ensuring that the PUIDS that it generates are unique. Network 

servers use a combination of their node's address and the current time of day to generate unique PUIDs. 

The SID is a random number generated by the network server that created the network port. Only 

network servers with access to the port know its SID, and therefore knowing the SID is equivalent to 

possessing send rights to the port Network servers without send rights to the port are highly unlikely to 

be able to guess its SID and thus cannot illicitly obtain send access to the port. 

Whenever a network server acquires send rights to a network port by receiving a message from another 

network server, it is important that it be able to identify the location of the port's receiver (and owner). 

By examining the address of the network port receiver contained in the network port identifier, a sender 

can identify both a potential receiving node and the encryption key that should be used to protect 

messages destined for this network port. 

Unfortunately, the network server receiving a network port identifier cannot assume that the receiver 
specified in the identifier is still the current receiver for the port Since the Mach port abstraction allows 

6 



for the transfer of receive rights as well as send rights between tasks, receive rights to a port may move 

from one node to another. When receive rights to a network port move to a different network server, a 

network server with send access to the port must be able to determine the identity of the new receiver. 

The information a sender has about the location of a network port's receiver can be maintained in two 
different ways: either the information is explicitly updated every time the receiver moves, or it is left up 
to the sender to obtain new information as necessary. The first alternative requires that a list be kept of all 
network servers with send rights to a network port. The list could be kept either by a trusted central 
server, in which case the server must be informed reliably of any movement of access rights, or by the 
port's receiver, in which case the list must be transferred to a new receiver along with the access rights to 
the port. Both these approaches involving maintenance of a list of senders are impractical given that the 
Mach IPC abstraction allows send rights to a port to be transferred not only by the receiver but also by 
any task with send access to that port. Moreover, the use of a central, trusted server would place an 
inordinate amount of dependency on a third party. Another alternative is to maintain the list of senders 
implicitly by using a secure multicast facility to distribute information about the movement of receive 
rights. It would be up to an individual network server, when it receives send rights to a network port, to 
join the multicast group for the port. Multicasts would be made secure by encrypting transmissions with 
a key that is specific to the multicast group. The key would form part of the network port identifier. Such 
a secure multicast facility, however, is not currently available in our internet environment. 

Thus, the only realistic scheme for updating information about a network port's receiver is to place the 
burden on senders to locate a new receiver. The simplest way for a sender to determine the location of a 
new receiver securely is to query (and believe) the old receiver. If the original receiver has crashed then 
the sender can query the network port's owner. However, if both the original receiver and owner have 
crashed, the sender is left with no direct means of locating the new receiver. In this case the only way in 
which a new receiver can be located is to make a broadcast5 request asking if any network server is the 
receiver for the network port By definition, broadcasts are not secure and thus no private information 
can be included in the broadcast request. Hence the network port identifier must contain some 
identification information that is public and can be used in broadcasts. The PUID described above serves 
this purpose. 

Once a sender has found a potential receiver for a network port, it must verify the authenticity of the 
newly located receiver. When the identity of the new receiver is obtained from the owner or the old 
receiver, then the sender trusts the information it has received and believes that the new receiver is 

broadcast at the network server level win probably translate into a multicast at the physical network level so that the 
transmission is restricted to those nodes running a Mach network server. nc iwur* ievei so mat tne 

7 



authentic. On the other hand, when the new receiver's identity is obtained from a response to a broadcast 

request, then the sender must authenticate the new receiver explicitly. In order to be able to perform this 

authentication, the sender must have previously obtained a token, that represents the receiver's 

authenticity, from the original receiver. This token consists of a random number, X, and the network 

port's secret identifier (SID), both encrypted by KR, a key known only to the receiver (and the owner) 

and used to represent receive (and ownership) rights. The complete token, as held by a sender, is thus6: 

(X, PCSID]1™) 

To authenticate the new receiver the sender sends it the token. Only if the new receiver knows KR, and 

thus is able to decrypt the token and return the random number X to the sender, is it authentic. 

4.4. Detecting Network Port Death 
A network port dies when both receive and ownership rights to the corresponding local port are 

deallocated. The local network server is informed by the Mach kernel of the port's death. The network 

server changes the status of the corresponding network port to dead. In addition, it unreliably and 

insecurely informs other network servers of the port's death by broadcasting a port-death message that 

names the port's PUID. A sender must be able to confirm the network port's death, whether it receives 

the broadcast port-death message or not, so that a malicious node cannot take advantage of the port's 

death. 

The location and authentication procedure used for identifying a new receiver for a network port is also 

used for determining that a network port is dead. The dead port's receiver and owner are queried to 

determine the dead port's state if they still have information about the port. Otherwise, a sender must 

resort to a broadcast request for information about the network port. Any responses received as a result of 

a broadcast must be authenticated as described above. The port can be declared dead if no authentic 

information about its receiver or owner is received. 

5. Protocol Details 
A detailed examination of the network server protocols will give more insight into the mechanisms 

needed to extend the port abstraction securely over the network. The operations crucial to maintaining 

security are: 
• the transfer of send rights to network ports, 
• the transfer of receive rights to network ports, and 
• the procedure followed by a network server when it needs to determine the existence and 

location of a network port's receiver or owner. 

6 [ X ] K stands for encryption of X by key K. 

8 



5.1. Transfer of Send Rights 

Send rights to a network port can be obtained either directly from the network server which holds the 
receive rights to the port or indirecdy from a network server holding send rights to the port. In the first 
case, shown in Figure 5-1 7 , the receiver includes a token along with the network port identifier. 

Receiver --> Sender [PUID, SID, Receiver, Owner, X, [X, SID]™] 

PUID is the network port's public unique identifier. SID is the secret identifier. X is a random number made up by the receiver 
KR is the key representing receive (and ownership) rights. 

Figure 5-1: Transfer of Send Rights from Receiver 

In the second case, shown in Figure 5-2, the network server acquiring send rights to a network port 
explicidy requests a token from the port's receiver. 

Sender t - > Sender2 Send Rights to [PUID, SID, Receiver, Owner] 

Sender2 - > Receiver GetToken (SID) 

Receiver --> Sender2 New token for SID is (X, [SID, X] K R ) 

PUID is the network port's public unique identifier. SID is the secret identifier. X is a random number made up by the receiver 
KR is the key representing receive (and ownership) rights. 

Figure 5-2: Transfer of Send Rights from a Sender 

In both cases, the receiver must create a token, by generating a new random number and encrypting it 
with the key that represents receive rights. The token can later be used by the sender to authenticate a 
different network server that claims to be a new receiver for this network port. A sender cannot 
masquerade as a new receiver because each sender obtains a distinct token from the receiver. 

Note that a network server, once it has obtained send access to a network port, retains send access to 
that network port as long as the port remains alive, even if all tasks on that node with send access have 
terminated. This is because the Mach port abstraction does not allow a port's receiver to determine 

spiffed
 tS££ m C S S a g C S i D P r 0 t O C O l S ^ e n C i y P t e d b y

 thC
 n C t W O l k S C r V C r * n e t W O r k s e r v e r s e c t i o n keys unless 

9 



whether or not any tasks still hold send rights to the port. 

5.2. Transfer of Receive Rights 
Receive rights to network ports must be transferred reliably between network servers if they are to be 

transferred securely. The new receiver must acknowledge that it has received the rights from the old 

receiver. The network message acknowledgement can act implicidy as the acknowledgement of the 

transfer when the access rights are transferred explicidy in a message from a task on one node to a task on 

another node. The new receiver must acknowledge the transfer explicidy when the rights are being 

transferred because the local task holding the rights either dies or deallocates the port. In addition, in both 

cases the network server transferring the rights unreliably informs the port's owner about the transfer if 

the ownership rights are not held by the receiver. 

Figure 5-3 describes the protocol for transferring receive rights. Ownership rights, and receive and 

ownership rights combined, are transferred similarly. 

Old Receiver 

Old Receiver --> New Receiver 

New Receiver 

New Receiver - > Old Receiver 

Old Receiver 

Old Receiver 

Old Receiver --> Owner 

Block reception of messages on port 

[PUTO, SID, Old Receiver, Owner, KR] 

Change Network Port Identifier to [PUID, SID, New Receiver, Owner] 

Rights successfully received. 

Change Network Port Identifier to [PUID, SID, New Receiver, Owner] 

Unblock port 
Network port is now [PUID, SID, New Receiver, Owner, KR] 

PUID is the network port's public unique identifier. SID is the secret identifier. KR is the key representing receive (and 
ownership) rights. The message to the owner is sent only if the owner is a different network server from the old or new receiver. 

Figure 5-3: Transfer of Receive Rights 

A transfer of receive rights to a network port requires synchronisation between senders and receivers if 
messages are to remain comecdy ordered. The network port is blocked during the transfer to ensure that 
senders do not become conftised about the current identity of the receiver. Blocking the port means that 
the old receiver refuses to accept messages destined for this port but does, however, send back negative 
acknowledgements to the sender to reassure the sender that the port is still alive. The old receiver 
unblocks the network port when it is certain that the receive rights are now held by the new receiver. 
When a sender, that was blocked during the transfer of rights, attempts to resend the message to the old 

10 



receiver, it is informed by the old receiver that the receive rights have moved to the new receiver. It is not 

necessary to block and unblock a network port when ownership rights to the port are transferred. 

5.3. Searching for a Network Port 

A network server initiates a search for a network port whenever it needs to verify or correct its 
information about that port The search consists of the network server sending a number of port request 
messages to other network servers until either it has obtained the desired information or it decides that no 
network server has any reliable information about the port We describe the procedure used by a sender 
to locate a receiver, the procedure to locate an owner is identical. 

53.1. Port Search Procedure 

The first step in locating a network port's receiver is to query the network server that is currently 
believed to be the receiver. The answer to this request may be any of the following: 

• port here - the receive rights are still held by the responding network server. 
• port dead - the responding network server is sure that the network port is dead (for instance, 

because it deallocated the port). Note that in order for this information to be available, the 
receiver must keep some information about this network port for some time after the port's 
death (see Section 6.2 for further discussion about this issue). 

• port not here, transferred - the responding network server believes that the receive rights are 
now held by the network server named in the reply. 

• port not here, unknown - no information about this network port 
• no response - the network server is dead. 

Note that the answer given by the queried network server is believed because it has or had receive rights 

to this network port and is still trusted with respect to this port 8 If the answer is either port here or port 
dead then the search concludes successfully. If the port not here answer designates another network 

server, then the searching network server proceeds to query this new network server by restarting the port 

search procedure. This second network server is trusted because it was named by the old receiver. 

If the queried network server provides no useful information about the network port, then the search 
procedure continues first by querying the port's owner if the owner is not the same as the receiver. The 
responses from the owner are treated in the same manner as the responses from the receiver. 

Finally, if no useful information can be gained either from the network port's receiver or owner, then 
the searching network server must resort to an unencrypted broadcast port request naming the port's 

In general, once a network server has held receive rights for a port it can never be prevented from acting as a transparent 
intermediary between tasks with send access and a new receiver. A network server can set itself up as an intermediary by 
creating a new port, passing receive rights to this new port instead of receive rights for the original port and then intercepting and 
retransmitting messages sent to the original port. 

11 



Public UID. Ideally the broadcast should be reliable, in other words all network servers should receive it 

and have a chance to respond to it. We simulate a reliable broadcast by repeating the broadcast request a 

small number of times. Only the real receiver or owner should respond to such a broadcast request. The 

authenticity of a responding receiver or owner can be verified by using the token that was previously 

obtained from the original receiver. The authentication protocol is shown in Figure 5-4. 

Sender --> New Receiver 

New Receiver 

New Receiver - > Sender 

PUID is the network port's public unique identifier. SID is the secret identifier. X is a random number made up by the port's 
original receiver and known to the sender. KR is the key representing receive (and ownership) rights. 

Figure 5-4: Authentication of New Receiver using Token 

Only if the new receiver replies with the random number X can the new receiver be trusted. Note that the 

new receiver only replies to the sender if the correct secret identifier is included in the token. 

If the searching network server receives no response to the broadcast request, then the port can be 

declared dead and deallocated locally. 

5.3.2. Implicit Transfer of Receive or Ownership Rights 
As well as being used by senders to check up on the status of a network port, the port search procedure 

is also used by a network port's receiver or owner when the receive and ownership rights to the port are 

split between two network servers. The receiver or owner periodically checks the status of the 

complementary network server, using the port search procedure, to determine if the complementary rights 

have been implicidy transferred to it due to the death of the other network server. For instance, upon the 

crash of the network server holding receive rights to a network port, the receive rights are transferred 

implicidy to the network server holding ownership rights to the port. 

A network server may effectively hold both receive and ownership rights to a network port but not 
know it until the death of the complementary network server is detected. This implies that the results of a 
port request sent out by a sender may be different before and after the receiver or owner has done a 
checkup. To ensure that a sender does not erroneously decide that a network port is dead, its port search 
must not fail as long as one of the owner or receiver still responds albeit with incorrect information. 

Authenticate [PUID, [X, SED]K R] 

Decrypt [X, SID]™ and check SID 

[XI 

12 



5.4. Case Analysis of Protocols 

The security of the network server protocols can be demonstrated by analysing all the events that a 
network server experiences with respect to one network port. These events result from the activities in 
which a network server may be engaged. The activities are: 

• The transport of IPC messages over the network. 

• The transfer of access rights to network ports either explicidy in a network message or 
implicitly because receive and ownership rights are split between two network servers and 
one of them deallocates its access rights to the port. 

• The unreliable notification of a network server holding one of receive or ownership rights to 
a network port, that the complementary rights have been transferred to a third network server. 

• The unreliable broadcast of a hint about a network port's death hint when both the port's 
receive and ownership rights have been deallocated. 

• The broadcast of a restart message as part of a network server's initialisation; this message 
informs other network servers that access rights to network ports held by the restarted 
network server before it crashed are now effectively deallocated. 

• The sending of port checkup requests to network servers that may hold receive or ownership 
rights to a network port; these requests help determine whether the port is still alive or 
whether its receiver or owner have moved. 

In the following sections, we examine the events resulting from these activities in terms of what effect 
they have when a network server holds no rights, send rights or at least one of receive and ownership 
rights to a network port. In each case, those events not considered do not affect the security of the 
protocols. 

5.4.1. No Rights 

The events that a network server experiences and the actions that it takes when it holds no rights to a 
network port are: 

1. Reception of send rights. 
The network server obtains a token of the receiver's authenticity if such a token was not included 
with the rights just received. 

2. Reception of receive and/or ownership rights. 
The network server must believe that it really has been given the rights. 

Additionally, in both the above cases the network server creates a new local port and establishes a 
mapping between the local port and the network port. Note that send rights to a port are normally 
obtained as part of a secure higher level protocol, for example from a trusted name server, thus ensuring 
that the port's initial receiver can be trusted. A network server that later claims to be a new receiver for 
this port can be authenticated using the token obtained from the initial receiver. 

13 



5.4.2. Send Rights 
The relevant events that a network server experiences and the corresponding actions that it takes when 

it holds send rights to a network port, apart from those arising as part of a locally initiated port search 

procedure, are: 
1. A request from a local process to send a message to this port. 

The network server attempts to send the message to the machine cunendy believed to be the 
receiver for the network port. If the information about the receiver turns out to be incorrect, then 
the old receiver will send a negative reply (or no reply if it is dead). The sender must then begin 
the port search procedure. 

2. Initiation of a regular port checkup. 
The network server begins die port search procedure. Normally the search will return 
immediately with a confirmation that the current information is still valid. However, if the reply 
is negative, or if there is no reply, the search must be continued as described in Section 5.3. 

3. Reception of a broadcast message indicating that the port is dead. 
The network server begins the port search procedure for the network port suspected to be dead. If 
no network server answers, or if some trusted server answers that the network port is dead, then 
the information held about die port can be deleted and the corresponding local port can be 
deallocated. This deallocation will cause the Mach kernel to send a message to the local tasks that 
have send access to the port, informing them that the port is now dead. 

4. Reception of a broadcast message indicating that the network server holding ownership or 
receive rights to the port has restarted. 
As above, the network server begins the port search procedure for the network port. The network 
port is either dead or its receive or ownership rights are held by a different network server. 

5. Reception of a port-request that is part of a port search by another network server. 
In this case, the decision to reply depends on whether or not the network server has relevant 
information to provide, and whether or not an acknowledgement of the request is expected. If the 
request is broadcast, then no acknowledgement is expected and the request can be ignored; some 
other network server having receive or ownership rights will give a more useful answer. If the 
request is not broadcast, it must be acknowledged. The network server must check that the request 
is valid by examining the secret identifier, and then must send the information that it currendy 
holds about the network port Note that in this latter case, the network server replies because it 
may once have held receive or ownership rights to the network port, and thus its answer will be 
trusted and used by the querying network server. 

6. Reception of a network message destined for this port. 
As in the previous case, the network server replies with the information it currendy holds about 
the network port because it must have once held receive rights to the port. The sender will treat 
the response as a negative acknowledgement and start a port search procedure. 

7. Reception of send rights. 
The network server checks that the information received about the network port matches the 
information it currendy holds. If there is a mismatch then the port search procedure must be 

14 



initiated to determine whether the network port received is indeed the same port as the one already 
known about. If the mismatch cannot be resolved then the two network ports are treated as 
separate ports. 

8. Reception of receive and/or ownership rights. 
In this case, the network server will receive the key (KR) that represents receive and ownership 
rights to the port. The network server can verify that the network server sending the rights is to be 
trusted by checking that the key is correct. Note that the network server can only do this if it 
previously has obtained a token of the receiver's (or owner's) authenticity. The key is valid if it 
can be used to conecdy decrypt the token. 

5.4.3. Receive or Ownership Rights 

A network server holding receive or ownership rights must handle any of the events experienced by a 
network server holding send rights alone. Additional events that a network server experiences, and the 
corresponding actions that it takes, are: 

1. Reception of a network message from another network server. 
The network server accepts the message if it holds receive rights to the network port Otherwise it 
replies with a negative acknowledgement and gives the information it has about the port's status. 

2. Deallocation of the corresponding local port by a task on the network server's node. 
The network server transmits a broadcast message indicating that the network port is dead if it 
holds both receive and ownership rights to the port. On the other hand, if the network server holds 
only one of receive and ownership rights, then the rights are transferred to the network server 
holding the complementary rights. A local port search procedure will be initiated if the other 
network server no longer has the complementary rights. 

3. Request from a sender for a token. 
The network server generates a new random number, encrypts it and the network port's SID with 
the key (KR) that represents receive and ownership rights to the port It then returns both the 
token and the new random number to the sender making the request 

4. Reception of an authentication request. 
The authentication request names the network port's PUID and includes a token. The token is 
decrypted using the key (KR) that represents receive and ownership rights to the port If the 
decrypted token contains the correct SID, then the network server sends a reply that includes the 
random number obtained from the token. 

5. Request from a local task, that really holds receive or ownership rights to the local port, to 
transfer one of the rights to a remote task. 
The network server transfers the access rights as part of the normal network message protocol. In 
addition, if the rights complementary to those being transferred are held by another network 
server, then this other server is unreliably informed about the transfer of rights. 

6. Reception of the complementary access rights. 
In this case, the network server receives the key (KR) representing receive or ownership rights to 
the network port. To check that the network server sending the rights is to be trusted, the key 

15 



received in the message must be compared with the key currendy associated with the network 
port. 

7. Reception of a broadcast indicating that the machine believed to be holding the complementary 
rights has been restarted. 
The network server initiates a port search procedure for each of the network ports that may have 
been lost Even if the broadcast message contains incorrect or fraudulent information, the port 
search procedure will always determine the correct information. 

8. Reception of a hint indicating that the complementary rights have been transferred to a third 
network server. 
In this case, the transfer hint contains the key (KR) representing receive or ownership rights to the 
network port Before updating the information kept about the network port, the network server 
checks the validity of the transfer hint by comparing the key received in the hint and the key 
currendy associated with the network port 

6. Discussion 

6.1. The Cost of Security 
Security never comes for free. In making Mach's network communication secure, the main added cost 

comes from having to encrypt message data. Other additional costs come from the protocols needed to 

protect access rights to network ports when they are transferred between nodes and from the procedures 

required to locate and authenticate new receivers for network ports. 

One approach to dealing with the cost of security is to ensure that the protection mechanisms are only 

used when necessary and not by default Secure and insecure messages should be distinguished and 

treated separately. The extra work required to protect message data and securely transfer port access 

rights need only be done for secure messages. Any ports that appear in a secure message are treated in a 

secure fashion, and have their access rights transferred securely over the network. In addition, any port 

that is being treated as secure should never be included in an insecure network message. 

Another approach to reducing the cost of security is to take into account which actions are common and 

which are rare. Common actions should not cost as much as less frequent actions, even when performed 

securely. For example, send rights to network ports are far more ftequendy transferred between network 

servers than are receive or ownership rights. Thus the cost of securely transferring send rights across the 

network should be kept low, even if in doing so the cost of transferring receive or ownership rights is 

increased. 

Reducing the cost of transferring send rights is of particular importance when considering remote 
procedure call interactions. In a remote procedure call, send rights to a reply port are transferred on every 

16 



call. Thus, if, as described in Section 5.1, tokens are to be used to authenticate receivers, a new token 
needs to be generated on every call. To prevent this unnecessary expense, the reply port could be treated 
as a special case and not have a token associated with it. Alternatively the receiver could keep a list of 
those network servers to which it has already sent tokens. The cost of keeping such a list can be made 
relatively small, because the list does not have to be totally accurate, and it is not necessary to transfer this 
list when receive rights to the network port move to another network server. 

Two further schemes for reducing the cost of securely transferring send rights do not use a token at all. 
In the first scheme, the receive and ownership rights to the network port would be split between two 
different network servers before any send rights to the port are transferred. A sender could then 
authenticate a new receiver by simply querying the owner, provided that the owner maintains up-to-date 
information about the identity of the receiver. In the second scheme, public key encryption would be 
used to authenticate a network port's receiver. The network port identifier would contain a public key, 
and the corresponding private key would be known only to the receiver and owner. To authenticate a 
receiver, a sender would encrypt a random number with the public key and send the result to the receiver. 
Only if the receiver knows the private key could it correctly decrypt the random number, increment it and 
return it, still encrypted by the public key, to die sender. 

6.2. Implementation Issues 

When implementing the network server protocols, there are several design decisions to be made that 
influence the behaviour of the protocols but do not affect their security. 

There are tradeoffs involved in the determination of when a port checkup should be initiated and how 
exactly a port search should proceed. A port checkup could be triggered every time new or conflicting 
information is received about a network port However the resulting port search is wasted if no use of the 
port is made before more new or conflicting information is received. On the other hand message 
transmission latency would be increased if the port search were always delayed until stricdy necessary. 

The port search itself can proceed either by querying individual network servers or by resorting to 
broadcasts early in the search procedure. Using individual messages may unnecessarily prolong the 
search procedure. Using broadcasts will waste processing time at network servers that have no 
information about the network port. 

In addition, it is useful to distinguish between port checkups and port requests. A port checkup occurs 
when a network server is just making sure a network port is alive and asks another network server for 
information about the port. A port request occurs when a network server thinks that it has incorrect 
information about a network port and wants to update it. In particular, a port request received by an 

17 



owner or receiver should trigger the owner or receiver into checking its own information. The port 

request is an indication that the information held by one of the sender, receiver or owner is incorrect 

Another issue concerns the length of time for which a network server needs to maintain information 

about a dead network port. A network server holding both receive and ownership rights to a network port 

declares the port dead when both access rights are deallocated locally. The network server then 

broadcasts a death hint naming the port's public unique identifier. The broadcast hint prompts network 

servers with send access to the dead network port into confirming the death of the port. Broadcasting a 

hint has the advantage of reducing the period for which the sender falsely believes that the network is still 

alive. It has the disadvantage, however, of potentially causing the receiver to be swamped with requests 

for information about the port. If no broadcast is made, senders can still find out about the death of the 

port as part of their regular check up on the port's status. In either case, the receiver has to maintain 

information about the dead network port until no more status requests arrive. To determine when this 

information can be discarded, a time-out is set, and, after the time-out expires, the network server can 

assume that all senders have found out about the death of the network port. The time-out can be set to be 

a simple function of the checkup interval if all network servers regularly check up on all the ports to 

which they have access. Even if some network server still does not have up-to-date information after the 

time-out has expired, it can later broadcast an information request and determine the fate of the port 

securely. 

Lasdy, it is still open to debate whether, when receive and ownership rights to a network port are split, 

both the receiver and owner should always maintain accurate information. Maintaining accurate 

information has advantages. For instance, the cost of the port search procedure could be reduced if the 

owner of a network port always has reliable information about the port's receiver. To ensure that both the 

receiver and owner of a network port hold the same information about the port implies that a two phase 

commit protocol must be used whenever receive or ownership rights are transferred. However, the 

expense of the commit protocol is not justified if the holder of the complementary rights does not use the 

information about the transfer. Currendy we have decided to inform the complementary network server 

unreliably. This may be more expensive than the reliable transfer if a network server is often forced to 

resort to the port search procedure to determine the new location of the complementary rights, but is 

cheaper when network communication is highly reliable. 

18 



7. Conclusions 
We have shown that it is feasible to extend a capability based system securely over a network. Such a 

scheme has a number of important advantages over end-to-end encryption as the basis for building a 
secure distributed system: 

• The number of user-level protection abstractions is reduced by relying solely on the port-
based capability system for all protected access to services and resources. 

• All secure information that must be transmitted over the network is protected by default 
rather than relying on haphazard encryption which may or may not be done by user 
processes. 

• Encryption is avoided between tasks on the same node and may also be avoidable when the 
physical network itself is known to be secure. 

The Mach network server currently operates on VAX architecture machines within the CMU 
Department of Computer Science (including Micro VAX I & II, VAX 11/750's, 11/780's and 11/785's). 
It does not yet (March 1986) perform encryption, but we are in the process of integrating the protocols 
discussed in this paper into the network server. 

Acknowledgements 
We would like to thank Eric Cooper, Jeffrey Eppinger, Debra Lynn, Mary Thompson and Edward 

Zayas for reading drafts of this paper and giving helpful comments. 

19 



References 
[1] G. Almes and G. Robertson. 

An Extensible File System for Hydra. 
In Proceedings of the 3rd International Conference on Software Engineering. IEEE, May, 1978. 

[2] Robert Victor Baron, Richard F. Rashid, Ellen H. Siegel, Avadis Tevanian, Jr. and Michael 
Wayne Young. 
MACH-1: A Multiprocessor Oriented Operating System and Environment. 
In New Computing Environments: Parallel, Vector and Systolic, pages 80-99. SIAM, 1986. 

[3] F. Baskett, J.H. Howard and J.T. Montague. 
Task communication in DEMOS. 
In Proceedings of the Sixth ACM Symposium on Operating Systems Principles. November, 1977. 

[4] David R. Cheriton and Willy Zwaenepoel. 
The Distributed V Kernel and its Performance for Diskless Workstations. 
In Proceedings of the Ninth ACM Symposium on Operating Systems Principles. October, 1983. 

[5] National Technical Information Service ADA079730. 
DOD Standard Internet Protocol. 
Technical Report IEN-128, Defence Advance Research Projects Agency, January, 1980. 

[6] National Bureau of Standards. 
Data Encryption Standard. 
Federal Information Processing Standards Publication 46, U.S. Department of Commerce, 1977. 

[7] R.M. Needham and M.D. Schroeder. 
Using Encryption for Authentication in large Networks of Computers. 
Communications of the ACM 21( 12):993-999, December, 1978. 

[8] Richard F. Rashid and George G. Robertson. 
Accent: A Communication Oriented Network Operating System Kernel. 
In Proceedings of the Eighth ACM Symposium on Operating Systems Principles. December, 

1981. 
[9] Jerome H. Saltzer and Michael D. Schroeder. 

The Protection of Information in Computer Systems. 
Proceedings of the IEEE 63(9):1278-1308, September, 1975. 

[10] Robert D. Sansom. 
Security in a Network Operating System. 
In Securicom 86 - 4th Worldwide Congress on Computer and Communications Security and 

Protection. March, 1986. 
[11] Richard W.Watson. 

Timer-Based Mechanisms in Reliable Transport Protocol Connection Management. 
Computer Networks :47-59, February, 1981. 

20 


