By (2.27) we have in a similar fashion, $\mathbf{t}_{\mathbf{r}',\mathbf{r}'} = \mathbf{t}_{\mathbf{r}',\mathbf{r}'}$, and $\mathbf{t}_{\mathbf{s}',\mathbf{r}'} = \mathbf{t}_{\mathbf{s}',\mathbf{s}'}$. By Remark 5, we have on a C^r -boundary

$$t_{r'} = t = t_{r'}, t_{r'}, t_{r'} = t_{r'}, t_{r'}, t_{r'} = t_{r'}, t_{r'} = t_{r'}, t_{r'} = t_{r'}, t_{r'}, t_{r'}, t_{r'}, t_{r'} = t_{r'}, t_{r'}, t_{r'}, t_{r'} = t_{r'}, t_{r'}, t_{r'}, t_{r'}, t_{r'} = t_{r'}, t_{$$

Pn a (?, -boundary $\mathbf{t}_{\mathbf{x}} = \mathbf{t}_{\mathbf{s}} = \mathbf{t}_{\mathbf{s}}$, $\mathbf{t}_{\mathbf{r}}$. Let C be a smooth portion of a $C_{\mathbf{t}}$ -boundary having proper slope. We parameterize C in the (r,s) plane by (h(J),k({)) and c' in the (r',s') plane by $(\mathbf{h}(\mathbf{f}),\mathbf{k}(\mathbf{f}))$. Then

$$t_{r\pounds} = h' t_{rr} + k' t_{rs} ,$$

$$t_{sf} = h' t_{sr} + k' t_{ss} .$$

By (2.24) and the fact that t = t, t = 0 on C. $r \ s \ rs$ Thus, on C t ., = h t and $t_v = k' t$. Similarly on c' t $_{iff} = h t rrand t _{s'J} = k t _{ss}$. Since on C $t_r = t _s = t _{s'} = t _{r'}$, we have $t_{rj'}$, $= t_{s'k} = t _{r'j}$. Select J so that h (J) > 0, then on the 0^{*}t-boundary C and C *, since C has proper slope,

$$sgn(t_{x, t}) = sgn(t_{ii}) = sgn(t_{oo}) = sgn(t_{ii}, j) = sgn(t_{ss}, j) = sgn(t_{sg}, j)$$
for C with positive slope,
$$(3.18)$$

$$sgn(t_{rf}) = sgn(t_{rr}) = sgn(-t_{sg}) = sgnft^{f} = sgn(-t_{g/g/}) = sgnft^{f})$$
for C with negative slope.

By (1.101) the condition $(f=0 \text{ or } ff_t = 0$ is necessary in order for a curve to be an internal boundary. We now investigate the extent to which this is <u>sufficient</u>. ' A curve is an internal boundary if it separates plastic