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Abstract 

Brute force chess automata searching 8 plies (4 full moves), or deeper have been dominating the computer 
chess scene in recent years and have reached master level performance. One interesting quesdon is whether 3 
or 4 additional plies coupled with an improved evaluation scheme will bring forth world championship level 
performance. Assuming an optimistic branching ratio of 5, speedup of at least one hundredfold over the best 
current chess automaton would be necessary to reach die 11 to 12 plies per move range. 

One way to obtain such speedup is to improve the gate utilization and then parallelize die search process. In 
this paper, two new designs of functional units with higher gate efficiency tfian previous designs in the 
literature will be presented. The first design is for move generation only, and is essentially a refinement of the 
move generator used in the Belle chess automaton, the first certified computer chess master. The second 
design is a general scheme diat can be used for evaluating a class of chess-specific functions, besides 
generating moves. A move generator based on die second design will be described. Applications of the same 
general scheme to board evaluation will be briefly discussed. 
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1 . Introduction 

The computer chess scene has been dominated by brute force chess automata—machines that perform 

full-width or/? search—in recent years. Notable examples include Belle, a special purpose machine, and two 

programs running on Cray supercomputers, Cray Blitz and NuChcss. Both Belle and Cray Blitz search 8 plies 

(half-moves) or more for typical moves. Belle is die first certified computer chess Master, and Cray Blitz is 

the reigning world computer chess champion and was until recently, the North American computer chess 

champion1. Cray Blitz was dethroned by Hitech, a new special purpose chess machine from Carnegie-Mellon 

University, in the 1985 ACM North American Computer Chess Championship tournament. Hitech normally 

searches 8 to 9 plies in midgamc positions and is currently the highest rated chess computer. 

The success of dicsc brute force chess programs is mostly based on the increase of playing strength with the 

search depth. Experimental results [7,16] showed that an increase of between 200-250 rating points is 

observed for each additional ply. It is an open question whether the linear increase can still be maintained 

beyond the current 8-ply search depth of the leading programs. If the linear increase could be maintained, 

then three additional plies or an increase of 600 rating points would put the computer in the league of world 

class chess players. The general opinion at the moment seems to be that the increase would start tapering off. 

On the other hand, it might well be the case that we will see a sudden jump in computer performance against 

humans when a certain ply depth is reached. 

Top human players can now defeat the best chess automata mainly because the human players are capable 

of long, deep calculations and have better "positional" senses. As machines search deeper, it would become 

less likely for a human player to find long, thin lines beyond the machines' search horizon. Former world 

correspondence chess champion Dr. Hans Berliner further observed in his examination of brute force 

intelligence [2], "It is not at all clear that it is more important to deal with long, thin lines of play [as in human 

play] better than with bushy lines [as in computer play]; rather die reverse is probably true." The positional 

aspect of chess is harder though. Deeper searches would certainly improve the machines' positional sense, but 

an accompanying improvement in the evaluation function might be necessary as well. 

To get into the 11 to 12 plies per move range requires speedup of at least a hundredfold over the best 

current chess automaton. Such speedup can be obtained in two ways: pushing circuit technology or 

parallelizing the search process. Exotic circuit technologies now still in the laboratories do hold promise of 

providing speedup of 100 to maybe c»on 1000, but they are more or less a decade off from "real" applications. 

A more immediate approach is to improve the gate utilization while staying with existing technologies and 

Belle searches about 160.000 positions per second, and Cray Blitz searches about 100.000 positions per second in four-processor 
configuration. The discrepancy in search capability is largely compensated by die better utilization of the transposition table and the 
more efficient quiescent search used in the case of Cray Blitz. 
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then parallizc the search process. The gate utilization Is important because it is a limiting factor for the 

maximum speedup achievable, given fixed available resources. This paper will be focused on how to obtain 

better gate utilization than existing designs while getting a small speedup in the process and not on how to 

parallelize die search process. But we will briefly review recent progress in parallel tree search algorithms 

here just to see what may be expected from die existing parallel algorithms. The review is necessarily limited 

in scope and oriented towards theoretical results as the experimental results available are limited to the case of 

few processors. 

Parallel aspiration searching [1], which divides the alpha-beta window among the processors, is known to be 

typically bounded to speedup of 5 to 6 even for not well ordered game trees. Larger speedup, therefore, 

cannot be expected from parallel aspiration searching. Tree decomposition of the simplest kind [5], which uses 

a processor tree with one processor for each move orginating from the root and its descendents, can be shown 

analytically to gain speedup of only 0(№'5) with N processors when the game tree is best-first ordered. 

Speedup of O(N) can be achieved for worst-first ordered game trees, but for games like chess where good 

ordering can be obtained, the best-first ordered result is closer to reality. The search efficiency can be 

improved in this simple scheme by limiting the fanout of the processor tree far below the fanout of the game 

tree, and using die accumulated alpha-beta window to start the search when a slave processor is ready for 

processing additional moves. Another variation, mandatory-work-first searching which utilizes the fact that 

certain nodes in die game tree have to be searched, has also been theoretically analyzed [6]. For a game tree 

of uniform width of 38, which is about the average number of moves in chess midgame positions, and a 

processor tree of fanout of 2, the mandatory-work-first searching is shown to have speedup between № J Z and 

Af0,82 when the game tree is best-first ordered. And when die game tree is worst-first ordered, die speedup for 

mandatory-work-first searching is between № n and № ' % . A similar algorithm, key node method [% which 

uses a queued processor pool model and gains further speedup by "eager" communication of the collected 

bounds, has been reported to show in simulation average speedup of 13 (20°8 6) for 20 processors. Another 

recently introduced algorithm, principal variation splitting[\0,11], has obtained speedup of similar order 

experimentally using a real chess program, although only with up to 4 processors, in which case average 

speedup of up to 3.27 (4 0 , 8 5) has been obtained. 

Arc we limited to speedup of say №*! The author has reasons to believe otherwise, but will not detail them 

here without hard evidence. Assume we would be satisfied with speedup of №' 8 , then the question of 

scalability crops up. That is, arc we limited to small N as seems to be indicated with the current experimental 

results? Again the author believes not, at least not for fast processors. The number of processors diat can be 

used with high efficiency depends on the speed of the individual processors. With higher processor speed, 

more processors can be used efficiently. The cause of this paradoxical behavior is the fact that the machine is 
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expected to make its move in finite time. Assume the processors arc organized as a processor tree. To gain 

high search efficiency, the processor tree will have to grow much slower than the game tree. Assume the 

processor tree is of fanout/and depth d, and the game tree is well ordered and has uniform degree of g. For a 

processor that is capable of searching c plies deep when searching alone, the processor tree would be capable 

of searching about 2/ t / -g c / 2 nodes in the given time, but the game tree will have to be at least of depth d, that is 

the game tree will have at least 2gd/2 nodes. Equating the two node figures, we know that the maximum 

processor tree depth, which is also the upper limit for the game tree depth, is ( — - — \ For efficient 

l - 2 l O g r 

parallelization,/has to be much.smaller than Vg". th e effective branching factor, and the limit does exist. 

Assuming that / = 2 , g=38, and c=4, which are typical figures for chess programs used in parallelization 

experiments, we have a maximum search depth of 6.46 plies. However, this search depth is obtained when 

the processor tree is as deep as the game tree; that is, the terminal processor is evaluating only one single node 

between message passing. Realistically, to keep the communication overhead under control, the searched 

game tree normally has to be deeper than the processor tree. Also, we have been assuming perfect processor 

efficiency, which is also unrealistic. Assume the game tree is k plies deeper than the processor tree and the 

speedup is Ne

9 given N processors. Following similar reasoning, we know the maximum game tree depth 

becomes (k+ \ For a best-first ordered game tree, a large fraction of the searched nodes one ply 
l - 2 d o g r 

above the the terminal nodes will have only one branch that needs to be searched. The parameter k thus 

probably should be at least 2. Assume £=2 . Even if we have e= 1, the maximum game tree depth is still only 

about 5.23, or maximum quality speedup of only about 9.4 (or 38^ , 2 3~ 4^ / 2), and maybe less. Increasing the 

processor tree fanout will lift this limit, but at the cost of reduced efficiency. The improvement is not too 

promising though—for / = 3 and e=0.8, which is probably optimistic for a processor tree fanout of 3, the 

maximum search depth is still only about 5.85. We can thus expect any attempt to try to gain large speedup 

efficiently with slow processors unsuccessful, at least under the processor tree model. The experimental results 

in the literature, which are obtained with "slow" processors2, seem to bear this simple fact out: the speedup 

tends to start leveling off at a small number, which can sometimes be as low as 4. To gain higher speedup, the 

experimenters either increase the processor fanout or increase the processor tree height near the limit, and the 

speedup degrades. Moreover, the existence of this slow processor effect may not be restricted to the processor 

tree model. The simulation results with the key node method [9], which uses a processor pool model, show 

that the speedup improves for the larger processor pool when the searched game tree depth is increased. The 

increase of the game tree depth is equivalent to an increase of available search time, or the use of faster 

processors. Of course, the existence of the slow processor effect does not mean that no other factors play a 
With the exception of Cray Blitz. But Cray processors are hard to come by. Worst case speedup of 3.2 was stated for 4 processors 

which compares very favorably with worst case speedup sometimes as low as 2 from other experiments. It would be wron« to regard this" 
as an example of the slow processor effect discussed here though. The particular algorithm that was used can be expected to show lower 
speedup H n o t for the shared transposition table used. However, a different form of slow processor effect e\ iMs in (his case Hie deeper 
search tree resulting from the higher processor speed also increases die probability of transposition, and thus the final speedup 
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role in the leveling off of the obtained speedup. But the existence docs mean tfiat it would be wrong to 

extrapolate from die experimental curves and jump at the conclusion that no significant speedup can be 

obtained efficiently. As a final note, even though slow processor effect plagues existing algorithms, it is 

possible to reduce the effect at the.cost of algorithm complexity. 

In this paper, we will be examining the possibility of building single chip high speed chess subfunctions. 

Equipped with such devices, one will be able to explore and experiment with ways of parallelizing the search 

process with relative case. The devices are expected to be able to support search speed of 500K - 1M positions 

per second in single thread configuration, or about 3-10 times the current generation of chess machines. 

Assuming that further speedup in the range of 100-1000 is obtained by parallelization, a machine that 

searches 12-14 plies does not seem too far off. 

We will first briefly review previous designs for chess machines. A single chip parallel move generator that 

uses basically the same move ordering as the Belle move generator will then be presented. Circuit 

refinements that reduce both the device count and the wire count and also increase the layout regularity are 

applied to the original TTL Belle move generator to derive the single chip move generator. Some minor 

deficiencies in the original Belle move generator are also fixed. A pipelined version of die move generator 

will then be shown. The pipelined move generator is smaller than the parallel version but is also slower. 

Applications of the same pipelined scheme to various chess evaluation functions will then be described. 

2. Previous Designs 

In the later half of the 70's, two different groups started building specialized machines for chess using 

off-the-shelf TTL components. The first group [12] at MIT implemented a simple move generator together 

with a general purpose microprogrammable processor. No hardware evaluation was provided, and the 

ordering of the moves generated was controlled by the microprogram with some hardware assistance. The 

other group at Bell Labs went tiirough dircc iterations which culminated in the now famous Belle 

automaton [3] in die early 80's. The Belle chess machine has both a hardware move generator and a hardware 

evaluation function built in. The hardware evaluator is further divided into an incremental cvaluator and a 

'slow' evaluator. Belle consists of ten large wire wrap boards, with four each for the move generator and the 

'slow' evaluation function. The Belle move generator can generate one move per microsecond. The 'slow* 

evaluation function evaluates die ray control and the pawn structure and takes two microseconds per 

evaluation. However, Belle only searches about 160,000 positions per second because the controller and the 

hash table, which were built with late 70's components, slow down the entire system. We will examine the 

Belle move generator in some more detail in the next section. 

VLSI technology has been applied to the design of brute force clicks machines with varying degrees of 
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success. A single-chip move generator [13] was claimed to be able to generate 360,000 moves/sec, but the 

designers failed to point out that the moves generated are not ordered by the relative merit and that the move 

generation status is not maintained nor is a masking mechanism provided. In a real system all the legal moves 

at one position would have to be generated and then sorted by an off-chip processor before the next position 

could be examined. A more realistic figure would be no more than 60,000 moves/sec, assuming zero 

overhead for sorting and retrieval of the moves.3 No fabricated chips were available at the time of publication . 

for this design, and no details were given on how the move sorting and retrieval would be done. 

Another move generator design [4] that was done at Carnegie-Mellon University and is now used in die 

Hitech chess machine took a different approach. Instead of simplifying the circuit and throwing away 

functionality, a 64-chip, one chip for each square, design is used and a fairly complicated ordering scheme is 

employed4. A maximum speed of 500,000 moves/sec is reached. The maximum speed of this 64-chip move 

generator may seem to be inferior to the speed of Belle's move generator; however, as a compensation, the 

move generator has a theoretically better move ordering scheme than Belle and has special setup.for 

generating check evasion moves, both of which should have positive effects on search efficiency. When the 

evaluation function is slow and dominates the search time, a machine based on the Hitech move generator 

will be able to search deeper than a machine based on the Belle design. In fact, Hitech is probably die speed 

champion in mid-game at the moment. It searches about 175,000 positions per second and probably about 

half a ply deeper than Belle on the average. On the other hand, the 64-chip design is also wasteful in terms of 

silicon real estate—an enormous amount of redundant circuitry has to be added to reduce die communication 

cost. And it is not clear that the better move ordering would be adequate compensation for lower speed when 

evaluation can also be done fast. One might want to argue diat the better move ordering would provide 

exponential savings in deep tree search. In reality, this argument does not completely hold when the 

transposition table is used to provide additional move ordering information, which is normally the case for the 

top programs, including Hitech itself. The transposition table in this case provides far better move ordering 

information than the move generator can reasonably supply, at least for the levels of the game tree near the 

root. Mechanisms such as killer tables also provide additional ordering information independent of die move 

generator. And die savings obtained from die better move generator move ordering mainly exist in die last 

one or two plies and arc probably only about 10-20 per cent or less5. However, for comparison with Belle, the 

3 Assuming an average of 36 moves for typical midgamc positions, we get 10,000 positions/sec. But assume at each position 6 moves 
are actually made on the average, the real figure becomes 60,000 moves/sec. 

4 
The actual system uses more than 64 chips. Some additional chips are used for special move generation and a few SSI/MSI chips arc 

used to interface the chips. 

5 Carl libeling reviewed these figures and agreed that they were probablv correct. Real confirmation of these figures w i l l : . •-• r;m 
until Carl completes his simulation of the various ordering schemes thou^i. 
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argument partially holds. Based on engineering decisions made back in die late 70s when memory was still an 

expensive resource, the Belle chess automaton docs not store the move ordering information in the 

transposition table. While it had been speculated that the Belle move generator cannot test move legality, 

Ken Thompson explained in private communication that indirect move legality testing can be done, and for 

testing moves from the transposition table, indirect testing would be sufficient. Also since Belle docs keep 

track of the move ordering explicitly for the top levels of the search tree, the exponential saving is still only 

realized for the lower levels of the tree. The unavailability of full move legality check is still a minor problem 

for the Belle move generator though, as full move legality check would be desirable if killer tables are to be 

used, and will be resolved as part of the proposed circuit refinement in the VLSI move generators presented 

in this paper. 

3 . A VLSI Parallel C h e s s Move Generator 

A description of the Belle move generator [3] and the related move ordering scheme will first be given and 

then circuit refinements that both reduce the circuit size and give a slight improvement in functionality will be 

presented. 

3.1. The Belle Move Generator 

The Belle move generator is composed of an 8x8 array of similar combinatorial circuits and a 6x64-input 

priority network. Two operations arc provided, FIND-VICTIM and FIND-AGGRESSOR. Each of the 64 

combinatorial circuits consists of a transmitter, a receiver, a four-bit register holding the piece and a 1-bit wide 

64-bit deep disable stack. Each transmitter sends signals to its (chess) neighbors, and each receiver accepts 

signals from its neighbors. Figure 3-1 and Figure 3-2 show block diagrams of the transmitter and the receiver 

circuit based on the drawings and written description in the original article [3]. 
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Figure 3-1: The Transmitter Circuit Used in Belle Move Generator 
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"The transmitter generates attacks radiating from a square. The main component of the transmitter is a 

read-only memory (ROM). The ROM generates a set of wires active if the square contains the corresponding 

piece. The global signal WHITE-TO-MOVE [WTM] is true if White is on the move." In the 

FIND-AGGRESSOR cycle, only the addressed victim transmitter is allowed to radiate attack signals and only 

as a super-piece that is the union of all non-pawn pieces. Also, a pawn move signal is radiated from the vicdm 

square if the square is empty and a pawn capture signal is radiated from the vicdm square if die square is 

occupied. 
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Figure 3-2: The Receiver Circuit Used in Belle Move Generator 

"The receiver section analyzes the attacks generated by the transmitters. The main component of the 

receiver is a programmed logic array (PLA)." 'The PLA accepts the concentrated attack signals, the resident 

piece, WHITE-TO-MOVE, the disable bit and the op-code. It generates seven priority signals corresponding 

to the value of the attacked piece [in FIND-VICTIM cycles]." In FIND-AGGRESSOR cycles, the priority 

signals are in reverse order of the piece value and the priority signals arc generated only if there is an attack 

signal corresponding to the piece on the square. 

The moves are generated in the following way. The micro-code asserts FIND-VICTIM. The priority 

network then finds the highest enabled attacked piece. The address of the attacked piece is latched and used 

as the victim square in the following FIND-AGGRESSOR cycle in which the lowest valued enabled aggressor 

on the selected victim is found. After die selected move is processed, the last aggressor square is disabled and 

the next lowest aggressor is found until there arc no more aggressors on this victim. The victim square is then 

disabled and all the aggressor squares enabled. Then the next victim is processed in the same way until all the 

victims arc exhausted. Ail the victim squares and all the aggressor squ • :s are re-enabled for die next new 
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position at the same search depth, and the whole process starts all over again. The disable stack is used to 

keep track of the move generation status at each search depth. The moves generated this way arc only 

pseudo-legal moves as the king of the moving side might be checked if the moves are made. Also, die special 

chess moves have been deliberately left out in our presentation here as they only complicate our discussion 

without serving useful purpose. 

3.2. From TTL to VLSI 

Now we will examine the problems associated with directly implementing the Belle move generator in 

VLSI. Simple calculation shows that the Belle move generator as it is would be difficult to fit into one single 

chip in today's commercial process. Both the number of wires and the number of devices are too high. The 

largest bundle of wires is used by the priority network: 384 wires. For the 3 jutm MOSIS CMOS process with 

7 /xm metal pitch, 384 parallel metal wires alone would be almost 3 mm high. And beside these wires, each 

square has no fewer than 50 wires to its neighbors. In terms of device count, it fares no better. If each stack 

cell contains 8 transistors, the 64x64 disable stack alone will need 32K transistors. And the transmitter, the 

receiver and the priority network have not been counted yet. The 64-bit disable stack at each square also 

further aggravates the wiring problem because most of the wires will have to be routed around the stack6. 

From the above discussion, it is clear that in order to fit a Belle-like move generator into a single die, two 

modifications will have to be made: reducing the number of wires used by the priority network and reducing 

the number of devices used by the disable stack. It is also desirable to have a fast, regular priority encoding 

mechanism. 

We will first look at the problem of the disable stack. Is the disable stack really needed? The answer 

surprisingly is no. With the move ordering scheme used in Belle, the move stack that is normally maintained 

by the controller actually contains enough information about the move generation status. After an unmove 

cycle backdating die board position, we know that the victim to be tested is the same as die victim in die move 

just unmoved and all the aggressors that have lower value than die last aggressor or have the same value as the 

last aggressor but a lower or equal square priority should be ignored. And if a new victim is needed, the new 

victim will have to have lower value than the original victim or have the same value and a lower square 

priority. In other words, the disable stack is redundant. If a proper masking mechanism is provided to 

generate masks from the move stack, die entire disable stack can be removed. It will be shown how such a 

masking mechanism can be provided along with a reduction in the size of the priority network. As a sidenote, 

providing the disable stack instead of a masking mechanism might well have been easier for die Belle TTL 

6 l t is possible to move the Mack out of the basic cell at the cost of more wires going into the cell, but the proposed complete el 
of the slack in this paper is definitely preferable. 
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implementation. 

The priority network can be viewed as a huge priority encoder with 384 inputs or as an arbiter with 64 

competing elements. The Belle move generator takes the priority encoder view and uses up lots of long wires 

for the priority network alone. However, if we view die priority network as an arbiter, a more wire-efficient 

scheme can be used if we adopt a distributed arbiter approach. In a distributed arbiter, individual priority 

lines arc replaced widi a wircd-or arbitration bus. Each competing element monitors the arbitration bus and 

dynamically removes lower order bits from competing whenever a high order bit loses out. Instead of using N 

wires, 0(log2N) wires are sufficient. Distributed arbiters of diis kind have become quite popular in 

multiprocessor bus design lately. The earliest description of this arbitration scheme was in a 1966 UK patent; 

Matthew Taub of IBM rediscovered the scheme in 1975 and Leo Paffrath at SLAC rediscovered it yet again 

for the Fastbus project [8,15]. A MOS implementation of one competing element of such a distributed 

arbiter is given in Figure 3-3. The pullup transistors for the wired-or bus lines are not shown in the figure. In 

this particular circuit, at the end of the arbitration process, the priority of the competing element with the 

highest priority will appear on the bus in negative logic form. Assume each row of cells use a 7-bit bus, 1 bit 

indicating the existence of competitors, 3 bits for piece priority and 3 bits for square priority, a total of 56 

wires for the eight chess rows would be needed versus the 384 wires for die priority network design. 
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Figure 3-3: A Competing Element of a Distributed Arbiter 

Introducing a masking mechanism into the distributed arbiter is relatively straightforward if certain 

assumptions are made about die relative square priority. Assume a row-major square priority scheme is used. 
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A mask bus, which can double as the piece register loading bus, broadcasts die type of the highest priority 

piece now allowed to compete. All squares with higher piece priority inhibit diemselvcs from the 

competition. And all squares with lower piece priority enter the competition. Additional masking signals as 

shown in Figure 3-4 arc used to decide whether to mask off a square with the broadcasted piece priority. Of 

these signals, die row-enable signals are set if and only if the row priority is lower than the last square tried; 

the row-select signals are set only for die row the last square was in; the column-select signals arc set for all 

the columns with lower column priority than the last tried square. 

Squares with the piece priority broadcasted by the mask bus are then allowed to compete depending on 

their row-select, column-select and row-enable signals: 

1. If the row-enable signal is set, then the square competes. 

2. If bodi the row-select and column-select signals are set, then the square competes. 

3. Otherwise, the square is disallowed to compete. 
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Figure 3-4: The masking signals for squares with the broadcasted piece priority 

The elimination of the disable stack and the integration of die masking mechanism into the arbitration 
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network not only free up the area used by the disable stack, but also simplify the receiver design. The receiver 

no longer needs to be disabled: the masking mechanism takes care of that. While both the original Belle 

transmitter and receiver circuits arc suboptimal for compact VLSI implcmcntadon, we will not go into detail 

on how to improve them. The built-in masking mechanism also offers a more flexible way of ordering moves 

than the Belle move generator. For one thing, check evasion moves can be generated with relative ease. And 

the minor problem of full move legality testing can be solved by using the next higher priority move as the 

mask and testing whetiier the generated move is the same as the given move. 

All in all, it is estimated that when all the circuit refinements are applied to the Belle move generator, the 

chip area is probably reduced by more than a factor of four over direct implementation. A CMOS version of 

such a single chip move generator has been designed and simulated with a switch simulator on a workstation 

with a simulation accelerator. Spice simulation on circuits extracted from preliminary layout indicates about 

3-4 ns worst case ray ripple delay per chess square and about 6-8 ns per arbitration bit. The cycle time is 

about 100-150 ns, or about 400-600 ns per move7. The chip has about 36K transistor sites. The chip fits into a 

40-pin dual-in-line package and has a die size of 6912x6812 microns, the MOSIS standard die size. 

4. A Pipelined C h e s s Move Generator 

Suppose because of yield considerations and/or power consumption constraint we want to further reduce 

the chip area over the parallel version of the move generator by serializing part of the operations. 

In this section, we will see a pipelined move generator derived from the parallel move generator in the last 

section. The pipelined version is slower than the parallel version but is also smaller. While there is no plan of 

actually implementing such a chip, this design seems to be appropriate even for MOSIS 4-micron NMOS 

process, which was used to implement the Hitech 64-chip move generator, because of die reduced static 

power consumption. The real reason why diis pipelined move generator is presented here is to introduce a 

general pipelined scheme that can also be used to implement evaluation functions. 

4.1. A Semi-Systolic Chess Algorithm 

One possibility for serializing the move generation process is to examine one move direction at a time, i. e. 

multiplexing say the ray signal lines, in order to save the number of wires needed. This approach has been 

used in the Belle ray evaluate: all die rays in one direction arc examined at a time and after 8 evauation 

cycles, the ray control evaluation is taken from the ray evaluation accumulator [3]. While (his approach is fine 

with ray evaluation as die number of adders is also reduced, it is not clear for a move generator how 

additional move patterns can be accounted for in diis manner widiout further increasing the number of cycles. 

piece registers arc dual ported and normal moves can be updated or backdated in one single cvcle. 
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And also die area reduction achievable for die move generator is not sufficient. 

Another approach which has been tried in one of the earlier VLSI move generators [13] is to use only 8 

square machines and to pipe the board representation in various patterns through die square machines to 

generate moves in one move direction at a time. While the area reduction reached is fine, die design has two 

serious drawbacks: not enough functionality is designed in and the move generation speed leaves much to be 

desired. Around 300 cycles are needed to generate moves for one position and the moves generated are not 

ordered according to relative merits. If the average branching ratio of the a-/J search is 6 and a separate chip 

is available to handle the move sorting and retrieval with no overhead, a 2-chip move generation system based 

on this design will need on the average 50 cycles to generate one move. That is, on a per-chip basis, this 

design leads to a 100 cycles per move per chip figure. 

Now we examine how we can pipeline the operations more efficiendy. In particular, we will be looking at 

how we can borrow ideas from systolic arrays to obtain a better design8. 

Assume we have a linear array of systolic cells communicating with the nearest neighbors and receiving 

input data streams from a large register file containing the piece information. Conceptually, we have a 

hardware configuration similar to the one shown in Figure 4-1. The registers file sends piece information to 

the systolic array cells and the array cells send and receive signals derived from the piece information to/from 

its closest neighbors. 

First we examine what kinds of input data streams for the systolic array are needed. The simplest possible 

input streams arc columns (or rows, we will use columns throughout the paper) of the board, one column at a 

time, from one side to the other. Given such a stream sweeping from the right hand side of the board to the 

left hand side, i. e. KR, KN, KB, K, Q, QB, QN and then QR file, what can we extract from the stream using 

the linear systolic array? For one thing, all the horizontal rays issuing from right to left and all the diagonal 

rays that arc going from right lo left can be tested in 8 cycles. If two streams, one from left to right and the 

other from right to left, arc provided by eidier dual-porting the register file or by replicating the register file, 

then all the rays except the vertical ones can be tested in a systolic fashion in 8 cycles. Alternatively, we can 

time-multiplex a single stream by changing the streaming direction at die end of die first 8 cycles to get a 

16-cycle design. For the moment, we will assume a two-stream design. Do we have enough information in 

these two data input streams to ' xtract die vertical rays and other types of moves? The answer is yes, but 

non-systolically. 

'Curiously enough, the design jusi described in die last paragraph was labeled "systolic". 
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Figure 4-1: A Systolic Chess Machine 

Given the piece data of a column, we have sufficient information about the vertical rays in the particular 

column. The vertical rays in this case can be extracted in a parallel manner as in the ray circuits used in the 

parallel move generator. The pawn moves and king moves in the vertical directions can also be handled in die 

same way as in die parallel move generator—simply sending the derived signals to die vertical neighbors. 

Pawn captures, king moves in non-vertical directions, and knight moves can be handled by delaying die 

corresponding signal by one or two cycles and then sending out a signal to the square itself, die closest 

neighbors, and in the case of knights, die second closest neighbors. Figure 4-2 shows the basic design of die 

pipelined cell that results. 

4.2. The Pipelined Version of the Parallel Move Generator 

The pipelined cell just described is actually two half-cells. Each half-cell examines one input stream and 

processes half of the possible moves. Each half-cell implements half of die transmitter semi-systolically and 

provides a half receiver that is time-multiplexed over one chess row. At every move generation cycle, half of 

the possible moves from two columns arc examined. The pairings of the columns in the 8 systolic cycles arc 

(1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), and (8,1) respectively. Both the FIND-VICTIM and 

FIND-AGGRESSOR operation takes 8 cycles each. 

The resolving of the priority is handled by one column-pair at a time. A column-pair priority is provided 

for the entire linear systolic array for comparison with die current highest priority piece maintained over the 8 

systolic cycles. A masking mechanism similar to the one used by the parallel move generator but with a 

column-pair major ordering can be used. The priority resolving phase can be overlapped with the attack 
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Figure 4-2: The Basic Pipelined Cell 

signal generation phase by providing latches before the priority circuit. Design data from the parallel move 

generator indicate that the two phases take about the same time, which means the cycle dme should be 

around 50-75 ns when the pipeline stage before the priority circuit is introduced. However, we would now 

need 9 cycles each for the two FIND operations. The pipelined design would thus need about 900 to 1350 ns 

to generate one move, excluding the updating and backdating of die board. The speed is about 4 to 5 timps 

slower than die parallel version (200 to 300 ns, excluding move updating and backdadng), but die area is also 

reduced by a factor of 4 to 5. Figure 4-3 shows a higher level view of the array section of the pipelined move 

generator. 

An interesting comparison can be made with the 64-chip Hitcch move generator. The Hitech move 

generator partitions the circuit spatially and the pipelined scheme partitions the circuit temporally. The 

pipelined design needs to add some additional latches to keep track of the temporal information, and the 

Hitech design needs to add a set of additional registers for all the bearing pieces on the square and die 

complete move logic for all die possible moves to the square in order to keep track of the spatial information. 

In this particular case, keeping track of temporal information turns out to be much cheaper than keeping track 

of spatial information. Spatial partitioning scheme should generally be faster than temporal partitioning 

scheme; this is not true in this case, because die spatial partitioning scheme needs inter-chip communications 

to resolve the move priority, while die temporal partitioning scheme can be further speeded up by 

overlapping operations with the introduction of additional pipelined stages9. The fundamental cause diat die 

spatial partitioning does not win here is probably the sequential nature of die move generation process which 

9 Y c t another reason is that we arc comparing a hypothetical design with a roal one?! 
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Figure 4-3: The Array Section of the pipelined Move Generator 

favors pipelining versus outright parallelization. The Hitech move generator does provide better move 

ordering, but as we shall see in the next section, if we are willing to double the hardware size, there is no real 

reason why we cannot obtain similar ordering. 

5. Pipelined Evaluation Subfunct ions 

While there arc quite a few features such as material, piece placement, and some pawn structures that are 

easier to evaluate in an incremental way, certain more subtle features simply require a whole board approach 

to do the evaluation. The pipelined scheme described in the last section provides one such approach. 

Let us review the pipelined scheme and examine it in more detail. The pipelined scheme can be viewed as 

consisting of two main parts: feature detector, which includes the transmitters and receivers, and feature 

compressor, which is the check and priority logic circuit in die case of the pipelined move generator. 

For the pipelined move generator described in the last section, die feature detector only generates one 

player's attack signals at a time. The move ordering obtained is roughly equivalent to what one obtains by 

making a one-ply lookahead to sec whether any material can be gained. This need not be die case. More 

general attack signals could be generated at the cost of more hardware. By providing attack signals from both 

sides and doubling the hardware size, we can get a move ordering diat is roughly equivalent to what one 

obtains by making a two-ply lookahead to see whether any material can be gained safely, or the Hitech move 
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ordering. We are also not limited to real attack signals only cither. Pscudo attack signals can be used to detect 

pins, for instance, which arc "deeper" concepts. More description on how pins can be detected will be given 

shortly. Some pawn structures can also be detected in similar manners, but we will not go into how to 

implement them. 

The most general feature compressor one can get is simply a lookup table, which is of course impractical 

because of the enormous table size. In the pipelined move generator, we have primarily a FIND-

MAXIMUM circuit. Other useful variations include summation circuits, or combinations of summation 

circuits and small lookup tables, or maybe even some weighted summation circuits with variable weights. 

We will describe two evaluation subfunctions that can be implemented with the pipelined scheme: square 

control and pins. 

5.1. Square control 

Square control is a very important evaluation subftmction in chess. When the board position is quiet with 

no immediate tactical gain, die square control term gives the program a sense of strategic direction. Square 

control is also frequendy interrelated with pawn structure and king safety, but we won't go into the details on 

how to handle die interrelation. 

The square control term that is going to be presented here is taken from the program Chess 4.5, which was 

among die series of the Chess X.X programs that prevailed over other 70s' chess programs and predated the 

current NuChess program. The square control term used in chess 4.5 [14] is actually a mobility measure 

instead of real square control, but we will use it as an example here because of its simplicity in concept. 

The square control function in Chess 4.5 assigns weights to squares attacked or defended by each ray piece 

and returns the sum of these weights. Bishops are assumed to exert no control over a square that has a 

friendly pawn and queens arc assumed to exert no control over a square that is attacked by enemy pawns. 

Bishops arc given a relative bonus of 3 for each square controlled, rooks a bonus of 2, and queens a bonus of 

1. The figures given here arc relative terms; the actual figures in Chess 4.5 are the above numbers multiplied 

by a floating point constant. 

Let's first look at what attack signals need to be generated. Since the Chess 4.5 square control concerns only 

die ray pieces and pawns, both the king attack signals and knight attack signals need not be generated. 

However, the attack signals for ray pieces and pawns from both sides need to be generated. Also, the ray 

attack signals now need to keep track of the types of die ray pieces attacking. 
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The receiver section now will have to contain logic to discount the bishop control signal when the standing 

piece is a friendly pawn and also to discount die queen control signal when the square is attacked by enemy 

pawns. And instead of generating priority signals, a parallel addition over all the square control signals has to 

be provided and the sum is accumulated and dien output. 

The priority bus used in the move generator is replaced here with an 8-input parallel adder to sum up the 
values from the 8 pipelined cells. And an accumulator substitutes the logic used to maintain the highest 
priority square in the move generator. 

. The summation-of-eight operation should roughly take about the same dme as the priority circuit in die 

pipelined move generator. Assume the same cycle time of 50-75 ns and 9-cycle evaluation time, with one 

cycle for the extra pipeline stage, each evaluation should take only about 450-675 ns. 

5.2. Pins 

A pin involves three chess pieces: the pinner, the pinnee and the pinned object. The diree pieces have to be 
in the same line with the pinnee in between. This relation is shown in Figure 5-1. 

PINNED 
PINNER PINNEE OBJECT 

o- X) 

Figure 5-1: A Typical Pin 

The pinner is a ray piece that is capable of attacking in die line connecting the three pieces. The pinnee and 

the pinned object are pieces of the opponent side of the pinner. If we make the assumption that the pinned 

object is always guarded, a pin occurs whenever the value of the pinned object is higher than die pinner. For 

a pinning queen, the pinned object has to be the king. For a pinning rook, the pinnned object can be either a 

king or a queen. And for a pinning bishop, die pinned object can be a king, a queen, or a rook. We will 

assume die value of die pin term is the sum of the signed value of all the valid pinnces for both players. 

Pins arc only short term tactical chess features under most circumstances. For searches that extend beyond 

8 plies, the efficacy of detecting pins has not been fully established. The reason why we examine pin 

evaluation here is to illustrate how one can evaluate in a pipelined fashion a chess function that is commonly 

regarded as complicated to compute. Also, we want to have an example that would need to both read from 

and write to the register file during die computation cycles. As the reader may have noticed, both the 

aforementioned pipelined move generator and pipelined square control evaluator only read from the register 
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file during die computation. 

Now we examine the hardware. 

In the transmitter, 4 bi's need to be passed along each ray direction in order to encode the possible piece 

types: white king, white bishop, white rook, white queen, blocked, black king, black bishop, black rook, and 

black queen. Thus 16 bits are generated from each transmitter part of the two half cells. Logic for pawn 

moves, knight moves and king moves is no longer needed. 

Before we go into the receiver section, let us examine what happens in the 8 computation cycles. In the first 

4 cycles, 4 ray directions are tested for every square. Since we cannot discard this information until we gather 

the ray status for the other 4 directions, the information has to be stored in the register file during the first 4 

cycles. Since 16 bits are used to encode the information for the first 4 rays, the register file is now 20-bit wide 

instead of 4-bit wide. Also in the first 4 cycles, the newly added 16 bits are write-only; and in die second 4 

cycles, the new 16 bits are read-only. 

The receiver section performs the storc-to-register operation during the first 4 cycles. During the second 4 

cycles, the receiver reads the stored ray status and compares the stored rays with the corrcpsonding opposing 

rays just computed. And if the pin condition is satisfied for any of die rays, the value of die piece standing on 

the square is outputcd. 

The final parallel addition part and accumulation part is the same as in the square control evaluator. 

6. Status and Concluding Remarks 

In this paper, a new VLSI parallel chess move generator and the pipelined version thereof have been 

presented. A systolic algorithm used to transform the parallel move generator into die pipelined version is 

also described. Applications of die algorithm to chess evaluation subfu notions arc also shown. 

While die pipelined algorithm is presented here as a means to make VLSI implementation feasible, it 

should also be applicable to board level designs. Such board designs could serve as proofs of concept or, 

more importantly, as ways to resolve the evaluation function before committing to silicon. 

The chip designs described here are for the chess-specific part of the hardware. To realize a complete 

system, it would be necessary to include a controller fast enough to keep up with the rest of the system. Also 

necessary would be a repetition detector that keeps track of whether dicrc is any repetition of board positions. 

The design tasks for die customized controller and the repetition detector arc relatively straightforward. Both 
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tasks arc among the well-understood problems in VLSI design. Methodology already exists for building 

customized controllers, and the repetition detector is nothing more than an enhanced content addressable 

memory. 

A small chess chip set that runs at about 500,000 to 1,000,000 postitions per second is believed to be feasible 

with the MOSIS 3 micron CMOS process. Notice that this is already about 5-10 dmes the raw speed achieved 

by Cray Blitz with a 4-processor Cray-XMP and about 3-5 times faster than Hitech. A single thread machine 

based on such a chip set should be able to search about 9-10 plies on the average. And if additional speedup 

of the order of 100 is achieved dirough parallelization of the search process, machines searching 12 plies arc 

indeed within reach. 

Design of the VLSI parallel move generator was started in July 1985. The preliminary logic design was 

completed by the end of August 1985 after about one mon-month of work. Transistor switch level simulation 

was done on the entire chip shortly after on a workstation equipped with simulation accelerator. Test vectors 

were generated by C programs written on a Vax running UNIX. The ability to simulate the entire chip has 

proven extremely helpful. No fewer than ten iterations of design changes were completed before mid-

September 1985 when the design was ready for layout. The layout process turned out to be a nightmarish 

experience. Unavailability of suitable placement and routing tools has been and remains an acute problem. 

The first layout attempt was done without proper placement and the array cell was of the wrong aspect ratio. 

Meanwhile, it was discovered tiiat a 10% reduction in transistor count is possible by changing some of the 

circuits. The change was made and simulated. The subsequent layout took much longer time than originally 

expected. The cause of the extended layout time was mainly the desire to get a small die size which ruled out 

the possibility of using cad tools that do not yet provide sufficient circuit density. The chip has been 

assembled as of January 1986 and is being verified by netlist comparison. 

The design of the evaluation function is expected to a tricky problem. The Hitech evaluation function 

design shows that a little programmability goes a long way. In the earliest Hitech implementation, the 

evaluation function was essentially just a programmable piece placement lookup table, plus a simple hardware 

pawn structure evaluator. Coupled with clever chess programming and higher search speed, such an 

evaluation function turned out to be a match for die full fledged Belle hardwired evaluation function, at least 

in endgames. In die two recorded games between the two machines, Belle obtained two-pawn advantages in 

midgames but managed to lose them in endgames and two draws were registered between the two chess 

machines. Newly added programmable feature recognizers have now catapulted Hitech's rating to low 2300s. 

Programmability is certainly desirable, but it is also expensive in terms of chip area. RAMs use about 5-20 

times more area than ROMs. It is thus also desirable to replace RAMs with ROMs in a custom chess 

evaluation function chip. Programmability of the piece placement lookup table can be preserved by using an 



20 

off-chip commercial static RAM. but programmability as in the Hitcch feature recognizers probably has to be 

given up. The square control evaluation, which is still missing in Hitcch, will probably make up for part of 

the loss of programmability. Programmability may not be good all the time though. Hitech adjusts the 

evaluation function based on features detected at the root. For a 12-ply searcher, applying knowledge 

obtained at the root to the terminal nodes may create erroneous evaluation. Of course, die possibility of 

having some programmable evaluation at intermediate level of the tree still exists, but probably will not be 

explored for a while. 
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