
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 6 - 1 0 3

Two Designs of Functional Units for VLSI Based Chess Machi

Feng-hsiung Hsu
Department of Computer Science

Carnegie-Mellon University
Pittsburgk Pennsylvania 15213

nes

Abstract

Brute force chess automata searching 8 plies (4 full moves), or deeper have been dominating the computer
chess scene in recent years and have reached master level performance. One interesting quesdon is whether 3
or 4 additional plies coupled with an improved evaluation scheme will bring forth world championship level
performance. Assuming an optimistic branching ratio of 5, speedup of at least one hundredfold over the best
current chess automaton would be necessary to reach die 11 to 12 plies per move range.

One way to obtain such speedup is to improve the gate utilization and then parallelize die search process. In
this paper, two new designs of functional units with higher gate efficiency tfian previous designs in the
literature will be presented. The first design is for move generation only, and is essentially a refinement of the
move generator used in the Belle chess automaton, the first certified computer chess master. The second
design is a general scheme diat can be used for evaluating a class of chess-specific functions, besides
generating moves. A move generator based on die second design will be described. Applications of the same
general scheme to board evaluation will be briefly discussed.

Copyright © 1986 Feng-hsiung Hsu

The research was supported in part by the Defense Advanced Research Projects Agency (DoD) AR PA Order
No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615 81-K-1539

i

Table of Contents
1. Introduction 1
2. Previous Designs 4
3. A VLSI Parallel Chess Move Generator 6

3.1. The Belle Move Generator 6
3.2. From TTL to VLSI 8

4. A Pipelined Chess Move Generator 11
4.1. A Semi-Systolic Chess Algorithm 11
4.2. The Pipelined Version of the Parallel Move Generator 13

5. Pipelined Evaluation Subfuncdons 15
5.1. Square control 16
5.2. Pins 17

6. Status and Concluding Remarks 18

U N I V E R S I T Y L I B R A R I E S
C A R N E G I E - M E L L O N UNIVERSITY

P I T T S B U R G H , P E N N S Y L V A N I A 1 5 2 H

11

List of Figures
Figure 3-1: The Transmitter Circuit Used in Belle Move Generator 6
Figure 3-2: The Receiver Circuit Used in Belle Move Generator 7
Figure 3-3: A Competing Element of a Distributed Arbiter 9
Figure 3-4: The masking signals for squares with the broadcasted piece priority 10
Figure 4-1: A Systolic Chess Machine 13
Figure 4-2: The Basic Pipelined Cell 14
Figure 4-3: The Array Section of the pipelined Move Generator 15
Figure 5-1: A Typical Pin 17

1

1 . Introduction

The computer chess scene has been dominated by brute force chess automata—machines that perform

full-width or/? search—in recent years. Notable examples include Belle, a special purpose machine, and two

programs running on Cray supercomputers, Cray Blitz and NuChcss. Both Belle and Cray Blitz search 8 plies

(half-moves) or more for typical moves. Belle is die first certified computer chess Master, and Cray Blitz is

the reigning world computer chess champion and was until recently, the North American computer chess

champion1. Cray Blitz was dethroned by Hitech, a new special purpose chess machine from Carnegie-Mellon

University, in the 1985 ACM North American Computer Chess Championship tournament. Hitech normally

searches 8 to 9 plies in midgamc positions and is currently the highest rated chess computer.

The success of dicsc brute force chess programs is mostly based on the increase of playing strength with the

search depth. Experimental results [7,16] showed that an increase of between 200-250 rating points is

observed for each additional ply. It is an open question whether the linear increase can still be maintained

beyond the current 8-ply search depth of the leading programs. If the linear increase could be maintained,

then three additional plies or an increase of 600 rating points would put the computer in the league of world

class chess players. The general opinion at the moment seems to be that the increase would start tapering off.

On the other hand, it might well be the case that we will see a sudden jump in computer performance against

humans when a certain ply depth is reached.

Top human players can now defeat the best chess automata mainly because the human players are capable

of long, deep calculations and have better "positional" senses. As machines search deeper, it would become

less likely for a human player to find long, thin lines beyond the machines' search horizon. Former world

correspondence chess champion Dr. Hans Berliner further observed in his examination of brute force

intelligence [2], "It is not at all clear that it is more important to deal with long, thin lines of play [as in human

play] better than with bushy lines [as in computer play]; rather die reverse is probably true." The positional

aspect of chess is harder though. Deeper searches would certainly improve the machines' positional sense, but

an accompanying improvement in the evaluation function might be necessary as well.

To get into the 11 to 12 plies per move range requires speedup of at least a hundredfold over the best

current chess automaton. Such speedup can be obtained in two ways: pushing circuit technology or

parallelizing the search process. Exotic circuit technologies now still in the laboratories do hold promise of

providing speedup of 100 to maybe c»on 1000, but they are more or less a decade off from "real" applications.

A more immediate approach is to improve the gate utilization while staying with existing technologies and

Belle searches about 160.000 positions per second, and Cray Blitz searches about 100.000 positions per second in four-processor
configuration. The discrepancy in search capability is largely compensated by die better utilization of the transposition table and the
more efficient quiescent search used in the case of Cray Blitz.

2

then parallizc the search process. The gate utilization Is important because it is a limiting factor for the

maximum speedup achievable, given fixed available resources. This paper will be focused on how to obtain

better gate utilization than existing designs while getting a small speedup in the process and not on how to

parallelize die search process. But we will briefly review recent progress in parallel tree search algorithms

here just to see what may be expected from die existing parallel algorithms. The review is necessarily limited

in scope and oriented towards theoretical results as the experimental results available are limited to the case of

few processors.

Parallel aspiration searching [1], which divides the alpha-beta window among the processors, is known to be

typically bounded to speedup of 5 to 6 even for not well ordered game trees. Larger speedup, therefore,

cannot be expected from parallel aspiration searching. Tree decomposition of the simplest kind [5], which uses

a processor tree with one processor for each move orginating from the root and its descendents, can be shown

analytically to gain speedup of only 0(№'5) with N processors when the game tree is best-first ordered.

Speedup of O(N) can be achieved for worst-first ordered game trees, but for games like chess where good

ordering can be obtained, the best-first ordered result is closer to reality. The search efficiency can be

improved in this simple scheme by limiting the fanout of the processor tree far below the fanout of the game

tree, and using die accumulated alpha-beta window to start the search when a slave processor is ready for

processing additional moves. Another variation, mandatory-work-first searching which utilizes the fact that

certain nodes in die game tree have to be searched, has also been theoretically analyzed [6]. For a game tree

of uniform width of 38, which is about the average number of moves in chess midgame positions, and a

processor tree of fanout of 2, the mandatory-work-first searching is shown to have speedup between № J Z and

Af0,82 when the game tree is best-first ordered. And when die game tree is worst-first ordered, die speedup for

mandatory-work-first searching is between № n and № ' % . A similar algorithm, key node method [% which

uses a queued processor pool model and gains further speedup by "eager" communication of the collected

bounds, has been reported to show in simulation average speedup of 13 (20°8 6) for 20 processors. Another

recently introduced algorithm, principal variation splitting[\0,11], has obtained speedup of similar order

experimentally using a real chess program, although only with up to 4 processors, in which case average

speedup of up to 3.27 (4 0 , 8 5) has been obtained.

Arc we limited to speedup of say №*! The author has reasons to believe otherwise, but will not detail them

here without hard evidence. Assume we would be satisfied with speedup of №' 8 , then the question of

scalability crops up. That is, arc we limited to small N as seems to be indicated with the current experimental

results? Again the author believes not, at least not for fast processors. The number of processors diat can be

used with high efficiency depends on the speed of the individual processors. With higher processor speed,

more processors can be used efficiently. The cause of this paradoxical behavior is the fact that the machine is

3

expected to make its move in finite time. Assume the processors arc organized as a processor tree. To gain

high search efficiency, the processor tree will have to grow much slower than the game tree. Assume the

processor tree is of fanout/and depth d, and the game tree is well ordered and has uniform degree of g. For a

processor that is capable of searching c plies deep when searching alone, the processor tree would be capable

of searching about 2/ t / -g c / 2 nodes in the given time, but the game tree will have to be at least of depth d, that is

the game tree will have at least 2gd/2 nodes. Equating the two node figures, we know that the maximum

processor tree depth, which is also the upper limit for the game tree depth, is (— - — \ For efficient

l - 2 l O g r

parallelization,/has to be much.smaller than Vg". th e effective branching factor, and the limit does exist.

Assuming that / = 2 , g=38, and c=4, which are typical figures for chess programs used in parallelization

experiments, we have a maximum search depth of 6.46 plies. However, this search depth is obtained when

the processor tree is as deep as the game tree; that is, the terminal processor is evaluating only one single node

between message passing. Realistically, to keep the communication overhead under control, the searched

game tree normally has to be deeper than the processor tree. Also, we have been assuming perfect processor

efficiency, which is also unrealistic. Assume the game tree is k plies deeper than the processor tree and the

speedup is Ne

9 given N processors. Following similar reasoning, we know the maximum game tree depth

becomes (k+ \ For a best-first ordered game tree, a large fraction of the searched nodes one ply
l - 2 d o g r

above the the terminal nodes will have only one branch that needs to be searched. The parameter k thus

probably should be at least 2. Assume £=2 . Even if we have e= 1, the maximum game tree depth is still only

about 5.23, or maximum quality speedup of only about 9.4 (or 38^ , 2 3~ 4^ / 2), and maybe less. Increasing the

processor tree fanout will lift this limit, but at the cost of reduced efficiency. The improvement is not too

promising though—for / = 3 and e=0.8, which is probably optimistic for a processor tree fanout of 3, the

maximum search depth is still only about 5.85. We can thus expect any attempt to try to gain large speedup

efficiently with slow processors unsuccessful, at least under the processor tree model. The experimental results

in the literature, which are obtained with "slow" processors2, seem to bear this simple fact out: the speedup

tends to start leveling off at a small number, which can sometimes be as low as 4. To gain higher speedup, the

experimenters either increase the processor fanout or increase the processor tree height near the limit, and the

speedup degrades. Moreover, the existence of this slow processor effect may not be restricted to the processor

tree model. The simulation results with the key node method [9], which uses a processor pool model, show

that the speedup improves for the larger processor pool when the searched game tree depth is increased. The

increase of the game tree depth is equivalent to an increase of available search time, or the use of faster

processors. Of course, the existence of the slow processor effect does not mean that no other factors play a
With the exception of Cray Blitz. But Cray processors are hard to come by. Worst case speedup of 3.2 was stated for 4 processors

which compares very favorably with worst case speedup sometimes as low as 2 from other experiments. It would be wron« to regard this"
as an example of the slow processor effect discussed here though. The particular algorithm that was used can be expected to show lower
speedup H n o t for the shared transposition table used. However, a different form of slow processor effect e\ iMs in (his case Hie deeper
search tree resulting from the higher processor speed also increases die probability of transposition, and thus the final speedup

4

role in the leveling off of the obtained speedup. But the existence docs mean tfiat it would be wrong to

extrapolate from die experimental curves and jump at the conclusion that no significant speedup can be

obtained efficiently. As a final note, even though slow processor effect plagues existing algorithms, it is

possible to reduce the effect at the.cost of algorithm complexity.

In this paper, we will be examining the possibility of building single chip high speed chess subfunctions.

Equipped with such devices, one will be able to explore and experiment with ways of parallelizing the search

process with relative case. The devices are expected to be able to support search speed of 500K - 1M positions

per second in single thread configuration, or about 3-10 times the current generation of chess machines.

Assuming that further speedup in the range of 100-1000 is obtained by parallelization, a machine that

searches 12-14 plies does not seem too far off.

We will first briefly review previous designs for chess machines. A single chip parallel move generator that

uses basically the same move ordering as the Belle move generator will then be presented. Circuit

refinements that reduce both the device count and the wire count and also increase the layout regularity are

applied to the original TTL Belle move generator to derive the single chip move generator. Some minor

deficiencies in the original Belle move generator are also fixed. A pipelined version of die move generator

will then be shown. The pipelined move generator is smaller than the parallel version but is also slower.

Applications of the same pipelined scheme to various chess evaluation functions will then be described.

2. Previous Designs

In the later half of the 70's, two different groups started building specialized machines for chess using

off-the-shelf TTL components. The first group [12] at MIT implemented a simple move generator together

with a general purpose microprogrammable processor. No hardware evaluation was provided, and the

ordering of the moves generated was controlled by the microprogram with some hardware assistance. The

other group at Bell Labs went tiirough dircc iterations which culminated in the now famous Belle

automaton [3] in die early 80's. The Belle chess machine has both a hardware move generator and a hardware

evaluation function built in. The hardware evaluator is further divided into an incremental cvaluator and a

'slow' evaluator. Belle consists of ten large wire wrap boards, with four each for the move generator and the

'slow' evaluation function. The Belle move generator can generate one move per microsecond. The 'slow*

evaluation function evaluates die ray control and the pawn structure and takes two microseconds per

evaluation. However, Belle only searches about 160,000 positions per second because the controller and the

hash table, which were built with late 70's components, slow down the entire system. We will examine the

Belle move generator in some more detail in the next section.

VLSI technology has been applied to the design of brute force clicks machines with varying degrees of

5

success. A single-chip move generator [13] was claimed to be able to generate 360,000 moves/sec, but the

designers failed to point out that the moves generated are not ordered by the relative merit and that the move

generation status is not maintained nor is a masking mechanism provided. In a real system all the legal moves

at one position would have to be generated and then sorted by an off-chip processor before the next position

could be examined. A more realistic figure would be no more than 60,000 moves/sec, assuming zero

overhead for sorting and retrieval of the moves.3 No fabricated chips were available at the time of publication .

for this design, and no details were given on how the move sorting and retrieval would be done.

Another move generator design [4] that was done at Carnegie-Mellon University and is now used in die

Hitech chess machine took a different approach. Instead of simplifying the circuit and throwing away

functionality, a 64-chip, one chip for each square, design is used and a fairly complicated ordering scheme is

employed4. A maximum speed of 500,000 moves/sec is reached. The maximum speed of this 64-chip move

generator may seem to be inferior to the speed of Belle's move generator; however, as a compensation, the

move generator has a theoretically better move ordering scheme than Belle and has special setup.for

generating check evasion moves, both of which should have positive effects on search efficiency. When the

evaluation function is slow and dominates the search time, a machine based on the Hitech move generator

will be able to search deeper than a machine based on the Belle design. In fact, Hitech is probably die speed

champion in mid-game at the moment. It searches about 175,000 positions per second and probably about

half a ply deeper than Belle on the average. On the other hand, the 64-chip design is also wasteful in terms of

silicon real estate—an enormous amount of redundant circuitry has to be added to reduce die communication

cost. And it is not clear that the better move ordering would be adequate compensation for lower speed when

evaluation can also be done fast. One might want to argue diat the better move ordering would provide

exponential savings in deep tree search. In reality, this argument does not completely hold when the

transposition table is used to provide additional move ordering information, which is normally the case for the

top programs, including Hitech itself. The transposition table in this case provides far better move ordering

information than the move generator can reasonably supply, at least for the levels of the game tree near the

root. Mechanisms such as killer tables also provide additional ordering information independent of die move

generator. And die savings obtained from die better move generator move ordering mainly exist in die last

one or two plies and arc probably only about 10-20 per cent or less5. However, for comparison with Belle, the

3 Assuming an average of 36 moves for typical midgamc positions, we get 10,000 positions/sec. But assume at each position 6 moves
are actually made on the average, the real figure becomes 60,000 moves/sec.

4
The actual system uses more than 64 chips. Some additional chips are used for special move generation and a few SSI/MSI chips arc

used to interface the chips.

5 Carl libeling reviewed these figures and agreed that they were probablv correct. Real confirmation of these figures w i l l : . •-• r;m
until Carl completes his simulation of the various ordering schemes thou^i.

6

argument partially holds. Based on engineering decisions made back in die late 70s when memory was still an

expensive resource, the Belle chess automaton docs not store the move ordering information in the

transposition table. While it had been speculated that the Belle move generator cannot test move legality,

Ken Thompson explained in private communication that indirect move legality testing can be done, and for

testing moves from the transposition table, indirect testing would be sufficient. Also since Belle docs keep

track of the move ordering explicitly for the top levels of the search tree, the exponential saving is still only

realized for the lower levels of the tree. The unavailability of full move legality check is still a minor problem

for the Belle move generator though, as full move legality check would be desirable if killer tables are to be

used, and will be resolved as part of the proposed circuit refinement in the VLSI move generators presented

in this paper.

3 . A VLSI Parallel C h e s s Move Generator

A description of the Belle move generator [3] and the related move ordering scheme will first be given and

then circuit refinements that both reduce the circuit size and give a slight improvement in functionality will be

presented.

3.1. The Belle Move Generator

The Belle move generator is composed of an 8x8 array of similar combinatorial circuits and a 6x64-input

priority network. Two operations arc provided, FIND-VICTIM and FIND-AGGRESSOR. Each of the 64

combinatorial circuits consists of a transmitter, a receiver, a four-bit register holding the piece and a 1-bit wide

64-bit deep disable stack. Each transmitter sends signals to its (chess) neighbors, and each receiver accepts

signals from its neighbors. Figure 3-1 and Figure 3-2 show block diagrams of the transmitter and the receiver

circuit based on the drawings and written description in the original article [3].

P I E C E
R F f i T S T F R

P (4) | OP WTM

11
XMIT

ROM

MAN I N (4 1

MANHATTAN

OTAGONAL

FMPTY

RAY
MUX

Control

KNIGHT

XMITTER

K I N G

I MAN O U T f 4)

Figure 3-1: The Transmitter Circuit Used in Belle Move Generator

7

"The transmitter generates attacks radiating from a square. The main component of the transmitter is a

read-only memory (ROM). The ROM generates a set of wires active if the square contains the corresponding

piece. The global signal WHITE-TO-MOVE [WTM] is true if White is on the move." In the

FIND-AGGRESSOR cycle, only the addressed victim transmitter is allowed to radiate attack signals and only

as a super-piece that is the union of all non-pawn pieces. Also, a pawn move signal is radiated from the vicdm

square if the square is empty and a pawn capture signal is radiated from the vicdm square if die square is

occupied.

D I S A B L E
S T A C K

RECEIVER
I
" T S A R ! F

S KNTGHT TM

8 K I N G TN..

4 P I A S I N

4 MAN TN

P I E C E
R E G T S T F R

OR

OR

OR

OR

P M Ì

WTM

-A

OP

^ 4" w
p w m

RECV
PLA

OR PAWN MOVF (2)

I
0 R fc; PAWN CAPT (4)

CHECK
63 OTHER K

KING 3

(V I C T I M /. A G G R E S S O R)

OR

OUFFN PAWN
ROOK f KNIGHT
BISHOP / . B I S H O P
KNIGHT / ROOK
PAWN / CUE FN
EMPTY / KING

P R I O R I T Y

NETWORK

63 x 6 OTHFRS ^

I

Figure 3-2: The Receiver Circuit Used in Belle Move Generator

"The receiver section analyzes the attacks generated by the transmitters. The main component of the

receiver is a programmed logic array (PLA)." 'The PLA accepts the concentrated attack signals, the resident

piece, WHITE-TO-MOVE, the disable bit and the op-code. It generates seven priority signals corresponding

to the value of the attacked piece [in FIND-VICTIM cycles]." In FIND-AGGRESSOR cycles, the priority

signals are in reverse order of the piece value and the priority signals arc generated only if there is an attack

signal corresponding to the piece on the square.

The moves are generated in the following way. The micro-code asserts FIND-VICTIM. The priority

network then finds the highest enabled attacked piece. The address of the attacked piece is latched and used

as the victim square in the following FIND-AGGRESSOR cycle in which the lowest valued enabled aggressor

on the selected victim is found. After die selected move is processed, the last aggressor square is disabled and

the next lowest aggressor is found until there arc no more aggressors on this victim. The victim square is then

disabled and all the aggressor squares enabled. Then the next victim is processed in the same way until all the

victims arc exhausted. Ail the victim squares and all the aggressor squ • :s are re-enabled for die next new

8

position at the same search depth, and the whole process starts all over again. The disable stack is used to

keep track of the move generation status at each search depth. The moves generated this way arc only

pseudo-legal moves as the king of the moving side might be checked if the moves are made. Also, die special

chess moves have been deliberately left out in our presentation here as they only complicate our discussion

without serving useful purpose.

3.2. From TTL to VLSI

Now we will examine the problems associated with directly implementing the Belle move generator in

VLSI. Simple calculation shows that the Belle move generator as it is would be difficult to fit into one single

chip in today's commercial process. Both the number of wires and the number of devices are too high. The

largest bundle of wires is used by the priority network: 384 wires. For the 3 jutm MOSIS CMOS process with

7 /xm metal pitch, 384 parallel metal wires alone would be almost 3 mm high. And beside these wires, each

square has no fewer than 50 wires to its neighbors. In terms of device count, it fares no better. If each stack

cell contains 8 transistors, the 64x64 disable stack alone will need 32K transistors. And the transmitter, the

receiver and the priority network have not been counted yet. The 64-bit disable stack at each square also

further aggravates the wiring problem because most of the wires will have to be routed around the stack6.

From the above discussion, it is clear that in order to fit a Belle-like move generator into a single die, two

modifications will have to be made: reducing the number of wires used by the priority network and reducing

the number of devices used by the disable stack. It is also desirable to have a fast, regular priority encoding

mechanism.

We will first look at the problem of the disable stack. Is the disable stack really needed? The answer

surprisingly is no. With the move ordering scheme used in Belle, the move stack that is normally maintained

by the controller actually contains enough information about the move generation status. After an unmove

cycle backdating die board position, we know that the victim to be tested is the same as die victim in die move

just unmoved and all the aggressors that have lower value than die last aggressor or have the same value as the

last aggressor but a lower or equal square priority should be ignored. And if a new victim is needed, the new

victim will have to have lower value than the original victim or have the same value and a lower square

priority. In other words, the disable stack is redundant. If a proper masking mechanism is provided to

generate masks from the move stack, die entire disable stack can be removed. It will be shown how such a

masking mechanism can be provided along with a reduction in the size of the priority network. As a sidenote,

providing the disable stack instead of a masking mechanism might well have been easier for die Belle TTL

6 l t is possible to move the Mack out of the basic cell at the cost of more wires going into the cell, but the proposed complete el
of the slack in this paper is definitely preferable.

9

implementation.

The priority network can be viewed as a huge priority encoder with 384 inputs or as an arbiter with 64

competing elements. The Belle move generator takes the priority encoder view and uses up lots of long wires

for the priority network alone. However, if we view die priority network as an arbiter, a more wire-efficient

scheme can be used if we adopt a distributed arbiter approach. In a distributed arbiter, individual priority

lines arc replaced widi a wircd-or arbitration bus. Each competing element monitors the arbitration bus and

dynamically removes lower order bits from competing whenever a high order bit loses out. Instead of using N

wires, 0(log2N) wires are sufficient. Distributed arbiters of diis kind have become quite popular in

multiprocessor bus design lately. The earliest description of this arbitration scheme was in a 1966 UK patent;

Matthew Taub of IBM rediscovered the scheme in 1975 and Leo Paffrath at SLAC rediscovered it yet again

for the Fastbus project [8,15]. A MOS implementation of one competing element of such a distributed

arbiter is given in Figure 3-3. The pullup transistors for the wired-or bus lines are not shown in the figure. In

this particular circuit, at the end of the arbitration process, the priority of the competing element with the

highest priority will appear on the bus in negative logic form. Assume each row of cells use a 7-bit bus, 1 bit

indicating the existence of competitors, 3 bits for piece priority and 3 bits for square priority, a total of 56

wires for the eight chess rows would be needed versus the 384 wires for die priority network design.

COMPETE

MSB

WIN

MSB (P4)
ARBITER
CELL

COMPETE OUT

P3
CELL

P2
CELL

PI
CELL

LSB
CELL
(PO)

P3 P2 PI LSB

Figure 3-3: A Competing Element of a Distributed Arbiter

Introducing a masking mechanism into the distributed arbiter is relatively straightforward if certain

assumptions are made about die relative square priority. Assume a row-major square priority scheme is used.

10

A mask bus, which can double as the piece register loading bus, broadcasts die type of the highest priority

piece now allowed to compete. All squares with higher piece priority inhibit diemselvcs from the

competition. And all squares with lower piece priority enter the competition. Additional masking signals as

shown in Figure 3-4 arc used to decide whether to mask off a square with the broadcasted piece priority. Of

these signals, die row-enable signals are set if and only if the row priority is lower than the last square tried;

the row-select signals are set only for die row the last square was in; the column-select signals arc set for all

the columns with lower column priority than the last tried square.

Squares with the piece priority broadcasted by the mask bus are then allowed to compete depending on

their row-select, column-select and row-enable signals:

1. If the row-enable signal is set, then the square competes.

2. If bodi the row-select and column-select signals are set, then the square competes.

3. Otherwise, the square is disallowed to compete.

c o l : e ! 7 c o l : e ! 6 c o l s e ! 5 c o l se 14 c o l s e l 3 c o l s e ! 2 c o l s e l 1 c o l : e l O

rows e l 7

r o w e n /

- . r o w s e l S - ,

r o w e n /

- . r o w s e l S - ,

r o w e n /

- . r o w s e l S - ,
r o w e n 6

r a w s c ! 5

r o w e n 6

r a w s c ! 5

r o w e n 6

r a w s c ! 5

r o w e n 5

r o w s e l 4

r o w e n 4

r o w s e l 3

r o w e n 4

r o w s e l 3

r o w e n 4

r o w s e l 3

r o w e n 3

r o w s e l 2

r o w e n 2

r o w s e l 1

r o w e n 2

r o w s e l 1

r o w e n 2

r o w s e l 1

r o w e n 1 r o w e n 1 r o w e n 1

rowenO rowenO

Figure 3-4: The masking signals for squares with the broadcasted piece priority

The elimination of the disable stack and the integration of die masking mechanism into the arbitration

11

network not only free up the area used by the disable stack, but also simplify the receiver design. The receiver

no longer needs to be disabled: the masking mechanism takes care of that. While both the original Belle

transmitter and receiver circuits arc suboptimal for compact VLSI implcmcntadon, we will not go into detail

on how to improve them. The built-in masking mechanism also offers a more flexible way of ordering moves

than the Belle move generator. For one thing, check evasion moves can be generated with relative ease. And

the minor problem of full move legality testing can be solved by using the next higher priority move as the

mask and testing whetiier the generated move is the same as the given move.

All in all, it is estimated that when all the circuit refinements are applied to the Belle move generator, the

chip area is probably reduced by more than a factor of four over direct implementation. A CMOS version of

such a single chip move generator has been designed and simulated with a switch simulator on a workstation

with a simulation accelerator. Spice simulation on circuits extracted from preliminary layout indicates about

3-4 ns worst case ray ripple delay per chess square and about 6-8 ns per arbitration bit. The cycle time is

about 100-150 ns, or about 400-600 ns per move7. The chip has about 36K transistor sites. The chip fits into a

40-pin dual-in-line package and has a die size of 6912x6812 microns, the MOSIS standard die size.

4. A Pipelined C h e s s Move Generator

Suppose because of yield considerations and/or power consumption constraint we want to further reduce

the chip area over the parallel version of the move generator by serializing part of the operations.

In this section, we will see a pipelined move generator derived from the parallel move generator in the last

section. The pipelined version is slower than the parallel version but is also smaller. While there is no plan of

actually implementing such a chip, this design seems to be appropriate even for MOSIS 4-micron NMOS

process, which was used to implement the Hitech 64-chip move generator, because of die reduced static

power consumption. The real reason why diis pipelined move generator is presented here is to introduce a

general pipelined scheme that can also be used to implement evaluation functions.

4.1. A Semi-Systolic Chess Algorithm

One possibility for serializing the move generation process is to examine one move direction at a time, i. e.

multiplexing say the ray signal lines, in order to save the number of wires needed. This approach has been

used in the Belle ray evaluate: all die rays in one direction arc examined at a time and after 8 evauation

cycles, the ray control evaluation is taken from the ray evaluation accumulator [3]. While (his approach is fine

with ray evaluation as die number of adders is also reduced, it is not clear for a move generator how

additional move patterns can be accounted for in diis manner widiout further increasing the number of cycles.

piece registers arc dual ported and normal moves can be updated or backdated in one single cvcle.

12

And also die area reduction achievable for die move generator is not sufficient.

Another approach which has been tried in one of the earlier VLSI move generators [13] is to use only 8

square machines and to pipe the board representation in various patterns through die square machines to

generate moves in one move direction at a time. While the area reduction reached is fine, die design has two

serious drawbacks: not enough functionality is designed in and the move generation speed leaves much to be

desired. Around 300 cycles are needed to generate moves for one position and the moves generated are not

ordered according to relative merits. If the average branching ratio of the a-/J search is 6 and a separate chip

is available to handle the move sorting and retrieval with no overhead, a 2-chip move generation system based

on this design will need on the average 50 cycles to generate one move. That is, on a per-chip basis, this

design leads to a 100 cycles per move per chip figure.

Now we examine how we can pipeline the operations more efficiendy. In particular, we will be looking at

how we can borrow ideas from systolic arrays to obtain a better design8.

Assume we have a linear array of systolic cells communicating with the nearest neighbors and receiving

input data streams from a large register file containing the piece information. Conceptually, we have a

hardware configuration similar to the one shown in Figure 4-1. The registers file sends piece information to

the systolic array cells and the array cells send and receive signals derived from the piece information to/from

its closest neighbors.

First we examine what kinds of input data streams for the systolic array are needed. The simplest possible

input streams arc columns (or rows, we will use columns throughout the paper) of the board, one column at a

time, from one side to the other. Given such a stream sweeping from the right hand side of the board to the

left hand side, i. e. KR, KN, KB, K, Q, QB, QN and then QR file, what can we extract from the stream using

the linear systolic array? For one thing, all the horizontal rays issuing from right to left and all the diagonal

rays that arc going from right lo left can be tested in 8 cycles. If two streams, one from left to right and the

other from right to left, arc provided by eidier dual-porting the register file or by replicating the register file,

then all the rays except the vertical ones can be tested in a systolic fashion in 8 cycles. Alternatively, we can

time-multiplex a single stream by changing the streaming direction at die end of die first 8 cycles to get a

16-cycle design. For the moment, we will assume a two-stream design. Do we have enough information in

these two data input streams to ' xtract die vertical rays and other types of moves? The answer is yes, but

non-systolically.

'Curiously enough, the design jusi described in die last paragraph was labeled "systolic".

13

R E G I S T E R

F I L E

R0W8

R0W7

R0W6

R0W5

R0W4

R0W3

R0W2

ROWl

3ZZZE

3ZZZE

3ZZZE

S Y S T O L I C
ARRAY

Figure 4-1: A Systolic Chess Machine

Given the piece data of a column, we have sufficient information about the vertical rays in the particular

column. The vertical rays in this case can be extracted in a parallel manner as in the ray circuits used in the

parallel move generator. The pawn moves and king moves in the vertical directions can also be handled in die

same way as in die parallel move generator—simply sending the derived signals to die vertical neighbors.

Pawn captures, king moves in non-vertical directions, and knight moves can be handled by delaying die

corresponding signal by one or two cycles and then sending out a signal to the square itself, die closest

neighbors, and in the case of knights, die second closest neighbors. Figure 4-2 shows the basic design of die

pipelined cell that results.

4.2. The Pipelined Version of the Parallel Move Generator

The pipelined cell just described is actually two half-cells. Each half-cell examines one input stream and

processes half of the possible moves. Each half-cell implements half of die transmitter semi-systolically and

provides a half receiver that is time-multiplexed over one chess row. At every move generation cycle, half of

the possible moves from two columns arc examined. The pairings of the columns in the 8 systolic cycles arc

(1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), and (8,1) respectively. Both the FIND-VICTIM and

FIND-AGGRESSOR operation takes 8 cycles each.

The resolving of the priority is handled by one column-pair at a time. A column-pair priority is provided

for the entire linear systolic array for comparison with die current highest priority piece maintained over the 8

systolic cycles. A masking mechanism similar to the one used by the parallel move generator but with a

column-pair major ordering can be used. The priority resolving phase can be overlapped with the attack

14

4 KNIGHT IN

OIAG IN 1

DFLAY

4 K I N G IN
2 D I A G I

P M l \
/

OP \
/

WTM V

/

P (4)
VERT IN

HALF

XMITTER

DELAY

VERT OUT

DI AG OUT 1

DI AG OUT 2
PAWN MOVE

KTNG

KNIGHT

PAWN CAPT

HDRZ Q U I . . .

IA1/ M

? MAN IN

PAWN MOVE (1)
PAWN CAPT (2)

HALF

R E C E I V E R

K I N G
QUF.EN
ROOK
BISHQP
KNIGHT
PAWN
EMPTY

DELAY

KING D I A G
KNIGHT 2SQ
KNIGHT ISO

PAWN D I A G

HORZ IN

LEFT
HALF
CELL

CHECK &

P R I O R I T Y

. LOGIC

KING

OUFEN

ROOK

RTSHOP

KNIGHT

PAWN

EMPTY

RIGHT
HALF
CELL

(l e f t h a l f c e l l

r o t a t e d by 180

d e g r e e s)

DIAG IN 2

Figure 4-2: The Basic Pipelined Cell

signal generation phase by providing latches before the priority circuit. Design data from the parallel move

generator indicate that the two phases take about the same time, which means the cycle dme should be

around 50-75 ns when the pipeline stage before the priority circuit is introduced. However, we would now

need 9 cycles each for the two FIND operations. The pipelined design would thus need about 900 to 1350 ns

to generate one move, excluding the updating and backdating of die board. The speed is about 4 to 5 timps

slower than die parallel version (200 to 300 ns, excluding move updating and backdadng), but die area is also

reduced by a factor of 4 to 5. Figure 4-3 shows a higher level view of the array section of the pipelined move

generator.

An interesting comparison can be made with the 64-chip Hitcch move generator. The Hitech move

generator partitions the circuit spatially and the pipelined scheme partitions the circuit temporally. The

pipelined design needs to add some additional latches to keep track of the temporal information, and the

Hitech design needs to add a set of additional registers for all the bearing pieces on the square and die

complete move logic for all die possible moves to the square in order to keep track of the spatial information.

In this particular case, keeping track of temporal information turns out to be much cheaper than keeping track

of spatial information. Spatial partitioning scheme should generally be faster than temporal partitioning

scheme; this is not true in this case, because die spatial partitioning scheme needs inter-chip communications

to resolve the move priority, while die temporal partitioning scheme can be further speeded up by

overlapping operations with the introduction of additional pipelined stages9. The fundamental cause diat die

spatial partitioning does not win here is probably the sequential nature of die move generation process which

9 Y c t another reason is that we arc comparing a hypothetical design with a roal one?!

15

P L 8 (4) / L F F T HALF C E L L

-

^ „ .
P L 7 (4) / L E F T HALF C E L L 7

P L 6 (4)
\
/ L E F T HALF C E L L 6

v l .

P L 5 (4)
N

L E F T HALF C E L L 5

P L 4 (4) L E F T HALF C E L L 4

vlx

P L 3 (4)
\

L E F T HALF C E L L 3

v l .

P L 2 (4)
\

L E F T HALF C E L L 2

v l .

P L 1 (4) —̂ L E F T HALF C E L L 1

-3

ENABLE
FIND MASK S I G N A L S

t J, ,i.

CHECK &

P R I O R I T Y

LOGIC

RIGHT HALF C E L L 8 f c P R 8 (4)

RIGHT HALF C E L L 7

ZE
RTGHT HALF C E L L 6

f P R 7 (4)

— P R 6 (4)

RIGHT HALF C E L L 5 K P R 5 (4)

RIGHT HALF C E L L 4

31
RIGHT HALF C E L L 3

- 7 T

P R 4 (4)

P R 3 (4)

RIGHT HALF C E L L 2 f c P R 2 (4)

JUL.
RIGHT HALF C E L L l f c P R 1 (4)

Figure 4-3: The Array Section of the pipelined Move Generator

favors pipelining versus outright parallelization. The Hitech move generator does provide better move

ordering, but as we shall see in the next section, if we are willing to double the hardware size, there is no real

reason why we cannot obtain similar ordering.

5. Pipelined Evaluation Subfunct ions

While there arc quite a few features such as material, piece placement, and some pawn structures that are

easier to evaluate in an incremental way, certain more subtle features simply require a whole board approach

to do the evaluation. The pipelined scheme described in the last section provides one such approach.

Let us review the pipelined scheme and examine it in more detail. The pipelined scheme can be viewed as

consisting of two main parts: feature detector, which includes the transmitters and receivers, and feature

compressor, which is the check and priority logic circuit in die case of the pipelined move generator.

For the pipelined move generator described in the last section, die feature detector only generates one

player's attack signals at a time. The move ordering obtained is roughly equivalent to what one obtains by

making a one-ply lookahead to sec whether any material can be gained. This need not be die case. More

general attack signals could be generated at the cost of more hardware. By providing attack signals from both

sides and doubling the hardware size, we can get a move ordering diat is roughly equivalent to what one

obtains by making a two-ply lookahead to see whether any material can be gained safely, or the Hitech move

16

ordering. We are also not limited to real attack signals only cither. Pscudo attack signals can be used to detect

pins, for instance, which arc "deeper" concepts. More description on how pins can be detected will be given

shortly. Some pawn structures can also be detected in similar manners, but we will not go into how to

implement them.

The most general feature compressor one can get is simply a lookup table, which is of course impractical

because of the enormous table size. In the pipelined move generator, we have primarily a FIND-

MAXIMUM circuit. Other useful variations include summation circuits, or combinations of summation

circuits and small lookup tables, or maybe even some weighted summation circuits with variable weights.

We will describe two evaluation subfunctions that can be implemented with the pipelined scheme: square

control and pins.

5.1. Square control

Square control is a very important evaluation subftmction in chess. When the board position is quiet with

no immediate tactical gain, die square control term gives the program a sense of strategic direction. Square

control is also frequendy interrelated with pawn structure and king safety, but we won't go into the details on

how to handle die interrelation.

The square control term that is going to be presented here is taken from the program Chess 4.5, which was

among die series of the Chess X.X programs that prevailed over other 70s' chess programs and predated the

current NuChess program. The square control term used in chess 4.5 [14] is actually a mobility measure

instead of real square control, but we will use it as an example here because of its simplicity in concept.

The square control function in Chess 4.5 assigns weights to squares attacked or defended by each ray piece

and returns the sum of these weights. Bishops are assumed to exert no control over a square that has a

friendly pawn and queens arc assumed to exert no control over a square that is attacked by enemy pawns.

Bishops arc given a relative bonus of 3 for each square controlled, rooks a bonus of 2, and queens a bonus of

1. The figures given here arc relative terms; the actual figures in Chess 4.5 are the above numbers multiplied

by a floating point constant.

Let's first look at what attack signals need to be generated. Since the Chess 4.5 square control concerns only

die ray pieces and pawns, both the king attack signals and knight attack signals need not be generated.

However, the attack signals for ray pieces and pawns from both sides need to be generated. Also, the ray

attack signals now need to keep track of the types of die ray pieces attacking.

17

The receiver section now will have to contain logic to discount the bishop control signal when the standing

piece is a friendly pawn and also to discount die queen control signal when the square is attacked by enemy

pawns. And instead of generating priority signals, a parallel addition over all the square control signals has to

be provided and the sum is accumulated and dien output.

The priority bus used in the move generator is replaced here with an 8-input parallel adder to sum up the
values from the 8 pipelined cells. And an accumulator substitutes the logic used to maintain the highest
priority square in the move generator.

. The summation-of-eight operation should roughly take about the same dme as the priority circuit in die

pipelined move generator. Assume the same cycle time of 50-75 ns and 9-cycle evaluation time, with one

cycle for the extra pipeline stage, each evaluation should take only about 450-675 ns.

5.2. Pins

A pin involves three chess pieces: the pinner, the pinnee and the pinned object. The diree pieces have to be
in the same line with the pinnee in between. This relation is shown in Figure 5-1.

PINNED
PINNER PINNEE OBJECT

o- X)

Figure 5-1: A Typical Pin

The pinner is a ray piece that is capable of attacking in die line connecting the three pieces. The pinnee and

the pinned object are pieces of the opponent side of the pinner. If we make the assumption that the pinned

object is always guarded, a pin occurs whenever the value of the pinned object is higher than die pinner. For

a pinning queen, the pinned object has to be the king. For a pinning rook, the pinnned object can be either a

king or a queen. And for a pinning bishop, die pinned object can be a king, a queen, or a rook. We will

assume die value of die pin term is the sum of the signed value of all the valid pinnces for both players.

Pins arc only short term tactical chess features under most circumstances. For searches that extend beyond

8 plies, the efficacy of detecting pins has not been fully established. The reason why we examine pin

evaluation here is to illustrate how one can evaluate in a pipelined fashion a chess function that is commonly

regarded as complicated to compute. Also, we want to have an example that would need to both read from

and write to the register file during die computation cycles. As the reader may have noticed, both the

aforementioned pipelined move generator and pipelined square control evaluator only read from the register

18

file during die computation.

Now we examine the hardware.

In the transmitter, 4 bi's need to be passed along each ray direction in order to encode the possible piece

types: white king, white bishop, white rook, white queen, blocked, black king, black bishop, black rook, and

black queen. Thus 16 bits are generated from each transmitter part of the two half cells. Logic for pawn

moves, knight moves and king moves is no longer needed.

Before we go into the receiver section, let us examine what happens in the 8 computation cycles. In the first

4 cycles, 4 ray directions are tested for every square. Since we cannot discard this information until we gather

the ray status for the other 4 directions, the information has to be stored in the register file during the first 4

cycles. Since 16 bits are used to encode the information for the first 4 rays, the register file is now 20-bit wide

instead of 4-bit wide. Also in the first 4 cycles, the newly added 16 bits are write-only; and in die second 4

cycles, the new 16 bits are read-only.

The receiver section performs the storc-to-register operation during the first 4 cycles. During the second 4

cycles, the receiver reads the stored ray status and compares the stored rays with the corrcpsonding opposing

rays just computed. And if the pin condition is satisfied for any of die rays, the value of die piece standing on

the square is outputcd.

The final parallel addition part and accumulation part is the same as in the square control evaluator.

6. Status and Concluding Remarks

In this paper, a new VLSI parallel chess move generator and the pipelined version thereof have been

presented. A systolic algorithm used to transform the parallel move generator into die pipelined version is

also described. Applications of die algorithm to chess evaluation subfu notions arc also shown.

While die pipelined algorithm is presented here as a means to make VLSI implementation feasible, it

should also be applicable to board level designs. Such board designs could serve as proofs of concept or,

more importantly, as ways to resolve the evaluation function before committing to silicon.

The chip designs described here are for the chess-specific part of the hardware. To realize a complete

system, it would be necessary to include a controller fast enough to keep up with the rest of the system. Also

necessary would be a repetition detector that keeps track of whether dicrc is any repetition of board positions.

The design tasks for die customized controller and the repetition detector arc relatively straightforward. Both

19

tasks arc among the well-understood problems in VLSI design. Methodology already exists for building

customized controllers, and the repetition detector is nothing more than an enhanced content addressable

memory.

A small chess chip set that runs at about 500,000 to 1,000,000 postitions per second is believed to be feasible

with the MOSIS 3 micron CMOS process. Notice that this is already about 5-10 dmes the raw speed achieved

by Cray Blitz with a 4-processor Cray-XMP and about 3-5 times faster than Hitech. A single thread machine

based on such a chip set should be able to search about 9-10 plies on the average. And if additional speedup

of the order of 100 is achieved dirough parallelization of the search process, machines searching 12 plies arc

indeed within reach.

Design of the VLSI parallel move generator was started in July 1985. The preliminary logic design was

completed by the end of August 1985 after about one mon-month of work. Transistor switch level simulation

was done on the entire chip shortly after on a workstation equipped with simulation accelerator. Test vectors

were generated by C programs written on a Vax running UNIX. The ability to simulate the entire chip has

proven extremely helpful. No fewer than ten iterations of design changes were completed before mid-

September 1985 when the design was ready for layout. The layout process turned out to be a nightmarish

experience. Unavailability of suitable placement and routing tools has been and remains an acute problem.

The first layout attempt was done without proper placement and the array cell was of the wrong aspect ratio.

Meanwhile, it was discovered tiiat a 10% reduction in transistor count is possible by changing some of the

circuits. The change was made and simulated. The subsequent layout took much longer time than originally

expected. The cause of the extended layout time was mainly the desire to get a small die size which ruled out

the possibility of using cad tools that do not yet provide sufficient circuit density. The chip has been

assembled as of January 1986 and is being verified by netlist comparison.

The design of the evaluation function is expected to a tricky problem. The Hitech evaluation function

design shows that a little programmability goes a long way. In the earliest Hitech implementation, the

evaluation function was essentially just a programmable piece placement lookup table, plus a simple hardware

pawn structure evaluator. Coupled with clever chess programming and higher search speed, such an

evaluation function turned out to be a match for die full fledged Belle hardwired evaluation function, at least

in endgames. In die two recorded games between the two machines, Belle obtained two-pawn advantages in

midgames but managed to lose them in endgames and two draws were registered between the two chess

machines. Newly added programmable feature recognizers have now catapulted Hitech's rating to low 2300s.

Programmability is certainly desirable, but it is also expensive in terms of chip area. RAMs use about 5-20

times more area than ROMs. It is thus also desirable to replace RAMs with ROMs in a custom chess

evaluation function chip. Programmability of the piece placement lookup table can be preserved by using an

20

off-chip commercial static RAM. but programmability as in the Hitcch feature recognizers probably has to be

given up. The square control evaluation, which is still missing in Hitcch, will probably make up for part of

the loss of programmability. Programmability may not be good all the time though. Hitech adjusts the

evaluation function based on features detected at the root. For a 12-ply searcher, applying knowledge

obtained at the root to the terminal nodes may create erroneous evaluation. Of course, die possibility of

having some programmable evaluation at intermediate level of the tree still exists, but probably will not be

explored for a while.

Acknowledgement

Dr. Hans Berliner has been instrumental in stirring up my interest in Computer Chess. Carl Ebeling, Andy

Palay and Gordon Goetsch have provided many insights related to designing a chess machine. The

pioneering work of Carl and Andy in VLSI chess machines has been the main inspiration behind diis work.

While die move generator designs here are derived from the Belle move generator, diey are also strongly

influenced by the Hitech move generator design. And the idea of systolic chess machines was developed

while discussing designs of hardware evaluation functions for the Hitcch chess machine. Besides Hans,

Murray Campbell has also been a generous source of knowledge about chess and computer chess in

particular. Special dianks are also due to Ken Thompson for answering some of die questions related to

Belle.

21

References

[1] Baudet,G.
The Design and Analysis of Algorithms for Asynchronous Multiprocessors.
PhD thesis, Carnegie-Mellon University, 1978.

[2] Berliner, Hans.
An Examination of Brute Force Intelligence.
In Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pages 581-587.

1981.

[3] Condon, J. II. and Thompson, K.
Belle Chess Hardware.
Advances in Computer Chess 3.
Pergamon Press, 1982, pages 45-54.

[4] Ebeling, Carl and Palay, Andrew.
The Design and Implementation of a VLSI Chess Move Generator.
In The 11 th Annual International Symposium on Computer Architecture, pages 74-80. 1984.

[5] Finkel, Raphael A. and Fishburn, John P.
Parallelism in Alpha-Beta Search.
Artificial Intelligence 19(1):89-106, September, 1982.

[6] Finkel, Raphael A. and Fishburn, John P.
Improved Speedup Bounds for Parallel Alpha-Beta Search.
IEEE Transactions on Pattern Analysis and Machine Intelligence? AMl-5(\): 89-92, January, 1983.

[7] Gillogly, J. J.
Performance Analysis of the Technology Chess Program.
PhD thesis, Carnegie-Mellon University, 1978.

[8] Gustavson, David B.
Computer Buses--A Tutorial.
IEEE A//cro4(4):7-22, August, 1984.

[9] Lindstrom, Gary.
The Key Node Method: A Highly Parallel Alpha-Beta Algorithm.
Technical Report UUCS 83-101, Department of Computer Science, University of Utah, Salt Lake

City, March, 1983.

[10] Marsland, T. A. and Campbell, Murray.
Parallel Search of Strongly Ordered Game Trees.
Computing Surveys 14:533-551,1982.

[11] Marsland, T. A. and Popowich, Fred.
Parallel Game-Tree Search.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7(4):442-452, July, 1985.

[12] Moussouris, J., Holloway, J., and Grecnblatt, R.
CHEOPS: A Chess-oriented Processing System.
Machine Intelligence.
Ellis Horwood Limited, 1979, pages 351-360.

22

Schacffc'r, Jonathan, Powell, P. A. D., and Jonkman, Jim.
A VLSI Chess Legal Move Generator.
In Randal Bryant (editor), Third Caltech Conference on Very Large Scale Integration, pages 331-350.

1983.
Also appeared in VLSI Design, Vol. IV, No. 3,1983, pp. 64-71.

Slate, David J. and Atkin, Lawrence R.
Chess 4.5--The Nordiwestern University Chess Program.
Chess Skill in Man and Machine.
Springer-Verlag, 1977, pages 82-118.

Taub, D. M.
Arbitration and Control Acquisition in the Proposed IEEE 896 Futurcbus.
IEEE Micro 4(4):28-41, August, 1984.

Thompson, K.
Computer Chess Strength.
Advances in Computer Chess 3.
Pergamon Press, 1982, pages 55-56.

