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Abstract

This report describes work during the first year of CMU's Strategic Computing Vision project. Our
goal is to build an intelligent mobile robot capable of operating in the real world outdoors. We are
approaching this problem by building experimental robot vehicles and software. Experiments in the
first year have demonstraled vehicle guidance using sonar, stereo and monoscopic TV cameras, and
a laser scanner. This report describes the technical contributions, our relationship with the DARPA
Autonomous Land Vehicle project, our project history, the people who comprise our project, and a list
of project publications over the last year.
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1. Introduction

On October 1, 1084, Raj Reddy called a meeting of Takeo Kanade, Hans Moravec, Red Whittaker,
and Chuck Thorpe, to organize the Strategic Computing Vision (SCVision) project at CMU.  This
document is the report on that project one year later.

Our goal on the SCVision project at CMU is to build vision and intelligence for a mobile robot
capable of operating in the real world outdoors. We are attacking this on a number of fronts, ranging
from building appropriate research vehicles, to exploiting high-speed experimental computers, to
building software for reasoning aboul the perceived world. In the last year significant strides towards
that goal include

e runs with our vehicle continuously moving along paths and sidewalks, using a television
camera to sense the pavement,

¢ sonar-based runs cross-country through trees and obstacles, and at the bottom of a coal
mine,

¢ runs through the same trees using a Iaser scanner,

o successful runs using stereo vision to sense and avoid obstacles,
o the first real application of the prototype Warp systolic processor,
¢ design of Navlab, a robot van,

eand design and first stage implementation of a software blackboard system for
connecting the output of all the sensing and reasoning programs into a single view of the
world. -

This report is a broad overview of the project with pointers to more detailed writeups of individual
components. It is a progress report rather than a discussion of complete scientific results: some of
what is presented is more pragmatic than scientific, and much of the research is still in preliminary
stages. So this document is a snapshot of the SCVision praoject as of the beginning of October 1585, |
of our perceptions of our work in the context of the larger SCVision and Autonomous Land Vehicle
(ALV) communities, and of our plans for the future.

We expect this document to serve at least three purposes. First, we hope it helps solidify the
common understanding of what we're about. We have discovered that there are some basic
differences of opinion about architecture, for instance, that we didn’t even realize existed until we
started putting things down in writing. Second, we want to circulate the finished product among the
DARPA SCVision and ALV communities. This will serve partly as a project report to our funders, but
more importantly as a position paper in developing the same kind of common understanding but at a
larger scale. Finally, we can extract relevant parts of this document for various publications and
handouts. We intend to produce a companion video tape and slide set that should go a long way
towards reducing the work of publicizing our results.

There are several dimensions of the project that must be described to give a complete picture. The
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next section of the report describes the technical approach we are taking and the results to date.
Section three-discusses program issues: how our work fits with the other contractors working on
aspects of SCVision and the ALV. The fourth section is a chronology of our project, giving
background, a time line, and future plans. Our successes are due to hard work by dedicated people,
some of whom are listed \n secfion five. Finally, section six is a list of project publications during the
past year.

2. Technical
Our technical work can be grouped into four main categories:

» Hardware components of the system
« Software components
* Architecture of the system, a blueprint showing how we expect to assemble all the pieces

» The Blackboard, which is the mechanism for data fusion

2.1. Hardware Components

2.1.1. Vehicles -

The workhorse of the CMU SCVision project has been the Terregator, designed and built by the Civil
Engineering robot lab. We have made occasional use of Neptune; a smaller robot built in the Mobile
Robot Lab. We have begun to design Navlab, our‘Navigation Laboratory of the future. Itwill be based
on a Chevy Van, and will include room for onboard computing and researchers.

No mobile robot project is complete without a mobile robot. We were extremely fortunate to have
had the Terregator built for another project prior to ours. When the previous project completed, we
were able to take over the Terregator for our use, and have been relying on it for almost all our mobile
robot runs. The Terregator is designed to provide a clean separation between the vehicle itself and
its sensor paytoad. The vehicle provides a mobile platform, power, a 2-way radio for corpmuni‘cations
with a remote computer, and built in motion commands. This makes it easy for researchers working
with different sensor packages to bolt on their choice of sensors, processors, and communications
gear, and run their experiments without concern for the details of the vehicle. Details of the
terregator are reported by Whittaker [21 }»

Neptune is a small tethered tricycle designed to provide basic mobility, indoors or on smooth
outdoor terrain, for sensor payioads, its front wheel is steered' and driven by a pair-of constant-speed
AC motors, white its rear wheels are passive. It was designed® and built in January through March
1984, and was used for the stereo vision and sonar projects, 'both indoors and outdoors, for many
months before the SCVision project started. Even after the Terregator 'became available, Neptune
has continued to be useful for occasional indoor runs. It is limited by Its smalt payload, its tether, and"
especially its constant speed motors that prohibit slowing down the vehicle to match our computation
speed, For more information on Neptune, see Podnar [12]; see also Moravec [9] and Podnar [11] for
discussions of Pluto and Uranus Neptune's stable mates in the Mobile Robot Lab.




Although we have had good service from Neptune and especially the Terregator, several concerns
have prompted the design of a more ambitious research vehicle, the Navlab. The Terregator, in
particular, was designed for a different set of missions than those for which we are using it. The
original design constraints were for powerful go-anywhere locomotion at slow speeds. The resulting
design, with skid steering, is very aggressive, capable of climbing stairs (even trees) and bouncing
across railroad tracks, as it has shown in its coal mine run. The side effects, however, are that turns
are hard on the grass (an important consideration when we run in a public park) and are somewhat
indeterminate. A conventionally-steered vehicle would suit our purposes better. Also, our work over
the last year has shown that some of the most interesting problems are in combining the
interpretations of several sensors into a single model of the world. While.the Terregator can
accommodate a single sensor and some sensor combinations, we run out of deck space and
electrical power when we try to run several sensors, pan/tilt mounts, telecommunications, and the
vehicle drive motors all at once. Finally, we have found it very helpful to have the computing close to
the vehicles. Not only does this reduce the frustrating problems of sending data over a radio link,
through trees and buildings and over hills, but it also allows much quicker program/test/debug
cycles and cuts down the number of people needed to field a vehicle.

All of the above concerns have led us to the design of Navlab, a Chevy van converted into a robot. If
funded and built, Navlab will carry stereo TV cameras, a laser scanner, sonars, several computers
(both built-in for control and reconfigurable for experiments), and four on-board researchers.

2.1.2. Communications

Until we can put powerful computers directly on the vehicle, we must have some ‘sort of
communications link between the robot and.the base station. Ever! a vehicle that carries its
processing with it, such as the Navlab, will still want to communicate with delicate or bulky
experimental processors and with large archival disk storage. We have steadily improved our
communications links from the early days of snowy signals and hard lines.

The Terregator comes complete with a 1200 Baud full duplex radio modem for communicating with
its onboard control computer. We have tried different vendors and configurations for the link, and the
one that works best is built by Vectran Corporation. It is totally transparent to the computers at either
end of it, acting as a standard RS-232 connection. I'nternally, it does some error detection and
retransmission, but the amount of lag time and indete_rmir_]a_cyfintrqd:u'ced by that is small.

A second kind of link is for getting video data back frém‘the-Vehicle. For several months we used a
microwave link. This was not an ideal match: the microwave was designed.(and licensed) for indoor
line of sight use, and was intended for Uranus, thé*Iat'*ést-e"progéhyf'-b,f the Mobile Robot Lab. It has a
very directional receiving antenna, does not do well penetrating.léaves or tree trunks or people, and
has a much broader bandwidth (1Q MHz) than we need. To make it work, we mounted the receiving
antenna and a television camera on a remote-controlled pan/tilt head, so someone helping with the
run could watch the camera and continually adjust the pan angle to keep the antenna pointed
towards the vehicle. Our solution to the video transmission problems was to acquire UHF transmitters
and licenses for channels 24 and 46. We have 20 watts of power on each channel, which has
improved the image quality. We are in the process of acquiring better transmitting antennas (full-
wave instead of quarter-wave) and mounting receiving antennas on the chimney of Hammershiag
Half, the highest point on campus.
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This still dloes not solve all our problems. Data from our laser scanner comes at 56KBaud, much too
fast for the 1200 Baud radio link but much too siow for vidco transmission. Until now, we huve had to
butfer all the data in an onboard 68000 system and send it serially over a 9600 Baud hard ling, taking
about 20 seconds to transmit an image. In September, we started working with ITS Inc. to modify one
of our video trunsmitters to send 56 KBaud digital data on one of the audio sidebands. We hope to
complete that project by the end of October.

2.1.3. Sensors

We have used three main kinds of sensors: television cameras, a sonar ring, and a scanning laser
rangefinder. The cameras give reflectance information, the sonar measures distance, and the laser
scanner has the ability to do both.

We have tried several different TV cameras. The ideal camera would be geometrically undistorted
(a straight line in the world should appear as a straight line in the image), photometrically undistored
(an object should appear the same brightness and color no matier where it is in the field of view),
capable of withstanding shock and vibration, have good low-light sensitivity, and be inexpensive. In
addition, we are interested in color cameras that produce separate R, G, and B signals, so we can
process the pure color information before it gets blurred by conversion to NTSC. Other desirable
characteristics would be small size and low power consumption, and good dynamic range so we can
see into both shadows and sunlit areas in the same frame. Our search for this ideal camera has gone
through several iterations, principally:

o RCA T1100 vidicons. The only criterion they really meet is "inexpensive.”

. Sohy XC-37. These are very small and light black and white CCD cameras. They have
somewhat limited resolution (384 by 491) and dynamic range. They are eventually
intended for use on Uranus.

¢ JVC BY-110U vidicons. These are the closest we have come to our wish list. They are
equipped with zoom lens (7 to 70 mm), auto-iris, and a control unit that can produce
either R G B or NTSC composite color output. One problem is that the individual color
lines do not have sync signals, so by themselves they cannot be displayed or digitized.
We have spent a great deal of effort trying to build a box that extracts sync information
from the composite NTSC signal and adds it to one of the colors.

So far, vibration and shock have proven to be smalier problems than anticipated. For a while, we had
the cameras mounted on a tripod which was shock-mounted to the Terregator. This was not entirely
satisfactory, since the whole setup wobbled somewhat. Since then we have used a variety of mounts,
all boited directly to the Terregator’'s deck {(which is itself shock-isolated to some extent), and have yet
to experience a camera fatality or to be bothered by blurry images.

Camera size and power consumption have also become non-issues, especially with the Naviab,
since the space and power available will remove any constraint on cameras. On the other hand, the
dynamic range has become more significant: our test path curves through trees, going in and out of
shadow. Even in Pittsburgh, we have sunny days when the sunlit area is much brighter than the
shadows. When we digitize the images from our existing cameras, if the iris is open enough to
perceive color in the shadows, all the sunlit objects are washed out to white. If the iris is closed
enough to see color in the sun, all shadow pixels are black. We have no good known hardware




solution for this problem, but we are currently experimenting with flood lights on the vehicle.

The sonars we have been using are the transceivers used by Polaroid in their auto-focus cameras.
We use 24 of them in a ring; since each sensor covers approximately 30 degrees, this gives
overlappiny coverage on every point. Sonar range is about 30 feet. The whole ring of sonars is
controlled by a Z80 talking SDLC over a serial line. In theory, it should be possible to get range to
nearest ohjcct from each of the 24 sensors in a second and a half, firing each sensor and letting its
echo die down before the next sensor is fired. It should even be possible to get data faster than that
by firing opposite sensurs at the same time. In practice, it has taken closer to 10 seconds to complete
a sonar scan, due to shortcomings in the Z80 software.

Our laser scanner is built by ERIM, the Environmental Research Institute of Michigan. The ERIM
scanner amplitude modulates its outgoing infrared laser beam, then compares the phase of the
modulation of the returned wave with the transmitied wave. The phase shift gives a range value
modulo the range for onc complete phase shift; this introduces an ambiguity in the depth
measurement. In other werds, distances from 0 to 63 feet are reported correctly; distances from 64 to
127 feet are reported 64 feet too short; and so on. In practice, the information from the first and
second interval is recoverable, but beyond that it is hard to use. The ERIM scans its laser with a
spinning polyhedral mirror and a large nodding ntirror. The resulting range array has 256 columns
and 64 rows, covering 80 degrees horizontally by 30 vertically, and is scanned twice a second. The
instantaneous field of view is 0.5 degree.

The ERIM can also produce reflectance data. This is a measure of the amount of light reflected
back from the laser, adjusied for the range to that point. Since the bandwidth of the laser and
detector is so small, reflected sunlight should not affect the signal, so this should give us true
reflectance regardless of shadows. As of the writing of this paper, the ERIM has been set up to
collect reflectance data bui not yet tested.

2.1.4. Computing

Since 1980, the CMU Computer Science Department and Robotics Institute have been to a large
extent a Unix/C/Vax shop. There have been flings with other processors, notably Pergs, and there
has always been a small community of True Lisp Hackers, but especially in the Image Understanding
(1US) group almost all sericus programming has been done in C on the Unix! Vaxes. The SCVision
project has kept basically the same sofiware environment, but we have moved from Vaxes to Suns for
the core hardware. We have also used full-sized Vaxes, a MicroVax, and an IBM PC. We have two
sister projects building hardware and software for the Warp, a powerful systolic processor, and have
just started to take advaniage of prototypes of that machine. All programming to date has been in C,
with the exception of some assembler hacking and Warp programming. Future language plans call
for some Common Lisp.

In the first stage of the project, the primary computing engines were the Vaxes that belonged to the
IUS project. There were iwo machines, a 780 namad IUS1 and a 785 named IUS2. Each had a
Grinnell frame buifer/digitizer. The IUS2 would have been preferable in terms of speed and

¥ Unix i a tradnmark of Bell Labs



availability, but its Grinnell was inferior. Built in 1980, it was an old model, with only encugh memaory
for one black and white image, poor documentation. and outdated software. Strenuous attempts to
get it working on the 1US2 got nowhere, but had the side effect’ of teaching people enough about the
internals of the Grinnell that it was possible 1o program the internal processor. The IUS1 Grinnell had
a poorer A-to-D converter (4 bits of resolution, capable of averaging four frames to give G bit images),
but had storage for four 8-bit images plus overlays, and had a programmable processor that could do
simple operations like shifting one frame relative to another, adding frames, and thresholding, all in
real time. Clever algorithms were built to do edge finding, smoothing, and simple region growing, all
covering the entire image in fractions of a second. These were used for the first steps of processing
on our first runs.

We are currently developing a memory-mapped digitizer for the Vaxes. A prototype, running on a
Vax 750, has 512 by 512 resolution and full color. So far the memory-mapped display works but the
digitizer is not yet finished. When the final system is complete and running on the 780 and 785 Vaxes,
we will have much more convenient access to image memory, and will retire the Grinnells with all the
honor they deserve.

In the spring of 1985 we acquired our first Suns, and now do much of our day to day work and runs
with them. The Suns are 68000-based personal computers. We have one Sun-2/170, a rack-
mounted version that uses a Multibus, and three Sun-2/160’s, VME bus machines in their own
cabinets with large pseudo-color bit-mapped displays. The Suns with the £8010 processor are ahout
comparable to a Vax 750 for integer arithmetic. When the 68020 processors arrive, with their floating
point coprocessors, we expect to get performance equivalent to a Vax 780 with a two-board
computer.

The digitizers we have used on the Suns are Matrox MIP-512's, which have an 8-bit A-to-D, 512
columns by 512 rows of memo}y (currently set up for 480 rows for standard video), gain and offset
controls for the digitizers, and memory mapping so the entire image is available directly in Sun
address space. Three Matrox boards can be ganged together to make a full color system. We
originally had a single Matrox running on the Multibus Sun; in early October we set up a three-Matrox
color system using Multibus to VME adapter boards so the whole setup can run on one of the 160's.
Matrox boards have hardware provisions for image processing such as convolution. We have begun
experiments with programming them, and have written a Matrox Unix device driver.

We also have one MicroVax il. It is a true Vax, running Unix and supported by the Computer
Science/Robotics support staff. It currently holds a big edge over the Suns in floating point speed, so
we will perhaps use it for some of the floating-point intensive calculations. One problem with the
MicroVax is its Q-bus, which is less convenient for digitizers and other peripherals.

Our IBM PC/AT was bought for another project, which generously shares it with SCVision. We first
used it to drive a color printer, and added two hard disks and floating point coprocessor to speed up
that application. We then purchased an AT&T digitizer board that has only 256 by 256 resclution but
can grab an NTSC frame and decode it into 5 digitized bits each of R, G, and B. A number of
experiments have used this board either directly or via a collection of hacks, notably as a color
splitter.




The Warp processor consists of a host, an interface unit, and 10 (2 in the prototype) systolic cells
linked end to end |2, 6]. Lzach cell is its own processor, capable of doing a floating point addition and
a floating multiplication every 200 nanoseconds, for a total processing power of 100 Megaflops. It
can do all of the standard operations done by image-processing boxes: convolutions, growing and
shrinking, histogramming, and so forth. But it can do much more: its interface unit allows it to jump
around and efficiently process lots of little image patches, its floating point capability lets it do FFTs
and other number-crunching jobs, and the programmability of the cells lets it run data-dependent
routines like edge-preserving smoothing. The designers of Warp realized that to make it real it would
need real software. One of the software projects is bmldmg a library of over 200 commonly used
vision routines, another is working on a high-level language compiler, and another is building a
"cookbook" of example programs.

The primary operating system for the big Vaxes is a version of Unix 4.1 with local CMU utilities. The
MicroVax runs a CMU version of 4.2BSD Unix, and the Suns run Sun 2.0 4.2BSD Unix. This
hodgepodge makes software development difficult. While standardizing on C and Unix makes many
applications easy to port, there are still assembly language implementations of some low-level
functions that do not port. There are also differences in data format between the machines that make
distributed systems inconvenient to write. Work is currently under way to bring up the CMU utilities
on the Suns (hampered by the inaccessibility of the Sun Unix source code), to bring up the 4.2 file
system on the Vaxes, and to build a new version of the CMU IUS image package for 4.2 systems that
will take advantage of the. Suns’ memory-mapped Matrox frame stores. Other issues being addressed
are automatic software update on the personal computers, so as bugs are fixed on one machine the
proper versions propagate; file system backup; and use of the bit-mapped displays. The IBM PC does
not run Unix, and is therefore entirely separated from these issues.

eveniuaﬁy happen in Common Lisp, once it is available on the Swm&

2.1.5. Miscellaneous Hardwaie ; s
We have a whole host of miscellaneaus hardware that deserves mention but not discuss

o Shinko Color Printer CHC-35: Three pass color printer 800 by 1200 dots per .
Resolution 4 dots/mm approximately 100 DPI {(dots per inch). Receives data in sequence
of yellow, magenta and cyan. Both character output and bit pattern output are available.
Simple color output is constrained to 8 colors. No dithering program has been developed
which can expand the color range. Printing speed 2 minutes. Interface is parallel
interface, Centronics compatible. Quality is very smooth color fill, significantly
outperforms ink jet. Controlled from IBM AT.

« Panasonic EMCP-500 Color Printer: Three to four pass color printer 4086 by 5500 DPI,
yellow, magenta, cyan and black. Receives data at high speed 220 Kbytes/sec minimum,
Printing speed using the four passes is 2 minutes. Bit pattern output only (no character
output). Color output 250,000 colors. Interface GP-IB (IEEE-488). Quality close to
Photograph. Control will probably be from IBM AT with Tecmar IEEE-488 board.
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» Bessoler film recorder for photographing images. Takes RGB in, displays the colors on a
high-resolution screen, and controls camera shutter and exposure times. Each camera
comes with a PROM that sets exposure times to yet correct color balance for several
different types of film. We're using a 35mm camera to shoot slide film.

» Imagen laser printer. Prints text, line drawings, and halftoned images. Sits on the
ethemet, so it is accessible to any machine.

s Antennas and wiring. We have pulled cables to the far reaches: from the first floor of
Wean Hall to the third floor patch panel; back and forth down the first floor; over to the
Civil Engineering labs; and soon up to the top of Hammerschlag for antennas. We are
installing a system of amplifiers and filters near the Hammerschlag antennas to bring the
UhlF signals to the third floor patch panel. We have used approximately 20,000 feet of
coax; plus twisted pairs.

e Pan/tiit mount. We have built a pan/tilt camera mount and have tried it on the
Terregator. While right now there is no imaging software that uses it, there are places in
our test area where intersections or sharp turns take the desired path out of the robot's
field of view.

2.2. Software Components

The early focus of our program was mostly on road following, with obstacle avoidance corning later.
Consequently, there are at least four distinct techniques for following roads with a single camera, but
only a single main technique for each of ERIM data analysis, sonar processing, and stereo camera
processing. Other software modules include path planning and motion servoing, a "virtual vehicle™
interface, and the first stages of map and model data.

2.2.1. Road-following Vision

The first road following technique was based on finding road edges It started by running a Robert's
gradient operator over the entire image (implemented on our Grinnell frame-grabber's image
processing card). A section of the gradient image, about 100 rows high and 512 columns wide, was
pulled into Vax memory. The gradient points were thresholded, resulting im a binary image of
candidate edge points. Candidate edge points were linked into approximately vertical lines, with a
small tolerance for missing points and misalignment. The two groups of extracted Sines, one from the
right of the image and one from the left, were processed to find a pair of lines that were approximately
parallel, about the right distance apart, and close to the position predicted based on previous road
location and vehicle motion. The two Sines that best met this criterion were assumed to be the road
edges, and were passed to the vehicle control program. Further details of this program are described
by Wallace [19].

We made several successful runs with a system based on the road edge follower. The runs were
stow, about 5 to 10 cm/sec, due partly to image processing time but mostly to poor communications.
We were debugging this software last November and December with the Terregator on a path in
Schenley Park. We had problems with low-contrast road edges: we were using black and white
cameras, and the gray asphalt looked very much like the gray winter grass. In fact, because of leaves
and broken pavement edges, other objects (such as trees) had straighter edges and sometimes
looked, to our program, more like roads than the road did. So our first successful runs used white
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masking tape to give reliable road edges. For later runs, we moved on campus, where the green

grass and white cement sidewalks provided much higher contrast, and where the tape was
unnecessary.

The problems with low-contrast and jagged edges also motivated new vision algorithms. We have
made a series of experiments that effectively blur the image along the road and reduce the problem to
a 1-D search perpendicular to the road. The idea is to place a window on the predicted road edge,
oriented so its columns lie along the road and its rows across the road. Next, for each column, we
sum all the pixels in that column into a colsum buffer. The 1-D signal in the colsum buffer can then be
searched for the road edge, either by looking for a peak in a derivative operator, a zero-crossing of a
second derivative, or the best match to a typical road edge signal generated by hand or from a
training image. Once the road edge has been identified in two successive windows, a better estimate
of road direction can be derived and used to better position and orient the windows. One
implementation uses a fast technique to generate column sums for oriented windows based on
precompiling a table of row and column offsets for several representative window orientations.
Alternatively, the image can first be projected onto an assumed ground plane, undoing the effects of

perspective and allowing most of the colsums to be vertical. Further information on these techniques
is provided by Wallace [20].

Road Image and Edge Profile
Edge Operator '

Nondfrectionat Operator

'Oriented Operator

Figure 2: An oriented edge operator
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Figure 3: Road tracking with oriented edge operator

A third road-following technique is based on color classification. For each pixe or block of pixels,
the cofor of that point is compared to the color of typical road, grass, tree, or other values, and the
pixd islabeled according to the best match. One problem with this straightforward approach is that it
does not -handle shadows gracefully. A better idealsto use normalized colors, rgb, defined as

r=R/(R+G+B)

g=G/(R+G+B)

b=B/(R+G+B)
so the color is used instead of brightness. While this works fine in some cases, in others the shadows
are so dark or the sunlit areas so bright that adl color Information islost. The R* G, and B values are dl
0 or dl 255, so no color information is left. Once pixels have been classified, they can be combined
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into road regions and non-road regions. These regions can be smoothed, and lines fit to the road
region boundaries. Using geometric heuristics, such as expecting opposite sides of a road to be
paraliel, we have done the first experiments on finding roads and intersections. The techniques look
promising, even for uneven roads. One nice trick is ta vary the line-fit tolerances until approximately
the right number of lines are used, which helps get around problems of broken borders.

The final road-follower was put together mostly to show off the prototype Warp machine, but also
resulted in some interesting vision work. This algorithm first runs edge-preserving smoothing over
the image, then histograms the result. The histogram is used to select a threshold to split the image
into road and non-road segments. The resulting binary image is again smoothed. The final road
blobs may be jagged and patchy. Instead of trying to trace polygon boundaries or find center lines,
this process pulls 10 rows from the road image at evenly spaced intervals. For each row, it looks for
the longest run of "road" points, and reports the center of that run as the road center. Not only does.
this ignore small extraneous road patches, it also chooses the main road at forks in the path.

This Warp road-following technique has been used in several successful runs. The best results
have used the blue band of the image rather than the intensity, since there is more contrast between
asphait and grass in the blue signal. The best runs have gone up to 1 km/h, and have had no
problem on evenly-lit paths and sidewalks. The technique for finding the road center has been robust
enough to navigate through Y intersections. The remaining problem with the Warp runs has been
losing the road when the vehicle is moving in and out of shadows. ‘

2.2.2. ERIM Data Interpretation ) .

Since our roads are fairly flat, ERIM range images contain more information about obstacles than
about roads. ERIM processing starts by correcting the data for range ambiguities and smoothing the
depth image. The processing finds 3-D depth discontinuities, and calculates local surface normals
and normal curvatures at each point. The discontinuities give 3-D edges; the normals and curvatures
are combined to do region segmentation. Regions plus edges are combined to produce the final
result: a list of passable regions (smooth and flat), impassable regions, and 3-D edges. Further work
will look at other kinds of information, such as using depth texture to differentjate between rocks
{relatively smooth) and bushes (relatively rough, with holes that the ERIM can see through).

A system based on ERIM processing has successfully driven the vehicle for 200 meters (the limit of
our hard lines) through trees and up the path. The only problems encountered were steering off the
path because potholes on the path were rougher than the surrounding grass, and getting confused
where there was no good smooth path. Future runs will include a variable surface-fit parameter, so if
there is no good path, surfaces can be refit with greater tolerances. The resulting path may be
rougher and may have to be traveled more slowly. Current ERIM runs take about a minute to process
an image, which then can be used to generate a 4 or 5 -meter path. One big bottleneck is the
communications, which will go from 20 seconds per ERIM image to a fraction of a second with the
new ITS hardware. Work is also under way 1o put some of the ERIM processing on the Warp machine.
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2.2.3.Sonar Processing

The difficulty in sonar processing is to take relatively crude data, 24 range measurements, each
reporting the distance to the nearest object in a 30 degree cone, and produce relatively high-
resolution output. The saving factor is the overlap between cones of coverage of ncighboring
sensors on a single scan, and of mulliple sensors as the vehicle moves. A range measurement not
only says that there is some object at the indicated range; it also says that there is no other object
closer than that range in that 30 degree cone. The source of the echo can be represented as a
probability smear along the arc at the end of the cone. If some overlapping scan shows that part of
that arc must be empty, the "probabilities” on that part of the arc can be reduced, and the weights on
the rest of the arc increased. By the time several scans are combined in this way, the data can be
represented on a grid with as little as 1 cm resolution, although 10 or 20 cm resclution usually gives a
better tradeoff between computation, storage, and accuracy. Each point on the grid contains a
"probability"” that that point is empty, and a "probability", that it is occupied. Because of double
echoes and other sensor imperfections, the "probabilities” don’t necessarily add up to 1; hence the
quotes. The residual is a measure of the uncertainty of the information in that point. Post-processing
stages can threshold the occupied weights and return a list of polygonal obstacles. Other recent
additions to the program are a process that continually adds new data to the grid without having to
reanalyze the old scans, and a method of keeping the local map centered on the current vehicle
location [1].

Our best sonar runs have maneuvered the Terregator through the trees on Flagstaff Hill. Even with
the Terregator slipping on the grass and with unreliable s¢nsors, the redundancy in the data and
processing is enough to build a robust system. Sonar runs now take about 30 seconds per step, with
each step about two mesters. Actual computation time is less than 5 seconds. When the sonar
hardware is improved, we should be able to do continuous motion.

2.2.4. Stereo Vision

The FIDO system finds three dimensional obstacles in a stereo pair of images[18]. To correctly
interpret the stereo pair, FIDO must match points in left image with the corresponding points in the
right image. First, points in the right image are selected. The points chosen are corners and isolated
spots that should be easy to locate in the left image. In the next step, FIDO finds the approximate
position of each chosen point in a low-resolution version of the left image. The position estimate is
improved by finding the point in higher and higher resolution images. Once the point has been
exactly located in the left image, triangulation gives the location of that point in three dimensions. By
matching the same points in several image pairs over time, we can get more accurate point positior
estimates and can derive the vehicle’'s motion. We now have versions of FIDO that run on the Vax and
on the Suns, and are porting it to the Warp machine. Details of FIDO's predecessor are given by
Moravec [8].

FIDO has made many successful runs, mostly indoors with Neptune. We made one good outdoor
Neptune run, with an umbrella taped to the camera mast to keep the robot dry during a rain shower.
Cur outdoor FIDO runs on the Terregator have the same problems that have plagued other outdoor
vision runs: shadows, sun, and insufficient dynamic range on the cameras. FIDO currently takes
about a minute per step on either a Vax or a Sun. Warp FIDO will run in about 3 seconds per step, fast
enough for reasonable continuous motion,



17

t s et a A ety RN IR T Y

P e L L R T T .
......... o T Ay .
...... ....-................+++++.. -
" " - P W o NP B P T " P .
.......I......‘..p.'tx.i.;h;-pq. ........ 2 . +
LB EEEEEE © K +MrtFde e v o - A L A R R R A LRI LR B

DY IS & 2R i!E + -ﬁ%;é;y - . . .

PSP x-i- L S T ] t ' Y Iy . - . . " -

. eI IR . T ETRRA TR -

P Py [EEEE X : x++xx.¢x++++x++++++++x++x-- .

.. ; 1 o + R A E NS R P EE N EE LY I D]

- + it * 3 SR L BN EE X AN I R T Y R .

+ + = 4 + 4 . 1 [ 3 ) -

1+ 1
o+t t + b+ M

,:
+
-
+
¥

)
O

o -LfrffX+4-:4- »fc t 3 .
- t A . + -
- + + i
. ++ o+ LRI ¢ 4 ..
. o [ LX) L XX [ [ OO
- + ' o+ 44 F & 3 + 4+ R kAl [ N N L]
. ‘e + + l£+}b-4+r>+v+++ 144 R EENIE I X H
. LA R L RS SRR O | ERNES IR b £ - R R RS L ..
. L SR _ﬁTWr‘ﬁ-+xx++++++§ﬁ¢3'-l¢ SRR L 2.3 OO B

e ! P+t r e XN
iy . ‘et ‘¢'++X > TR -
xx++g X""‘°X" ...... e v ++x+ﬁ$ﬁ+ ....... .

A A

L
L T T T

.
R R R I e R R )

oo affe
LEEREAET LY

'R O

LY [
IR

LB R B R

L R I B TN R T I R ]

Figure 6: A two-dimensional sonar map. Empty areas with a high certainty
factor are represented by white areas; lower certainty factors by
M + " symbols of increasing thickness. Occupied areas are
represented by "x" symbols, and Unknown areas by "e" *
The position of the robot is shown by a circle and the outline of the room
and of the major objects by a solid line.

2.2.5.Mation .

Once the road and obstacles have been found, we have to plan a path that avoids obstacles and
move the vehicle along that path. We have developed several methods, partly to try various ideas and
partly to have specialized algorithms that are better tuned for certain conditions.

in FIDO v/e developed path relaxation, a path planning algorithm that finds the lowest "cost" path
from the current position to the goal. The cost of traversing a particular point can be a combination of
several factors, including distance traveled, nearness* to objects, traversability of the terrain, and
uncertainty about the area. The first step of path relaxation finds a preliminary path on an eight-
connected grid of points. The second step adjusts, or "relaxes/® the position of each preliminary path
point to improve the path. We have used path relaxation for ERIM, sonar, and stereo vision runs.
Obstacles are given a high cost, areas outside the field of view or hidden behind obstacles a medium
cost, and known empty areas a low cost. Path Relaxation is documented by Thorpe {17,18].

The output of path relaxation is a list of points through which the planned path passes. These
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points can be directly used by a simple-minded scheme that drives the vehicle through each point in
turn. A better strategy is to use the points as “critical points" in a scheme that plans local trajectories
based on critical points, vehicle dynamics, and local obstacles. One such local controller, built as
part of a separate project at CMU, is Dynamic Obstacle Avoidance Control (OAC). The OAC algorithm
builds a "potential field," where obstacles repel the vehicle and the critical points attract the vehicle
along the path. What makes this approach unique is that the strength of the repulsive forces varies
with the closing speed of the vehicle and the obstacle. Thus, for instance, if the vehicle has to
squeeze through a narrow space, it will slow down as it approaches. then resume its speed as it
passes through. The combinatiocn of algorithms makes for a good division of the problem: path
relaxation takes care of global issues, such as avoiding dead ends, finding an overall optimal or
near-optimal path, and deciding between areas with different terrain or better visibility. Local issues,
such as cutting corners, slowing the vehicle to maneuver in tight spots, and smooth transitions from
one step to the next, are all handled by the lower-level controller. The low-level controller can also
react to new sensory data as the vehicle moves, and can often handle new objects or updated
obstacle positions without having to invoke the global path planner [4, 5].

We have a specialized controller for following obstacle-free roads. The genesis of this controller
was our early work in visual servoing. Previous ideas for control often steered too sharply or not
sharply enough, letting one of the edges of the road drift out of our field of view and fouling up the
image proceséing. The easiest solution is to servo so that the road always stays in the picture:
essentially, lining up a "hood ornament" with the center line. Moreover, the analysis of this strategy is
tractable, and there is a closed form solution for critically da:i:ped gain. Even if the gain is off by large
factors, the system still behaves relatively well. In some of our Warp runs the camera wasn’t even
calibrated; the gain parameters were éstimated and tweaked until the systern worked, with no precise
measurements. In the control literature this method is called "pure pursuit.”

2.2.6. Virtual Vehicle

To simplify development of subsequent versions of vehicles, we are developing a virtual vehicle
interface. The motivation behind isolating a set of generic commands is that high level "conceptual”
development need not be concerned about implementation details, and changes made to the
hardware (motors, sensors, etc) are invisible to the higher level software. The only changes that need
to be made are to the drivers that control the sensors and motors (a relatively simpler task).

There are two parts to the virtual vehicle: motion control and sensor data acquisition. The sensor
part of the interface is still in the design phase. It will be responsible for getting a reading (image,
range image, sonar scan, etc.), storing it in some known spot, and time-stamping the data.

The virtual vehicle motion interface will, for now, be limited to following arcs and lines supplied to it
. by a host computer. The communication between host and virtual vehicle falls under the following
categories:

e Set commands: Commands specified by host to set parameters like speed and
acceleration.

o Query Commands: Queries by the host about status of devices, position of vehicle, etc.

e Report Commands: Reports initiated by the virtual vehicle concerning alarm situations.
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AN communication will have two checks, T-irst, each packet will be prefixed with the length of the
string. Upon receiving the packet, the listening device will check to see if any data is lost in the
transmission. Second, data that constitutes crucial commands s further checked to see if the
arguments specified are within acceptable range before the command is executed. In both cases, the
listening device validates the data and sends either ACK (acknowledge) or NAK (error in data
received) to the sender. The sender is responsible for ensuring that it gets an-acknowledgment for
the data sent. If either a NAK or no signal is received, then the sender repeats the old transmission
until a limit is reached or an ACK is received.

Normal interaction between host and virtual vehicle is envisioned as follows:

* Host issues an arc length and steering angle.

« Virtual vehicle completes the current arc and then embarks upon the new arc. Transition
to a new arc initiates a new steering angle.

» When the vehicle has traveled the arc length specified, a signal is issued to the holst along
with time and x,y position of the vehicle.

* This position is used to predict the next arc (and corresponding steering angle) which is
sent to the virtual vehicle.

It is neither possible nor desirable for the virtual vehicle level to be completely vehicle-independent.
It may be important, for instance, for path-planning to know if a vehicle can turn in place. The details
that should be masked, however, are those of a particular vehicle's commands to make it perform one
if its maneuvers, and the lowest-level commands of how™o get a sensor reading and how to correct it
for vehicle motion. Such an interface allows us to change the low-level steering and moving
commands of a vehicle without redesigning the rest of the system.

2.2.7. Data

Some of the most interesting issues on this project are the interactions of the perceived world with
predictions. A prediction module will take current vehicle position, look up in the map to determine
what should be out there, and generate predicted appearances and geometries of terrain and objects.
We are just in the first stages of building those maps and models. The most extensive maps are being
generated by the U.S. Army Engineer Topographic Labs to cover the entire 2 km by 2 km Martin
Marietta ALV test site. The map will consist of

* Elevation grid, wery 5 meters, with resolution to- a fraction of a meter and accuracy to
about 2 meters.

« Oertay for hydrology. The aerial photointerpreters can find any gully deeper than 1 foot
and wider than 2 feet.

« Overlay for ground cover. Trees, low grass, brush, etc.
« Overlay for soil type. Sand, loam, clay, mixed recks, etc.

* Overlay for slopes* Polygons with average slope for each..
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e Qverlay tor cultural features, including roads, fences, power lines, and buildings.

2.3. Architecture

The proliferation of modules could rapidly lead to pandemonium unless some order is imposed on
the system architecture. This is not a straightforward task: system configuration is one of the
research topics, and interacts strongly with what modules are available and how they perform. We
have built several specialized systems, basically one for each sensor interpretation program, and now
have enough experience to start tying things together in a mare organized fashion.

Our new architecture contains the physical hardware plus four main software levels: a virtual vehicle
interface for motion and sensing, sensor and mation processing, the local map level, and high-level
cognition (figure 7). While there are no hard and fast boundaries between these levels, they provide
both a conceptual way of breaking down the system and a model for where the main channels of
information flow should be.

The hardware consists of the Navlab, if funded, plus stereo color cameras, the ERIM scanner,
sonars, and pan/tilt mounts. The virtual vehicle level is a set-of functions that mask the particular
details of how the vehicle moves and senses. Most of our existing sensor interpretation processes
can be converted into the format needed for the new architecture. These processes start with raw
data and produce descriptions in three-dimensional world coordinates. The interface to the sensors
is handled by the virtual vehicle, so that arriving data has been time-tagged and possibly corrected for
vehicle motion. From the raw data, each sensor process produces viewpoint- and sensor-dependent
symbolic descriptions. The sensor modules for the system include image, sonar, range, and vehicle
meotion routines.

The local map level is responsible for building and maintaining a description of the environment
around the vehicle. It begins with data from the sensor interpretation processes which has no
semantic labels. By the time the map is ready for the cognition level, it must be sensor-independent
and labeled (for example, "road,” "landmark,” or "house”). The components of the local map level
are the local map builder that orchestrates the processing, knowledge sources that do the work, and
the blackboard that stores the data (figure 8):

e Local map builder (LMB:) This component controls the local map. The LMB is
responsible for taking requests from navigation and goal-seeking modules, listening to
data from the sensor interpretation processes, and then selecting knowledge sources to
run. This gives the LMB a dual role, as both an interface and data channel, and as a
scheduler for the knowledge sources.

e Knowledge sources (KS:) This component consists of expert or specialized modules that
retrieve partial descriptions from the local map, generate higher-level descriptions, and
write back into the local map. Possible KS modules include a road finder, which takes
vision lines, range lines, vision and range surfaces, and previous road position and
decides where the most likely road position is; an obstacle finder, which examines the
current planned path, sonar blobs, and range blobs and produces a list of obstacles; a
vehicle position estimator, which takes motion output and matches sensed features
against predicted map features to produce the best vehicle position; and a landmark
identifier, which-takes 3-D surfaces and lines, examines the global map, and produces
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labeled landmarks.

e Blackboard: This component is a data structure into which the LMB stores sensor data
interpretations and hypothesis about objects in the local map. Conceptually, it is split into
three levels: sensor-dependent data, information that is highly dependent on the sensor
that generated it; partial descriptions, such as parts of roads or hypotheses about
obstacle location; and fully-labeled objects, such as roads, houses, and traffic lights.

The cognition level takes the sophisticated model of the environment generated by the local map
level and uses it for planning and monitoring. Examples of modules include:

e Long-range path planning: Selecting a combination of cross-country and road network
paths to reach the goal. If local navigation gets too far off the desired track, this
knowledge source should recognize that something is wrong and try to find a better path.

e Updating global map: Looking at the local map and the a priori model, decide if there's
anything new and significant and write that into the giobal map.
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s Landmark recoqgnition stralegizer: Deciding when the dead-reckoned position has drifted
too much and il is necessary to recalibrate. Picks a set of landmarks and a strategy for
being able to see them, and tasks the lower level with finding and recognizing enough of
them to get a good positioned fix.

2.4. Blackboard

The underlying mechanism on which the local map level is implemented is a blackboard. The
blackboard is a database of tokens, data objects consisting of a set of attribute-value pairs
determined by the token's type. The Local Map Builder (LMB) is the blackboard’s traffic manager. It
services requests from knowledge source, sensor, and cognition modules to store and retrieve tokens
from the blackboard. The LMB is equipped with a pattern-matching mechanism for specifying which
tokens to recover. Additional tasks performed by the LMB include scheduling token requests,
expiring old and uninteresting lokens, and transforming spatial data from one coordinate frame to
another. The LMB is implemented as an independent module, separately compiled, running as a
stand-alone process complete with network and inter-process communication channels and
primitives for communicating with other processes. The blackboard is implemented as a collection of
data structures residing in the address space of the LMB.

The blackboard software package provides the user with a library of C data structures and functions
necessary for writing sensor, KS, and cognition modules for use in the blackboard system (see figure
9). More specifically, the package provides the following facilities:

e Token manipulation: mechanisms for declaring, allocating, deleting; reading, and
writing compaosite data objects (tokens) residing in the user’s address space. Each token
consists of a list of attribute-value pairs.

o Coordinate frame manipulation: mechanisms for defining, changing, transforming,
and deleting coordinate frames in which the world, vehicle, sensors, and physical objects
are expressed. . .

e Geometric reasoning: functions provided to calculate distances between objects
(polygons, lines, point clusters, etc.), calculate convex hulls, determine orientations, and
do other common geometric reasoning.

o Specification manipulation: mechanisms for building patterns used for matching and
recovering tokens residing in the blackboard database. Each pattern is a boolean
expression of functions and relations defined over data attributes. A token matches a
pattern if its attributes satisfy the boolean expression.

e Blackboard Communication: mechanisms for depositing tokens into the blackboard
database and for retrieving them, either by pattern-matching specification or direct token
addressing.

A token is a data unit capable of representing an object of any type (such as a road, an intersection,
an obstacle, or a landmark) or instructions or status information to be passed between modules.
Each token is composite, consisting of a set of attribute-value pairs. An attribute value is a system
defined type or a primitive type, used to characterize a token. Attributes fall into three categories:
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Figure 9: Blackboard software configuration

e Internal attributes: Common to all tokens regardless of type, they are used by the system
"to manage the token. These attributes include a unique identification number, a token
type, a generation number, a time stamp indicating which coordinate system was used to
record the token’s data, the time the token was deposited in the database, the time the
token was last modified, a pointer to the module that created the token, and the token’s
location.

e Local attributes: Specific to a single token type, the number and types of local attributes
vary from one token type to another. For example, tokens of type CAR might have a local
attribute NUMBEROFDOORS, an integer defined to be the number of car doors.
NUMBEROFDOORS has meaning only for tokens of type CAR.

e Global attributes: Common to more than one token type, a global attribute such as

SURFACEAREA. for example, might be used by tokens of types INTERSECTION,
ROADUNIT, and GRASSFIELD.

For a moving vehicle that avoids obstacles and navigates using landmarks, spatial data is very
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important; therefore, all tokens have an internal attribute TLOCATION of type location. A location is a
collection of three-dimensional points to describe the shape of an object expressed in some
coordinste frame. Depending on the nature of the represented object, one coordinate frame may be
more appropriate than another. For example, stationary objects such as landmarks are most suitably
expressed in a world coordinate fraue, while sensors mounted on the vehicle are best expressed in a
vehicle-based frame. The blackboard package contains a powerful set of functions for defining and
manipulating locations, coordinate frames, and spatial descriptions.

Specifications are patterns for matching and recovering tokens stored in the blackboard dataktase.
Each pattern is a boolean expression represented as a tree. The vertices of the tree are functions or
relations whose sons are input parameters and whose parent receives the output. The leaf nodes of
the tree are constants or token attribute names. The root node must return a boolean. A token
"matches” a pattern when the values of its attributes satisfy the pattern, that is, after the attribute
values are inserted into the corresponding leaf nodes, the tree evaluates to TRUE. The blackboard
interface contains routines for constructing specifications and sending them to the LMB. Functions
exist for boolean operations (AND, OR, NOT); algebraic operaticns (ADD, SUBTRACT, MULTIPLY,
DIVIDE), comparative operations (EQUAL, NOT EQUAL, LESS THAN, GREATER THAN), string
operations (SUBSTRING, REGULAR EXPRESSION SEARCH), set operations (MAX, MIN, etc.) and
location operations (AREA, CENTROID, DISTANCE, etc.). The LMB itself handles the incoming
specifications, parses them into a tree, and does the matching.

Figure 10 illustrates a token of type intersection matching a spec. The attribute values 200.0 and
CONCRETE are inserted into the spec tree leaf nodes AREA and SURFACE respectively. Since 200.0
is greater than 100.0, the function Sgreater returns TRUE. Likewise, since CONCRETE equals
CONCRETE, the function Sequal returns TRUE. Sand returns TRUE with two TRUE inputs. Since the
spec tree returns TRUE, the token matches the spec. Note that the spec matches all tokens of type
intersection with an area greater than 100.0 and a surface of type concrete.

Specifications come in two varieties:

o Standing spec lists: The calling module sends a standing spec list to the LMB and then
resumes execution without blocking. Whenever a token appears in the blackboard that
matches the spec list, it is immediately sent to the module. The module suspends its
current task and jumps to an interrupt routine to process the token, then resumes
execution normally. The spec list remains active to match new or modified tokens.
Standing specs lists are a convenient facility for matching urgent tokens, that is, tokens
that require immediate action regardless of when or how often they arrive in the local

map.

e One-shot spec lists: The calling module sends a one-shot spec list to the LMB and
blocks. All tokens matching the one-shot spec list at the time of its arrival at the BB are
sent back to the module and deposited in its token queue. The calling module is
unblocked, resumes execution, and is free to recover the tokens from the queue. If there
are no matching tokens in the BB database at the time the spec list arrives, the BB
manager unblocks the calling module either immediately or after a matching token is
eventually deposited, depending on whether the user specifies the BBNOWAIT or
BBWAIT option respectively. Once a token or set of tokens matches a one-shot spec list,
the BB manager deletes the spec list. One-shot spec lists are convenient for specifying
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Figure 10: Example of a token matching a spec

what tokens a module needs currently. They force tightly-coupled synchronization
between calling modules and the BB manager.

Communications between the blackboard and modules is handled by routines provided as part of
the blackboard package. Routines are provided to set up communications channels, deposit a token
in the blackboard, send a one shot or standing token specification, and so on. Since the routines
called by both the modules and the LMB are provided, they can use any protocol they wish. We will
have specialized versions optimized for known environments, and generic versions that use IP/TCP
that run on a wider variety of hardware.
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3. Program Issues
This section describes the structure of the SCVision and ALV programs, both internally (how the
various labs at CMU work together) and externally (how CMU fits in with other organizations).

3.1. Internal Organization

The main labs involved are the SCVision Lab, the Civil Engineering and Construction Robotics Lab,
and the Mobile Robot Lab. Contributions have also come from the Warp group, the Laboratory for
Household Robotics, the Image Understanding project, and individuals.

The primary source of SCVision software is the SCVision Lab. Members of that group have
produced the monocular road-following vision and ERIM range interpretation programs described
above, the blackboard design, much of the infrastructure (utility programs, cabling, etc.), and have
made the majority of the test runs and experiments.

Our rolling stock is mostly built and maintained by the Civil Engineering group. They are
responsible for the Terregator and for the design of the Navlab. Their products include the onboard
microprocessors and programming needed to control the vehicle. They have also helped in mounting
sensors and actually running the vehicle. Some of the projects, like the coal mine Terregator run,
were done exclusively by Civil Engineering people (using software originally built, by the Household
Robots project) for projects not directly linked to SCVision. ’

Several members of the-SCVision group were or are also part of the Mobile Robot Lab. The sonar
work, FIDO stereo vision, and the path relaxation path planner are ail products of that lab. We have
traded equipment back and forth: we used the MRL microwave link and some of their d|g|t|zers and
microprocessors until our own equipment arrived.

The Warp project and SCVision have a mutually beneficial relationship: we need their hardware for
speed, and they need our robots and programs to demonstrate their machine. The Warp people-are
developing a library of over 200 commonly used vision algorithms. We can influence the order in
which those are programmed so that routines that are useful to us can be built first Then we can
plug together interesting systems with relatively little fuss.

The Image Understamlifig (IUS) project overlaps with SCVision because of our common interests
and people, We have shared computers, displays, image handling packages, offices, secretaries,
graduate students, and research scientists. This is not unusual’; we and our sister institutions often
send the same people to IUS workshops and SCVision working groups. So far, much of the flow has
been one way, from IUS technology to SCVision, We are responding by helping to develop a good
Image processing environment on the Suns, and by providing easy access to real-world vision
problems and motivating directions for basic IUS research.

It is also possible for an individual not affiliated with the SCVision project to contribute. Bruce
Krogh from Electrical and Computer Engineering, for instance, has developed the Dynamic Obstacle

Avoidance Control algorithm and is interested in tesiog his programs on a real vehicle.

In short, we are opportunistic and open. We are creating an environment In.which it will be




conducive to bring in new ideas, both ours and from other groups. As the robot and its systems
become more and mare complicated, and as the interactions inside the system become important
research topics on their own, it is more difficult and expensive to build a complete system. It therefore
becomes more important for us to share and to become an open resource.

3.2. External Organization

3.2.1. Component Technology Contractors
The Component Technology contractors are

o SRI: Integration of common vision representation technology. This project will allow
different algorithms to use different representations of the same object, and automatically
keep the various representations up to date and consistent.

e AI&DS: Knowledge-based vision techniques. This will include object modeling and

. recognition and terrain models, as well as resolution of conilicting information. They
have two people working on modeling trees (the deciduous kind, not balanced binary or
2-3 types), one who specializes in tree trunks and one in tree canapies.

e Stanford, SRI, GE: Geometric reasoning.

e Hughes: Obstacle avoidance.

» UMass: Dynamic Image Interpretation. Analysis of a sequence of images to extract
vehicle motion, object motion, and object depth maps.

e UMass: Vision architecture. UMass is building three new machines: the Content

‘Addressable Array Parallel Processor for low-level vision, the Intermediate and
Communications Associative Processor for the middle level, and the Symbolic
Processing Array on top. This is a longer term project.

e USC: Optical flow.
e Honeywell: Object recognition and tracking.
e Columbia: Parallel stereo and texture.

o MIT: Parallel processing. Their work is slanted towards the Connection Machine and
similar architectures.

e Rochester: Parallel system environments. Rochester is the main Butterfly software
developer, while keeping portability issues in the back of their minds. They hope to have
operating system support for intermediate and high-level vision applications.

3.2.2. Application Contractors

The main application contractor is Martin Marietta in Denver, Colorado. They have built and
demonstrated their big ALV, and are on the hook for a series of demos over the next several years.
Other targets for technology transfer include General Dynamics, FMC, and eventually the Ohio State
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Walking Machine group and possibly other aerospace companies.

Martin Marietta is supposed to take technology developed at other sites, make it run on the new
experimental computers, and demonstrate the results. They had a successful demo in May 1985 of a
5 kph road-following vision system.

In order to make technology transition easier, Martin Marietta is running a series of monthly working
groups. These groups have been attended by Martin, CMU, Maryland, Hughes, AI&DS, Honeywell,
and occasionally SRI. The intent of these rmjetings is to work out a common architecture, define
interfaces between perception and planning, and set standards for data formats. We hope to have a
straw man architecture finished and agreed to early next year,

Martin Marietta demos are scheduled for:

» November 1985: down a curving road 2 km out and 2 km back, with speeds to 10 km/h.

©May 1986: road following with speeds to 20 km/h, around a 10 km track with
intersections, avoiding obstacles. ’

« June 1987: first cross-country traverses.

» 1988: road network route planning, including landmark recognition, map update, and
some off-road maneuvers

» 1989: 20 km cross-country traverse, speeds to 10 kph
« 1990/91: mixed road and cross-country traverse, including other moving vehicles

« 1992: complex terrain (woods, rocks) traverse with multiple goals

General Dynamics and FMC have new contracts to demonstrate teleoperated vehicles (military
equipment such as an armored personnel carrier), with some of the control being done by computer.
The scenario is that a human will drive the vehicle through tough spots (perhaps ravines and rocky
slopes), but once the vehicle reaches terrain that it knows how to handle, such as a road, it will run
automatically.

~ A related project is the Ohio State Walking Machine. This is a hexapod, capable of speeds to 15
km/h, tall enough to climb a 10 foot bank. The hexapod took its first steps this fall, and by next year is
expected to be fully operational While it currently has a human driver, it could eventually be run by
some of the processes we are currently building.
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4. History

4.1. Background

The timing and nature of the SCVision project were a perfect fit for CMU’s background and interest.
We have several labs and individuals working in various related areas. The DARPA program has been
able to take advantage of a lot of past and ongoing efforts at CMU on similar projects. This has
resulted in efficiency and a good working environment: software, hardware, ideas, and people are
shared from project to project, with a concerted effort not to reinvent wheels. We benefit, DARPA
benefits, and the sponsors of related projects benefit.

Hans Moravec has been involved with mobile robots for many years, notably with his Stanford Cart
thesis work. Here at CMU, his Mobile Robot Lab has been in existence for four years. The SCVision
project draws on the Mobile Robot Laboratory’s expertise in sonar, stereo vision, vehicle design, on
board microprocessors, and support services such as video distribution. When the SCVision project
started, Chuck Thorpe had just finished a thesis in the MRL on stereo vision for mobile robots, and
was looking for another project.

The Household Robotics Lab has now finished its project on sonar technology, and Jim Crowley, its
director, is on sabbatical. They contributed their sonar technology and a variety of equipment.

Red Whittaker’'s group in Civil Engineering has a background in mobile robots, originally for an MX
missile deep-basing plan that involved robots tunneling through 2000 feet of mountain. They
subsequently became involved with the Three Mile Island clean-up operation, and built a series of
successful vehicles for exploring high-radiation environments. By the time the SCVision project came
along, they had substantial expertise in building highly reliable, rugged, aggressively mobile vehicles.

The Image Understanding project dates back fifteen years. Several theses have been produced
over that span of time, ranging from use of color, texture, and shadows, to recognition of objects and
image matching for stereo or motion detection [3, 7, 10, 13, 14, 15, 16, 18]. Besides contributing
vision science, the IUS project has also built a lot of useful software tools for image processing, and
an infrastructure of computers and digitizers. :

H.T. Kung invented systolic algorithms. After doing paper studies and building some small systolic
chips, he was interested in designing and building a real systolic machine. Kung’s Warp project was
started at about the same time as SCVision, and has interacted closely with us.

Just when all these interests were coming together internally at CMU, DARPA was also becoming
interested in mobile robots. The Strategic Computing Initiative, an effort to build much faster and
smarter computers (and somewhat of a reaction to Japan’s Fifth Generation Computers program) was
initiated in 1983. Part of the SCI design is to have three application areas, both to showcase the new
technology and to give specific targets for computer design. The first of the three applications to be
scheduled for demonstrations is the Autonomous Land Vehicle. At CMU, our efforts in Warp
hardware, parallel vision, SCVision, and the NGS integration task are all part of the SCI and all related
to the ALV. The Warp, in particular, is funded directly as part of the ALV project. The SCVision
project, while separately funded, will be a resource for the ALV contractors.
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4.2. Time line to date.

 January 84 Submit Qualification Statement on Image Understanding for SCVision

« August 84 Submit Proposal for Research and Development of a Road-following Vision
System

» September 84 FIDO thesis defense (Thorpe)

» September 84 First sonar mapping

» October 84 Project starts

 October 84 First 'i'erregator runs under vision control (stop and go)

« November 84 First successful indoor runs using sonar

* November 84 First indoor continuous motion vision runs

« December 84 First outdoor continuous motion vision runs

« January 85 DARPA funding arrives

e March 85 First outddoi vision runs with no tape marking edges

« March 85 Vision runs using DOG, Roberts, row integration operators

» March 85 Rrst experience with Martin Marietté ERIM data

» March 85 Blackboard proposed at an all-day meeting

» May 85 ERIM scanner arrives at CMU

« June 85 First outdoor sonar runs

« June 85 Vision runs using rectification, row integration, and correlation
« June through August 85 E‘RIM runs on sidewalks and in park collecting data
 August 85-Blackboard document first circulated outside CMU
 September 85 First Warp run; uses colorto go 100 m at 1/2 km/h
«-September 85 Warp run up to 1 km/h for 180 meters on sidewalk

» September 85 Rrst successful ERIM run in park

» September 85 Long sonar runs in outdoor environments




4.3. The Future

We have two demos that we would like to do in December, plus a variety of longer-term internal and.
external commitments. The December demos are not for external purposes, but serve rather to
define what we would like to accomplish internally.

Our first December demo will combine road following with obstacle avoidance on Flagstaff Hill. We
want to use road following vision to drive the Terregator up the Flagstaff path and into the trees.
Then, at some point (perhaps marked by a red cone) we will leave the path and strike off cross-
country. We will use either ERIM, sonar, or stereo to avoid trees and other obstacies when off the
road. The Terregator will eventually hit the road again, turn on to it, and resume road following.
There may have to be another short off-road excursion to get around the steps at the far end of the hill
by the drinking fountain. The run will conclude where the Flagstaff sidewalk hits Frew street and dead
ends. This run will show the individual techniques of road following and obstacle avoidance. It may
also demonstrate landmark finding (in the simple case of finding cones) and road finding. If a map is
used, it will be only in a limited sense. There will be no great attempt to combine information from
multiple sensors into a single coherent framework. Instead, the road following and cross-country
travel will be run as separate modes, with the only higher-level intelligence being used to switch from
one mode to another.

The second December demo will be a map and planning demo. It will be a first complete system
including the sensor and motion processing level and the local map level. The Terregator, the vehicle
for this demo, will run on the sidewalks between Wean and Baker Halls, following the roads and
turning on the intersections. The vision problem is easier (straight, white sidewalks against green
grass) but the map problem is more difficult (a network of intersections and path-segments). Planning
and perception modules communicate with each other sending and receiving tokens, which include
shapes and locations of predicted roads and intersections, detection strategy, detected line segments
of roads and intersections, and map and vehicle position updates. Communication between the
various modules looks like a dialogue. The main components to be demonstrated are vision for road
and intersection detection, map modules, and the dialogué and architecture. The system used for
this demo will be a first prototype of our complete system. Both of the December demos could use the
Blackboard mechanisms if they are available in time, or could run by themselves.

Our longer term goals include making full use of the blackboard, improving individual modules, and
picking up speed. All these are tied together. If we build the Navlab, we would have multiple sensors
going all the time. This will make the blackboard more necessary, which will in turn make it easier to
integrate more modules. All those mocdules running together will mean that we will need more
computing power. And having such an effective testbed will encourage and require that we improve
the various modules in the system. ’

The blackboard will be ready for its first trials by the end of this year. It will initially be a bare bones
package, without all the nice tools we would like. If we are selected as the NGS contractor, it will be
expanded and improved based on input from other sites.

It is difficult to predict schedules for improvements of individual modules. Certainly, as we
understand more about roads, and as we become more experienced with our color cameras, we will
improve the quality of road following. We need to do more with combining ERIM data from view to
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user : robot is at road R1 3 meter from Il1. navigate to R3 2 meters
from I3.

map : Vision shall see straight road and cross-type intersection.
The color in the left is ... Detect them.

vision : OK. I found them. Their shapes are.....

map : Now we are at R1 2.5 meter from I1.

navigator : Drive on it 2.5 meter and turn to right 90 degrees.

motion ctl : Ok. I drive. (vehicle moves)

map : Vision shall see straight road. The color on the left is....
Detect it.

Figure 11: Dialogue model for December map and planning demo
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view, especially as we go cross-country. It is also time to begin looking at object recognition and
characterization. It may take a combination of ERIM, sonar, and video data to distinguish a clump of
grass from a rock, or to identify a particular building or rock outcrop. All of this is new research, and
will be needed for cross-country work.

While our main emphasis is on handling increasingly difficult perception "tasks, we are also
interested in running faster. We intend to acquire a Warp for our work, and to transfer software to our
Warp. We have already done a run using a prototype Warp for simple vision, and have begun coding
stereo vision and ERIM interpretation algorithms on the Warp.

5. People

Mike Blackwell is a Research Engineer with the Mobile Robot Lab. He has been involved with the
SCVision project since the beginning, designing, building, and integrating hardware and low-level
softv/are for the various robots. He also makes sure things keep running, fixes them when they break,
baby sits robots, and does all the billions of other little things that need to be done but nobody thinks
about.

Jill Crisman is a Research Programmer for the Robotics Institute. She has been working on stereo
vision and oriented road edge detection. Her main interests are household robotics and computer
vision.

Kevin Dowling is a Research Engineer in the Robotics Institute and has been working in the Institute
since its inception in 1980. He is involved in the design and construction of the mobile robots used in
SCVision research. Telemetry, video, and hardware alf seem to be areas of responsibility. His
research interests are many, and include experiments in using control systems for visual servoing.

Alberto Elfes is a PhD Candidate and a Research Assistant in the Mobile Robot Lab. His present
research focuses on software architectures for mobile robots, issues in cooperative problem-solving,
sonar-based mapping and navigation, and planning and high-level control issues for autonomous
robots.

Yoshimasa Goto is a visiting researcher in the Department of Computer Science. He is working on
the map systems which predict and find objects, then revise the map data. His system will be used in
the December map and planning demo. Research interests include knowledge based computer
vision, inference and learning in vision, and shape representation.

Andy Gruss is Supervisor of Research Engineering in Computer Science. His responsibilities
include setting up our lab and the care and feeding of our Suns. He is designing and building
memory-mapped frame stores for Vaxes in his spare time.

Martial Hebert received his PhD from INRIA/University of Paris. He joined the SCVisioo project as a
Visiting Scientist and is now a Research Associate. He works on range data analysis and 3-D map
building for SCVision.

Ralph Hyre is a Research Programmer for the SCVision project, currently working on a debugging
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package for the hlackboard system. Ralph is also responsible for software maintenance of the Sun
workstations used by the group.

Takeo Kanade is a Professor of Computer Science and is a Principal Investigator for the CMU
SCVision project. His main research interest within the SCVision project is the visual understanding
process of scenes by means of monocular, stereo, motion, and range data.

Kichie Malsuzaki is a Visiting Researcher in Computer Science. He works on road following
(extracting roads and the shape of intersections) with a single camera. His research interests are in
knowledge-based image understanding.

Hans Moravec is a Senior Research Scientist in the Robotics Institute and is a Principal Investigator
on the SCVision project. His current interests include 3-D sonar mapping.

Takayoshi Obatake is a Visiting Research Scientist in the Robotics Institute. He works with Martial
Hebert on range data analysis. ’ ’ -

Richard Redpath is a Research Programmer for the Robotics Institute, He was a pioneer on the
Household Robot project. His work for the SCVision group includes support software for the
Research Group from sonar control to printer control to graphic support modules for individual
projects.

Doug Reece is a graduate student in the Computer Science Department. He has been working on
various hardware and software tools for the project. He is interested in developing a Avehicle
capability for driving on public roads.

Steve Shafer is a Research Scientist in the IUS project of the Computer Science Depariment. He
works with Chuck Thorpe, Tony Stentz, and Doug Reece on high-level issues such as the blackboard
and system control strategies. His other research concerns theoretical methods in computer vision
such as shadow geometry and color analysis; he is building the Calibrated Imaging Lab at CMU.

Jeff Singh, Research Engineer, works with interfacing the larger computers to the Intel computer
that will monitor low level devices and sensors. He has recently completed a Master’s degree at
Lehigh University where he worked on developing a navigation system for a mobile robot.

Tony Stentz is a graduate student in Computer Science. He is working on the blackboard software
and architecture design for the Navlab. Related interests include sensor fusion and computer vision.

Chuck Thorpe is a Research Scientist in Robotics. As Project Manager for the CMU SCVision
project, his responsibilities range from getting wires pulled to watching vehicle runs. He is the main
contact for the CMU SCVision project outside of CMU, especially with the Martin Marietta working
groups. His research interests include stereo vision, path planning, and system architecture.

Richard Wallace is a graduate student in computer science. He graduated from USC in 1982 and
spent one year at the University of Maryland. He is interested in low-level vision for autonomous
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navigation.

Red Whittaker is an Assistant Professor in Civil Engineering and heads the Civil Engineering and
Construction Robotics Lab. His work involves building real vehicles and their virtual vehicle
interfaces. Besides the SCVision project, his lab builds highly reliable robots for nuclear power plant
inspection and repair and for construction in hazardous sites.

6. Publications 10/84 to 9/85

* Elfes, A. E, Sonar Navigation, Workshop on Robotics, Oak Ridge National Lab, Oak
Ridge, TN; August, 1985. (invited presentation)

* Hebert, M. and T. Kanade: The 3-D Profile Method for Object Recognition, Proc,
Computer Vision and Pattern Recognition '85, San Francisco June 19-23 1985, pp.
458-464.

* Kanade, T.. Image Understanding Research at CMU, Proc. DARPA Image
Understanding Workshop, pp. 42-47, Oct. 1984, New Orleans.

* Moravec, H. P. and A. E. Elfes, High Resolution Maps from Wide Angle Sonar,
proceeding of the 1985 IEEE International Conference on Robotics and Automation, St
Louis, March, 1985, pp 116-121, and proceedings of the 1985 ASME conference on
Computers in Engineering, Boston, August, 1985.

* Stentz, A., and S.-Shafer. Module Programmer's Guide to Local Map Builder for
A/aWab,-Robotics Institute, Carnegie-Mellon University.

* Stentz, A., and C. Thorpe An Architecture for Autonomous Vehicle Navigation,
Proceedings of the Fourth International Symposium on Unmanned Untethered
* Submersible Technology, Durham, NH, June, 1985.

* Thorpe, C. E., FIDO: Vision and Navigation for a Mobile Robot, PhD Thesis,
Computer Science Dept, Carnegie-Mellon Umversny, December 1984. CMU CS Dept.
Technical Report, 1985.

* Thorpe, C, L. Matthies and H. Moravec, Experiments and Thoughts on Visual
Navigation, the proceedings of the 1985 IEEE International Conference on Robotics and
Automation, St. Louis, March, 1985, pp. 830-835.

* Wallace, R. S., A Modified Hough Transform for Lines, proceedings of the 1985 IEEE
Conference on Vision and Pattern Recognition, San Francisco, June, 1985, pp. 665-667.

*Wallace, R, A. Stentz, C. Thorpe, H. Moravec, W. Whittaker and T, Kanade, First
Results in Robot Road-Following, proceedings. of the 1985 I|JCAf, Los Angeles*
August, 1985 and proceedings of the 1985 ASME conference on Computers in
Engineering, Boston, August, 1985.
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