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Abstract

This paper presents a compact representation of all possible assembly plans of a given product using
AND/OR graphs. Such a representation forms the basis for efficient planning algorithms which
enable an increase in assembly system flexibility by allowing an intelligent robot to pick a course of
action according to instantaneous conditions. Two applications arc discussed: the selection of the
best assembly plan (off-line planning), and opportunistic scheduling (on-line planning). An
example of an assembly with four parts illustrates the use of the AND/OR graph representation to
find the best assembly plan based on weighing of operations according to complexity of
manipulation and stability of subasscmblies. In practice, a generic search algorithm, such as the AO*
may be used to find this plan. The scheduling efficiency using this representation is compared to
fixed sequence and precedence graph representations. The AND/OR graph consistently reduces the
average number of operations.



1. Introduction

Robotic assembly often requires reprogramming or reconfiguration in order to handle a variety of designs in

the same system. The design and implementation of such flexible systems is difficult, and automated planning

techniques may provide major advantages. Such task planning for robotic assembly is critically dependent on

the task representation; a new approach to task representation using AND/OR graphs is described in this paper.

Flexibility in robotic workcells provides a number of advantages. Flexible robotic workcells may be

reconfigured to handle a wide range of styles and products. Further flexibility can be achieved if those

workcells are able to assemble the same product in different ways. In order to aecomodate the assembling of

several different products in die same shop, it is necessary to schedule the available machines to each job. Since

different machines may have different capabilities, the assembly procedure may vary depending on what

machine is scheduled to do the job. Also, the same product may be assembled in different shops that may have

different machinery. Another advantage is an improvement in the ability to recover from errors and other

unexpected effects that cause the execution of a task to deviate from the preplanned course of actions. When

deviations occur, it is preferred that the task execution continue, as efficiently as possible, from the unpredicted

state towards the goal. Many deviations of the desired course of actions arc not necessarily error conditions, but

are due to the many random factors that affect the whole manufacturing process, and flexible shops should be

able to cope with those factors autonomously.

Even with flexibility of the mechanical hardware, current robotic assembly systems are not able to follow

many different courses of actions within a given task. A principal reason for this limitation is the inadequate-

data structure for the representation of task plans. Ordered lists of actions, that have been used in early robot

systems, which were developed outside the manufacturing context, do not permit flexibility in task execution.

Triangle tables [4] have been used for the representation of plans, and they improve the capability to recover

from errors, but only within one fixed sequence. A more significant improvement was the use of precedence

diagrams [5] for the representation of plans, but that technique has limitations also, and in most cases allows

only a small amount of flexibility.

This paper presents a compact representation for the set of all possible assembly plans of a given product

Such a representation enables an increase in assembly flexibility by allowing an intelligent robot to pick the

more convenient course of actions, according to the instantaneous conditions at the shop. In sections 2 and 3,

the necessary background is established. Section 4 shows the representation, and section 5 presents its use for

tiie assembly of a simple product Two applications arc discussed; section 6 shows how the selection of the best

assembly plan can be implemented as a graph search, and section 7 shows the use of the representation in

opportunistic scheduling. Section 8 summarizes the contribution of'the paper and points to further research*



2. Scheduling and Planning

Assembly of one product requires selection of a sequence of operations and assignment of times and

resources for each operation. ITic problem is usually divided into two parts: planning, or process routing,

which is the selection of a sequence of operations, and scheduling, which is the assignment of times and

resources.

Scheduling problems, including job-shop scheduling, project scheduling, and assembly-line balancing, have

been intensively investigated in Management Sciences and Operations Research [1], Mathematical

programming techniques have most often been used to solve those problems. More recently, the scheduling

problem has been studied using contraint-directed reasoning [6].

Planning has been an important research issue in artificial intelligence, BUILD [2] and STRIPS [3,4] are two

early examples. Both systems aim to generate plans that enable robots to perform certain tasks. Typically, the

tasks consist of achieving a state that satisfies some goal condition from a current state of the world (i.e., the

robot environment), and the plans consist of ordered sequences of actions that will transform the initial state

into a goal state.

The representation of plans are commonly based on ordered lists of preprogrammed primitive actions. There

are some extensions to that representation scheme that enable the robot to take advantage of the work already

done in planning, in case unexpected events happen during the execution of a plan, STRIPS, for example, .uses a

tabular form, called a triangle table, to store a plan, BUILD associates to each primitive action a REASON list

(subgoals) as well as a description of the states of the world before and after the action is executed. More recent

systems, such as NOAH [9], represent plans as partially ordered sequences of actions with respect to time.

A major emphasis of research work on planning has been on the search aspect of the problem, especially

control schemes for the search. Priority has been given to develop efficient, powerful and general purpose

procedures that can find at least one plan in a wide variety of situations rather than procedures that eventually

find the most efficient plan in a more restricted type of situation. In applications where plans are executed one

time only, inefficiencies in the plan do not cause any major harm. Also, if plans are generated on line, high

speed in plan generation is often preferable to optimal plans.

Search for the most efficient plan requires a criterion to decide whether one plan is better than another. This

decision, however, usually requires information available at execution time only and producing the plan in real

time may degrade the robot operation, or c\en be unfeasible, due to the long computing time it usually takes to

geaerate a plan. The choice between planning ahead of time (off line) and planning in real time (on line) is

difficult: the former may lead to inefficient plans, whereas the latter may cause a degradation in the robot

operation.



3. Planning for Robotic Assembly

To achieve the desired high levels of productivity, the assembly plans must be efficient and keep wasted time

and resources to a minimum. Should inefficiencies in the assembly plan of one product be multiplied by the

size of the lot, which in common robotic assembly applications ranges from 1,000 to 100,000 units, the resulting

total waste may reduce drastically the productivity and may jeopardize the whole process. Conditions at the

shop, however, change with time (for example, parts may come in random order), and, usually, there is no

single plan that is efficient in every possible situation.

Fox and Kcmpf [5] address the need to act opportunistically, as opposed to always follow a preprogrammed

fixed order of operations. They suggest that plans generated off-line to be given to the robot be a set of

operations with minimal ordering constraints. Such a. plan was represented by a precedence diagram and would

actually encompass several possible sequences of operations that would perform the task of assembling a given

product In real time, depending on the conditions at the shop, the intelligent robot would pick the most

appropriate sequence. Using Fox and Kempf notation, the selection of one sequence, and the assignment of

operations to specific machines is what is commonly referred to as the scheduling process. Since that selection

process involves much less computing time than the planning process, no degradation in the efficiency of the

robot operation should occur.

Planning, in this sense, should yield all possible sequences of operations that can be used to assemble a

product That information is the input to the scheduling process, which in real time selects one of those

sequences and assigns the machines that will do each operation.

The problem with the precedence diagram formalism, as Fox and Kempf themselves point out, is that for

most products no single partial order can encompass every possible assembly sequence. The assembly of the

simple product shown in exploded view in figure 1, for example, may be completed by following one of the ten

different sequences of operations that are represented graphically in figure 2. It is possible to combine some

sequences into one partial order using precedence diagrams. Figure 3 shows three possible ways to combine

two of the first four sequences in figure 2; the only restriction is that the insertion of the stick cannot be the last

operation. It is possible to combine three of those four sequences into one partial order by using a dummy

operation, but it is not possible to combine the four sequences into one partial order, nor it is possible to

combine any of those sequences with the other six sequences in figure 2.

A closer look at the partial ordering representation of plans, in the light of the above assembly example,

shows another deficiency of that solution. Two distinct feasible sequences, A-B-C and B-A-C, for example, do not

differ simply by the sequence of the operations* Inserting the stick first is not the same operation as inserting it

after the receptacle and the cap have been screwed together. The latter operation is probably easier to execute.

Similarly, screwing the receptacle and the handle with the stick inside is probably easier to do if the receptacle
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Figure 1: A simple product

and the cap are screwed, than otherwise. The partial ordering approach, however, does not capture this subtle

difference. The next section will describe another approach to the representation of plans that captures-this

difference, and that can combine all possible assembly sequences.

4. AND/OR Graph Representation of Assembly Plans

Planning the assembly of one product made up of several component parts can be seen as path search in the

state spare of all possible configurations of that set of parts. The initial state is that configuration in which all

parts are disconnected from each other, and the goal state is that in which the parts are properly joined to form

the desired product The moves that change one state into another correspond to the assembly operations since

they change the relative position of at least one pan There may be many different paths from the initial state

to the goal state. Krogh and Sanderson |7J present ae overview of task dixoroposiiloi and operations.

In this context, any set of parts that are joined to form a stable unit is called an asaembfy* A component part is

also an assembly, with a special property. "I Tie word subassembly refers to an assembly that is part of another,

more complex assembly and it always carries the subsct/sei connotation.

Because there arc many configurations thui can be made from the same pM%, the branching factor from the

initial slate 10 the goal state is greater than the branching factor frrrn the goal state to flu? initial state, A

backward March, therefore, will be more elTximt than a forward scjrch fi * the as>cmbJ> pUximng problem.

He problem of finding how to assemble • gr.cn product can He jarncrtcd w >m eqanaknf problem of finding

how the same product can be JisassewJxf'i Since u>xiiiH} Mperjf'1* <s '.:c not ncu*Vfcuf«> rcfetfsibfe, the

equivalence of ihc fro problems *$ hold o;)i> if the vp^Ldw^ j w J u: •" >,«\.. »̂ ^ > MC the rcrcr^ «f a feasible

assembly operation regardless of whether these T^VITW; . p^r^ir^ !tu?v.,;;,^ kirc fe^.-^lc <*r n a i h c

expression disaMrmhly *>rtrat?on, ifcere .̂»re, refers :<» ihc r;^crn' ^f J *;'••- ^l: 1'I">ITIU1% i,;f^f,;i/-;it
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The backward search suggests a decomposable production system in which the problem of disassembling one

product is decomposed into distinct subproblcms, each one being to disassemble one subassembly. Each

decomposition must correspond to a disassembly operation. If solutions for both subproblems that result from

die decomposition are found, then a solution for the original problem can be obtained by combining the

solutions to the subproblems and the operation used in the decomposition. For subassemblics that contain one

part only, a trivial solution containing no operation always exists. Usually there will not be a unique way to

decompose the problem, or to cut the assembly, because there may be several different ways to assemble the

same product

Structures called AND/OR graphs [8], or hypergraphs, are useful in representing decomposable problems and

they have been used to represent the disassembly problem. The nodes in such a hypergraph correspond to

assemblies; nodes corresponding to assemblies that contain only one part are the terminal nodes. The

hyperarcs (or ^connectors, k being any integer greater than zero) correspond to the disassembly operations.

Each hyperarc that leaves one node corresponds to a disassembly operation applicable to the assembly of that

node, and the successor nodes to which the hyperarc points correspond to the resulting subassemblies produced

by the disassembly operation. Because for most products the assembly operations usually mate two

$uba$$entblie$» the hyperarcs in the corresponding AND/OR graph are usually 2-connectors. There are cases,

however, of operations 'that mate more than two subassemblies (e.g, assembling a hinge with two wings and one

pin), as well as operations that involve only one subassembly (e.g., drilling a hole in a part). Hyperarcs in

graphs can represent all those possibilities.

A solution irte from a node N in an AND/OR graph is a subgraph that may be defined recursively as either

N itself if N is a terminal node, or N plus one of its outgoing hyperarcs plus the set of solution trees from each

of N*s successors through thai hjperarc. This definition assumes that the graph contains no cycle as is true in



the disassembly problem. There may be none! one, or several solution trees from a node in an AND/OR graph.

The useful feature of the AND/OR graph representation for the assembly problem is that it encompasses all

possible partial ordcrings of assembly operations. Moreover, each partial order corresponds to a solution tree

from the node corresponding to the final (assembled) product This feature is demonstrated through the

example in the next section.

5. A Simple Example

Figure 4 shows the AND/OR graph for the product in figure 1. Each node in that graph is labeled by a

database that correponds to an assembly. In figure 4, the databases are represented by exploded view drawings,

whereas in a computational implementation, the databases are relational data structures. To facilitate the

exposition, both the nodes and the hyperarcs in figure 4 have identification numbers.

The root node in figure 4 (node 1) is labeled by a database that describes the assembled product. There are

four hyperarcs leaving that node. Each of those four hyperarcs corresponds to one way the whole assembly can

be disassembled and each one points to two nodes that are labeled by databases that describe the resulting

subassemblies. Similarly, the other nodes in the graph have a leaving hyperarc for each possible way in which

their corresponding subassembly can be disassembled

Any subassembly that can be made up of the component parts may appear only once in the graph, even when

it may be the result of different disassembly operations. The subassembly of node 4, in figure 4, for example,

may result from two different operations, which correspond to hyperarcs 5 and 10. Moreover, those two

hyperarcs come from two distinct nodes.

Nodes corresponding to component parts (nodes 9, 10,11 and 12) are the terminal or goal nodes since they

correspond to disassembling problems for which a (trivial) solution is known. There arc eight solution trees

from the root node (node 1) and they are shown in figures 5 to 12.

One important feature of the solution tree representation shown In figures 5 to 12 is that the distinction

between operations becomes apparent because distinct operations correspond to distinct hyperarcs. In other

words, two distinct assembly sequences include the same operation only if the two corresponding solution trees

include the hyperarc corresponding to that operation. Hypcrarc 1, for example, is present in the solution trees

in figures 5,6, and 7; therefore, the same assembly operation is part of three distinct sequences. Conversely, the

operations SCREW THE RECEPTACLE AND THE CAP in sequences A-B-C, B-A-C, and B-C-A of figure 2 correspond to

hyperarcs i, 5, and 13 in figure 4; therefore, they are three different operations. The sequence diagrams in

figure 2 and, the precedence diagrams in figure 3 fail to make this distinction.



I (8)=

\ U

4 -

1

\ 1
\
\

1

1\

. j

Fiprc 4: AND/OR graph for the product of figure 1



'(DODDH

'OOBH

Figure 5: Solution tree corresponding to sequence 4 (OB-A) in fig. 2

Figure 6: Solution tree corresponding to sequence 8 (E*C-A) in fig* 2



Figure 7: Solution tree corresponding to sequence 3 (B-C-A) in fig. 2
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Figure 9: Solution tree corresponding to sequences 9 (E-A-C) and 10 (A-E-C) in fig. 2

Figure 10: Solution tree corresponding to sequence 2 (B-A-C) in fig. 2
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Figure 11: Solutioo tree correspoiiding to sequence 5 (D-A-C) in fig. 2

Figure 12: Solution tree corresponding to sequence 1 (A-B-C) in fig. 2



Each solution tree shown in figures 8 and 9 corresponds to two sequences, but unlike the precedence

diagrams of figure 3, the operations arc exactly the same, regardless of the order in which they are executed.

6. Finding the Best Plan as an AND/OR Graph Search

To solve problems that require optimization, such as the selection of the best assembly plan, one must be able

to traverse the space of all candidate solutions, regardless of the method used to solve the problem. The choice

of the representation is critical since it is often difficult to delimit the set of potential solutions in a form which

enumerates all the elements.

The AND/OR graph representation encompasses all possible ways to assemble one product, and therefore

allows one to explore the space of all possible plans. Since plans correspond to solution trees in the AND/OR

graph, the selection of the best plan can be seen as a search problem. Any such search problem requires a

criterion to compare plans. One possibility is to assign to the hyperarcs weights proportional to the difficulty of

their corresponding operations, and then compute the cost of a solution tree from a node, recursively, as:

# zero, if the node has no leaving hyperarc; or

.• the sum of die weight of the hyperarc leaving the node and the costs of the solution trees from the

successor nodes.

The best plan corresponds to the solution tree that has the minimum cost The search for the best plan can be

conducted using generic algorithms such as the AO* f8J.

A variety of factors might be considered in assigning weights to hyperarcs, including time duration of their

corresponding operations, requirements for reorientation of fixturing, cost of resources needed, reliability, as

well as production priorities and constraints.

For the product in figure I, the AND/OR graph (figure 4) has 15 hyperarcs, which correspond to 15 different

assembly operations. Table 1 shows one possible assignment of weights to hyperarcs. Those weights have been

computed by adding two factors* The first factor is the type of assembly operation, with screw operation

weighing 49 insertion 2 and placement 1, in accord with typical time, fixturing and manipulation requirements*

The second factor taken Into account is the difficulty of handling the participating subassemblics, and is

proportional to their number of degrees of freedom; subassemblies with more degrees of freedom are more

unstable, and therefore more difficult to handle.

Using that assignment of weights to hyperarcs, the total cost for the solution trees of figures 5 to 12 can be

computed. The solution trees in figures 5 and 12 have the minimum cost of 11; the solution trees in figures 7,8,

9, and 10 have total cost 13; and the solution trees in figures 6 and 11 have the highest cost of 14.

13



Table 1: Assignment of weights to hyperarcs

hypcrarcs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
factor

operat ion 4 4 4 4 4 4 2 2 4 4 2 1 4 4 1

subassembly
degrees of 1 4 4 1 2 4 0 0 4 2 0 0 0 0 0
freedom

total 5 8 5 6 8 2 2 8 6 2 1 4 4 1

For more complex assemblies, instead of a complete enumeration as done above, search algorithms can be

used to reduce computation. For the product in figure 1, a search using AO* will yield one of the solution trees

shown in figures 5 or 12, depending on how tjic partial solutions and lip nodes are ordered for expansion.

7. Opportunistic Scheduling Using the AND/OR Graph Representation

To evaluate how the use of AMD/OR graph representation for assembly plans affects assembly efficiency, a

comparative analysis among the three representation schemes discussed in this paper has been conducted.

The product in figure 1, and the robot workstation of figure 13 have been used as examples. The workstation

is equipped with two manipulators and the parts are presented in random order. It is assumed that a cap, a

stick, a receptacle, and a handle always come together, varying only in their order. It is also assumed that both

manipulators are controlled by the same central unit and they both are able to execute the following actions:

• acquire: fetching, by one of the manipulators, of one part from the part feeder

• buffer: temporararily storing one part into a fixed location within the workstation

• mate: joining two subassemblies which are currently held by the manipulators

• .retrieve: fetching, by one of the manipulators, one part known to be in the parts buffer

The efficiency of this assembly station depends on the capacity to handle parts in random order. This

requires on-line scheduling of system resources depending on the order of parts arrival The relative impact of

plan representation schemes on assembly efficiency can be compared by the average number of operations

needed; a smaller average number of operations corresponds to more efficiency.

The first sequence of figure 2 ( A-B-C) has been used as an example of fixed sequence representation and the

14
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first precedence diagram of figure 3 (which combines A-B-C and B-A-C) as an example of precedence graph

representation. Similar results will be produced using the other fixed sequences or precedence graphs. The

number of operations that would be performed for each one of the 24 possible orderings in which the four parts

of the simple product can be acquired is shown in Table 2. At least 7 operations are necessary: four acquisitions

and three matings; depending on the order in which the parts are presented, buffering, and therefore retrieving

may also be necessary.

When using the fixed sequence representation of plans, extensive buffering is necessary. For example, if the

order the parts come is S H R C (stick, handle, receptacle, and cap) both the stick and the handle must be

buffered since they are not used in the first operation; adding two bufferings and two retrievings to the four

acquisitions and three matings that are always necessary yields 11 operations. The average number of

operations for all 24 possible orders is 9,8.

Using precedence diagrams for the representation of plans avoids some of the buffering and reduces the

average number of operations to 9.2. For the sequence S H R C , for example, only the handle must be buffered

since the insertion of the stick into the receptacle may be the first operation.

Using the AND/OR graph representation of plans, however, avoids most of the buffering, and yields the

average of 8 operations. For the same S H R C sequence, for example, no buffering is needed because the robot

can follow the sequence of operations corresponding to the solution tree shown in figure 6.
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Table 2: Number of operations needed to assemble the product of fig. 1 for all the sequences
in which the parts may be acquired, and for the three schemes of plan representation,

C=cap S = stick R = receptacle H = handle

sequence

first sequence

of figure 2

first precedence diagrams

of figure 3

AND/OR graph

of figure 4

CSRH
CSHR

CRSH

CRHS

CHSR

CHRS

SCRH

SCHR

SRCH

SRHC

SHCR

SHRC
RCSH

RCHS

RSCH

RSHC

RHCS

RHSC
HCSR

HCRS

HSCR

HSRC

HRCS

HRSC

9

11

7

9

11

9

9

11

9

11

11

11

7

9

9

11

9

11

11

9

11

11

9

11

9

11

7

9

11

9

9

11

7

9

11

9

7

9

7

9

9

9

11

9

11

9

9

9

7

9

7

9

9

9

7

9

7

7

9

7

7

9

7

7

9

7

9

9

9

7

9

7

average 9.8 92



8. Conclusion

A compact representation for the set of all possible assembly plans of a product has been presented, along

with its applications in the selection of the best assembly plan and in opportunistic scheduling. One important

feature of that representation is that it allows one to traverse the space of all possible assembly plans, and

therefore provides an opportunity to select an optimal schedule and dynamically adapt scheduling to changing

conditions. Both the fixed sequence representation and the precedence diagram representation are very limited

in this aspect.

A number of issues related to this representation are under investigation. One important issue is the

development of algorithms for opportunistic scheduling suitable for real time operation. As pointed out in

section 7, some buffering could not be avoided, even with the use of AND/OR graph representation of plans. For

complex products, the choice of which part or subassembly to buffer may affect the overall assembly efficiency

and criteria for that decision will be necessary. These criteria will certainly depend on evaluation functions, also

under investigation, used to select a plan, especially functions that do not possess the recursive property like the

one used in section 6.

An additional important ongoing research issue is the development of a representation of assemblies suitable

for the automatic generation of plans. Such automation can be helpful in design of both new products and

assembly systems. In designing new products, the designer can quickly assess the difficulty of assembling and

eventually modify the design to facilitate the assembly. In designing new assembly systems, the designer can

evaluate the performance of a proposed design for a given set of products.

17



References

[1] Bellman, R. et al.
Mathematical Aspects of Scheduling and Applications.
Pcrgamon Press, 1982.

[2] Fahlman, Scott Elliott
A Planning System for Robot Construction Tasks.
Artificial Intelligence 5(1): 1-49, 1974.

[3] Fikcs, Richard R and Nilsson, Nils J.
STRIPS: A New Approach to the Application of ITieorcm Proving to Problem Solving.
Artificial Intelligence 2:189-208,1971.

[4] Fikes, Richard E. et al.
Learning and Executing Generalized Robot Plans.
Artificial Intelligence 3:251-288,1972.

[5] Fox, B. R. and Kempf, K. G.
Opportunistic Scheduling for Robotics Assembly.
In 1985 IEEE International Conference on Robotics and Automation^ pages 880-889. IEEE Computer

Society, 1985.

[6] Fox, MarkS.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Carnegie-Mellon University, deccmber, 1983.
Also published as technical reports CMU-CS-83-161 and CMU-RI-TR-83-22.

[7] Krogh, Bruce H. and Sanderson, Arthur C.
Modeling and Control of Assembly Tasks and Systems.
Technical Report CMU-RI-TR-86-1, Robotics Institute - Carnegie-Mellon University, 1985.

[8] Nilsson, Nils L
Principles of Artificial Intelligence.
Springer- Verlag, 1980.

[9] Sacerdoti, Earl D.
A Structure for Plans and Behavior.
Elsevier North-Holland, 1977.

18


