NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THE CORRECTNESS PROOF OF A QUADRATIC-HASH ALGORITHM
by
A. N. Habermann
Carnegie-Msllon University
Pittsburgh, Pa. 15213

March 1975

Abstract. The statements of a program do not alwéys provide sufficient
information for proving its correctness. The correctness of the algorithm implemented
by the program must often be proved with the pure mathematical technigues or
exhaustive enumeration. An example program is presented for which the correctness
proof of the program is trivial provided that the correctness of the underlying
algorithm can be demonstrated. The program can be viewed as an abstraction of a
quadratic hash algorithm. It is used at the end of the paper to encode the algorithm

mos{ efficiently.

This work was supported by the Defense Advanced Research Projects Agency
of the Office of the Secretary of Defense under contract F44620-73-C-0074
and is monitored by the Air Force Office of Scientific Research,

The Correctness Proof of a Quadratic-Hash Algorithm

1. Proving the correctness of a program by inductive assertion has become a generally
accepted method. It was introduced by R. W. Floyd when he applied it to flowchart
programs [1] The method was considerably improved by C. A. R. Hoare. He
expresses the meaning of program statements in terms of a set of axioms [2] The
truth of P{S]Q, where P and Q are predicates and § a program statement, can be
derived from the axioms that apply to 5. The significance of Hoare’s improvement of
Floyd’s method lies in the fact that now programming tanguage constructs are directly
used in the correctness proof. One of the most practical axioms is the one that
describes the whila statement by P{S}P -+ P{while B do S}P A notB. The fact that the
condition B is false if (and when) the while statement terminates is often used in the
subsequent part of the program,. lis usefulness is nicely demonstrated in Dijkstra's

program for computing the greatest common divisor of two integer numbers [3).

However, one mﬁst not get the impression that the inductive assertion method is
complete in the sense that it shows that the algorithm, implemented by the program, is
correct. The inductive asse-rticms can do no more than show that the program is a
true imptementation of the algorithm. That is to say, the proof method can show that
the program will execute the steps which the algorithm is supposed to take. If the
algorithm is wrong, then the program will also be wrong. In addition to the
correctness proof of the program, we also need to give a correctness proof of the
algorithm. For instance, the correctness proof of the algorithm which Dijkstra uses to
compute the ged depends not only on the assertioﬁs between the program statements,
but primarily on the mathematical facts that ged(a,b) = ged(b,a), gcd{a,a) = a and
ged(a,b) = ged(max(a,b) - min(a,b), min(a,b)).

‘The Correctness Proof of a Quadratic-Hash Algorithm

Ali correctness proofs have in common that long proofs are rarely convincing.
This is true for the proof of a pure mathematical theorem as much as for the
correciness proof of a program. Therefore, a convincing proof cannot be given unless
the problem is decompo#ed in a coherent set of overseeable parts. This does not
necessarily imply a top-down approach to writing programs, but it requires that
various abstractions of the problem are considered separately. The abstractions must
be manageable and they must be chosen such that the solution can easily be composed
out of these. For small pro'blems a decomposition based on the successive steps of
the algorithm may be adequate, but Parnas shows that for large problems a
decomposition based on the data structures and their operations is much more useful

(4}

Sometimes the algorithms are simple and the programs rather compiex because of
pure size. An example of such a situation is the syntax scanner in the compiler for a
programming language. The size of the code makes it necessary to split the program
into smaller parts. Coming up with an exhaustive case analysis is one of the most
difficult aspects of a correctness proof in this case. In this paper we consider the
other extreme, where the correctness of the algorithm is .not obvious, but the
implementation is straightforward. The example presented in this paper serves two
purposes. In the first place it shows that there is more to proving the correctness of
a program than applying the inductive assertion method. Secondly, the resulting
program has a practical aspect; it leads to a very efficient implementation of a

quadratic hash technique.

The Correctness Proof of a Quadratic-Hash Algorithm

2. Given the program
begin integer c,h,p;
READ{p); -READ(h);
for ¢ := 0 step 1 until (p-1)/2, (p-1)/2 step - 1 uniil 1 do
begin h := (h+¢)p; PRINT(h) end

end

where h is a non-negative integer and p is a prime number such that p = -1 (mod 4).
(E.g., the numbers p = 2Tk-1, whére k is prime, satisfy these conditions.) The symboi /

represents integer division and the symbol 7 represents the remainder function.

The question is to prove that this program prints all the numbers of the set $.0 =
{0,1,2,..,p-1} exactly once, no matter which non- negative integer value is assigned to
h in the statement READ(h). In other words, the program prints a permutation of the

numbers 0,1,..,p-1, independent of the (permissible) initial value of h.

The relevant assertions are
Al: his a number in the range [0.p-1]
A2: his not equal to a numEer already printed
A3: all the printed numbers are different and in the range [0.p-1]
Ad: the number of printed numbers is equal to p

With the assertion between { }, the program reads like this:

The Correctness Proof of a Quadratic-Hash Algorithm

begin integer ¢,h,p;
READ(p); {p is prime and p = -1 {mod 4)}
READ(h); {h >=0}
(A3}
for ¢ := 0 step 1 until (p-1)/2, (p-1)/2 step -1 until 1 do
begin h := (h+c)%p; {Al}
PRINT(h); {A2} -
{A3}
end
{A3,A4}

end

Assertion A3 must be an invariant of the for statement; it must be true after every
iteratidn. The proof that all the assertions hold is simple for Al, A3 and A4, but
difficult for A2. Assertion A3 is trﬁe before the iteration starts, because no numbers
have been printed yet. The for clause shows that ¢>= O in every iteration and
initially h >e 0. Thus, (h+c)7p is also greater than, or equal to, zero, so Al is true.
We can then show by induction that Al is true for each iteration. Assuming that AZ is
true, A3 holds at the end of an iteration. When the iteration terminates, A4 holds,
because the for clause prescribes p iterations. The combination of A3 and A4 implies
that all the numbers of 5.0 = {0,1,.,p-1} have been printed exactly once. So, if

assertion A2 is true, the program is trivial.

The Correctness Proof of a Quadratic-Hash Algorithm

3. The proof that the program does not print a number in the range (0.p-1] twice
cannot be derived from the program. But it can be proved by applying some number

theory and group theory.

Let S.0 = {0,1,2,..p-1}, 5.1 = {1,2,.,p-1}, p is prime. Let the symbol = represent
equality modulo p. The zero-theorem says: if p is prime and a*b = O for ab ¢ S.0,
then a=0o0r b =0 (or both) [5] The proof uses the fact that if asb = mxp, then p

must be a divisor of a or of b, since p is prime.

We split the iteration in two "parts”. In the first part the iteration variable ¢ =
0,1,{p-1)/2 and in the second part ¢ = (p-1)/2, (p-3)/2,.,1. First we prove that two
numbers h generated in the first part are not equal, then we prove the same for two
numbers in the second part and finally we prove that a number h generated in the

first part is not egual to any number generated in the second part.

a) Let h.i ang h.j be two numbers generated in the first part, lLet RO = {0,1,...,(p-1)/2}
and let the initial value assigned to h in the statement READ(h) be H,
h.O s H, hi=h(i-1)+i for i 21,50 his= H+ix(i+1)/2 fori € RO

If 1,j¢€R.0 and h.i = h.j, then i(i+1) = Hj+1), or (i-jXi+j+1) = 0. The zero theorem says
that i = j or i+j £ -1. Since i,j ¢ [O.{p-1)/2], i = jori=j=(p-1)f2. Thus, if i,j € RO
and h.i = h.j, then j = J- In other words, all the numbers h generated in the first part

are different.

b) Let h.i and h.j be two numbers generated in the second part, where i,j ¢ R] =
{1,2,...,(p—1)/2}. At the end of the first part, h has the value H + (p+l)x(p-1)/8. A

number h.i in the second part is equal to

The Correctness Proof of ‘a Quadratic-Hash Algorithm

hiz H + (p-1)%(p+1)/8 + (p-1)/2 + (p-3)/2 + .. +{p~(2i-1))/2 e H + {(p-1)x{p+1}/8
+ ix(p-i}/2

.If i,j € R.1 and hi = h.j, then itp-i) = j(p-j) or (i-j)i+j).= O. The zero theorem says
that i = j or i = -j. The latter equation has no solution for i and j both in R.1. The
equality i = j implies for the given interval i=j. Thus, if hi = h.j in the second part,

then i=j. In other words, all the numbers generated in the second part are different.

¢) Let hi be a number generated in the first part and h.j a number generated in the
. second half. If h.i = h.j, then

i#(i+1)/2 = (p-1)x(p+1)/8 + j*(p-j)/2

4i12 + 4i= (pT2.-1) + 4pj - 4j12

(2i+1)12 + (2j}12 =0

We must prove that the sum of two squares cannot be equal to zero modulo p.
This is not self-evident. In fact, it is for many prime numbers possible that xT2+yt2 =
0. Eg. for p =13, (xy) = (5,1) or (3,2} or (11,3), etc. and for p = 17, (x,y) = (1,13)
or {2,9) or (3,5), etc. In the next section we prove that for p = -1 {mod 4) the sum of

two squares is not equivalent to zero.

4. 1t is well-known that the set S.1 = {1,2,...,p-1} with the operation "multiplication
modulo p" is a {(commutative) group if pis a prime number. (The operation is clearly
associative and commutative. There remains to be shown that there is for every pair
ab € S.1 an element x € S.1 such that asx 2 b. Assume that the coset V = aS.1 has
two equal elements: asc = axd, where acd € S.1. If so, ax(c-d) s 0. Since not a2 0, ¢

= d by the zero theorem. Thus, V has p-l different numbers. Since all these

The Correctness Proof of a Quadratic-Hash Algorithm

numbers are in the range [1..p¥1], V=81 This means there must be an element axx

€ V such that asx = b.)

Next we show that there is a pair XYy € S.1 such that xT2+y12 = 0 is true if and

only if there is an element t ¢ S.1 such that t12 = -},

Proof. [et Xy € 8.1 be a pair for which xT2+yT2 5 0 is trye. There exists a t ¢
S.1 such that tx = Y. Substitution yields xT2(1+12) = 0. The zero theorem says x12 =
Oortt2= ."1' The former is not true, because x ¢ S.1, so the latter follows.

Let t ¢ S.1 be such that t12 = -1. This implies t12+1 = 0, Thus, by substitution x = t

and y = | we find a Pair for which the sum of the squares is equal to zero modulo p.

Finally, we show that, if there is an element t € S.1 such that 172 = -1, thenp = |

{(mod 4),

Proof. The set G = {Lp-Ltp-t} is a subgroup of S.1. * This is immediately clear if
we write out a multiplication tablé for G. It is well~known that two cosets V = ag and
W = bG, where ab € 8.1, coincide or have no elements in common [5) (Assume V and
w have an element ¢ in €ommon, so ¢ = ag = bxh, where gh € G If kis the inverse of
h, then k ¢ G, because G is a group. Then a = bigsk is an element in G, so aG =
b*g+kG = bG, s0 V and W coincide.) Therefore, the collection of all the cosets of G
form a complete partioning of S.1. Fach coset has the same number of elements as G,
Hence, if subgroup G has k distinct cosets, ken(G) = n(S.1), where ™Z) represents the
number of elements of set Z. Since n(G) = 4 and n(S.1} = p-1, we have 4k = p-1,s0p

= 1 (mod 4),

Corollary. If we choose p prime and P = -1 {mod 4) then not p=1 (mod 4). It

follows from the theorem that in this case S.1 does not have an element t such that

The Correctness Proof of a Quadratic-Hash Algorithm'

t12 = -1, because p = 1 (mod 4) is not true. This implies that there is no pair X,y €

$.1 such that x12+y72 = 0.

We apply this result to part ¢} at the end of Section 3. For the given prime
number p = -1 {mod 4), there is no pair of numbers xy ¢ S.1 such that xT2+yT2 = 0, so
Qi+1)12 + (21220, iff 2i+1=2j=0 |
This is not true, because 2j € S.1. Thus, all the numbers generated in the first part of
the iteration are different from all the numbers in the second part. This completes

the proof of assertion A2 and also the whole correctness proof.

5. This correctness proof is a clear example of the case where the correctness of the.
algorithm is much harder to prove than that of the implementation. The program is at
the same time an example of a useful abstraction which can be used, after some minor
transformations, in other programs. The remainder of this paper shows how the

program can be used to obtain an efficient quadratic-hash algorithm.

It is hard to specify exactly what may be called a "minor transformation” of a
program whose correctness has been proved. The point is that we would like to
transform the program into a usable form without having to redo the correctness
proof. A minor transformation of the given program would be the replacement of the
PRINT-staterﬁent by the a#signmen’t A[h] := 1, provided that array A is properly
deélared and initialized. The reader can imagine how that is done. Anather minor
transformation v;rould be the replacement of the for statement by a repeat and a while
statement, while adding the proper assignments to the iteration variable c¢. This

transformation results in

The Correctness Proof of a Quadratic-Hash Aigorithm

begin integer c,h,p; READ(p); READ(h);
¢ =0
repeat h := (h+c)2p; PRINT(h); ¢ := ¢+1 until c=(p+1)/2;
while ¢ 2 0 do C:=c-1; h:=(h+c)7p; PRINT(h) od

end

A slightly better version is obtained by using a more general form of repeat
statement with the syntax

repeat Six until BE do $2x od
where S# is a séquence of zero or more statements and BE a Boolean expression.

The repeat statement is equivalent to the following sequence of ALGOL 60 statements.
L1l: Sl*; if BE than goto L2; S2% goto L1; L2:

The generalized repeal statement first executes the statement sequence Sl* and
subsequently, as long as BE is true, it executes the sequence 52 Sl Note that the
test precedes the repeated statements (as in a while statement) if S1s is empty; the

test is at the end of the repetition if §2s is empty.

[1 am sorry to hurt D.E. Knuth’s feelings by using the closing delimiter “od" (8] 1
do not share his misgivings towards the opening delimiter do. In the sequence do
begin | read begin as an opening bracket, but not as a verb in the English language.
(Do all native American programmers read begin as a verp? I wonder.) | started using
the generalized repeat statement 2 1/2 years ago when the discussion was going on
about exit and leave statements. The fact that 1 have used it ever since shows its

usefulness to me. See also the appendix.)

The Correctness Proof of a Quadi’atic—Hash Algorithm
The version in which the generalized repeat statement is used reads

begin integer ¢,h,p; READ(p); READ(h);
c:=0;

repeat h = (h+c)%p; PRINT(h) until ¢ = (p-1)/2 do ¢ := c+l od;
while ¢ > 0 do hi=(h+c)%p; PRINT(h); c:=c-1 od

end

In this version h is printed for ¢ = 0,1,.,{p-1}/2 by the repeat statement and for ¢
= (p-1)/2,..,1 by the while statement. Note that at the end of the repeat statement ¢

is not unnecessarily incremented to {(p+1)/2.

6. A quadratic hash a_lgorithm starts off with computing some number' hash.0 = H(name)
as function of the machine representation of "name”. As long as no match or free slot
is found in the symbol table ST, the algorithm computes successive numbers by the
rule

hash.i = hash.0 + axiT2 + b¥i + ¢ {mod p)

where p is the length of the symbol table.

The coefficients b and ¢ have no impact on the probability Pr(k} that a match or an
empty slot is found in precisely k = i probes. This has been argued by C. E. Radke
[6] and J. R. Bell [7]. Thus, the coefticients b and c can be arbitrarily chosen. We
choose ¢ = 0. Coefficient a must be unequal to zero, otherwise the hash algorithm

degenerates to a linear hash.

A well-known problem of the rule above is that it generates only {p+1)/2 different

values for all i € S0 = {0,1,.,p-1} If we choose a = i, b = 0, then all possible

10

The Correctness Proof of a Quadra.tic—Hash Algorithm

Squares moduio p are Eenerated by the Aumbers j ¢ {0,1,...,(p-1)/2}, because i and (p-i)

produce the same Square. (All the repetitions are generated by the “upper hal§"

{xt2 (mod Pix € S.1} is a subgroup of S.1. |[et te€sS1-Q The coset tQ has no

elements in Common with Q (because, if it had, tQ and Q would coincide which implies t

{p-1)/2. Thus, tQ u Q=51,o0r tQ=5.1-Q = S.0-Qu {0}. This means that tQ contains

all the missing numbers,

If we choose P = -1 (mod 4), we know that -] js not a square, |In that case the
remaining numbers can be foung by choosing coefficient a = -3 A program that
implements the quadratic hash for g = (1,-1)and b = 0, is

integer procedure QH(name); valye néme; integer name;

the index of the ST-entry that holds the name;
bagin integer hash,index,c;

hash := H(hame}); comment the initial hash function remains unspecified here;-

until ST{index] = name or §Tlindex] =0 or ¢ = (p-1)/2 do ¢ := ¢4 od;
if STindex] = hame and STfindex] # 0 then

€= l;index := hash;

repeat index := (hash-c*c)Zp; it index < @ then index := index+p fi

unti ST[index] = 0 op ST[index] = ame or ¢ = (p-1)/2 dg ¢ := ¢+l od
£i;

11

The Correctness Proof of 2 Quadratic—Hash Algorithm

comment we follow the ALGOL 68 convention of terminating an if statement by fis
it STindex] =0 then ST[index] := name fis
QH = if ST[index] = name then index eise -1 fi

end

One might argue that the new value of index can be computed from the old value
of index by adding {or subtracting) 2c+1. This is true, but the sum should be written
as c+c+l, otherwise the computation is even longer than cxe! The variable index
cannot be deleted, because the original value of hash is needed before the second

iteration begins.

We find significant improvements of the quadratic hash program if we observe the
similarity between this program and the one whose carrectness we proved. Noticing
the similarity allows us to delete the variable index, the conditional test in the second
iteration, and it allows us 1o replace the product c¥C by the single term c. The
resulting program for QH is
integer procedure QH(name); value name; integer name;
begin integer hash,cy

hash := H(name); ¢ = 0;

repeat hash := {hash+c)7p

untit ST[hash] = 0 or gT[hash] = name or € = (p-1)/2 doc = c+l od;
while ST[hash] # O and ST[hash] # name and ¢ > 0 do

begin hash := (hash+c)%p; € = ¢c-1 end;

" 4§ ST[hash] = O then ST[hash] := name s
QH = if §T[hash] = name then hash else -1 fi

end

12

The Correctness Proof of a Quadratic-Hash Algorithm

Conclusion

methods or by exhaustive enumeration, Once the correctness of the algorithm has
been established, the correctness proof of the Program amounts to proving that the

program is a true implementation of the algorithm.

A correctness proof becomes intractable if the probiem is not split into a coherent
set of subproblems which are of smaller complexity than the total problem. The
subproblems are constructed by modeling a small aspect of the totaj problem and by
abstracting from the totai prbblem everything that is irrelevant to this model. The art
of finding the right abstractions is of greater importance than the art of finding the
right assertions, If a Programmer masters the former, he will have no problem with

the latter, but the opposite is not trye,

There remains the Problem of composition, The programmer must make sure that
the resulting Program does not violate the conditions that allowed him to prove the
correctness of the abstractions. In most cases this amounts to showing that some
trivial transformations of the correct Programs again result in correct programs, It is
as yet not clear which transformations we may consider as trivial in the sense that the
correctness of the transformed program follows from the correctness of the original

program.

13

The Correctness Proof of a Quadratic-Hash Algorithm

Appendix

The generalized repeat statement used in Section 6 is 2 special case of the

iterative statement. The various forms of the iterative statement are

{'for <var> in {-}<range> } repeat S1% until BE { do S* od }
{ for <var> in {-}<range> } while BE do S* od

for <var> in {-}<range> do 5% od

The { } pair indicates optional parts. S+ means a sequence of zero or more
statements. The iterative statement can be optionally preceded by the prefix
{ with <decl>* 1. This optional prefix allows the programmer to declare data local to
the iferative statement. A range usually has the form
[<indexexpression> . . <indexexp‘ression>]. it may also be an arréy name, an
expressian list or a range type name. A range type is defined by an enumeration of
the constants of that type (e.g. range day = Sunday, Monday, Tuesday, Wednesday,
'_i‘hulrsday, Friday, Saturday end). The optionai minus sign in front of the range
indicates whether the iterative variable should step through the range in reverse

order.

The iterative variable in the for-clause must be a declared variable of the same
type as the range elements. No matter whether the iterative variable is changed in
the sequence of stateménts controlied by the for-clause, pefore the next iteration
commences, the next value in the range is assigned 1o the iterative variable. A range
defined as a pair of index expressions is considered fo be empty if the expression left
of the separator "." is greater than the expressions to the right of the separator.

The for-statement is in that case quivalent to an empty statement.

14

quantor. The syntax of these expressions s
seme <var> in {-} <range> sat BE

all <var> jn {-} <range> sat BE

The delimiter sat is an abbreviation for "satisfy" or “satisfies". The first
€xpression corresponds to a predicate prefixed by “there exists", the second to a

Predicate prefixed by "for all”. The expressions are not independent; the ane can be

implement than the other. The iterative variable is a declared variable of the same
type as the range elements. If the variable steps through the entire tange, the finai
value is undefined. Otherwise, it has the first value which made the first expression

true or the second expression false.

Some examples of applications. Let a square matrix A[0.p,0.p] be given, The
following expression returns true if every row has at least one element equal to zero,

all x in [0..p] sat (some yi in [0..p] sat ADay]l = 0)

Application is to the quadratic hash algorithm leads to the following program.

15

16

The Correctness Proof of a Quadratic-Hash Algorithm

integer procedure QH(name); value name; integer name;

begin integer ¢,hash; hash := Hiname)

QH :=

i some ¢ in [0.{p-1)/2] sat ST[hash := {(hash+c)7p] = O or §T[hash] = name

then hash

elsae

if some ¢ in - [1.(p~1}/2] sat §T[hash := (hash+c)%p] = 0 or §T[hash] = name

then hash else -1 fi fi;

if ST{hash] = O then §T[hash] := name fi

end

t example is 2 procedure SPACE which searches through the global bit

The las
If found, it returns the index of

array B[O.top-1] for k contiguous bits equal to one.

the first bit of this area; if not found, the procedure returns -1.

integer procedure SPACE(K); value k; integer k;

begin integer x,y,Z; X = 0; 2 1= kj
while z<=top do
if some vy in -[x.z-1] sat Blyl=0

then x:=z;- zi=y+k+1 else RETURN(z-k) fi od;

RETURN(-1)

end

The program is slightly faster if y steps through the range in reverse order,
ghtmost zero in the inspected area. Variable vy

because in that case ¥ points the ri
e range expression is preceded by a

steps through the range in reverse order if th

minus sign.

The Correctness Proof of a Quadratic-Hash Algorithm 17
References

[1] Floyd, R. W, "Assigning Meaning to Programs,” Proc. Amer.
Math. Soc. Symposia in Applied Mathematics, 19 (1967).

[2] Hoare, C. AR, "An Axiomatic Basis for Computer Programming,”
CACM 12, 10 (October 1969).

[3] Dykstra, E. W., A Short Introduction to the Art of Programming,
Technological University Eiﬁdhoven (1971).

[4] Parnas, D. L, "On the Criteria to be Used in Decomposing System

~ Modules,” CACM 15, 12 (December 1972).

[6] Loonstra, F., Introduction to Algebra, P. Noordhoff N.V,,
Groningen.

[6] Radke, C. E., "The Use of Quadratic Residue Research,” CACM 13,
2 (February 1970). '

[7] Bell, J. R, "The Quadratic Quotient Method: A Hash Code
Efiminating Secgndary Clustering,” CACM 13,2 (February 1970).

[8] Knuth, D. E., "Structured Programming with Goto Statements,”

Computing Surveys 6, 4 (December 1974).

