
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

T H E CORRECTNESS PROOF OF A QUADRATIC -HASH ALGORITHM

b y

A. N. Habermann

Carnegie -Mel lon University

Pi t tsburgh, Pa. 15213

March 1975

A b s t r a c t . T h e statements of a program do not always prov ide suff ic ient

in format ion for p rov ing its correctness. The correctness of the algorithm implemented

b y the p rogram must often be proved with the pure mathematical techniques or

e x h a u s t i v e enumerat ion. An example program is presented for which the c o r r e c t n e s s

p r o o f o f . the program is trivial provided that the correctness of the under l y ing

a lgor i thm can be demonstrated. The program can be v iewed as an abstract ion of a

quadrat ic hash algorithm. It is used at the end of the paper to encode the algorithm

most e f f i c ient ly .

This work was supported by the Defense Advanced Research Projects Agency
of the Office of the Secretary of Defense under contract F44620-73-C-0074
and is monitored by the Air Force Office of Scientific Research.

le C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
1

1. P r o v i n g the cor rec tness of a program b y inductive assertion has become a genera l l y

a c c e p t e d method. It was introduced by R. W. F loyd when he applied it to f l owchar t

p r o g r a m s [1] . The method was considerably improved b y C. A. R. Hoare. He

e x p r e s s e s the meaning of program statements in terms of a set of axioms [2] . T h e

t r u t h of P { S } Q , w h e r e P and Q are predicates and S a program statement, can be

d e r i v e d f rom the axioms that apply to S. The significance of Hoare's improvement of

F l o y d ' s method lies in the fact that now programming language constructs are d i rec t l y

u s e d in the cor rec tness proof . One of the most practical axioms is the one that

d e s c r i b e s the while statement by P{S}P -» P{while B do S} P A not B. The fact that the

cond i t ion B is false if (and when) the while statement terminates is o f ten used in the

s u b s e q u e n t part of the program. Its usefulness is nicely demonstrated in Di jkstra 's

p r o g r a m f o r computing the greatest common divisor of two integer numbers [3] .

H o w e v e r , one must not get the impression that the inductive assert ion method is

complete in the sense that it shows that the algorithm, implemented b y the p rog ram, is

c o r r e c t . T h e inductive assertions can do no more than show that the program is a

t r u e implementation of the algorithm. That is to say, the proof method can show that

t h e p r o g r a m will execute the steps which the algorithm is supposed to take. If the

a lgor i thm is w r o n g , then the program will also be wrong. In addition to the

c o r r e c t n e s s p roo f of the program, we also need to give a correctness p roof of the

a lgor i thm. For instance, the correctness proof of the algorithm which Dijkstra uses to

compute the gcd depends not only on the assertions between the program statements,

b u t p r imar i l y on the mathematical facts that gcd(a,b) = gcd(b,a), gcd(a,a) - a and

gcd (a ,b) = gcd(max(a,b) - min(a,b), min(a,b)).

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
2

Al l co r rec tness proofs have in common that long proofs are ra re l y conv inc ing .

T h i s is t r u e for the proof of a pure mathematical theorem as much as for the

c o r r e c t n e s s proof of a program. Therefore , a convincing proof cannot be g i v e n unless

the p rob lem is decomposed in a coherent set of overseeable parts . This does not

n e c e s s a r i l y imply a t o p - d o w n approach to writ ing programs, but it requ i res that

v a r i o u s abstract ions of the problem are considered separately . The abstract ions must

be manageable and they must be chosen such that the solution can easi ly be composed

out of these . For small problems a decomposition based on the successive s teps of

the algor i thm may be adequate, but Parnas shows that for large problems a

decompos i t ion based on the data structures and their operations is much more useful

[4] .

Sometimes the algorithms are simple and the programs rather complex because of

p u r e s i ze . A n example of such a situation is the syntax scanner in the compiler fo r a

programming language. The size of the code makes it necessary to split the p r o g r a m

into smaller par ts . Coming up with an exhaustive case analysis is one of the most

d i f f icul t aspects of a correctness proof in this case. In this paper w e cons ider the

o t h e r e x t r e m e , w h e r e the correctness of the algorithm is not obv ious , but the

implementat ion is s t ra ight forward . The example presented in this paper s e r v e s t w o

p u r p o s e s . In the f irst place it shows that there is more to prov ing the co r rec tness of

a p r o g r a m than apply ing the inductive assertion method. Secondly , the resul t ing

p r o g r a m has a practical aspect; it leads to a v e r y efficient implementation of a

quadrat ic hash technique.

C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
3

2. G i v e n the p rogram

beg in integer c,h,p;

READ(p) ; READ(h) ;

f o r c := 0 step 1 until (p - l) / 2 , (p - l) / 2 step - 1 until 1 do

beg in h (h+c)%p; PRINT(h) end

end

w h e r e h is a non -negat i ve integer and p is a prime number such that p * -1 (mod 4).

(E.g. , the numbers p = 2 T k - l , where k is prime, satisfy these conditions.) T h e symbol /

r e p r e s e n t s integer division and the symbol 1 represents the remainder funct ion.

T h e quest ion is to p r o v e that this program prints all the numbers of the set S.O =

{ 0 , l , 2 , . . . , p - l } exact l y once, no matter which n o n - negative integer value is assigned to

h in the statement READ(h). In other words, the program prints a permutation of the

n u m b e r s 0 , l , . . . , p - l , independent of the (permissible) initial value of h.

T h e re levant assert ions are

A l : h is a number in the range [0 . . p - l]

A 2 : h is not equal to a number already printed

A 3 : all the p r in ted numbers are different and in the range [0 . . p - l]

A 4 : the number of pr inted numbers is equal to p

W i t h the asser t ion between { }, the program reads like this:

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm 4

beg in in teger c,h,p;

R E A D (p) ; { p is prime and p - -1 (mod 4)}

READ(h) ; { h >=0}

{ A 3 }

f o r c 0 step 1 until (p - l) / 2 , (p - l) / 2 step -1 until 1 do

beg in h := (h+c)7.p; { A l }

PRINT(h) j { A 2 }

{ A 3 }

end

{ A 3 , A 4 }

end

A s s e r t i o n A 3 must be an invariant of the for statement; it must be t rue after e v e r y

i te ra t ion . T h e proof that all the assertions hold is simple for A l , A3 and A 4 , but

d i f f icul t fo r A 2 . Asser t ion A3 is true before the iteration starts, because no numbers

h a v e b e e n p r in ted y e t . The for clause shows that c>= 0 in e v e r y i terat ion and

ini t ia l ly h >* 0. Thus , (h+c)7«p is also greater than, or equal to, z e r o , so A l is t r u e .

W e can then show b y induction that A l is t rue for each iteration. Assuming that A 2 is

t r u e , A 3 holds at the end of an iteration. When the iteration terminates, A 4 holds,

b e c a u s e the for clause prescr ibes p iterations. The combination of A3 and A 4 implies

that all the numbers of S.O = {0 , l , . . . , p - l } have been pr inted exact ly once. So , if

asse r t ion A 2 is t r u e , the program is trivial.

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm

b) Let h.i and h.j be two numbers generated in the second part , w h e r e i,j € R.l -

{ 1 . 2 , - . < p - l > / 2 } . At the end of the first part, h has the value H + (P + l) * (p - l) / 8 . A

number h.i in the second part is equal to

3. T h e p r o o f that the program does not print a number in the range [0 . . p - l] tw ice

cannot be d e r i v e d from the program. But it can be p roved by apply ing some number

t h e o r y and g r o u p theory .

Let S.O - { 0 , l , 2 , . . . , p - l } , S . l « { l ,2 , . . . , p - l } , p is prime. Let the symbol s r e p r e s e n t

e q u a l i t y modulo p. The ze ro - theorem says: if p is prime and a*b s 0 for a,b € S.O,

t h e n a 5 0 o r b s 0 (or both) [5] . The proof uses the fact that if a*b « m*p, then p

must be a d iv isor of a or of b, since p is prime.

We split the i terat ion in two "parts". In the first part the iteration var iable c «

0 , l , . . . , (p - l) / 2 and in the second part c » (p - l) / 2 , (p -3)/2, . . . , l . First we p r o v e that t w o

n u m b e r s h genera ted in the first part are not equal, then we p rove the same for t w o

numbers in the second part and finally we prove that a number h generated in the

f i r s t pa r t is not equal to any number generated in the second part.

a) Let h.i and h.j be t w o numbers generated in the first part . Let R.0 - { 0 , l , . . . , (p - l) / 2 }

and let the initial value assigned to h in the statement READ(h) be H.

h.O s H, h.i s h.(» - l)+i for i > 1, so h.i s H+i*(i+l)/2 for i € R.0

If iJ^R.O and h.i s h.j, then i (i+ l) 5 j(j+l), or (i-j) (i+j+l) s 0. The z e r o theorem s a y s

that i s j o r i+j = - l . Since i,j < [0 . . (p - l) /2] , i - j or i - j - (p - l) / 2 . Thus , if i,j « R.0

and h.i s h.j, then i = j . In other words, all the numbers h generated in the f i rs t pa r t

a re d i f fe ren t .

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
6

h.i = H + (p - l) * (p + l) / 8 + (p - D / 2 + (p -3)/2 + ... + (p - (2 i - l)) / 2 s H + (p - l) * (p + l) / 8

+ i*(p- i)/2

If i,j € R.l and h.i = h.j, then i (p - i) s j (p - j) or (i - j) (i+j) s 0. The z e r o theorem s a y s

that i s j o r i s - j . The latter equation has no solution for i and j both in R . l . T h e

equa l i t y i s j implies for the g iven interval i - j . Thus, if h.i s h.j in the second p a r t ,

t h e n i= j . In o ther w o r d s , all the numbers generated in the second part are d i f fe rent .

c) Let h.i be a number generated in the first part and h.j a number generated in the

s e c o n d half. If h.i • h.j, then

i*(i+l>/2 s (p - l) * (p + l) / 8 + j*(p - j)/2

4iT2 + 4i5 (p T 2 - l) + 4pj - 4jT2

<2i+ l)T2 + (2 j) T 2 s O

We must p r o v e that the sum of two squares cannot be equal to z e r o modulo p.

T h i s is not s e l f - e v i d e n t . In fact, it is for many prime numbers possible that x T 2 + y T 2 a

0. E.g. f o r p = 13, (x , y) = (5,1) or (3,2) or (11,3), etc. and for p = 17, (x , y) = (1,13)

o r (2 ,9) o r (3,5), etc. In the next section we prove that for p « -1 (mod 4) the sum of

t w o squares is not equivalent to zero .

4. It is w e l l - k n o w n that the set S . l = { l ,2 , . . . , p - l } with the operat ion M multipl ication

modulo p" is a (commutative) group if p is a prime number. (The operat ion is c lear l y

assoc iat ive and commutative. There remains to be shown that there is for e v e r y pair

a,b € S . l an element x € S . l such that a*x 5 b. Assume that the coset V - a S . l has

t w o equal elements: a*c s a*d, where a,c,d « S . l . If so, a*(c-d) s 0. Since not a s 0, c

= d b y the z e r o theorem. Thus, V has p-1 different numbers. Since all these

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm

n u m b e r s are in the range [l . . p - l] , V = S . l . This means there must be an element a*x

€ V s u c h that a*x 2 b.)

Nex t w e s h o w that there is a pair x ,y t S . l such that x?2+yT2 5 0 is t rue if and

o n l y if t h e r e is an element t t S . l such that tT2 5 -1 .

Proof . Let x , y € S . l be a pair for which xT2+yT2 £ 0 is t rue. T h e r e ex ists a t *

S . l s u c h that tx 2 y . Substitution yields xT2(l+ tT2) 2 0. The z e r o theorem says x T 2 2

0 o r t T2 s - 1 . The former is not t rue, because x « S . l , so the latter fol lows.

Let t € S . l be such that tT2 2 -1 . This implies t T2+ l 2 0. Thus, b y subst i tut ion x - t

and y « 1 w e f ind a pair for which the sum of the squares is equal to z e r o modulo p.

F inal ly , w e show that, if there is an element t * S . l such that tT2 s - 1 , then p - 1

(mod 4).

Proof . T h e set G - { l , p - l , t , p - t } is a subgroup of S . L This is immediately c lear if

w e w r i t e out a multiplication table for G. It is wel l -known that two cosets V « aG and

W « b G , w h e r e a,b « S . l , coincide or have no elements in common [5] . (Assume V and

W h a v e an element c in common, so c 2 a*g £ b*h, where g,h € G. If k is the inve rse of

h, t h e n k € G, because G is a group. Then a s b*g*k is an element in G, so aG =

b*g*kG - b G , so V and W coincide.) Therefore , the collection of all the cosets of G

f o r m a complete part ioning of S . l . Each coset has the same number of elements as G.

Hence , if s u b g r o u p G has k distinct cosets, k*n(G) » n (S . l) , where n(Z) rep resents the

number of elements of set Z. Since n(G) - 4 and n (S . l) = p -1, w e have 4k - p -1 , s o p

= 1 (mod 4).

Coro l la ry . If w e choose p prime and p = -1 (mod 4) then not p = l (mod 4). It

f o l l o w s f rom the theorem that in this case S . l does not have an element t such that

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
8

t T 2 s - 1 , because p - 1 (mod 4) is not true. This implies that there is no pair x , y €

S . l s u c h that x T 2 + y T 2 s 0.

W e a p p l y this result to part c) at the end of Section 3. For the g i v e n pr ime

number p • -1 (mod 4), there is no pair of numbers x ,y * S . l such that x T 2 + y T 2 s 0, so

<2i+ l)T2 + (2 j)T2 s 0, iff 2 i+ l s 2j s 0

T h i s is not t r u e , because 2j « S . l . Thus, all the numbers generated in the f i rst par t of

t h e i te rat ion are di f ferent from all the numbers in the second part . This completes

the p r o o f of assert ion A2 and also the whole correctness proof .

5. Th i s co r rec tness proof is a clear example of the case where the cor rec tness of the

a lgor i thm is much harder to p rove than that of the implementation. The p rogram is at

the same time an example of a useful abstraction which can be used, after some minor

t ransformat ions , in other programs. The remainder of this paper shows how the

p r o g r a m can be used to obtain an efficient quadratic-hash algorithm.

It is hard to spec i f y exact ly what may be called a "minor t ransformat ion" of a

p r o g r a m w h o s e cor rectness has been proved. The point is that w e wou ld like to

t r a n s f o r m the program into a usable form without having to redo the c o r r e c t n e s s

p r o o f . A minor transformation of the given progrem would be the replacement of the

P R I N T - s t a t e m e n t b y the assignment A [h] := 1, prov ided that a r ray A is p r o p e r l y

d e c l a r e d and init ial ized. The reader can imagine how that is done. A n o t h e r minor

t rans fo rmat ion wou ld be the replacement of the for statement b y a repeat and a whi le

s ta tement , whi le adding the proper assignments to the iteration var iable c. Th is

t rans fo rmat ion results in

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm

beg in integer c,h,p; READ(p) ; READ(h);

c := 0;

repeat h := <h+c)7op; PRINT(h); c := c+1 until c « (p + l) / 2 ;

wh i le c > 0 do c : = c - l ; h:=(h+c)70p; PRINT(h) od

e n d

A s l ight ly bet ter vers ion is obtained b y using a more general form of repeat

statement w i t h the syntax

repeat S I * until BE do S2* od

w h e r e S* is a sequence of z e r o or more statements and BE a Boolean e x p r e s s i o n .

T h e r e p e a t statement is equivalent to the following sequence of ALGOL 60 statements.

L I : S I * ; if BE then goto L2; S2*; goto L I ; L2:

T h e genera l i zed repeat statement first executes the statement sequence S I * and

s u b s e q u e n t l y , as long as BE is t rue, it executes the sequence S2*; S I * . Note that the

tes t p r e c e d e s the repeated statements (as in a while statement) if S I * is empty ; the

tes t is at the end of the repeti t ion if S2* is empty.

[I am s o r r y to hurt D.E. Knuth's feelings by using the closing delimiter "od" [8] . I

d o not share his misgivings towards the opening delimiter do. In the sequence do

beg in I r e a d begin as an opening bracket, but not as a v e r b in the English language.

(Do all nat ive American programmers read begin as a verb? I wonder .) I s ta r ted using

t h e g e n e r a l i z e d repeat statement 2 1/2 years ago when the discussion was going o n

about ex i t and leave statements. The fact that I have used it e v e r since s h o w s its

use fu lness to me. See also the appendix.]

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
10

n which the general ized repeat statement is used reads T h e v e r s i o n i

beg in integer c,h,p; READ(p); READ(h);

c := 0;

repeat h (h+c)2p; PRINT(h) until c = (p - l) / 2 do c := c+1 od;

wh i le c > 0 do h:=(h+c)7op; PRINT(h); c : = c - l od

e n d

In this v e r s i o n h is pr inted for c * 0 , l , . . . , (p - l)/2 b y the repeat statement and f o r c

« <p - l) /2 , . . . , l b y the while statement. Note that at the end of the repeat statement c

is not unnecessar i l y incremented to (p+l)/2 .

6. A quadrat ic hash algorithm starts off with computing some number hash.O - H(name)

as func t ion of the machine representation of "name". As long as no match or f r e e slot

is f o u n d in the symbol table ST, the algorithm computes successive numbers b y the

r u l e

hash.i - hash.O + a*iT2 + b*i + c (mod p)

w h e r e p is the length of the symbol table.

T h e coeff ic ients b and c have no impact on the probabil i ty Pr(k) that a match o r an

e m p t y slot is found in precisely k - i probes. This has been argued b y C. E. Radke

[6] and J . R. Bell [7] . Thus , the coefficients b and c can be arbi t rar i ly chosen . We

c h o o s e c = 0. Coeff ic ient a must be unequal to ze ro , otherwise the hash algorithm

d e g e n e r a t e s to a l inear hash.

A w e l l - k n o w n problem of the rule above is that it generates only (p + l) / 2 d i f fe rent

v a l u e s fo r all i € S.O = { 0 , l , . . . , p - l } . If we choose a - 1, b « 0, then all poss ib le

i)

hal f"

) «

no

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm

11

s q u a r e s modulo p are generated b y the numbers i t {0 , l , . . . , (p - l) /2} , because i and (p - i

p r o d u c e the same square. (All the repetitions are generated b y the "upper ha

{ (p + l) / 2 , . . . , p - l } .) T h e missing numbers are found in the following w a y . T h e set Q

{ x T 2 (mod p)|x < S . l } is a subgroup of S . l . Let t € S . l - Q . The coset tQ has r

e lements in common w i th Q (because, if it had, tQ and Q would coincide wh ich implies t

£ Q) . T h e coset tQ has the same number of distinct elements as the s u b g r o u p Q,

(p - l) / 2 . T h u s , tQ u Q « S . l , o r tQ » S . l - Q = S.O-Q u {0} . This means that tQ contains

all the missing numbers.

If w e choose p « -1 (mod 4), w e know that -1 is not a square. In that case the

remaining numbers can be found b y choosing coefficient a • -1 . A p rogram that

implements the quadratic hash for a • (1 , -1) and b = 0, is

i n teger procedure QH(name); value name; integer name;

comment name is the internal representation of an identifier. The p rocedure r e t u r n s

- 1 if the Symbol Table is full and the name is not in the table, o therwise it r e t u r n s

t h e index of the S T - e n t r y that holds the name;

b e g i n in teger hash,index,c;

hash := H(name); comment the initial hash function remains unspecif ied here ;

c := 0; comment the constant p and the symbol ST are global objects ;

r e p e a t index := (hash+c*c)7*p

until S T [i n d e x] « name o r ST [index] - 0 or c - (p - l) / 2 do c : » c+1 od;

if S T f i n d e x] # name and STf index] * 0 then

c := 1; index := hash;

repeat index := (hash-c*c)7op; if index < 0 then index := index+p fi

until S T [i n d e x] » 0 o r ST [index] - name or c • (p - l) / 2 do c := c+1 od
f i ;

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm 12

end

comment w e fo l low the ALGOL 68 convention of terminating an if statement b y f i ;

if S T [i n d e x] - 0 then ST [index] : « name f i ;

Q H : « if S T [i n d e x] « name then index else -1 fi

e n d

O n e might argue that the new value of index can be computed from the o ld va lue

o f index b y adding (or subtract ing) 2 c + l . This is t rue , but the sum should be w r i t t e n

as c+c+1, o the rw ise the computation is even longer than c*c! T h e var iable index

cannot b e de le ted , because the original value of hash is needed be f o re the s e c o n d

i te ra t ion beg ins .

W e f ind significant improvements of the quadratic hash program if w e o b s e r v e the

s imi lar i ty b e t w e e n this program and the one whose correctness w e p r o v e d . Notic ing

t h e s imi lar i ty al lows us to delete the variable index, the conditional test in the second

i t e r a t i o n , and it allows us to replace the product c*c b y the single te rm c. T h e

resu l t ing p rogram for QH is

i n t e g e r procedure QH(name); value name; integer name;

beg in in teger hash,c;
hash := H(name); c := 0;
repeat hash := (hash+c)£p

until S T [h a s h] - 0 o r ST [hash] - name or c =* (p - l) / 2 do c := c+1 od;

whi le S T [h a s h] * 0 and ST [hash] * name and c > 0 do

beg in hash := (hash+c)7op; c := c-1 end;

if S T [h a s h] » 0 then ST [hash] := name f i ;

Q H := if S T [h a s h] - name then hash else -1 fi

C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm

Conclusion

T h e co r rec tness proof cannot always be der ived from the program s t ruc tu re . I t is

o f t e n n e c e s s a r y to p r o v e the correctness of an algorithm b y pure mathematical

methods o r b y exhaust ive enumeration. Once the correctness of the algorithm has

b e e n estab l ished , the correctness proof of the program amounts to p rov ing that the

p r o g r a m is a t r u e implementation of the algorithm.

A c o r r e c t n e s s proof becomes intractable if the problem is not split into a c o h e r e n t

se t o f subprob lems which are of smaller complexity than the total problem. T h e

s u b p r o b l e m s are const ructed b y modeling a small aspect of the total problem and b y

abst rac t ing f rom the total problem everyth ing that is i r relevant to this model. T h e ar t

o f f inding the r ight abstractions is of greater importance than the art of f inding the

r i g h t asser t ions . If a programmer masters the former, he will have no prob lem w i t h

the la t ter , but the opposi te is not true.

T h e r e remains the problem of composition. The programmer must make s u r e that

the resu l t ing p rogram does not violate the conditions that allowed him to p r o v e the

c o r r e c t n e s s of the abstractions. In most cases this amounts to showing that some

t r i v ia l t ransformat ions of the correct programs again result in cor rect programs. It is

as y e t not c lear wh ich transformations we may consider as tr ivial in the sense that the

c o r r e c t n e s s of the transformed program follows from the correctness of the or ig inal

p r o g r a m .

C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
14

A p p e n d i x

T h e genera l i zed repeat statement used in Section 6 is a special case of the

i t e r a t i v e statement. T h e var ious forms of the iterative statement are

{ fo r <var> in { - }< range> } repeat S I * until BE { do S* od }

{ f o r <var> in { - }< range> } while BE do S* od

f o r <var> in { - }< range> do S* od

T h e { } pair indicates optional parts. S* means a sequence of z e r o o r more

s tatements . T h e i terat ive statement can be optionally preceded b y the p r e f i x

{ w i th <decl>* }. This optional prefix allows the programmer to declare data local to

t h e i te rat ive statement. A range usually has the fo rm

[< indexexpress ion> . . <indexexpression>]. It may also be an a r r a y name, an

e x p r e s s i o n list o r a range t y p e name. A range t y p e is defined b y an enumerat ion of

t h e constants of that t y p e (e.g. range day - Sunday, Monday, Tuesday , W e d n e s d a y ,

T h u r s d a y , F r i d a y , Saturday end). The optional minus sign in f ront of the range

indicates w h e t h e r the i terative variable should step through the range in r e v e r s e

o r d e r .

T h e i te rat ive var iable in the for-clause must be a declared var iable of the same

t y p e as the range elements. No matter whether the iterative var iable is changed in

t h e sequence of statements controlled b y the for -c lause, before the next i te rat ion

commences, the next value in the range is assigned to the iterative var iab le . A range

d e f i n e d as a pair of index expressions is considered to be empty if the e x p r e s s i o n left

of t h e s e p a r a t o r is greater than the expressions to the right of the s e p a r a t o r .

T h e fo r - s ta tement is in that case quivalent to an empty statement.

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm

z e r o .

In addit ion to these iterative statements we found it useful to have t w o i te ra t i ve

Boo lean e x p r e s s i o n s which cor respond to predicates pref i xed b y a single logical

q u a n t o r . T h e syntax of these expressions is

some <var> in { - } <range> sat BE

all <var> in { - } <range> sat BE

T h e delimiter sat is an abbreviation for "satisfy" or "satisfies". T h e f i rs t

e x p r e s s i o n co r responds to a predicate pref ixed b y "there exists", the second to a

p r e d i c a t e p r e f i x e d b y "for all". The expressions are not independent; the one can be

e x p r e s s e d b y the negation of the other if the Boolean express ion BE is rep laced b y

not BE. H o w e v e r , it is convenient to have both and the one is not more diff icult to

implement than the other . The iterative variable is a declared var iable of the same

t y p e as the range elements. If the variable steps through the ent i re range, the final

v a l u e is undef ined. Otherwise , it has the first value which made the f i rst e x p r e s s i o n

t r u e o r the second express ion false.

Some examples of applications. Let a square matrix A[0..p,0..p] be g i v e n . T h e

fo l low ing e x p r e s s i o n re turns t rue if e v e r y row has at least one element equal to

all x in [0 . .p] sat (some y in [0..p] sat A [x , y] - 0)

App l i cat ion is to the quadratic hash algorithm leads to the following program.

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm
16

i n teger procedure QH(name); value name; integer name;

beg in integer c,hash; hash : « H(name);

Q H :=

if some c in [0 . . (p - l) / 2] sat ST[hash : » (ha$h+c)7op] - 0 o r ST [hash] » name

then hash

else

if some c in - [l . . (p - l) / 2] sat ST[hash (hash+c)7*p] - 0 or ST [hash] - name

then hash else -1 fi f i ;

if S T [h a s h] - 0 then ST [hash] := name fi

end

T h e last example is a procedure SPACE which searches through the global bit

a r r a y B [0 . . t o p - 1] for k contiguous bits equal to one. If found, it re turns the index of

t h e f i r s t bit of this area ; if not found, the procedure returns -1 .

i n teger procedure SPACE(k) ; value k; integer k;

beg in integer x , y , z ; x : « 0; z : » k;

whi le z < = t o p do

if some y in - [x . . z - l] sat B [y] - 0

then x : = z ; z : = y + k + l else RETURN(z -k) fi od;

RETURN*-1)

e n d

T h e p rogram is sl ightly faster if y steps through the range in r e v e r s e o r d e r ,

b e c a u s e in that case y points the rightmost ze ro in the inspected area. Var iab le y

s t e p s t h r o u g h the range in reverse order if the range express ion is p receded b y a

minus s ign .

T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm

References

[1] F l o y d , R. W., "Assigning Meaning to Programs," Proc. Amer.

Math. Soc. Symposia in Applied Mathematics, 19 (1967).

[2] Hoare , C. A. R., "An Axiomatic Basis for Computer Programming,"

C A C M 12, 10 (October 1969).

[3] D y k s t r a , E. W., A Short Introduction to the Art of Programming,

Technolog ica l Un ivers i ty Eindhoven (1971).

[4] Parnas , D. L , "On the Cr i ter ia to be Used in Decomposing System

Modules ," C A C M 15, 12 (December 1972).

[5] Loons t ra , F., Introduction to Algebra, P. Noordhoff N.V.,

G r o n i n g e n .

[6] Radke, C. E., "The Use of Quadratic Residue Research," C A C M 13,

2 (F e b r u a r y 1970).

[7] Bel l , J . R., "The Quadratic Quotient Method: A Hash Code

Eliminating Secondary Clustering," C A C M 13,2 (February 1970).

[8] Knuth , D. E., "St ructured Programming with Goto Statements,"

Computing Surveys 6, 4 (December 1974).

