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1. P r o v i n g the cor rec tness of a program b y inductive assertion has become a genera l l y 

a c c e p t e d method. It was introduced by R. W. F loyd when he applied it to f l owchar t 

p r o g r a m s [ 1 ] . The method was considerably improved b y C. A. R. Hoare. He 

e x p r e s s e s the meaning of program statements in terms of a set of axioms [2 ] . T h e 

t r u t h of P { S } Q , w h e r e P and Q are predicates and S a program statement, can be 

d e r i v e d f rom the axioms that apply to S. The significance of Hoare's improvement of 

F l o y d ' s method lies in the fact that now programming language constructs are d i rec t l y 

u s e d in the cor rec tness proof . One of the most practical axioms is the one that 

d e s c r i b e s the while statement by P{S}P -» P{while B do S} P A not B. The fact that the 

cond i t ion B is false if (and when) the while statement terminates is o f ten used in the 

s u b s e q u e n t part of the program. Its usefulness is nicely demonstrated in Di jkstra 's 

p r o g r a m f o r computing the greatest common divisor of two integer numbers [3 ] . 

H o w e v e r , one must not get the impression that the inductive assert ion method is 

complete in the sense that it shows that the algorithm, implemented b y the p rog ram, is 

c o r r e c t . T h e inductive assertions can do no more than show that the program is a 

t r u e implementation of the algorithm. That is to say, the proof method can show that 

t h e p r o g r a m will execute the steps which the algorithm is supposed to take. If the 

a lgor i thm is w r o n g , then the program will also be wrong. In addition to the 

c o r r e c t n e s s p roo f of the program, we also need to give a correctness p roof of the 

a lgor i thm. For instance, the correctness proof of the algorithm which Dijkstra uses to 

compute the gcd depends not only on the assertions between the program statements, 

b u t p r imar i l y on the mathematical facts that gcd(a,b) = gcd(b,a), gcd(a,a) - a and 

gcd (a ,b ) = gcd(max(a,b) - min(a,b), min(a,b)). 
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Al l co r rec tness proofs have in common that long proofs are ra re l y conv inc ing . 

T h i s is t r u e for the proof of a pure mathematical theorem as much as for the 

c o r r e c t n e s s proof of a program. Therefore , a convincing proof cannot be g i v e n unless 

the p rob lem is decomposed in a coherent set of overseeable parts . This does not 

n e c e s s a r i l y imply a t o p - d o w n approach to writ ing programs, but it requ i res that 

v a r i o u s abstract ions of the problem are considered separately . The abstract ions must 

be manageable and they must be chosen such that the solution can easi ly be composed 

out of these . For small problems a decomposition based on the successive s teps of 

the algor i thm may be adequate, but Parnas shows that for large problems a 

decompos i t ion based on the data structures and their operations is much more useful 

[ 4 ] . 

Sometimes the algorithms are simple and the programs rather complex because of 

p u r e s i ze . A n example of such a situation is the syntax scanner in the compiler fo r a 

programming language. The size of the code makes it necessary to split the p r o g r a m 

into smaller par ts . Coming up with an exhaustive case analysis is one of the most 

d i f f icul t aspects of a correctness proof in this case. In this paper w e cons ider the 

o t h e r e x t r e m e , w h e r e the correctness of the algorithm is not obv ious , but the 

implementat ion is s t ra ight forward . The example presented in this paper s e r v e s t w o 

p u r p o s e s . In the f irst place it shows that there is more to prov ing the co r rec tness of 

a p r o g r a m than apply ing the inductive assertion method. Secondly , the resul t ing 

p r o g r a m has a practical aspect; it leads to a v e r y efficient implementation of a 

quadrat ic hash technique. 
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2. G i v e n the p rogram 

beg in integer c,h,p; 

READ(p ) ; READ(h) ; 

f o r c := 0 step 1 until ( p - l ) / 2 , ( p - l ) / 2 step - 1 until 1 do 

beg in h (h+c)%p; PRINT(h) end 

end 

w h e r e h is a non -negat i ve integer and p is a prime number such that p * -1 (mod 4). 

(E.g. , the numbers p = 2 T k - l , where k is prime, satisfy these conditions.) T h e symbol / 

r e p r e s e n t s integer division and the symbol 1 represents the remainder funct ion. 

T h e quest ion is to p r o v e that this program prints all the numbers of the set S.O = 

{ 0 , l , 2 , . . . , p - l } exact l y once, no matter which n o n - negative integer value is assigned to 

h in the statement READ(h). In other words, the program prints a permutation of the 

n u m b e r s 0 , l , . . . , p - l , independent of the (permissible) initial value of h. 

T h e re levant assert ions are 

A l : h is a number in the range [ 0 . . p - l ] 

A 2 : h is not equal to a number already printed 

A 3 : all the p r in ted numbers are different and in the range [ 0 . . p - l ] 

A 4 : the number of pr inted numbers is equal to p 

W i t h the asser t ion between { }, the program reads like this: 
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beg in in teger c,h,p; 

R E A D ( p ) ; { p is prime and p - -1 (mod 4)} 

READ(h ) ; { h >=0} 

{ A 3 } 

f o r c 0 step 1 until ( p - l ) / 2 , ( p - l ) / 2 step -1 until 1 do 

beg in h := (h+c)7.p; { A l } 

PRINT(h) j { A 2 } 

{ A 3 } 

end 

{ A 3 , A 4 } 

end 

A s s e r t i o n A 3 must be an invariant of the for statement; it must be t rue after e v e r y 

i te ra t ion . T h e proof that all the assertions hold is simple for A l , A3 and A 4 , but 

d i f f icul t fo r A 2 . Asser t ion A3 is true before the iteration starts, because no numbers 

h a v e b e e n p r in ted y e t . The for clause shows that c>= 0 in e v e r y i terat ion and 

ini t ia l ly h >* 0. Thus , (h+c)7«p is also greater than, or equal to, z e r o , so A l is t r u e . 

W e can then show b y induction that A l is t rue for each iteration. Assuming that A 2 is 

t r u e , A 3 holds at the end of an iteration. When the iteration terminates, A 4 holds, 

b e c a u s e the for clause prescr ibes p iterations. The combination of A3 and A 4 implies 

that all the numbers of S.O = {0 , l , . . . , p - l } have been pr inted exact ly once. So , if 

asse r t ion A 2 is t r u e , the program is trivial. 
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b ) Let h.i and h.j be two numbers generated in the second part , w h e r e i,j € R.l -

{ 1 . 2 , - . < p - l > / 2 } . At the end of the first part, h has the value H + ( P + l ) * ( p - l ) / 8 . A 

number h.i in the second part is equal to 

3. T h e p r o o f that the program does not print a number in the range [ 0 . . p - l ] tw ice 

cannot be d e r i v e d from the program. But it can be p roved by apply ing some number 

t h e o r y and g r o u p theory . 

Let S.O - { 0 , l , 2 , . . . , p - l } , S . l « { l ,2 , . . . , p - l } , p is prime. Let the symbol s r e p r e s e n t 

e q u a l i t y modulo p. The ze ro - theorem says: if p is prime and a*b s 0 for a,b € S.O, 

t h e n a 5 0 o r b s 0 (or both) [5] . The proof uses the fact that if a*b « m*p, then p 

must be a d iv isor of a or of b, since p is prime. 

We split the i terat ion in two "parts". In the first part the iteration var iable c « 

0 , l , . . . , ( p - l ) / 2 and in the second part c » ( p - l ) / 2 , (p -3)/2, . . . , l . First we p r o v e that t w o 

n u m b e r s h genera ted in the first part are not equal, then we p rove the same for t w o 

numbers in the second part and finally we prove that a number h generated in the 

f i r s t pa r t is not equal to any number generated in the second part. 

a) Let h.i and h.j be t w o numbers generated in the first part . Let R.0 - { 0 , l , . . . , ( p - l ) / 2 } 

and let the initial value assigned to h in the statement READ(h) be H. 

h.O s H, h.i s h.(» - l)+i for i > 1, so h.i s H+i*(i+l)/2 for i € R.0 

If iJ^R.O and h.i s h.j, then i ( i+ l ) 5 j(j+l), or ( i-j ) ( i+j+l) s 0. The z e r o theorem s a y s 

that i s j o r i+j = - l . Since i,j < [0 . . (p - l ) /2 ] , i - j or i - j - ( p - l ) / 2 . Thus , if i,j « R.0 

and h.i s h.j, then i = j . In other words, all the numbers h generated in the f i rs t pa r t 

a re d i f fe ren t . 
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h.i = H + ( p - l ) * ( p + l ) / 8 + ( p - D / 2 + (p -3)/2 + ... + ( p - ( 2 i - l ) ) / 2 s H + ( p - l ) * ( p + l ) / 8 

+ i*(p- i )/2 

If i,j € R.l and h.i = h.j, then i (p - i ) s j ( p - j ) or ( i - j ) ( i+j) s 0. The z e r o theorem s a y s 

that i s j o r i s - j . The latter equation has no solution for i and j both in R . l . T h e 

equa l i t y i s j implies for the g iven interval i - j . Thus, if h.i s h.j in the second p a r t , 

t h e n i= j . In o ther w o r d s , all the numbers generated in the second part are d i f fe rent . 

c ) Let h.i be a number generated in the first part and h.j a number generated in the 

s e c o n d half. If h.i • h.j, then 

i*(i+l>/2 s ( p - l ) * ( p + l ) / 8 + j*(p - j )/2 

4iT2 + 4i5 ( p T 2 - l ) + 4pj - 4jT2 

<2i+ l )T2 + ( 2 j ) T 2 s O 

We must p r o v e that the sum of two squares cannot be equal to z e r o modulo p. 

T h i s is not s e l f - e v i d e n t . In fact, it is for many prime numbers possible that x T 2 + y T 2 a 

0. E.g. f o r p = 13, ( x , y ) = (5,1) or (3,2) or (11,3), etc. and for p = 17, ( x , y ) = (1,13) 

o r (2 ,9) o r (3,5), etc. In the next section we prove that for p « -1 (mod 4) the sum of 

t w o squares is not equivalent to zero . 

4. It is w e l l - k n o w n that the set S . l = { l ,2 , . . . , p - l } with the operat ion M multipl ication 

modulo p" is a (commutative) group if p is a prime number. (The operat ion is c lear l y 

assoc iat ive and commutative. There remains to be shown that there is for e v e r y pair 

a,b € S . l an element x € S . l such that a*x 5 b. Assume that the coset V - a S . l has 

t w o equal elements: a*c s a*d, where a,c,d « S . l . If so, a*(c-d) s 0. Since not a s 0, c 

= d b y the z e r o theorem. Thus, V has p-1 different numbers. Since all these 
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n u m b e r s are in the range [ l . . p - l ] , V = S . l . This means there must be an element a*x 

€ V s u c h that a*x 2 b.) 

Nex t w e s h o w that there is a pair x ,y t S . l such that x?2+yT2 5 0 is t rue if and 

o n l y if t h e r e is an element t t S . l such that tT2 5 -1 . 

Proof . Let x , y € S . l be a pair for which xT2+yT2 £ 0 is t rue. T h e r e ex ists a t * 

S . l s u c h that tx 2 y . Substitution yields xT2( l+ tT2) 2 0. The z e r o theorem says x T 2 2 

0 o r t T2 s - 1 . The former is not t rue, because x « S . l , so the latter fol lows. 

Let t € S . l be such that tT2 2 -1 . This implies t T2+ l 2 0. Thus, b y subst i tut ion x - t 

and y « 1 w e f ind a pair for which the sum of the squares is equal to z e r o modulo p. 

F inal ly , w e show that, if there is an element t * S . l such that tT2 s - 1 , then p - 1 

(mod 4). 

Proof . T h e set G - { l , p - l , t , p - t } is a subgroup of S . L This is immediately c lear if 

w e w r i t e out a multiplication table for G. It is wel l -known that two cosets V « aG and 

W « b G , w h e r e a,b « S . l , coincide or have no elements in common [5] . (Assume V and 

W h a v e an element c in common, so c 2 a*g £ b*h, where g,h € G. If k is the inve rse of 

h, t h e n k € G, because G is a group. Then a s b*g*k is an element in G, so aG = 

b*g*kG - b G , so V and W coincide.) Therefore , the collection of all the cosets of G 

f o r m a complete part ioning of S . l . Each coset has the same number of elements as G. 

Hence , if s u b g r o u p G has k distinct cosets, k*n(G) » n (S . l ) , where n(Z) rep resents the 

number of elements of set Z. Since n(G) - 4 and n (S . l ) = p -1, w e have 4k - p -1 , s o p 

= 1 (mod 4). 

Coro l la ry . If w e choose p prime and p = -1 (mod 4) then not p = l (mod 4). It 

f o l l o w s f rom the theorem that in this case S . l does not have an element t such that 



T h e C o r r e c t n e s s Proof of a Quadratic-Hash Algorithm 
8 

t T 2 s - 1 , because p - 1 (mod 4) is not true. This implies that there is no pair x , y € 

S . l s u c h that x T 2 + y T 2 s 0. 

W e a p p l y this result to part c) at the end of Section 3. For the g i v e n pr ime 

number p • -1 (mod 4), there is no pair of numbers x ,y * S . l such that x T 2 + y T 2 s 0, so 

<2i+ l )T2 + (2 j )T2 s 0, iff 2 i+ l s 2j s 0 

T h i s is not t r u e , because 2j « S . l . Thus, all the numbers generated in the f i rst par t of 

t h e i te rat ion are di f ferent from all the numbers in the second part . This completes 

the p r o o f of assert ion A2 and also the whole correctness proof . 

5. Th i s co r rec tness proof is a clear example of the case where the cor rec tness of the 

a lgor i thm is much harder to p rove than that of the implementation. The p rogram is at 

the same time an example of a useful abstraction which can be used, after some minor 

t ransformat ions , in other programs. The remainder of this paper shows how the 

p r o g r a m can be used to obtain an efficient quadratic-hash algorithm. 

It is hard to spec i f y exact ly what may be called a "minor t ransformat ion" of a 

p r o g r a m w h o s e cor rectness has been proved. The point is that w e wou ld like to 

t r a n s f o r m the program into a usable form without having to redo the c o r r e c t n e s s 

p r o o f . A minor transformation of the given progrem would be the replacement of the 

P R I N T - s t a t e m e n t b y the assignment A [ h ] := 1, prov ided that a r ray A is p r o p e r l y 

d e c l a r e d and init ial ized. The reader can imagine how that is done. A n o t h e r minor 

t rans fo rmat ion wou ld be the replacement of the for statement b y a repeat and a whi le 

s ta tement , whi le adding the proper assignments to the iteration var iable c. Th is 

t rans fo rmat ion results in 
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beg in integer c,h,p; READ(p) ; READ(h); 

c := 0; 

repeat h := <h+c)7op; PRINT(h); c := c+1 until c « ( p + l ) / 2 ; 

wh i le c > 0 do c : = c - l ; h:=(h+c)70p; PRINT(h) od 

e n d 

A s l ight ly bet ter vers ion is obtained b y using a more general form of repeat 

statement w i t h the syntax 

repeat S I * until BE do S2* od 

w h e r e S* is a sequence of z e r o or more statements and BE a Boolean e x p r e s s i o n . 

T h e r e p e a t statement is equivalent to the following sequence of ALGOL 60 statements. 

L I : S I * ; if BE then goto L2; S2*; goto L I ; L2: 

T h e genera l i zed repeat statement first executes the statement sequence S I * and 

s u b s e q u e n t l y , as long as BE is t rue, it executes the sequence S2*; S I * . Note that the 

tes t p r e c e d e s the repeated statements (as in a while statement) if S I * is empty ; the 

tes t is at the end of the repeti t ion if S2* is empty. 

[ I am s o r r y to hurt D.E. Knuth's feelings by using the closing delimiter "od" [8 ] . I 

d o not share his misgivings towards the opening delimiter do. In the sequence do 

beg in I r e a d begin as an opening bracket, but not as a v e r b in the English language. 

(Do all nat ive American programmers read begin as a verb? I wonder . ) I s ta r ted using 

t h e g e n e r a l i z e d repeat statement 2 1/2 years ago when the discussion was going o n 

about ex i t and leave statements. The fact that I have used it e v e r since s h o w s its 

use fu lness to me. See also the appendix.] 
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n which the general ized repeat statement is used reads T h e v e r s i o n i 

beg in integer c,h,p; READ(p); READ(h); 

c := 0; 

repeat h (h+c )2p; PRINT(h) until c = ( p - l ) / 2 do c := c+1 od; 

wh i le c > 0 do h:=(h+c)7op; PRINT(h); c : = c - l od 

e n d 

In this v e r s i o n h is pr inted for c * 0 , l , . . . , (p - l )/2 b y the repeat statement and f o r c 

« <p - l ) /2 , . . . , l b y the while statement. Note that at the end of the repeat statement c 

is not unnecessar i l y incremented to (p+l )/2 . 

6. A quadrat ic hash algorithm starts off with computing some number hash.O - H(name) 

as func t ion of the machine representation of "name". As long as no match or f r e e slot 

is f o u n d in the symbol table ST, the algorithm computes successive numbers b y the 

r u l e 

hash.i - hash.O + a*iT2 + b*i + c (mod p) 

w h e r e p is the length of the symbol table. 

T h e coeff ic ients b and c have no impact on the probabil i ty Pr(k) that a match o r an 

e m p t y slot is found in precisely k - i probes. This has been argued b y C. E. Radke 

[ 6 ] and J . R. Bell [7] . Thus , the coefficients b and c can be arbi t rar i ly chosen . We 

c h o o s e c = 0. Coeff ic ient a must be unequal to ze ro , otherwise the hash algorithm 

d e g e n e r a t e s to a l inear hash. 

A w e l l - k n o w n problem of the rule above is that it generates only ( p + l ) / 2 d i f fe rent 

v a l u e s fo r all i € S.O = { 0 , l , . . . , p - l } . If we choose a - 1, b « 0, then all poss ib le 
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s q u a r e s modulo p are generated b y the numbers i t {0 , l , . . . , (p - l ) /2} , because i and ( p - i 

p r o d u c e the same square. (All the repetitions are generated b y the "upper ha 

{ ( p + l ) / 2 , . . . , p - l } . ) T h e missing numbers are found in the following w a y . T h e set Q 

{ x T 2 (mod p)|x < S . l } is a subgroup of S . l . Let t € S . l - Q . The coset tQ has r 

e lements in common w i th Q (because, if it had, tQ and Q would coincide wh ich implies t 

£ Q) . T h e coset tQ has the same number of distinct elements as the s u b g r o u p Q, 

( p - l ) / 2 . T h u s , tQ u Q « S . l , o r tQ » S . l - Q = S.O-Q u {0} . This means that tQ contains 

all the missing numbers. 

If w e choose p « -1 (mod 4), w e know that -1 is not a square. In that case the 

remaining numbers can be found b y choosing coefficient a • -1 . A p rogram that 

implements the quadratic hash for a • (1 , -1) and b = 0, is 

i n teger procedure QH(name); value name; integer name; 

comment name is the internal representation of an identifier. The p rocedure r e t u r n s 

- 1 if the Symbol Table is full and the name is not in the table, o therwise it r e t u r n s 

t h e index of the S T - e n t r y that holds the name; 

b e g i n in teger hash,index,c; 

hash := H(name); comment the initial hash function remains unspecif ied here ; 

c := 0; comment the constant p and the symbol ST are global objects ; 

r e p e a t index := (hash+c*c)7*p 

until S T [ i n d e x ] « name o r ST [ index] - 0 or c - ( p - l ) / 2 do c : » c+1 od; 

if S T f i n d e x ] # name and STf index] * 0 then 

c := 1; index := hash; 

repeat index := (hash-c*c)7op; if index < 0 then index := index+p fi 

until S T [ i n d e x ] » 0 o r ST [ index ] - name or c • ( p - l ) / 2 do c := c+1 od 
f i ; 
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end 

comment w e fo l low the ALGOL 68 convention of terminating an if statement b y f i ; 

if S T [ i n d e x ] - 0 then ST [ index ] : « name f i ; 

Q H : « if S T [ i n d e x ] « name then index else -1 fi 

e n d 

O n e might argue that the new value of index can be computed from the o ld va lue 

o f index b y adding (or subtract ing) 2 c + l . This is t rue , but the sum should be w r i t t e n 

as c+c+1, o the rw ise the computation is even longer than c*c! T h e var iable index 

cannot b e de le ted , because the original value of hash is needed be f o re the s e c o n d 

i te ra t ion beg ins . 

W e f ind significant improvements of the quadratic hash program if w e o b s e r v e the 

s imi lar i ty b e t w e e n this program and the one whose correctness w e p r o v e d . Notic ing 

t h e s imi lar i ty al lows us to delete the variable index, the conditional test in the second 

i t e r a t i o n , and it allows us to replace the product c*c b y the single te rm c. T h e 

resu l t ing p rogram for QH is 

i n t e g e r procedure QH(name); value name; integer name; 

beg in in teger hash,c; 
hash := H(name); c := 0; 
repeat hash := (hash+c)£p 

until S T [ h a s h ] - 0 o r ST [hash] - name or c =* ( p - l ) / 2 do c := c+1 od; 

whi le S T [ h a s h ] * 0 and ST [hash] * name and c > 0 do 

beg in hash := (hash+c)7op; c := c-1 end; 

if S T [ h a s h ] » 0 then ST [hash] := name f i ; 

Q H := if S T [ h a s h ] - name then hash else -1 fi 
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Conclusion 

T h e co r rec tness proof cannot always be der ived from the program s t ruc tu re . I t is 

o f t e n n e c e s s a r y to p r o v e the correctness of an algorithm b y pure mathematical 

methods o r b y exhaust ive enumeration. Once the correctness of the algorithm has 

b e e n estab l ished , the correctness proof of the program amounts to p rov ing that the 

p r o g r a m is a t r u e implementation of the algorithm. 

A c o r r e c t n e s s proof becomes intractable if the problem is not split into a c o h e r e n t 

se t o f subprob lems which are of smaller complexity than the total problem. T h e 

s u b p r o b l e m s are const ructed b y modeling a small aspect of the total problem and b y 

abst rac t ing f rom the total problem everyth ing that is i r relevant to this model. T h e ar t 

o f f inding the r ight abstractions is of greater importance than the art of f inding the 

r i g h t asser t ions . If a programmer masters the former, he will have no prob lem w i t h 

the la t ter , but the opposi te is not true. 

T h e r e remains the problem of composition. The programmer must make s u r e that 

the resu l t ing p rogram does not violate the conditions that allowed him to p r o v e the 

c o r r e c t n e s s of the abstractions. In most cases this amounts to showing that some 

t r i v ia l t ransformat ions of the correct programs again result in cor rect programs. It is 

as y e t not c lear wh ich transformations we may consider as tr ivial in the sense that the 

c o r r e c t n e s s of the transformed program follows from the correctness of the or ig inal 

p r o g r a m . 
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A p p e n d i x 

T h e genera l i zed repeat statement used in Section 6 is a special case of the 

i t e r a t i v e statement. T h e var ious forms of the iterative statement are 

{ fo r <var> in { - }< range> } repeat S I * until BE { do S* od } 

{ f o r <var> in { - }< range> } while BE do S* od 

f o r <var> in { - }< range> do S* od 

T h e { } pair indicates optional parts. S* means a sequence of z e r o o r more 

s tatements . T h e i terat ive statement can be optionally preceded b y the p r e f i x 

{ w i th <decl>* }. This optional prefix allows the programmer to declare data local to 

t h e i te rat ive statement. A range usually has the fo rm 

[< indexexpress ion> . . <indexexpression>]. It may also be an a r r a y name, an 

e x p r e s s i o n list o r a range t y p e name. A range t y p e is defined b y an enumerat ion of 

t h e constants of that t y p e (e.g. range day - Sunday, Monday, Tuesday , W e d n e s d a y , 

T h u r s d a y , F r i d a y , Saturday end). The optional minus sign in f ront of the range 

indicates w h e t h e r the i terative variable should step through the range in r e v e r s e 

o r d e r . 

T h e i te rat ive var iable in the for-clause must be a declared var iable of the same 

t y p e as the range elements. No matter whether the iterative var iable is changed in 

t h e sequence of statements controlled b y the for -c lause, before the next i te rat ion 

commences, the next value in the range is assigned to the iterative var iab le . A range 

d e f i n e d as a pair of index expressions is considered to be empty if the e x p r e s s i o n left 

of t h e s e p a r a t o r is greater than the expressions to the right of the s e p a r a t o r . 

T h e fo r - s ta tement is in that case quivalent to an empty statement. 
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z e r o . 

In addit ion to these iterative statements we found it useful to have t w o i te ra t i ve 

Boo lean e x p r e s s i o n s which cor respond to predicates pref i xed b y a single logical 

q u a n t o r . T h e syntax of these expressions is 

some <var> in { - } <range> sat BE 

all <var> in { - } <range> sat BE 

T h e delimiter sat is an abbreviation for "satisfy" or "satisfies". T h e f i rs t 

e x p r e s s i o n co r responds to a predicate pref ixed b y "there exists", the second to a 

p r e d i c a t e p r e f i x e d b y "for all". The expressions are not independent; the one can be 

e x p r e s s e d b y the negation of the other if the Boolean express ion BE is rep laced b y 

not BE. H o w e v e r , it is convenient to have both and the one is not more diff icult to 

implement than the other . The iterative variable is a declared var iable of the same 

t y p e as the range elements. If the variable steps through the ent i re range, the final 

v a l u e is undef ined. Otherwise , it has the first value which made the f i rst e x p r e s s i o n 

t r u e o r the second express ion false. 

Some examples of applications. Let a square matrix A[0..p,0..p] be g i v e n . T h e 

fo l low ing e x p r e s s i o n re turns t rue if e v e r y row has at least one element equal to 

all x in [0 . .p] sat (some y in [0..p] sat A [ x , y ] - 0) 

App l i cat ion is to the quadratic hash algorithm leads to the following program. 
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i n teger procedure QH(name); value name; integer name; 

beg in integer c,hash; hash : « H(name); 

Q H := 

if some c in [ 0 . . ( p - l ) / 2 ] sat ST[hash : » (ha$h+c)7op] - 0 o r ST [hash] » name 

then hash 

else 

if some c in - [ l . . ( p - l ) / 2 ] sat ST[hash (hash+c)7*p] - 0 or ST [hash] - name 

then hash else -1 fi f i ; 

if S T [ h a s h ] - 0 then ST [hash] := name fi 

end 

T h e last example is a procedure SPACE which searches through the global bit 

a r r a y B [ 0 . . t o p - 1 ] for k contiguous bits equal to one. If found, it re turns the index of 

t h e f i r s t bit of this area ; if not found, the procedure returns -1 . 

i n teger procedure SPACE(k) ; value k; integer k; 

beg in integer x , y , z ; x : « 0; z : » k; 

whi le z < = t o p do 

if some y in - [ x . . z - l ] sat B [ y ] - 0 

then x : = z ; z : = y + k + l else RETURN(z -k) fi od; 

RETURN*-1) 

e n d 

T h e p rogram is sl ightly faster if y steps through the range in r e v e r s e o r d e r , 

b e c a u s e in that case y points the rightmost ze ro in the inspected area. Var iab le y 

s t e p s t h r o u g h the range in reverse order if the range express ion is p receded b y a 

minus s ign . 
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