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1 . Introduction 
All communicat ion-oriented operating systems share the problem of getting data from one process 

to another. System designers have traditionally chosen one of two alternatives: 

1. processes pass data by reference 

2. processes pass data by value through the exchange of messages 

By-value message systems typically require that message data be physically copied. If the 

semantics of the message system allow the sending process to be suspended until the message has-

been received, only one copy operation is necessary. Alternatively, explicit primitives can be 

provided that allow data to be copied once from the sender to the receiver after the message has 

been received [4 ,8 ] . Asynchronous message semantics often require, however, that all message 

data be copied twice: once into a kernel buffer and again into the address space of the receiving 

process [20, 30]. 

Not surprisingly, data copying costs can dominate the performance of by-value message 

systems [2]. The CPU cost of copying data can be high and the memory storage costs, the result of 

having to make two or three separate copies of the data transmitted, can also be important, as can 

costs of paging the data into memory where it can be copied. Such systems often limit the maximum 

size of a message, forcing large data transfers to be performed in several message operations [7, 20]. 

In systems that allow by-reference sharing of memory, processes may either share access to 

specific memory areas or entire address spaces. Messages are used only for synchronization and to 

transfer small amounts of data, such as pointers to shared memory. Communication between 

processes within a THOTH team [7] is an example of this approach. 

By-reference sharing of data is much cheaper than copying for large data transfers on a single 

machine, but can seriously compromise system reliability and security. Several capability-based 

systems [15,16, 34] have partially addressed this problem by passing memory access capabilit ies in 

messages. However, these systems do not address the problems of unintended or unsynchronized 

access to shared data. In addit ion, it is difficult and expensive to extend a by-reference memory 

access scheme transparently into a network environment [31], 

In 1981, we began to implement Accent [27], a communicat ion-oriented operating system kernel 

designed to support the needs of a large network of personal computers. One of the Accent design 

goals was that its communicat ion abstractions be transparently extensible into the network 
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environment. We therefore chose to pass all data between processes by-value in messages. At the 

same time, experience with previous operating systems, notably Rochester's RIG system [20], led us 

to seek an alternative to data copying for large messages. 

Our approach was to combine virtual memory management and interprocess communicat ion in 

such a way that large data transfers could use memory mapping techniques rather than data copying. 

By-value semantics are preserved by transferring message data with copy-on-write memory mapping, 

so that both the sending and receiving process have their own logical (if not disjoint physical) copy of 

the data. 

Through this integration of paged virtual memory management and interprocess communicat ion, 

we hoped to achieve several goals: 

• simple communicat ion semantics, easy to understand and easy to extend into a network 
or a large mult iprocessor 

• simple process access to data such as files through memory mapping (as in tradit ional 
P-MAP style file mapping [6, 23, 28]) 

• the ability to transfer data objects in their natural size, up to and including the size of a 
process address space, unhindered by artificial message size limits 

• better utilization of physical memory and backing storage through greater sharing 
between processes 

• flexible transfer of data over a network through copy-on-reference' network 

communicat ion. 

It has now been more than four years since we began to implement Accent as part of the CMU 

SPICE project [9]. Accent 1 is now (August 1985) running on a network of approximately 200 personal 

computers at CMU and is marketed commercial ly by PERQ Systems Corp. and Advent Ltd. with an 

installed base of over 1000 systems. 

In addit ion to network operating system functions such as distributed process and file management, 

window management and mail systems, several applications have been built using Accent 's 

primitives. These include research systems for distributed signal processing [14], distributed speech 

understanding and distributed transaction processing [32]. Four separate programming 

environments have been built - CommonLisp, Pascal, C and Ada - including language support for an 

object-oriented remote procedure call facility [18]. A commercial version of UNIX System V has even 

Accent is a trademark of Carnegie Mellon University. 
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been built as an application on top of the Accent kernel [26]. 

As is often the case in a research environment, the original Accent design was largely based on 

intuitions about how best to integrate virtual memory and interprocess communicat ion and the ways 

in which system facilities would be used. We now have sufficient experience with the system that we 

can judge how accurately our intuit ions match reality. 

In this paper we examine the way in which virtual memory management and interprocess 

communicat ion are integrated in the Accent design and implementation. We will also look at how well 

the Accent performs its funct ions on a single machine by answering the following questions: 

1. What are the costs associated with copy-on-write data transfer? 

2. How much data is transferred in normal operation? 

3. How are physical memory and backing storage utilized? 

4. What is the relative frequency of use of system facilities? 

5. What features of the system are cost bott lenecks in the current implementation? 

6. How does the use of virtual memory with message passing affect the design and 
implementation of applications? 
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2. The design and implementation of Accent 
The Accent kernel supports four basic abstractions: 

1. A message is a typed collection of data objects consisting of a fixed size header and a 
variable length body. 

A message may be any size and may contain typed pointers to data outside the 
cont iguous portion of the message. 

2. A po rt is a kernel protected queue for messages. 

At any given time, the maximum length of a port is f ixed, although that f ixed length can be 
changed. Processes refer to ports through port capabilit ies. There are three kinds of 
port capabilit ies: send access, receive access and ownership. Processes obtain 
capabilit ies to ports only by receiving such capabil it ies in messages. 

3. A process is a thread of control operating in a 2**32 byte paged address space. 

Processes may send and receive messages according to their access rights. When a 
process is created, the kernel also creates a port, called the kernel port of the process, 
to represent it. The state of a process and its virtual memory can be manipulated by 
sending messages to its kernel port. By default, only a process and its parent have 
access to its kernel port. 

4. A m e m o r y object is a kernel provided repository for data. 

Memory objects can be created, destroyed, read or written. Backing storage for a 
memory object is determined by its type: permanent disk, temporary disk, physical 
memory or port. Permanent disk memory objects are used to manage files in the SPICE 
file system [17]. Temporary disk objects are used to back newly created virtual storage 
on disk and to shadow copy-on-write data (see section 2.2.2). Physical memory objects 
are used to manage devices that operate on physical memory. Port memory objects 
provide copy-on-reference network access to data [35] and any other on-demand 
creation or control of information. 

The Accent kernel can itself be viewed as a process with its own 2* *32 byte paged virtual address 

space and port access rights. The primary purpose of the Accent kernel is to provide an execution 

environment for user processes and an interprocess communicat ion facility. The SPICE network 

operating system is implemented as a col lect ion of such processes running above the Accent kernel 

using the Accent IPC facility to communicate. Port capabilit ies are used to represent process-

provided services, resources and data structures. As such, port capabil it ies serve a role in Accent 

similar to object capabil it ies in systems such as Hydra [34] or STAROS [16]. Interprocess interfaces 

in Accent are defined using an object-oriented interface definit ion language called MatchMaker [18]. 

These interfaces are compi led into remote procedure calls (RPC) stubs that use the Accent message 

passing primitives for communicat ion and control (similar to those built for Pilot [5]). 
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Accent is a single machine operating system kernel in the sense that all of its operations are defined 

to operate on a single processor. The kernel's IPC facility, for example, supports only communicat ion 

between processes on the same machine. The key to Accent 's use as a network operating system 

kernel is the fact that its abstractions, its IPC facility and virtual memory support, are designed to be 

transparently extensible by user-state processes. This pe r mits traditional operating system functions 

to be provided by server processes - which are typically easier to prototype and develop than an 

operating system kernel. 

One example of this flexibility is the way Accent provides for network communicat ion. Rather than 

provide kernel support for networking, network server processes have been implemented which 

transparently extend Accent 's IPC facilities between machines. Another example of this use of 

Accent primitives to build more traditional operating system functions can be found in the file system. 

The kernel's memory object facilities are its only file support. A file server process builds user file 

abstractions, such as directories, on top of the Accent memory object. The file system server also 

uses network-transparent IPC to cooperate with other file servers in providing network-transparent 

remote file access. Process creation and destruct ion, a third example, is considered in detail in 

section 3.7. 

2 . 1 . The semant ics of message passing 

The underlying model of communicat ion in Accent is asynchronous: a process sends a message to 

a port and sometime later a process with receive access to that port receives it. There is no explicit 

connect ion between sending and receiving events, so messages must be stored somewhere while 

they are in transit. Messages are potentially large, they may contain pointers, and their data must be 

passed by value. The receiving process may not know the size or structure of the incoming message 

in advance. Address map manipulation may be used to transfer large amounts of data. The design of 

the Accent IPC and virtual memory subsystems must thus address several issues: 

• What do the memory mapping primitives do? 

• How is data stored between the time that it is sent and the time that it is received? When 
is data shared? When is it copied? 

• How does a receiving process specify where in its address space to put an incoming 
message? 
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2 . 1 . 1 . The semantics of copy-on-wr i te mapping 

A single primitive called MoveWords is used within the Accent kernel to perform all memory 

mapping operations, whether to rearrange memory within an address space or to transfer it between 

address spaces during message passing. A call to MoveWords has the form: 

M o v e W o r d s ( S o u r c e P r o c e s s , S o u r c e A d d r e s s , Des t ina t ionProcess , D e s t i n a t i o n A d d r e s s , 
N u m b e r O f W o r d s , D e l e t e S o u r c e , Crea teDes t ina t ion ) 

SourceProcess and SourceAddress specify the internal kernel process number and 32-bit starting 

address of an area to be transferred. DestinationProcess and DestinationAddress specify the process 

number and 32-bit starting address of the area to which the data is to be transferred. 

DestinationAddress is an inout parameter whose use depends on CreateDestination. If 

CreateDestination is true, the DestinationAddress provided is ignored and a new area of size 

NumberOfWords is created in the address space of process DestinationProcess. If necessary, up to a 

page of padding is added to both ends of the new area so that the offset of the area within a page is 

preserved and the data can be remapped rather than copied. The address of the new data area is 

returned in DestinationAddress. 

If DeleteSource is false, the source data is shared copy-on-write between source and destination. 

Otherwise, the data is moved from source to destination by removing the source access to the data as 

destination access to it is added. Since no new sharing is introduced if the source is deleted, the data 

is not protected copy-on-write. 

MoveWords is used to transfer pointer data into and out of the kernel. When copying data into the 

kernel during the message Send operation, SourceProcess is the sending process and 

DestinationProcess is the kernel. When copying data out of the kernel dur ing the message Receive 

operat ion, SourceProcess is the kernel and DestinationProcess is the receiving process. 

A process can use MoveWords to manipulate its own address space. A kernel trap provides access 

to MoveWords with the trapping process as both SourceProcess and DestinationProcess. 

A process can also use MoveWords to transfer data between its address space and the address 

space of a process identified by its kernel port. The ReadProcessMemory and WriteProcessMemory 

kernel calls are used to initialize process address spaces (see section 3.7.3) and by debuggers to 

peek and poke in target process address spaces. 
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2 . 1 . 2 . S t o r i n g m e s s a g e s 

A message is divided into three parts: 

1. a message header of fixed size and format 

2. a variable-size block of in-line data cont iguous with the header 

3. any number of blocks of pointer data consisting of virtual memory pointed to by the 
in-line part of the message 

Messages are stored in the virtual address space of the kernel while in transit. The kernel maintains, 

a linked list of free buffers used to hold messages in transit. The buffer size, fixed at kernel compile 

t ime, is large enough to hold a message header, a moderate amount of in-line data, and a few bytes of 

overhead 2 . The header and small in-line data blocks are copied into and out of the kernel. Larger 

amounts of in-line data and any pointer data are mapped into and out of the kernel and are stored in 

kernel virtual memory that is dynamically validated by the MoveWords CreateDestination option. 

The sending process can specify that individual pointer data blocks be deallocated by the 

MoveWords DeleteSource option as they are mapped into the kernel. The header and in-line data 

portions of the message cannot be deallocated as a direct result of the send operation but can be 

subsequently deallocated by the sending process. The kernel uses DeleteSource to deallocate large 

in-line data and pointer data blocks as they are transferred into the receiving process during the 

receive operation. 

Figure 2-1 illustrates the transfer of a message containing a pointer data block. Process A sends 

the message to port P1 , from which process B receives it. Valid memory is shown with a solid outline 

in the process maps, invalid memory with a dotted outline. The pointer data is shown as a cross-

hatched area in the map of processes with access to it. The pointer data is duplicated into the kernel 

address space during the send operation and moved from the kernel address space to process B's 

address space during the receive operation. Note that the data has then been deleted from the kernel 

address space, but is still shared between processes A and B. 

No new physical memory or backing store is normally used to hold mapped in-line data or pointer 

data, as the data is shared copy-on-write between sender and kernel. Should the sending process 

modify pages of copy-on-write data before they have been received, the kernel makes copies of those 

pages (by handling CopyOnWriteCopy faults, section 2.2.5) to preserve their original value. Backing 

The current buffer size is 1024 bytes, which accommodates the 22 byte header and 060 bytes of in-line data. 
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Send O p e r a t i o n 

A Map Kerne l Map B Map 

Receive O p e r a t i o n 

A Map 

• 
Kerne l Map B Map 

Figu re 2 - 1 : Memory mapping operations dur ing message transfer 

store for these copied pages is not allocated until they must be swapped out. 

Storing messages in the kernel while they are in transit has both advantages and disadvantages. 

The major advantage is simplicity: a single mechanism (MoveWords) can be used for all copy-on-

write mapping operations. The major disadvantage is the introduction of an arbitrary' implementation 

restrict ion: a limit on the total amount of virtual memory that can be in transit at the same time. This 

has not been a problem to date, as the kernel has the greater part of a gigabyte of address space in 

which to store data in transit, and few messages are typically in transit at once. Another disadvantage 

of this scheme is that storing data in the kernel implies the cost of transferring data both to and from 

the kernel address space. Other schemes, such as Walden's IPC [33], permit data to be transferred 

only once, directly from source to destinat ion. 

2 . 1 . 3 . Receiving a message 

The receiving process specifies the location in its address space for the header and cont iguous 

data port ion of the message. If insufficient room is provided, the kernel returns an error code to the 

receiving process. Pointer data in the message is transferred by MoveWords with the 

CreateDestination and DeleteSource options, i.e. to arbitrary unused virtual memory in the receiver, 

delet ing the kernel access to the memory dur ing the transfer. 
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Receiving processes have no control over where pointer data in messages is placed in their virtual 

memory. Should a receiving process want that data to be placed at a specific location, it must use the 

MoveWords trap to move it there after the message has been received. Few processes do so in 

practice, and the advantages of allocating new virtual memory for the data outweigh the 

disadvantages. 

2 . 1 . 4 . Message semant ics: an example 

The way in which Accent processes read and write files illustrates both the semantics of message 

passing and the effect of copy-on-write data transfer on application programs. 

File access in Accent is mediated through a file server process. This approach is similar to that of 

other message based systems, notably the VKernel [8] and RIG [20]. The file server determines the 

access rights of processes making file requests and translates those requests, if valid, into operations 

on Accent permanent memory objects. Unlike other message systems, the Accent file server does not 

physically handle the data contents of files or maintain state about the handling of file data. Files in 

Accent are treated as values and are passed by copy-on-write mapping. 

For example, if a file system client process wants to read the contents of the file "README", that 

client sends a message to the file server that means: "Give me the contents of file README". The file 

server maintains directory data structures describing the mapping between file names and 

corresponding permanent memory objects. If the file README exists and if the client has read access 

to it, then the file server in turn sends a message to a port serviced by the Accent kernel (representing 

access to permanent memory objects) requesting the contents of the permanent disk memory object 

corresponding to README. In reply to that message from the file server, the Accent kernel sends 

back a message that contains the contents of README copy-on-write. The file server receives that 

message containing README and can then forward the contents of that message to the client. When 

the client process receives the reply from the file server, the file README has been mapped into the 

cl ient 's address space with copy-on-write protection and can be referenced by the client as ordinary 

virtual memory. 

In this example, only four messages were sent, two containing pointer data. The data in the file 

README on disk was not accessed. Yet, README has been mapped into the cl ient's address space 

and can be referenced accordingly. By value message passing semantics have been preserved at a 

cost similar to that of accessing file data with a P-MAP file mapping primitive. 

Copy-on-write protection prevents the client from accidentally modifying the file README on the 
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disk, thereby also avoiding problems of shared file and memory semantics in distributed systems. 

Client processes intentionally write disk files by reversing the file reading process. The client sends a 

message to the file server asking it to "wr i te this data to the file WRITEME". The file server asks the 

Accent kernel to write the data to the permanent disk memory object corresponding to WRITEME. 

The data is transferred by copy-on-write memory mapping in both cases and is ultimately copied to 

the permanent disk object by the Accent kernel. Should any process need continued access to the 

old value of WRITEME,. the kernel creates a shadow object (see section 2.2.2) during the store into 

the permanent disk object. This shadow object containing the old value then backs any virtual 

memory previously backed by WRITEME. 

2 . 2 . The d e s i g n a n d i m p l e m e n t a t i o n o f m e m o r y m a n a g e m e n t in A c c e n t 

The requirements of memory-mapped message passing made it clear from the outset that the 

Accent virtual memory system had to support reasonably frequent copy-on-write mapping of data. In 

addit ion, the desire to support a wide variety of virtual memory intensive applications (e.g., Al 

software built in CommonLisp) dictated compact , easy to manipulate process maps that could 

support sparse use of an address space. 

The Accent virtual memory system, like that of the Apollo Aegis [21] and IBM's System 38 [12], is 

built on the notion of single-level store. Primary storage is used as a cache of secondary store, which 

is in turn organized around the concept of the Accent memory object. Logically, a page in the 

address space of a process is mapped, not directly to disk, but instead to a page of a memory object 

that may be backed on disk. Memory objects provide a level of indirection that permits a variety of 

media to back virtual memory. 

2 . 2 . 1 . The A c c e n t m e m o r y o b j e c t 

A particular Accent memory object is identif ied within the kernel by a 32-bit identifier that 

determines its type: permanent disk, temporary disk, physical memory or port Memory 

objects in active use are represented in a core- locked Active Segment 3 Table (AST) that specif ies 

how to find their contents. This is the only header information kept for transient memory objects. The 

header information for permanent disk objects is also stored on disk to allow such objects to persist 

across system reboots. 

For permanent disk memory objects, the memory object identifier is the disk address of the header 

3 T h e entities called memory objects in this paper are known to the Accent kernel code as segments. The name "segment-
was dropped from the paper because it evoked too many imayos of two-dimensional virtual memory, with its alignment and s.ze 
restrictions that Accent doesn't suffer from. 
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that contains information about the object. To protect against corrupt ion of the disk data structures 

due to single drive or control ler failures, each disk block contains, in addit ion to its data, an eight 

word header that contains the block's object identifier, logical offset within that object, and links to 

the previous and next logical blocks of the object. The object header includes the head of a random 

index of the object 's disk blocks and the head and tail of a linked list of those blocks. Three sources 

of information can thus be used to verify that a block belongs to a memory object: the random index 

in the object header, the linked list of blocks in the object, and the object identifier in the header of the 

block itself. 

Temporary disk objects do not require the kind of reliability (and implied costs) built into the 

permanent disk store. Disk space for temporary disk objects is al located from a special paging 

partit ion from which pages can be allocated and deal located more cheaply. The memory object 

identifier for a solid object is the disk address of a cont iguous range of logical disk blocks. The 

memory object identifier for an indexed object is the disk address of a random index for the disk 

blocks of data. Solid objects are used to back small regions of newly created memory. Indexed 

objects are used to back larger regions and for copy-on-wri te shadows. 

Physical memory objects are backed by a cont iguous region of physical memory whose address is 

the memory object identifier. Physical memory objects should not be confused with the pool of 

physical pages used to cache pages of virtual memory. 

Port memory objects resolve to a data structure containing information about the size and status of 

the object and a port capability. Faults and attempts to swap pages in or out are transformed into 

messages. 

2 . 2 . 2 . Shadow memory ob jec ts 

Copy-on-write sharing of data in memory objects requires that objects be able to share some, but 

not all, of their data with other objects. This need is met by shadow objects, which have some pages 

of their own and share others with the object that they shadow, which may in turn be a shadow object. 

A shadow object is always an indexed temporary disk object that contains a pointer to the object it 

shadows and only the pages that differ f rom that object. Pages in a shadow object are found by 

looking first in the shadow, then in the object it shadows, etc. until a page with the proper offset is 

found. Figure 2-2 illustrates a two level shadow. 
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Shadow of: 
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Physical Memory 

1 
NIL 

F i l e Store 

Figure 2 - 2 : An example of memory object shadowing 

2 . 2 . 3 . The Accent process map 

Accent maintains a process map for each user process and one for the operating system kernel. 

The kernel 's address space is paged and all user process maps are kept in paged kernel memory. 

Only the kernel process map, a kernel stack, kernel static variables and those kernel code modules 

required for handling the simplest form of page fault are locked in physical memory. 4 

System 
User Level 1 index 

32 b i t a d d r e s s 
Level 2 index Level 3 index Page o f f s e t 

7 b i t s 8 b i t s 8 b i t s 8 b i t s 

J 
128 e n t r i e s 

P r o c e s s 
C o n t r o l 

B1(j>ck 

256 e n t r i e s L i n k e d 1 i s t 

-2H 

Memory Object Ptr 
Of fset in Object 

F i r s t . . L a s t Index 
v a l i d copy wp 

L e v e l 1 L e v e l 2 L e v e l 3 

Figu re 2 - 3 : Mapping a virtual address in Accent 

The Accent process map (figure 2-3) is 3 levels deep. The top two levels are indirect tables while 

the third level is a linked list of entries that map a range of cont iguous process virtual pages into 

cont iguous regions of Accent memory objects. The process map is organized so that large port ions 

Although most of the kernel code is pagable. it is expedient to lock it down during kernel development. Most 
measurements in this paper were made with all kernel code locked. 
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can be validated, invalidated or mapped wi thout having to modify the l inked lists of map entries. 

The level-1 table is pointed to by the process control block and consists of 128 entries, each 

mapping 32 megabytes of data. Individual entries consist of status bits and short pointers to level-2 

table blocks. Level-1 status bits can indicate that the 32 megabyte area represented by the mapping 

entry is valid, copy-on-wri te or wr i te-protected. 

Individual level-2 table blocks contain 256 entries, each mapping 128 kilobytes of data. These 

entries consist of status bits and short pointers to a linked list of level-3 chunk descriptors. Level-2 

status bits can indicate that the 128 kilobyte area represented by the mapping entry is valid, copy-on-

wri te or wri te-protected. 

Chunk descr iptors are 16-byte data structures descr ibing the backing of a cont iguous range of 

process virtual pages by an Accent memory object. Each contains the first and last level-3 indices 

that it describes, a pointer to the Accent memory object that backs the page range, and a page offset 

in that object to the first page descr ibed by the chunk descriptor. A chunk descriptor also contains 

status bits indicating whether the page range that it describes is val id, copy-on-wri te or write-

protected. The linked list of chunk descr iptors is not ordered but in actual use is seldom very long, 

often consist ing of zero, one or two descr iptors. 

Accent process maps are kept in compact regions of kernel virtual memory. This promotes locality 

of reference and makes creation and destruct ion of entire address spaces simpler and cheaper. It 

also al lows an entire map to be dupl icated in a fork operat ion using the copy-on-wri te mapping 

facil it ies of Accent. 

A typical Accent process (the Process Manager of the CMU standard distr ibution system) with over 

500K bytes of code and data spread over 2 megabytes of address space requires a minimum map size 

of only 1024 bytes. A CommonLisp core image of 8 megabytes of code and data spread over four 

gigabytes of address space needs a map of only 12K bytes. A comparable VAX 11/780 map would 

require 16 megabytes of kernel virtual memory. Even assuming a compact address space, 8 

megabytes of data would result in a VAX map size of 64K bytes, over five times the size of the Accent 

map. 
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2 . 2 . 4 . The VP t a b l e 

The Accent process map is neither intended for nor suited to paged address translat ion. Its 

compactness makes lookups expensive, and it makes no attempt to represent individual pages. A 

second structure, cal led the Virtual to Physical address translation table or VP table, is used 

for address translation and to keep track of the mapping between process virtual addresses and 

physical memory. This table is hashed, with process number and virtual address as its key (a scheme 

similar to that used in the PRIME Corporat ion PRIME 750 [25]). The size of the VP table depends on 

the size of physical memory. It current ly needs at least twice as many entries as there are physical 

pages, and performs better with four t imes as many. 

The contents of the VP table supersede the information in the Accent process map. This allows 

changes caused by zero-fi l l page al locations and copy-on-wri te updates, for example, to be recorded 

first in the VP table ( locked in physical memory) and only incorporated into a process map when the 

relevant page must be writ ten out to secondary storage (an already expensive operation). 

Disk space is not al located to back up a process address space until the page must be writ ten out to 

disk. When an unbacked physical page must be paged out, Accent al locates temporary object 

backing for it, either by adding a new page to an existing memory object or by creating a new memory 

object. 

If a page to be swapped out is backed by a memory object with copy-on-wri te protect ion, then the 

memory object cannot be modif ied. A temporary disk object is al located to be a shadow of the 

underlying memory object and the process map is updated to refer to the shadow object. The page is 

then writ ten out to the shadow object. 

2 . 2 . 5 . H a n d l i n g a p a g e fault 

When a process takes a fault, it is b locked onto a fault-pending queue serviced by the 

Pager/Scheduler, a special core- locked, supervisor-state-only process that handles all faults. 

Virtual memory fetch operat ions cause ReadFaults. Virtual memory store operat ions cause 

WriteFaults. Both Read- and WriteFaults are quali f ied by the process and virtual address at which 

they occur. 

Both Read- and WriteFaults are AddressFaults if there is no VPTable entry for the faulting process 

at the fault virtual address. AddressFaults are further divided into AddressErrors, ZeroFil lFaults, 

MemoryFil lFaults and DiskFillFaults. 

An AddressError occurs if the fault virtual address is not valid in the address space of the faulting 
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process. The faulting process is suspended and a message is sent to a guardian process, normally 

the ProcessManager, to notify it of the error. The guardian process typically responds to the 

notif ication by invoking a debugger process on the faulting process. 

A ZeroFillFault occurs if a valid fault virtual address is neither cached in physical memory nor 

backed on d isk 5 , typically when a previously unused virtual page is first referenced. The ZeroFill fault 

completes the lazy allocation of physical caching for valid memory. A new physical page is allocated 

and zeroed, and a mapping from the fault virtual page to the new physical page is entered in the 

VPTable. Disk backing for the virtual page is not al located at this t ime and the map of the faulting 

process is not modif ied. 

A MemoryFillFault occurs if a valid fault virtual address is backed by a disk page that is physically 

resident. A mapping from the fault virtual page to that physical page is entered in the VPTable. 

A DiskFillFault occurs if a valid fault virtual address is backed by a disk page that is not physically 

resident. A new physical page is al located, the disk page read into it, and a mapping from the fault 

virtual page to the new physical page entered in the VPTable. 

ReadFaults only cause AddressFaults. WriteFaults can require additional handling beyond a 

possible AddressFault. The AddressFault handler has already made the fault address physically 

resident and readable if it hadn't been already. The extra WriteFault handling is divided into 

WriteErrors and CopyOnWriteFaults. 

A WriteError occurs on an attempt to store into a Readonly (aka WriteProtected) page. It is 

handled like an AddressError, except that the error notif ication message indicates a protection 

violation. 

A CopyOnWriteFault occurs on an attempt to store into a copy-on-write page. CopyOnWrite 

protection indicates a page that once contained a shared value. If the physical page is no longer 

shared, i.e. it has only a single VPEntry mapping to it, the protection of that virtual page is changed 

from CopyOnWrite to ReadWrite. This is a CopyOnWriteReclaim. To reduce the fault handling 

overhead of removing CopyOnWrite protection from pages that are no longer shared, a single fault 

also removes CopyOnWrite protection from succeeding unshared virtual pages. 

A CopyOnWriteFault on a virtual address that maps to a shared physical page is a 

Strictly speaking, virtual memory is backed by an Accent memory object. This description uses 'disk' to be concrete. 
5 
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CopyOnWriteCopy. The fault completes lazy evaluation of the copy operation postponed by a 

copy-on-write mapping operation. A new physical page is al located, the old physical page copied 

into it, and the mapping of the fault virtual page in the VPTable changed from the old physical page to 

the new one. Other virtual addresses that previously mapped to the old shared physical page 

cont inue to do so. 

CopyOnWrite faults, like ZeroFill faults, do not cause allocation of disk backing or modification of 

the faulting process' map. 

2 . 2 . 6 . Page replacement 

The extensive and often unpredictable interdependencies between client and server processes in 

Accent (and the simple implementation) led us to use a global rather than process-local page 

replacement strategy, as did Unix 4.1 bsd [1]. Accent uses a global LRU approximation related to the 

classic global clock algorithm [10,11] . This basic algorithm is complicated by Accent 's single-level 

store nature and its lazy evaluation of process map changes and backing storage allocation. These 

complicat ions cause special handling by page replacement for two categories of physically resident 

pages: memory object pages with no process mapping and process pages with no memory object 

backing. 

Memory object pages that are not mapped into the address space of a process occur primarily 

because idle physical memory is used as a disk cache, permitt ing recently used pages to be found in 

memory without reading them in from disk again. Such cached disk pages are assumed to be likely to 

be referenced than process-mapped pages and are aged at twice the rate of other pages. This 

accelerated aging also compensates in part for an anomaly that sets the used bit of a page when a VP 

entry mapping to it is removed. 

Pages without memory object backing occur because Accent lazy-allocates backing store. Such 

unbacked pages present a problem because they cannot be written out to disk until new backing 

store and potentially even new memory objects have been allocated for them. This allocation requires 

locks that the kernel may be unable to acquire when it wants to swap out an unbacked page. As a 

result, the ability of the system to resoond to a page replacement request can be impaired if unbacked 

pages occupy too much physical memory. Pages with disk backing can be paged out without disk 

al location. Accent therefore guarantees that at least 1/4 of the physical pages available for paging 

are either free or backed on disk. This ensures that there will be enough disk-backed memory 

available to handle crit ical page allocation requests when disk allocation is impossible. This limit is 

rarely approached in practice, as most of memory is typically filled with cached disk pages. 



17 

3. The performance of Accent 
In order to present a clear overall picture of the performance of Accent under different 

circumstances, we report performance information col lected from three different sources: 

1. A series of artificial tests were devised to provide detailed breakdowns of the time spent 
executing small scale primitive operations. These timings relate costs back to aspects of 
the design discussed in section 2. 

2. A perspective on actual large scale use of Accent was obtained by examining the task of 
generating the entire system from sources stored on a file server in our local network. 
The distribution of costs for this task demonstrates that Accent can deliver acceptable 
overall performance. The way facilit ies and resources were used during this task reflects 
Accent 's approach to resource management. 

3. A special task, midway in scale between an artificial test and a large scale application, 
was constructed which consisted of repeated execution of a simple program. This task is 
large enough to be realistic yet small enough to be examined in great detail. It makes 
heavy use of Accent 's IPC and virtual memory management primitives. 

3 . 1 . The exper imental apparatus 

All reported measurements were made on versions of Accent running on one of two PERQ Systems 

Corporat ion PERQs [24]. The PERQ is a microcoded 16-bit minicomputer with a microengine based 

on the AMD2910. It executes one 48-bit microinstruction from a writable control store every 170 

nanoseconds. Memory is 16-bit word addressable, with a typical memory reference costing about 1 

microsecond. This does not include the cost of virtual-to-physical address translation, for which 

there is no hardware support. Both PERQs are configured with 2Mb physical memory, 16K 

instruction WCS, hard disk, ethernet interface, keyboard, bitmapped display and pointing device. 

The Accent kernel on the PERQ is written in a dialect of Pascal called PERQ Pascal [3] . This Pascal 

is implemented by a byte-encoded instruction set similar to USCD P-Code, interpreted in microcode at 

an average of 0.5 million byte codes per second. An average line of kerne! source executes in 

approximately 20 microseconds. The Lampson 't ick' t ime [19], defined to be 1/4 of the time required 

to execute ' a : = b + c \ varies with the size and storage class of the variables used, from 1.25 

microseconds (16-bit stack locals) to 2.3 microseconds (32-bit stack locals) to 4.1 microseconds 

(16-bit static variables). 

Table 3-1 compares the relative performance of PERQ and VAX-11/780 CPUs. Timings were 

performed in Pascal on the two PERQs described and in C on a VAX running UNIX 4.1 bsd. We chose 

this comparison because Vax/Unix4.1bsd is a widely known uniprocessor system of about the same 

age as Accent. 
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Perq Vax Ratio Opera t ion 

2 3 0 0 n s 7 2 0 n s .31 Tick ( 3 2 - b i t s tack local) 
1 2 u s 4 u s . 2 5 S imple loop ( 1 6 - b i t integer) 
2 0 u s 3us .17 S imple loop ( 3 2 - b i t integer) 
3 5 u s 2 0 u s .57 Null p r o c e d u r e c a l l / r e t u r n 
7 5 u s 2 5 u s .33 Procedure cal l w i th 2 a r g u m e n t s 
8 0 u s 4 0 0 u s 5 . 0 0 Context s w i t c h 

1 3 2 u s 2 6 4 u s 2 . 0 0 Null kerne l t rap 
3 0 s 9 s . 3 0 Basket t Puzz le Program ( 1 6 - b i t ) 
5 0 s 1 0 s . 2 0 Basket t Puzz le P r o g r a m ( 3 2 - b i t ) 

Table 3 - 1 : Comparison of Perq and Vax-11/780 operation times 
For executing kernel code, a Perq CPU is about 1/5 of a Vax-11/780. 

Pascal programs written for the PERQ range in overall speed from 1/5 to 1/3 the speed of 

comparable programs on the VAX 11/780, depending on whether 16-bit or 32-bit operations 

predominate. In fairness to the PERQ hardware, the underlying microengine is much faster than the 

Pascal t imings in table 3-1 would indicate. Microcoded operations often run as fast as or faster than 

equivalent VAX 11/780 assembly language. Note the relative speeds of the microcoded context 

switch and kernel trap operations. Moreover, instruction sets better tuned to the PERQ hardware, 

such as the Accent CommonLisp instruction set, run at speeds closer to 50 percent of the VAX. 

Nevertheless, for the purpose of gauging the performance of the Accent kernel code," which is written 

in Pascal and makes heavy use of 32-bit arithmetic, pointer chasing and packed field accessing, the 

CPU speed of a PERQ is about 1/5 that of a VAX 11/780. 

We used two different versions of Accent to make the measurements reported in this paper. Unless 

otherwise stated, all reported measurements were made on a PERQ I with a Shugart Winchester (24 

megabyte, 85 mill isecond average access) running a version of Accent (the profiling version) 

specifically modified to support microsecond t iming. Instead of using statistical sampling, we revised 

the Pascal byte-code interpreter microcode to support procedure-level profi l ing by accumulat ing the 

time intervals between routine entry and exit. Both elapsed and process-virtual (CPU) time can be 

used as interval t ime bases with microsecond resolution. Both ordinary processes and the 

pager/scheduler can be profiled in both user and supervisor states. 

Some measurements were made on a PERQ T2 with a MAXSTORE Winchester (140 megabyte, 30 

mil l isecond average access) running a version of Accent (the standard version) more closely related 
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to the CMU standard distribution version of Accent. This version lacks the performance monitoring 

facilities of the profil ing version, but includes improvements to the file accessing code including 

microcode support for operations on kernel data structures superceded by those discussed here. 

3 . 2 . The cost, f requency and distr ibution of IPC requests 

Time IPC Opera t ion 

1 .15 S imple message send 
1 .35 S imple message receive 

1 0 . Complex message send ( 1 0 2 4 bytes) 
1 0 . Complex message receive ( 1 0 2 4 bytes) 

Table 3 - 2 : IPC operation times in mil l iseconds 

Table 3-2 shows the costs of various forms of message passing in Accent. Simple messages are 

defined to be those with less than 960 bytes of in-line data that contain no pointers or port references 

(other than those in the message header). The times for complex messages were measured for 

messages containing one pointer to 1024 bytes of data. Simple messages are specially treated by the 

Accent kernel and thus are handled much more efficiently. The code for handl ing complex 

messages, on the other hand, has never been streamlined. During normal operation of the standard 

version of Accent, the observed ratio of simple to complex messages is approximately 1 2 - t o L 6 

Overall, the average number of messages per second observed during periods of heavy standard 

version use (e.g., compilation) is less than 30. 67378 simple messages and 4279 complex messages 

were sent during one measurement of three hours of edit ing, network file access, and text formatting, 

an average of less than eight per second. 

3 . 3 . The cost of virtual memory primit ives 

Five basic operations ^.re at the heart of Accent virtual memory management: 

1. Virtual to physical address translation 

2. ValidateMemory creates new zero-fil led virtual memory. Nearly all memory not mapped 
directly to Accent files is created using ValidateMemory. 

The system generation task described in section 3.5 shows a much smaller ratio of simple to complex messages, 
approximately 3.2-to-1. 46430 simple and 14489 complex messages were sent in 8043 seconds, about 5.8 simple and 1.8 
complex per second. The increased density of complex messages is largely due to frequent file operations. 
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3. InvalldateMemory destroys virtual memory. 

4. MoveWords transfers data by memory mapping as described in section 2.1.1. Most of the 
cost of copy-on-write data transfer is due to MoveWords. 

5. Page fault handling also contr ibutes heavily to the overall cost of virtual memory 
management. As described in section 2.2.5, it includes the cost of redeeming lazy 
evaluation: ZeroFill faults allocate physical caching while CopyOnWriteCopy operations 
do data copying. 

3 . 3 . 1 . The cost of address translat ion 

Although Accent supports a fully paged virtual memory architecture, the PERQ itself has no address 

translation hardware. 32-bit virtual addresses are translated by microcode using the VP table 

described in section 2.2.4. The Pascal byte-code interpreter microcode maintains a reference-

specif ic cache of virtual-to-physical address translations instead of a hardware address translation 

buffer. While the hit ratio for this cache is high, approximately 25000 to 45000 address translations 

through the VP table are still required per second of normal operation. A VP table address translation 

costs an average of about 6 microseconds. Approximately 15-30 percent of total runtime is thus 

spent doing address translations through the VP table. The cost of virtual memory in the absence of 

address translation hardware is at least that high, and also includes the costs of translation through 

the micro-caches. 

3 . 3 . 2 . The cost of val idating and invalidating memory 

8 
InvalidateMemory 
ValidateMemory 

2 5 6 512 768 1024 
Data Size (pages) 

Figu re 3 - 1 : Val idate/Inval idate of Unbacked Virtual Memory 

To measure the cost of validating and invalidating memory, a test program repeatedly validated and 

invalidated from 1 to 1024 512-byte pages of data. The elapsed time for each operation was 

measured with a microsecond clock. Figure 3-1 shows the result of these measurements. Note that 

the base of the graph is at 5 mil l iseconds. 

The most important observation about this graph is that the time cost of these operations is 
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and increases very slowly with the size of the data. This reflects the design of the Accent process 

map and the lazy allocation of physical memory and backing store, neither of which are allocated 

during the ValidateMemory call . Allocation of physical memory is postponed until a process actually 

references the valid memory. Allocation of backing store is delayed until a dirty page of memory must 

be written out to disk. 

The ValidateMemory operation therefore need only find an unused chunk of address space and 

mark it valid. The cost of this operation is nearly constant at 6.2 mill iseconds. Several components of 

this total time can be identified. The ValidateMemory operation is provided by the kernel through a 

remote procedure call (RPC) message interface. The overhead of entering and leaving the kernel 

using the RPC interface is about 3.6 mill iseconds. The cost of f inding a hole in an address space is 

about 500 microseconds, with approximately 500 microseconds required to set up the level one and 

two process map tables. One mil l isecond is needed to allocate and set up the level three chunk 

descriptor. 

The one mil l isecond downward spikes at multiples of 256 pages are due to the representation of 

unbacked memory in process maps. Chunks of 256 pages can be represented directly at level two in 

the process map without filling in the third level. Similar downward spikes at multiples of 256 pages 

also occur for other operations for the same or similar reasons. A related phenomenon occurs at 

multiples of 65536 pages, which can be represented at level one without either level two or three. 

The InvalidateMemory operation removes a range of addresses from a process' address space. The 

t ime cost of InvalidateMemory on unbacked memory is higher than that of ValidateMemory because of 

the cost of searching the address range to reclaim any resources allocated to backing it. Although no 

such resources exist for unbacked memory, the kernel must still check for them. Information about 

disk backing is kept in the AST entries referenced by the process map. Caching in physical memory 

is recorded in the VP table. The cost of searching the process map is small and fairly constant 

because of the ability of the third level chunk descriptors to represent variable size regions of 

memory. About 700 microseconds are spent at levels one and two and approximately 550 

microseconds at level three. 

The cost of searching the VP table can be substantial. For small page ranges, the cost of searching 

by iterating up the address range adds little to the total cost of the InvalidateMemory call. Searching 

at about 3.5 microseconds per page produces the ramp at the left of f igure 3 -1 . When the range is 

greater than 128 pages, the current algorithm for performing this search follows a chain of all VP 

entries belonging to the process. The cost of this algorithm depends on the length of the chain, i.e. 
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on the number of pages that the process has cached in physical memory. This chain is searched in 

microcode at a cost of about 3.5 microseconds per entry. 

3 . 3 . 3 . The cost of memory mapping wi th MoveWords 
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Figure 3 - 2 : MoveWords of Unbacked Virtual Memory 

Figure 3-2 illustrates the cost of mapping unbacked memory around with the MoveWords operation. 

Note that the base of the graph is at three mil l iseconds and that all operations show downward spikes 

at multiples of 256 pages and a ramp for sizes less than 128 pages. 

The MoveWords operation is provided as a kernel trap, which costs 132 microseconds to enter and 

leave the kernel. The base cost of the MoveWords operation is thus somewhat lower than that of 

ValidateMemory and InvalidateMemory. Note that the cost within 256 page ranges is fairly constant, 

but that each additional 256 page chunk requires another entry at level two and level three, and costs 

slightly more (approximately 700 microseconds). 

All MoveWords operations must scan the source address range (and the VP table) to transfer the 

specif ied mappings to the destination process map. The DeleteSource option can also be processed 

dur ing tms scan, so it costs only 200 microseconds for unbacked virtual memory, much less than the 

cost of another scan. 

The MoveWords operations that create destination memory are cheaper than those that map into 

existing destination memory because the mapping operation needs to map into a hole in the 

destination address space. Creating new destination memory automatically guarantees such a hole. 

Mapping into a specif ied destination address range requires that the address range first be 
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invalidated to remove any existing memory. This costs another address range scan of the size of the 

data. Note, for example, that the MoveWords-Delete ramp is twice as steep as is the MoveWords-

Create-Delete ramp. 

Mapping into specified memory also has fragmentation problems. If the address range is not an 

exact multiple of the page size as it is in f igure 3-2, the pages at one or both ends of the range will be 

partly outside of the range. In order to preserve any destination data on these partial pages, they 

must be copied rather than mapped. 

Creating destination memory can circumvent these fragmentation problems by padding the data 

range out to the nearest page boundary and transferring the entire padded range by mapping. This 

gives the destination a small amount of undeserved source data, at worst a minor security leak that 

the source can plug by transferring only integral numbers of page-aligned pages. 

The fragmentation problems of transferring into specific destination memory also "increase the cost 

of the DeleteSource opt ion. Because the source range to be deleted includes the partial end pages 

while the mapping operation excludes them, the DeleteSource cannot be combined with the mapping 

operation and requires a separate scan. 

Because partially full end pages must be copied into specific destination memory, they cost more 

than unbacked pages. Reducing the data size to leave one half-full end page increases the cost of 

MoveWords from the 4.5-7.5 mil l iseconds shown in f igure 3-2 to 10-14 mill iseconds. The cost of 

MoveWords-Delete increases from 5-8 mil l iseconds to 13.5-17.5 mill iseconds with a steeper ramp 

because of the third address range scan. The overall shape of the cost curve is otherwise preserved. 

Figure 3-3 illustrates the cost of MoveWords on address ranges that are only cached in physical 

memory. The cost of manipulating the VP table representation of physical caching is dominant and 

produces curves that are roughly linear in the size of the data. The upper curve (Delete, with or 

without Create) has a slope of 1.75 mil l iseconds per page, the lower (no Delete, with or without 

Create) of 1.05 mil l iseconds per page. These costs primarily reflect the costs of entering and 

removing VP table entries. For each source page cached in physical memory, a new VP entry must be 

created to represent the destination access to the physical memory. Deleting source memory adds 

the cost of removing its VP entry. Invalidating destination memory as required when mapping into a 

specif ic destination address range also has the potential to remove VP entries and reclaim physical 

pages, although this never occurred in these tests. 
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Since these measurements were made, the high cost of VP table handling led us to microcode the 

routines for entering and removing VP entries. The result was greater than a factor of ten reduction in 

the cost of the operations from about 800 microseconds to approximately 50 microseconds. The 

slope of the graph in f igure 3-3 has thus been considerably reduced. 

3 . 3 . 4 . Fault handling 

Dispatch M a p AST Page VP Tota l T y p e of faul t 

. 6 2 0 . 6 2 3 Null fault 

. 9 2 . 43 . 8 8 . 8 8 3 . 3 5 5 Read fau l t , zero fill 

1 . 2 8 . 45 .91 . 9 0 3 . 7 0 4 W r i t e faul t , zero fill 

. 9 2 . 8 2 . 4 8 . 8 9 3 . 7 6 0 Read fau l t , m e m o r y f i l l , smal l f i le 

. 9 2 . 6 0 1 .49 . 8 9 4 . 5 0 4 Read fau l t , m e m o r y f i l l , large file 

. 9 2 1 . 0 0 1 .42 3 . 8 3 3 W r i t e faul t , C o p y O n W r i t e copy 

Table 3 -3 : Fault handling t imes in mil l iseconds 
Fault times are about 3-<« milliseconds, not including any disk costs. 

Table 3-3 summarizes the results from test programs that caused 100,000 instances of a variety of 

memory fault types. It shows the average Total t imes required to handle single faults and breaks 

these total times into components. 

The Dispatch component is pure overhead. It includes about .16 mil l iseconds for two context 
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switches, about .44 mill iseconds for demult iplexing the pager/scheduler and time to distinguish fault 

types from each other. It is therefore higher for more complex fault types. 

The Map and AST components are the times required to look in the process map for the memory 

object, if any, backing the fault address and to f ind the correct page of that object. There is no 

memory object for zero-fill faults. The map lookup time is smaller for large files because fewer chunk 

descriptors each have more data in the map. The AST lookup time is larger because the code for 

accessing the two-level random indices used in large files has never been streamlined. 

The Page component includes the cost of allocating a physical memory page from the free list, 

zeroing or copying data into it and recording its new use. If the free list were empty, the cost of the 

fault would increase by the cost of reclaiming a page, swapping it out first if necessary. 

The VP component is the cost of entering a mapping for the fault virtual address in the VP table. For 

a CopyOnWriteCopy, it also includes the cost of removing the old mapping from the fault virtual 

address to the shared physical page. 

3 . 4 . The c o s t of m a p p e d file access 

All file access is mediated through the Accent memory management system. There are no separate 

file buffers maintained by the system or special operations required for file access versus access to 

other forms of process mapped memory. 

S y s t e m T ime Opera t ion 

Accent 6 6 Request file f rom server 
A c c e n t 5 - 1 0 Read a page ( 5 1 2 bytes) 

UNIX 5 - 1 0 O p e n / c l o s e 
UNIX 1 6 - 1 8 Read a page ( 1 0 2 4 bytes) 

Table 3 - 4 : File access times in mill iseconds 
Accent file reading performance is comparable to that of Unix4.1bsd. 

Table 3-4 shows the costs associated with reading a 56K byte file under UNIX 4.1bsd on a VAX 

11/780 with a 30 mill isecond average access time Fujitsu disk and under the standard version of 

Accent with a 30 mill isecond average access time MAXSTORE drive. 

Handling the file request is clearly an expensive operation in Accent, even considering the 
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difference in speed between a PERQ and a VAX. This is due in part to the cost of a disk write to 

update the file access t ime. This disk wri te is unbuffered in Accent and thus is included in the file 

request time. The Unix disk write is buffered and is excluded from the open/c lose t ime. 

Once mapped, file access in Accent ranges from somewhat faster than 4.1bsd to slightly slower, 

depending on the locality of file pages. 4.2bsd file access [22] is considerably faster than either 

4.1 bsd or Accent. This increase in speed appears to be due almost entirely to the larger (typically 

4096 byte) fi le page size. The actual number of disk I /O operations per second under 4.2 is almost 

identical to 4 . 1 , about 50-60 per second, and appears to be bounded by the rotational speed of the 

disk (60 revolutions per second). 

Accent file access speed is limited by the basic fault t ime of about four mil l iseconds, the average 

number of consecutive file pages on a disk track and the cost of making new VP entries. Its page size 

is only 512 bytes, in contrast to 1024 bytes for 4.1bsd and 4096 or 8192 for 4.2bsd. 

3 , 5 . System generat ion task: distr ibut ion of system costs under load 

The system generation task consists of a pair of command files that we routinely use to bui ld the 

entire system from sources. This task provides a roughly repeatable test of computat ion and file 

intensive operation. This section considers the distr ibution of t ime costs dur ing the test. Subsequent 

sect ions will consider the way virtual and physical memory are used. 

The first command file retrieves about 6 megabytes of data from a file server in about 40 minutes. 

The other picks up about a minute after the first starts (when enough sources have reached the PERQ 

disk) and macro expands, compiles, l inks, and writes boot, runtime library and program files for the 

new system. It produces 1.8 megabytes of desired output and 2.9 megabytes of intermediate files in 

about 8040 seconds (about 2 hours 15 minutes). 

Table 3-5 shows the breakdown of t ime in seconds spent by each process. For all processes except 

the pager/scheduler, User time is CPU time spent in user state, Sys t ime is CPU time spent in 

supervisor state by the kernel on behalf of that process, primarily pe- 'orming IPC operations. 

Pager/scheduler Sys t ime includes t ime spent reading and writ ing memory objects (e.g. disk files), 

destroying process address spaces (see sect ion 3.7.3), and handling page faults. All fault handling 

t ime is charged to the pager/scheduler , not to the process on whose behalf it is done. The otherwise 

unused pager/scheduler User t ime records microcode context switching t ime not charged to any 

process. It includes the costs of saving and restoring process microstate and low level process 

schedul ing, about 40 microseconds per context switch and 70 microseconds per trap to and from 
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User % Sys % Count Descr ip t ion 

4 0 8 9 . 4 5 5 5 0 . 8 1 4 0 . 5 1 0 1.7 2 4 8 pasca l compi le r 
7 4 . 9 0 8 .9 1 7 7 7 . 4 8 1 2 2 . 1 1 p a g e r / s c h e d u l e r 

7 9 7 . 6 4 9 9 . 9 . 0 0 0 .0 1 idle loop 
4 2 0 . 7 5 8 5 .2 9 . 2 6 8 .1 2 5 macro p rocessor 
1 4 9 . 6 5 5 1.9 1 8 2 . 8 1 6 2 .3 1 file server 

6 4 . 2 5 5 .8 4 0 . 2 4 8 .5 15 e t h e r n e t f i le t ransfer 
7 8 . 5 4 5 1.0 9 . 2 2 7 .1 3 5 l inker 

4 . 5 3 1 .1 3 0 . 6 6 3 .4 1 p rocess m a n a g e r 

T a b l e 3 - 5 : System generation task: cpu t ime in seconds by process 
More than 6 1 % of total time is delivered to ordinary processes in user state. 

supervisor state. The column labeled Count shows the number of instances of that program that 

were executed. Each line shows the sum of the times charged to all count executions. The idle loop 

program runs at low priority to fill t ime dur ing which no other process can execute, typically because 

the only processes trying to run are blocked in I /O waits, e.g. for the disk. A few other processes, 

notably user interface shells, account for the remaining small percentage of total t ime. 

These measurements show that Accent has acceptable overall performance. More than 61 percent 

of total t ime is delivered to user processes in user state. 10 percent of total time is spent waiting for 

the disk. The less than 6 percent of total t ime spent in supervisor state by user processes is 

predominantly IPC cost. Of the 22.1 percent of total time spent by the pager /scheduler , 12.5 percent 

is spent handling page faults, 6.5 percent is spent doing operations (e.g. read or write) on permanent 

disk objects, and 2.3 percent is spent destroying process address spaces. 

The two command files create/destroy 438 processes in this example, about 3.3 per minute. 

Extrapolation from the cost of the null program (350 mill iseconds, see sect ion 3.7) wou ld indicate that 

roughly 2 percent of total t ime is spent creat ing/destroying processes and their server connections. 

The true cost is somewhat higher because processes with larger address spaces and more physical 

pages take longer to create and destroy. An average of 860 mil l iseconds (5 percent) should be closer 

to the mark. 
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3 . 6 . Memory uti l ization 

This sect ion presents several measures of the use of virtual and physical memory by Accent. A 

breakdown of kernel code size by funct ion indicates the complexity of various parts of the 

implementat ion. A static breakdown of physical memory use identifies the major consumers of 

physical memory. The dynamic working set of the system determines how much physical memory is 

left for user processes. The dynamic use of the paging pool shows how the system uses physical 

memory as a cache of virtual memory. The use of the MoveWords mapping primitive reflects the use 

of virtual memory by processes. Fault activity shows the effectiveness of lazy evaluation. 

3 . 6 . 1 . Kernel code size 

Pages K B y t e s % Kerne l c o m p o n e n t 

1 1 9 5 9 . 5 3 2 . 4 Paging and mapp ing 
3 9 1 9 . 5 1 0 . 6 IPC faci l i ty 
3 2 1 6 . 0 8 . 7 M e m o r y o b j e c t s y s t e m 
3 1 1 5 . 5 8 . 4 User p rocess in te r face 

4 2 . 0 1.1 Process c r e a t i o n / t e r m i n a t i o n 
1 4 2 7 1 . 0 3 8 . 7 Debugg ing and moni tor ing 

3 6 7 1 8 3 . 5 1 0 0 . 0 Tota l 

Tab le 3 - 6 : Kernel code size: in 512-byte pages by funct ion 

Table 3-6 presents a rough breakdown by funct ion of the total code size of the profi l ing kernel. It 

should be noted that the code density of PERQ Pascal is low compared to that of a VAX. Code sizes 

of typical PERQ Pascal programs are approximately 30 percent larger than their VAX C counterparts. 

Debugging code, such as print statements, is distr ibuted throughout the body of Accent and thus the • 

percentage of code devoted to diagnost ics is actually larger than the 38.7 percent shown here. The 

code size of the CMU standard version of Accent, which also includes substantial debugging support, 

is approximately 119KBytes. 

3 . 6 . 2 . Stat ic physical memory uti l ization 

Table 3-7 identifies the primary consumers of physical memory. Accent locks down a minimum of 

memory: this implementation pages out of 73 percent of 2 megabytes with only 3 percent of locked 

kernel code. This is due both to movement of operat ing system funct ions into pagable server 

processes and to making much of the kernel itself pagable. Only 1/3 of the kernel code need be 

core- locked, for example. 
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Pages K B y t e s % Descr ip t ion 

1 9 2 9 6 . 0 4 . 7 Locked d isplay buf fe r ( 7 6 8 x 1 0 2 4 / ( 1 6 x 2 5 6 ) ) 
1 4 7 .0 .3 Misc . locked display m e m o r y 
8 3 4 1 . 5 2 . 0 Other locked dev ice m e m o r y 

4 4 8 2 2 4 . 0 1 0 . 9 Locked VP T a b l e ( 7 x 4 x 4 0 9 6 / 2 5 6 ) 
1 7 6 8 8 . 0 4 . 3 Locked PV T a b l e ( 11 x 4 0 9 6 / 2 5 6 ) 

3 4 1 7 . 0 .8 Other locked kerne l t a b l e s 

4 1 2 0 . 5 1.0 Locked ke rne l s t a c k , s ta t ics and o ther d a t a 
1 2 8 6 4 . 0 3 .1 Locked kerne l code 

2 9 8 0 1 4 4 0 . 0 7 2 . 8 Paging c a c h e m e m o r y pool 

4 0 9 6 2 0 4 8 . 0 1 0 0 . 0 Tota l phys ica l pages 

T a b l e 3 - 7 : Static al location of physical memory in 512-byte pages 
Accent pages out of 73% of 2Mb of memory, and could use as much as 90%. 

It also shows that kernel virtual memory tables account for more than half of the locked memory, an 

argument for a larger page size. The size computat ions shown for the VP (virtual to physical) and PV 

(physical to virtual) tables depend on the number of physical pages (4096). Quadrupl ing the page 

size to 2048 bytes would shrink the tables to 1/4 of their current size, adding 238 kilobytes (11.4%) 

more memory to the paging cache. Gett ing the display out of main memory would free up another 

103 ki lobytes (5%). Accent would then be paging out of almost 90 percent of 2 megabytes. 

3 . 6 . 3 . S y s t e m work ing se t s ize 

Since Accent makes so much of the system code and data pagable, the operating system working 

set includes load on the paging cache as well the locked physical memory just descr ibed. The 

amount of memory locked or used whi le performing rout ine tasks, such as simple shell interactions, is 

an easy approximat ion of this size. 

The profi l ing Accent with 2 megabytes of memory and a 768x1024 display locks down around 1120 

pages and uses around 320 more, a total of around 720 kilobytes. The standard Accent with 2 

megabytes of memory and a 1024x1280 display locks down around 1000 pages and touches around 

600 more, a total of arouna 800 ki lobytes. The standard Accent has a bigger screen but a smaller VP 

table with only two entries per physical page. It also has a much greater bulk of server and other 

miscellaneous code and data. Both systems leave more than 60 percent of memory for paging 

non-system processes. 
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3 . 6 . 4 . S y s t e m g e n e r a t i o n t a s k : d y n a m i c use of p a g i n g c a c h e 

Count % Descr ip t ion 

8 4 3 9 3 6 7 . 3 A l loca ted f rom f ree page list 
3 6 5 2 6 2 9 . 1 R e c l a i m e d p e r m a n e n t fi le disk pages wi thout p rocess mapp ing 

1 8 7 6 1.5 Rec la imed dir ty p rocess pages w i th disk back ing 
1 6 2 5 1.3 Rec la imed c lean process pages wi th disk b a c k i n g 

7 4 2 .6 R e c l a i m e d process pages wi thout disk back ing 
2 8 4 .2 Rec la imed paging disk pages wi thout p rocess mapp ing 

1 2 5 4 4 6 1 0 0 . 0 Tota l phys ica l page a l locat ions 

T a b l e 3 - 8 : System generat ion task: replacement of 512-byte pages 
Most pages persist until they are explicitly deleted. . 

Statistics gathered by the physical page allocator and its LRU page replacement scan present a 

c rude picture of Accent 's dynamic use of the physical memory in its paging cache. Table 3-8 shows 

the breakdown of pages reclaimed to feed the physical page al locator dur ing the system generat ion 

task. It indicates the distr ibution of pages that go unused long enough to become 'old*. 

Deleting process access to pages without disk backing adds the pages to the free list. Deleting 

process access to disk-backed pages leaves processless disk pages. That 67.3 percent of the pages 

al located came from the free list indicates the success of lazy backing store al location. That 96.4 

percent were free or processless indicates that ample physical memory was available for the task, 

s ince most pages remained resident until they were explicit ly deleted. 

The breakdown of pages examined by the LRU scan indicates the average content of the paging 

cache when the free list has been exhausted. 182130 of the 298028 pages scanned (60 percent) were 

disk pages not mapped to any process (the disk cache), only 115055 (40 percent) had process 

mappings. The size of the disk cache is another indicat ion that ample memory was available for the 

task. 

Sect ion 2.2.6 descr ibed two constraints on page replacement caused by the single-level store 

design. Page replacement was never affected by the requirement that a minimal number of pages be 

free or mapped to disk. It was unable to al locate disk backing on 16295 of 41053 scans (39 percent), 

and had to pass over 843 pages that required disk al location before being swapped out (5 percent of 

16295). 



31 

Overall, Accent page replacement appears adequate, and could almost certainly be improved. It 

performed well on the system generation task, but was not stressed since the paging pool was of 

ample size for the task. 

3 . 6 . 5 . S y s t e m g e n e r a t i o n t a s k : use of M o v e W o r d s 

Move 
Mb 

Dupl 
M b 

Total 
Mb Mb Count Opera t ion 

1 9 4 . 9 2 2 . 4 
3 2 0 2 . 5 4 7 . 8 
1 1 0 . 4 2 .5 

9 4 . 9 2 2 . 4 

2 0 . 8 
1.9 

4 . 9 
.5 

2 1 8 9 . 7 4 4 . 8 9 4 . 9 
3 2 0 2 . 5 4 7 . 8 6 7 . 5 
3 3 1 . 2 7 .4 1 0 . 4 
1 1.9 .5 1.9 

8 7 6 Process creat ion 
3 1 1 2 Reading fi les 
2 1 2 0 Wr i t ing files 

2 8 6 M o v e W o r d s traps 

3 0 6 . 3 7 2 . 4 1 1 7 . 0 2 7 . 6 4 2 3 . 3 1 0 0 . 0 Total MoveWords 

T a b l e 3 - 9 : System generation task: MoveWords use in megabytes 
Process creation and file reading account for 90% of MoveWords data. 

70% of MoveWords data is deleted at the source as it is transferred. 

Table 3-9 shows an approximate breakdown of the 423 megabytes tranferred by 14894 calls on the 

MoveWords mapping primitive dur ing the system generation task of section 3.5. Each row accounts 

the MoveWords used by the Count uses of an Operation, totall ing Mb megabytes. The headings 

Move , Dupl and Total designate MoveWords with and without DeleteSource and their sum. The 

heading designates the number of MoveWords of that kind used by each operat ion. The heading 

designates that entry's fraction of the 423 megabyte total MoveWords data. 

For example, WriteProcessMemory, used twice in creating each of 438 processes, maps data once 

into the kernel (dupl) and once out of the kernel (move). Process creation accounted for 44.8 percent 

of the total data transferred with MoveWords during the system generation task. A total of 3138 files 

were read and 1006 written by user processes. Some of these were empty and are not included in the 

count. The file server also reads and writes directory files. These files are only read once and their 

contents cached in the file server address space, but they must be written each t ime a file is entered 

in or removed from a directory. User file data is mapped 3 timas, kernel to file server to kernel to user, 

as described in section 2.1.4. Directory files are only mapped between the kernel and the file server. 

Most MoveWords traps are assumed not to DeleteSource. 

Creating processes and mapping in files are the dominant users of MoveWords, combining for 92 

percent of the total MoveWords data. These uses require few VP table operations because the 



32 

source process has not accessed most of the data even though, as we will see in section 3.6.6, much 

of it is physically resident in the disk page cache. Lazy creation of these VP table entries has paid off 

in decreased mapping costs. 

VP entries are typically created and removed for data that is written to a file. These entries are often 

the only representation of the data's backing, due to the lazy allocation of backing store and lazy 

updates to process maps. This lazy evaluation precludes further lazy VP table manipulat ion. 

The heavy use of the MoveWords DeleteSource option (72 percent of total MoveWords data)* 

demonstrates the value of the transfer/ inval idate composite. Even more of the mapping to write files 

could have used DeleteSource had the MatchMaker-generated interface not interfered. 

The minimal use of MoveWords traps indicates Accent 's thorough integration of memory mapping 

with inter-process communicat ion. More than 99 percent of the data transfer with MoveWords 

occurred as part of message passing. 

3 . 6 . 6 . System generat ion task: fault act ivi ty 

The design of Accent was based, in part, on the intuit ion that lazy evaluation would be effective in 

avoiding unnecessary data copying and allocation of backing store. This intuition is supported by 

fault statistics that show that much of the work postponed by lazy evaluation is never done at all. 

Table 3-10 shows the breakdown of fault-related activities that occurred during the system 

generation task. Note that AddressFaults occur on 96.7 percent of faults while CopyOnWrite faults 

account for only 0.415 percent. CopyOnWrite reclaims account for 0.340 percent and CopyOnWrite 

copies only 0.074 percent of all faults. Reclaiming ahead in CopyOnWrite reclaim faults had little 

effect, each fault reclaimed an average of only 1.34 CopyOnWrite pages. 

Lazy evaluation of data copying was extremely successful. Only 77 kilobytes (151 pages) of the 

more than 400 megabytes of data that were mapped CopyOnWrite were actually copied (.018%). 

Lazy allocation of backing stoie was very effective. Of the 124362 total physical pages al located, 

40509 were Lacked on disk, most by pages of permanent files. Disk backing was lazy-allocated for 

the remaining 83853 physical pages (67%). Only 698 of these pages were ultimately written out to 

disk (.83%). Many them were used to back file server directory caches for the 16 directories created 

dur ing the system generation task. The 218 (.26%) pages that were deallocated are a better indicator 

of the amount of temporary memory backed on disk. 
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2 0 1 6 1 4 faul ts 

1 1 6 3 5 0 read faul ts 
8 5 2 6 4 w r i t e faul ts 

1 9 4 9 9 6 address faults 
1 1 6 1 4 8 f rom read fault en t ry 

7 8 8 4 8 f rom wr i te fault en t ry 
8 3 7 C o p y O n W r i t e faul ts 

6 8 6 C o p y O n W r i t e recla ims of 9 1 7 pages 
1 5 1 C o p y O n W r i t e copies 

1 2 4 3 6 2 physica l pages a l located 
8 3 7 0 2 f i l led w i th zeros 
4 0 5 0 9 f i l led f rom disk 

1 5 1 f i l led wi th C o p y O n W r i t e copies 
8 3 8 5 3 lazy a l locat ions of disk back ing 

6 9 8 Paging part i t ion disk pages a l located 
2 1 8 Paging part i t ion disk pages f r e e d 

1 5 0 8 3 5 disk addresses looked up 
1 1 0 3 2 6 found in physica l m e m o r y 

4 0 5 0 9 read f rom disk x 

2 9 8 0 0 0 VP tab le ent r ies c r e a t e d (and removed) 
1 9 5 0 0 0 c r e a t e d for faul t a d d r e s s e s 

4 1 0 0 0 c r e a t e d for c a c h e d disk pages 
6 2 0 0 0 c r e a t e d by M o v e W o r d s 

Table 3 - 1 0 : System generation task: fault statistics 

Caching of disk pages in physical memory worked well. 73 percent of the disk pages looked up 

were found cached in physical memory, only 27 percent had to be read from disk. The effectiveness 

of lazy backing store allocation and of disk page caching further conf i rms the ample supply of 

physical memory claimed by section 3.6.4. 

VP table entries were created and destroyed during this test at an average cost of about 770 and 

650 microseconds 7 , combining for about 5.2 percent of total time. These operations not only 

comprise a time bottleneck in this implementation, their expense precludes more liberal use to reduce 

other costs. 

79 percent of the VP entries were created during address fault handling, 65 percent because a 

process had faulted at that address and 14 percent to record disk pages cached in physical memory. 

Only 21 percent were created by MoveWords. This predominantly lazy creation of VP entries is 

appropriate, given the current expense of the operations. Less expensive operations could be used 

The cost of VPEnter and VPRemove varies in response to hash collisions in the VP table. 
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more freely, especially to reduce fault overhead costs by creating several entries with a single fault. 

3 . 7 . Analysis of kernel intensive operat ions: process creat ion and destruct ion 

Detailed examination of the way Accent processes are created and destroyed offers several 

important insights into the workings of Accent and its use. These are interesting operations for 

several reasons: 

• They are important operations because their cost and frequency make them signif icant 
contr ibutors to overall system costs. Accent, like Multics [23] and Unix [30], typically 
executes each individual command in its own process. Section 3.5 attributes 3 to 5 
percent of total t ime during the system generation task to process creation and 
destruct ion. 

• They make heavy use of Accent 's facilities. Process creation uses virtual memory 
mapping facilities to create an address space for the new process, to map program code 
and initialized data to their correct addresses, and to construct new stack and data areas. 
It also uses Accent 's IPC facilities to establish communicat ion channels to system 
servers. Program termination destroys the process' address space and communicat ion 
state. More than 85% of total t ime is spent in the pager/scheduler or by other processes 
in supervisor state. 

• They highlight several Accent design decisions, notably its emphasis on sharing and its 
movement of traditional operating system code out of the kernel into servers and other 
processes. 

• They demonstrate that Accent 's performance on kernel-intensive operations can be 
comparable to that of corresponding operations on more conventional systems. They 
also illustrate the effective use of Accent 's facilities. 

3 . 7 . 1 . The structure of an Accent program 

The layout of code and data in the address space of Pascal processes in the microsecond timer 

version of Accent was designed with two objectives: maximizing code sharing and minimizing 

process startup t ime. The runtime system, process initialization, server interface and general utility 

code are linked into a shareable library. Individual programs are linked relative to this library, and 

processes normally share a single copy of this library code at run t ime. In addit ion, program code and 

data are mapped into cont iguous memory to reduce the number of mapping operations needed to 

bui ld it. The runtime library and program file formats permit them to bo mapped, copy-on-write, 

unchanged into a process address space. 

Starting a child process requires two mapping operations, one to map the runtime library into the 

chi ld address space and one to map in the program file. By write-protecting the code portion of the 

files in the parent address space, it is not necessary to explicitly write protect the code again in the 

chi ld, as this protection is preserved by MoveWords. Initialized data is shared copy-on-write between 



35 

the executable file, the parent and the chi ld. The desired sharing and protection falls out naturally 

from the normal Accent memory mapping and inter-process communicat ion mechanisms. 

Pages Descr ipt ion Pages Descr ipt ion Pages Descr ipt ion 

2 9 2 Pascal runt ime l ibrary 
2 0 0 Pascal compi ler 
1 5 9 RPC stub compi ler 

8 8 Text editor 
8 8 Microcode a s s e m b l e r 
8 2 Ethernet file t rans fe r 

71 D isassembler 15 Copy file 
6 5 Te lnet 13 Rename file 
4 9 Pascal macroprocessor 8 Dele te file 
4 7 Shel l 5 Type fi le 
4 6 Pascal l inker CM

 Null p rogram 
2 6 Directory l isting 2 Echo c o m m a n d line 

Table 3 - 1 1 : Sizes of executable files in 512-byte pages 
The library is the greater part of the code size of most of the programs shown. 

This library can be shared even between processes running different programs. 

Table 3-11 shows the relative sizes of the library and a col lection of representative program files. 

File sizes are somewhat inflated by loader symbols, which occupy 5-15 percent of the files. Also 

recall that Pascal byte code is about 30 percent less dense than corresponding Vax code for C. The 

shareable runtime library clearly comprises the bulk of the code space of the programs shown. This 

library can be shared, even between processes running different programs, and requires no backing 

other than the permanent disk file. 

3 . 7 . 2 . The life cycle of an Accent process 

The life cycle of an Accent process can be divided into three phases: process creation, process 

runtime/running and process termination. As a consequence of Accent 's policy of moving traditional 

operating system code into user-state processes, the Accent kernel does not have a process 

initialization primitive such as the Unix exec(2). Instead, each phase is control led, not by the kernel, 

but by a specific Accent process. 

Process creation is control led by the parent, normally a user interface shell. It creates a child 

process with an empty address space and uses WriteProcessMemory to initialize the child address 

space with code and data. It initializes the child process state, such as its program counter and stack 

pointer. 

The parent shell also partially initializes the chi ld communicat ion state by giving the child access to 

server processes. New connect ions to the process manager and file server are required. Connecting 

to the display manager is unnecessary, since the parent's window is loaned to the chi ld, but the 
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parent must reinitialize the window after the child exits. These costs are distributed between the 

parent shell and the servers. Server access in the form of port capabil it ies is transferred in an 

initialization message sent by the parent to the chi ld. 

Internal process initialization and runtime are control led by the newly created chi ld. Initialization 

includes processing the initialization message from its parent, initializing the runtime system and RPC 

interfaces to servers. Most of this work is done within the chi ld, al though it can involve 

communicat ion with servers and implicitly includes fault handling by the pager/scheduler. The chi ld 

then runs its main program. When the main program exits, the child process asks to be terminated. 

Process termination, control led by the Accent Process Manager, has three phases. First, the 

process manager destroys the IPC state of the process, producing messages notifying other 

processes of the chi ld's death. Then the pager/scheduler process destroys the chi ld address space. 

Finally, processes that had been communicat ing with the child react to notif ication of the demise of its 

ports. Server processes release any data structures they had created for it. The parent shell resumes 

if it had been waiting for the chi ld to exit. 

3 . 7 . 3 . Null program task: distr ibution of costs 

The fol lowing measurements of process creation and termination were derived three shell 

command files that repeatedly ran the null program (a program that initializes itself and then exits). 

The first shell command file logged the time difference across 10000 runs of the unprofi led null 

program. The second generated a breakdown of time spent in each Accent process and detailed 

profiles of server processes and of the pager/scheduler, also from 10000 runs of the unprofi led null 

program. The third command file profi led 10 runs of the null program itself. 

The average time per null program execution was 345 mil l iseconds from the first command file and 

357 mill iseconds from the second. 3.5 percent slower. Microsecond profi l ing generally costs around 

5 percent in overall speed, but the cost varies with the frequency of routine calls. 

Table 3-12 shows a breakdown of the life cycle of the null program corresponding to the descript ion 

in section 3.7.2. The elapsed times shown include the costs of remote operations and of handling 

page faults. The most important feature of this breakdown is its lack of major bott lenecks. Most 

operations could be made faster, but none is so slow that it dominates the overall performance. 

Notable by their absence are the costs of initializing the child interfaces to the file system and 

display manager. The initialization of these, and potentially other, interfaces is lazy evaluated and is 

never done in this test. The child needs its interfaces to the kernel and process manager in order to 
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1 2 shell dec ides to run the null p rogram 
1 3 8 shell c rea tes and part ia l ly ini t ia l izes chi ld 

3 3 shel l c rea tes chi ld process 

8 .4 shell c rea tes empty process 
1 8 . 7 shell va l ida tes chi ld s tack , code , data and bss a reas 

4 .7 shell reads chi ld process s ta te 
4 1 shell maps code into chi ld address s p a c e 
3 4 shel l connects chi ld to servers 

1 5 . 4 shell connects chi ld to f i le server 
1 3 . 9 shel l registers chi ld w i th process manager 

4 .6 shel l m a k e s process manager the chi ld 's guard ian 
2 7 shel l s tar ts chi ld 

4 .6 shel l se ts chi ld process s ta te 
6 . 9 shel l sends ini t ia l izat ion message to chi ld 
4 . 9 shel l resumes chi ld 

1 0 . 2 shel l des t roys its access to chi ld server ports 
9 0 child pages itself in and ini t ia l izes itself 

1 0 . 7 chi ld decodes ini t ia l izat ion message f rom shell 
1 0 . 3 chi ld ini t ia l izes connect ion to kerne l 
1 4 . 0 chi ld ini t ia l izes connect ion w i th process manager 

8 . 5 chi ld ini t ia l izes its runt ime s y s t e m 
7 .7 chi ld cal ls its main program 

9 8 process manager des t roys ch i ld , sundry c leanup 

3 9 . 9 process m a n a g e r dest roys chi ld communica t ion s ta te 
3 1 . 7 p a g e r / s c h e d u l e r des t roys chi ld address space and process 
1 5 . 8 fi le s y s t e m dest roys chi ld connect ion 

5 . 0 process m a n a g e r logs p e r f o r m a n c e data 
9 shell reini t ia l izes its w indow 

Table 3 - 1 2 : Null program: elapsed mill iseconds by operation 

terminate itself, so these are actually initialized. Initialization of substantial chunks of the runtime 

system is also postponed permanently by lazy evaluation. 

Fault handling by the pager/scheduler accounts for 53 mill iseconds (15% of total). This time is 

distr ibuted among the costs of the child initializing itself. Although the chi ld's code pages are 

physically resident (due to prior executions of the program), VP entries must still be created for those 

pages that the chi ld needs. New physical pages for its data must also be allocated and zeroed. Each 

execution of tho unprofi led null program causes 15 faults, 9 DiskFill faults for code pages and 6 

ZeroFill faults for data pages. 
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4. Related work 
Virtual memory management and interprocess communicat ion have traditionally been treated as 

independent subsystems. There are several reasons for this separation: 

• Much of the early work on message based systems was done using small mini-computers 
(e.g., the PDP-11 [29], NOVA [7] and Eclipse [20]). These machines had limited virtual 
address space, which reduced the need for paged virtual memory. 

• Message based systems have often been targeted to specific applications (e.g., real-time, 
process control [13]) which precluded or limited the applicability of operating system 
provided virtual memory support. 

• Many early message systems were built on machines with primitive memory management 
hardware that made it diff icult or impossible to build sophisticated virtual memory 
software. This was true both of the small minicomputer based systems and some large 
machines such as the Cray-1 [4] , Even early 16-bit microprocessors, such as the 
Motorola 68000, did not initially provide support for demand paging, making it diff icult to 
build virtual memory support for such systems. * 

The notion of using memory mapping to provide access to shared memory in messages is not new: 

a number of traditional t imesharing systems, among them Multics [23] and Tenex [6], have provided 

such facilities. The novelty of Accent is the degree of integration of virtual memory management and 

interprocess communicat ion. The benefits of by-reference or P-MAP memory mapping are made 

available while preserving the advantages of by-value message passing semantics. 

Apol lo's Aegis [21] operating system shares with Accent the objective of permitt ing mapped access 

to data objects. Both systems view physical memory as a cache of virtual storage. Aegis, however, is 

built upon the use of shared read/wr i te memory as its fundamental communicat ion paradigm. Accent 

sidesteps the synchronization problems inherent in this approach through the use of by-value 

message passing for communicat ion. 
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5. Conclusion 
The successful use of Accent for a wide variety of distributed applications at CMU and elsewhere 

has shown that interprocess communicat ion and virtual memory management can indeed be 

combined to form workable primitives for the design and implementation of a network operating 

system. Our measurements have demonstrated that these mechanisms can also be used to deliver 

single machine performance comparable to that of more traditional operating system designs. More 

than 61 percent of total t ime during a large-scale system generation task was delivered to processes 

in user state. The performance of kernel-intensive process creation and destruction operations is 

comparable to that of Unix4.1bsd on a VAX 11/780, after normalizing for differences in processor 

speed. Accent file reading performance is directly comparable to that of Unix4.1bsd. 

Our measurements confirm that the cost of copy-on-write memory management is nearly identical 

to that of by-reference memory mapping. The overall contr ibut ion of copy-on-write faulting to total 

system costs is extremely small. Less than 0.01 percent of total t ime dur ing the system generation 

task was spent handling such faults. 

Lazy evaluation of memory map and backing store operations proved to be valuable. Of the 

physical pages for which backing store was lazy-allocated during the system generation task, fewer 

than 1 percent were ultimately recorded in process maps and backed on disk. 

In Accent, unlike more traditional message systems, the cost of simple message passing is much 

less important than the cost of virtual memory operations. These costs are dramatically apparent in 

our measurements of the system generation task and of process creation and destruction. Ironically, 

far more care was taken in the Accent implementation to streamline simple IPC operations than to 

minimize virtual memory management costs. 

The basic design of the Accent virtual memory system appears sound. Our measurements show 

that the costs of manipulating the Accent process map data structure to allocate, free and copy 

mapped regions are fundamentally small and grow slowly with the size of the affected memory area. 

The number of operations on the Virtual-to-Physical address translation (VP) table is limited by the 

number of physical memory pages owned by a process rather than the amount of virtual memory that 

it uses. 

Unfortunately, the cost of actually taking a fault (3-4 mill iseconds) or remapping a physical page of 

memory (800 microseconds in our original implementation) can easily dominate any process map 

manipulations. We have recently addressed these costs by moving the most expensive VP table 
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operations into microcode. Accent 's use of microcode to speed up crucial operations is not unusual; 

architectural support for virtual memory and other abstractions is tradit ional. The PERQ is unusual in 

that it lacks address translation hardware but has a writable control store (WCS). Accent uses the 

flexibility of the WCS to overcome its speed deficiencies in the same way that other systems might use 

assembly language. 

We have identified several other operations whose cost and frequency makes them performance 

bott lenecks and that are amenable to simple microcode, assembly language or hardware 

implementation. The operations of entering and removing VP table entries and iterating through the' 

VP table are clear candidates. Specialized support for page replacement and searching process map 

tables would benefit the system substantially. 

The effects of page size are important. Most system costs depend more strongly on the number of 

pages in a region than on the number of bytes in it. For largely historical reasons, Accent uses a 

512-byte page. This small page size causes signif icantly more remapping of physical memory and 

more fault ing operations than would occur with larger pages and reduces the effectiveness of 

address translation caches by reducing the size of the address range covered by a single cache entry. 

It also dramatically increases the costs of kernel data structures such as the VP table, whose size is a 

multiple of the number of physical pages in the system. The small disk page size often implies a large 

overhead to transfer a small amount of data. Experience with Unix systems [ 1 , 22] indicates that the 

benefits of a larger page size would probably outweigh the costs of increased internal fragmentation. 

Overall, the Accent implementation has satisfied its original goals. It provides an existence proof 

that a communicat ion kernel with a few basic primitives can provide effective support for a large body 

of software. It has also demonstrated that a usable system can be built with its memory management 

and inter-process communicat ion primitives and that these primitives can be implemented efficiently. 
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