
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CMU-CS-85-149 

A MECHANIZABLE THEORY FOR 
EXISTENCE PROOFS OF 

INCLUSIVE PREDICATES 1 

Ketan Mulmuley 
Computer Science Department, 

Carnegie-Mellon University, 
Schenley Park, 

Pittsburgh, PA-15213, 
U.S.A. 

The research reported in this document was supported in part by funds from the Computer Science De­
partment of Carnegie-Mellon University, and by the Defense Advanced Research Projects Agency (DOD), 
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33G15-81-K-
1539. The views and conclusions contained in it are those of the author and should not be interpreted as 
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects 
Agency or the US Government. 



1. Introduct ion 

The Scott-Strachey approach to language semantics is well known. In this approach, a 
language is given semantics by mapping each language construct to its meaning in an ap­
propriately constructed mathematical domain - this map is called denotational semantics 
of the language. The map is denotational in the sense that a denotation of a complex term 
depends only on the denotations of its constituents and not their structure. Of course, if 
the language is to be of any use at all, it must have an operational semantics. Generally 
this operational semantics is specified in terms of a compiler or an interpreter. 

The question which arises is: are the denotational and operational semantics equiv­
alent? This is the problem of semantic equivalence. Milne and Reynolds gave a general 
technique for proving such semantic equivalences. Their technique involves constructing 
certain predicates, called inclusive predicates, which connect the domains used for deno­
tational and operational semantics. The most difficult part of their technique is showing 
the existence of such inclusive predicates. Unfortunately these existence proofs are known 
to be quite complicated, hence one is reluctant to carry out these proofs. Moreover, so far 
nobody has known any nontrivial example of a system of equations over inclusive pred­
icates which does not have a solution. In the absence of such a counterexample it does 
not not seem justified to carry out the complicated existence proofs with all their details. 
In this paper we shall construct such a counter example through diagonalization. This 
means one must carry out the existence proofs with care. For quite a long time many 
people had expressed a need for much simpler methods for proving these existences. For 
example, several people suggested that there might be a language which can define most 
of the frequently arising predicates. Unfortunately the above mentioned counterexample 
shows that there axe some fundamental difficulties in doing this. However, in this paper we 
shall give a theory for proving inclusive predicate existence which has a distinct advantage 
of being mechanizable. This means a computer can now carry out a large chunk of details. 
In fact, a system, which we shall call IPL ( Inclusive Predicate Logic), was implemented 
on top of LCF which can almost automatically prove the existence of most of the inclusive 
predicates which axise in practice. 

2. The Prob lem Of Inclusive Predicate Exis tence 
Let us see where inclusive predicates enter into picture in Milne's or Reynolds' tech­

nique. 
To put the problem in somewhat abstract setting, let the language be L, and let £i and 

£2 be two different semantics of the language which map L into D\ and D2 respectively. 
Our problem is to show that <?i and £2 are equivalent. Towards this end, one might start 
by constructiong a predicate P which relates equivalent values from two domains Di and 
Z?2, i.e., (̂ 1,̂ 2) € P iff di and c/2 are in some sense equivalent. Then we can try to show 
that, for all / S L, [£i(l) 1 £2(1)) S P- But, what is the exact nature of this predicate 
and does such a predicate always exist? We shall see later that this predicate existence 
problem is indeed a difficult problem. Sometimes one might simply be unlucky, and the 
predicate relating equivalent values from different domains might not exist. However, it 
might be the case that a weaker predicate Q exists such that (a^,^) € Q iff di is weaker 

1 



than d 2 in some sense. One then proves the equivalence of the two semantics by proving 
the following two assertions independently. 

1. £i(0 is weaker than £2(1), f ° r all / € L. 
2. £2(l) is weaker than £i(l), for all / G L. 

The key problem is then the construction of an appropriate predicate and proving its 
existence. 

3. A Simple Language 
To make the ideas concrete, we shall consider a simple programming language and its 

semantic equivalence problem. This example has been taken from [Stoyl]. The language 
to be described is basically a typed lambda calculus with atoms. The set of expressions in 
this language is defined as: 

e := J identifiers 
:= 6 basic constants 
:= (A/ .c 1 )e 2 lambda abstraction applied to an argument. 

We have not allowed lambda abstractions as first class citizens to simplify the discussion.. 
The scope rule of this language is intended to be dynamic, i.e, free variables of a procedure 
get bound at the invocation time. 

We shall first give an operational semantics to the language. Let Ide be the syntactic 
domain of identifiers, B be the domain of basic values, E be the syntactic domain of 
expressions and F be the domain of syntactic environments: F = Ide —• E . Then an 
operational semantics 0 : E —> F —• B is defined as follows. For any / G jP, 

0 ( 7 ) / = 0(fI)I 

0 ( 6 ) / • = 6 
0{{\I.ex)e2) = 0 ( e i ) ( / [ e 2 / / ] ) , 

where f [ e 2 / I ] is a syntactic environment which is exactly like / except that f [ e 2 / I ] I = «2« 
Note that in the third clause, when a function is invoked, its argument is not evaluated 

but, rather, the unevaluated expression is carried around. This is a usual trick used to 
implement dynamic scope. 

Next we give aTdenotational semantics to the language. Let D be the domain of values 
and C be the domain of enviroments. As the scoping is dynamic, the value of an expression 
will be a function which will take the invocation environment as an argument and produce 
a'basic value as the result, i.e, D = C —• B . And, of course, C = Ide —• jD. More formally, 
D and C are the least domains satisfying the domain equations: 

D = C - > B 

C = I d e - + D . 

A denotational semantics £ : E —> C —> B is given by the following clauses. For any c G C , 

£ { b ) c = 6 
£ { I ) c = (c/)c 
£ ( ( X L e 1 ) e 2 ) = £ ( e i ) ( c [ £ ( e 2 ) / I ] ) , 

2 



where c[£[en)/I] is an environment in C which is exactly like c except that c[£(e2)/I]I = 
£(e2). 

4 . S e m a n t i c E q u i v a l e n c e 

Now that we have the denotational semantics E and the operational semantics O for 
our language, we must show that both these semantics are in some sense equivalent, i.e, 
they are in effect saying the same thing. Let us define a semantification function which 
takes a syntactic environment as an argument and produces as result its semantic image. 
Formally " : F —> C is defined as follows. For any / G F , • 

f = \(l:lde).£{fl). 

Now showing that £ and 0 axe equivalent amounts to showing: 

£{e)f = 0 ( c ) / . for all e G E and / G F. 

It is easy to prove (see [Stoyl]) by an induction on the number of steps taken by the 
interpreter specified by 0 that: 

0 ( e ) / C £{e)f for all c G E and / G F. 

Hence let us see how to prove 

£(e)f C 0 ( e ) / for all e G E and / G F. 

Towards this end,* let us define two predicates © C D X E and I I C C x F such that: 

0 = {(cf, e) | V(c, / ) G ILcfc C 0 ( e ) / } , , v 
n = {(c, / ) J V/ G Icfc.fc/, / J ) G 0 } . w 

Intituively (d, e) G 0 if d is weaker than e, and (c, / ) G n if c is weaker than / . Immediately 
the question arises whether such predicates actually exist. Assume for the moment that 
they do. Then it is easy to prove by structural induction that (see [Stoyl]), for any e G E 
and / G F , (£(e) ,e) G 0 and ( / , / ) G n . This implies, by the definition of 0 , that 
£{z)f E 0(e)f, which is what we wanted to prove. • 

Thus we proved the semantic equivalence of £ and 0 but for one gap: we have to show 
that there exist 0 and n such that (1) is satisfied. Unfortunately that is the most difficult 
part Thus the major component of the proof still remains. In [Stoyl] this existence is 
shown using Milne's technique. The proof is undeniably complicated. We shall later how 
this existence can proved automatically by the implemented IPL system. For the moment 
we shall content ourselves with the knowledge that such predicates do exist. 

However, one might ask if the issue of existence of inclusive predicates is really so 
sensitive as to demand this much of care and trouble. In fact, though Milne and Reynolds 
gave general methods for proving such existences, not many such proofs are found in the 

3 



literature and one senses reluctance to go through such proofs. There axe two reasons for 
this reluctance. 

1. There has not been given before any nontrivial equation over predicates which does 
not have a solution. In the absence of counter examples it does not seem justified 
to go through such tedious existence proofs. 

2. Both Reynolds' and Milne's techniques have certain disadvantages. Though Reynolds' 
technique is very systematic, it can be used only when two domains have similar 
shapes or when one domain can be 'transformed' into the other domain. This tech­
nique then can not be used to prove the existence of a solution to (1). Milne's 
technique, on the other hand, is a general scheme, but the particular instantiation 
of this scheme in a specific situation can seem ad hoc making the proofs compli­
cated. This justifies the reluctance even more! (In a recent private communication, 
Milne has told the author that in many special cases the details of his method 
can actually be bypassed. However, one still feels need for a uniform way of doing 
things.) 

In this paper we shall provide answers to both these arguments. As for the first 
argument we shall provide in the next section a counter example using diagonalization 
through self application, thus dissolving any doubt about the nontriviality of the existence 
problem. As an answer to the second argument, we shall give a theory to prove such 
existences which has a distinct advantage of being mechanizable. In fact a system called 
IPL (Inclusive Predicate Logic) was implemented on top of LCF which mechanizes and 
automates this theory. 

5. Diagonal izat ion A n d Self Appl icat ion 
It is tempting ask if the predicates 0 and n exist even when C in the definition of 0 

(see (1)) is replaced by = , because then it will be possible prove that S{e)f = 0 ( e ) / , for 
all e G E and / G*F, without having to break the proof in two parts as we did. If this 
replacement is carried out, the 'new' 0 and n will satisfy the equations: 

e = { ( d , e ) | V ( c f / ) eu.de = 0 * / } , f 2 > 
n = {(c, / ) | v/ e ide.{d, fi) e 0 } . { } 

Whether these predicate exist or not is an open question. The question was raised in 
[Stoyl]. However, we shall answer this question partially below. 

We shall show later that a solution to (1) exists for any 0 . (See [Stoyl] too.) What 
we shall show here is that this is not true in the case of (2). That is to say, we shall show, 
using diagonalization, that there exists an 0 such that (2) has no solution. 

To simplify the discussion, assume that there is only one identifier, i.e., Ide is a trivial 
one point domain ± . In that case 

C = Ide-> D = ±-+D~D, 
D = C->B~D->By 

F = Ide -+ E ~ E, 

4 

http://eu.de


and hence 0 can be identified with II. The definition of © can now be simplified to: 

0 = {(d,e) | V(d',e') G ©. dd! = 0(e)e'} . 

Let 0 = AeAe'.ft, where b is an element of B such that b ^ _L (We are assuming that B is 
not trivial). Then 

© = {{d,e) | V(d',e') G 0 . eta' = 6}. 

As expressions do not play any role now, the existence of 0 is equivalent to the existence 
of 7r C D , where D — D —• B and 

7T = {d | W G 7T. dd' = 6}. 

We show that such a 7r does not exist. Let / : D = Ax.xx. Now consider two cases. 
1. / G 7T. Then, from the definition of 7r, it follows that f f = b ^ ±. But it can be 

shown, as in [Park], that / / = J_, which is a contradiction. 
2. / ^ 7r. Let d be an arbitrary element of 7r, Then, as d G 7r, it follows from the 

definiton of 7r that cfd = 6. Hence fd = (Ax.xx)<i = dd = 6. Hence, for all cf G 7r, 
/<f = 6, which means / G 7r. But this is again a contradiction. 

We conclude that such a 7r does not exist. 
If we consider • instead of = exactly the same reasoning goes through. Note that * 

// = (Ax.xx)(\x.xx) is our usual friend from combinator theory. And we suceeded in 
diagonalization with its help. 

This example shows that the inclusive predicate existence problem is very sensitive 
to the syntax. What this means is that there can not be a rich enough purely syntactic 
language such that any predicate expressed in that language exists. Secondly note that 
Reynolds' method can not be used to prove the existence of 0 and n satisfying (1) as, using 
his terminology, no relational functor corresponding to this equation can be constructed 
in his theory. 

6. A n Overview Of D o m a i n Theory 
Before we proceed to the theory of existence proofs, we recall in this sections the major 

concepts of Scott's domain theory. (See [Scott 1]) By domain we shall mean an algebraic, 
consistently complete cpo. If C and D are domains then we shall denote by C —• D the 
domain of continuous functions from C to D. C x D and C + D will denote the product 
and disjoint sum of C and D. It is possible to regard —>, x , and + as the functors on the 
category of domains in which continuous functions are taken as morphisms. 

There is a natural notion of embedding among domains. Given two domains C and 
jD, we say that C can be embedded in D if there exists an injection-projection pair (t, j ) , 
where i G C —> D and j G D -> C, such that j o i = ICy and % o j C ID. We say C <Jy D 
or simply C < D when the embedding pair is implictly understood. Pictorially we shall 
represent an embedding as follows: 



There is good way to internalize the notion of embeddings: through finitary projections. 
We shall introduce them soon. 

We say / G D • D is a retract of D if / is idempotent, i.e., / o / = / . Note that 
the fixpoint set of / is a cpo; we shall denote it by | / | . One can think of the retract 
/ as a notation for its fixpoint cpo | / | . Hence, we shall use the notations / and | / | 
interchangably, when no ambiguity arises. Thus, x € / actually means x € |/|. 

A projection is a special kind of retract. A retract / of D is called a projection if 
f Q I. It is finitary if, in addition, the set of its fixpoints is isomorphic to a domain. 

Now if a domain C can be embedded in a domain D, i.e. C <)D> then C is isomorphic 
to the fixpoint set of the finitary projection ioj of D. Conversely, every finitary projection 
/ of a domain D comes from such an embedding, namely, | / | <*j D. Thus a domain C can 
be embedded in D iff it is isomorphic to the fixpoint set of some finitary projection of D. 

If D is a domain, let us denote by D the set of finitary projections of D. Scott shows in 
[Scottl] that D is a domain again. In fact, D comes from a finitary projection of (D —• D) , 
i.e., there exists a finitary projection / of (D —• D) such that D = |/|. 

If / is a finitary projection of D then we shall say that | / | is a sub domain of D. The 
embedding relation on subdomains of D gets translated to the relation C on C: if f and 
g are finitary projections of D then f C g iff \ f\ is a subdomain of \g\} i.e., \f \ C \g\ and 
f is a finitary projection of \g\. 

Now one sees that a finitary projection can be looked upon as just a notation for a 
subdomain and it captures in a nice way the-notion of embedding. Even more force gets 
attached to this argument by the existence of a domain U (see [Scottl]) which is universal 
in the sense: every domain D is isomorphic to a subdomain of U, i.e. the fixpoint set of 
some'finitary projection of U. 

Let us give £/, the set of finitary projections of £/, a special name V. Universality of U 
means that the category of domains D can be 'internalized' in U in the form of V. In fact, 
we shall call the elements of V domains. Thus, when refer to a 'domain' D G V, what we 
are referring to is actually its fixpoint set This duality between finitary projections and 
domains is of central importance, and will be assumed implicitly throughout this paper. 

After allowing so much of confusion between finitary projections and domains, one 
would think this is enough. Well, not yet. To complete this confusion, we have to internal­
ize the functors x , + on the category of domains as well. We shall soon see that corre­
sponding these functors there are appropriate continuous functions —>, X , + G 7 x 7 ->V. 
(We are using the same notation for the internalizations of the functors as well.) 

First note that, by universality of C/, the domains U —* U is isomorphic to a subdomain 
of ?7, i.e., there exists an injection-projection pair ( t ^ , ^ ) between U —+U and U: 

(U -> uyr^u 

Now given a, b G V> define (a —> 6) 6 U —> U by: 

a —> b = t _ o (A/. (6 o / o a)) o j u . 

6 



Obviously —* is continuous. Moreover, it can be shown that (a —• 6) G V, and 
|a —• fe| ~ |a| —> |6|. This means —>G V x V —• V. With the functors x and + one can 
similarly associate continuous functions x , + G V —> V. Thus we have 'internalized' the 
category of domains in the form of V and the continuous functions — x , + G V —• V. 

As —>, x , + are all continuous functions on V, it becomes possible now solve the domain 
equations like: 

D = {D-+B) + {DxD), 

where B G V is some fixed, domain. In fact, all such domain equations have the least 
solutions. For example, the least solution of the above domain equation is 

fix{XD G V.{D -> B) + {Dx £>)), 

where fix denotes the continuous fixpoint operation. Mutual recursion poses no problem 
due to the presence of the product construction. 

7. Outl ine Of The Theory 

In Section 5 we have seen that the inclusive predicate existence problem is indeed 
nontrivial. What we want is a theory which could be mechanized on computer so that a 
large chunk of the existence proof could be automated. Though Milne's technique to prove 
the existence of an inclusive predicate is general enough, the specific instantiation of his 
scheme to the case at hand can be ad hoc making the proofs complicated, and, moreover, 
these proofs can not be mechanized. On the other hand, as we remarked earlier, though 
Reynold's technique in this regard is more systematic, it suffers from the disadvantage that 
it is not always applicable. The theory we give in this -section has a distinct advantage of 
being mechanizable. This means, though the existence proof will, by no means, be easy, a 
computer can go through most of the details. 

We shall informally and crudely sketch the issues and main ideas involved by con­
sidering a simple example. Suppose we are given a domain D which is the least domain 
satisfying D = T(D) , where T is a continuous domain constructor, i.e., T G V —> V. And 
we want to know if there exists a predicate P on domain D such P = it;(P), where w is 
some predicate transformation. 

Let a L be a retract of V such that 

U , T ( X ) , r 2 ( J L ) , . - . , £ > } C | L | . 

We shall see in Section 13 that, for all the domain constructors T which arise in practice, 
it is possible to construct such a retract a uniform way. However, it need not be the case 
that: 

{±,T(±),T\±),...,D} = \L\. 

Roughly L encapsulates the process of inverse limit construction of the domain JD. Once 
this is done we shall construct on L a predicate cpo JZ: 

£ = {(C, Q) | C G L and Q is a directed complete pred­
icate on C satisfying some constraints }. 

7 



(A predicate P is called directed complete, if the limit of every monotone chain in P 
belongs to P.) Thus each element of L is a pair consisting of a domain which belongs to 
L and a predicate on this domain satisfying some constraints. We shall see the precise 
nature of the above mentioned constraints later on. 

Once such predicate epos are constructed, it natural to construct functions on them, 
which we shall call predicators (named after the similar predicators of Milne). As each 
element of L is a domain-predicate pair, it is reasonable to assume that a predicator 
will also be a pair consisting of a transformation on domains and a transformation on 
predicates. So let {T,w) be a predicator from L to £ , where T and w axe the domain and 
predicate transformations as in the previous section. Pictorially: 

If we can somehow show that (T, w) is continuous then we can take the least fixpoint of 
( 7 » : 

(C,Q) = (T,w)(C,Q), 

where domain C G L and Q is a predicate on C. This means: 

C = T(C), and 
Q = w{Q). 

But, as D is the least fixed point of T, this implies that C = -D, hence Q is actually a 
predicate on D. Thus Q is the required solution of the equation P = w(P). 

The question is:-how does one prove that (T,w) is continuous? Here is the crucial 
point: There exist an algorithm to generate sufficient goals to guarantee continuity of such 
predicators. All of these goals can be proved within a computer- in fact, most of them 
automatically. Thus, by employing this reduction algorithm, computer can reduce the goal 
proving continuity of a predicator - and hence, that of inclusive predicate existence - to the 
goals which it aan generally prove itself, and sometimes with some user assistance. This 
transfers the burden specific details of an existence proof to a computer. 

Let us see how we can go about proving continuity of (T, w). It will definitely depend 
upon the structure of w, but, what is more important, it will also depend upon the exact 
structure of £ . Remember that each element of L is of the form (C,Q), where C G L and 
Q is a predicate on C satisfying some constraints. The significance of these constraints 
can now be made clear: these constraints critically determine continuity of (T, w). These 
constraints are what we shall call upward and downward closure. For the convenience of 
future reference, we shall state a general definition: 

An n-ary relation Q on a domain C is said to be upward (downward) closed in the ith 
argument if ( x i , . . . . , x » , . . . , x n ) G Q and xt- C t/t- (j/j C x t ) implies 
{xu...,yii...,xn) G Q. 

In the unary case, as the one we are considering in this section, these constraints are 
not important, however, otherwise they are. For example, note that C is upward closed 
in the second argument and downward closed in the first, • is upward closed in the first 
argument and downward closed in the second, whereas = is neither upward closed nor 

8 



downward closed in any of the arguments. Remember that in section 5 we proved that 
if C in (1) is replaced by = or • the equation need not have a solution. The sensitivity 
in this example to syntax can be traced to the different upward and downward closure 
properties of C, = and It then is not surprising that continuity of predicators should 
depend on these properties too. 

Returning back to our unary case, we now have discussed the important factors which 
determine continuity of the predicator (T, w). In Section 11 we shall give a crucial reduction 
algorithm which will generate sufficient goals to guarantee continuity of (T, w). As we said 
before, it is crucial because the goals generated by it can be proved within the LCF 
formalism, and this is what makes the theory mechanizable. 

Remember that we said continuity of (T, w) depends on the structure of £. But the 
structure of £ in turn depends on that of L. Hence, one expects that some of these 
generated goals would depend upon L. In section 13 we shall see how L can actually be 
specified as the least fixed point of some easily constructible higher order functional. This 
makes it possible to prove the validity of such goals using fixpoint induction in LCF. 

In the succeeding sections we shall put this whole theory on a formal footing. 

8 . P r e d i c a t e C P O s 

Our discussion in the preceding section motivates us to define 'predicate cpo' as follows. 
Let L be a retract on V n , where V is the domain of finitary projections of the universal 

domain U, (thus an element of \L\ will be an n-tuple of finitary projections) and let 
Ay B C { 1 , . . . , n } be sets of indices. Let P be a directed complete n-ary predicate on -Lj,, 
the bottom domain of L, which is upward closed in the indices of A and downward closed 
in the indices of B. Then a predicate cpo, £ = (L,-A, Z?,P), on L is a set of elements 
(C,Q) satisfying. 

1. C is a domain such that C G L (i.e. C is in \L\\ the fixpoint set of L). 
2. Q is a directed complete predicate on C, i.e., Q C \C\. 
3. Q is upward closed in all of the indices of A and downward closed in all the indices 

ofJ5 . 

4. ± L ( Q ) = P a n d P C Q . 

Significance of the fourth condition will be made clear soon. We shall say that L is the 
underlying retract of £ . Often when A and B are empty sets, we shall write £ = (L, P ) 
instead of £ = (L, { } , { } , P ) . • 

We convert £ into a partial order as follows. We say (C, Q) C (J9, jR), where (C, Q) , (22, R) € 
£ , iff 

• l . C c A 
2. C{R) = Q and Q C R. 

Remember from our discussion in Section 6 that the first condition is equivalent to saying: 
the domain \C\ is a subdomain of the domain \D\. The second condition says that Q can 
be embedded into R. This second condition is equivalent to the following one: 

2'. C(R) C Q and Q C P , 

9 



because, if Q C R then 

Q = C{Q) a s Q C | C | , 
C C(R). 

Hence, if Q C R then C(R) C Q implies C(J?) = Q, and the converse is trivial. We shall 
use this alternate, simpler formulation of the second condition on many occasions. 

In the light of this partial ordering, the fourth condition in the definition of Z can be 
seen to be equivalent to: 

(JLl, P) Q (C, Q) for every (C, Q) G £ . 

As an example, suppose L looks as shown below*. 

± 
Then L = (L, A, 5 , P ) can be visualized as follows: 

• • • • 
(Df*i) (Cf5i) (D.Ha) (C.Sj). 

Note that if (C,Q) and (C,i2) € £ then 

(C, Q) C (C, J2) implies Q = R. 

10 



This is because 

R = C(R) a s f l C | C | , 
= Q as (C,Q) E (C,U). 

T h e o r e m 8 . 1 : £ = (L, A , B , P ) is a cpo. Further, (JLl ,P) is the least element of this 
cpo. 
Proof: Let 

x = {(Cj,Qj)\jeJ}} 

be a directed subset of £ , where J is a directed index set. Then Y = {Cy \ j G J} is an 
indexed directed set of \L\. Hence, Y has a least upper bound C € L. Let us define a 
predicate Q on C as: 

Q = {x G C | for all j G J. Cy(x) G Qy}. 

We claim that (C, Q) is the least upper bound of X in £ . 
First we have to show that (C, Q) G £. We shall show this later. For the moment 

assume that (C, Q) G £ . 
Let us show that (C,<2) is an upper bound of X, i.e., for all j G J , (Cy,Qy) E (C,Q). 

This entails showing three things. 
1. Cy E- C. This is obvious. 
2. Cy(Q) C Qy. This follows immediately from the definition of Q. 
3. Qy C Q. Let x G Qy be an arbitrary element. We have to show that i G Q, 

i.e., C,(x) G Qt, for all i G J. As J is directed, there exists k G J such that 
hj E &• Then (Cy,Qy) E (C'jb, Qjk)> and hence Qy C Qjj.. On the other hand 
(Ct-,Qf-) E (C*,Q*) implies d{Qk) C Q„ which, as Qy C Q*, implies C t(Qy) C Q{. 
As x G Qy, this means C t (x) G Q t . Thus we have shown that, for all i G J , 
C t (x) G Q t which means x G Q. 

Next we have to show that (C, Q) is the least upper bound of X. Let (D,R) be any 
other.upper bound of X. We have to show that (C, Q) E (^)-R)- Again we have to show 
three things. 

1. C E D. It is clear that D is an upper bound of Y. However, as C is the least 
upper bound of F , it follows that C E D. 

2. C{R) C Q. Let x G 12. Then 

C(x) = lu6{C y(x) I j G J}. 

But, for each j G J, as (Cy,Qy) E (^jP) j we conclude that Cy(x) G Qy. As 
Cy E C, we have Cy(C(x)) = Cy(x). Hence Cy(C(x)) G Qy for all j G J. From the 
definition of Q it follows that C(x) G Q. 

3. Q C J?. Let x G Q. As C is the fu& of {Cy | j G J } , we know that 

x = jufc{Cy(x) | y G J } . 

11 



From the definition of Q, for each j G J, Cy(x) G Qj. However, as [Cj,Qj) Q 
( £ ) , # ) , we know that Qj C R and hence C3 G 12. By directed completeness of R it 
now follows that 

x = /tx6{C ;(x) | j G J } G P . 

Now we let us show that (C, Q) G £ indeed. For this we have to verify four conditions. 
1. C G \L\. But we have already seen this. 
2. Q is directed complete. Let Z = {z t | t G / } , where / is a directed index set, be a 

directed subset of Q. Let 2 be the least upper bound of Z. We want to show that 
z G Q. For each j G J , by continuity of it follows that: 

Cj{z) = to&^-te) I % e l } . 

Now, as each Z { G <2, Cj(̂ t) S Qj for all j . By directed completeness of Qj it 
follows that Cj(z) G Qy. Thus, for all j , Cy(^) G Q .̂ Hence, by the definition of Q 
it follows that z e Q. 
This proves that Q is directed complete. 

3. Q is upward closed in the indices of A. Let i e A. Suppose 

x = (21,..., Xit..., x n ) G Q 

and x» C xt-. We want to show that x == ( x 1 } . . . , x t , . . . , x n ) G Q. For each j , let 

( x i , . . . , x ? , . . . , x{) = C y (x) and 
( x i , . . . , x f , . . . , x £ ) = C ; (x ) . 

Note that x/ and xf need no* be equal for / ^ i. As Cy(x) G <2y and Qj is upward 
closed in tlie ith index, we conclude that 

(«{,...,«f,...,xi)€Qy. 

As we have already shown that Qj C Q , 

(x[,...,x3

i,...,x}

n)eQ. 

Now by directed completeness of Q, 

2 = s i ( x i , . . . , X i , . . . , x n ) = Zit&{(x2,...,x?,...,x£) I j 6 J} e Q. 

Hence Q is indeed upward closed in the zth" index for every i € B. 
The case of downward closedness is similar. 

4. (±l,P) E (C,Q). But we have already shown that {C,,Qj) C (C,Q), for every 
j G J. However, as {C3-,Qj) e £,, we know that {±l,P) Q {Cj>Qj)- Hence by 
transitivity the result follows. 

Thus {C,Q)eC. 
Finally, it is trivial to see that (J.£,P) is the least element of £ . | 

12 



9. Predicators 

Once we have constructed predicate domains the next step is to construct functions 
on them, which we shall call predicators. Because every element of a predicate cpo is a 
pair consisting of a domain and a predicate on it, it is natural to assume that a predicator 
too will be a pair consisting of a transformation on domains and a transformation on 
predicates. 

Let £ t , (1 < i < A;), be predicate domains on retracts Li of V n», and let M be a 
predicate domain on a retract M of V n . We want to construct a predicator from L i x 

x £jk to M. This predicator will be a pair consisting of a domain transformation and 
a predicate transformation. Let ( d , R i ) G £ i , for i = 1 to fc, be k arguments. Then 
the first component of the predicator will be a continuous domain transformation, T G 
V n i x • • • x V n k -> V r n, which will map d G \ L { \ to a domain D = T { C U . . . , C n ) G \ M \ . 

The second map will be a predicate transformation which will map the predicates Ri on C, 
to some predicate S on D such that (D, S) G M. If we want our theory to be mechanizable, 
there must be a way representing this predicate transformation in a computer. We shall 
soon give a first order language which can be used to specify a predicate transformation. 

The basic idea is as follows. We shall construct a formula w with n free variables 
V i y . . . , v n . Each of these variables should be taken as ranging over the universal domain. 
U. Let (Xj,yj), 1 < i' < k, stand for a variable domain-predicate pair from L%, where 
the variable Y{ stands for a predicate on the domain X{ G L t . As the formula w is going 
to represent a predicate transformation, it will naturally depend on these k axguments 
[ X i , Y i ) G L i . The predicate S on the domain D = T ( C u . . . , C k ) G V n can then be 
defined as the set of all ( v i , . . . ,t; n) G \D\ which 'satisfy' w when Xi is 'interpreted' as d 
and Yi is 'interpreted' as 1^, for all (1 < i < k). 

We shall put this in formal terms now. 

9 . 1 . A Language For Predicate Transformation 
Let us fix for this section ( X i , Y i ) G £ t , (1 < i < fc), to be k domain-predicate variable 

pairs which will stand for the k arguments of a predicator; here Xi denotes an element in 
Li and Yi is to be interpreted as a predicate on Xi. We shall let (X, Y) stand for the tuple 
( ( X i , y i ) , . . . , (Afc, I*)) and X stand for the tuple ( X l y . . . ,-X*). 

The set of domain terms over X , written T = is defined to be the set of all 
lambda calculus terms t G V which are built from the domain variables X i 9 . . . y X k y and 
possibly some constant symbols. 

Examples: 

1. (Xi —> Int) G r . Here 7 x V 7 is a constant symbol which stands for 
the domain exponentiation function. Int : V is a constant symbol standing for the 
domain of integers. 

2. ( ( X i x X 2 ) + B o o l ) —• X i G r . Here x, + : V X V V and B o o l : V are constant 
symbols to be interpreted in the standard way. 

Intuitively a domain term in T will represent some domain in V when its free domain 
variables X i , . . . ,Xjt and constant symbols are appropriately interpreted. 

13 



0 = Q(X, Y) is the set of domain-predicate pairs as below: 

0 = { (Xi,Yj) | 1 <i < k} U 
{(£>, Q),(D, =),(D, ?)\DET}U 
{ (2?, Q) | Q is a predicate constant and E is a 
domain constant }. 

Intuitively if [D,P) G 9 then P will be a predicate on the domain D after an appropriate 
interpretation. 

Let A = A(X) be the set of all terms t such that t is a tuple over the universal domain 
(i.e. t E Ul for some I) and is built from constant symbols, X i , . . . , X^, and some free 
variables which we shall assume to range over U. (Note that the occurrence of X t s in t is 
possible because of the duality between domains and finitary projections. Remember that 
Xi G Vni. Hence, as V C U —» J7, Xi can also be regarded as a function on the universal 
domain.) 

Examples: 
1. [proj"1 (Xi)x) G A. Here proj?1 is a constant symbol which stands for the projec­

tion function which extracts the first component of an ni-tuple. Hence proj^1 (Xi) G 
V'. The term contains a free variable x which (by the convention established in 
the definition of A) is implicitly assumed to range over C7, i.e. x G U. Hence 
[pro3T{Xl)x)eU .• 

2. (j^x)y G A, where the constant symbol j_> : U —> (U —• U) stands for the pro­
jection of U onto its function space, and where the free variables x,y range over 
U. 

3. Let rii = 2. Then (Xi(x,j/)) G A. Hence Xi G V 2 . As the free variables x,y G (7, 
it follows that (Xx (x, y)) eU2. 

Finally, $ = $ ( X , F ) , the set of well formed formulae (wffs), is recursively defined as 
follows: 

1. ut G P in D" G $ , 
where « G A and (D, P ) G 0 . 

2. "Vy G £ . g\ "3yeD. g" G 
where y is a variable ranging over U, D eT and G $ . 

3. V A ^ Z / V ^ V ^ S ^ * , _ 
where / , g 6 $ . 

The notions of a free and a bound variable occurrences are as usual. As syntactic sugar, 
we define "Vx G Y{. g" as a shortform for "Vx G X4. (x G Yi) ff" and "3x G Y{. g" 
as ac shortform for "3x G -Xi. (x G Yi) A gf". Similarly "t G y;" will be a shortform for 
"t G Yi in X t ". Apart from these we shall also allow the use of infix notation and obvious 
shortforms such as "V(xi , . . . , x n i ) G X±...." and so on. 

Examples: 
1. Let A: = 1 and ni = 2, i.e., we have only one domain-predicate variable pair 

(X, 7 ) = (Xi ,Fi ) , where X G V2 and the variable Y stands for a predicate on X. 

14 



Then w G $ ( X , Y), where 

w = "Vx G proj2{X). (X(x, J_) G • A (x, x) G X". 

The wff w has one free variable ranging over (7, namely z\ one constant predicate 
symbol C which stands for the obvious predicate over C/2, and one more constant 
symbol proj2 : V2 —> V. It has one bound variable x G C7. For the sake of simplicity, 
using infix notation, we shall write w> simply as 

"Vx G proj2(X). X ( x , z ) • 1 A (x, x) G X". 

2. Let k = 2, rix = 2 and ri2 = 1. We now have two domain-predicate variable pairs 
( X 1 } Ki) and (X 2 , V 2), where X x G and X 2 G V. Then w G $ ( X , 7), where 

w = "3(t/,*) G Yi. X2((j^v)*) C x A 
Vti G (proy^XO). (w,tx) G Ki". 

9.2. Interpretation Of The Language 
We define in this section how the language given in the last section can be interpreted. 

We shall denote this interpretation by 5 . We shall use the same symbol 5 to denote the 
interpretation of the various syntactic classes of. the language. 
Interpretation of domain terms in r (X); 

Assume that 
1. S assigns to each X t a domain X f G V"*, 
2. S assigns to each constant C that occurs in T an element of the appropriate 

type. 

Then this uniquely determines 9? on T, i.e., each domain term D G V can be uniquely 
assigned a domain G V, assuming that lambda calculus terms are interpreted in the 
standard way. 
Interpretation of predicate-variable pairs in @(X, Y): 

If [D,P) G @ then 3 assigns to the predicate symbol P a predicate on the domain Z?a 

as follows. 

1. (Z?,P) = (Xt-, Y;),( 1 < * < jfe): Then 9 assigns to Y{ some predicate on X ? . 
2. P is C: Then C is assigned the standard partial order predicate C on the domain 

D*. The cases when P is = or • axe similar. 
3. P is a constant predicate symbol: Then P is assigned some, given predicate on 

the constant domain D 9 . 
Interpretation of the simple terms in A = A ( X ) : 

Assume that 9? assigns to every constant symbol c occurring in A terms an element 
of an appropriate type. (If c also occurs in T terms then, of course, both the interpretations 
must coincide.) Let s be an assignment function from a set of variables ranging over U 
into U. As the interpretation of the X{, (1 < i < A;), have already been specified, it follows 

15 



that every t : Ul of A can be uniquely assigned an interpretation t*[s] G Ul relative to s, 
assuming that lambda calculus terms are interpreted in the standard way. 
Interpretations of the wffs in $ = $ ( X , Y): 

Now we can inductively define what it means for 9? to satisfy a w G $ with s, 3 \= w[s]. 

1. 3 f= (t G P in £>)[«] iff £>*(**[*]) € P* . 
(Note that the domain is playing the role of a finitary projection here.) 

2 . 3 |= (Vy G JD.<7)[s] iff Va G D 9 , Of |= g[s(a/y)], 
where s(a/y) is an assignment function exactly like 5 except that s(a/y)(y) = a. 

3 / 3 |= (3y G D.g)[s] iff 3a G D * , 3 |= ?[s(a/y)]. 
4. 3 f= ( / =t> g)[s] iff 3 [= /[«] implies 3 (= 
5. 3 f= ( / V g)[s] iff 3 \= f[s] or 3 |= g[s]. 
6. 3 |= ( / A g)[s] iff 3 |= /[*] and 3 f= 

For future convenience we shall establish some notation. Let it; be a wff in $ and t be 
a term in A whose free variables ranging over U are contained in the list v 1 } . . . ,t; n . Let a 
be a tuple in Un and let sa be an assignment function such that sa(vj) == ay, where ay is 
the j th component of the tuple a. Then we shall say 

3 f=ty [a ] iff 3 f= w[sa] and 
3 f = * [ a ] iff 3 f = t [ a J . 

As the interpretation intended for constant symbols and constant predicate symbols should 
be clear from the context, often we shall not mention it. In fact, if 3 is an interpretation 
which assigns Di to X, , Pt- to Yi and the interpretation intended for constant symbols and 
constant predicate symbols is standard then we shall simply write {D,P) f= w[s]9 where 
(£>,P) denotes the tuple ((£>!, P x ) , . . . , (Dk,Pk)), instead of 3 |= w[s]. 

1 0 . Predicator Specif ication 
Now we are in a position to specify a predicator precisely. 
Let £ t , (1 < i < A;), be a predicate domain on a retract Li of Vni

9 and let M be a 
predicate domain on a retract M of Vn. Let T G Vni x • • • x Vnk —• Vn be a domain trans­
formation such that if C t G Li9 (1 < t <fc) , then T(Cl9...,Ck) G M. Let $ = $ ( X , y ) be 
the set of wffs, where (X\ Y) stands for the tuple {(Xu Y i ) , . . . , [Xk\Yk)) and (X,-, i;-} G jCt. 
Let t/; 6 $ be a wff whose free variables over the universal domain U are contained in 
the list v i , . . . , v n . Then a predicator (T,w) is a map from jCi x • • • x t k to .M defined as 
follows: for all (C t-,Q t) G A , letting (C,Q) denote the tuple ((Cl9 Q i ) , . . . , [Cky Qk))} and 
C denote the tuple (Ci, • • •, Ck), 

(T,w)(C,Q) = ( T ( C ) , { a € D | (C,Q) h « [ o ] } ) . 

Obviously for the predicator (T9w) to be well defined it must be the case that (D,R) = 
( 7 > ) ( C , Q ) G At, for all (G,Qi) G (1 < % < k). 

We shall present several simple examples of predicators below. These examples are 
derived from the relational functors of Reynolds. (See [Reynolds].) 

16 



1 0 . . 1 . (—>, arrow) predicator 

Let —>G V x V —• V be the domain exponentiation function. One naturally associates 
with this function a predicator as follows. Let L, M, N be retracts of V such that, for all 
C E L and D G Af, (C —» JD) G iV. Let us define predicate epos: 

£ = (M-L», 
M = ( M , { 1 » , 

= (iv,U». 
Let arrow G $( (C, P ) , (L>, Q)), where (C,P) G £ and (£>.Q) G At, be a wff defined as 
follows: 

arrow(x) = "W G P. x • u G Q", 

where the application functon • : U X U 17 is defined as: 

x • tx = (y_x)tx for all x, u G {/. 

Then (—>,arroic;) is a predicator from £ x M to M. 
One can similarly construct predicators (+,plus) , (x,product) and ( © , / i / i ) corre­

sponding to the functions + , x G V r x V r — • V and © G V —• V . 

1 0 . . 2 . (Cont,.coni) predicator 

For some fixed domain O G V , let Con£ G V —• V be a continuation function defined 
by: for all C G V, 

C<mt(C) = (C -> O) -> O. 

(This construction is used in giving a semantics to programming languages through con­
tinuations. See [Reynolds].) Let L and M be retracts on V such that whenever C G L, 
(C -> O) O G M. Let £ and At be predicate epos defined by: 

t = (L, { ! . } ) , and 
A f = ( M , { ± » . 

Let a wff cont G $ ( C , P ) , where (C, P ) G £ , be defined as follows: 

cont(x) = tt3u G P. x = i - (A(v : C 0 ) .v • u) in ((C -> O) -> O) '^ 

where A(v : C —> O). t; • u stands for \(v : U). ((C —+ 0 ) v ) • (u), and the application 
function • is as before. Then (Cont, cont) is a predicator from £ to £ . 

11. Reduct ion Algor i thm 

Once we have constructed a predicator we ask if it is continuous. In this section we shall 
give a reduction algorithm which generates sufficient goals to guarantee this continuity. 

The following theorem reduces the question of continuity to that of monotonicity. 

17 



T h e o r e m 1 1 . 1 : If a predicator (T, w) from jCi x • • • x Lk to M is monotonia it is contin­
uous. 
Proof: For simplicity, we shall consider the case of one argument only, the general case 
being similar. Hence, let {T,w) be a monotonic predicator from £ to M. Remember 
that by the definition of predicator T is a continuous domain transformation. Let X = 
{(Ct,Pt) | i G 1} be a directed set in £ , where J is a directed index set. As {T9w) is 
monotonic the set Y = {(T,ty)(Ci,P t ) | i G / } is directed in M. We want to show that 

(T,w){lub(X)) =lub{Y). 

Let (C,P) = lub{X). Then C = lub{d | i G / } . Hence {T,w){lub(X)) = (T(C),iE), 
for some predicate R on T{C). Similarly, as each (T,u;)(Ci,P») = (T(Cj) ,Qi) for some 
predicate on T(Ci ) , it follows that: 

lub(Y) = iti6{(T, ii;)(Ci, P t) | i € / } , 
= / t i 6 { ( r ( c t - ) , g o i « e / } . , 
= ( /u6{r(C t ) | i e / } , Q) for some Q on /tx6{T(C t) | i G / } , 
= (T(C), Q) by continuity of T. 

As each (C t , P t ) C /ti6(X) it is cleax that 

/ u 6 ( y ) C (r,u»)(/ti6(X)), 

which means 

(T(C),Q)=lub(Y)C(T,w)(lub(X)) = (T(C),R). 

From this it follows that: 
R = T(C)(i?) as R C |T(C)| , 

= Q a s ( r ( C ) , Q ) C ( T ( C ) , / ? ) . . 

Hence, 
*ti6(y) = ( r ( C ) , Q ) = (T(C) , i i ! ) = (r,in)(«u6(J0). 

I 
Once the issue of continuity of predicators is reduced to that of monotonicity, it be­

comes desirable to see if there is a general way of proving monotonicity of predicators. 
Below we shall give a crucial algorithm which generates sufficient goals to guarantee 
monotonicity of a predicator. The algorithm is crucial because the goals generated by 
the algorithm can be proved within the LCF formalism, thereby making mechanization of 
the theory possible. 

Let (1 < i < be a predicate domain on a retract L{ of Vni and let M be a 
predicate domain on a retract Af of Vn. Let {T,w) be a predicator from Li x • • • x £k to 
M specified as follows. 

T G Vni x • • • x Vnk —• Vn, 
we$(X}Y), 

18 



where (X, Y) stands for a tuple ((X%, Y i ) , . . . , (Xk, V*)) and each (Xi, Yi) G A". 
We want to prove that (T, w) is monotonic. Let (C, P), (C, P) G Z\ x • • • x where 

both (C,P) and ( C , P ) are Jfc-tuples, be such that (C.P) Q (C,P). We want to show that 

(T,w)(C,P)n(T,w)(C,P), 

i.e., 

- (T(C),{a e T(C) | (C,P) \= w{a}}) C (T(<5),{a € T(C) | ( C , P ) |= «[«]}). 

This amounts to showing three things: 
1. T(C) C T(C). 
2. For all a G T(C), (C ,P) j= tu[a] implies ( C , P ) (= w[a]. 
3. For all a G T(C), ( C , P ) |= w[a] implies (C,P) [= w[r(C)(a)]. 

The first condition trivially follows from monotonicity of T. To prove the second condition 
we generate a goal 

"(C, P ) (= w[a] -implies (C, P ) f= w[a] w 

and reduce it to simpler goals using the following algorithm Reducel. To economize on 
notation in the following discussion, we shall assume that in the above goal a is implicitly 
universally quantified over T(C). (Of course, it is possible to say cVa G T(C)' explicitly in* 
the goal.) To prove the third condition we generate a goal 

- "(C,P) |= w[a] implies (C ,P) f= w[T{C){a))n 

and reduce it to simpler goals using the following algorithm Reduce2. Again we shall 
assume that in the above goal a is implicitly universally quantified over T(C). 

Reducel and Reduce2 are mutually recursive. 
Reducel reduces a goal of the form 

(C,P) (= w[z] implies ( C , P ) f= with z C y as induction hypothesis. 

Reduce2 reduces a goal of the form 

( C , P ) f= w[v] implies (C ,P) \= w[u]9 with u C v as induction hypothesis. 

One can easily see that initially the induction hypotheses of both Reducel and Reduce2 
are satisfied. The induction hypothesis of Reduce2 is satisfied because a G T(C) and 
T(C) C T(C) implies T(C)a C T(C)a = a. The check in the case of Reducel is trivial. 

We shall describe Reducel and Reduce2 now. Let 9? be the interpretation which assigns 
the domain vector C to X and the predicate vector F to F . And similarly Let S be the 
interpretation which assigns the domain vector C to X and the predicate vector P to K. 
Interpretation of constant symbols is supposed to be standard. 

19 



11.1. Reducel 
The input goal of Reducel is 

(C ,P) |= w[z] implies ( C , P ) \= w[y], 

i.e., 
Of (= w[z] implies 9 |= w[y], 

where z C y. We shall achieve reduction through structural induction. We have to consider 
several cases. 

1. w is ut 6 P in £>". Now the goal can be written as: 

D*(t*{z]) € P * implies £> 5 (^[ t / ] ) € P S . 

Assume £>9(i9[z]) e P 9 . Then, as ( £ > 9 , P 9 ) C ( £> 5 ,P*) , we conclude that 
(**[*]) S P 5 . Now, as C C C and a C y, we know 

D*(t*[z])QD*(tS[y)). 

Suppose we know, in addition, that P 3 is upward closed in the indices of some set 
G. Let 

( r 1 , . . . , r , ) = D 3 (t 9 W), and 
( * , . . . , ? / ) = Z>*(i*[y]). 

Then, as ( r i , . . . , r/) G P^, it follows from upward closedness that to prove 

( f 1 ) . . . , r - 1 ) = D ¥ [ t , ] ) G P 5 

it suffices to show that 

rj = fj for all j £G. 

Hence, for each j # G we generate a goal: 

(I>*(t*M)y) = pV[v])y). 
It is illuminating to consider the following special cases. 

(a) The predicate symbol P is C. In this case w can be written more simply as 
Hi C t2 in D". As • is upward closed in the second argument,*!^ what we 
have seen above, it suffices to produce the following single goal. 

D»«? [z] = D*t*\y], 

(b) The predicate symbol P is In this case w can be written more simply as 
Hi • t2 in Dn. As • is upward closed in the first argument, it suffices to 
produce the following single goal. 

D*$[z) = D*lZ[y]. 

20 



(c) The predicate symbol P is In this case w can be written more simply as 
Hi = £2 hi D". As = is upward closed in neither of the arguments, we have 
to produce two subgoals in this case: 

D*t*[z] = Dhf[y], 
D*t*[z] = D$t*[y}. 

2. w is "Vu G D.gn. The goal can now be written as: 

(Va G £>*.9 \= g[a,z]) implies (Va G f= ?[a,y]). 

But for all o G j D 3 we know D*(a) G D \ Hence it suffices to generate the goal: 

9 |= g[D*(a),z] implies 9 |= g[a,y], 

where a is assumed to be universally quantified over D*. (An alert reader will 
notice that a weakening has resulted during this reduction: although this goal is 
sufficient it is not necessary. This will be the case for the following cases too.) This 
goal can now be reduced further by recursively calling Reducel. Note that a G 
and CI implies D®(a) C a. Hence, as z C y, we conclude (£ ) 9 (a ) , z ) C (a,y), 
which means the induction hypothesis of Reducel is indeed satisfied. 

3. w is u3u G D.g". The goal can now be written as: 

(3a G Z?*.9 f= g[a9z]) implies (3a G (= ff[a,y]). 

But, as C we know that a G implies a G D®. Hence it suffices to 
generate the goal: 

3 f= g[a, z] implies 9 f= g[a,y], 

where a is assumed to be quantified over D®. This goal can now be reduced further 
by recursively calling Reducel. Note that the induction hypothesis of Reducel is 
trivially satisfied. 

4. w is "h => j " . In this case the goal can be written as: 

( 9 |= h[z] implies 9 (= g[z]) implies 
( 9 |= h[y] implies 9 (= g[y]). 

But to prove this it obviously suffices to produce the following subgoals: 

9 (= h[y] implies 9 f= h[z], and 
9 |= g[z] implies 9 f= g[y]. 

The first goal can be simplified further by Reduce2 and the second one by Reducel. 
As z C y, the induction hypothesis of both Reducel and Reduce2 axe quite trivially 
satisfied. 

21 



5. w is "/i A g". In this case the goal can be written as: 

( 3 |= h[z] and 9 f= g[z]) implies 
( 9 H % ] and 9 |=flf[y]). 

But to prove this it obviously suffices to produce the following subgoals: 

Of |= h[z] implies 9? (= h[y], and 
3 [= g[z] implies 9 (= g[y). 

Both of these goals can be simplified further by Reducel. 
6. w is uh V g". In this case the goal can be written as: 

" ( 3 |= or 3 [= g[z\) implies 
( & > % ] < » 5 H f f M ) -

But to prove this it obviously suffices to produce the following subgoals: 

3 (= h[z) implies 3 f= h[y]} and 
3 [= g[z] implies 3 (= g[y]. 

Both of these goals can be simplified further by Reducel. 

1 1 . 2 . R e d u c e 2 

The input goal of Reducel is 

( C , P ) (= w[v] implies (C,P) \= w[v]9 

i.e., 
3 f= w[v] implies 3 [= w[u]9. 

where u C v. Again we shall achieve reduction through structural induction. We have to 
consider several cases. 

1. tc; is "t G P in D". Now the goal can be written as: 

Assume [v]) G P a . Then, as (£>*,P*) C ( D * , P * ) , we conclude that 
2?*(t*[t;]) = D? o D*{t*[v]) G P* . Now, as C C C and u C v, we know 

D*{t*[u}) C JD*(t*[ti]). 

Suppose we know, in addition, that P 9 is downward closed in the indices of some 
set H . Let _ _ 

(ru...,rl)=D*(t*[u))> and 

( * , . . . , * ) = £>*(«*[«]). 

22 



Then, as ( r l 5 . . . ,Fj) G P 3 , it follows from downward closedness that to prove 

(r1,...,rl)=D*(t*{u])eP* 

it suffices to show that 

rj = fj for all j & H. 

Hence, for each j H we generate a goal: 

Once again it is illuminating to consider the following special cases. 
(a) The predicate symbol P is C. In this case w can be written as % C t2 in D". 

As C is downward closed in the first argument, it suffices to produce the 
following single goal. 

D*t*[u] = D*t$[v}. 

(b) The predicate symbol P is In this case w can be written as uti • £2 hi 
As • is downward closed in the second argument, it suffices to produce the 
following single goal. 

D*t*[u] = D*$[v]. 

(c) The predicate symbol P is = . In this case w can be written more simply as 
"ti = £2 hi -D*. As = is downward closed in neither of the arguments, we 
have to produce two subgoals in this case: 

D*t?[u] = D*tf[v], 

2. w is "W G -D.gr". The goal can now be written as: 

(Va G f= g[a,v]) implies (Va G I ? 9 . 3 |= g[a,u]). 

But a G implies a G D 9 . Hence, it suffices to generate the goal: 

9? \= g[a,v] implies 3 f= y[a,tx], 

where a is assumed to be quantified over D 9 . This goal can now be reduced further 
by recursively calling Reduce2. Note that the induction hypothesis is trivially 
satisfied. 

. 3 . w is u3z G D.g". The goal can now be written as: 

(3a G Z?*.3 (= g[a,v]) implies (3a G f= g[a}u]). 

But, as a G £> 9 implies D^(a) G D 9 , it suffices to generate the goal: 

3 f=.0[o,t;] implies Of f= g[D*(a)>u], 

23 

http://-D.gr


where a is assumed to be quantified over D®. This goal can now be reduced 
further by recursively calling Reduce2. As implies D^(a) C a, one sees that 
the induction hypothesis of Reduce2 is indeed satisfied. 

4. w is "h g". In this case the goal can be written as: 

( 9 f= h[v] implies 9 (= g[v]) implies 
( 9 |= h[u] imphes 9 |= g[u]). 

But to prove this it obviously suffices to produce the following subgoals: 

9 (= h[u] implies 3 |= and 
9 f= g[v] implies. 3 |= g[u]. 

The first goal can be simplified further by Reducel and the second one by Reduce2. 
As. u C v, the induction hypotheses of both Reducel and Reduce2 are quite trivially 
satisfied. 

5. w is uh A g". In this case the goal can be written as: 

(2? |= h[v] cind 9 f= g[v]) implies 
( 9 |= h[u] and 3 f= g[u}). 

But to prove this it obviously suffices to produce the following subgoals: 

9 |= h[v] implies 9 (= h[u]9 and 
9 j= g[v] implies 9 |= g[u]. 

Both of these goals can be simplified further by Reduce2. 

6. w is "h V g". In this case the goal can be written as: 

( 9 [z= k[v] or 9 |= g[v\) imphes 
( 9 [ = % ] o r 9 [ = g [ t i ] ) . ' 

But to prove this it obviously suffices to produce the following subgoals: 

9 \= h[v] imphes 9 f= h[u]9 and 
9 |= g[v] implies 9 f= g[u]. 

Both of these goals can be simplified further by Reduce2. 

1 2 . E x a m p l e s 

Let us prove continuity of some predicators using the reduction algorithm of the last 
section. 

24 



1 2 . 1 . (^,arrow)predicator 

Let (—*,arrow) be the predicator from L x M to M of 10..1, where £ , M, M are 
predicate epos on retracts L, M, and N of F respectively. For this predicator, the reduction 
algorithm generates the following goals. Here, unlike in the discussion of the reduction 
algorithm where we did not carry with a goal its assumption list, we shall explicitly mention 
within a goal all the assumptions. The goals are: 
V C , C eL and D,D'eM, 
C C C and D C D! implies 

1. Vx e [C -* D) and it' e C , x • u' = x • (C(u')), 

2. Vx' € ( C -> D') and u € C. C(x' •«) = ((C D)x') •«, 

where the application function • : U x U —+ U as usual stands for Ay, z. (j^y)z. It is 
possible to prove validity of both of these goals from the definition of —•: V xV —> V and 
the properties of the relevant functions on the universal domain. 

This proves continuity of ( — a r r o w ) . Now we can rightfully say 

{->,arrow) € ( £ x M) -+ U. 

1 2 . 2 . (Cont)Cont) p r e d i c a t o r 

Let (Cont,cont) be the predicator from £ to £ of 10..2, where t is predicate cpo on a 
retract L of V. For this predicator, the reduction algorithm generates the following goals. 
WC,C'eL. • 
CQC implies 

1. Vx e (C -¥ O) O and u e C~ 
(a) t'_.(Au : (C -* 0).v • u) = i^(Xv : ( C - • 0 ) .u • u), 
(b) x = x, 

2. Vx' e{C ^0)->0 and «' € C". 

(a) i_.(Av : (C 0) .u • (CV)) = ((<? -> O) 0 ) ( C ( A « : ( C 0) .u •«')) . 
(b) ((C -> O) - 0)(x') = ((C O) - 0 ) (x ' ) , 

where the application function • : U x U —» U as usual stands for Ay, 2. (j^y)z. Again it 
is possible to prove validity of these goals using the definition of — k V x V —> V and the 
properties of relevant functions on the universal domain. 

This proves continuity of (Cont,cont). Hence, (Cont,cont) 

1 2 . 3 . C o n t i n u a t i o n O f A n E a r l i e r E x a m p l e 

The predicators considered so far do not illustrate the use of upward closure and 
downward closure properties. This we shall remedy in the next example. 

Let us complete the semantic equivalence proof of Section 4 by showing that (1) has 
a solution. For later convenience we shall change the notation a bit. We shall now denote 

25 



the domain of values by D and the domain of environments by C. Then we have the 
domain equations: 

D = C ->B, 
C = Ide-> D. 

The domain of syntactic expessions will now be denoted by E> and the domain of syntactic 
environments by F; F — Ide —> E. 

We want to show that there exist 0 C D x E and ficCxF such that 

0 = {{d,e)\(cJ)eU.dcQO{e)f}i ( . 
n = {(c, / ) | VJ G Ide. (c / , / / } 6 0 } . W 

We shall proceed to prove this existence. 
As the fixpoint set of the identity retract of V2 is V2 again, we shall denote, with 

some abuse of notation, the identity retract by V2 again. Let £ be the following predicate 
domain on V2: 

£ = (V2,{2},{1),M). 
Note that now we are only considering the predicates which are upward closed in the 
second argument and downward closed in the first. The significance of this should be clear 
soon. 

Now from equation 3 we construct, by an almost verbatim translation, the predicators 
(T,w) and (S,g) from £ to £ as follows. The domain transformations T, S G V2 —* V2 

are given by: 
T(C,F) = {C->B,B), 
S{D, E) = (Ide -> D, Ide -+ E). 

The wff w G II), where (X, II) G £ (it might help to read (C, F) in place of X), is a 
predicate transformation corresponding to the first equation of 3, and is defined as: 

w{d,e) = V ( c , / ) G n . d. c C 0{e)f in 5 , 

where • is the usual application function and 0 : U —• U —> U is strictly speaking the 
unique extension of the operational semantics given in Section 3 to the universal domain. 

The wff g G $ ( £ , 0 ) , where G L (again-it might help to read {D,E) in place of 
Z)y is a predicate transformation corresponding to the second equation of 3, and is given 
by: ^ 

g{c,f) = V / G Ide. (c • / , / • / ) G 0 . 

Of course, we have to show first that [T>w) and (S,g) are well defined. To show that 
(T, w) is well defined we have to show that for all (X,II) G £ , (T,tu)(X,II) G £. This 
amounts to showing that the predicate transformation w preserves directed completeness, 
upward closedness in the second argument and downward closedness in the first. However, 
all of these checks are trivial. 

Now, assume for the moment that (T, w) and (5, g) are continuous, i.e., assume 

( T , ™ ) , ( S , g ) G 

26 



Then there exist the least ((£>*,F*), 0*) and ((C*,F*),Il*) € L such that 

((F>*,F*),0*) = (T,w)((C\F*),W), 
((C*,F*),I1*) = (S,g)((D*,E*),e*). 

It is clear that (Z?*,F*) and (C*,F*) are the least elements in V2 such that 

(D', F*) = T(C*,F") = (C* —> B,E), and 
(C*,F*) = S(£>*,F*) = (Ide -> D*,Ide -> F*). 

But we know that (D, F ) and (C, F ) also constitute the least solution of the above equa­
tions, hence 

D = £>*, C = C*, E — F*, F = F*. 

Thus 0* C D x F and II* C C x F . Now from the definitions of (T,w) and {S,g) it follows 
that 0* and II* indeed satisfy 3. 

It remains to prove our major assumption, namely that (T, w) and (S, g) are continuous. 
The reduction algorithm produces the following goals to guarantee continuity of (T,io). 
(We have transformed the goals into equivalent but more readable ones, carried out minor 
simplifications and have omitted trivial tautologies.) 
V(C,F) and (C',F') eV2. 
(C,F) C (C'.F'j implies 

1. V(d,e) € (C -* B) x F and (c' , / ') eC'x F \ 
B(<f-c') = B(d- (Cc' ) ) , 

2. V(cf, e') G ( C -> B) x i and (c, / ) € C X F. 
S ( 0 ( e ' ) / ) = B ( 0 ( F e ' ) / ) . 

V(£>,£) and (£>',F') <=F 2 . . 
( D , F ) C (£>',F') implies 

3. V(c, / ) G (/de -» £>) x (/cfc -> F) and J' G /cfe. 
£>'(c-/') = J D ( c - ( / d € / ' ) ) , 

4. V(c', / ' ) e {Ide -> D') x (Ide -> F') and J € 7<fe. 
F ( / ' • / ) = E((Ide -> F ) / ' • J). 

All of these goals can be shown to be valid for any 0. This proves continuity of (T,w) 
and (5 , g), thus finishing the existence proof. 

It is tempting to see what happens if we replace C in 3 by = . Then, as = is neither 
upward closed nor downward closed in any of the arguments, we have to let 

£ = ( F 2 , { ± } ) = ( F 2 , { } , { } , { X } ) . 

(T, w) and (5 , g) are exactly as before except that in the definition of w one has to replace C 
by = . Now to guarantee continuity of (T, w) and (S, g), the reduction algorithm produces 
the following extra goals in addition to the four goals we saw above. 
V(C,F) and (C',F') eV2. 
(C,F) C (C",F') implies 

27 



5. V(d,c) G (C -+ B) x E and ( c \ / ' ) 6 (C\F'). 
B(0(e)f') = B(0(e)(Ff% 

6. V(d', e1) G ( C ->B)xE and (c, / ) G (C, F ) . 
B ( c f . c ) = B ( ( C - > £ ) c f ' . c ) . 

V(£> ,£ ) and (Z?', 2£') G V 2 . 
(£>,£) C (£>',£') implies 

7. V(c, / ) G (Ide ->D)x (Ide -+ £ ) and 7' G Ide. 
S ' ( / . / ' ) = ^ ( / - ( / d e ( / ' ) ) ) , 

8.*V(c',/') G ( / & -+ £>') x (Ide — £') and I G Zefe. 
D(c'. • I) = D(((Ide -+ D)c') • J). 

The goals 6,7,8 can again be proved to be valid. However, the goal 5 is no longer valid for 
all 0. Has our reduction algorithm produced an unnecessary goal? No! We have already 
shown in 5, through diagonalization, that 3 need not have solution for all 0 s . Hence, 
though the goals produced by our reduction algorithm are sufficient but by no means 
necessary, they seem to be necessary in some weak sense. 

If we replace C in 3 by • the reduction algorithm generates the goals 5. to 8. and 
hence the same reasoning goes through and we conclude that, in this case too, there is no 
solution in general. 

13. Prpjectable Retrac t s A n d Construct ib le Funct ions 

The predicators constructed so fax do not exhaust the whole possible spectrum still, 
because validity of the goals generated for all these predicators could be proved without 
using properties of the underlying retracts of the predicate epos. It is too optimistic to 
hope that this will always be the case. In an example treated Section 15, we shall see 
that validity of the goals generated by the reduction algorithm depends very critically on 
how the underlying retract is chosen. In this section we shall prepare ourselves for that 
eventuality. 

We shall provide in this section continuous constructs which can be used in building 
underlying retracts of predicate epos. Continuity implies that we shall be able to build 
these retracts as the least fixed points, and - what is more important - we shall be able to 
use fixpoint induction to.prove the gbals generated by the reduction algorithm, if the need 
arises. This advantage can not be underestimated because this is what makes proving in 
LCF all the goals generated by the reduction algorithm feasible, as LCF can reason only 
about epos and continuous functions. With this in mind, we now proceed with the theory 
of these constructors. 

Let L and M be retracts of V. Let —• (|L|, \M\) be the image of \L\ and \M\ under 
the function — k V x V —• V, i.e. 

-> |M|) = {C - D | C G \L\ and D G 

(Note that this set is different from \L\ [Mj, which is the set of continuous functions 
from | i | to \M|.) We ask if there exists a retract AL> of V such that \NJ{ = -* (|L|, |M|) . 

28 



Of course, the same question could be asked as regards to |Af |), and x ( | L | , | M | ) . 
The following theorem asserts this in positive. 

T h e o r e m 13.1: There exist 

+ - \ x " 1 G V ->V x V 

such that if 
N - + = -> o < L, M > o 
N+ = + o < L , M > o + - 1 , 
jVx = x o < L, M > ox"" 1, 

then 
= - > { \ L \ , \ M \ ) t 

\ N + \ = 

\NX\ = x ( | Z | , | M | ) . 

Proof: Omitted, (see [Mulmuley3]) b 

We shall call — a n d x - 1 right inverses of —+,+, and x respectively. 
More generally, given T € V" 1 x • • • x V n * —> V n , we say T _ 1 € V n -+ V n i x • • • X V n > 

is a right inverse of T if for any retracts L,-, ( l < i < k), of V n < , 
1. N T = To < L i t . . . , L k > o r - 1 is a retract of V™1 x • • • x Vn" and 
2. |JVr| = r ( | £ 1 | , . . . , | i * | ) . 

In this case we can define 

f = X ( L u . . . , L k ) . T o < L u . . . , L k > o T - \ 

At. 

and then T can be thought of as a continuous constructor on underlying retracts of pred­
icate epos. 

It is obvious that Identity and constant functions in V —> V have right inverses too: 

Identity'1 = Identity, 
(Ax.6)- 1 = (Xx.±). 

What is missing so far in the discussion is the projection function proj" € Vn V, 
(1 < i < n): 

projj1 = A ( x ! , . . . , x n ) . x t ) . 

The first guess for its right inverse would be: 

[projpy1 = A x i ; . ( i _ , J L ) . 

Unfortunately, as it stands, proj? need not have right inverse. In fact, it can be shown 
that there exists a retract L of V2 such that proj2(\L\) is not even a cpo, and hence it can 
not be a fixpoint set of any retract. This means we need to carry the construction of the 
underlying retracts of predicate epos in a restricted subdomain if we want to avail of the 
constructor corresponding to the projection operation. 

A retract L of Vn is called projectable if for every 1 < % < n: 

29 



1. N{ = proj? o L o (proj-1) 1 is a retract of V, and 
2. |AT| = p r o t f 

The set of projectable retracts of Vn is a cpo, which we shall call Pr(Vn). Trivially Pr(V) 
is a cpo of all retracts of V. It is obvious that (pro]")"1 is a right inverse of pro]™ in 
the space of projectable retracts P r ( V n ) , because that is how we defined the notion of 
projectable retracts. Hence, we shall carry out the construction of underlying retracts of 
predicate epos in the space of projectable retracts. 

To summarize: now we. have basic constructors -^9x,+9proj? ,1 ,C on projectable 
retracts, where J is the identity function on V and C is a constant function on V. What 
we need now is a way of constructing complex constructors. 

Call T G Vn"x X • • • x Vnk —• V* constructible if it can be constructed from -> 
, x , C , o , < , >, where I is the identity.function on V, C is a constant function, 
on K, o is function composition and ( , ) is the function pairing operation: (f,g)x = 

First note that if T is constructible and retracts Li of Vni axe projectable then so is 
T{Lu...tLk). 
T h e o r e m 13.2: In the space of projectable retracts each constructible function T has a 
right inverse T" 1 . 
Proof: Omitted, (see [Mulmuley3].) | 

From the above theorem it follows that corresponding to each constructible function 
T we have a continuous constructor T on projectable retracts. 

Let ( )_l be a combinator which makes a function strict, i.e.,-

(/)j .(x) = "i. i f x = ± , ' 
= f(x) otherwise. 

Let [x] be the usual function'product combinator. Then both ()j_ and [x] axe combinators 
on projectable redacts as well: 

( ) i e P r ( r ) ^ P r ( P ) , 
[x] G Pr{Vm) x Pr(Vn) -> Pr(Vm^n). 

Now we have a rich theory of projectable retracts and constructible functions. 

1 3 . 1 . E x a m p l e 

Let B G V be some constant domain. Let B1 = Xx.B be a retract of V. Obviously B1 

has a single fixpoint, namely, B. Let a retract L* on V be defined as: 

L* = / t x ( \{L:Pr{V)). 
{(L+B')+L+B')±). 

Then if D* is the least solution of the domain equation: 

D = {D B) -> D + B, 

the fixpoint set of L* will look as shown in Figure 13.1 In particular, note that the inverse 
limit construction of D* can be carried out entirely within 

30 



/ 1 \ 

(F —* B) —* D * + ' B (JD* —» fl ) — F + B 

{F B) — F + B 

Figure 1: The fixpoint set of L* 

31 



T3: the theory of 
projectible retracts and 
constructive functions 

T 2 : the theory of 
finitary projections 

Til the theory of 
universal domain 

PPLAMBDA 

Figure 2: The Hierarchy Within IPLAMBDA 

14. I P L Des ign 
In the preceding sections we gave a mechanizable theory to prove inclusive predicate 

existence. Now we shall briefly describe how this theory was actually implemented on 
computer. For details see [Mulmuley3]. This system IPL (stands for Inclusive Predicate 
Logic) was implemented on top of LCF. It not only mechanizes the theory but it automates 
a large chunk too. For example, continuity of all the predicators considered so far can be 
proved by this system automatically. In particular, the existence of a solution to (1) is 
proved automatically. To understand the significance of this one only needs to look at the 
existence proof in [Stoyl], where the existence is proved using Milne's technique. It will 
illustrate the power of our system. IPL consists of three parts: 

1. Goal Generator, 
2. IPLAMBDA, 
3. Automatic Theorem Provers.. 

To prove the existence of an inclusive predicate, one proceeds as follows. First one con­
structs predicators, by. almost a verbatim translation, from the given equations over in­
clusive predicates. Next the specification of these predicators is fed into Goal Generator, 
which is an ML implementation of the reduction algorithm given in Section 11. The goals 
generated by Goal Generator are to be proved in IPLAMBDA, which is an^feCF theory. 
However, to ease this task of proving goals, Automatic Theorem Provers axe provided 
which prove a large chunk of generated goals. 

The theory IPLAMBDA is organized in a hierarchical fashion as shown in Figure 2. 
Theories T l and T2 basically constitute the axiomatization of domain theory, i.e., the 
theory of the universal domain U and the domain of finitary of projections of the universal 
domain V . T$ is an axiomatization of the theory of constructible functions and projectable 
retracts discussed in Section 13. 

The set of automatic theorem provers provided by the IPL system is quite powerful. 
These theorem provers have a knowledge of domain theory and the theory of projectable 

32 



Goal Generator 

Filter 

Figure 3: The Cascade 

retracts and constructible functions. In particular, there is a theorem prover called Filter 
which has an extensive knowledge of the theory of the universal domain U (theory Ti) and 
the theory of the domain of finitary projections V (theory T2). Because Filter is powerful, 
it is a good idea to always pipe the output of the Goal Generator into Filter. Thus, instead 
of Goal Generator, what one actually uses in practice is the cascade of Goal generator and 
Filter as shown in Figure 3: What comes out of this cascade is a "filtered" goal list. The 
amount of filtering which goes on can be judged from the fact that, in case of all the 
predicators considerd so far, what comes out of this cascade is an empty list, (what could 
be more pleasing?) 

The overall design of the IPL system is summarized in Figure 4. 

15. E x a m p l e 

This example is taken from [Gordonl]. The predicates, whose existence will be shown 
here, were used by Gordon to show correctness of a small Lisp implementation. 

As Lisp has dynamic scope rule, the domains used for denotational semantics are the 
same as the ones in Section 3. So let D be the domain values, and let C be the domain of 
environments. D and C are the least domains such that: 

D = C->B, 
C = Ide-+D, 

where Ide is the domain of identifiers and B is the domain of basic values. 
We want to show the existence of the recursively defined predicates, 

0 C D x {Z I Z C Ide), and 
= z C C xC for each subset Z of Ide, 

which we shall describe soon. Note that = z is actually a family of predicates, one predicate 
for every subset Z of Ide. 

33 



Predicator Specification 

i 
Goal Genrator 

Automatic 

Theorem 

Provers" 

o 

Filter 

/ 1 \ 
O 

goals 

o 

o 
I 

I 
/ \ 

User 

User's Theory 

Ti 

PPLAMBDA 

Hierarchy Of 
LCF Theories 

IPLAMBDA 

Figure 4: The Design Of IPL 

34 



• {D,Pide) 

• {{Ide — (_L — B)) -+ B, Pide) 
I 
• {{Ide 1 ) -> 5 , Pide) = (_L - * B,Pide) 

• {±,Pide) 

Figure 5: The Fixpoint Set Of L 

Informally {v,Z) € €>, where v e D and Z is a subset of Ide, will mean that "free 
variables" of v are contained in the set Z. And {p,p') € = z , where p and p' G C, will 
mean that p and p' strongly agree on all the identifiers z 6 Z. Formally, 

6 = {(«,*)• \VY CIde, pand p'EC. Z CY => 
P=Y p' =• = v(/o')}> and 

= Z = {(/>,/>') | V* € Z./»(*) = //(*) and 6 ©} . 

We shall show the existence of @, then that of = z follows. By rearrangement we get: 

e = {{v,Z)\ V r C Ide, p and p'eC.ZCY => 
(Vy € Y. p(y) = />'(t/) and (p(y), Y) 6 0 ) = ^ (4) 

= v(p')}. 

First we shall construct an underlying retract on which a predicate cpo will be constructed. 
Let Pide be the flat domain of subsets of Ide, i.e., we just adjoin J_ to the powerset 

of Ide. We shall ambiguously let Ide denote the retract [\{D : V).Ide) of V whose only 
fixpoint is Ide G V. Similarly Pide and B will ambiguously denote the retracts of V whose 
only fixpoints are Pide and B respectively. Note that D> the domain of values, is the least 
domain such that 

D = {Ide ->D)-+B. 

With this in mind, using the theory of projectable retracts and constructive functions 
given in Section 13, we define L G Pr(V2), a projectable retract of V2, as follows: 

L = fix(\V ePr(V2). 

( ( ( I d e A ( p r V ! l i O ) ^ . ^ * > ) ± ) . 

The fixpoint set of I , \L\ C V2, looks simply as shown in Figure 5. One sees that \L\ 
simply encapsulates the inverse limit construction of D. Now let 

t = {L,Q), 

35 



where Q is a predicate on the least element of \L\, _!_£, = (i_,Pide) G V2, and is defined as 
follows: 

Q = {(±,Y) \Y ePide}. 
Next we construct a predicator (T,w) from £ to Let T G V 2 —• V"2 be defined as: 

T[D, Pide) = ((We Ptde). 

Let the wff w G ((Z?,Pzde),0), where ((D,Pide),@) G £ , be defined as follows. 

w{v, Z) = "VF G Pide.Vp,p' G (Jde —> D ) . Z C y => 
Vy eIde.{yeY) =• 

(p • t/ = />' • y' A (p • y, y ) G 0 ) => vp = vprtt. 
Note that it; has two constant predicate symbols C and G which are to be given the 
standard interpretations. We have used G instead of G because G already occurs in w as 
a part of the predicate transformation language. Also • : U x U —• U as usual stands for 
Aa l y . ( j l .x )y . 

When the specification of (T,w) was fed into the cascade of Goal Generator and Filter, 
the following single goal was generated: (we are not using the LCF syntax for reading 
convenience.) 

V(D, Pide), (£>', Pide') G L. (D, Pide) C (D1, Pide1) impHes , . 
Vy G Pide.Pide(Y) = Ptdc' (y) . 1 ' 

Acually Goal Generator produced sixteen goals. This does not include the trivial tautolo­
gies which were taken care of by Goal Generator itself. Out of these sixteen goals, all were 
proved by Filter except the above goal. Once again we see how strong the filtering action 
is. 

Proving the goal (5) is not at all difficult. By an easy fixpoint induction on the 
definition of L one shows that: 

V(JD, Pide) G L. Pide = Pide. 
From this (5) follows immediately. Once continuity of (T,w) is proved, what remains is 
purely routine. Let ((JD*, Pide*), 0*) be the least fixed point of (T,ty^. Then it follows 
that D* = D and Pide* = Pide. Hence 0* is actually a predicate on D x Pide, and one 
sees from the definition of (T, w) that it satisfies (4). 

If one is pedantic, he will notice that we did not prove one little point. Is (T,w) really 
a predicator from L to £ , i.e., if ((D,Pide),Q) G £ , is it always the case that 

(T,w){(D,Pide),e)ea 

For this one has to prove that: 
V(D, Pide) G L. T(D, Pide) G L. 

But, using the definition of L, automatic theorem provers which have an extensive knowl­
edge of the theory T$ can prove this almost automatically. One also has to check that 
w transforms a directed complete predicate into a directed complete predicate.. This is 
trivial. Finally one has to prove that, for all ((D, Pide), 0 ) G J}, 

(T,w){(D,Pide),e) ^{±L,Q). 
But ±l and Q were deliberately chosen such that this will be the case trivially. 

Now the existence proof is complete. 

36 



16. Conc lus ion 
It is hoped the theory given in this paper meets the long present demand for a mech­

anizable theory for carrying out the existence proofs of inclusive predicates. The system 
IPL shows the plausibility of a mechanization and automation of this theory. However, 
more works needs to be done to make this implementation practical. 

17. A c k n o w l e d g e m e n t s 
This work was done under the guidence of*Prof. Dana Scott. I thank him for the 

valuable suggestions he gave me. Also thanks to Steve Brookes for his numerous helpful 
comments and to Roberto Minio for his help in TEX. 

REFERENCES 

[Gordonl] M.J.C. Gordon, "Towards a Semantic Theory of Dynamic Binding", Memo AIM-
265, Computer Science Department, Stanford University. 

[Gordon2] M.J.C. Gordon, R.Milner, C.Wadsworth, "Edinburgh LCF", Lecture Notes in Com­
puter Science, 78, Springer-Verlag, 1979. 

[Milne] R. Milne, C. Strachey, "A Theory of Programming Language Semantics", Chapman 
and Hall, London, and John Wiley, New York (1976). 

[Mulmuleyl] K. Mulmuley, "The Mechanization of Existence Proofs of Recursive Predicates", 
Proceedings -of the Seventh International Conference on Automated Deduction, 
Napa, California, Springer-Verlag (May, 1984). 

[Mulmuley2] K. Mulmuley, " Fully Abstract Submodels Of Typed Lambda Calculi", To appear 
in the special issue of JCSS on 25th FOCS (1984). 

[Mulmuley3] K. Mulmuley, "Full Abstraction And Semantic Equivalence", Ph.D thesis, com­
puter science department, Carnegie-Mellon University, Pittsburgh, Aug. 1985. 

[Park] . D.M.R.Park, "The Y-combinator in Scott's Lambda Calculus Models", Theory of 
Computation Report n. 13, University of Warwick, U.K., (1976). 

[Reynolds] J. Reynolds, "On The Relation Between Direct and Continuation Semantics", 
pp.141-156 of Proceedings of the Second Colloquim on Automata, Languages and 
Programming, Saabriicken, Springer-Verlag, Berlin (1974). 

[Scottl] D. Scott, "Lectures on a Mathematical Theory of Computation", Technical Mono­
graph PRG-19 (May 1981), Oxford University Computing Laboratory, Program­
ming Research Group. 

[Stoyl] J.E.Stoy, "Denotational Semantics", MIT Press, Cambridge, Mass.(1977). 

[Stoy2] J.E.Stoy, "The Congruence of Two Programming Language Definitions", TCS 13 
(1981), 151-174. 

37 


