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Abstract 

Modules in a distributed program are active, communicat ing entities. A language for distributed 

programs must choose a set of communicat ion primitives and a structure for processes. This paper 

examines one possible choice: synchronous communicat ion primitives (such as rendezvous or 

remote procedure call) in combination with modules that encompass a fixed number of processes 

(such as Ada tasks or UNIX processes). An analysis of the concurrency requirements of distributed 

programs suggests that this combination imposes complex and indirect solutions to common 

problems and thus is poorly suited for applications such as distributed programs in which 

concurrency is important. To provide adequate expressive power, a language for distributed 

programs shouid abandon either synchronous communicat ion primitives or the static process 

structure. 

Copyright © 1985 Barbara Liskov, Maur ice Herlihy, and Lucy Gilbert 

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), A R P A 

Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81 -K-1539. 

The views and conc lus ions contained in this document are those of the authors and should not be 

interpreted as representing the official policies, either expressed or implied, of the Defense Advanced 

Research Projects Agency or the US Government. 



1 

1. Introduction 

A distributed system consists of multiple computers (called nodes) that communicate through a 

network. A programming language for distributed computing must choose a set of communication 

primitives and a structure for processes. In this paper, we examine one possible choice: 

synchronous communication primitives (such as rendez-vous or remote procedure call) in 

combination with modules that encompass a fixed number of processes (such as Ada tasks or UNIX 

processes). We describe and evaluate the program structures needed to manage certain common 

concurrency control problems. We are concerned here not with computational power, but with 

expressive power: the degree to which common problems may be solved in a straightforward and 

efficient manner. We conc lude that the combination of synchronous communication with static 

process structure imposes complex and indirect solutions, and therefore that it is poorly suited for 

applications such as distributed programs in which concurrency is important. To provide adequate 

expressive power, a language for distributed programming should abandon either synchronous 

communication primitives or the static process structure. 

Our analysis is based on the client/server model, in which a distributed program is organized as a 

col lection of modules, each of which resides at a single node in the network. Modules do not share 

data directly; instead they communicate through messages. Modules act as clients and as servers. A 

client module makes use of services provided by other modules, while a server module provides 

services to others by encapsulating a resource, providing synchronization, protection, and crash 

recovery. The.cl ient/server model is hierarchical: a particular module may be both a client and a 

server. 

Although other models for concurrent computation have been proposed, the hierarchical 

cl ient/server model has come to be the standard model for structuring distributed programs. Lauer 

and Needham[16] argued that the client/server model is equivalent (with respect to expressive 

power) to a model of computation in which modules communicate through shared data. 

Nevertheless, the client/server model is more appropriate for distributed systems because speed and 

bandwidth me typically more critical in the connection between a module and its local data than 

between distinct modules. Although certain special ized applications may fit naturally into alternative 

structures such as pipelines or distributed coroutines, the hierarchical client/server model 

encompasses a large class of distributed programs. 

This paper is organized as follows. In Section 2, we propose a taxonomy for concurrent systems, 
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focusing on primitives for intermodule communicat ion and the process structure of modules. In 

Section 3, we formulate the basic concurrency requirement for modules: if one activity within a 

module becomes blocked, other activities should be able to make progress. In Section 4, we describe 

and evaluate the program structures needed to satisfy the concurrency requirement using 

synchronous communication primitives with a static process structure. We conc lude that the only 

reasonable solution to certain problems requires using the available primitives to simulate 

asynchronous communication primitives and/or a dynamic process structure. In Section 5, we 

summarize our results and make suggestions about linguistic support for distributed computing. 

2. Choices for Communication and Process Structure 

In this section we review the range of cho ices for communication and process structure and 

identify the cho ices made in various languages. 

2 . 1 . Communication 

There are two main alternatives for communication primitives: synchronous and asynchronous. 

Synchronous mechanisms provide a single primitive for sending a request and receiving the 

associated response. The client's process is b locked until the server's response is received. 

Examples of synchronous mechanisms include procedure call, remote procedure call [21], and 

rendez-vous [7]. Languages that use synchronous mechanisms for communication include Mesa 

[20], DP [5], Ada [7], SR [1], 1 M P [24], and Argus [18]. 

Asynchronous communicat ion mechanisms typically take the form of distinct send and receive 

primitives for originating requests and acquiring responses. A. client process executing a send is 

b locked either until the request is constructed, or until the message is delivered (as in CSP [131). The 

client acquires the response by executing the receive primitive. After executing a send and before 

executing the receive, the client may undertake other activity, perhaps executing other sends and 

receives. Languages that use send/receive include C S P and PLITS [0]. 

1 i n addition to remote call, SR provides the ability to sond a request without waiting for the 

response. 
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2.2. P r o c e s s S t r u c t u r e 

There are two cho ices for process structure within a module. Modules having a static structure 

encompass a fixed number of threads of control (usually one). The programmer is responsible for 

multiplexing these threads among a varying number of activities. Examples of modules having a 

static process structure include Ada tasks, DP monitors, and CSP processes, where there is just one 

process per module, and SR, where there may be multiple processes per module. The multiplexing 

mechanisms available to the programmer include guarded commands and condit ion variables. 

An alternative to the static structure is the dynamic structure, in which a variable number of 

processes may execute within a module. (Note that a module's process structure is independent of 

the encompassing system's process structure; the number of processes executing within a module 

may vary dynamically even if the overall number of processes in the system is fixed.) The system is 

responsible for schedul ing, but the programmer must synchronize the use of shared data. Ada, MP, 

Argus, and Mesa are examples of languages in which the basic modular unit encompasses a dynamic 

process structure. 

2 .3 . C o m b i n a t i o n s 

All four combinations of communicat ion and process structure are possible. Figure 2-1 shows the 

combinations provided by several languages. In Argus, the basic modular unit is the guardian, which 

has a dynamic process structure. In MP, a language for programming highly parallel machines, 

shared data are encapsulated by frames, which encompass a dynamic process structure. In CSP, the 

process itself is the basic modular unit. A monitor in DP contains a single thread of control that is 

implicitly multiplexed among multiple activities. A resource in SR can contain a fixed number of 

processes. In Mesa monitors, the processes executing in external procedures have a dynamic 

structure. Access to shared data is synchronized through entry procedures that acquire the monitor 

lock. In Starmod [6], a dynamic process model with synchronous communicat ion can be obtained 

through the use of processes; a static process model with asynchronous primitives can be obtained 

through the use of ports. 

In Ada, a task is a module with a static process structure. A server task exports a col lection of 

entries, which are cal led directly by clients. A server task's process structure is static because a task 

encompasses a single thread of control. (Although a task can create subsidiary tasks dynamically, 

these subsidiary tasks cannot be addressed as a group.) The programmer of the server task uses 
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s e l e c t statements to multiplex the task among various clients. Note that a task family (an array of 

tasks) does not qualify as a module, because the entire family cannot be the target of a call; instead a 

call must be made to a particular member of a family. 

Alternatively, a distributed Ada program might be organized as a col lection of packages that 

communicate through interface procedures. This alternative, however, can be rejected as violating 

the intent of the Ada designers. The Ada Rationale [14] explicitly states that internode 

communicat ion is by entry calls to tasks, not by procedure calls to packages. 2 This alternative can 

also be rejected on technical grounds; we argue in Section 4.3 that certain extensions to Ada are 

necessary before packages can be used effectively as modules in distributed programs. 

We are not aware of any languages that provide asynchronous communicat ion with dynamic 

processes. Although such languages may exist, this combination appears to provide an 

embarrassment of r iches not needed for expressive power. 

Static Dynamic 

Synchronous A d a T a s k s , D P , S R A r g u s , M e s a , S t a r m o d , M P 

Asynchronous C S P , P L I T S , S ta rmod 

Figu re 2-1 : Communicat ion and Process Structure 

in Some Languages 

3. Concurrency Requirements 

In this section we discuss the concurrency requirements of the modules that make up a distributed 

program. Our discussion centers on the concurrency needs of modules that act as both clients and 

servers; any linguistic mechanism that provides adequate concurrency for such a module will also 

provide adequate concurrency for a module that acts only as a client or only as a server. 

The principal concurrency requirement is the following: if one activity within a module becomes 

blocked, other activities should be able to make progress. A system in which modules are unable to 

2 , , N o t e ... that on distributed systems (where tasks do not share a common store) communication 

by procedure calls may be disal lowed, all communicat ion being achieved by entry calls." (Page 

11-40). 
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set aside blocked activities may suffer from unnecessary deadlocks and low throughput. For 

example, suppose a server cannot carry out one client's request because another client has locked a 

needed resource. If the server then becomes blocked, rendering it unable to accept a request to 

release the resource, then a deadlock will occur that was otherwise avoidable. Even when there is no 

prospect of deadlock, a module that remains idle when there is work to be done is a performance 

bottleneck. 

We can distinguish two common situations in which an activity within a module might be blocked: 

1. Local Delay: A local resource needed by the current activity is found to be unavailable. 

For example, a file server may discover that the request on which it is working must read 

a file that is currently open for writing by another client. In this situation, the file server 

should temporarily set aside the blocked activity, turning its attention to requests from 

other clients. 

2. Remote Delay: The module makes a call to another module, where a delay is 

encountered. The delay may simply be the communication delay, which can be large in 

some networks. Alternatively, the delay may occur because the called module is busy 

with another request or must perform considerable computing in response to the request. 

While the calling module is waiting for a response, it should be able to work on other 

activities. 

We do not discuss the use of I/O devices in our analysis below, but it is worth noting that remote 

delays are really I/O delays, and remarks about one are equally applicable to the other. * 

4. Program Structures 

We now discuss several program structures that might be used to meet the concurrency 

requirement stated above. First, we review several techniques used to make progress in the presence 

of local delays. We conclude that the synchronous communication/static process combination 

provides adequate expressive power for coping with local delays (although the particular 

mechanisms provided by Ada are awkward for this purpose). In the second part, however, we argue 

that this combination provides inadequate expressive power for coping with remote delays. 

In the following discussion, examples are shown as Ada tasks. We chose Ada because we assume 

it will be familiar to many readers. Although we call attention to some problems with Ada, this paper is 

not intended to be an exhaustive analysis of the suitability of Ada for distributed computing (see, 

however, [23,9, 15]). Instead, the examples are intended to illustrate language-independent 

problems with the synchronous communication/static process combination. 
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4.1. Local Delay 

Our evaluation of techniques for coping with local delays is based on work of Bloom [4], who 

argued that a synchronization mechanism provides adequate expressive power to cope with local 

delays only if it permits scheduling decis ions to be made on the basis of the following information: 

• the name of the called operation, 

o the order in which requests are received, 

• the arguments to the call, and 

• the state of the resource. 

We use these criteria to evaluate techniques for avoiding local and remote delays. 

Languages combining static process structure with synchronous communication provide two 

distinct mechanisms for making progress in the presence of local delay: 

1. Conditional Wait. The conditional wait is the method used in monitors. An activity that 

encounters a local delay relinquishes the monitor lock and waits on a queue. While that 

activity is suspended, other activities can make progress after acquiring the monitor lock. 

Conditional wait is quite adequate for coping with local delays because schedul ing 

decisions can employ information from all the categories listed above. 

2. Avoidance. Avoidance is used in languages such as Ada and SR. Boolean expressions 

called guards are used to choose the next request. A server will accept a call only after it 

has ascertained that the local resources needed by the new request are currently 

available. Avoidance is adequate for coping with local delay as long as the guard 

mechanism is sufficiently powerful. In SR, for example, guards may employ information 

from all of Bloom's categories. In Ada, however, guards for accept statements cannot 

depend on the values of arguments to the call, and therefore the Ada guarded command 

mechanism lacks the expressive power needed to provide a general solution to the 

problem of local delays. 

.The shortcomings of the Ada guarded command mechanism can be illustrated by the following 

simple example, which will be used throughout the paper, A Disk Scheduler module synchronizes 

access to a disk through REQUEST and R E L E A S E operations (c.f. [12, 4]). Before reading or writing 

to the disk, a client calls REQUEST to identify the desired track. When REQUEST returns, the client 

accesses the disk and calls R E L E A S E when the access is complete. The scheduler attempts to 

minimize changes in the direction the disk head is moving. A request for a track is postponed if the 

track does not lie in the head's current direction of motion. The direction is reversed when there are 
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no more pending requests in that direction. 

Perhaps the most natural implementation of the disk scheduler server in Ada would provide two 

entries: 

t a s k DISK_SCHEDULER i s 

e n t r y REQUESTED: i n TRACK); 

e n t r y RELEASE; 

end DISK_SCHEDULER 

Internally, the server keeps track of the current direction of motion, and the current head position: 

t a sk body DISK_SCHEDULER i s 

t ype STATUS = (UP,DOWN,NEUTRAL); 
c u r r e n t head p o s i t i o n . 

POSITION: TRACK ; 

c u r r e n t d i r e c t i o n o f m o t i o n . 
DIRECTION: STATUS; 

end DISK_SCHEDULER 

A naive attempt at scheduling is: 

s e l e c t W a r n i n g : no t l e g a l Ada ! 

when (DIRECTION = UP and POSITION <= ID) => 
Move up . 

a c c e p t REQUESTED: i n TRACK) do . . . 
o r when (DIRECTION = DOWN and POSITION >= ID) => 

Move down, 
a c c e p t REQUESTED: i n TRACK) do . . . 

o r when (DIRECTION = NEUTRAL) => 
Move e i t h e r way. 

a c c e p t REQUESTED: i n TRACK) do . . . 

This program fragment is illegal, however, because Ada does not permit an argument value (i.e., ID) to 

be used in a w h e n clause. As a consequence of this restriction, modules whose scheduling policies 

depend on argument values must be implemented in a more roundabout manner. 

in the remainder of this section, we use the disk scheduler example to illustrate five alternativo 

techniques for avoiding local delay. We argue that although some of these techniques will help in 

special cases, only one of them, the Early Reply structure, is powerful enough to provide a fully * 

general solution to the local delay problem. 

1. Entry Families. It is possible to treat an argument specially by using an indexed family 

of entries. If the index is viewed as an argument to the call, entry families provide a limited 

ability to accept requests based on arguments. 

For example, REQUEST could be implemented as a family containing an entry for each track. The 
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index provides an indirect way to incorporate the track number into the entry name, and so, for 

example, the task can delay accepting a request to write to a track that lies in the wrong direction 

from the disk head. 

case DIRECTION i s 

when UP => 

f o r I i n POSIT ION . . TRACK ' LAST l o o p 

a c c e p t REQUEST(I) do . . . 

end l o o p ; 

when DOWN => 

f o r I i n r e v e r s e POSIT ION. .TRACK•F IRST l o o p 

a c c e p t REQUEST(I) do . . . 

end l o o p ; 

when NEUTRAL => 

f o r I i n TRACK'RANGE l o o p 

a c c e p t REQUEST(I) do . . . 

end l o o p ; 

end case 

A source of awkwardness here is that the accept statement can refer only to values of local variables 

(I in this case). The first two arms of the case statement must poll each of the entries in turn, and in 

the third arm, the entire family must either be polled sequentially as shown, or each track must have 

its own accept statement. Neither cho ice is attractive, particularly if the number of tracks is large. 

Similar problems have been noted by [27]. 

Perhaps a more important limitation of entry families is that they are effective only when the 

subsumed argument's type is a discrete range. For example, entry families could not be used if the 

range of disk tracks were to vary dynamically, or if requests were granted on the basis of a numeric 

priority, as in thè "shortest job first" scheduler of [26]. 

2. Refusal. A server that accepts a request it is unable to service might return an exception 

to the client to indicate that the client should try again later. 

Refusal can eliminate local delays, but it is an awkward and potentially inefficient technique. When 

a client receives such an exception, it must decide whether to try again or to pass the exception to a 

higher level. If it tries again, it must dec ide when to do so, and how many times to retry before giving 

up. Note that such decisions present a modularity problem, because they are likely to change as the 

underlying system changes. For example, if a server's load increases over time, it will refuse more 

requests, and its clients will be forced to adjust their timeout and retry strategies. The server might 

also have to roll back work already done on the client's behalf, work that may have to be redone later, 

perhaps several times. 



9 

3. Nested Accept. A server that encounters a local delay might accept another request in a 

nested a c c ep t statement. 

The following code fragment shows an unlikely way of programming a disk scheduler. The server 

indiscriminately accepts calls to REQUEST . When it discovers that it has accepted a request for a 

track that lies in the wrong direction, it uses a nested a c c ep t statement to accept a different request. 

When the disk head direction changes, the server resumes processing the original request. 

a c c e p t REQUESTED: i n TRACK) do 

I f the d i r e c t i o n i s w rong , 

then a c c e p t s ome th i ng e l s e , 

w h i l e DIRECTION = UP and ID < POSITION l o o p 

s e l e c t 

a c c e p t REQUEST(ANOTHER_ID: i n TRACK) do 

or 
t e r m i n a t e ; 

end s e l e c t ; 

end l o o p ; 

end REQUEST; 

At first glance the nested a c c e p t technique might appear similar to the conditional wait technique 

supported by monitors, in which an activity that is unable to make progress is temporarily set aside in 

favor of another activity. The critical difference between the two techniques is that the use of nested 

a c c e p t statements requires that the new call be completed before the old call can be completed, an 

ordering that may not correspond to the needs of applications. Monitors do not impose the same 

last-in-first-out ordering on activities. A second difficulty with nested a c c e p t statements is deciding 

which request to accept. For example, the disk scheduler will be no better off if it accepts another 

request for a track that lies in the wrong direction. Note that if it were possible to decide which 

requests to accept after getting into trouble, then it should have been possible to accept only non-

troublesome requests in the first place, thus avoiding the use of the nested a c cep t . This observation 

suggests that the nested a c c e p t provides no expressive power that is not otherwise available. 

4. Task Families. Instead of using a single task to implement a server, one might use a 

family (i.e., an array) of identical tasks. 3 These tasks would together constitute the server, 

and would synchronize with one another in their use of the server's data. If one task 

encounters a local or remote delay, the server need not remain idle if another task is still 

v DP and SR provide analogous mechanisms. 
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able to service requests. 

The principal difficulty with task families lies in allocating tasks among clients. As mentioned above, a 

client cannot make a call to a task family as a whole; instead it is necessary to allocate family 

members to the clients in advance of the cal l. If the server's clients can be identified in advance, then 

it is possible to have a task family member for each client, and each client can be permanently 

assigned its own private task. This structure can avoid local delays, but such static assignments are 

not feasible for many applications. 

If static allocation is not possible, then two alternative methods might be used. A client could 

choose a task on its own, perhaps at random, and then use a timed or conditional entry call to 

determine if it is free. If the task is not free, the client could try again. Such a method is cheap if 

contention for tasks in the family is low, but it can result in arbitrary delays when contention is high. 

Alternatively, the server could provide a manager task that assigns tasks to clients. Although the 

manager can avoid confl icts in the use of family members, extra messages are needed when a task is 

al located or freed. A manager is expensive if a task is used just once for each allocation; the cost 

decreases as the number of uses per allocation increases. 

In either the static or dynamic case, task families require enough family members to make the 

probability of contention acceptably low. S ince most tasks in the family are likely to be idle at any 

time, the expense of the technique depends on how cheaply idle tasks can be implemented. 

If the number of clients is static, task families do provide a solution to local delay. Nevertheless, 

they do not provide a general solution because often the number of clients is dynamic (or unknown). 

In this case, task families can at best provide a probabilistic guarantee against delay. 

5. Early Reply. A fully general solution to the concurrency problem can be constructed if 

synchronous primitives are used to simulate asynchronous primitives. 

A server that accepts a request from a client simply records the request and returns an immediate 

acknowledgment. The server carries out the request at some later time, and conveys the result to the 

client through a distinct exchange of messages. Numerous examples employing Early Reply appear 

in the literature (e.g. see [10, 26, 25]). 

A disk scheduler task employing Early Reply would export three entries: a REGISTER entry, a 

R E Q U E S T entry family, and a R E L E A S E entry. The client calls REGISTER to indicate the disk track 

desired. The server records the request and responds with an index into the REQUEST entry family. 
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e n t r y R E G I S T E R E D : in TRACK, C L I ENT_ ID : ou t INDEX) ; 

An outline of a disk scheduler server employing early reply to avoid local delays appears in Figure 4-1. 

Although early reply provides a general technique for avoiding local delays, it is potentially inefficient 

and awkward. Efficiency may suffer because an additional remote call is needed whenever a delay is 

possible (e.g. when requesting a disk track). Program clarity may suffer because the server must 

perform its own schedul ing, explicitly multiplexing its thread of control among multiple clients. 

When the server is feady to grant a client's request, it accepts a call to that client's member of the 

R E Q U E S T entry family. For this structure to work, the client must follow a protocol in which it first 

registers its request, and then makes a second call to receive its response. To avoid delaying the 

server, the client should follow the REGISTER call with an immediate call to REQUEST: 

SERVER.REGISTER(TRACK_ID, MY_ ID ) ; 
SERVER.REQUEST(MY_ID); 

Most of the techniques d iscussed in this paper, including Early Reply, work best if clients access 

server tasks indirectly through procedures exported by a package local to the client's site. The 

package enhances safety by enforcing protocols and by ensuring that identifiers issued to clients are 

not misused. 

4 .2 . R emo t e De lay 

We now go on to d iscuss the problem of remote delays. We do not claim that it is impossible to 

avoid remote delay under the synchronous communication/stat ic process structure combination. We 

argue instead that this combination imposes complex and indirect solutions to common problems that 

arise in distributed programs. To illustrate this point, we review the techniques discussed above for 

cop ing with local delay. The only technique that provides a general solution to the remote delay 

problem is Early Reply. We focus on two servers: the higher-level server called by a client, and a 

lower-level server cal led by the higher-level server. Most of the techniques previously considered for 

cop ing with local delay are clearly inadequate for coping with remote delay: 

• Conditional Wait. The inability of monitors to cope with remote delay is known as the 

nested monitor call problem [19, 11]. When a monitor makes a call to another monitor, 

the call ing activity retains the monitor lock, and the monitor must remain idle while the 

call is in progress. 

• Avoidance. Remote delays cannot be eliminated by avoidance. A server cannot choose 

to avoid a client's request just because it may lead to a remote delay. The lower-level 
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t a s k DISK_SCHEDUI.ER i s 

e n t r y R E G I S T E R E D : i n TRACK; CL I ENT_ ID : ou t INDEX) ; 

e n t r y RESP0NSE(INDEX); 

e n t r y RELEASE; 

end SERVER; 

t a s k body SERVER i s 

b e g i n 
1 oop 

BUSY := f a l s e ; 
NEXT_CLIENT := UNKNOWN; 
- - A c c e p t and enqueue new r e q u e s t s . 

s e l e c t 
a c c e p t R E G I S T E R E D : i n TRACK; o u t CL IENT_ ID : INDEX) do 

- - A l l o c a t e and r e t u r n i n d e x . 

CL IENT_ID := . . . ; 

end REGISTER; 

. . . - - Enqueue r e q u e s t and c l i e n t i d . 

- - compute nex t c l i e n t and nex t t r a c k . 

NEXT_CLIENT := . . . 

NEXT_TRACK := . . . 

o r 

when no t BUSY and NEXT_CLIENT /= UNKNOWN => 

a c c e p t REQUEST(NEXT_CLIENT); 

POSITION := NEXT_TRACK; 

BUSY := t r u e ; 

o r 

when BUSY => 

a c c e p t RELEASE; 

BUSY := f a l s e ; 

. . . - - Change d i r e c t i o n i f n e c e s s a r y . 

NEXT_CLIENT := . . . 

NEXT_TRACK := . . . 

end s e l e c t ; 

end l o o p , 

end l o o p ; 

end SERVER; 
F igu re 4-1: Using Early Reply to Avoid Local Delays 

server could avoid accepting the higher-level server's call if it would otherwise encounter 

a local delay, but the higher-level server is delayed in the meantime. Avoidance can thus 

lead to both deadlock and performance problems. 

• Refusal. Refusal is no more effective for dealing with remote delays than it is for deal ing 

with local delays. 

* Nested Accept. One might attempt to avoid remote delays through the use of nested 

a c c ep t statements in the following way: a task creates a subsidiary task to carry out the 
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remote call while the creating task executes a nested a c cep t . However, the necessity of 

finishing the nested call before responding to the outer call renders this technique of 

dubious value. 

• Task Families. The remarks made about task families when discussing local delays apply 

to remote delays as well. Task families work well when the number of clients is static and 

predetermined. Otherwise, task families provide only a probabilistic guarantee against 

delay. Probabilistic guarantees concerning performance might well suffice for some 

applications, but probabilistic guarantees concerning deadlock seem less useful. 

Only Early Reply provides a general solution to the problem of remote delay, but the efficiency and 

program complexity problems noted above become more acute. If the lower-level server employs 

early reply, then the higher-level server will be subject to remote delay if it requests its response 

prematurely. To avoid waiting, the higher-level server might use periodic timed or conditional entry 

calls to check for the response. This structure is potentially inefficient, since the higher-level server is 

making multiple remote calls, and it may also yield complex programs because the higher-level server 

must explicitly multiplex these calls with other activities. An alternative structure in which the lower-

level server returns its response by calling an entry provided by the higher-level server is no better. 

To avoid delaying the lower-level server, the higher-level server must accept the call in a timely 

fashion, and the need for explicit multiplexing is unchanged. 

These shortcomings of Early Reply can be alleviated by the introduction of dynamic task creation in 

the higher-level server. In this structure, the higher-level server uses Early Reply to communicate with 

clients. When the higher-level server receives a request, it creates a subsidiary task (or allocates an 

existing task) and returns the name of that task to the client. The structure is illustrated in Figure 4-2. 

The client later calls the subsidiary task to receive the results of its request. 

SERVER.REQUEST( TASK__ID) ; 

T A S K _ I D . R E S P O N S E ( . . . ) ; 

The subsidiary task carries out the client's request, making calls to lower-level servers, and using 

shared data to synchronize with other subsidiary tasks within the higher-level server. When work on 

the request is finished, the subsidiary task accepts the client's second call to pick up the response. 

This structure avoids the program complexity problems associated with Early Reply. The higher-

level server need not perform explicit multiplexing among clients because the tasking mechanism 

itself multiplexes the processor(s) among the various activities, although, as mentioned above, 
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subsidiary tasks must synchronize through shared data. This structure also alleviates the need to 

synchronize with lower-level servers. The server as a whole is not affected if one subsidiary task is 

delayed, because other subsidiary tasks can still work for other clients. 

t a sk SERVER i s 

e n t r y REQUEST ( . . . , HELPER: ou t a c c e s s HELPER_TASK) ; 

t a s k t ype HELPER__TASK i s 

From s e r v e r : 

e n t r y FORWARD_REQUEST( . . . ) ; 

From c l i e n t : 

e n t r y RESP0NSE( . . . ) ; 

end HELPER_TASK; 

end SERVER; 

t a s k body SERVER i s 

t a s k body HELPER_JASK i s 

b e g i n 
a c c e p t FORWARD_REQUEST(. . . ) do 

. . . Pu t a rguments i n l o c a l v a r i a b l e s , 

end FORWARD_REQUEST; 

. . . - - D o work f o r c l i e n t , 

. . . i n c l u d i n g l o w e r - l e v e l c a l l s , 

a c c e p t R E S P 0 N S E ( . . . ) do 

. . . R e t u r n r e s p o n s e t o c l i e n t ; 

end RESPONSE 

end HELPER_TASK; 

b e g i n 

l o o p 

s e l e c t 
a c c e p t REQUEST( . . . . 

HELPER: o u t a c c e s s HELPERJTASK) 

do 
HELPER := new HELPER_TASK; 

HELPER.FORWARD_REQUEST( . . . ) ; 

end REQUEST; 

or 
t e r m i n a t e ; 

end s e l e c t ; 
end l o o p ; 

end SERVER; 

F igu re 4-2: Early Reply and Dynamic Task Creation 

One disadvantage of this structure is that creating and destroying the server tasks may 
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expensive, although this cost can be avoided by reusing the subsidiary tasks. 4 This structure also 

requires two message exchanges for each client/server interaction. The most striking fact about this 

mechanism, however, is that we are using synchronous rendez-vous to simulate asynchronous send 

and receive primitives, and dynamic task creation to simulate a dynamic process structure. The need 

to use one set of primitives to simulate another suggests that the combination of the static process 

structure with synchronous communication does not provide adequate expressive power to satisfy 

the concurrency requirements of distributed programs. 

4.3. R ema r k s abou t A d a 

Although this paper is not intended to be a systematic critique of Ada itself, it does raise some 

questions about the suitability of Ada for distributed computing. One way to circumvent the 

limitations of Ada tasks is to use packages instead of tasks as the basic modular unit for constructing 

servers. A server package would export a collection of interface procedures, which would be called 

directly by clients. These procedures could synchronize with one another by explicit calls to entries 

of tasks private to the package. (This structure is similar to a Mesa monitor [20].) A server package 

would solve the concurrency problem by providing a dynamic process structure; an arbitrary number 

of client processes can be executing within the package's interface procedures. The programmer is 

responsible for synchronizing access to shared data, but not for scheduling the processes. 

Nevertheless, Ada packages suffer from critical limitations unrelated to the main focus of this paper. 

In applications such as distributed computing, it is often necessary to store module names in 

variables, and to pass them as parameters. For example, the Cedar remote procedure call facility 

[2] uses Grapevine [3] as a registry for server instances and types. Similarly, dynamic 

reconfiguration, replacing one module with another [15], may be necessary to enhance functionality, 

to accommodate growth, and to support fault-tolerance. Ada permits names of tasks (i.e. their 

a c c e s s values) to be stored in variables and used as parameters, but not names of packages or 

procedures. Consequently, a distributed program in which the package is the basic modular unit 

could not support Grapevine-like registries of services or dynamic reconfiguration. These 

observations suggest that Ada would provide better support for distributed programs if it were 

4 l n the microVAX-ll implementation of Argus, it takes only 160 microseconds to create, run, and 

destroy a null process. 
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extended to treat packages as first-class objects. 

5. Discussion 

We have argued that languages that combine synchronous communication primitives with a static 

process structure do not provide adequate expressive power for constructing distributed programs. 

Although our discussion has focused on distributed programs, our conclusions are valid for any 

concurrent program organized as clients and servers (e.g. interprocess communication in UNIX 

[22] or programming for highly parallel machines [24]). 

Languages that combine synchronous communication with a static process structure can provide 

adequate expressive power for avoiding local delays, in which an activity is blocked because a local 

resource is unavailable, as illustrated by monitors and by languages with a fully general guarded 

command mechanism. (Ada's guarded accept mechanism, however, lacks expressive power 

because it does not allow the call 's arguments to be used in guards.) The languages under 

consideration do not, however, provide adequate expressive power for avoiding remote delays, in 

which an activity is blocked pending the completion of a remote call. For monitors, this problem has 

come to be known as the nested monitor call problem [11, 19]. The thesis of this paper is that 

languages in which modules combine synchronous communication with a static process structure 

suffer from an analogous problem. 

We examined a number of techniques to avoid such delays using Ada tasks. Although certain 

techniques are adequate for particular applications, e.g. entry families, the only fully general solution 

requires using synchronous primitives to simulate asynchronous primitives, and dynamic task 

creation to simulate a dynamic process structure. The need to use one set of primitives to simulate 

another is evidence that the original set lacks expressive power. 

We believe that it is necessary to abandon either synchronous communication or static process 

structure, but a well-designed language need not abandon both. If the language provides" 

asynchronous communication primitives, in which the sender need not wait for the receiver to accept 

the message, then the time spent waiting for the early reply in our examples would be saved. In 

addition, the lower level-server need not be delayed waiting for the higher-level server to pick up the 

response, and only two messages would be needed. The need to perform explicit multiplexing 

remains a disadvantage of this choice of primitives. 

Alternatively, if a language provides dynamic proce.ss creation within a single module, as in Argus 
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and Mesa, then the advantages of synchronous communication can be retained. When a call 

message arrives at a module, a new process is created automatically (or allocated from a pool of 

processes) to carry out the request. When the process has completed the call, a reply message is 

sent back to the caller, and the process is destroyed or returned to the process pool. Only two 

messages are needed to carry out the call. The new process has much the same function as the 

subsidiary tasks created by the server in Figure 4-2. It ensures that the module is not blocked even if 

the request encounters a delay. The process must synchronize with other processes in the module, 

but all the processes are defined within a single module, which facilitates reasoning about 

correctness. Finally, a dynamic process structure can mask delays that result from the use of local 

input/output devices, and may permit multiprocessor nodes to be used to advantage. We think 

synchronous communication with dynamic processes is a better choice than asynchronous 

communication with static processes; a detailed justification for this opinion is given in [17]. 

A language mechanism cannot be considered to have adequate expressive power if common 

problems require complex and indirect solutions. Although synchronous communication with static 

process structure is computationally complete, it is not sufficiently expressive. Synchronous 

communication is not compatible with the static process structure, and languages for distributed 

programs must abandon one or the other. 
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