
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-150 • -

t • 2-

Escher--A Geometrical Layout System

For Recursively Defined Circuits

Edmund Clarke, Yulin Feng

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

July 1985

This research was supported by NSF. Grant Number MCS-82-16706

ABSTRACT: An Kschcr circuit description is a hierarchical structure composed of cells,
wires, connectors between wires, and pins that connect wires to cells. Cells may
correspond to primitive circuit elements, or they may be defined in terms of lower level
subcells. Unlike other geometrical layout systems, a subccll may be instance of die cell
being defined. When such a recursive cell definition is instantiated, the recursion is
unwound in a manner reminiscent of the procedure call copy rule in Algol-like
programming languages. Cell specifications may have parameters that are used to
control the unwinding of recursive cells and to provide for cell families with varying
numbers of pins and other internal components. We illustrate how die Escher layout
system might be used with several nontrivial examples, including a parallel sorting
network and a FFf implementation. We also briefly describe the unwinding algorithm.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

2

ESCHER--A Geometrical Layout System
For Recursively Defined Circuits

Edmund Clarke, Yulin Feng

1. Introduction

Many circuits such as sorting networks, hardware multipliers, and FFT implementations can be described

by recursive geometrical patterns. Some layout languages provide support for recursion ([2], [6], [7] and [10]);

however, in all such systems familiar to us the circuit description is textual rather than geometrical. We

believe that it is more natural to describe complicated circuits geometrically, rather than by giving a textual

description and requiring that a program figure out the details of the layout. Some circuit editors have

powerful iteration operators that can be viewed as implementing a form of tail recursion [3], but none allow

full recursion. We have implemented a geometrical layout system (called the Escher System) in which

recursive patterns can be specified directly and then instantiated to obtain layouts for complex circuits

automatically.

An Escher circuit description is a hierarchical structure in which the basic building blocks are cells, wires,

connectors between wires, and pins that connect wires to cells. Cells may correspond to primitive circuit

elements such as NAND gates and latches, or they may be defined in terms of lower level subcells, which are

defined in terms of even lower level subcells, etc. By using the Escher system, a number of primitive cells can

be connected together in complex geometrical pattern to describe the layout for a large and intricate circuit.

Designers do not need to worry about the absolute sizes and positions of various circuit components; only the

topological relationships are important. Moreover, the system is completely interactive. Circuit diagrams are

constructed using a pointing device ("mouse") and tablet.

Although many circuit editors provide a set of features similar to the ones that we have just listed, our

system is unique in that a subccll may, in fact, be instance of the cell being defined. When a recursive cell

definition is instantiated, the recursion is unwound in a manner reminiscent of the procedure call copy rule in

Algol-like programming languages. Cell specifications may have non-negative integer parameters that are

3

used to control the unwinding of recursive cells and to provide for cell families with varying numbers of pins

and other internal components. While the notion of parameterized cell specifications is quite common in

textual hardware description languages, we believe that it has not been previously used with graphical circuit

editors and, therefore, may be of independent interest.

Our paper is organized as follows: Section 2 describes the various notational conventions that the Escher

system uses for specifying recursive circuits. Since recursive cells arc usually parameterized by some integer

variable, special conventions are needed for describing groups of subcells that depend on die parameter. In

section 3 we give two examples of how the Kscher System might be used with recursive circuits Uiat are based

on parallel divide and conquer strategics. We believe that the Escher system will prove most useful for laying

out circuits with this type of structure. Section 4 shows how the Escher System might be used for laying out a

more complicated example, the parallel prefix circuit originally described by Fisher and Ladner ([I]). In

sections 5 and 6 we discuss how the Escher system works. Section 5 briefly describes how various circuit

components are represented in the system. This section also addresses the question of how much circuit

components may be moved around in obtaining a layout. The algorithm that unwinds and lays out a

recursive diagram is outlined in section 6. Since basic subcells must occupy a fixed area, the algorithm must

proceed bottom up, expanding each higher level cell so that all of its lower level subcells will fit. The paper

concludes in section 7 with summary and discussion of ways in which die Escher system might be extended to

produce better layouts.

2. Conventions for Specifying Recursive Circuit Diagrams

As an example of how die Escher system might be used, we consider die problem of laying out the Tally

circuit described in [8] and also in [9], This circuit has n inputs and n + 1 outputs. The k-th output will be high

and all other outputs low, if exacdy k of the inputs are high. Figure 2-1 gives the Escher version of a recursive

definition for die Tally circuit.

In die specification diere are two kinds of cells: Basic cells that cannot be refined further (like the two input

multiplexers), and Composite cells that contain other cells, wires, and connectors (like the recursive

occurrence of Tally(n-l)). The cells that are directly contained within a composite cell are its subcells.

Sometimes several subcells S r S 2 , . . . , S n are instances of the same cell C. In th r case we say that C is the

source of each of the S.'s.

Since the specification is parameterized by n, some abbreviations are needed to represent groups of lines

and subcells that depend on n. When a definite value is provided for n, each such abbreviation in the

specification may be evaluated.

4

gnc

vd(

t a l l y (n - l)

command: d e f c e l l t a l l y (n)

|b mux[0]

b mux[*]

b m u x [n - l]

c d

b mux[n] r

gnd

out

o u t

o u t

Figure 2-1: Recursive Pattern for Tally(n)

Groups in Escher are somewhat like one dimensional arrays in programming languages. A group is a

horizontal or vertical array of identical cells with the appropriate interconnecting wires. The subcells of a

group may be either basic cells or composite cells. They are distinguished from one another by an integer

index, which increases from left to right in the case of a horizontal array or from top to bottom in the case of

an vertical array. The initial and final values of the index may depend on a parameter of the cell containing

the group; however, the increment must be a fixed positive integer. A g-uip whose lengdi depends on an

undetermined parameter is represented by three subcells, one for the first subcell, one for die last subcell, and

one in die middle with index "*" to represent all of the remaining subcells. Thus, the "*" serves exactly the

same function in our formal specification that the ellipsis serves in an informal specification. A number

appearing after the represents an index increment; when the "*" appears alone, the default value for the

increment is 1. In the Tally example (Figure 2-1) there are a total of (n + 1) multiplexers, the MUX[n] and

5

MUX'S with indices from 0 to n-1 in a group. When a group of subcells is specified, it is only necessary to

give the the position of the first and the last subcells of the group with respect to some other part of the

circuit. When the containing cell is instantiated and all of the parameters of the group arc fixed, this

information is sufficient to determine the position of each of the subcells of the group.

Finally, Escher uses a short diagonal mark on a wire to represent a group of wires. An expression associated

with die mark indicates how many lines arc in the group. We call such groups of wires, buses, and the

associated expression, the bus width. In Figure 2-1 there arc two buses, and each represents n-1 wires. We also

use die convention that a wire connected to a subcell with index "*" actually represents the same number of

wires as the number of omitted subcells.

The circuit for the base case, Tally(l), is shown in Figure 2-2.

Figure 2-2: TALLY(l), a base case for TALLY recursive specification

Examination of the recursive specification for the TALLY circuit immediately shows how it works. Each

multiplexer has three inputs labeled a, 6, c and one output labeled d. If b is high, die output dselects the value

c; otherwise, it selects the value a. It is easy to see that die base case is correct. We assume diat TALLY(n-l) is

correct and that k of die first n-1 inputs are high. By the induction hypothesis, the k-th output of TALLY(n-l)

is high. If the input is also high, then all of the selector inputs of the multiplexers will be high, so each

MUX's with index in the range from 0 to n-1 will select as its output the value of its c input, while the output

of MUX[n] will be low. Thus, the (k-hl)* output (counting from bottom to top) of TALLY(n) w;1l be high

and the other outputs will be low. A similar discussion can be used for the case in which die n t h input of

TALLY(n) is low.

After we instantiate the TALLY circuit with a given value, for example, n = 6, the Escher system will

6

automatically unwind the recursive specification into the circuit diagram shown in Figure 2-3. A final phase

(that has not been completed) will compact the circuit diagram produced by the Escher system in accordance

with a set of design rules appropriate to the transistor technology used to fabricate the chip.

7

Figure 2-3: instantiation for Tally(6)

8

3. Divide and Conquer Circuits

The simplest recursive circuits have only a single recursive sub-circuit. This case is somewhat like tail-

recursion in programming languages and is relatively easy to implement. The Tally circuit in Figure 2-1 is an

example of such a recursion. Unfortunately, not all recursive circuits have such a simple structure. Many

interesting circuits are based on a divide and conquer strategy in which a complicated task is realized by a

number of subcircuits each of which is a recursive instance of die circuit being defined. Adders, multipliers,

sorters, FFT circuits, etc., can all be structured in this manner. Figuring out by hand an appropriate layout for

an instance of such a circuit can be quite tricky. Once the recursive structure of the circuit has been

determined, die Fscher system may be used to unwind a particular instance of the circuit. We illustrate below

how Escher might be used with two well known examples of recursive divide and conquer circuits.

3.1. Example 1: Parallel Sorting

Our first example is a network for sorting a sequence of n k bit numbers into increasing order, where n is

assumed a power of 2 [5]. The standard divide and conquer approach is to sort the first half and the second

half in parallel and then merge the two sorted sequences. The Escher specification for such a circuit is shown

in Figure 3-1. Note that every bus width number here means the number of k-bit wires.

r— 1

/ 'n/2 / 'n/2

sor t (n / 2) so r t (n / 2)

/ 'n/2 / 'n/2

merge(n/2)

/ n

command: d e f c e l l sor t (n)

Figure 3-1: Recursive pattern for Sort(n)

9

The Merge cell can also be defined recursively. To merge two sequences "a" and "b", we merge the

even-indexed elements of "a" with the odd-indexed elements of "b", and the odd-indcxed elements of "a"

with the even-indexed elements of "b". The outputs of the two half-size merging circuits arc sent through an

array of comparators. Each comparator "CMP" sorts two k-bit numbers in order. Figure 3-2 gives the

recursive definition of Mcrge(n). Pass(n), shown in Figure 3-3, contains only wires and is used to separate the

even-indexed inputs and the odd-indexed inputs.

A*
p a s s (n)

A n/2
A

4"

p a s s (n)

n/2 / n/2

m e r g e (n / 2) m e r g e (n / 2)

cmp[0]

r

cmp[»] c m p [n - l]

command: d e f c e l l merge(n)

Figure 3-2: Recursive pattern for Merge(n)

10

Figure 3-3: Recursive pattern for connections Pass(n)

If we instantiate the recursive specification shown in Figure 3-1 with n = 16, our system automatically

generates the pattern shown in Figure 3-4.

11

Figure 3-4: Instantiation for SORT(16)

12

3.2. Example 2: Fast Fourier Transform

The second example is a circuit for computing the Fast Fourier Transform ([4], [11J). Let u = Q-"]/n. The

Fast Fourier Transform (FIT)of .v(0) x(n-1) is defined for k = 0,1,2 n-1 by

This equation can be "folded" to obtain for j = 0,1,2 n/2-1:

A2j)= 2 1 = 7 ^k(Ak)+Jik+n/2)),

}{2j+1) = 2 1 = 7 »2ik(o>kMk)-x(k + ii/2))).

Fork = 0,1,2, . . . ,n/2-1, let

W)=x(k) + 4k+n/2),

v(k+ n/2)=ak(x(k)-x(k+ n/2)).

If we express y in terms of v, we obtain

}{2j+D=^l=7W2f<k+n/2)

for j = 0,1,2 n/2-1. This series of equations can be expressed in matrix form as in Figure 3-5.

"y(o> i 1 1 1

i
2 4 n

y (2) i w w w

y(n-z) i
*

w
*

w
*

w

y (i) 0 0 0 • • 0

y (3) 0 0 0 • • 0

_ y (n - i) _ 0 0 0 • • 0

n-2

0 0 0

0 0 0

0 0 0

1 1 1

I
2 4

w w

1 w w

n-2

v (0)

v (l)

v (n / 2 - l)

v (n / 2)

v (n - l) (

Figure 3-5: Block Diagonal Matrix for Computing FFT

Examination of the block diagonal matrix suggests a recursive circuit for computing the FFT. First, we use a

group of multiplier-adder cells MAC[0], MAC[1], • • • ,MAC[n/2-l] to transform x[0],x[l]f • • •, x[n-l] into

v[0],v[l], • • • ,v[n-l]. Each multiplier-adder cell will have two inputs and two outputs. In the case of cell

13

MAC[k] the two inputs arc x[k] and x[k + n /2 | , and the two outputs arc v[k] and v[k + n/2]. In general, die

behavior of each MAC[k] cell will depend on the value of k-cach must be provided with register holding its

particular value of <ok. For simplicity, however, we will neglect this difference, and assume diat MAC is dicir

common source.

We eventually obtain two half size FFY problems: One on v[0], v[n/2-l] and one on v[n/2], . . .,v[n-l].

The Fschcr specification of die FFY circuit will contain two recursive instances of FFT(n/2) as shown in

Figure 3-6. The cell labeled RPS is just the reverse of the cell PASS defined in die previous example. It takes

two sets of n/2 inputs and merges diem into n outputs, so that the first set of inputs corresponds to the

even-indexed outputs and the second set of inputs to die odd-indexed outputs.

If we instantiate the circuit with n = 16, Escher generates the network shown in Figure 3-7. The eight MACs

in the first row have registers holding co°, co1, <o2, • • •, <JP in sequence from left to right; the eight MACs in

the second row are divided into two groups, the left four in one group and die right four in another. In each

group of four, the registers hold <o°, co2,co4 and o 8 , respectively. The eight MACs in the third row arc divided

into four groups, each of which contains two MACs, one storing the value <o° and one storing the value co4.

Each MAC in die last row has co° in its register. Although we will not address the problem of inidalizing the

registers, it is not difficult to solve.

14

n/2 / I n / 2

r p s (n)

J ^ / n j

command: d e f c e l l f f t (n)

Figure 3-6: Recursive pattern for FFf(n)

15

r

r r

1 1

command: eval f f t n=16

Figure 3-7: Instantiation for FFT(16)

16

4. A More Complicated Example

In this section wc show how to layout die parallel prefix circuit described by Fischer and Ladner in [1]. We

assume ® is an associative binary operator that is implemented by a cell named "OPM with two inputs and

one output. Hie parallel prefix circuit has n inputs and n outputs. The n outputs are the successive partial

products obtained by using ® to combine the inputs. Thus, if the inputs are then the outputs are

x ,(x <8> x2),... ,(((* ® * 2) ® . . .) ® xj. Figure 4-1 shows the clever recursive circuit suggested by Fischer

and Ladner for computing the partial products in parallel.

op op op

HE

op op

p f x (n / 2)

op op op op
op

op

Figure 4 -1 : Parallel Prefix Circuit

How do we specify the parallel prefix circuit with the Escher system? It is convenient to split the circuit into

5 parts as shown by the dotted lines in Figure 4-1. Each of these parts will correspond to an Escher cell that

can easily be defined recursively. See Figure 4-2.

DPASS(n) and UPASS(n) contain only connection wires and are defined in Figure 4-3 and 4-4,

respectively. DPART(n) can be split again into two parts, a left part DLEFT and a right part DRIGHT. Each

of these parts can, in turn, be defined recursively. See Figures 4-5,4-6 and 4-7. The definition of UPART is

similar to that of DPART and will be omitted.

If we instantiate PFX(n) with n = 16, Escher will unwind the recursive specification and compact the

unwound layout to produce the circuit shown in Figure 4-8.

17

n/4

u p a r t (n)

/ I n

u p a s s (n)

An/2

p f x (n / 2)

/ I n / 2

d p a s s (n)

/ l n - 2

d p a r t (n - 2)

/ f n - 2

A n/4

command: d e f c e l l pfx(n)

Figure 4-2: Recursive Specification for Parallel Prefix Circuit

18

A
A

n /4 - l

n/2-2

d p a s s (n - 4)

n-4

A n / 4 - l

Figure 4-3: Recursive Definition of Subcell DPASS(n)

Figure 4-4: Recursive Definition of Subcell UPASS(n)

19

/ 'n/2 / 'n/2

d l e f t (n / 2) d r i g h t (n/2)

/ 'n/2 / 'n/2

Figure 4-5: Recursive Definition of Subcell DPART(n)

Figure 4-6: Recursive Definition of Subcell DLEFT(n)

/ i n - 2

d r i g h t (n - 2)

A n-2

op

Figure 4-7: Recursive Definition of Subcell DRIGHT(n)

20

Figure 4-8: PFX(16)

21

5. Representation of Circuit Components and Structural Elasticity

A coll is represented in the Kscher system by a record structure consisting of three Holds, die AttributeList,

the PointNct, and die SubCcllList. The AttributeList contains die name of die cell, its parameter list, and its

position (TopY, BottomY, RightX, LcftX) with respect to a fixed coordinate system. The PointNct is used to

keep track of the different kinds of points (pins, bends, connectors, vias, transistors, etc.) and their locations.

Kach point is represented by a record structure that specifies its type, its coordinates PosX and PosY, and how

it is connected to the other components of the cell. All of the points in a cell arc linked together in an

undirected graph structure called die PointNct. From each point in die cell it is possible to find die next

connected point in a vertical or horizontal direction by following die appropriate link in die PointNct. The

SubCcllList contains a descriptor for each component subcell. A subcell descriptor has a pointer to the source

of the subcell, an assignment of symbolic expressions for any parameters of the source cell, and information

on the position and orientation of the subcell (/.e., whether it has been flipped or rotated). Subcells in a group

are linked together in a circular list. Some information in the AttributeList of the source cell, like the cell

name, is also duplicated to prevent unnecessary searching.

Only the relative sizes and positions of the various cell components are important. Cells may be expanded

or shrunk, points may be moved around, and wires may be lengthened or shortened, provided that the

underlying topological structure of the circuit does not change. This structural elasticity is exploited by the

Escher system to obtain a good layout and is discussed in more detail below. For simplicity, we initially

assume that all subcells, points and wires are at the same level.

We say that subcell SCL1 is Above another subcell SCL2, if SCLl.BottomY > SCL2.TopY. Similarly, we

define the Below, Rightof and Leftof relations between pairs of subcells. If two subcells are not related by

either the Above relation or the Below reladon, they are Beside one another. We say SCL1 Precedes SCL2 in

position order if and only if

(SCL1 AboveSCLl) Or((SCLl BesideSCU) And (SOLI Leftof SCL2)).

In the Tally example in Figure 2-1, each of the subcells MUX[0] . . . MUX[n-l] is Rightof the subcell tal(n-l)

and Above the subcell MUX[n]. Similar definitions may be given to describe the relative ordering of pins. In

this case, however, the corresponding pardal order relations only hold between pins on the sairr. side of a cell.

So far, we have only defined the position order relation between circuit components at the same level. We

can extend die reladon to apply to components at different levels by requiring that if subcell SCL1 precedes

SCL2 in position order, then each subcell of SCL1 must precede each subcell of SCL2, etc.

A recursive circuit specification may be unwound into a tree structure in which nodes correspond to cells,

22

and one node is a son of another if the cell corresponding to the first node is a subccll of the cell

corresponding to the second. Thus, a cell will appear at level i in the tree if it is a subccll of a cell that appears

at level i-1. A layout is generated from die tree in a bottom-up fashion in which layouts are determined for all

of the sons of a node before laying out the node itself. To accomplish this task it may be necessary to move

various circuit components in order to make room for components generated at lower levels. The algorithms

that Escher uses for this purpose are discussed in detail in the next section. To insure correctness we must

guarantee that as the program transforms a geometrical pattern, the hierarchical position order among

components remains unchanged, even though the absolute size and position of the components may change

frequently. We give below some basic rules for deciding when points and subcclls may be moved.

• Subcclls of a cell may be moved provided that their relative position order remains invariant.

• Each pin on a basic subccll has a fixed position relative to the subccll and can not be moved.

• Pins on some side of a composite subcell may be moved as long as they remain on the same side
and their relative order does not change.

• Any non-pin point (Le.y a bend or connector) may be moved, provided all the points whose
positions depend on diat point are moved accordingly and the move does not violate one of the
first three ailes.

23

6. How To Unwind a Recursive Circuit Specification

Wc begin by describing algorithms for expanding and shrinking cells. There arc two instances when this

may be necessary: The first occurs when die omitted subcclls of a group arc filled in. The second instance

occurs when a subccll is replaced by a copy of its source. For simplicity, our algorithms for these two cases are

only given for die vertical direction. The horizontal direction can be obtained by rotation and need not be

given here. When expanding in the vertical direction some parts of the cell must be moved upward, while

other parts must be moved downward. However, as long as die guidelines in the previous section are

followed, wc do not have to worry about changing the behavior of the circuit.

Let C1(N) be a parameterized cell. Suppose that C1(V) is the cell obtained from C1(N) by replacing each

expression with its value at N = V. Suppose also that Scl[Vl], Scl[*l], Scl[V2] is a subcell group in C1(V). In

order to make room for all of subcclls represented by Scl[*I], we must expand (or shrink) C1(V) as shown in

Figure 6-1.

O r i

S C L [v t]

S C L [v 2]

b e f o r e e x p a n s i o n a f t e r e x p a n s i o n

Figure 6-1: Expanding a Group

24

Vdist is the vertical distance that must be allocated for each subccll in the group, including the space

between consecutive subcclls. K is the total number of subcclls in die group; if K is greater than 3, wc must

enlarge die space allocated to the group by (K-3) * Vdist units in the vertical direction. Kach object in the cell

will be moved either up or down according to whether it is above or below the vertical midpoint of the region

occupied by die subccll group. (K - 2) new subcclls must be created to fill out die group. Points and wires will

be added so diat each of these subcclls has die same set of attachments as Scl[*l],

procedure ExpandingGroup;

K := [(V2-V1) div I] + 1;

Vdist := (Sc1[Vl].TopY - Scl[V2].TopY) div 2;
i f K>3 then Voff := [(K-3)*Vdist] div 2 else Voff := 0;
OrigY := (Scl[VI].TopY + Scl[V2].BottomY) div 2;

Record a l l wires and points associated with Sc l [*I] , then delete
a l l of them along with the subcell for Sc l [*I] ;

i f Voff>0 then
move the part of C1(V) that is above OrigY up by Voff;

move the part of C1(V) that is below OrigY down by Voff;

endif;

create (K-2) new subcells that are copies of Sc l [*I] ; al ign the
subcells in the space al located for the group, making sure that
the top of successive subcells are separated by Vdist units in
the vert ica l d i rect ion;

Connect up the points and wires associated with the individual
subcells so that each is a copy Scl[*I] in the or iginal diagram;

endproc;

Figure 6-2: Algorithm for Expanding a Group

During the unwinding phase we replace each recursive subcell by an instance of its source cell. For

example, when unwinding the TALLY circuit in Figure 2-1 with N = 6 we must first replace the recursive

subcell TALLY(5) by a copy of the source cell. When we unwind TALLY(5) we need to replace subcell

TALLY(4) by another copy of die source cell. This process continues until a base case is reached.

When we replace a subcell with the body of its source cell, it may be nccessary*to expand (or shrink) the

subcell so that it is the same size as its source. Suppose that CI is a cell, that Scl is one of its subcells, and that

Cll is the source of Scl. Let Voff be half the difference in size in the vertical direction between Scl and its

source Cll. When Voff < 0, Scl must be bigger than Cll, so Scl should be shrunk. If Voff > 0, then Scl is

smaller than Cll, so Scl should be expanded. When the expansion is made, every object in CI that is above Scl

in position order must be moved up by Voff. Likewise, every object in CI that is below Scl must be moved

down by Voff. The positions of objects that are beside Scl do not need to be changed. See Figure 6-3.

25

N

I I

1 1
'.I

SCL

1 r .1
s

.1
b e f o r e e x p a n s i o n a f t e r e x p a n s i o n

Figure 6-3: Expanding A Subcell

procedure ExpandingSubcell;

Voff := (CU.Height - SCI.Height) div 2;

i f Voff<0 then

for each pin P on Sc l ' s North side. P.PosY := P.PosY-Voff;
for each pin P on Sc l ' s South side. P.PosY := P.PosY+Voff;

endif;

i f Voff>0 then

CI.TopY := CI.TopY - Voff; .
Cl.BottomY Cl.BottomY + Voff;

for each point P.

i f P.PosY<«Scl.TopY then P.PosY ;= P.PosY - Voff;
i f P.PosY>=Scl.BottomY then P.PosY :» P.PosY + Voff;

endfor

for each subcell S e l l ,

i f (Sell.TopY<=Scl.TopY) and (Scl1.BottomY>=Scl.BottomY) then
Cll .TopY :» Sell.TopY - Voff;
Scll.BottomY := Scl1.BottomY + Voff;

else

i f Scll.TopY<=Scl.TopY then
Sell.TopY := Sell.TopY - Voff;
Scll.BottomY := Scll.BottomY - Voff;

endif;

i f Scll.BottomY>=Scl.BottomY then
Sell.TopY := Sell.TopY + Voff;
Scll.BottomY := Scll.BottomY + Voff;

endif;

endif;
endfor;

endif;

endproc;

Figure 6-4: Algorithm for Expanding a Subcell

26

Once Scl and its source cell Cll have the same size, wc must connect up the pins of Scl. Although

corresponding sides of Cll and Scl will have exactly the same number of pins, corresponding pins on the same

side will, in general, have different offsets with respect to die center of die side. Let P be a pin on Scl, and let

PI be the corresponding pin on Cll. Wc assume without loss of generality that both pins are on the South

side of their respective cells. Let P2 be diat point on the South side of Scl that has the same position with

respect to the center of the side that PI has with respect to the center of die corresponding side of CM. In

general, P and P2 will not coincide and it will be necessary to introduce a jog (P,P2) in order to connect them.

Frequently, diis type of jog can be eliminated by moving some pins or subcclls. This problem is addressed by

the next algoridim. In order to explain how the algoridim works we consider two cases as illustrated in Figure

6-5. Wc say that a point U is rigidly connected to pin V if U is connected to V by a path consisting of

horizontal and vertical wire segments.

c a s e 1
c a s e 2

Figure 6-5: Eliminating Jogs (Two Cases).

In the first case, all of the points rigidly connected with P (/.&, points Q and R in Figure 6-5) are movable,

so we move all of them right by distance D so that P and P2 coincide. We must be careful not to change the

position order among pins on the South side of Scl when we move R. In the second case, it appears that some

point Q, rigidly connected widi P, is not movable, because it is a pin on the boundary of another subcell Sell*

However, subccll Sell and all of the points rigidly connected with its pins are movable. Thus, we can move

Sc 1 ! and all of the points rigidly connected to it right by distance D so that P coincides with P2.

27

procedure EliminateJogs;

for every pin P on the South side of Sc l ,

f ind the corresponding pin PI on C l l ;

let C,C1 be the centers for Scl and C l l ;
NewX := C.PosX + (Pl.PosX - Cl.PosX);
NewY := P.PosY;

add new point P2 at (NewX.NewY);

D NewX - P.PosX;

let Pout be the set of a l l points r ig id ly connected to P;

i f every point in Pout is movable, then for each P3 in Pout. P3.PosX := P3.PosX+D
el se
for every subcell S e l l connected to P.

let SclOut be the set of a l l points r i g id l y connected to S e l l ;
i f every point in SclOut is movable, then

for each P3 in SclOut, P3.PosX := P3.PosX+D;
Scl l .RightX := Scl l .RightX + D;
Sc l l . Le f tX ;= Sc l l . Le f tX + D;

endif;
endfor;

Finally, we show how to put the previous algorithms together and actually do the unwinding. Our major

concern at this point in the algorithm is efficiency. When we unwind a recursive Escher specification, we

obtain a tree in which the nodes represent subcells and a directed arc exists between two nodes when the head

is a subcell of the tail. We must be careful not to duplicate steps if we encounter the same cell more dian once

when we traverse the tree. For example, when we instantiate SORT with n = 4, we obtain the tree structure

shown in Figure 6-7.

endif;

endfor
endproc;

Figure 6-6: Algoridim for Eliminating Jogs.

S0RT(4)

MERGE(2)
S0RT(2)) S 0 R T (2)

CMP CMP M E R G E (l) M E R G E (l) CMP CMP PASS(2) PASS(2)

CMP CMP

Figure 6-7: Traversal Tree for SORT(4)

28

In this case there arc several duplicates among the 8 terminal nodes and 4 non-terminal nodes. In order to

unwind SORT(4), wc have to unwind SORT(2) twice and MERGE(2) once; when wc unwind MERGE(2),

wc must unwind PASS(2) twice, MERGE(l) twice, and CMP twice. In fact, if diis representation is used, it is

possible to create examples in which the number of duplicated steps will be exponential in the size of the

original Escher specification.

Instead, Escher uses a directed acyclic graph structure to represent the nesting of subcells. We call diis data

structure the Subcell Nesting Graph orSNG. Since each subcell corresponds to at most one node in die SNG,

it is only necessary to unwind a given subcell once. The graph for SOR 1(4) is shown in Figure 6-8. Note that

each of the subcells SORT(4), SORT(2), CMP, MERGE(2), MERGE(l), and PASS(2) is represented

uniquely this time.
S0RT(4)

S0RT(2)

PASS(2)

CMP

Figure 6-8: Directed Acyclic Graph for SORT(4)

The unwinding algorithm consists of two phases. In the first phase we evaluate all of those expressions that

depend on the parameters of the cell and create the SNG. Expressions may appear in the specifications of

groups and buses, and they may be used as parameters of lower level subcells. After we have figured out the

exact number of subcells in a subcell group, we use the algorithm in Figure 6-2 to obtain enough space for the

omitted subcells in the group; then we copy the subcells into the cell. After a cell has been evaluated it will be

linked to its source cell in the SNG. The SNG for cell CL(V) will not be complete undl all of its descendant

subcells have been processed in this manner.

The second phase in the unwinding process is a depth first traversal of the SNG. When all of the subcells of

a cell in the SNG have been unwound, we replace each subcell with its source body and mark the cell as

unwound. The algorithm in Figure 6-4 is used to obtain enough space for filling in the subcell bodies. The

algorithm in Figure 6-6 is used for eliminadng jogs in wires that result from these substitutions.

29

procedure Eval(CI,OrigCI, N, V);

name N;

i f C1(V) is already in the SNG then return

e lse i f CI is a basic ce l l then add a Cl-node into SNG
el se

evaluate a l l of the expressions in C1(N), replacing N by i ts
value V;
expand a l l subcell groups using the algorithm in Figure 6-2;
replace each bus by a number of wires equal to the bus width;

for each subcell Se l l do
let the source of Se l l be CU(V1);
Eva l (CU,C l ,N,V1);

endfor;

add a Cl(v)-node into SNG;

endif;

set l ink from OrigCl to C1(V);

endproc;

Figure 6-9: Algorithm for constructing Subcell Nesting Graph.

procedure Unwind(Cl(v));

for each descendant C U (v l) of Cl(v) do
i f C U (v l) is not unwound then Unwind(Cl 1(v l)) ;

endfor;

for each subcell Scl of C l (v) ,
expand Scl to be the same size as i t s source;
map the pins of C l l onto Scl and minimize the number of jogs using
the procedure described in Figure 6-6;
copy C U (v l) into Sc l ;

endfor;

mark Cl(v) as unwound;

endproc;

Figure 6-10: Algorithm for Unwinding Recursive Cell Specifications).

30

Finally, some simple compaction algorithms arc used to shorten wires and move subcclls closer together. It

should be noted that these algorithms may violate the position order relation among subcells that is described

in section 5. For example, the compaction algorithms were used to obtain Figure 4-8. The position order

among subccll OFs is not the same as diat given in the original specification of the parallel prefix circuit.

7. Conclusion and Directions for Future Research

We believe diat ultimately recursion will play much the same role in hardware design that it has in software

design. Although recursion has always been an indispcnsiblc tool for theoretical investigations in algoridim

design, only in the last few years has it become respectable to write application programs that use recursive

procedures. The acceptance of recursion is a result of two factors: First, many software designers have come to

realize diat it natural to express certain algorithms recursively- particularly those that access recursive data

structures. Secondly, advances in computer architecture, like hardware stacks and displays, have decreased die

overhead associated with recursive procedure calls. We believe that an analogous process will occur in

hardware design. When design environments routinely provide support for recursion, designers will begin to

find elegant recursive solutions for problems that they currently must solve in an awkward manner using

iteration alone. Since recursive hardware designs are implemented by unwinding die recursion, the overhead

in efficiency that is associated widi the use of recursion in software will not be a problem. We further believe

that our use of parameterized subcell and group specifications will be of practical importance in any

completely general graphical design system, even if ftill recursion is not supported.

Finally, we list below some of the problems witii the current system that we hope to address in a future

version:

• Multiple parameters. As currently implemented, the Escher system only permits cell
specifications widi a single recursive parameter. A number of interesting examples can be
specified most naturally by using multiple recursive parameters. It should be fairly easy to modify
die current implementation so diat multiple parameters are permitted.

• Compaction and optimization. The layouts produced by our system frequently contain long wires
and have area that grows more rapidly with the recursion depdi than necessary. Although we
have implemented some simple compaction algorithms, we believe that this problem requires
much more thought. It may be possible to design compaction algorithms diat take advantage of
the hierarchical structure of Escher specifications. However, the simple algoridims that have
already been implemented do not make use of diis information.

• Combined textual and geometric description. For certain applications like simulation a textual
circuit description may be quite useful. We envision a VLSI design system with multiple windows
which would permit both textual and geometric descriptions of circuit components. One window
would contain a geometrical representation of the circuit like the one described in this paper.
Another window would contain a representation of the circuit in an appropriate (textual)
hardware description language. The textual description could be used directly for simulation,

31

verification, etc. A change in the geometrical description would be automatically reflected by a
corresponding change in the HDL representation. The dual representation would provide access
to die best features of both types of design systems.

REFERENCES

1. M. Fischer and R. Ladner. "Paralllel prefix computation". Journal of the ACM 27,4 (1980).

2. S.M.Gcrman, K.J.Licbcrhcrr. "Zeus: a language for expressing algorithms in hardware". Computers
(1985).

3. J.Oustcrhout. "Caesar: An interactive layout editor for VLSI design". VLSI design (Fourth Quarter
1981), 34-38.

4. L Johnson, U. Weiser et tal. Towards a formal treatment of VLSI arrays. Caltech conference on VLSI,
January, 1981, pp. 375-398.

5. D.E.Knuth. The art of computer programming. Volume: Sorting and searching. Addison-Wesley, 1973.

6. R.J.Lipton, S.C.Nordi, R.Sedgewick et tal. ALI: a procedural language to describe VLSI layouts. 19th
design automation conference, IEEE, 1982, pp. 467-474.

7. W.K.Luk, J.E.Vuillemin. Recursive implementation of optimal dme VLSI integer multipliers. VLSI
design of digital systems, ed. F.Anceau & E.J.Aas, 1983, pp. 155-168.

8. CA..Mcad, L.A.Conway. Introduction to VLSI systems. Addison-Wesley, 1980.

9. Mary Sheeran. muFP-- An algebraic VLSI design language. PRG-39, Oxford University Computing Lab.,
November, 1984.

10. P.Henderson. Functional geometry. Symposium on LISP and functional programming, ACM, 1982, pp.
179-187.

11. C.D.Thompson. "Fourier transforms in VLSI". IEEE transaction on computers c32,11 (1983),
1047-1057.

