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1. Introduction 
The goal of the Soar project is to build a system capable of general intelligent behavior. We seek to 

understand what mechanisms are necessary for intelligent behavior, whether they are adequate for a wide 

range of tasks — including search-intensive tasks, knowledge-intensive tasks, and algorithmic tasks — and 

how they work together to form a general cognitive architecture. One necessary component of such an 

architecture, and the one on which we focus in this paper, is a general learning mechanism. Intuitively, a 

general learning mechanism should be capable of learning all that needs to be learned. To be a bit more 

precise, assume that we have a general performance system capable of solving any problem in a broad set of 

domains. Then, a general learning mechanism for that performance system would possess the following three 

properties.1 

• Task generality. It can improve the system's performance on all of the tasks in the domains. The 
scope of the learning component should be the same as that of the performance component. 

• Knowledge generality. It can base its improvements on any knowledge available about the domain. 
This knowledge can be in the form of examples, instaictions, hints, its own experience, etc. 

• Aspect generality. It can improve all aspects of the system. Otherwise there would be a 
wandering-bottleneck problem (Mitchell, 1983), in which those aspects not open to improvement 
would come to dominate the overall performance effort of die system. 

These properties relate to the scope of the learning, but they say nothing concerning the generality and 

effectiveness of what is learned. Therefore we add a fourth property. 

• Transfer of learning. What is learned in one situation will be used in other situations to improve 
performance. It is through the transfer of learned material that generalization, as it is usually 
studied in artificial intelligence, reveals itself in a learning problem solver. 

Generality thus plays two roles in a general learning mechanism: in the scope of application of the mechanism 

and the generality of what it learns. 

There arc many possible organizations for a general learning mechanism, each with different behavior and 

implications. Some of the possibilities that have been investigated within AI and psychology include: 

• A Multistrategy Learner. Given the wide variety of learning mechanisms currently being 
investigated in AI and psychology, one obvious way to achieve a general learner is to build a 
system containing a combination of these mechanisms. The best example of this to date is 
Anderson's (1983a) ACT* system which contains six learning mechanisms. 

• A Deliberate Learner. Given the breadth required of a general learning mechanism, a natural way 
to build one is as a problem solver that deliberately devises modifications that will improve 
performance. The modifications are usually based on analyses of the tasks to be accomplished, 

Fhese properties are related to, but not isomorphic with, the three dimensions of variation of learning mechanisms described in 
Carboncll, iVfichalski, and Mitchell (1983) — application domain, underlying learning strategy, and representation of knowledge. 
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2 For a comparison of chunking to other simple mechanisms for learning by experience, see Rosenbloom and Newell (1985). 

the structure of the problem solver, and the system's performance on the tasks. Sometimes this 
problem solving is done by the performance system itself, as in Lcnat's AM (1916) and Eurisko 
(1983) programs, or in a production system that employs a build operation (Waterman, 1975) — 
whereby productions can themselves create new productions — as in Anzai & Simon's 
(1979) work on learning by doing. Sometimes the learner is constructed as a separate critic with 
its own problem solver (Smith, Mitchell, Chcstck, & Buchanan, 1977; Rcndell, 1983), or as a set of 
critics as in Sussman's (1977) Hacker program. 

• A Simple Experience Learner. There is a single learning mechanism that bases its modifications on 
the experience of the problem solver. The learning mechanism is fixed, and does not perform any 
complex problem solving. Examples of this approach are memo functions (Michie, 1968; Marsh, 
1970), macro-operators in Strips (Fikes, Hart and Nilsson, 1972), production composition (Lewis, 
1978; Neves & Anderson, 1981), and knowledge compilation (Anderson, 1983b). 

The third approach, die simple experience learner, is the one adopted in Soar. In some ways it is the most 

parsimonious of the three alternatives: it makes use of only one learning mechanism, in contrast to a 

multistrategy learner; it makes use of only one problem solver, in contrast to a critic-based deliberate learner; 

and it requires only problem solving about the actual task to be performed, in contrast to both kinds of 

deliberate learner. Counterbalancing the parsimony is diat it is not obvious a priori that a simple experience 

learner can provide an adequate foundation for the construction of a general learning mechanism. At first 

glance, it would appear that such a mechanism would have difficulty learning from a variety of sources of 

knowledge, learning about all aspects of the system, and transferring what it has learned to new situations. 

The hypothesis being tested in the research on Soar is that chunking, a simple experience-based learning 

mechanism, can form the basis for a general learning mechanism.2 Chunking is a mechanism originally 

developed as part of a psychological model of memory (Miller, 1956). The concept of a chunk — a symbol 

that designates a pattern of other symbols — has been much studied as a model of memory organization. It 

has been used to explain such phenomena as why the span of short term memory is approximately constant, 

independent of the complexity of the items to be remembered (Miller, 1956), and why chess masters have an 

advantage over novices in reproducing chess positions from memory (Chase & Simon, 1973). 

Newell and Rosenbloom (1981) proposed chunking as the basis for a model of human practice and used it 

to model the ubiquitous power law of practice — that the time to perform a task is a power-law function of 

the number of times the task has been performed. The model was based on the idea that practice improves 

performance via the acquisition of knowledge about patterns in the task environment, that is, chunks. When 

the model was implemented as part of a production-system architecture, Uiis idea was instantiated with 

chunks relating patterns of goal parameters to patterns of goal results (Rosenbloom, 1983; Rosenbloom & 
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Newell, 1985). By replacing complex processing in subgoals with chunks learned during practice, the model 
could improve its speed in performing a single task or set of tasks. 

To increase the scope of the learning beyond simple practice, a similar chunking mechanism has been 

incorporated into the Soar problem-solving architecture (Laird, Newell, & Rosenbloom, 1985). In previous 

work we have demonstrated how chunking can improve Soar's performance on a variety of tasks and in a 

variety of ways (Laird, Rosenbloom & Newell, 1984). In this article we focus on presenting the details of how 

chunking works in Soar (Section 3), and describe a new application involving the acquisition of macro-

operators similar to those reported by Korf (1985a) (Section 4). This demonstration extends the claims of 

generality, and highlights the ability of chunking to transfer learning between different situations. 

Before proceeding to die heart of this work — the examination of the anatomy of chunking and a 

demonstration of its capabilities — it is necessary to make a fairly extensive digression into the structure and 

performance of the Soar architecture (Section 2). In contrast to systems with multistrategy or deliberate 

learning mechanisms, the learning phenomena exhibited by a system with only a simple experience-based 

learning mechanism is a function not only of the learning mechanism itself, but also of the problem-solving 

component of die system. The two components are closely coupled and mutually supportive. 

2. Soar — An Architecture for General Intelligence 
Soar'vs an architecture for general intelligence that has been applied to a variety of tasks (Laird, Newell, & 

Rosenbloom, 1985; Rosenbloom, Laird, McDermott, Newell, & Orciuch, 1985): many of the classic AI toy 

tasks such as the Tower of Hanoi, and the Blocks World; tasks that appear to involve non-search-based 

reasoning, such as syllogisms, the three-wise-men puzzle, and sequence extrapolation; and large tasks 

requiring expert-level knowledge, such as the Rl computer configuration task (McDermott, 1982). In this 

section we briefly review the .Soar architecture and present an example of its performance in the Eight Puzzle. 

2 . 1 . The Archi tecture 

Performance in Soar is based on the problem space-hypothesis', all goal-oriented behavior occurs as search 

in problem spaces (Newell, 1980). A problem space for a task domain consists of a set of states representing 

possible situations in the task domain and a set of operators diat transform one state into another one. For 

example, in the chess domain the states are configurations of pieces on die board, while the operators arc the 

legal moves, such as P-K4. In the computer-configuration domain the states are partially configured 

computers, while the operators add components to the existing configuration (among other actions). Problem 

solving in a problem space consists of starting at some given initial state, and applying operators (yielding 

intermediate states) until a desired slate is reached that is recognized as achieving the goal. 
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In Soar, each goal has three slots, one each for a curfcnt problem space, state, and operator. Togctiier ti\csc 

four components — a goal along with its current problem space, state and operator — comprise a context. 

Goals can have subgoals (and associated contexts), which form a strict goal-stibgoal hierarchy. All objects 

(such as goals, problem soaces, states, and operators) have a unique identifier, generated at the time the object 

was created. Further descriptions of an object are called augmentations. Each augmentation has an idendfier, 

an attribute, and a value. The value can either be a constant value, or the identifier of another object. All 

objects are connected via augmentations (either directly, or indirectly via a chain of augmentations) to one of 

the objects in a context, so that the identifiers of objects act as nodes of a semantic network, while the 

augmentations represent die arcs or links. 

Throughout die process of satisfying a goal, .Soar makes decisions in order to select between the available 

problem spaces, states, and operators. Every problem-solving episode consists of a sequence of decisions and 

these decisions determine the behavior of the system. Problem solving in pursuit of a goal begins with the 

selection of a problem space for the goal. This is followed,by die selection of an initial state, and then an 

operator to apply to the state. Once die operator is selected, it is applied to create a new state. The new state 

can then be selected for further processing (or the current state can be kept, or some previously generated 

state can be selected), and the process repeats as a new operator is selected to apply to the selected state. The 

weak methods can be represented as knowledge for controlling die selection of states and operators (Laird & 

Newell, 1983a). The knowledge that controls these decisions is collectively called search control. Problem 

solving without search control is possible in Soar, but it leads to an exhaustive search of the problem space. 

Figure 1 shows a schematic representation of a series of decisions. To bring the available search-control 

knowledge to bear on the making of a decision, each decision involves a monototiic elaboration phase. During 

the elaboration phase, all directly available knowledge relevant to the current situation is brought to bear. 

This is the act of retrieving knowledge from memory to be used to control problem solving. In Soar, the 

long-term memory is structured as a production system, with all directly available knowledge represented as 

productions.3 The elaboration phase consists of one or more cycles of production execution in which all of the 

eligible productions are fired in parallel. The contexts of die goal hierarchy and their augmentations serve as 

the working memory for these productions. The information added during die elaboration phase can take 

one of two forms. First, existing objects may have their descriptions elaborated (via augmentations) with new 

or existing objects, such as die addition of an evaluation to a state. Second, data structures called preferences 

can be created that specify the desirability of an object for a slot in a context. Each preference indicates the 

context in which it is relevant by specifying die appropriate goal, problem space, state and operator. 

3 We will use the terms production and rule interchangeably throughout this paper. 
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Figure 1: The .Soar decision cycle. 

When the elaboration phase reaches quiescence — when no more productions are eligible to fire — a fixed 

decision procedure is run diat gatiiers and interprets the preferences provided by the elaboration phase to 

produce a specific decision. Preferences of type acceptable and reject determine whether or not an object is a 

candidate for a context Preferences of type better, equal, and worse determine the relative worth of objects. 

Preferences of type best, indifferent and worst make absolute judgements about the worth of objects.4 Starting 

from the oldest context, the decision procedure uses the preferences to determine if the current problem 

space, state, or operator in any of the contexts should be changed. The problem space is considered first, 

followed by the state and then the operator. A change is made if one of the candidate objects for the slot 

dominates (based on the preferences) all of the others, or if a set of equal objects dominates all of the other 

objects. In the latter case, a random selection is made between the equal objects. Once a change has been 

made, the subordinate positions in the context (state and operator if a problem space is changed) are 

inidalized to undecided, all of the more recent contexts in the stack are discarded, the decision procedure 

terminates, and a new decision commences. 

If sufficient knowledge is available during the search to uniquely determine a decision, die search proceeds 

unabated. However, in many cases the knowledge encoded into productions may be insufficient to allow the 

lere is also a parallel preference that can be used to assert that two operators should execute simultaneously. 
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direct application of an operator or the making of a search-control decision. That is, the available preferences 

do not determine a unique, uncontested change in a context, causing an impasse in problem solving to 

occur (Brown & VanLehn, 1980). Four classes of impasses can arise in Soar (1) no-change (the elaboration 

phase ran to quiescence without suggesting any changes to the contexts), (2) tie (no single object or group of 

equal objects was better than all of the other candidate objects), (3) conflict (two or more candidate objects 

were better than each other), and (4) rejection (all objects were rejected, even the current one). All types of 

impasse can occur for any of the three context slots associated with a goal — problem space, state, and 

operator — and a no-change impasse can occur for the goal. For example, a state tie occurs whenever there 

are two or more competing states and no directly available knowledge to compare them. An operator 

no-change occurs whenever no context changes are suggested after an operator is selected (usually because 

not enough information is directly available to allow the creation of a new state). 

Soar responds to an impasse by creating a subgoal (and an associated context) to resolve die impasse. Once 

a subgoal is created, a problem space must be selected, followed by an initial state, and then an operator. If an 

impasse is reached in any of these decisions, another subgoal will be created to resolve it, leading to the 

hierarchy of goals in Soar. By generating a subgoal for each impasse, the full problem-solving power of Soar 

can be brought to bear to resolve the impasse. These subgoals correspond to all of the types of subgoals 

created in standard AI systems (Laird, Newell, & Rosenbloom, 1985). This capability to generate 

automatically all subgoals in response to impasses and to open up all aspects of problem-solving behavior to 

problem solving when necessary is called universal subgoaling (Laird, 1984). 

Because all goals are generated in response to impasses, and each goal can have at most one impasse at a 

time, the goals (contexts) in working memory are structured as a stack, referred to as the context stack. A 

subgoal terminates when its impasse is resolved. For example, if a tie impasse arises, the subgoal generated 

for it will terminate when sufficient preferences have been created so that a single object (or set of equal 

objects) dominates the others. When a subgoal terminates, Soar pops the context stack, removing from 

working memory all augmentations created in that subgoal that arc not connected to a prior context, cither 

directly or indirectly (by a chain of augmentations), and preferences whose context objects do not match 

objects in prior contexts. Those augmentations and preferences that are not removed are the results of the 

subgoal. 

Default knowledge (in the form of productions) exists in Soar to cope with any of the subgoals when no 

additional knowledge is available. For some subgoals (those created for all types of rejection impasses and 

no-change impasses for goals, problem-spaces, and states) this involves simply backing up to a prior choice in 

the context, but for other subgoals (those create for tie, conflict and operator no-change impasses), this 

involves searches for knowledge that will resolve the subgoal's impasse. If additional non-default knowledge 
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is available to resolve an impasse, it dominates the default knowledge (via preferences) and controls the 

problem solving within the subgoal. 

2 .2 . An Example Problem Solving Task 

Consider the Eight Puzzle, in which there arc eight numbered, movable dies set in a 3x3 frame. One cell of 

the frame is always empty (the blank), making it possible to move an adjacent tile into die empty cell. The 

problem is to transform one configuration of tiles into a second configuration by moving the tiles. The states 

of the eight-puzzle problem space are configurations of the numbers 1-8 in a 3x3 grid. There is a single 

general operator to move adjacent tiles into the empty cell. For a given state, an instance of this operator is 

created for each of the cells adjacent to the empty cell. Each of diese operator instances is instantiated with 

the empty cell and one of the adjacent cells. To simplify our discussion, we will refer to these instantiated 

operators by the direction they move a die into the empty cell: up, down, left, or right. Figure 2 shows an 

example of the initial and desired states of an Eight Puzzle problem. 

Initial State Desired State 

2 3 1 

8 4 

7 6 5 

1 2 3 

8 4 

7 6 5 

Figure 2: Example initial and desired states of the Eight Puzzle. 

To encode this task in Soar, one must include productions that propose the appropriate problem space, 

create the initial state of that problem space, implement the operators of the problem space, and detect the 

desired state when it is achieved. If no additional knowledge is available, an exhaustive depdi-first search 

occurs as a result of the default processing for tie impasses. Tic impasses arise each time an operator has to be 

. selected. In response to die subgoals for these impasses, alternatives are investigated to determine the best 

move. Whenever another tic impasse arises during the investigation of one of the alternatives, an additional 

subgoal is generated, and the search deepens. If additional search-control knowledge is added to provide an 

evaluation of the states, the search changes to steepest-ascent hill climbing. As more or different search-

control knowledge is added, the behavior of the search changes in response to the new knowledge. One of the 

properties of Soar is that the weak methods, such as generate and test, means-ends analysis, depth-first search 

and hill climbing, do not have to be explicitly selected, but instead emerge from the staicture of the task and 
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the available search-control knowledge (Laird & Newell, 1983a; Laird & Newell, i983b; Laird, 1984). 

Another way to control the search in the Eight puzzle is to break it up into a set of subgoals to get the 

individual dies into position. We will look at this approach in some detail because it forms the basis for the 

use of macro-operators for the Eight Puzzle. Means-ends analysis is the standard technique for solving 

problems where the goal can be decomposed into a set of subgoals, but it is ineffective for problems such as 

die Eight Puzzle that have non-serializable subgoals — tasks for which there exist no ordering of the subgoals 

such that successive subgoals can be achieved without undoing what was accomplished by earlier 

subgoals (Korf, 1985a). Figure 3 shows an intermediate state in problem solving where dies 1 and 2 are in 

their desired positions. In order to move tile 3 into its desired position, die 2 must be moved out of its desired 

position. Non-serializable subgoals can be tractable if they are serially decomposable (Korf, 1985a). A set of 

subgoals is serially decomposable if there is an ordering of them such that the solution to each subgoal 

depends only on that subgoal and on die preceding ones in the solution order. In the Eight Puzzle the 

subgoals are, in order: (1) have the blank in its correct posidon; (2) have the blank and the first die in their 

correct posidons; (3) have the blank and the first two dies in their correct positions; and so on through the 

eighth die. Each subgoal depends only on the posidons of die blank and the previously placed dies. Within 

one subgoal a previous subgoal may be undone, but if it is, it must be re-achieved before the current subgoal 

is completed. 

Intermediate State Desired State 

1 2 3 

8 4 

7 6 5 

Figure 3: Non-serializable subgoals in the Eight Puzzle 

Adopting this approach does not result in new knowledge for directly controlling the selection of operators 

and states in the eight-puzzle problem space. Instead it provides knowledge about how to structure and 

decompose the puzzle. This knowledge consists of the set of serially decomposable subgoals, and die ordering 

of those subgoals. To encode this knowledge in Soar, we have added a second problem space, eight-puzzle-sd, 
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with a set of nine operators corresponding to the nine subgoals. For example, the operator place-2 will place 

tile 2 in its desired position, while assuring that the blank and the first tile will also be in position. The 

ordering of the subgoals is encoded as search-control knowledge that creates preferences for the operators. 

Figure 4 shows a trace of the decisions for a short problem-solving episode for the inidal and desired states 

from Figure 2. This example is heavily used in the remainder of the paper, so we shall go through it in some 

detail. To start problem solving, the current goal is initialized to be solve-eight-puzzle (in decision 1). The 

goal is represented in working memory by an identifier, in this case Gl. Problem solving begins in the 

eight-puzzlc-sd problem space. Once the initial state, SI, is selected, preferences are generated that order the 

operators so that place-blank is selected. Applicadon of this operator, and all of the eight-puzzle-sd operators, 

is complex, often requiring extensive problem solving. Because the problem-space hypothesis implies that 

such problem solving should occur in a problem space, the operator is not directly implemented as rules. 

Instead, a no-change impasse leads to a subgoal to implement place-blank, which will be achieved when the 

blank is in its desired position. The place-blank operator is then implemented as a search in the eight-puzzle 

problem space for a state with die blank in the correct position. This search can be carried out using any of 

the weak methods described earlier, but for this example, let us assume there is no additional search-control 

knowledge. 

Once the initial state is selected (decision 7), a tic impasse occurs among the operators that move the three 

adjacent tiles into the empty cell (left, up and down). A resolve-tie subgoal (G3) is automatically generated for 

this impasse, and the tie problem space is selected. Its states are sets of objects being considered, and its 

operators evaluate objects so that preferences can be created. One of these evaluate-object operators (05) is 

selected to evaluate the operator that moves tile 8 to the left, and a rcsolve-no-change subgoal (G4) is 

generated because there arc no productions that dirccdy compute an evaluation of the left operator for state 

SI. Default search-control knowledge attempts to implement the evaluate-object operator by applying the 

left operator to state SI. This is accomplished in the subgoal (decisions 13-16), yielding the desired state (S3). 

Because the left operator lead to a solution for die goal, a preference is returned for it that allows it to be 

selected immediately for state SI (Decision 17) in goal G2, flushing the two lower subgoals (G3 and G4). If 

tiiis state were not the desired state, another tic impasse would arise and the tie problem space would be 

selected for this new subgoal. The subgoal combination of a resolve-tie followed by a resolve-no-change on 

an evaluate-object operator would recur, giving a depdi-first search. 

Applying the left operator to state SI yields state S4, which is the desired result of the place-blank operator 

Roth pIacc-7 and p!ace*8 are always no-ops because once the blank and tiles 1*6 arc in place, either tiles 7 and 8 must also be in place, 
or the problem is unsolvablc. They can therefore be safely ignored. 
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1 Gl s o l v e - e l g h t - p u z z l e 
2 PI e 1 g h t - p u z z l e - s d 
3 SI E 3 1 

8 4 

7 6 5 

4 01 p l a c e - b l a n k 
6 •->G2 ( r e s o l v e - n o - c h a n g e ) 
6 P2 e i g h t - p u z z l e 
7 SI 
8 ••>G3 ( r e s o l v e - t 1 e o p e r a t o r ) 
9 P3 t i e 
10 S2 { l e f t , up , down} 
11 05 e v a 1 u a t e - o b j e c t ( 0 2 ( l e f t ) ) 
12 »«>G4 ( r e s o l v e - n o - c h a n g e ) 
13 P2 e i g h t - p u z z l e 
14 SI 
16 02 l e f t 
16 S3 E 3 1 

CO
 4 

7 6 5 

17 02 l e f t 
18 S4 
19 S4 
20 03 p l a c e - 1 

Figure 4: A problem-solving trace for the Eight Puzzle. Each line of the trace includes, from left to right, 
the decision number, the identifier of the object selected, and possibly a short description of the 
object. 

in goal G l above. The place-1 operator (08) is then selected as the current operator. As with place-blank, 

place-1 is implemented by a search in the cight-puzzlc problem space. It succeeds when both tile 1 and the 

blank are in dieir desired positions. With this problem-solving strategy, each tile is moved into place by one 

of the operators in the eiglit-puzzlc-sd problem space. In the subgoals that implement the eight-puz/le-sd 

operators, many of the tiles already in place might be moved out of place, however, they must be back in 

place for die operator to terminate successfully. 

3. Chunking in Soar 
Soar was originally designed to be a general (non-learning) problem solve, Nevertheless, its problem-

solving and memory structures support learning in a number of ways. The stmcture of problem solving in 

Soar determines when new knowledge is needed, what that knowledge might be, and when it can be acquired. 
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• Determining when new knowledge is needed. In Scar, impasses occur if and only if the directly 
available knowledge is eidier incomplete or inconsistent. Therefore, impasses indicate when the 
system should attempt to acquire new knowledge. 

• Determining what to learn. While problem solving within a subgoal, Soarcan discover information 
that will resolve an impasse. This information, if remembered, can avert similar impasses in( 
future problem solving. 

• Determining when new knowledge can be acquired When a subgoal completes, because its impasse 
has been resolved, an opportunity exists to add new knowledge that was not already explicitly 
known. 

Soai-'s long-term memory, which is based on a production system and the workings of die elaboration phase, 

supports learning in two ways: 

• Integrating new knowledge. Productions provide a modular representation of knowledge, so that 
the integration of new knowledge only requires adding a new production to production memory 
and does not require a complex analysis of the previously stored knowledge in the system (Newell, 
1973; Waterman, 1975; Davis & King, 1976; Anderson, 1983b). 

• Using new knowledge. Even if the productions are syntactically modular, there is no guarantee that 
the information they encode can be integrated together when it is needed. The elaboration phase 
of Soar brings all appropriate knowledge to bear, with no requirement of synchronization (and no . 
conflict resolution). The decision procedure dien integrates die results of the elaboration phase. 

Chunking in Soar takes advantage of this support to create rules that summarize the processing of a 

subgoal, so that in the future, die costly problem solving in the subgoal can be replaced by direct rule 

application. When a subgoal is generated, a learning episode begins that could lead to the creation of a 

chunk. During problem solving within the subgoal, information accumulates on which a chunk can be based. 

When the subgoal terminates, a chunk can be created. Each chunk is a rule (or set of rules) that gets added to 

the production memory. Chunked knowledge is brought to bear during the elaboration phase of later 

decisions. In the remainder of this section we look in more detail at die process of chunk creation, evaluate 

the scope of chunking as a learning mechanism, and examine the sources of chunk generality. 

3 . 1 . Constructing Chunks 

Chunks are based on the working memory elements that arc either examined or created during problem 

solving within a subgoal. The conditions consist of diose aspects of die situation that existed prior to the goal, 

and which were examined during the processing of the goal, while the actions consist of the results of the goal. 
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When the subgoal terminates,6 the collected working-memory elements arc converted into die conditions and 

actions of one or more productions.7 In this subsection, we describe in detail the three steps in chunk 

creation: (1) the collection of conditions and actions, (2) the variabilization of identifiers, and (3) chunk 

optimization. 

3 . 1 . 1 . Collecting Conditions and Actions 

The conditions of a chunk should test those aspects of the situation existing prior to the creation of the goal 

diat are relevant to the results that satisfy the goal. In Soar this corresponds to the working-memory elements 

that were matched by productions that fired in the goal (or one of its subgoals), but that existed before the 

goal was created. These are the elements that the problem solving implicitly deemed to be relevant to the 

satisfaction of the subgoal. This collection of working-memory elements is maintained for each active goal in 

die goal's referenced-list* Soar allows productions belonging to any goal in the context stack to execute at any 

time, so updating the correct refercnced-list requires determining for which goal in the stack the production 

fired. This is the most recent of the goals matched by the production's conditions. The production's firing 

affects the chunks created for that goal and all of its supergoals, but because the firing is independent of the 

more recent subgoals, it has no effect on the chunks built for those subgoals. No chunk is created if the 

subgoal's results were not based on prior information; for example, when an object is input from the outside, 

or when an impasse is resolved by domain-independent default knowledge. 

The actions of a chunk are based on the results of the subgoal for which the chunk was created. No chunk 

is created if there are no results. This can happen, for example, when a result produced in a subgoal leads to 

die termination of a goal much higher in die goal hierarchy. All of die subgoals that are lower in die 

hierarchy will also be terminated, but they may not generate results. 

For an example of chunking in action, consider the terminal subgoal (G4) from the problem-solving 

episode in Figure 4. This subgoal was created as a result of a no-change impasse for the evaluate-object 

default behavior for .Soar is to create a chunk always; that is, every time a subgoal terminates. The major alternative to creating 
chunks for all terminating goals is to chunk bottom-up, as was done in modeling the power law of practice (Rosenbloom, L983). In 
bottom-up chunking, only terminal goals — goals for which no subgoals were generated — are chunked. As chunks are learned for 
subgoals, the subgoals need no longer be generated (the chunks accomplish the subgoals* tasks before the impasses occur), and higher 
goals in the hierarchy become eligible for chunking. It is unclear whether chunking always or bottom-up will prove more advantageous 
in the long run, so to facilitate experimentation, both options arc available in Soar. 

7 

Production composition (Lewis, 1978) has also been used to learn productions that summarize goals (Anderson, L983b). It differs most 
from diunking in that it examines the actual definitions of the productions that fired in addition to the working-memory elements 
referenced and created by the productions, 

g 
If a fired production has a negated condition — a condition testing for the absence in working memory of an element matching its 

pattern — then the negated condition is instantiated with the appropriate variable bindings from the production's positive conditions. If 
the identifier of the instantiated condition existed prior to the goal, then the instantiated condition is included in the refercnced-list 
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operator that should evaluate the operator that will move tile 8 to die left. The problem solving within goal 

G4 must implement the evaluate-object operator. Figure 5 contains a graphic representation of part of die 

working memory for this subgoal near the beginning of problem solving (A) and just before the subgoal is 

terminated (B). The working memory that existed before the subgoal was created consisted of the 

augmentations of the goal to resolve die tie between the eight-puzzle operators, G3, and its supergoals (G2 

and Gl, not shown). The tie problem space is the current problem space of G3, while state S2 Is the current 

state and the evaluate-object operator (05) is the current operator. Dl is die desired state of having the blank 

in the middle, but with no constraint on the tiles in the other cells (signified by the X's in the figure). All of 

these objects have further descriptions, some only partially shown in the figure. 

The purpose of goal G4 is to evaluate operator 02, that will move tile 8 to the left in die initial state (SI). 

The first steps are to augment the goal with the desired state (Dl) and dien select the eight-puzzle problem 

space (P2), the state to which the operator will be applied (SI), and finally the operator being evaluated (02). 

To do this, the augmentations from the evaluate-object operator (05) to these objects are accessed and 

therefore added to the referenced list (the highlighted arrows in part (A) of Figure 5). Once operator 02 is 

selected, it is applied by a production that creates a new state (S3). The application of the operator depends 

on die exact representation used for the states of the problem space. Suite SI and desired state Dl, which 

were shown only schematically in Figure 5, are shown in detail in Figure 6. The states are built out of cells 

and tiles (only some of the cells and tiles are shown in Figure 6). The nine ceils (C1-C9) represent the 

structure of the Eight Puzzle frame. They form a 3x3 grid in which each cell points to its adjacent cells. There 

are eight numbered tiles (T2-T9), and one blank (Ti). Each tile points to its name, 1 dirough 8 for the 

numbered tiles and 0 for the blank. Tiles are associated with cells by objects called bindings. Each state 

contains 9 bindings, each of which associates one tile with the cell where it is located. The bindings for die 

desired state, Dl, are LI-L9, while die bindings for state SI are B1-B9. The fact that the blank is in the center 

of the desired state is represented by binding L2, which points to the blank tile (Tl) and the center cell (C5). 

All states (and desired states) in both the eight-puzzle and eight-puzzlc-sd problem spaces share this same cell 

structure. 

To apply the operator and create a new state, a new state symbol is created (S3) with two new bindings, one 

for the moved tile and one for the blank. The binding for the moved tile points to the tile (T9) and to the cell 

where it will be (C4). The binding for the blank points to die blank (Tl) and to the cell that will be empty 

(C5). All the other bindings are then copied to the new state. This processing accessing the relative positions 

of the blank and the moved tile, and die bindings for the remaining tiles in current state (SI). The 

augmentations of the operator are tested for die cell that contains die tile to be moved. 

Once the new state (S3) is selected, a production generates die operators that can apply to the new state. All 
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Before subgoal 

During subgoal 

Figure 5: An example of the working-memory elements used to create a chunk. (A) shows working 
memory near the beginning of the subgoal to implement the evaluate-object operator. (B) shows 
working memory at die end of the subgoal. The circled symbols represent identifiers and the 
arrows represent augmentations. The identifiers and augmentations above the horizontal lines 
existed before the subgoal was created. Below the lines, the identifiers marked by doubled 
circles, and all of the augmentations, arc created in the subgoal. The other identifiers below the 
line arc not new; they are actually die same as the corresponding ones above the lines. The 
highlighted augmentations were referenced during the problem solving in die subgoal and will 
be the basis of the conditions of the chunk. The augmentation that was created in the subgoal 
but originates from an object existing before the subgoal (EI~>SUCCESS) will be the basis for the 
action of the chunk. 

cells that are adjacent to the blank cell (C2, C4, C6, and C8) arc used to create operators. This requires testing 

die structure of the board as encoded in the connections between the cells. Following die creation of the 

operators that can apply to state S3, the operator that would undo the previous operator is rejected so that 

unnecessary backtracking is avoided. During the same elaboration phase, die state is tested to determine 
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Figure 6: Example of working-memory elements representing the state used to create a chunk. The 
highlighted augmentations were referenced during the the subgoal. 

whether a die was just moved in or out of its correct position. This information is used to generate an 

evaluation based on the sum of die number of tiles that do not have to be in place and the number of tiles tiiat 

both have to be in place and arc in place. This computation, whose result is represented by the object XI with 

a value of 8 in Figure 5, results in the accessing of those aspects of the desired state highlighted in Figure 6. 

The value of 8 means that the goal is satisfied, so the evaluation (El) for die operator has die value success. 

Because El is an identifier that existed before the subgoal was created and die success augmentation was 

created in the subgoal, this augmentation becomes an action. If success had further augmentations, they 

would also be included as actions. The augmentations of the subgoal (G4), die new state (S3), and its 

sub-object (XI) that point to objects created before the subgoal are not included as actions because dicy are 

not augmentations, either directly or indirectly, of an object that existed prior to the creation of die subgoal. 
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When goal G4 terminates, the initial set of conditions and actions have been determined for the chunk. 

The conditions test that there exists an evaluate-object operator whose purpose is to evaluate die operator that 

moves the blank into its desired location, and diat all of the tiles are cither in position or irrelevant for the 

current eight-puzzle-sd operator. The action is to mark the evaluation as successful, meaning that the operator 

being evaluated will achieve the goal. This chunk should apply in similar future situations, directly 

implementing the evaluate-object operator, and avoiding die no-change impasse and the resulting subgoal. 

3 . 1 . 2 . Identif ier Variabil ization 

Once the conditions and actions have been determined, all of the identifiers are replaced by production 

(pattern-match) variables, while the constants, such as evaluate-object, eight-puzzle, and 0 are left unchanged. 

An identifier is a label by which a particular instance of an object in working memory can be referenced. It is 

a short-term symbol that lasts only as long as the object is in working memory. Each time the object reappears 

in working memory it is instantiated with a new identifier. If a chunk that is based on working-memory 

elements is to reapply in a later situation, it must not mention specific identifiers. In essence the 

variabilization process is like replacing an "eq" test in Lisp (which requires pointer identity) widi an "equal" 

test (which only requires value identity). 

All occurrences of a single identifier arc replaced with the same variable and all occurrences of different 

identifiers are replaced by different variables. This assures that die chunk will match in a new situation only if 

there is an identifier that appears in the same places in which the original identifier appeared. The production 

is also modified so that no two variables can match the same identifier. Basically, Soar is guessing which 

identifiers must be equal and which must be distinct, based only on the information about equality and 

inequality in working memory. All identifiers that are the same arc assumed to require equality. All 

identifiers that are not die same are assumed to require inequality. Biasing the generalization in these ways 

assures that the chunks will not be overly general (at least because of diese modifications), but they may be 

overly specific. The only problem this causes is that additional chunks may need to be learned if the original 

ones suffer from overspecialization. In practice, these modifications have not led to overly specific chunks. 

3 . 1 . 3 . Chunk Optimization 

At this point in the chunk-creation process the semantics of the chunk are determined. However, three 

additional processes are applied to the chunks to increase the efficiency with which they are matched against 

working memory (all related to the use in Soar of the OpsS rule matcher (Forgy, 1981)). The first process is to 

remove conditions from the chunk diat provide (almost) no constraint on the match process. A condition is 

removed if it has a variable in the value field of the augmentation that is not bound elsewhere in die rule 

(either in the conditions or the actions). This process rccurses, so that a long linkcd-list of conditions will be 

removed if the final one in the list has a variable that is unique to that condition. For the chunk based on 
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Figures 5 and 6, the bindings and tiles tiiat were only referenced for copying (III, 134, B5, B6, B7, B8, B9, and 

T9) and die cells referenced for creating operator instantiations (C2, C6, and C8) are all removed. The 

evaluation object, El, in Figure 5 is not removed because it is included in the action. Eliminating the 

bindings does not increase die generality of die chunk, because all states must have nine bindings. However, 

the removal of die cells does increase the generality, because they (along with the test of cell C4) implicitly 

test that there must be four cells adjacent to the one to which the blank will be moved. Only the center has 

four adjacent cells, so the removal of diese conditions does increase the generality. This docs increase slightly 

the chance of the chunk being over-general, but in practice it has never caused a problem, and it can 

significantly increase the efficiency of the match by removing unconstrained conditions. 

The second optimization is to eliminate potential combinatorial matches in the conditions of productions 

whose actions are to copy a set of augmentations from an existing object to a new object. A common strategy 

for implementing operators in subgoals is to create a new state containing only the new and changed 

information, and then to copy over pointers to the rest of the previous state. The chunks built for these 

subgoals contain one condition for each of the copied pointers. If, as is usually the case, a set of similar items 

arc being copied, then the copy conditions end up differing only in the names of variables. Each 

augmentation can match each of these conditions independently, generating a combinatorial number of 

instantiations. This problem would arise if a subgoal were used to implement the eight-puzzle operators 

instead of the rules used in our current implementation. A single production would be learned that created 

new bindings for the moved tile and the blank, and also copied all of the other bindings. There would be 

seven conditions that tested for the bindings, but each of these conditions could match any of die bindings 

that had to be copied, generating 7! (5040) instantiations. This problem is solved by collapsing the set of 

similar copy conditions down to one. All of the augmentations can still be copied over, but it now occurs via 

multiple instantiations (seven of diem) of the simpler rule. Though this reduces the number of rule 

instantiations to linear in the number of augmentations to be copied, it still means that the other non-copying 

actions are done more than once. This problem is solved by splitting the chunk into two productions. One 

production does everything the subgoal did except for the copying. The other production just does the 

copying. If there is more than one set of augmentations to be copied, each set is collapsed into a single 

condition and a separate rule is created for each.9 

The final optimization process consists of applying a condition-reordering algorithm to the chunk 

productions. The efficiency of the Rcte-network matcher (Forgy, 1982) used in Soar is sensitive to the order 

in which conditions are specified. By taking advantage of the known structure of Soar's working memory, we 

The inelegance of this solution leads us to believe that we do not yet have the right assumptions about how new objects are to be 
created from old ones. 
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have developed a static reordering algorithm that significantly increases the efficiency of the match. 

Execution dme is sometimes improved by more than an order of magnitude, almost duplicating the efficiency 

that would be achieved if the reordering was done by hand. This reordering process preserves the existing 

semantics of the chunk. 

3 . 2 . The Scope of Chunking 

In Section 1 we defined die scope of a general learning mechanism in terms of three properties: task 

generality, knowledge generality, and aspect generality. Below we briefly discuss each of dicse with respect to 

chunking in Soar. 

Task generality. Soar provides a single formalism for all behavior — heuristic search of problem spaces in 

pursuit of goals. This formalism has been widely used in Artificial Intelligence (Feigenbaum and Fcldman, 

1963; Nilsson, 1980; Rich, 1983) and it has already worked well in Soar across a wide variety of problem 

domains (Laird, Newell, & Rosenbloom, 1985). If die problem-space hypothesis (Newell, 1980) does hold, 

then this should cover all problem domains for which goal-oriented behavior is appropriate. Chunking can 

be applied to all of the domains for which Soar is used. Though it remains to be shown that useful chunks 

can be learned for this wide range of domains, our preliminary experience suggests that die combination of 

Soarmd chunking has the requisite generality.10 

Knowledge generality. Chunking learns from the experiences of the problem solver. At first glance, it would 

appear to be unable to make use of instructions, examples, analogous problems, or other similar sources of 

knowledge. However, by using such information to help make decisions in subgoals, .Soar can learn chunks 

that incorporate the new knowledge. This approach has worked for a simple form of user direction, and is 

under investigation for learning by analogy. The results are preliminary, but it establishes that the question of 

knowledge generality is open for Soar. 

Aspect generality. Three conditions must be met for chunking to be able to learn about all aspects of Soar's 

problem solving. The first condition is that all aspects must be open to problem solving. This condition is 

met because Soar creates subgoals for all of the impasses it encounters during the problem solving process. 

These subgoals allow for problem solving on any of the problem solver's functions: creating a problem space, 

selecting a problem space, creating an initial state, selecting a state, selecting an operator, and applying an 

operator. These functions are both necessary and sufficient for Soar to solve problems. So far chunking has 

been demonstrated for the selection and application of operators (Laird, Rosenbloom & Newell, 1984); that 

(1985). 
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is, strategy acquisition (Langley, 1983; Mitchell, 1983) and operator implementation. However, 

demonstrations of chunking for the other types of subgoals remain to be done. 1 1 

The second condition is that die chunking mechanism must be able to create the long-term memory 

structures in which the new knowledge is to be represented. Soar represents all of its long-term knowledge as 

productions, and chunking acquires new productions. By restricting die kinds of condition and action 

primitives allowed in productions (while not losing luring equivalence), it is possible to have a production 

language that is coextensive syntactically with the types of rules learned by chunking: that is, the chunking 

mechanism can create ndes containing all of the syntactic constructs available in the language. 

The third condition is that the chunking mechanism must be able to acquire rules with the requisite 

content In Soar, this means that the problem solving on which the requisite chunks are to be based must be 

understood. The current biggest limitations on coverage stem from our lack of understanding of the problem 

solving underlying such aspects as problem-space creation and change of representation (Hayes and Simon, 

1976; Korf, 1980; Lcnat, 1983; Utgoff, 1984). 

3 .3 . Chunk General i ty 

One of the critical questions to be asked about a simple mechanism for learning from experience is the 

degree to which the information learned in one problem can transfer to other problems. If generality is 

lacking, and little transfer occurs, die learning mechanism is simply a caching scheme. The variabilization 

process described in Section 3.1.2 is one way in which chunks are made general. However, this process would 

by itself not lead to chunks that could exhibit non-trivial forms of transfer. All it does is allow the chunk to 

match another instance of the same exact situation. The principal source of generality is the implicit 

generalization that results from basing chunks on only the aspects of the situation that were referenced during 

problem solving. In the example in Section 3.1.1, only a small percentage of the augmentations in working 

memory ended up as conditions of the chunk. The rest of die information, such as the identity of die tile 

being moved and its absolute location, and the identities and locations of the other tiles, was not examined 

during problem solving, and therefore had no effect on the chunk. 

Together, the representation of objects in working memory and the knowledge used during problem 

solving, combine to form the bias for the implicit generalization process (Utgoff, 1984); that is, they determine 

which generalizations are embodied in the chunks learned. The object representation defines a language for 

the implicit generalization process, bounding the potential generality of the chunks that can be learned. The 

y e t b l ^ S f °f
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problem solving determines (indirectly, by what it examines) which generalizations arc actually embodied in 

the chunks. 

Consider the state representation used in Korf s (1985a) work on the Eight Puzzle (recall Section 2.2). In 

his implementation, the state of the board was represented as a vector containing the positions of each of the 

tiles. Location 0 contained the coordinates of the position that was blank, location 1 contained the 

coordinates of the first tile, and so on. This is a simple and concise representation, but because aspects of the 

representation are overloaded with more dian one functional concept, it provides poor support for implicit 

generalization (or for that matter, any traditional condition-finding method). For example, the vector indices 

have two functions: they specify die identity of the tile, and they provide access to die tile's position. When 

using this state representation it is impossible to access the position of a tile without looking at its identity. 

Therefore, even when the problem solving is only dependent on the locations of die tiles, the chunks learned 

would test the tile identities, thus failing to apply in situations in which they rightly could. A second problem 

with the representation is that some of the structure of the problem is implicit in die representation. Concepts 

that are required for good generalizations, such as the relative positions of two tiles, cannot be captured in 

chunks because they are not explicitly represented in die structure of the state. Potential generality is 

maximized if an object is represented so diat functionally independent aspects arc explicidy represented and 

can be accessed independently. For example, the Eight Puzzle state representation shown in Figure 6 breaks 

each functional role into separate working-memory objects. This representation, while not predetermining 

what generalizations are to be made, defines a class of possible generalizations that include good ones for die 

Eight Puzzle. 

The actual generality of the chunk is maximized (within the constraints established by the representation) if 

the problem solver only examines those features of the situation that are absolutely necessary to the solution 

of the problem. When the problem solver knows what it is doing, everything works fine, but generality can be 

lost when information that turns out to be irrelevant is accessed. For example, whenever a new state is 

selected, productions fire to suggest operators to apply to the state. This preparation goes on in parallel with 

the testing of the state to see if it matches the goal. If the state does satisfy the goal, then the preparation 

process was unnecessary. However, if the preparation process referenced aspects of the prior situation that 

were not accessed by previous productions, then irrelevant conditions will be added to the chunk. Another 

example occurs when false paths — searches that lead off of die solution path — are investigated in a subgoal. 

The searches down unsuccessful paths may reference aspects of the state that would not have been tested if 

only the successful path were followed.1 2 

1 2 A n experimental version of chunking has been implemented that overcomes these problems by performing a dependency analysis 
on traces of the productions that fired in a subgoal. The production traces are used to determine which conditions were necessary to 
produce results of the subgoal. All of the results of this paper are based on tlie version of chunking without the dependency analysis. 
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4. A Demonstration — Acquisition of Macro-Operators 
In this section we provide a demonstration of the capabilities of chunking in Soar involving the acquisition 

of macro-operators in the Eight Puzzle for serially decomposable goals (see Section 2). We begin with a brief 

review of Korfs (1985a) original implementation of diis technique. We follow this with the details of its 

implementation in Soar, together with an analysis of the generality of the macro-operators learned. This 

demonstration of macro-operators in Soar is of particular interest because: we are using a general problem 

solver and learner instead of special-purpose programs developed specifically for learning and using macro-

operators; and because it allows us to investigate the generality of the chunks learned in a specific application. 

4 . 1 . Macro Problem Solving 

Korf (1985a) has shown that problems that are serially decomposable can be efficiendy solved with die aid 

of a table of macro-operators. A macro-operator (or macro for short) is a sequence of operators that can be 

treated as a single operator (Fikes, Hart and Nilsson, 1972). The key to the utility of macros for serially 

decomposable problems is to define each macro so that after it is applied, all subgoals diat had been 

previously achieved arc still satisfied, and one new subgoal is achieved. Means-ends analysis is thus possible 

when these macro-operators are used. Table 1 shows Korfs (1985a) macro table for the Eight Puzzle task of 

getting all of the tiles in order, clockwise around the frame, with the I in the upper left hand corner, and the 

blank in die middle (the desired state in Figure 3). Each column contains die macros required to achieve one 

of the subgoals of placing a tile. The rows give the appropriate macro according to the current position of die 

tile, where the positions are labeled A-I as in Figure 7. For example, if the goal is to move the blank (tile 0) 

into the center, and it is currently in the top left corner (location B), then the operator sequence ul will 

accomplish it 
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Figure 7: The positions (A-I) in the Eight Puzzle frame, 

Korf s implementation of macro problem solving used two programs: a problem solver and a learner. The 

problem solver could use macro tables acquired by the learner to solve serially decomposable problems 

cfficiendy. Using Table 1, the problem-solving program could solve any Eight Puzzle problem with the same 

desired state (the initial state may vary). The procedure went as follows: (a) the position of the blank was 

determined; (b) the appropriate macro was found by using this position to index into the first column of the 

table; (c) the operators in this macro were applied to the state, moving the blank into position; (d) the position 

of the first tile was determined; (e) the appropriate macro was found by using this position to index into the 

second column of the table; (0 the operators in this macro were applied to the state, moving the first tile (and 

the blank) into position; and so on until all of the tiles were in place. 

To discover the macros, the learner started widi the desired state, and performed an iterative-deepening 

search (for example, see Korf, 1985b) using the elementary tile-movement operators.13 As the search 

progressed, the learner detected sequences of operators that left some of the tiles invariant, but moved others. 

When an operator sequence was found that left an initial sequence of the subgoals invariant — that is, for 

some tile ky the operator moved that tile while leaving tiles 1 tiirough M where they were — the operator 

sequence was added to the macro table in the appropriate column and row. In a single search from the 

desired state, all macros could be found. Since the search used iterative-deepening, the first macro found was 

guaranteed to be the shortest for its slot in the table. 

4 . 2 . Macro Problem Solving in Soar 

Soar's original design criteria did not include the ability to employ serially decomposable subgoals or to 

acquire and use macro-operators to solve problems structured by such subgoals. However, Soar's generality 

allows it to do so with no changes to the architecture (including die chunking mechanism). Using the 

implementation of the Eight Puzzle described in Sections 2.2 and 3.1.1, Soar's problem solving and learning 

capabilities work in an integrated fashion to learn and use macros for serially decomposable subgoals. 

l 3 F o r very deep searches, other more efficient techniques such as bidirectional search and macro-operator composition were used. 
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The opportunity to learn a macro-operator exists each time a goal for implementing one of the 

eight-puzzlc-sd operators, such as placc-5, is achieved. When the goal is achieved there is a stack of subgoals 

below it, one for each of the choice points that led up to die desired state in the eight-puzzle problem space. 

As described in Section 2, all of dicsc lower subgoals are terminated when the higher goal is achieved. As 

each subgoal terminates, a chunk is built that tests the relevant conditions and produces a preference for one 

of the operators at the choice point 1 4 This set of chunks encodes the path that was successful for the 

eight-puzzlc-sd operator. In future problems, these chunks will act as search-control knowledge, leading the 

problem solver directly to the solution widiout any impasses or subgoals. Thus, Soar learns macro-operators, 

not as monolithic data structures, but as sets of chunks that determine at each point in the search which 

operator to select next. This differs from previous realizations of macros where a single data structure 

contains the macro, either as a list of operators, as in Korfs work, or as a triangle table, as in Strips (Fikes, 

Hart and NUsson, 1972). Instead, for each operator in the macro-operator sequence, there is a chunk that 

causes it to be selected (and therefore applied) at the right time. On later problems (and even the same 

problem), dicse chunks control the search when they can, giving the appearance of macro problem solving, 

and when tiiey cannot, the problem solver resorts to search. When the latter succeeds, more chunks are 

learned, and more of the macro table is covered. By representing macros as sets of independent productions 

that are learned when the appropriate problem arises, the processes of learning, storing, and using macros 

become both incremental and simplified. 

Figure 8 shows the problem solving and learning that Soar does while performing iterative-deepening 

searches for the first three eight-puzzle-sd operators of an example problem. The figure shows the searches 

for which the depth is sufficient to implement each operator. The first eight-puzzle-sd operator, place-blank, 

moves the blank to the center. Without learning, this yields the search shown in die left column of the first 

row. During learning (the middle column), a chunk is first learned to avoid an operator that does not achieve 

the goal within the current depdi limit (2). This is marked by a and the number 1 in the figure. The 

unboxed numbers give the order that the chunks are learned, while the boxed numbers show where the 

chunks are used in later problem solving. Once the goal is achieved, signified by die darkened circle, a chunk 

is learned that prefers the first move over all other alternatives, marked by " + " in the figure. No chunk is 

learned for the final move to the goal since the only other alternative at that point has already been rejected, 

eliminating any choice, and thereby eliminating the need to learn a chunk. The right column shows that on a 

second attempt chunk 2 applied to select the first operator. After die operator applied, chunk 1 applied to 

reject the operator that did not lead to the goal. This leaves only the operator that leads to die goal, which is 

selected and applied. In this scheme, the chunks control the problem solving widiin the subgoals that 

Additional chunks are created for the subgoals resulting from no-change impasses on the evaluate-object operators, such as the 
example chunk in Section 3.1.1, but ihcse become irrelevant for this task once the rules that embody preferences are learned. 
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implement die eight-puzzle-sd operator, eliminating search, and diereby encoding a macro-operator. 

Without Learning During Learning After Learning 

Place Blank 
in Cell A 

4 

Fl 

3 1 8 

5 6 7 

Place Tile 
in Cell B 

4 1 

Fl 

3 8 

5 6 7 

Place Tile 
in Cell C 

1 3 2 

4 

00 

5 6 7 

Figure 8: Searches performed for the first three eight-puzzle-sd operators in an example problem. The left 
column shows the search without learning. The horizontal arrows represent points in the search 
where no choice (and therefore no chunk) is required. The middle column shows the search 
during learning. A " + " signifies that a chunk was learned that preferred a given operator. A 

" signifies that a chunk was learned to avoid an operator. The boxed numbers show where a 
previously learned chunk was applied to avoid search during learning. The right column shows 
the search after learning. 

The examples in te second and drird rows of Figure 8 show more complex searches and demonsrnue how 

fte chunks learned during problem solving for one clglu-puric-sd operator can reduce te search bom mthm 
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^This was actually a parallel breadth-first search in which the operators at each depth were executed in parallel. 

1 6Although some of the macros are fourteen operators long, not every operator selection requires a choice (some arc forced moves) 
and, in addition. Soar is able to make use of transfer from previously learned chunks (Section 4.3). 

that operator and within other operators. In all of these examples, a macro-operator is encoded as a set of 

chunks that are learned during problem solving and that will eliminate the search the next time a similar 

problem is presented. 

In addition to learning chunks for each of die operator-selection decisions. Soar can loam chunks diat 

dirccdy implement instances of the operators in the eight-puzz!e-sd problem space. They directly create a new 

state where the dies have been moved so that the next desired tile is in place, a process that usually involves 

many Eight Puzzle moves. These chunks would be ideal macro-operators if it were not necessary to actually 

apply each eight-puzzle operator to a physical puzzle in the real world. As it is, the use of such chunks can 

lead to illusions about having done something that was not actually done. We have not yet implemented in 

Soar a general solution to die problem posed by such chunks. One possible solution — whose consequences 

we have not yet analyzed in depth — is to have chunking automatically turned off for any goal in which an 

acdon occurs diat affects the outside world. For this work we have simulated diis soludon by disabling 

chunking for the eight-puzzle problem space. Only search-control chunks (generated for the tic problem 

space) are learned. 

The searches within the eight-puzzle problem space can be controlled by a variety of different problem 

solving strategies, and any heuristic knowledge that is available can be used to avoid a brute-force search. 

Both iterative-deepening and breadth-first search1 5 strategies were implemented and tested. Only one piece 

of search control was employed — do not apply an operator that will undo the effects of the previous 

operator. Unfortunately, Soar is too slow to be able to generate a complete macro table for the Eight Puzzle 

by search. Soar was unable to learn the eight macros in columns three and five in Figure 1. These macros 

require searches to at least a depth of eight. 1 6 

The actual searches used to generate the chunks for a complete macro tabic were done by having a user lead 

Soar down the path to the correct solution. At each resolve-tie subgoal, the user specified which of the ded 

operators should be evaluated first, insuring that the correct padi was always tried first. Because the user 

specified which operator should be evaluated first, and not which operator should actually be applied, Soar 

proceeded to try out the choice by selecdng the specified evaluate-object operator and entering an subgoal in 

which the relevant eight-puzzle operator was applied. Soar verified diat die choice made by the user was 

correct by searching undl the choice led to either success or failure. During the verification, die appropriate 

objects were automatically referenced so that a correct chunk was generated. This is analogous to the 
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explanation-based learning approach (for example, see De Jong, 1981 or Mitchell, Keller, & Kcdar-Cabclli 

(1986)), diough the explanation and learning processes differ. 

Soar's inability to search quickly enough to complete die macro table autonomously is the one limitation on 

a claim to have replicated Korfs (1985a) results for the Eight Puzzle. This, in part, reflects a trade-off 

between speed (Korfs system) and generality (Soar). But it is also partially a consequence of our not using 

die fastest production-system technology available. Significant improvements in Soar's performance should 

be possible by rcimplementing it using die software technology developed for Ops83 (Fovgy, 1984). 

4 . 3 . Chunk Generality and Transfer 

Korfs (1985a) work on macro problem solving shows that a large class of problems — for example, all Eight 

Puzzle problems with die same desired state — can be solved efficiently using a table with a small number of 

macros. This is possible only because the macros ignore the positions of all tiles not yet in place. This degree 

of generality occurs in Soar as a direct consequence of implicit generalization. If the identities of the tiles not 

yet placed are not examined during problem solving, as diey need not be, dien the chunks will also not 

examine them. However, this does not tap all of the possible sources of generality in the Eight Puzzle. In the 

remainder of this subsection we will describe two additional forms of uansfer available in the Soar 

implementation. 

4 . 3 . 1 . Different Goal States 

One limitation on die generality of die macro table is that it can only be used to solve for the specific final 

configuration in Figure 3. Korf (1985a) described one way to overcome this limitation. For other desired 

states with the blank in the center it is possible to use the macro table by renumbering die tiles in the desired 

state to correspond to the ordering in Figure 3, and then using the same transformation for the initial state. In 

the Soar implementation this degree of generality occurs automatically as a consequence of implicit 

generalization. The problem solver must care that a tile is in its desired location, but it need not care which 

tile it actually is. The chunks learned are therefore independent of the exact numbering on the tiles. Instead 

they depend on the relationship between where the tiles are and where they should be. 

For desired states that have the blank in a different position, Korf (1985a) described a three-step solution 

method. First find a path from the initial state to a state with the blank in the center; second, find a path from 

die desired state to the same state with the blank in the middle; and third, combine the solution to the first 

problem with the inverse of the solution to the second problem — assuming the inverse of every operator is 

both defined and known — to yield a solution to the overall problem. In Soar this additional degree of 

generality can be achieved with die learning of only two additional chunks. This is done by solving die 

problem using the following subgoals (see Figure 9 below): (a) get the blank in die middle, (b) get the first six 
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tiles into their correct positions, and (c) get die blank in its final position. The first 7 moves can be performed 

directly by the chunks making up the macro table, while the last step requires 2 additional chunks. 
(A) 

X X X 

X X 

X X X 

(B) (C) 

1 2 3 1 3 

X 4 8 4 

X 6 5 7 6 5 

Figure 9: Problems with different goals states, with different positions of the blank, can be solved by: (a) 
moving the blank into the center, (b) moving the first six tiles into position, and (c) moving the 
blank into its desired position. 

4 . 3 . 2 . Transfer Between Macro-Operators 

In addidon to the transfer of learning between desired states, we can idendfy four different levels of 

generality that are based on increasing the amount of transfer that occurs between the macro-operators in the 

table: no transfer, simple transfer, symmetry transfer (within column), and symmetry transfer (across column). 

The lowest level, no transfer, corresponds to the generality provided directly by the macro table. It uses 

macro-operators quite generally, but shows no transfer between the macro operators. Each successive level 

has all of the generality of the previous level, plus one addidonal variety of transfer. The actual runs were 

done for the final level, which maximizes transfer. The number of chunks required for the other cases were 

computed by hand. Let us consider each of them in turn. 

No transfer. The no-transfer situation is idendcal to that employed by Korf (1985a). There is no transfer of 

learning between macro-operators. In Soar, a total of 230 chunks would be required for this case. 1 7 This is 

considerably higher than the number of macro-operators (35) because one chunk must be learned for each 

operator in the table (if there is no search control) rather than for each macro-operator. If search control is 

available to avoid undoing the previous operator, only 170 chunks must be learned. 

Simple transfer. Simple transfer occurs when two entries in the same column of the macro table end in 

exacdy the same set of moves. For example, in the first column of Table 1, the macro that moves die blank to 

the center from the upper-right corner uses the macro-operator ur (column 0, row D in the table). The chunk 

learned for the second operator in this sequence, which moves the blank to the center from the position to the 

right of the center (by moving the center die to die right), is dependent on the state of die board following the 

first operator, but independent of what die first operator actually was. Therefore, die chunk for the last half 

1 7 T 

tadul^h^?*? i n d U d C ° n , y • t h C

u

C h u n k s f 0 r l h e r e s o I v e - U e I f chunks generated for the evaluate-object operators were 
included, the chunk counts given in this section would be doubled. 
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of this macro-operator is exactly the chunk/macro-operator in column 0, row E of the table. This type of 

transfer is always available in Soar, and reduces the number of chunks needed to encode the complete macro 

table from 170 to 112. The amount of simple transfer is greater dian a simple matching of the terminal 

sequences of operators in the macros in Table 1 would predict because different macro operators of the same 

length as those in the table can be found diat provide greater transfer. 

Symmetry transfer (within column). Further transfer can occur when two macro-operators for the same 

subgoal are identical except for rotations or reflections. Figure 10 contains two examples of such transfer. 

The desired state for both is to move the 1 to the upper left corner. The X's represent tiles whose values are 

irrelevant to the specific subgoal and the arrow shows the patii that the blank travels in order to achieve the 

subgoal. In (a), a simple rotation of the blank is all that is required, while in (b), two rotations of the blank 

must be made. Within both examples the pattern of moves remains the same, but the orientation of the 

pattern with respect to the board changes. The ability to achieve this type of transfer by implicit 

generalization is critically dependent upon the representation of the states (and operators) discussed in 

Section 3.3. The representation allows the topological relationships among the affected cells (which cells are 

next to which other cells) and the operators (which cells are affected by the operators) to be examined while 

the absolute locations of the cells and the names of the operators are ignored. This type of transfer reduces 

the number of required chunks from 112 to 83 over the simple-transfer case. 

Desired State 

(a) 

Symmetric Initial States 

1 X X 

X X 

X X X 
(b) 

Symmetric Initial States 

<—> < > 

Figure 10: Two examples of within-column symmetry transfer. 

Symmetry transfer (across column). The final level of transfer involves the carryover of learning between 

different subgoals. As shown by the example in Figure 11, diis can involve far from obvious similarities 

between two situations. What is important in this case is: (1) that a particular three cells are not affected by 

the moves (die exact three cells can vary); (2) the relative position of the tile to be placed widi respect to 

where it should be; and (3) diat a previously placed piece that is affected by die moves gets returned to its 
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(a) 
Different Intermediate Subgoals 

Place Tile 2 Place rile 4 

1 2 X 1 

CM
 3 

X X 
< > 

X 4 

X X X X X X 

Symmetric Initial States 

1 X 

Fr 
X I J x 

X X X 

<—> 

(b) 

Different Intermediate Subgoals 
Place Tile 3 Place Tile 5 

Figure 11: An example of across-column symmetry transfer. 

1 

-
3 1 CM

 3 

X X 
< > 

X 4 

X X X X X 5 

Symmetric Initial States 

1 
p2— "1 

t 

X 

X X Li
 

1 2 3 

X 

5 
t t t 

X X 

Table 2 contains the macro-table structure of the chunks learned when all three levels of transfer are 

available (and search control to avoid undoing the previous operator is included). In place of operator 

sequences, the table contains numbers for the chunks diat encode the macros. There is no such table actually 

in Soar— all chunks (productions) are simply stored, unordered, in production memory. The purpose of diis 

table is to show the actual transfer diat was achieved for the Eight Puzzle. 

The order in which the subgoals are presented has no effect on the collection of chunks that are learned for 

the macro table, because if a chunk will transfer to a new situation (a different place in the macro table) the 

chunk that would have been learned in the new situation would be identical to the one that applied instead. 

Though this is not true for all tasks, it is true in this case. Therefore, we can just assume that the chunks are 

learned starting in the upper left corner, going top to bottom and left to right. The first chunk learned is 

number 1 and the last chunk learned is number 61. When the number for a chunk is highlighted, it stands for 

all of die chunks that followed in its first unhighlighted occurrence. For example, for tile 1 in position F, the 

chunks listed are 13,12,11,10. However, 10 signifies the sequence beginning with chunk 10: 10, 9, 8, 4. The 

The number of chunks can be reduced farther, to 54, by allowing the learning of macros that arc not of minimum length, 
increases the total path length by 2 for 14% of the problems, by 4 for 26% of the problems and 6 for 7% of the problems. 

This 

original position. Across-column symmetry transfer reduces the number of chunks to be learned from 83 to 

61 over the within-column case. 1 8 Together, the three types of transfer make it possible for Soar to learn the 

complete macro tabic in only three carefully selected trials. 
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terminal 4 in this sequence signifies die sequence beginning with chunk 4: 4, 3, /. Therefore the entire 

sequence for this macro is: 13,12,11,10,9,8,4, 3,1. 

Tiles 

0 1 I * 

A 

B 2,1 

P C / 4,3.1 

s D 2 7,6,5.4 15.14.J i 
t E / 10.9.M 18,17.16 J4,33.32,31,30,29,i 

i 

o F 2 13.12.11./0 21,20,19.2* 4O,39,38.37.36.35,J0 15 

n 
s G I 10 23,22.77 46.45.44.43.42.41J0 18 61,60,59.58,56,55,29 

H 2 7 26.25.24.2i 54,53,52,51.50.49,48,47.46.29 21 40 15 

I / 4 28,27,22 51 23 46 18 

Table 2: Structure of the chunks that encode the macro table for the Kight Puzzle. 

The abbreviated macro format used in Table 2 is more than just a notadonal convenience; it directly shows 

the transfer of learning between the macro-operators. Simple transfer and widiin-column symmetry transfer 

show up as the use of a macro that is defined in die same column. For example, the sequence starting with 

chunk 51 is learned in column 3 row H, and used in the same column in row I. The extreme case is column 0, 

where the chunks learned in the top row can be used for all of the other rows. Across-column symmetry 

transfer shows up as the reoccurrence of a chunk in a later column. For example, die sequence starting with 

chunk 29 is learned in column 3 (row E) and used in column 5 (row G). The extreme examples of this are 

columns 4 and 6 where all of the macros were learned in earlier columns of the table. 

4 . 4 . Other Tasks 

The macro technique can also be used in the Tower of Hanoi (Korf, 1985a). The three-peg, dircc-disk 

version of the Tower of Hanoi has been implemented as a set of serially decomposable subgoals in Soar. In a 

single trial (moving three disks from one peg to another), Soar learns eight chunks that completely encode 

Korfs (1985a) macro table (six macros). Only a single trial was required because significant within and across 

column transfer was possible. The chunks learned for the three-peg, three-disk problem will also solve the 

three-peg, two-disk problem. These chunks also transfer to the final moves of die three-peg, N-disk problem 

when the three smallest disks arc out of place. Korf (1985a) demonstrated the macro table technique on three 

additional tasks: the Fifteen Puzzle, Think-A-Dot and Rubik's Cube. The technique for learning and using 

macros in Soar should be applicable to all of these problems. However, the performance of the current 

implementation would require user-directed searches for the Fifteen Puzzle and Rubik's Cube because of the 

http://26.25.24.2i
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size of the problems. 

5. Conclusion 
In this article we have laid out how chunking works in Soar. It is a learning mechanism diat is based on die 

acquisition of rules from goal-based experience. As such, it is related to a number of other learning 

mechanisms. However, it obtains extra scope and generality from its intimate connection with a sophisticated 

problem solver (Soar) and die memory organization of the problem solver (a production system). This is the 

most important lesson of this research. The problem solver provides many things: die opportunities to learn, 

direction as to what is relevant (biases) and what is needed, and a consumer for die learned information. The 

memory provides a means by which the newly learned information can be integrated into the existing system 

and brought to bear when it is relevant. 

In previous work we have demonstrated how the combination of chunking and Soar could acquire search-

control knowledge (strategy acquisition) and operator implementation rules in both search-based puzzle tasks 

and knowledge-based expert systems tasks (Laird, Rosenbloom & Newell, 1984; Rosenbloom, Laird, 

McDermott, Newell, & Orciuch, 1985). In this paper we have provided a new demonstration of the 

capabilities of chunking in the context of the macro-operator learning task investigated by Korf (1985a). This 

demonstration shows how: (1) the macro-operator technique can be used in a general, learning problem 

solver without the addition of new mechanisms; (2) the learning can be incremental during problem solving 

rather than requiring a preprocessing phase; (3) the macros can be used for any goal state in the problem; and 

(4) additional generality can be obtained via transfer of learning between macro-operators, provided an 

appropriate representation of die task is available. 

Although chunking displays many of the properties of a general learning mechanism, it has not yet been 

demonstrated to be a truly general learning mechanism. It can not yet learn new problem spaces or new 

representations, nor can it yet make use of the wide variety of potential knowledge sources, such as examples 

or analogous problems. Our approach to all of these insuflficiences will be to look to the problem solving. 

Goals will have to occur in which new problem spaces and representations are developed, and in which 

different types of knowledge can be used. The knowledge can then be captured by chunking. 
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