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1. Introduction

The goal of the Sear project is to build a system capable of general intelligent behavior. We seek to
understand what mechanisms are necessary for inteliigent behavior, whether they are adequate for a wide
range of tasks — including search-intensive tasks, knowledge-intensive tasks, and algorithmic tasks — and
how they work together to form a gencral cognitive architecture. One necessary component of such an
architecture, and the one on which we focus in this paper, is a general learning mechanism. Intuitively, a
general learning mechanism should be capable of learning all that needs to be learned. To be a bit more
precise, assume that we have a general performance system capable of solving any problem in a broad set of
domains. Then, a gencral learning mechanism for that performance system would possess the following three
propertics.l

e Task generality. It can improve the system’s performance on all of the tasks in the domains. The
scope of the learning component should be the same as that of the performance component.

o Knowledge generality. It can base its improvements on any knowledge available about the domain.
This knowiedge can be in the form of examples, instructions, hints, its own cxperience, etc.

e Aspect generality. {t can improve all aspects of the system. Otherwisc there would be a
wandering-botileneck problem (Mitchell, 1983), in which those aspects not open to improvement
would come to dominate the overall performance effort of the system.

These properties relate to the scope of the learning, but they say nothing concerning the generality and

effectiveness of what is learned. Therefore we add a fourth property.

o Transfer of learning. What is learned in one situation will be used in other situations to improve
performance. It is through the transfer of leared material that generafization, as it is usually
studied in artificial inteiligence, reveals itself in a learning problem solver.

Generality thus plays two roles in a general learning mechanism: in the scope of application of the mechanism

and the generality of what it learns.

There are many possible organizations for a general learning mechanism, each with different behavior and

implications. Sorne of the possibilities that have been investigated within Al and psychelogy include:

® A Multistrategy Learner. Given the widc variety of learning mechanisms currcntly being
investigated in Al and psychology, onc obvious way to achicve a general learner is to build a
system containing a combination of these mechanisms. The best example of this to date is
Anderson’s {1983a) ACT* system which contains six learning mechanisms,

o A Deliberate Learner. Given the breadth required of a general learning mechanism, a natural way
to build one is as a problem solver that deliberately devises modifications that will improve
performance. The modifications are usually based on analyses of the tasks to be accomplished,

J'I'hese propertics are related to, but not isomorphic with, the three dimensions of vadation of learning mechanisms described in
Carbonell, Michalski, and Mitwchell (1983) — application domain, underlying lcarning strategy, and representation of knowledge.
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the structure of the problem solver, and the system's performance on the tasks. Sometimes this
problem solving is done by the performance system itscif, as in Lenat's AM (1976) and Lurisko
(1983) programs, of in a production system that cmploys a build operation {Waterman, 1975) —
whereby productions can themsclves creatc new productions — as in Anzai & Simon’s
(1979) work on learning by doing. Sometimes the learner is constructed as a separate critic with
its own problem solver (Smith, Mitchell, Chestck, & Buchanan, 1977; Rendetl, 1983), or as asct of
critics as in Sussman’s (1977) Hacker program.

o A Simple Experience Learner. There is asingle learning rmechanism that bases its modifications on
the experience of the problem solver. The learning mechanism is fixed, and does not perform any
complex problem solving. Examples of this approach arc memo functions (Michie, 1968: Massh,
1970), macro-operators in Strips (Fikes, Hart and Nilsson, 1972), production composition (Lewis,
1978; Neves & Anderson, 1981), and knowledge compilation (Anderson, 1983b).

The third approach, the simple experience learner, is the one adopted in Soar. In some ways it is the most
parsimonious of the three alternatives: it makes use of only one learning mechanisn, in contrast to a
multistrategy learner; it makes use of only one problem solver, in contrast to a critic-based deliberate learner;
and it requires only problem solving about the actual task to be performed, in contrast to both kinds of
deliberate learner. Counterbalancing the parsimony is that it is not obvious a priori that a simple experience
fearner can provide an adequate foundation for the construction of a general learning mechanism, At fiest
glance, it would appear that such a mechanism would have difficulty learning from a varicty of sources of

knowledge, learning about alt aspects of the systcm, and transferring what it has learned to new situations.

The hypothesis being tested in the research on Soar is that chunking, 2 simple experience-based learning
mechanism, can form the basis for a general learning mechanism.? Chunking is a mechanism originally
developed as part of a psychological model of memory (Miller, 1956). The concept of a chunk —a symbol
that designates a pattern of other symbols — has been much studied as a model of memory organization, It
has been used to explain such phenomena as why the span of short term memory is approximately constant,
independent of the complexity of the items to be remembered (Miller, 1956), and why chess masters have an

advantage over novices in reproducing chess positions from memory (Chase & Simon, 1973).

Newell and Rosenbloom (1981) proposed chunking as the basis for a2 model of human practice and used it
to model the ubiquitous power law of practice — that the time to perform a task is a power-law function of
the number of times the task has been performed. The model was based on the idea that practice improves
performance via the acquisition of knowlcdge about patterns in the task environment, that is, chunks. When
the model was implemented as part of a production-system architecture, this idea was instantiated with

chunks relating patterns of goal parameters to patterns of goal results (Rosenbloom, 1983; Roscnbloom &

2For a comparison of chunking to other simple mechanisms for learning by cxperience, see Rasenbloom and Newell (1985).
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Newell, 1985). By replacing complex processing in :,ubgoalsrwith chunks Icarnca during practice, the model

could improve its'speed ia performing a single task or sct of tasks.

To increase the scope of the learning beyond simple practice, a similar chunking mechanism has been
incorporated into the Soar problem-solving architecture (Taird, Newell, & Rosenbloom, 1985). In previous
work we have demonstrated how chunking can improve Soar’s performance on a variety of tasks and in a
variety of ways (Laird, Rosenbloom & Newell, 1984). In this article we focus on presenting the details of how
chunking works in Soer (Section 3), and describe a new application involving the acquisition of macro-
operaturs similar to those reported by Korf (1985a) (Scction 4). This demonstration extends the claims of
generality, and highlights the ability of chunking to transfer learning between different situations.

Before procceding to the heart of this work — the examination of the anatomy of chunking and a
demonstration of its capabilities — it is necessary to make a fairly extensive digression into the structure and
performance of the Soar architecture (Section 2). [n contrast to systems with multistrategy or deliberate
learning mechanisms, the learning phenomena exhibited by a system with only a simple experience-based
learning mechanism is a function not only of the learning mechanism itself, but also of the problem-solving

component of the system. The two components are clusely coupled and mutually supportive,

2. Soar — An Architecture for General Intelligence

Soar is an architecturc for general intciligence that has been applied to a variety of tasks (Laird, Ncwell, &
Rosenbloom, 1985; Rosenbloom, Laird, McDermott, Newell, & Orciuch, 1985): many of the classic Al toy
tasks such as the Tower of Hanoi, and the Blocks World; tasks that appear to involve non-search-based
reasoning, such as syllogisms, the three-wise-men puzzle, and scquence extrapolation; and large tasks
requiring expert-level knowledge, such as the R computer configuration task (McDermott, 1982). In this

section we briefly review the Soar architecture and prescnt an example of its performance in the Eight Puzzle.

2.1. The Architecture

Performance in Soar is based on the problem space-hypothesis; all goal-oriented behavior occurs as search
in problem spaces (Newell, 1980). A problem space for a task domain consists of a sct of States representing
possible situations in the task domain and a sct of operators that transform one state into another one. For
example, in the chess domain the statcs are configurations of pieccs on the board, while the operators are the
legal moves, such as P-K4. In the computer-conﬁguration domain the states are partially configured
computers, while the operators add components to the existing conflguration (among other actions). Problem
solving in a problem space consists of starting at some given initiul state, and applying operators (yielding

intermediate states) until a desired siate is reached that is recognized as achieving the goal.



PAGE4 CIHUNKING IN SOAR

[n Sear, each goat has three slots, one cach for a curfent problem space, state, and operutor. Together these
four compunents — a goal along with its current problem space, state and operator — comprisc a context,
Goals can have subgoals (and associated contexts), which form a strict goal-subgoal hicrarchy. All objects
(such as goals, problem spaces, states, and operators) have a unique identifier, generated at the time the object
was created. Further descriptions of an vbject are called augmentations. Each augmentation has an identifier,
an attribute, and a value. The value can cither be 2 constant value, or the identifier of another object. All
objects are connected via augmentations (cither dircetly, or indirectly via a chain of augmentations) to one of
the objects in a context, so that the identifiers of objects act as nodes of a semantic network, while the

augmentations represent the arcs or links.

Throughout the process of satisfying a goal, Sear makes decisions in order to select between the available
problem spaccs, states, and opcrators. Every problem-solving cpisode consists cf a sequence of decisions and
these decisions determine the behavior of the system. Problem solving in pursuit of a goal begias with the
sclection of a problem space for the goal. This is followed by the selection of an initial state, and then an
operator to apply to the state. Once the operator is sclected, it is applied to create a new state. The new state
can then be sclected for further processing (or the current state can be kept, or some previously generated
state can be selected), and the process repeats as a néw operator is sclected to apply to the selected state. The
weak methods can be represented as knowledge for controlling the sclection of states and opcvators (Laird &
Newell, 1983a). The knowledge that controls these decisions is collectively called searc-h conirol. Problem

solving without search control is possible in Soar, but it leads to an exhaustive scarch of the problem space.

Figure 1 shows a schematic representation of a series of decisions. To bring the available search-control
knowledge to bear on the making of a decision, cach decision involves a monotouic elaboration phase. During
the elaboration phase, all directly available knowledge relevant to the currert situation is brought to bear.
This is the act of retricving knowledge from memory to be used to control problem solving. [n Sear, the
long-term mcmory is structured as a production system, with all directly available knowledge represented as
produn:tions.3 The claboration phase consists of one or more cycles of production execution in which all of the
eligible productions are fired in paratiel. The contexts of the goal hierarchy and their augmentations serve as
the working memory for these productions. The information added during the elaboration phase can take
one of two forms. First, existing objects may have their descriptions elaborated (via augmentations) with new
or existing objects, such as the addition of an evaluation to a state. Second, data structures called preferences
can be created that specify the desirability of an object for a slot in a context. Fach preference indicates the

context in which it is relevant by specifying the appropriate goal, problem space, state and operator.

3\Ve will use the terms production and rule interchangeably throughout this paper.
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Figure 1: The Soar decision cycle.

When the elaboration phase reaches quicscence — when no more productions are eligible to fire — a fixed
decision procedure is run that gathers and interprets the prcf‘er'cnces provided by the claboration phase to
produce a specific decision. Preferences of type acceptable and reject determine whether or not an object is a
candidate for a context. Preferences of type better, equal, and worse determine the relative worth of objects.
Preferences of type best, indifferent and worst make absolute judgements about the worth of objects.* Starting
from the oldest context, the decision procedure uses the preferences to determinc if the current problem
space, state, or operator in any of the contexts should be changed. The problem space is considered first,
followed by the state and then the operator. A change is made if one of the candidate objects for the slot
dominates (based on the preferences) ail of the others, or if a set of equal objects dominates all of the other
objects. In the latter case, a random sclection is made between the equal objects. Once a change has been
made, the subordinate positions in the context (state and operator if a problem space is changed) are
initialized to undecided, all of the more recent contexts in the stack are discarded, the decision procedure

terminpates, and a new decision commences,

[f sufficient knowledge is available during the search to uniquely determine a decision, the search procceds

unabated. However, in many cases the knowledge encoded into productions may be insufTicient to allow the

4’I‘l’uan:: is also a paralfef preference that can be used to assert that two aperators should cxecute simultancously.
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direct application of an operator or the making of a scarch-control decision. That is, the available preferences
do not determine a unique, uncontested change in a context, causing an impasse in problem solving to
occur (Brown & VanLehn, 1980). Four classes of impasses can arisc in Soar: (1) ro-change (the claboration
phase ran to quiescence without suggesting any changes t0 the contexts), (2) tie (no single object or group of
equal objects was better than ail of the other candidate objects), (3) conflict (two or more candidate objects
were better than cach other), and (4) rejection (all objects were rejected, cven the current one). All types of
impasse can occur for any of the three context slots associated with a goal — problem space, state, and
operator — and a no-change impasse can occur for the goal. For example, a state tic occurs whencver there
are two or more competing states and no directly available knowledge to comparc them. An operator
no-change occurs whenever no context changes are suggested after an operator is sclected (usually because

not encugh information is directly available to allow the creation of a new state).

Soar responds to an impasse by creating a subgoal (and an associated context) to reselve the impasse. Once
a subgoal is created, a problem space must be selected, followed by an initial state, and then an operator. {fan
impasse is reached in any of these decisions, another subgoal will be created to resolve it, leading to the
hierarchy of goals in Sear. By gencrating a subgoal for cach impasse, the full problem-solving power of Soar
can be brought to bear to resolve the impasse. These subgoals correspond to alt of the types of subgoals
created in standard Al systems ([.aird, Newecll, & Roscnbloom, 1985). This capability to generate
aucomatically all subgoals in responsec to impasses and to open up all aspects of probiem-solving behavior to

problem solving when necessary is called universal subgoaling (Laird, 1984).

Because all goals are generated in rcspbn'sc to impasses, and each goal can have at most one impasse at a
time, the goals (contexts) in working memory are structured as a stack, referred to as the context stack. A
subgoal terminates when its impasse is resolved. For example, if a tie impasse ariscs, the subgoal generated
for it will terminate when sufficient preferences have been created so that a single object (or sct of equal
objects) dominates the others. When a subgoal terminates, Sear pops the context stack, removing from
working memory all augmentations creatcd in that subgoal that are not conaected to a prior context, either
directly or indircctly (by a chain of augmentations), and preferences whose context objects do not match
objects in prior contexts. Those augmentations and preferences that are not rcmoved are the cesults of the

subgoal.

Default knowledge (in the form of productions) exists in Soar to cope with any of the subgoals when no
additional knowledge is available. Fur some subgoals (those created for all types of rejection impasses and
no-change impasses for goals, problem-spaces, and states) this involves simply backing up to a prior choice in
the context, but for other subgoals (those creatc for tie, conflict and operator no-change impasses), this

involves searches for knowledge that will resolve the subgoal’s impasse. [f additional non-dcfault knowledge
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is available to resolve an impasse, it dominates the default knowledge (via preferences) and coatrols the

problem solving within the subgoal.

2.2. An Example Problem Solving Task

Consider the Eight Puzzle, in which there are eight numbered, movable tiles set in a 3x3 frame. One cell of
the frame is always cmpty (the blank), making it possible to move an adjacent tile into the empty cell. The
problem is to transform one configuration of tiles into a second con figuration by moving the tiles. The states
of the eight-puzzle problem space are configurations of the numbers 1-8 in a 3x3 grid. There is a single
general operator to move adjacent tiles into the empty cell. For a given state, an instance of this operator is
crcated for cach of the cells adjacent to the empty cell. Each of these operator instances is instantiated with
the erapty cell and one of the adjacent ceils. To simplify our discussion, we will refer to these instantiated
operators by the direction they move a tile into the empty ccll: up, down, left, or right. Figure 2 shows an

example of the initial and desired states of an Eight Puzze problem.

Initial State Desired State
2 3 1 1 2 3
8 4 8 4

7 6 5 7 6 5

Figure 2: Fxample initial and desired states of the Eight Puzzle.

To encode this task in Soar, one must include productions that propose the appropriate problem space,
crcate the initial state of that problem space, implement the operators of the problem space, and detect the
desired state when it is achieved. If no additional knowledge is available, an exhaustive depth-first scarch
occurs as a result of the default processing for tie impasses. Tic immpasses arisc cach time an operator has to be
. selected. In response to the subgoals for these impasses, alternatives are investigated to determine the best
move. Whenever another tic impasse arises during the investigation of one of the alternatives, an additionat
subgoal is generated, and the search decpens. If additional search-control knowledge is added to provide an
evaluation of the states, the search changes to stecpest-ascent hill climbing. As more or different scarch-
control knowledge is added, the behavior of the search changes in response to the new knowledge. One of the
properties of Soar is that the weak methods, such as genevate and test, means-ends analysis, depth-first search

and hill climbing, do not have to be explicitly selected. but instcad emerge from the structurc of the task and
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the available search-control knowledge (Laird & Newell, 1983&; Laird & Newell, 1981b; Laicd, 1984).

Another way to control the search in the Fight puzzle is to break it up into a sct of subgoals to get the
individual tiles into position. We will look at this approach in some .detail becausc it forns the basis for the
use of macro-operators for the Eight Puzzle. Mcans-ends analysis is the standard technique for solving
problems where the goal can be decomposed into a sct of subgoals, but it is ineffective for probletns such as
the Eight Puzzle that have non-serializable subgoals — tasks for which there exist no ordcring of the subgoals
such that successive subgoals can be achieved without undoing what was accomplished by earlier
subgoals (Korf, 1985a). Figure 3 shows an intermediate statc in problem solving where tiles 1 and 2 are in
their desired positions. In order to move tile 3 into its desired position, tife 2 must be moved out of its desired
position. Non-serializable subgoals can be tractable if they are serially decomposable (Korf, 1985a). A set of
subgoals is scrially decomposable if there is an orderihg of them such that the solution to each subgoal
depends only on that subgoal and on the preceding ones in the solution order. In the Eight Puzzle the
subgoals are, in order: (1) have the blank in its correct position; (2) have the blank and the first tile in their
correct positions; (3) have the blank and the first two tiles in their correct positions; and 50 on through the
eighth tile. Each subgoal depends only on the positions of the blank and the previously placed tiles. Within

one subgoal a previous subgoal may be undone, but if it is, it must be re-achieved before the current subgoal

is completed.
Intermediate State Desired State
2 3 1 1 2 3
8 4 8 4
7 6 5 7 6 5

Figure 3: Non-serializable subgoals in the Eight Puzzle

Adopting this approach does not result in new knowledge for directly controfling the selection of operators
and states in the eight-puzzle problem space. Instead it provides knowledge about how to structure and
decompose the puzzle. This knowlcdge consists of the set of serially deccomposable subgoals, and the ordering

of those subgoals. To encode this knowledge in Soar, we have added a second problem space, eight-puzzle-sd,
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with a sct of nine operators corresponding to the nine suhguals.5 For example, the operator place-2 will place
tile 2 in its desired position, while assuring that the blank and the first tile will also be in position. The

ordering of the subgoals is encoded as search-control knowledge that creates preferences tor the operatars.

Figure 4 shows a trace of the decisions for a short problem-solving cpisode for the initial and desired states
from Figure 2. This example is heavily used in the remainder of the paper, so we shall go through it in some
detail. To start problem solving, the current goal is initialized to bce solve-cight-puzzle (in decision 1). The
goal is represented in working memory by an identifier, in this case Gl. Problem solving begins in the
eight-puzzle-sd problem space. Once the initial state, 81, is selected, prefercnces are generated that order the
operators so that place-blank is sclected. Application of this operator, and ail of the eight-puzzle-sd opcrators,
is complex, often requiring extensive problem solving. Because the problem-space hypothesis implics that
such problem solving should occur in a problem space, the operator is not dircetly implemented as rules.
Instead, a no-change impasse leads to a subgoal to implement place-blank, which wiil be achieved when the
blank is in its desired position. The place-blank opcrator is then implemented as a search in the eight-puzzle
problem space for a state with the blank in the correct position, This search can be carried out using any of
the weak methods described carlier, but for this example, let us assume there is no additional search-’conf.rol

knowledge,

Once the initial state is selected (decision 7), a tic impasse occurs among the operators that move the three
adjacent tiles into the empty cell (left, up and down). A resolve-tic subgoal (G3) is automatically generated for
this impasse, and the tie problem space is selected. [ts states are sets of objects being considered, and its
operators evaluate objects so Lhat preferences can be created. One of these evaluate-object operators (O3) is
sclected to evaluate the operator that moves tile 8 to the Icft, and a resolve-no-change subgoal (G4) is
gencrated because there arc no productions that dircctly compute an evaluation of the left operator for state
S1. Default search-control knowledge attempts to implement the evaluate-object operator by applying the
lelt operator to state S1. This is accomplished in the subgoal (decisions 13-16}, yielding the desired state (S3).
Because the lelt operator lead to a solution for the goal, a preference is returned for it that allows it to be
selected immediately for state S1 (Decision 17) in goal G2, flushing the two lower subgeals (G3 and G4). If
this state were not the desired state, another tic impasse would arise and the tie problem space would be
selected for this new subgoal. The subgoal combination of a resolve-tie followed by a resolve-no-change on

an evaluate-object operator would recur, giving a depth-first search.

Applying the left operator to state S1 yields state S4, which is the desired result of the place-blank operator

SBOLh place-7 and place-8 are always no-ops because once the blank and tiles 1-6 are in place, either tiles 7 and 8 must also be in place,
or the problem is unsolvable. ‘They can thercfore be safely ignored,
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G1 solve-eight-puzzie
P1 gight-puzzle-sd
$1

[ 20N

4 01 place-blank

B =e3G2 (roso1ve-no-change)
8 P2 eight-puzzile
7

8

51
=s}>G3 (resolve-tie operator)
9 P3 tie
10 52 {left, up, down}
11 08 evaluate-object{02(left))
12 =e3G4 (resolve-no-changs)
13 P2 sight-puzzle
14 S1
15 02 left
16 §3
2 3 1
8 4
7 8 5

17 02 left
18 54

19 S4

20 08 place-1

Figure4: A problem-solving trace for the Fight Puzzle. Each line of the trace includcs, from left to right,
the decision number, the identitier of the object selected, and possibly a short description of the
object.

in goal G1 above. The place-1 operator (O8) is then selected as the current operator, As with place-blank,
place-1 is implemented by a scarch in the eight-puzzle problem space. {t succeeds when both tile 1 and the
blank are in their desired positions. With this problem-solving strategy, each tile is moved into place by one
of the operators in the cight-puzzle-sd problem space. [n the subgoals that implement the eight-puzzle-sd
operators, many of the tiles already in place might be moved out of place, however, they must he back in

place for the operator to terminate successtully.

3. Chunking in Soar
Soar was originaily designed to be a general (non-learning) problem solver. Nevertheless, its problem-
solving and memory structurcs support learning in a number of ways. The structure of problem solving in

Soar determines when ncw knowledge is needed, what that knowlcdge might be, and when it can be acquired.
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» Delermining when new knowledge is needed. In Scar, impasses occur if and only if the directly
available knowlcdge is either incomplete or inconsistent. ‘Therefore, impasses indicate when the
system should attempt to acquirc new knowledge.

o Determining what to learn. Whilc problem solving within a subgoal, Sear can discover information
that will resolve an impasse. This information, if remembered, can avert similar impasses inl
tuture probiem solving.

¢ Determining when new knowledge can be acquired. When a subgoal completes, becausc its impasse
has been resolved, an opportunity exists to add new knowledge that was not already explicitly
known,

Soar’s long-term memory, which is based on a production system and the workings of the elaboration phase,

supports learning in two ways:

o [ntegrating new knowledge. Productions provide a modular representation of knowledge, so that
the integration of new knowledge only requires adding a new production to production memory
and does not require a complex analysis of the previously stored knowledge in the system (Newell,
1973; Waterman, 1975; Davis & King, 1976; Anderson, 1933b).

o Using new knowledge. Even if the productions are syntactically modular, there is no guarantee that
the information they encode can be integrated together when it is needed. The elaboration phase
of Soar brings all appropriate knowledge to bear, with no requirement of synclhronization (and no
conflict resolution), The decision procedure then integrates the results of the elaboration phase.

Chunking in Soar takes advantage of this support to create rules that summarize the processing of a
subgoal, so that in the future, the costly problem solving in the subgoal can be replaced by direct rule
application. When a subgoal is gencrated, a learning episode begins that could lead to the creation of a
chunk. During problem solving within the subgoal, information accumulates on which a chunk can be based.
When the subgoal terminates, a chunk can be created. Each chunk is a rule {or set of rules) that gets added to
the production memory. Chunked knowledge is brought to bear during the elaboration phase of later
decisions. In the remainder of this section we look in more detail at the process of chunk creation, evaluate

the scope of chunking as a learning mechanism, and examine the sources of chunk generality.

3.1. Constructing Chunks
Chunks are based on the working memory elements that arc either examined or created during problem
solving within a subgoal. The conditions consist of those aspects of the situation that existed prior to the goal,

and which were examined during the processing of the goal, while the actions consist of the results of the goal.
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When the subgoal terminates,S the collected working-memory elements arc converted into the conditions and
actions of one or more productions."' In this subscction, we describe in dctail the three steps in chunk
creation: (1) the collection of conditions and actions, (2) the variabilization of identifiers, and (3) chunk

optimization.

3.1.1. Collecting Conditions and Actions

The conditions of a chunk should test those aspects of the situation existing prior to the creation of the goal
that are relevant to the results that satisfy the goal. In Sear this corresponds to the working-memory elements
that were matched by productions that fired in the goal (or one of its subgoals), but that existed before the
goal was created. These are the elements that the problem solving implicitty deemed to be relevant to the
satisfaction of the subgoal. This collection of working-memory clements is maintained for each active goai in
the goal's reﬁerermed—h‘st.a Soar allows productions belonging to any goal in the context stack to exccute at any
time, so updating the correct referenced-list requires determining for which goal in the stack the production
fired. This is the most recent of the goals maiched by the production’s conditions. The production’s firing
affects the chunks created for that goal and all of its supergoals, but because the firing is indepcndent of the
more recent subgoals, it has no cffect on the chunks built for those subgoals. No chunk is created if the
subgoal’s results were not based on prior information; for cxample, when an object is input from the outside,

or when an impasse is resolved by domain-independent default knowledge.

The actions of a chunk are based on the results of the subgoal for which the chunk was created. No chunk
is created if there are no results. This can happen, for example, when a result produced in a subgoal lcads to
the termination of a goal much higher in the goal hierarchy. All of the subgoals that are lower in the

hicrarchy will also be terminated, but they may not generate results.

For an example of chunking in action, consider the terminai subgoal (G4) from the problem-solving

episode in Figure 4. This subgoal was created as a result of a no-change impasse for the evaluate-object

6The default behavior for Soeris to create a chunk afways; that is, every time a subgoal tenminates. The major alternative to creating
chunks for ail terminating goals is to chunk botrorm-up, as was done in modeling the power law of practice {Roseabloom, 1983). In
bottom-up chunking, only terminal goals — geals for which no subgoals were generated — are chunked. As chunks are learned for
subgoals, the subgoals need ro longer be generated (the chunks accomplish the subgoals’ tasks before the impasses occur), and higher
goais in the hierarchy become eligible for chunking. 1t is unclear whether chunking always or bottom-up wilt prove more advantageous
in the long run, so to facilitate experimentation, both options are available in Soar.

7Producn‘on composition (Lewis, 1978) has also been used to learn productions that summarize goals (Anderson, 1983b). [t differs most
from chunking in that it examines the actual definitions of the productions that fired in addition to the working-memory elements
referenced and created by the productions.

8If a fired production has a negated condition — a condition tesling for the absence in working memory of an element matching its
pattern — then the negated condition is insiantiated with the appropriate variable bindings trom the production’s positive conditions. If
the identifier of the instantiated condition existed prior to the goal, thea the instantiated condition is included in the referenced-list.
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operator that should evaluate the operaior that will move tile 8 to the left. The problem so'ving within goal
G4 must implement the evaluate-object operator. Figure § contains a graphic representation of part of the
working memory for this subgoal near the bcéinning of problem solving (A) and just before the subgoal is
terminated (B). The working memory that existed before the subgoal was created consisted of the
augmentations of the goal to resolve the tie between the cight-puzzle operators, G3, and its supergoals (G2
and G1, not shown). The tie problem space is the current problem space of G3, while state 52 is the current
state and the evaluate-object operator (O5) is the current operator. D1 is the desired state of having the blank
in the middle, but with no constraint on the tiles in the other cclis (signified by the X's in the figure). All of

these objects have further descriptions, some only partially shown in the figure.,

The purpose of goal G4 is to evaluate operator O2, that witl move tile 8 to the left in the initial state (S1).
The first steps are to augment the goal with the desired state (D1) and then select the eight-puzzle problem
space (P2), the state to which the cperator will be applied (S1}, and finally the operator being evaluated (02).
To do this, the augmentations from the evaluate-object operator (O5) to these objects are accessed and
therefore added to the referenced list (the highlighted arrows in part (A) of Figure 5). Once operator O2 is
selected, it is applied by a production that creates a new state (83). The application of the operator depends
on the exact representation used for the states of the problem space. State S1 and desired state DI, which .
were shown only schematically in Figure 5, are shown in detail in Figure 6. The states are built out of cells
and tiles (only some of the cells and tiles are shown in Figure 6). The aine ceils (C1-C9) represent the
structure of the Eight Puzzlc frame. They form a 3x3 grid in which each cell points to its adjacent cells, There
are eight numbered tiles (T2-T9), and onc blank (T1). Each tile points to its name, 1 through 38 for the
numbered tiles and 0 for the blank. Tiles are associated with cells by objects called bindings. Each state
contains 9 bindings, cach of which associates one tile with the ccll where it is located. The bindings for the
desired state, D1, are L1-L9, while the bindings for state S1 are B1-B9. The fact that the biank is in the center
of the desircd state is represented by binding L2, which points to the blank tile (T1) and the center cell (C5).
All states (and desired states) in both the cight-puzzle and cight-puzzle-sd problem spaces share this same ceil

structure.

To apply the operator and create a new state, a new state symbol is created (S3) with two new bindings, one
for the moved tile and one for the blank. The binding for the moved tile poinis to the tile (T9) and to the cell
where it will be (C4). The binding for the blank points to the blank (T1) and to the cell that will be empty
(C5). All the other bindings are then copicd to the new state. This processing accessing the relative positions
of the blank and the moved tile, and the bindings for the remaining tiles in current state (S1). The

augmentations of the operator are tested for the cell that contains the tile to be moved.

Once the new state (S3) is selected, a production generates the operators that can apply to the new state. All
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Figure 5: An example of the working-memory elements used to create a chunk. (A) shows working
memory near the beginning of the subgoal to implement the 2valuate-object operator. (B) shows
working memory at the end of the subgoal. The circled symbols represent identifiers and the
arrows represent augmentations. ‘The identifiers and augmentations above the horizontal lines
existed before the subgoal was created. Below the lines, the identifiers marked by doubled
circles, and all of the augmentations, are created in the subgoal. The other identifiers below the
line are not new: they are actually the same as the corresponding ones above the lines. The
highlighted augmentations were referenced during the problem solving in the subgoat and will
be the basis of the conditions of the chunk. The augmentation that was created in the subgoal
but originates from an object existing before the subgoal (E1->SUCCESS) will be the basis for the
action of the chunk.

cells that are adjacent to the blank cell (C2, C4, C6, and C8) arc used to create operators. This requires testing
the structure of the hoard as encoded in the connections between the cells. Following the creation of the
operators that can apply to statc $3, the operator that would undo the previous operator is rejected so that

unnccessary backtracking is avoided. During the same elaboration phase, the state is tested to determing
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Figure 6: Example of working-memory elements representing the state used to create a chunk. The
highlighted augmentations were referenced during the the subgoal.

whether a Ule was just moved in or out of its correct position. This information is used to generate an
evaluation based on the sum of the number of tiles that do not have to be in place and the number of tiles that
both have to be in place and arc in place. This computation, whose result is represented by the object X1 with
a value of 3 in Figure $, results in the accessing of those aspects of the desired state ighlighted in Figure 6.
The value of 8 means that the goal is satisfied, so the evaluation (E1) for the operator has the value success.
Because E1 is an identifier that existed before the subgoal was created and the success augmentation was
created in the subgoal, this augmentation becomes an action. If success had further augmentations, they
would also be included as actions. The augmentations of the subgoal (G4), the new state (S3), and its
sub-object (X1) that point to objects created before the subgoal are not included as actions because they are

not augmentations, either dircctly or indircctly, of an object that existed prior to the creation of the subgoal.
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When goal G4 terminates, the initial sct of conditions and actions have been determined for the chunk.
The conditions test that there exists an evaluate-ohject operator whose purpase is to evatuate the operator that
moves the blank into its desired location, and that alt of the tiles are cither in position or irrelevant for the
current eight-puzzie-sd operator. The action is to mark the evaluation as successful, meaning that the operator
being evaluated will achieve the goal. This chunk should apply in similar future situations, dircctly

implementing the evaluate-object operator, and avoiding the no-change impasse and the resulting subgoal.

3.1.2. ldentifier Variabilization

Once the conditions and actions have been determined, all of the identifiers are replaced by production
(pattern-match) variables, while the constaats, such as evaluate-object, cight-puzzle, and 0 are left unchanged.
An identifier is a label by which a particular instance of an object in working memory can be referenced. [t is
a short-term symbol that lasts only as long as the object is in working memory. Each time the object reappears
in working memory it is instantiated with a new identifier. [f a chunk that is based on working-memory
elements is to reapply in a later situation, it must not mention specific identifiers. In cssence the
variabilization process is like replacing an "eq” test in Lisp (which requires pointer identity) with an "equal”

test (which ouly requires value identity).

All occurrences of a single identifier arc replaced with the same variable and all occurrences of different
identificrs are replaced by different variables. This assures that the chunk wiil match in a new situation only if
there is an identificr that appears in the same places in which the original identifier appeared. The production
is also modified so that no two variables can match the same identifier. Basically, Sour is guessing which
identifiers must be equal and which must be distinct, based only on the information about equality and
inequality in working memory. All identifiers that are the samc arc assumed to requirc equality. All
identifiers that are not the same are assumed to require inequality. Biasing the gencralization in these ways
assures that the chunks will not be overly general (at lcast because of these modifications), but they may be
overly specific. The only problem this causes is that additional chunks may need to be learned if the original

ones suffer from overspecialization. In practice, these modifications have not led to overly specific chunks.

3.1.3. Chunk Optimization

At this point in the chunk-creation process the semantics of the chunk are determined. However, three
additional processes are applied to the chunks to increase the efficiency with which they are matched against
working memory (all related to the use in Soar of the Ops5 rule matcher (Forgy, 1981)). The first process is to
remove conditions from the chunk that provide (almost) no constraint on the match process. A condition is
removed if it has a variable in the value field of the augmentation that is not bound elsewhere in the rule
(either in the conditions or the action;). This process recurses, so that a long linked-list of conditions will be

removed if the final one in the list has a variable that is unique to that condition. For the chunk based on
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Figures § and 6, the bindings and tifes that were only referenced for copying (lil, B4, BS, Bo, B7, BS, B9, and
T9) and the cells referenced for creating operator instantiations (C2, C6, and C8) are all removed. The
evaluation object, El, in Figure § is not rcmoved because it is included i the action. Eliminating the
bindings does not increase the generality of the chunk, because all states must have nine bindings. However,
the removal of the cells does increase the generality, because they (along with the test of cell C4) implicitly
test that there must be four cells adjacent to the one to which the blank will be moved. Only the center has
four adjacent cells, so the removal of these conditions does increase the generality. This does increase slightly
the chance of the chunk being over-general, but in practice it has never causcd a problem, and it can

significantly increase the ¢fficiency of the match by removing unconstrained conditions.

The second optimization is to climinate potential combinatorial matches in the conditions of productions
whose actions are to copy a set of augmentations from an existing object to a new object. A common strategy
for implementing operators in subgoals is to create a new statc containing only the new and changed
information, and then to copy over pointers to the rest of the previous state. 'The chunks built for these
subgoals contain one condition for cach of the copied pointers, If, as is usually the case, a set of similar items
arc being copicd, then the copy conditions end up differing only in the names of variables. Each
augmentation can match each of these conditions independently, generating a combinatorial number of
instantiations. This problem would arisc if a subgoal were used to implement the eight-puzzie operators
instcad of the rules used in our current implementation. A single production would be learned that created
new bindings for the moved tile and the blank, and also copied all of the other bindings. There would be
seven conditions that tested for the bindings, but each of these conditions could match any of the bindings
that had to be copied, generating 7! (5040) instantiations. This problem is solved by collapsing the set of
similar copy conditions down to one, All of the augmentations can still be copicd over, but it now occurs via
muitiple instantiations (seven of them) of the simpler rule. Though this reduces the number of rule
instantiations to linear in the number of augmentations to be copied, it still means that the other non-copying
actions are done more than once. This problem is solved by splitting the chunk into two productions. One
production does everything the subgoal did cxcept for the copying. The other production just does the
copying. If there is more than one set of augmentations to be copied, each set is collapsed into a single

condition and a separate rule is created for each.’

The final optimization process consists of applying a condition-reordering algorithm to the chunk
productions. The efficiency of the Rete-network matcher (Forgy, 1982) used in Soar is sensitive to the order

in which conditions are specificd. By taking advantage of the known structure of Sear’s working memory, we

9‘{'he inelegance of this solution leads us to believe that we do not yet have the right assumptions about how new objects are to be
created from old ones.
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have devcloped a static reordering algorithm that significantly increascs the efficiency of the match,
Execution time is sometimes improved by more than an order of mugnitude, alinost dupticating the efficiency
that would be achieved if the reordering was done by hand. This reordering process preserves the existing

setnantics of the chunk.

3.2. The Scope of Chunking
In Section 1 we defined the scope of a general learning mechanism in terms of three properties: task
generality, knowledge generality, and aspect generality. Below we briefly discuss each of these with respect to

chunking in Soar.

Task generality. Soar provides a single formalism for all behavior — heuristic search of problem spaces in
pursuit of goals. This formalism has been widely used in Artificial Intelligence {Feigenbaum and Fcldman,
1963: Nilsson, 1980; Rich, 1983) and it has already worked well in Soar across a wide variety of problem
domains (Laird, Newell, & Rosenbloom, 1985). If the problem-space hypothesis (Newell, 1980) does hold,
then this should cover all problem domains for which goal-oriented behavior is apprdpriate. Chunking can
be applicd to all of the domains for which Soar is used. Though it remains to be shown that useful chunks
can be learned for this wide range of domains, our preliminary experience suggests that the combination of .

Soarand chunking has the requisite generality.m

Knowledge generality. Chunking learns from the experiences of the problem solver. At first glance, it would
appear to be unable to make use of instructions, examples, analogous problems, or other similar sources of
knowledge. However, by using such information to help make decisions in subgoals, Sear can learn chunks
that incorporate the new knowledge. This approach has warked for a simple form of user direction, and is
under investigation for learning by analogy. The results are preliminary, but it establishes that the question of

knowledge generality is open for Soar.

Aspect generality. Three conditions must be met for chunking to be abie to learn about all aspects of Soar’s
problem solving. The first condition is that all aspects must be open to problem solving. This condition is
met because Soar creates subgoals for all of the impasses it encounters during the problem solving process.
These subgoals allow for problem solving on any of the problem solver’s functions: creating a problem space,
selecting a problem space, creating an initial state, selecting a state, selecting an operator, and applying an
operator. These functions are both necessary and sufficient for Sear to solve problems. So far chunking has

been demonstrated for the sclection and application of operators (Laird, Rosenbloom & Newell, 1934); that

mFor demonstrations of chunking in Soar on the Eight Tuzzle, Tic-Tac-Toe, and the RI computer-configuration task, see Laird,
Rosenblaom, & Neweli (1984), Rosenbloom, Laird, McDermott, Newell, & Qrciuch (1985), and van de Brug, Rosenbloom, & Newell
(1985).
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is, strategy acquisition (Langley, [983; Miichell, 1983) and operator - implomentation. However,

demonstrations of chunking for the other types of subgoals remain to be done.!!

The second condition is that the chunking mechanism must be able to create the long-term memory
structures in which the new knowledge is to be represented. Soar represents alt of its lung-term knowledge as
productions, and chunking acquires new productions. By restricting the kinds of condition and action
primitives allowed in productions {while not lusing Turing equivalence), it is possible to have a production
language that is coextensive syntactically with the types of rutes learned by chunking: that is, the chunking

mechanism can create rules containing all of the syntactic constructs available in the language.

The third condition is that the chunking mechanism must be able to acquire rules with the requisite
content. In Sear, this means that the problem solving on which the requisite chunks are to be based must be
understood. The curreat biggest limitations on coverage stem from our lack of understanding of the problem
solving underlying such aspects as problem-space creation and change of representation (Hayes and Simon,
1976; Korf, 1980; Lenat, 1983; Utgoff, 1984).

3.3. Chunk Generality

One of the critical questions to be asked about a simple mechanism for learning from experience is the
degree to which the information learned in one problem can transfer to other problems, If generality is
lacking, and litde trunsfer occurs, the learning mechanism is simply a caching scheme. The variabilization
process described in Section 3.1.2 is onc way in which chunks are made gencral. However, this process would
by itself not lead to chunks that could exhibit non-trivial forms of transfer. All it does is allow the chunk to
match another instance of the same exact situation. The principal source of generality is the implicit
generalization that results from basing chunks on only the aspects of the situation that were referenced during
problem solving. In the example in Section 3.1.1, only a small percentage of the augmentations in working
memory ended up as conditions of the chunk. The rest of the information, such as the identity of the tile
being moved and its absolute location, and the identitics and locations of the other tiles, was not examined

during problem solving, and therefore had no effect on the chunk,

Together, the representation of objects in working memory and the knowledge used during problem
solving, combine to form the bias for the implicit gencralization process (UtgofT, 1984); that is, they determine
which generalizations are embodied in the chunks learned. The object representation defines a language for

the implicit generalization process, bounding the poteniial generality of the chuunks that can be learned. The

uln part this issue is one of rarity. For cxample, selection of problem spaces is not yet problematical, and conflict impasses have not
yet been encountered.
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problem solving determines (indirectly, by what it examines) which generalizations are actually embodied in

tlic chunks.

Consider the state representation used in Korf's (1985a) work on the Eight Puzzle (recall Section 222 In
his implementation, the state of the board was represented as a vector containing the positions ot each of the
tites. Location 0 contained the coordinates of the position that was blank, leocation 1 contained the
coordinates of the first tile, and so on. This is a simple and concise representation, but because aspects of the
representation are oveiioaded with more than one functional concept, it provides poor support for implicit
generalization (or for that matter, any traditional condition-finding method). For cxample, the vector indices
have twb functions: they specify the identity of the tile, and they provide access to the tile's position. When
using this state representation it is impossible to access the position of a tile witiout looking at its identity.
Therefore, even when the problem solving is only dependent on the locations of the tites, the chunks icarned
would test the tilc identities, thus failing to apply in situations in which they rightly could. A second problem
with the representation is that some of the structure of the problem is implicit in the representation. Concepts
that are required for good generalizations, such as the relative positions of two tiles, cannot be captured in
chunks because they are not explicitly represented in the structure of the state. Potential generality is
maximized if an object is represented so that functionaily indcpendent aspects are explicitly represented and
can be accessed independently. For example, the Eight Puzzle state representation shown in Figure 6 breaks
each functional role into separatc working-memory objects. This representation, while not predetermining
what generalizations are to be made, defines a class of possible genceralizations that include good ones for the
Eight Puzzle.

The actual gencrality of the chunk is maximized (within the constraints established by the represeatation) if
the problem sotver only examines those features of the situation that are absolutcly necessary to the solution
of the problem. When the problem solver knows what it is doing, everything works fine, but generality can be
lost when infofmation that turns out to be irrelevant is accessed. For example, whenever a new state is
sclected, productions fire to suggest operators {0 apply to the state. This preparation gocs on in paratle! with
the testing of the state to see if it matches the goal. If the statc does satisfy the goal, then the preparation
process was unnccessary. However, if the preparation process rcferenced aspects of the prior situation that
were not accessed by previous productions, then irrelevant conditions will be added to the chunk, Another
example occurs when false paths — searches that lead off of the solution path — are investigated tn a subgoal.
The searches down unsuccessful paths may reference aspects of the state that would not have been tested if

only the successful path were followed.?

l2,«\1'1 experimental version of chunking has been impicmented rhat overcontes these problems by performing a dependency analysis
on traces of the productions that fired in a subgoal. The production traces are uscd to determine which conditions werc necessary 1o
produce results of the subgoal. All of the results of this papar are based on the version of chuaking without the dependency analysis.
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4. A Demonstration — Acquisition of Mac ro-Operators

In this section we provide a demonstration of the capabilities of chunking in Souws involving the acquisition
of macro-operators in the Eight Puzzle for serially decotnposable goals (sec Scction 2). We begin with a brief
review of Korf's (1985a) original unplementation of this techrique. We follow this with the details of its
implementation in Soar, together with an analysis of the generality of the macro-operators learncd. This
demonstration of macro-operators in Sear is of particular interest because; we are using a general problem
solver and learner instead of special-purpose programs devcloped specifically for learning and using macro-

operators; and because it allows us to invcstignte the generality of the chunks leamed in a specific application.

4.1. Macro Problem Solving

Korf (1985a) has shown that problems that are scrially decomposable can be efficiently solved with the aid
of a table of macro-operators. A macro-operator {or macro for short) is a scquence of operators that can be
treated as a single operator (Fikes, Hart and Nilsson, 1972). The key to the utility of macros for serially
decomposable problems is to define each macro so that after it is applied, all subgoals that had been
previously achieved arec still satisfied, and one new subgoal is achieved. Means-ends analysis is thus possible
when these macro-operators are used. Table 1 shows Korf's (1985a) macro table for the Eight Puzzle task of
getting all of the tiles in order, clockwise around the frame, with the 1 in the upper left hand corner, and the
blank in the middle (the desired state in F igure 3). Each culumn contains the macros required to achicve une
of the subgoals of placing a tile. The rows give the appropriate macro according to the current position of the
tile, where the positions are labeled A-I as in Figure 7. For example, if the goal is to move the blank (tile )]
into the center, and it is currently in the top left corner (location B), then the operator sequence u! will

accomplish it,

Tiles
Q 1 2 3 4 b §
A
B ul
PC rdiu
o
s D ur diurrdlu dlur
i
t E r ldrurdiu Idru rdflurdrul
i
o F dr uldrurdidrul lurd!dru Idrulurddiru lued
n
s G d urdidrul © ulddne urddluldrrul uidr rdlluurd!drrut
H d rulddrul druuldrdly ruldrdiuidrrul urdluldr uldrurdllurd urdl
1 | drul rriiddru rdluldrrul mildr uldrruldlurd ruid

Table 1: Macro table for the Eight Puzzle (from Korf, 1985, Tabie 1}. The primitive operators move a tile
one step in a particular dircction: u (up), d(down), I (left), and r(right).
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Figure 7: Thc positions (A-I) in the Eight Puzzle frame.

Korf's implementation of macro problem soiving used two programs: a problem solver and a learner. The
problem solver could use macro tables acquired by the learner to solve serially decomposable problems
efficiently. Using Table 1, the problem-solving program could solve any Eight Puzzle problem with the same
desired state (the initial state may vary). The procedure went as follows: (a) the position of the blank was
determined; (b) the appropriate macro was found by using this position to index into the first column of the
table: (c) the operators in this macro were applicd to the state, moving the blank into position; (d) the position
of the first tile was determined; (e) the appropriate macro was found by using this position to index into the
second column of the table; (f) the operators in this macro were applied to the state, moving the first tile (and

the blank) into position; and so on until all of the tiles were in place.

To discover the macros, the learner started with the desired state, and performed an iterative-dcepening
search (for example, see Korf, 1985b) using the elementary tile-movement operators.u As the sca-rch
progressed, the learner detected sequences of operators that left some of the tiles invariant, but moved others.
When an operator sequence was found that left an initial sequence of the subgoals invariant — that s, for
some tile &, the opcrator moved that tile while leaving tiles 1 through k-1 where they were — the operator
sequence was added to the macro table in the appropriate column and row. In a single search from the
desired state, all macros could be found. Since the search used iterative-deepening, the first macro found was

guaranteed to be the shortest for its slot in the table.

4.2. Macro Problem Solving in Soar

Soar’s original design criteria did not include the ability to employ serially decomposable subgoals or to
acquire and use macro-operators to solve problems structured by such subgoals. However, Soar’s generality
allows it to do so with no changes to the architecture (including the chunking mechanism). Using the
impiementation of the Eight Puzzle described in Sections 2.2 and 3.1.1, Sear’s probiem solving and learning

capabilities work in an integrated fashion to learn and use macros for serially decomposable subgoals.

'BFor very deep searches, other more efficient techniques such as bidirectional search and macro-operator composition were used.
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The oppbrtunity to learn a macro-operator exists cach time a goal for implemcenting one of the
eight-puzzle-sd operators, such as place-5, is achteved. When the goal is achieved there is a stack of sihgoals
below it, one for each of the choice points tha£ led up to the desired state in the eight-pussie problem space.
As described in Scction 2, all of these lower subgoals are terminated when the higher goal is achieved. As
cach subgoal terminates, a chunk is built that tests the relevant conditions and produces a preference for one
of the operators at the choice poim.“ This set of chunks encodes the path that was successful for the
gight-puzzle-sd operator. In future problems, these chunks will act as search-centrol knowledge, leading the
problem solver directly to the solution without any impasses or subgoals. Thus, Soar learns macro-operators,
not as monolithic data structures, but as sets of chunks that determine at each point in the search which
opcrator to sclect next. ‘This differs from previous realizations of macros where a single data structure
contains the macro, either as a list of operators, as in Korf's work, or as a triangle table, as in Strips (Fikes,
Hart and Nilsson, 1972). Instead, for each operator in the macro-operator scquence, there is a chunk that
causes it to be selected (and thercfore applied) at the right time. On later problems (and even the same
problem), these chunks control the search when they can, giving the appearance of macro problem solving,
and when they cannot, the problem solver resorts to search. When the latter succeeds, more chunks are
learned, and more of the macro table is covered. By representing macros as sets of independent productions
that are learncd when the appropriate problem arises, the processes of learning, storing, and using macros

become both incremental and simplified.

Figure 8 shows the problem solving and learning that Soar does while performing iterative-deepening
searches for the first three eight-puzzle-sd operators of an exaraple problem. The figure shows the scarchcs
for which the depth is sufficient to implement each operator. The first cight-puzzle-sd operator, place-blank,
moves the blank to the center. Without learning, this yields the search shown in the left column of the first
row. During learning (the middle column), a chunk is first learned to avoid an operator that does not achieve
the goal within the current depth limit (2). This is marked by a "~ " and the number 1 in the figure. The
unboxed numbers give the order that the chunks are learned, while the boxed numbers show where the
chunks are used in later problem solving. Once the goal is achicved, signified by the darkened circle, a chunk
is learned that prefers the first move over all other alternatives, marked by "+ in the figure, No chunk is
learned for the final move to the goal since the only other alternative at that point has already been rejected,
eliminating any choicé, and thereby eliminating the nced to learn a chunk. The right column shows that on a
second attempt, chunk 2 applied to sclect the first operator. After the operator applied, chunk 1 applied to
reject the operator that did not lead to the goal. This leaves only the operator that leads to the goal, which is
sclected and applied. In this scheme, the chunks control the problem solving within the subgoals that

14Addiu’onal chunks are created for the subgoals resuiting from no-change impasscs on the cvaluate-ohject operators, such as the
cxample chunk in Section 3.1.1, but these become irrelevant for this task ance the rules that cmbody preferences are learned.
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implement the eight-puzzle-sd opcrator, climinating scarch, and thercby encoding a macro-nperator.

Without Learning During Learning After Learning
' I_ ]

Placa Blank
in Cell A

— I , |
4f2 !
3[1]8 g-
5(617 O/ 0

Place Tile
inCellB

411]2
3 8
5:16|7

Place Tile B
inCellC
11312
8
7
7 .
+
+
L 8

Figurc 8: Searches performed for the first three eight-puzzle-sd operators in an example problem. The left
column shows the search without learning. The horizontal arrows represent points in the search
where no choice (and therefore no chunk) is required. The middle column shows the scarch
during learning. A "+" significs that a chunk was learncd that preferred a given operator. A
»—" significs that a chunk was learned to avoid an operator. The boxed numbers show where a
previously learned chunk was applied to avoid search during learning. The right columa shows
the scarch after learning.

[41] I -8
(o))

The cxamples in the sccond and third rows of Figurc 8 show more complex searches and demonstrate how

the chunks learned during problem solving for one eight-puzzle-sd opcrator can reduce the scarch both within
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that operator and within other operators. In all of these examples, a macro-operitor is encoded as a sct of
cliunks that are learned during problem solving and that will climinate the secarch the next time a similar

problem is presented.

In addition to leamming chunks for each of the operator-selection decisions, Seer can learn chunks that
dircetly implement instances of the operators in the eight-puzzle-sd problem space. They dircctly create a new
state where the tilcs have been moved so that the next desired tile is in place, a process that usually involves
many Eight Puzzle moves. These chunks would be ideal macro-operators if it were not necessary to actually
apply each eight-puzzle operator to a physical puzzle in the real world. As it is, the use of such chunks can
lead to illusions about having done something that was not actually done. We have not yet implemented in
Soar a general solution to the problem posed by such chunks. One possible solution — whase consequences
wce have not yet analyzed in depth — is to have chunking automatically turned off for any goal in which an
action occurs that affects the outside world. For this work we have simulated this solution by disabling
chunking for the cight-puzzle problem space. Only search-control chunks (generated for the tie problem

space) are learned.

The scarches within the ecight-puzzle problem spacc can be controlled by a variety of different problem
solving strategies, and any heunistic knowledge that is available can be used to avoid a brute-force search.

15 strategies were implemented and tested. Only one piece

Both iterative-decpening and breadth-first scarchh
of search control was employed — do not apply an operator that will undo the effects of the previous
operator. Unfortunately, Soar is too slow to be able to generate a complete macro table for the Eight Puzzle
by search. Soer was unable to lcarn the eight macros in columns three and five in Figure 1. These macros

require searches to at least a depth of eight.16

The actual searches used to generate the chunks for a complete macro table were done by having a user [ead
Soar down the path to the correct solution. At each resolve-tie subgoal, the user specificd which of the tied
operators should be evaluated first, insuring that the correct path was always tried first. Because the user
specified which operator should be evaluated first, and not which operator should actually be applied, Soar
proceeded to try out the choice by selecting the specified evaluate-object operator and entering an subgoal in
which the relevant cight-puzzie operator was applied. Soar verified that the choicc made by the user was
correct by searching until the choice led to either success or failure. During the verification, the appropriate

objects were automatically referenced so that a correct chunk was generated. This is analogous to the

LSThis was actually a parailef breadth-first search in which the operators at each depth were executed in paraltel.

16 . . .
Although some of the macros are fourteen operators long, not every operator selection requires a choice (some are forced moves)
and, in addition, Sear is able to make use of transfer from previously learned chuinks {Section 4.3).
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explanation-based learning approach {fur cxample, sce De Jong, 1981 or Mitchell, Keiter, & Kedar-Cabelli

(1986)), though the explanation and learning processes difter.

Soar’s inability to scarch quickly enough to complete the macro table autonomously is the one limitation on
a claim to have replicated Korf's (1985a) results for the Eight Puzzle. This, in part, reflects a trade-off
between speed (Korf's system) and gencrality (Sear). But it is also partially a conscquence of our not using
the fastest production-system tcchnology available. Significant improvements in Soar’s performance should

be possible by reimplementing it using the software technology developed for Ops83(Forgy, 1984).

4.3. Chunk Generality and Transfer

Korf's (1985a) work on macro problem solving shows thata largé class of problems — for example, all Eight
Puzle problems with the same desired state — can be solved cfficiently using a table with a small number of
macros. This is possible only becausc the macros ignore the positions of all tiles not yet in place. This degree
of generality occurs in Sear as a direct conscquence of implicit generalization. If the identities of the tiles not
yet placed are not examined during probiem solving, as they need not be, then the chunks will also not
examine them. However, this does not tap all of the possible sources of generality in the Eight Puzzle. In the
remainder of this subscction we will describe two additional forms of transfer availabie in the Soar -

implementation.

4.3.1. Different Goal States

One limitation on the generality of the macro table is that it can only be used to solve for the specific final
configuration in Figure 3. Korf (1985a) described one way to overcome this limitation. For other desired
states with the blank in the ccnter it is possible to use the macro table by renumbering the tiles in the desired
state to correspond to the ordering in Figure 3, and then using the same transformation for the initial state. [n
the Soar implementation this decgree of generality occurs automatically as a consequence of implicit
generélization. The problem solver must care that a tile is in its desired location, but it need not care which
tile it actually is. The chunks learned are therefore indcpendent of the exact numbering on the tiles. Instead

they depend on the relationship between where the tiles are and where they should be.

For desired states that have the blank in a different position, Korf (1985a) described a three-step solution
method. First find a path from the initial state to a state with the blank in the center; second, find a path from
the desired state to the same statc with the blank in the middle: and third, combine the solution to the first
problem with the inverse of the solution to the second problem — assuming the inverse of every operator is
both defined and known — to yicld a solution to the overall problem. I[n Sear this additional degree of
generality can be achicved with the learning of only two additional chunks. This is done by solving the

problem using the following subgoals (see Figure 9 below): (a) get the blank in the middle, (b) get the first six
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tiles into their correct positions, and (¢) get the blank in its final puosition. The first 7 inoves can be performed

directly by the chunks making up the macro table, while the last step requires 2 additional chunks.

(A) )] €
X X X 1 2 3 1 ' 1 2 3
X X X 4 8 4
X X X X 6 5 7 g 5

Figure 9: Problems with different goals states, with different pusitions of the blank, can be solved by: (a)
moving the blank into the center, (b) moving the first six tiles into position, and (¢) moving the
blank into its desired position,

4.3.2. Transfer Between Macro-Operators

In addition to the transfer of learning betvl.rcen desired states, we can identify four different levels of
generality that are based on increasing the amount of transfer that occurs befween the macro-operators in the
table: no transfer, simple transfer, symmetry transfer (within column), and symmetry transfer (across column).
The lowest level, no transfer, corresponds to the generality provided directly by the macro table. It uses
macro-nperators quite generally, but shows no transfer between the tnacro uperators. Each successive level
has all of the gencrality of the brevious level, plus onc additional varicty of transfer. The actual runs were
done for the final level, which maximizes transfer. The number of chunks required for the other cases were

computed by hand. Let us consider cach of them in turn.

No transfer. The no-transfer situation is identical to that employed by Korf (1985a). There is no transfer of
learning between macro-operators. In Soar, a total of 230 chunks would be required for this case.!” This is
considerably higher than the nvmber of macro-operators (35) because one chunk must be learned for each
operator in the table (if there is no search control) rather than for each macro-operator. If search control is

available to avoid undoing the previous operator, only 170 chunks rmust be learned.

Simple transfer. Simple transfer occurs when two catries in the same column of the macro table end in
exactly the same set of moves. For example, in the first columan of Table 1, the macro that moves the blank to
the center from the upper-right corner uscs the macro-operator ur (column 0, row D in the table). The chunk
learned for the second operator in this sequence, which moves the blank to the center from the position to the
right of the center (by moving the center tile to the right), is dependent on the state of the board following the

first operator, but independent of what the first operator actually was. Therefore, the chunk for the last half

17Thcsc numbers include only the chunks for the resolve-tie subgoals, [f the chunks gencrated for the eviluate-object operators were
included, the chunk counts given in this section would be doubled.
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of this macro-operator is exactly the chunk/macro-operator in column 0, row E of the table. This type of
transfer is always available in Sear, and reduccs the number of chunks needed to encode the complete macro
table from 170 to 112. The amount of simple transfer is greater than a simple matching of the terminal
sequences of operators in the macros in Table 1 would predict because different macro operators of the same

length as those in the tabie can be found that provide greater transfer.

Symmetry transfer (within column). Further transfer can occur when two macry-cperators for the same
subgoal are identical except for rotations or reflections. Figure 10 contains two examples of such transfer.
The desired state for both is to move the 1 to the upper left corner. The X’s represent tiles whose values are
irrelevant to the specific subgoal and the arrow shows the path that the blank travels in order to achieve the
subgoal. In (), a simple rotation of the blank is all that is required, while in (b), two rotations of the blank
must be made. Within both examples the pattern of moves remains the same, but the orientation of the
pattern with respect to the board changes. The ability to achieve this type of transfer by implicit
generalization is critically dependent upon the representation of the states (and operators) discussed in
Section 3.3. The representation allows the topological relationships among the affected cells (which cells are
next to which other cells) and the operators (which cells are affected by the opetators) to be examined while
the absolute locations of the cells and the names of the operators are ignored. This type of transfer reduces

the number of required chunks from 112 to 33 over the simpfc-transfer case.

Desired State
1 X X
X X
a b
(a) x | x | x (t)
Symmetric Initial States Symmetric Initial States
X 1 X X X X X X 1 X X X
(i | Tl CE]
1]
V] x|les!t iU | x x| ¥x | «— x[:j X
1
X X X X X X X X X 1 X X

Figure 10: Two examples of within-column symmetry transfer.

Symmetry transfer (across column). The final leve! of transfer-involves the carryover of learning between
different subgoals. As shown by the example in Figure 11, this can involve far from obvious similarities
between two situations. What is important in this case is: (1) thata particular three cells are not affected by
the moves (the exact three cells can vary); (2) the relative position of the tile to be placed with respect (o
where it should be: and (3) that a previously placed piece that is affected Ly the moves gets returned to its
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original position. Across-column symictry transfer reduces the number of chunks to be learned from 83 to
61 over the within-column ¢ase. 18 Togcther, the three types of transfer make it possible for Sear to learn the

complete macro table in only three carefully selected trials,

(a) {b}
Different Intermediate Subgoals i Different Intermediate Subgoals
Place Tile 2 Ftace Tila 4 Place Tite 3 Ptace Tile 5
1 2 X 1 2 3 1 2 k| 1 2 3
X X le—>] X 4 X X e X 4
X X X X X X X X X X X 5
Symmetric Initial States Symmetric Initiat States
1 X 2 1 2 3 1 3 1 2 3
I 1
¥ —td
X —HX | ez ]| x \ - X X 4= | e | x
1 Al
J et ] L -
X X X X X 4 X X 3 5 3

Figure 11: An example of across-column symmetry transfer,

Table 2 contains the macro-table structure of the chunks learned when ail three levels of wansfer are
available (and search control to avoid undoing the previous operator is included). In place of operator
Sequences, the table contains numbers for the chunks that encode the macros. There is no such table actually
in Soar — all chunks (productions) are simply stored, unordered, in production memory. The purpose of this
table is to show the actual transfer that was achicved for the Eight Puzzle,

The order in which the subgoals are presented has no effect on the collection of chunks that are learned for
the macro table, because if a chunk will transfer to a new situation (a different place in the macro table) the
chunk that would have been learned in the new situation would be identical to the one that applied instead.
Though this is not true for all tasks, it is true in this case. Therefore, we can just assume that the chunks are
learncd starting in the upper left corner, going top to bottom and lef to right. The first chunk learncd is
number 1 and the last chunk learned is number 61. When the number for a chunk is highlighted, it stands for
all of the chunks that followed in its first unhighlighted occurrence. For example, for tile L in position F, the
chunks listed are 13, 12, 11, /0. However, 10signifies the sequence beginning with chunk 10: 10,9, 8, 4. The

18The number of chunks can be reduced further, to 54, by allowing the learning of macros that are not of minimum length. This
increases the total path length by 2 for 14% of the problems, by 4 for 26% of (he problems and 6 for 7% of the problems.
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terminal 4 in this sequence signifies the sequence bcginning with chunk 4 4, 3, £ Thercfore, the catire
sequence for this macro is: 13,12,11,10,9,8,4, 3, 1.

Tiles
0 1 2 3 4 i [
A
B 21
PC 1 431
0
s D 2 1654 15,14,1
i
t E 1 10934 18,17,16 34.33.32,31,30,29.1
i
o F 2 13,12,11,10 21,20,19,18 40,39,38.37,36,35,30 15
n
s G 1 10 23,22,17 46,4544 434241, 30 13 61,60,59.58,56,55.29
H 2 7 26,25.24,.23 54.53,52.51,50,49,48,47,46,29 21 40 15
I 1 f 821,22 51 . 23 46 13

Table 2: Structure of the chunks that encode the macro table for the Eight Puzzle.

The abbreviated macro format used in Table 2 is more than just a notational convenience; it dircctly shows
thé transfer of lcarning between the macro-operators. Simple transfer and within-column symmetry transfer
show up as the use of a macro that is defined in the same column. For example, the sequence starting with
chunk 51 is learned in column 3 row H, and used in the same columa in row [, The extreme case is column 0,
where the chunks learned in the top row can be used for all of the other rows. Acruss-column symmetry
transfer shows up as the reoccurrence of a chunk in a later column. For example, the scquence starting with
chunk 29 is learned in column 3 (row E) and used in column 5 (row G). The extreme cxamples of this are

columns 4 and 6 where all of the macros were learned in earlier coturnns of the table.

4.4. Other Tasks

The macro technique can also be used in the Tower of Hanoi (Korf, 1985a). The three-peg, three-disk
version of the Tower of Hanoi has been implemented as a set of serially decomposable subgoals in Soar. Ina
single trial (moving three disks from one peg to another), Soar learns eight chunks that completely encode
Korf's (1985a) macro table (six macros). Only a single trial was required because significant within and across
column transfer was possible. The chunks learned for the three-peg, three-disk protlem will also solve the
three-peg, two-disk problem. These chunks also transfer to the final moves of the three-peg, N-disk problem
when the three smallest disks are out of place. Korf (1985a) demonstrated the macro table technique on three
additional tasks: the Fifteen Puzzle, Think-A-Dot and Rubik’s Cube. The technique for learning and using
macros in Soar shoutd be applicable to all of these problems. However, the performance of the current

implementation would require user-directed searches for the Fifteen Puzzle and Rubik’s Cube because of the


http://26.25.24.2i

4. A DEMONSTRATION — ACQUISITION OF MACRO-OPERATORS PAGE 31
size of the problems.

5. Conclusion

In this article we have laid out how chunking works in Sear. It is a lcarning mechanism that is based on the
acquisition of rules from goal-based experience. As such, it is related to a number of other lcarning
mechanisms. However, it obtains extra scope and generality from its intimate connection with a sophisticated
problem solver (Sear) and the memory organization of the problem solver (a production system). This is the
most important lesson of this research. The problem solver provides many things: the opportunities to learn,
direction as to what is relevant (biases) and what is nceded, and a consumer fur the learned information. The
memory provides a means by which the newly learned information can be integrated into the cxisting system

and brought to bear when it is relevant.

In previous work we have demonstrated how the combination of chunking and Sear could acquire search-
control knowledge (strategy acquisition) and operator implementation rules in both search-based puzzle tasks
and knowledge-based expert systems tasks (Laird, Rosenbloom & Newell, 1984; Rosenbloom, I.aird,
McDermott, Newell, & Orciuch, 1985). In this paper we have provided a new demonstration of the
capabilities of chunking in the context of the macro-operator learning task investigated by Korf (1985a). This
demonstration shows how: (1) the macro-operator technique can be used in a general, learning problem
solver without the addition of new mechanisms; (2) the learning can be incremental during problem solving
rather than requiring a preprocessing phase; (3) the macros can be used for any goal state in the problem; and
(4) additional generality can be obtained via transfer of learning hetween macro-operators, provided an

appropriate representation of the task is available.

Although chunking displays many of the properties of a general learning mechanism, it has not yer been
demonstrated to be a truly gencral learning mechanism. [t can not yet learn new problem spaces or new
representations, nor can it yet make use of the wide variety of potential knowlcdge sources, such as cxamples
or analogous problems. Our approach to all of these insufficiences will be to look to the problem solving.
Goals will have to occur in which new problem spaces and representations are developed, and in which

different types of knowledge can be used. The knowledge can then be captured by chunking.
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