
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

s 3

Overview of ROME:
A Reason-Oriented Modeling Environment

Donald \V. Rosy and Ben P. Wise

CMU-RI-TR-85-21:3>

Intelligent Systems Laboratory
The Robotics Institute

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

December 1985

Copyright © 1985 Carnegie-Mellon University

To appear in Artificial Intelligence in Economics and Management, L. F. Pau (ed.), North-Holland Publishing
Co. (in press). This work was sponsored by The Robotics Institute and the Eastern Electronics Systems
Company.

Table of Contents
1. INTRODUCTION 1
2. BACKGROUND: THE PLAN REVIEW PROBLEM 1
3. THE ROME SYSTEM 2
4. THE DATABASE 3
5. ROMULUS 5
6. ERGO 7
7. REMUS 9
8. CONCLUSIONS 11
REFERENCES 12

List of Figures

Figure 1: Part of a Resource Plan for EESCO's Marsysville Plant
Figure 2: Rome Components
Figu re 3: Part of a Tree of Variables
Figure 4: Definitions and Declarations

2
3
4
7

Ill

Abstract
The ROME system is an experimental decision support system generator that incorporates facilities

originally developed for "expert" artificial intelligence systems. Like other DSS generators, it

provides a set of tools for building, running, and documenting mathematical models of business

activities. Beyond that, however, the system includes explicit differentiation between hard facts and

softer information such as assumptions and expectations, a set of procedures for evaluating and

explaining results, and a natural language user interface. In this paper, we discuss the representation

of knowledge in ROME and show how it is used to answer questions, explain trends, detect

anomalous values, and assess the credibility of model assumptions.

1. INTRODUCTION
In recent years, it has become very much easier to build computerized planning models for use in

business decision making. Systems embodying such models have come to be called "decision
support systems" (DSSs) and by using a decision support system generator [10], one can construct
models in a few hours or days that would have taken weeks or months otherwise. At the same time,
artificial intelligence (Al) techniques have emerged from the laboratory which have proven to be quite
effective in solving certain classes of real-world problems. It has therefore been suggested [5,9,11]
that there may be considerable value in combining these technologies to yield more powerful DSSs
than are currently available.

The ROME system is an experimental DSS generator which has been built to investigate the
application of Al techniques to quantitative business analysis. Its name is an acronym which is meant
to characterize the approach* we have taken. As a "modeling environment," ROME is like other DSS
generators in that it provides a set of tools for building, running, and documenting mathematical
models of business activities, A hierarchically structured database is part of that environment and an
English-like command interface is used to access both the tools and the data. More importantly,
however, ROME is "reason-oriented" in that it includes explicit differentiation between hard facts and
softer information, such as assumptions and expectations, and procedures for evaluating and
explaining the results it produces. A major goal of our research to date has been to realize a system
that can explain why a result should be believed or give reasons why it should be challenged,

2. BACKGROUND: THE PLAN REVIEW PROBLEM
Our interest in evaluation and explanation was originally motivated by a study [7] of long range

resource planning at a large U.S. computer firm, which we will call EESCO. A resource plan is
essentially a quantitative projection of the amounts of resources that will be needed to produce the
volume of goods a firm expects to sell in future years. The major resources in EESCO's plan, for
example, were labor, factory floor space, raw material, facilities, capital equipment, and expense
funds. Projections of resource needs are used by a firm to allocate resources currently held and to
make decisions on acquiring new ones.

Creating resource projections involves a combination of calculation and judgment that can be
represented in a quantitative planning model with judgmental-parameter values. Although it may be
large, this model is simply a set quantitative relationships among variables, expressed by formulas
and conditional statements, together with a set of input data. The formulas encode such things as
accounting relationships between price and cost, aggregation of resource subtotals into totals, and
the relative amounts of each type of resource required to produce a unit of product. The data include
product parameters, manufacturing process parameters, and forecasts of resource price levels.
Judgment is involved in the forecasts and in characterizing the resource demands of new products
and processes.

Since there are many ways to design a manufacturing process for a given product, planners will
normally choose a design that is responsive to various goals the firm has set for itself. EESCO's
goals, for example, included increases in productivity, improved customer service, and maintenance
of a stable workforce in spite of substantial changes in product types and volumes. These goals
affect the specification of planned processes and these specifications, in turn, are reflected in the
planning model parameters.

As in many large firms, the overall planning task at EESCO was decomposed into a hierarchy of
subtasks corresponding to the different levels of the organizational hierarchy. As projections at lower
levels were generated, they were reviewed and then consolidated into projections for the parent level.
If approved at the parent level, these projections were frozen into final plans to be submitted to the
next level up. For example, if several products were manufactured in the same plant, a plan for each
product would be developed, reviewed at the product level, consolidated into a plant plan, reviewed
at that level, and then, if approved, submitted for consolidation at division level.

At all levels, the resource plans themselves were displayed as arrays of numbers where the columns
specified planning periods (e.g., years) and the rows showed the projections for each type of
resource for each period. The labor section of a hypothetical plan for one of EESCO's plants is
shown below.

il
year end people
ave people

95
68
163

127
87
214
189

85
69
154
184

38
49
87
121

46
51
97
92

54
51
106
102

Figure 1: Part of a Resource Plan for EESCO's Marysville Plant

The review steps in the planning process turned out to be very important to its success. Reviews
were performed by planning managers who were ultimately held accountable for the plans they
submitted to the next level up. They recognized that a plan is only as good as the assumptions it is
based on and so one purpose of their review was to identify and assess those assumptions. In
particular, reviewers wanted to make sure that assumptions used at lower levels matched their own
assumptions about how the firm operated so that there would be no inconsistencies in combining
lower level results into an aggregate. If an inconsistency was detected, an explanation would be
sought from the lower level planner.

They also recognized that for a plan to be acceptable at the next higher level, it must be responsive
to organizational goals. At EESCO, goals for one level did not necessarily have to be met by all lower
levels. However, it was important that they be met by the combination of lower level values in the
aggregate. Hence, a second purpose of the review was to evaluate aggregate results against goals
and, if there were a mismatch, to negotiate revisions in lower level plans that would eliminate it.

While there are a number of DSS generators that could have been used to build and run the
planning models at EESCO, and one, in fact, was being used, none of them provides much help for
the review process. In particular, none distinguishes assumed relationships from necessary ones,
none can really explain the results produced, and none has any facilities for evaluating results against
established goals or norms. The ROME project was initiated to investigate what might be done to fill
this gap.

3. THE ROME SYSTEM
The approach we have taken in ROME is to provide a modeling system in which results can be

evaluated and explained by comparative analysis. More specifically, results can be evaluated by
comparing them to expectations, and results can be explained by comparing derivations of

differences. These operations are facilitated by a database structure that allows inheritance of
symbolic information and a user interface that allows natural expression of expectations and
questions.

As shown in the figure below, the system itself consists of four major components: a database, an
interface module called ROMULUS, an explanation component called ERGO, and an evaluation
component called REMUS.

Analyst

ROMULUS

o pattern matching
parser

o phrasal dictionary

SRL DATABASE
0
0

0
0
0

variables
definitions
formulas
expectations
dependency network

ERGO

Explanation Procedure

REMUS

Evaluation Procedure

Figure 2: ROME Components

In the following sections, we describe each of these components in turn.

4. THE DATABASE
The database contains all the non-procedural knowledge ROME uses and is organized around the

set of variables comprising a planning model. The variables are arranged in a hierarchical network
and are represented in the database by records called schemata using the frame-style language SRL
[14], This hierarchy represents a categorization of variables into classes, subclasses and instances
according to their level of specificity. The figure below shows part of the tree of variables for the
resource plan shown in Figure 1.

At the top are the different types of variables. At the next level, a variable is differentiated into
subclasses according to the real-world entity it relates to, such as a particular product, plant,
company, or whatever. We call such entities anchors. At the bottom level, each instance of a variable
is associated with a column which further specializes its context of evaluation by some other entity,
such as a time period. The bottom level is thus equivalent to a set of two dimensional arrays where
each element is indexed by anchor and column.

Unlike an array, however, the is-a and instance links in the tree are used to propagate information
from higher to lower levels by "inheritance." In SRL, information about a schema is represented by

variable

is-a

year end people

dl-marsyville

ave people

dl-hemlock

instance,

dl-redwood-82 dl-redwood-83 dl-redwood-84

Figure 3: Part of a Tree of Variables

storing symbolic values in slots attached to the schema. Information is said to be inherited when a
slot in one schema is automatically filled with a value taken from another schema where the schemata
are related by a chain of is-a and instance links. Thus, in ROME, if information about a variable is
stored at the class level, such as a formula for computing its value, all subclasses and instances of
that variable will inherit this same formula. Furthermore, there is no restriction on making one class of
variable a subclass of another class so that information about the latter may be inherited by the
former. For instance, IL and DL might be made subclasses of the class "labor" and would then inherit
information from this more abstract level.

Properties of variables may be linked into the tree at any level, and lower level properties normally
supersede higher level ones. For instance, a DL formula for product 2 will be the same for every
period unless it is overridden by a different formula at the instance level. However, the inheritance
procedure may also be directed to augment lower level properties with properties from higher levels.
This kind of inheritance is used for expectations and goals.

The content of the database represents the knowledge ROME has about variables, values, formulas,
and the real-world activities they describe. Properties of variables include their definition (verbal or
arithmetic), their numerical values in different contexts, the source of those values (input or formula),
and whether the variable is taken to be endogenous or exogeneous to the system being modeled.
Input variables may be further described as 'controllable' if the decision-maker using the model can
change (or negotiate a change in) its value in the real world.

Values have a modality property which indicates whether they are empirical facts, estimates based
on other variables, or simply assumptions. Likewise, formulas are categorized as being either
definitions, estimation equations, or assumptions. Definitions are exact equalities, e.g., 'sales =
volume * selling price'. Estimation equations, on the other hand, are not exact and are used to
characterize a process without actually simulating or defining it. Estimates of endogenous variables
can be viewed as approximations of their values while estimates of exongenous variables can be
viewed as predictions. Examples of estimation formulas include regression equations, trend

extrapolation, use of growth-rate factors, etc. All other formulas that are not definitions or estimations
are considered to be assumptions.

Knowledge about what a variable describes can be represented in the database in two ways. First,
actual values the variable has had in the past can be stored as facts. Second, expected or desired
values can be specified by expressions that denote norms or goals, respectively. A norm in ROME is
a relationship among variables that "should" hold true under "normal" circumstances according to
experts in the domain of the model. A goal is a statement of an organizational objective or policy that
can be expressed in terms of modfcl variables. Norms and goals are used by REMUS to evaluate
model results and, as part of that process, may be used to infer formulas for variables that are needed
for the evaluation but are not explicitly present in the model.

To keep track of derived information, a dependency network [2] is used to link properties to their
sources. A dependency is a record that contains the justification for a slot's value in terms of the
action that produced the value plus the inputs to that action. Examples of actions that set values are
communication with the user, execution of a formula, and inheritance from a higher level. Inputs
corresponding to these actions are the content of user input, values of variables contained in a
formula, and the is-a/instance chain that allowed inheritance, respectively. Using these
dependencies, the system can tell, for example, what variables affect what other variables and this, in
turn, provides the information ERGO needs to analyze and explain model results.

5. ROMULUS
ROMULUS stands for Reason-Oriented Modeling Using a Language Understanding System and this

component acts as the intermediary between the user and the other components. Its responsibilities
include initial processing of user inputs, maintenance of the database, and control of the output
display. As a "service module" for the rest of the system, our main goal for ROMULUS has been that
it be unobtrusive: It should be fast, flexible, forgiving, informative, and easy to learn without training.

Like other natural language interfaces [6,12], ROMULUS is designed to simulate understanding in a
limited domain by recognizing all likely forms of expression for a limited number of ideas. This
recognition is performed at the sentence level by a pattern-matching parser [1] in conjunction with a
large number of grammar rules. Every grammar rule is a triple consisting of a lefthand side, a
righthand side, and an arrow between them. A pattern to be matched is expressed by a sequence of
expressions comprising terminal symbols, non-terminal symbols and operator expressions. Some
sample grammar rules (for a 'why' question) are shown below:

(why <aux> <focus-item> <change> ({setting := ?<adjunct>) ?%qmark)

(why-change Itense Ifocus Ichange Jsetting)

<aux> -> ((Itense := (&i present (do | does | is | are))) |
(Itense := (&i past (did | was | were))))

<focus-item> -> (Ifocus := (&u <change>))
<change> -> ((Ichange :s change) | go (Ichange :* (up | down)) |

(Ichange := (&i up (increase | rise)))|
(Ichange :s (&i down (decrease | fall))))

<adjunct> -> ((in | for | at) (+ ~%qmark))

Non-terminal symbols are marked by angle brackets, operator expressions by parentheses, and

terminals are left unadorned. Variables to be bound to constituent strings when a pattern is matched
are indicated by an exclamation mark.

Rather than continuing with a formal description, it is easier to see how a rule works by tracing
through its application. For example, if the first word in an input sentence is why, the parser will try to
apply the first rule above (and all other rules whose first pattern element can match the terminal
symbol why). If the next word matches the pattern specified by <aux> (for auxiliary verb), the variable
I tense will be set. A word will match <aux> if it is one of the terminals do, does, is, or are, in which
case I tense is bound to present, or if it is one of did, was, or were, in which case ! tense is bound to
past. Next, the non-terminal <focus-item> can be matched by any string of words that is followed by a
string that matches <change>. If this process can be continued until all of the input is matched, the
righthand side of the top level rule will be executed using the variable bindings made during the
match. For instance, if the input is Why did Marysville year end people go up in 83, the routine
'why-change'will be called with bindings 1 tense = (present), I focus - i t em = (Marysviile year end
people), I change = (up), and I s e t t i n g * (in 83).

The next task is to find referents for the phrases that have been extracted from the input. A referent
is a schema in the database such as a variable, anchor, or column, and the association is made by a
phrase interpreter using a phrasal dictionary. Unlike a typical natural language system, wherein the
vocabulary is fixed, the ROMULUS interpreter must be able to deal with whatever terminology the
user happens to employ. Hence, it does not attempt to determine what a phrase means, but only what
it refers to. Interpretation proceeds by (1) segmenting a phrase into parts using syntactic cues, (2)
determining the referent of each part, and (3) assembling a retrieval request for the whole phrase
based on the semantic type of each referent in it. This procedure is flexible enough to recognize that

Marysville year end people in FY83
year end people at Marysville in 83
yep(mr) in 83
year end people(83,mr)

all refer to the same variable, if the dictionary contains appropriate entries.

The dictionary entries for words and phrases are simply pointers to whatever schemas they refer to.
This makes it easy to represent synonyms, abbreviations, and acronyms as just other names for the
same schema. Moreover, since dictionary entries can be phrases, the interpreter can aimost always
guess the appropriate correction for a misspelled word in a phrase by examining the other words
around it and finding the phrase that matches most closely. The algorithm used for spelling
correction is taken from [4],

In general, the interface to a modeling system must accept three sorts of inputs: questions,
commands, and declarations. The current ROMULUS grammar includes interrogative forms for
asking questions about variables, getting advice on functions the system can perform, and asking
why results came out the way they did. It includes imperative forms for controlling the display and
requesting evaluations. The remaining forms specify the syntax of declaratives which are used to
define variables, express formulas, establish goals and norms, assign values to input variables, and
declare all other properties of variables. Examples of declarations related to the variables in Figure 1
are shown in Figure 4, where hemlock and redwood are the names of two products manufactured at
Marysville:

Define il to be the number of in-house indirect labor EESCO employees at year end
Define year end people to be dl + ii
Define ave people to be the average number of plant employees during a year
Estimate ave people(y) to be (year end people(y) + year end people(y-l))/2
Estimate dl to be roundup(dl-hrs * 1000 / hrs/shift/yr)
Declare marysvilie, redwood, and hemlock to be anchors
Use mr to refer to marysville
Use rw to refer to redwood
Use hm to refer to hemlock
Define dl(mr) to be dl(rw) + dl(hm)
Define il to be plant mgmt + product 11
Define dl-hrs to be std hrs + n-std hrs
Declare fy82 values to be factual
Let std hrs(rw) = 0 44.40 73.60 50.79 62.68 77.21
Let std hrs(hm) = 85,12 91.13 22.56 0 0 0

Figure 4: Definitions and Declarations

System output is displayed on a split screen. The top portion shows a spreadsheet display of model
results very much like that shown in Figure 1. Each display column is headed by a column name
(fiscal years in Figure 1) and the name of the anchor for the values being displayed is shown at the
upper left. Such displays are produced by a show command and any calculations are performed
when they are needed to show the results. The bottom portion is used to display user inputs, answers
to questions, explanations, and the results of REMUS's evaluations. Thus, the top portion is a report
of results and the bottom portion shows the dialogue that has occurred so far.

The overall effect is to give the user the impression that he is conversing with an analyst about the
results shown in the report. After the declarations shown above have been processed, the
conversation below exemplifies the kinds of questions ROMULUS can answer.

> What does "dl" mean?
It stands for direct labor.

> How is direct labor defined?
That represents the number of in-house direct labor EESCO employees at year end.

> How is it calculated?
In general, the formula is:

dl = roundup(dl-hrs • 1000 / hrs/shift/yr) [estimate]

Note that pronouns, such as the word it, are allowed to refer back to previously mentioned items.
Determining the referent of a pronoun is easy in this environment because interrogative and
imperative forms in English clearly establish a focus of interest. Output generation is also easy
because everything the system can say can be cast in the form of output templates to be instantiated
as needed. Although all the techniques ROMULUS uses are simple, combining them with a large
number of patterns (grammatical, phrasal, etc.) allows the interface to be much more flexible and
forgiving than in other modeling systems.

6. ERGO
ERGO stands for Explaining Results Generated by Others and its function is to answer 'why'

questions about numbers. In asking a 'why' question, a person is expressing a desire to have
something clarified that he doesn't understand. In the case of numbers, what needs to be clarified is
how the numbers were derived and why the derivation produces the results observed.

We can divide results to be explained into two categories. The first category comprises explicit
results, which are those that appear explicitly in the output of a model and are produced directly by
formulas. ERGO takes a very simple and direct approach to explaining explicit results: it simply
displays the formula and the values of subordinate variables. For example, ERGO's answer to the
question Why does dl(mr) equal 128 in 83? in our example model would be that dl(rw) = 56 and
dl(hm) = 72 and dl(mr) = dl(rw) + dl(hm). Thus, a 'why' question about a variable's value is treated
as a 'how' question about its derivation, and the answer is simply the derivation itself. This approach
is very similar to that taken by MYCIN [3], which explains its conclusions by exhibiting the rules used
and the certainty factors of subordinate clauses. There are a number of similarities between the
formulas in a model and the rules in an expert system, and so the explanations can be similar as well.
Although simple, this technique is important because it saves the user from having to search the
model himself to find out where a result came from.

The second, more interesting, category comprises implicit results, which are those that come from
comparisons the user makes between values. Implicit results are referenced in questions like why
does dl(mr) go up in 83? and why is there a dip in year end people in 85?. Answering such questions
involves explaining differences. For example, the difference to be explained for a direction question
such as Why does dl(mr) go up in 83? is the difference between the value of the variable in the given
context, (mr,83), and its value in the previous context, (mr,82). We call the first value the focus value
and the second the referent value.

The procedure ERGO uses to explain differences is based on comparing derivations. To be
comparable, the derivations must involve the same formula, say g, so that the difference, Ay, comes
from evaluating g in the focus context vs the referent context:

Ay = g(av bv cfl...) - g(ar, 5r, cr...)

The subscripts on the arguments denote the two different contexts. We will let S denote the set of
variables referenced in g: S = {a, b, c, ...}. Since all ROME variables are two dimensional, one can
easily specify comparisons across columns, across anchors, or across both, by asking questions that
specify the appropriate indices. For instance, to ask why DL for the redwood product is greater than
DL for hemlock, the question form would be: Why is dl(rw) greater than dl(hm) in 83?. The
comparison in this case would be between variables subscripted (rw,83) and variables subscripted
(hm,83) in the formula that computes the value of DL The formulas for the different instances of DL
would be the same because they both would be inherited from the general formula for DL.

The first step in the explanation procedure is to find a set of variables X, where X g S, which is
sufficient to account for Ay. To do that, we define a measure of significance, e(X,y), which measures
the effect of variables in X on y in the focus context relative to the referent context. The definition is:

where the vector Z contains values of variables in X evaluated in the referent context and values for
all other variables in S evaluated in the focus context. By successively choosing values of X to be first
individual variables in S, then pairs, then triples, and so on, the derivation of the value of e(X,y) is
made closer and closer to the derivation of Ay. When the derivations are close enough that the value
of e(X,y) is a substantial fraction (80%) of the total difference Ay, we conclude that the effect of the
variables in X is large enough to explain the difference. Variables in S but not in X are taken to be
insignificant with respect to this difference.

Given the set of explanatory variables X, the second step is to express the explanation in words. In
general, the answer will include (1) the differences that account for Ay, (2) the formula g, (3)
identification of the primary explanatory variabie(s) and (4) a qualification, which may express
counteracting, reinforcing, or insignificant effects. Like the responses ROMULUS produces, ERGO's
answers are generated from templates that are just sufficient to express in English the information
that must be conveyed. To illustrate, if the input question is Why did dl(mr) go up in 83?, the answer
would be:

Dl(mr) goes up in 83 because dl(rw) goes up and dl(mr) - dl(rw) + dl(hm). Although
dl(hm) also changes, its effect was insignificant. Would you like me to continue?

The explanation can be continued all the way down to the lowest level of the model, i.e., its
exogenous variables. A more complete description and justification of both steps of this procedure is
given in [8].

7. REMUS
The purpose of REMUS is to Review &nd Evaluate a Model's Underlying Structure. Of all ROME

components, the design of this one has been most strongly influenced by the resource plan review
problem at EESCO. First, it uses an encoding of evaluation criteria that is independent of the model
itself. The reason for this is simply that such criteria depend much more on the aims of the reviewer
than on the model he is reviewing. In ROME, evaluation criteria are expressed by statements of goals
and norms. Second, it was the case at EESCO that some important criteria involved variables that
were not explicitly shown on the resource plan. However, their values could be inferred from
variables that were shown plus the reviewer's knowledge of the domain of the model. For this reason,
ROME allows criteria to be phrased in terms of 'generic variables', if desired, which a reviewer may
link to variables in a specific model. Finally, it was also the case for some important variables that
reviewers had no criteria. When this situation arose, reviewers would first search for related variables
they could evaluate, perform the evaluation, and then assess the impact of their evaluation on the
original variable. To capture this aspect of plan review, the REMUS review procedure capitalizes on
the hierarchical structure of resource plans to search for evaluable variables at lower levels in the
derivation tree if needed.

The main steps in this procedure are shown below. To evaluate a variable v:

1.lf there are criteria for the values of v, apply them and state conclusions. Check
equalities before inequalities.

2. Find variables that explain the trend using ERGO and the formula for v. If there is no
formula but there is an equality norm, use that. Call this set of variables S.

3. If there are variables in the formula which have criteria but are not in S, add them to S.
4. Recursively evaluate the variables in S.

The main conclusions that may be drawn are as follows:

1. If criteria are met, REMUS says so.
2. If a goal is not met, REMUS calls it 'problematic'.
3. If there is a moderate difference (< 30%) between a value and a norm, it is 'OK'.
4. If there is a large (> 30%) difference between a value and a goal, it is 'extraordinary'. If

there is a large deviation from a norm, it is 'odd'.
5. If the effect on v of a large deviation in a lower level variable can be determined, REMUS

suggests that v may be 'too high' or 'too low1.

This procedure can be continued until it reaches exogenous variables. If the initial variable v is at the
subclass level, then each instance in the column sequence is evaluated in turn. A fuller discussion
maybe found in [13].

To use this procedure, one must declare the evaluation criteria in the form of goals and norms. For
example, one goal at EESCO was that new products should be manufactured more efficiently than old
products, or at least no less efficiently. This goal may be expressed to ROME as:

Declare comparable product to be an anchor variable
Declare current year to be a column variable
We want Resource Used/Unit to be no more than Resource Used/Unit(comparable

product,current year)

One such resource, for example, might be the amount of labor used per unit of output. In accounting,
labor usage is measured in hours required, given some manufacturing process and a "standard"
volume of output:

Define Standard Hours/Unit to be Total Standard Hours / Q-produced
Declare Standard Hours/Unit to be a measure of Resource Used/Unit
Expect Total Standard Hours to equal Standard Hours/Unit * Q-produced
Declare Standard Hours/Unit to be exogenous

Of course there may be many such criteria, but one will suffice for illustration.

Notice that the variables just mentioned are not specific to the model defined in Figure 4. Rather,
they represent quantities that are more or less universal in manufacturing operations and the
relationships between them are essentially generic. As a textual convention, we have distinguished
these generic variables by capitalizing their names. Relationships among them are expressed by
declaring expected equalities. If variables in a specific model are made instances of generic ones,
the corresponding relationships will be inherited. This may be done as follows:

Declare std hrs to be a measure of Total Standard Hours
Declare build schedule to be a measure of Q-produced
Let comparable product(rw) - hemlock
Define current year to be 82

If a generic variable is not linked to any specific one it will be instantiated directly for any relevant
anchors and columns. This will be the case here for Standard Hours/Unit.

To show how this all works, we close with a sample evaluation:

> Evaluate dl(mr)
There are no evaluation criteria for dl(mr). However, dl(mr) goes up in 83 because
dl(rw) goes up and dl(mr) = dl(rw) + dl(hm). Although dl(hm) also changed, its effect
was insignificant. Would you like me to continue? Y

Dl(rw) goes up in 83 solely because dl-hrs(rw) goes up and dl = roundup(dl-hrs • 1000 /
hrs/shift/yr). Would you like me to continue? Y

Dl-hrs(rw) goes up in 83 because std hrs(rw) and n-std hrs(rw) both go up and dl-hrs -
std hrs + n-std hrs. The increase in dl-hrs was due primarily to the increase in std
hrs. Would you like me to continue? Y

By norm 1, we expect std hrs to equal Standard Hours/Unit * build schedule.
This appears to be so for rw in 83. Would you like me to continue? Y

By goal 1, we want Standard Hours/Unit to be no more than Standard Hours/Unit(hm,82).
This appears to be so for rw in 83. But we also find Standard Hours/Unit(rw) to be much
less than Standard Hours/Unit(hm,82) in 83. This seems extraordinary. So dl(mr) may
be too low. Would you like me to continue?

If the user answers yes at this point, evaluation will continue with the next column. It might have
continued with an explanation of the increase in n-std hrs(rw), but this is an input variable with no
known equality relationships and so there was no way to continue from there.

8. CONCLUSIONS
It can be argued that current DSSs support decisions in three ways. First, they automate some of

the clerical component of an analyst's activities thereby enabling him to explore a broader range of
options than would otherwise be possible. Second, they provide structural frameworks for some
types of decisions in the form of computational models. Third, within the context of a model, they
provide a free-flowing interaction with the system thereby introducing the possibility of helping the
analyst arrive at a better understanding of the problem.

The support they provide is limited, however. For one thing, their clerical function does not extend
much beyond calculating and formatting. Not much attention is paid to input validation, assumption
checking, or keeping track of intermediate results. Nor is there much in the way of mechanisms by
which results could be explained or justified to users who were not familiar with what a particular
model does. If a user is skeptical of the results he gets, it is up to him to search for reasons to believe
or challenge them.

In ROME, we have attempted to go beyond these limits by adding several Al-inspired capabilities to
a traditional DSS base. Using ROMULUS, for example, an analyst can ask questions about properties
of variables other than their values, which would not be possible with a strictly numerical system.
Using ERGO, he can get explanations of results. Using REMUS, he can review the results in light of
assumptions and check them against evaluation criteria.

These capabilities have been implemented using two basic Al techniques: search and hierarchical
knowledge representation. The comparative analysis that ERGO performs, for example, requires
searching through combinations of variables to find a set that accounts for a difference. The
evaluations made by REMUS require a search for variables that are related to the variable being
evaluated. Hierarchical representation has been important in linking individual variables to more
abstract or generic classes whose properties should be inherited by the individuals.

Given the framework we have set up in ROME, there seem to be many opportunities for further
research. For one, both explanations and evaluations are currently limited to one context at a time,
e.g., one column. But, given a set of explanations or evaluations, it might be possible for the system
to produce summary statements from them, or generalizations, that would identify what was
significant about a whole series of values. Second, the technique of comparative analysis might be
extended to explaining the results of what-if scenarios, or to finding the causes of differences
between the actual performance of a firm and what was planned or budgeted. Thus, it may be
possible to provide much better support for budget-variance analysis, for instance, than is currently
available. Finally, we are very interested in whether the techniques implemented in ROME are robust
enough for practical use. While we have tested the system on a few small models, it remains to be
seen whether the concepts and procedures will scale up to larger, more complex models where
explanation and evaluation should be especially valuable. These are among the issues we are
currently exploring.

12

REFERENCES

[I] Boggs, W.M, Carbonell, J.G., and Monarch, I., "The Dypar-I Tutorial and Reference Manual,"
Computer Science Department, Carnegie-Mellon University, 1984.

[2] Charniak, E., Riesbeck, C.K., and McDermott, D.V,, "Data Dependencies," in Artificial
intelligence Programming, Hillsdale, NJ.: Lawrence Erlbaum Associates, 1980.

[3] Davis, R., Applications of Meta Level Knowledge to the Construction, Maintenance and Use of
Large Knowledge Bases, PhD Thesis, Computer Science Department, Stanford University, July
1976.

[4] Durham, I., Lamb, D.A., Saxe, J.B., "Spelling Correction in User Interfaces," CACM, V. 26, No.
10, pp. 764-773, October 1982.

[5] Gorry, G» and Krumland, R., "Artificial Intelligence Research and Decision Support Systems," in
Building Decisions Support Systems, J. Bennet (ed.), Addison-Wesley, 1982.

[6] Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, Do, and Slocum, J., "Developing A Natural Language
Interface to Complex Data," ACM Transactions on Database Systems, V. 3, No. 2S pp. 105-147,
June 1978.

[7] Kosy, D.W., and Dahr, V., "Knowledge-Based Support Systems for Long Range Planning," The
Robotics Institute, Carnegie-Mellon University, 1983.

[8] Kosy, D.W., and Wise, B.P., "Self-Explanatory Financial Planning Models," Proceedings of
AAAI-84, pp. 176-181, August 1984.

[9] Scott Morton, M.S., "Expert Support Systems -- The Next Generation of Decisions Support,"
National Conference on Decision Support and Expert Systems, George Washington University
School of Government and Business Administration, Washington, D.C., April 1985.

[10] Sprague, R.H., Jr., "A Framework for the Development of Decision Support Systems," MIS
Quarterly 4, December 1980, pp 1-26.

[II] Sprague, R.H., Jr., "Knowledge Based DSS: A Research Progress Report," Transactions
Second International Conference on Decision Support Systems, G. Dickinson (ed.), June 1982.

[12] Waltz, D.L., "An English Language Question Answering System for a Large Relational
Database," CACM, V. 21, No. 7, pp. 526-539, July 1978.

[13] Wise, BoP., and Kosy, D.W., "Model-Based Evaluation of Long-Range Resource Allocation
Plans," The Robotics Institute, Carnegie-Mellon University, 1985.

[14] Wright, M., and Fox, M.S., "SRL/1.5 User Manual," The Robotics Institute, Carnegie-Mellon
University, 1982.

