NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

THE MEAN DISTANCE IN 2-SPACE

G. Yuval

June 1976

Department of Computer Science
Carnegie-Mellon University Pittsburgh, Pa., 15213

An $O\left(N^{2}\right)$ lower bound is proven for the mean distance between N points in 2space, using methods from complex function theory; but if any finite error is allowed, an $\mathrm{O}(\operatorname{NlogN})$ algorithm is shown for computing the mean distance to within that finite error.

This research was supported in part by the National Science Foundation under grant MCS75-222-55 and the Office of Naval Research under contract NOOO14-76-C-0370,
NR 044-422.

Introduction

In this paper, we prove a lower bound for a problem -- finding the mean Euclidean distance between N points in 2 -space -- by methods drawn from complex function theory. The crucial fact we shall use is that two complex functions (under the appropriate caveats) can either be identical everywhere, or else they can be identical (almost) nowhere; there is no in-between possibility.

Because of this, a well-behaved function can be continued uniquely everywhere, given its values in any interval, no matter how small. If it has singularities, we can continue it along any path that circumvents them; this may cause the function to become multivalued (depending on whether we circumvent a singularity from the left or from the right), in which case we say it has a many-sheeted Riemann surface ${ }^{\dagger}$.

The square-root function, used in the definition of the mean distance, has asheeted Riemann surface; that is, a square root can have 2 values. This causes the mean distance to have very many possible values. Using analytic continuation, we show that any algorithm that computes it on the reals has to compute it everywhere, and must therefore give equally many different results on the different sheets. A simple argument of accounting for all this ambiguity shows that this implies a large complexity.

The methods used here should be applicable to other algorithms that use functions with nontrivial Riemann surfaces (e.g. the harmonic mean distance in 2-space, or the gravitational potential energy of N stars).
I wish to thank D.Jefferson for some most valuable discussions.

[^0]Straight-line algorithms
Let N points $\left(X_{i}, Y_{j}\right)$ be given in 2-space. The mean distance D between them is defined as

where M is $N(N-1) / 2$.
We can consider D as a function of $2 N$ complex variables. For each of the M square roots, there are (complex) points where that square root alone is singular, and all the others are analytic ${ }^{\dagger}$. Continuing D on a contour around such a point will reverse the sign of the relevant square root, leaving the others unchanged. Therefore, the Riemann hypersurface of D has 2^{M} sheets, and each can be continued to any of the others.

Consider now any straight-line algorithm A to compute D, using the five arithmetic operations $+,-, *, /$ and square-root.

A can be considered to apply to complex inputs as well as real ones, and computes some function f, meromorphic (=analytic, except for poles) on its Riemann surface. On the reals, $f=D$. We can therefore apply, from ch.II of [2], their
"Theorem 4: If f_{1} is analytic in a domain D_{1}, and f_{2} in a domain D_{2}, if the intersection of D_{1} and D_{2} is a nonempty domain, and if $f_{1}(z), f_{2}(z)$ have equal values in a real environment of a point of $D_{1} \cdot D_{2}$, then $f_{1}(z), f_{2}(z)$ are analytic continuations of each other; i.e. there exists a unique function $f(z)$ analytic in $D_{1}+D_{2}$ which coincides with f_{1} in D_{1} and with f_{2} in $D_{2} .^{" \prime}$ (N.B. z is a complex vector; the extension to meromorphic functions is trivial, by removing small neighbourhoods of the singularities from the domains D_{1}, D_{2})
We therefore find that f and D are the same complex function. By choosing the appropriate continuation paths, it is seen that they have the same minimal Riemann surface. Therefore, the full analytic continuation of f is 2^{M}-valued almost everywhere.

This high degree of ambiguity can only result from square-root steps, since all our other operations are unambiguous. Let us try to account for all the ambiguity:
${ }_{\text {for }}$ the square root of $\left(X_{1}-X_{2}\right)^{2}+\left(Y_{1}-Y_{2}\right)^{2}$, such a point is given by $X_{k}=Y_{k}=k, k>1$;
$X_{1}=1 ; Y_{1}=2+i$. This does not hold in $1-$ spac. $X_{1}=1 ; Y_{1}=2+i$. This does not hold in 1 -space.

If, at each square-root operation of A, we choose a branch of the square-root function, f becomes single-valued. Since these choices must give us 2^{M} different results, there must be at least M of them; thus, A must include M square-root operations. We have thus proved:

Theorem 1: If we are limited to $+,-, *, /$ and square-root operations, the mean distance in 2-space has complexity $O\left(N^{2}\right)$.

The extension to higher dimension is trivial, since K-space includes 2-space.
In the following sections, we shall remove some of the restrictions on A.

Decisions

If A is not a straight-line algorithm, but includes decision steps, we cannot use the previous section's proof of theorem 1. Let A have some bounded number of decision steps in it. Each decision can go one of two ways, and therefore, depending on the input data, A behaves like one out of a finite family of straight-line algorithms A_{1}, A_{2}, \ldots . For every real input set, at least one of the A_{i} gives the right answer D. Let A_{i} compute the function f_{i}, meromorphic on its Riemann hypersurface.

We shall now prove, by reductio ad absurdum, that at least one of the f_{i} is equal to D everywhere. For suppose not. Then none of the functions $f_{j}-D$ is idntically zero. By theorem 11.4 of [2], they cannot vanish on any real neighbourhood. Since each f_{i}-D is continuous almost everywhere ${ }^{\dagger}$, every real neighbourhood (i.e. non-empty open set) contains a neighbourhood in which it nowhere vanishes (since it contains a point at which $f_{i}-D$ is continuous and nonzero).

Let us now choose some neighbourhood N_{0}. It must contain a neighbourhood N_{1} in which $f_{1}-D$ nowhere vanishes. This N_{1} must contain a neighbourhood N_{2} in which f_{2}-D nowhere vanishes. Continuing, we find a neighbourhood in which none of the f_{i}-D ever vanishes, but their product is identically zero; which is absurd. Q.E.D.

Therefore, A must reduce, for some inputs, to a straight-line algorithm that gives D everywhere, and theorem 1 applies even if decisions are allowed.

In particular, since the absolute value function (on the reals) can be computed by decisions and arithmetic steps, it does not heip in speeding up the computation of the mean distance.
ttechnically, it is continuous in an open set, dense in real 2 N -space.

Higher-order roots

It might seem that theorem 1 is limited to a computation model that allows,,$+- \neq / /$, and square roots only, and that higher-order roots may get round the lower bound of M operations. But permutation-group considerations forbid this:

Consider the set of 2^{M} values of (1) in some singularity-free region. The various possible closed paths, from this region to itself, along which analytic continuation is carried out, generate a group of permutations between these 2^{M} values. All elements of this group are of characteristic 2 ; that is, if we go twice along any closed path, every sheet of the Riemann hypersurface returns to itself.

We can do the analytic continuation, along a path, not only of the final values given by algorithms A^{\prime} and T, but also of every intermediate value. If, at some stage of A^{\prime}, we take (e.g) a 4 -th root, the result of this step has a fourfold multiplicity (=number of branches), but the structure of that multiplicity is all wrong: the 4 values of this step divide into two pairs, and there is a continuation path such that going twice around it will lead from one member of the pair to the other ${ }^{\dagger}$.

In the final result, such a double path leaves everything invariant; the extra multiplicity is therefore "wasted", and this step only contributes a factor of 2 to the multiplicity of the final result, since that result can only depend on whether we choose an odd, or an even, branch of the root, but not on which of the even branches, (or which of the odd ones), we choose.

Therefore, high-order roots (and, for similar reasons, logarithms) have no effect on theorem 1. They can be used to reduce the number of square roots, but not of total
operations.
${ }^{\dagger}$ If, for instance, we take the 4 -th root of 1 , the 2 pairs are ± 1 and $\pm i$.

References

[1] Bieberbach, Conformal Mapping, New York 1953.
[2] Bochner and Martin, Several Complex Variables, Princeton 1948.

G.Yuval,comp.sci.,CMU,15213

Fast approximations to the mean distance in 2-space
Keywords: mean distance, approximation

Introduction

It has recently [1] been shown that the mean euclidean distance D between N points in 2 -space requires $O\left(N^{2}\right)$ steps to compute. In this paper, we shall show that, if any finite relative error ϵ is permitted, there is an $O(N \log N)$ algorithm that computes D to within $+\mathbb{D}$.

To do this, we define a series of metrics for 2-space. The mean distance for each metric takes only $O(N \log N)$ steps, and these metrics approximate the Euclidean metric to within closer and closer tolerances.

The results of this paper have been derived independentiy by D. Jefferson (private communication).

A foolish metric

The crudest metric we shall consider defines the length $|V|$ of the vector $V=(X, Y)$ to be the absolute value of X. The rule $|a V|=a|V|$ (a positive scalar, V vector) does hold for this metric, but the unit "circle" is an infinite strip, parallel to the Y axis, of width 2. Let us call this metric F.

Fancier metrics

If we rotate this foolish metric F (i.e. use the projection on some line different from the X-axis), we get a different, equally foolish, metric. The length of a vector, under all such metrics, is a convex, piecewise linear, function of the vector. This property (and also $|\mathrm{aV}|=\mathrm{a}|\mathrm{V}|$), remains true if we add two or more such metrics, defining the new length of a vector to be the sum of its lengths under the different metrics we add. Therefore, the new unit "circle" is a convex polygon; in general, it will have twice as many edges as there are metrics added up. This can be verified by considering which combinations of the linear parts of the various foolish metrics are possible.
If we rotate F by $K * 180^{\circ} / \mathrm{L}$ for $\mathrm{K}=0, \ldots, \mathrm{~L}-1$, and add up the resulting metrics, the unit "circle" will be a regular $2 L-$ gon ${ }^{\dagger}$. As L gets bigger, it will look more and more like a circle ${ }^{\ddagger}$. Since $|\mathrm{aV}|=\mathrm{a}|\mathrm{V}|$, this is enough to ensure that these metrics (scaled by a suitable multiplicative constant) converge to the Euclidean metric.

```
\({ }^{\dagger}\) For \(L=2\), we get the \(L^{1}\) norm \(|V|=|X|+|Y|\).
*This follows from its convexity and 2 L -fold rotational symmetry
```


Finding the mean distance

Since, under all our metrics, the length of a vector is the sum of its F measure and of similar measures, it is enough to compute the mean F-distance, which is

If we sort the N points by their X coordinate, this number equals

$$
\frac{2}{N(N-1)} \sum_{i<j}\left(x_{j}-x_{i}\right)
$$

If we collect terms, we find that each X_{j} appears as many times as the number of $j-s$ which are less than i, minus the number of $j-s$ which are greater than i. The sum therefore equals

Thus, the mean F distance (and therefore, the mean distances under all our metrics) can be found in $O(N \log N)$ steps.

References

[1] G.Yuval, The complexity of the mean distance in 2-space, submitted to Inf.Proc.Letts.

16. DISTRIBUTION STATEMENT (Of this Report)

Approved for public release; distribution unlimited.
'7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
-
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on revorse side if necessary and identify by block number)
20. ABSTRACT (Continue on reverso side thecossary and identlfy by block number) An $0\left(\mathrm{~N}^{2}\right)$ lower bound is proven for the mean distance between N points in 2-space, using methods from complex function theory; but if any finite error is allowed, an $0(\mathrm{~N} \log \mathrm{~N})$ algorithm is shown for computing the mean distance to within that finite error.

[^0]: ${ }^{\dagger}$ Readers unfamiliar with Riemann surfaces might find [1] useful.

