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Introduction 

In this paper, we prove a lower bound for a problem — finding the mean Euclidean 
distance between N points in 2-space — by methods drawn from complex function 
theory. The crucial fact we shall use is that two complex functions (under the 
appropriate caveats) can either be identical everywhere, or else they can be 
identical (almost) nowhere; there is no in-between possibility. 

Because of this, a well-behaved function can be continued uniquely everywhere, 
given its values in any interval, no matter how small. If it has singularities, we can 
continue it along any path that circumvents them; this may cause the function to 
become multivalued (depending on whether we circumvent a singularity from the left 
or from the right), in which case we say it has a many-sheeted Riemann surface^. 

The square-root function, used in the definition of the mean distance, has a 2-
sheeted Riemann surface; that is, a square root can have 2 values. This causes the 
mean distance to have very many possible values. Using analytic continuation, we 
show that any algorithm that computes it on the reals has to compute it 
everywhere, and must therefore give equally many different results on the 
different sheets. A simple argument of accounting for all this ambiguity shows that 
this implies a large complexity. 

The methods used here should be applicable to other algorithms that use functions 
with nontrivial Riemann surfaces (e.g. the harmonic mean distance in 2-space, 
or the gravitational potential energy of N stars). 

I wish to thank D.Jefferson for some most valuable discussions. 

headers unfamiliar with Riemann surfaces might find [1] useful. 



c;traight-line algorithms 

as 

where M is N(N-l)/2. 

We can consider D as a function of 2N complex variables. For each of the M square 
roots, there are (complex) points where that square root alone is singular, and all the 
others are analytic***. Continuing D on a contour around such a point will reverse the 
sign of the relevant square root, leaving the others unchanged. Therefore, the Riemann 
hypersurface of D has 2^ sheets, and each can be continued to any of the others. 

Consider now any straight-line algorithm A to compute D, using the five arithmetic 

operations +,-,*,/ and square-root. 

A can be considered to apply to complex inputs as well as real ones, and computes 
some function f, meromorphic (^analytic, except for poles) on its Riemann surface. On 
the reals, f=D. We can therefore apply, from ch.II of [2], their 

"Theorem 4: If f j is analytic in a domain Dj, and f 2 in a domain D 2, if the intersection 

of Dj and D 2 is a nonempty domain, and if fj(z),f2(z) have equal values in a real 

environment of a point of Dj.D 2, then fj(z),f2(z) are analytic continuations of each 

other; i.e. there exists a unique function f(z) analytic in Dj+D 2 which coincides with f j 

in Dj and with f 2 in D 2. M (N.B. z is a complex vector; the extension to meromorphic 

functions is trivial, by removing small neighbourhoods of the singularities from the 

domains D^,D2) 

We therefore find that f and D are the same complex function. By choosing the 
appropriate continuation paths, it is seen that they have the same minimal Riemann 
surface. Therefore, the full analytic continuation of f is 2M-valued almost everywhere. 

This high degree of ambiguity can only result from square-root steps, since all our 
other operations are unambiguous. Let us try to account for all the ambiguity: 

t,6r the square root of (X r X 2 )2 + (Y r Y 2 )2 , such a point is given by Xk-YK-K,K>1, 

Xj-1; Yj-2+i • This does nit hold in 1-space. 

let N points (X,*) be given in 2-space. The mean distance D between them is defined 



If, at each square-root operation of A, we choose a branch of the square-root 
function, f becomes single-valued. Since these choices must give us 2 M different 
results, there must be at least M of them; thus, A must include M square-root 
operations. We have thus proved: 

Theorem 1: If we are limited to +,-,*,/ and square-root operations, the mean distance in 
2-space has complexity O(N^). 

The extension to higher dimension is trivial, since K-space includes 2-space. 

In the following sections, we shall remove some of the restrictions on A. 



Decisions 

If A is not a straight-line algorithm, but includes decision steps, we cannot use the 
previous section's proof of theorem 1. Let A have some bounded number of decision 
steps in it. Each decision can go one of two ways, and therefore, depending on the 
input data, A behaves like one out of a finite family of straight-line algorithms A j ^ , . . . 
. For every real input set, at least one of the Aj gives the right answer D. Let Aj 
compute the function fj, meromorphic on its Riemann hypersurface. 

We shall now prove, by reductio ad absurdum. that at least one of the fj is equal to D 
everywhere. For suppose not. Then none of the functions fj-D is idntically zero. By 
theorem II.4 of [2], they cannot vanish on any real neighbourhood. Since each fj-D is 
continuous almost everywhere***, every real neighbourhood (i.e. non-empty open set) 
contains a neighbourhood in which it nowhere vanishes (since it contains a point 
at which fj-D is continuous and nonzero). 

Let us now choose some neighbourhood NQ. It must contain a neighbourhood Nj in 
which f j -D nowhere vanishes. This Nj must contain a neighbourhood N2 in which 
f2~D nowhere vanishes. Continuing, we find a neighbourhood in which none of the 
fj-D ever vanishes, but their product is identically zero; which is absurd. Q.E.D. 

Therefore, A must reduce, for some inputs, to a straight-line algorithm that 
gives D everywhere, and theorem 1 applies even if decisions are allowed. 

In particular, since the absolute value function (on the reals) can be computed by 
decisions and arithmetic steps, it does not help in speeding up the computation of the 
mean distance. 

technical ly, it is continuous in an open set, dense in real 2N-space. 



Higher-order roots 

It might seem that theorem 1 is limited to a computation model that allows +,-,*,/, 
and square roots only, and that higher-order roots may get round the lower bound 
of M operations. But permutation-group considerations forbid this: 

Consider the set of 2^ values of (1) in some singularity-free region. The various 
possible closed paths, from this region to itself, along which analytic continuation 
is carried out, generate a group of permutations between these 2^ values. All 
elements of this group are of characteristic 2; that is, if we go twice along any closed 
path, every sheet of the Riemann hypersurface returns to itself. 

We can do the analytic continuation, along a path, not only of the final values given 
by algorithms A' and T, but also of every intermediate value. If, at some stage of A', 
we take (e.g) a 4-th root, the result of this step has a fourfold multiplicity 
(=number of branches), but the structure of that multiplicity is all wrong: the 4 values 
of this step divide into two pairs, and there is a continuation path such that going 
twice around it will lead from one member of the pair to the other4'*. 

In the final result, such a double path leaves everything invariant; the extra 
multiplicity is therefore "wasted", and this step only contributes a factor of 2 to 
the multiplicity of the final result, since that result can only depend on whether we 
choose an odd, or an even, branch of the root, but not on which of the even branches, 
(or which of the odd ones), we choose. 

Therefore, high-order roots (and, for similar reasons, logarithms) have no effect on 
theorem 1. They can be used to reduce the number of square roots, but not of total 
operations. 

fIf, for instance, we take the 4-th root of 1, the 2 pairs are ± l and .,. 
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Introduction 

It has recently [1] been shown that the mean euclidean distance D between N 

points in 2-space requires 0(N 2) steps to compute. In this paper, we shall show 

that, if any finite relative error ( is permitted, there is an O(NlogN) algorithm that 

computes D to within +<D. 

To do this, we define a series of metrics for 2-space. The mean distance for each 
metric takes only O(NlogN) steps, and these metrics approximate the Euclidean 
metric to within closer and closer tolerances. 

The results of this paper have been derived independently by D. Jefferson 

(private communication). 

A foolish metric 

T H P crudest metric we shall consider defines the length |V| of the vector V«(X,Y) to I ,h b I I o f X. The ™,e |aV| - a|V| (a positive scalar, Vvectordoes W d 
for this metric, but the unit "circle" is an infinite strip, parallel to the Y axis, of w.dtn 

2. Let us call this metric F. 

Fancier metrics 

If we rotate this foolish metric F (i.e. use the projection on some line different from 
the X-axis), we get a different, equally foolish, metric. The length of a vector, under 
all such metrics, is a convex, piecewise linear, function of the vector. This property 
(and also |aV|=a|V|), remains true if we add two or more such metrics, defining the 
new length of a vector to be the sum of its lengths under the different metrics we 
add. Therefore, the new unit "circle" is a convex polygon; in general, it will have 
twice as many edges as there are metrics added up. This can be verified by 
considering which combinations of the linear parts of the various foolish metrics are 
possible. 

If we rotate F by K*180°/L for K=0,...,L-1, and add up the resulting metrics, the unit 
"circle" will be a regular 2L-gont As L gets bigger, it will look more and more like a 
circle*. Since |aV|=a|V|, this is enough to ensure that these metrics (scaled by a 
suitable multiplicative constant) converge to the Euclidean metric. 

+ For L=2, we get the L 1 norm |V|=|X|+|Y|. 

*This follows from its convexity and 2L-fold rotational symmetry 



Finding the mean distance 

Since, under all our metrics, the length of a vector is the sum of its F measure and 
of similar measures, it is enough to compute the mean F-distance, which is 

If we sort the N points by their X coordinate, this number equals 

If we collect terms, we find that each Xj appears as many times as the number of j-s 
which are less than i, minus the number of j-s which are greater than i. The sum 
therefore equals 

<2i-N-l)Xj 

Thus, the mean F distance (and therefore, the mean distances under all our metrics) 
can be found in O(NlogN) steps. 
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