
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Programming the Illiac IV

David K. Stevenson

November, 1975

Department of Computer Science
Carnegie-Mel lon University

Pittsburgh, Pa.

Th is r e s e a r c h was suppor ted in part by the Office of Naval Research under contract
N O O 1 4 - 6 7 - 0 3 1 4 - 0 0 1 0 , NR 0 4 4 - 4 2 2 , and by the National Science Foundation under p,rant
G J 3 2 1 1 1 .

A B S T R A C T

A simple model of parallel computation is a single instruction stream control l ing a
mul t ip le processor configuration. Programs for such computers entail a host of
cons idera t ions absent f rom programs for a conventional sequential computer . This
p a p e r e x p l o r e s the main considerations in using such a computer, largely in terms of the
Il l iac IV. It deals wi th gross system characteristics and how they affect the sui tabi l i ty
of va r ious prob lem formulations, parallel program structures and data representa t ions ,
and coding s t ra teg ies and techniques. The paper is self -contained in that it does not
r e q u i r e any prev ious knowledge of the Illiac; it should be of interest both to the g e n e r a l
c o m p u t i n g community as a survey of practical aspects of parallel computat ion and to
t h o s e actual ly contemplat ing using the Illiac.

INTRODUCTION

One of the simplest models of parallel computation is a single instruction s t r e a m
cont ro l l ing a multiple processor configuration. Programs for such a computer enta i l a
host of considerat ions absent from programs for a conventional sequential computer .
This p a p e r contains some of the ideas that anyone who is formulating a p rob lem,
des ign ing a p rogram, or wri t ing code for such a parallel computer should consider.
T h e y a r e d r a w n f rom the author's own experience and from conversat ions and
p u b l i s h e d r e p o r t s of many people who have used a particular real izat ion of this
a r c h i t e c t u r e , the Illiac IV. Using a real computer to focus the discussion prov ides a
c o n c r e t e basis for these observations, but each problem is considered both as to how it
a f f e c t s programming the Illiac and as to why it is probably endemic to any rea l izat ion of
th is para l le l archi tecture . As a result this paper should be of use to scientists
i n t e r e s t e d in programming the Illiac to solve their computer modeled problems. And it
shou ld also b e of interest to the general computing community since it discusses t h e
cons idera t ions involved in programming a single instruction stream mul t ip le -processor
c o m p u t e r and the various techniques that have evolved to exploit the p o w e r of a
par t i cu la r para l le l machine within the restrictions of its architecture.

T h e t h r e e chapters display a progression from global considerations t o w a r d local
and m o r e specia l ized issues. The first chapter deals with system characterist ics and
h o w t h e y af fect the suitabil ity of various problem formulations for e f f ic ient
imp lementa t ion on the Illiac. It is intended to give the reader some feel ing for w h a t
pa ra l l e l computat ion on the Illiac is really like (at least as it is practiced in 1 9 7 5) . T h e
s e c o n d chap te r takes up the issue of parallel program structure and d a t a
r e p r e s e n t a t i o n s . As these problems are only recently being understood in t h e
sequent ia l computer context , it is probably not surprising that this chapter on ly
s k e t c h e s some options which are available and indicates what appear to be the main
issues involved. The final chapter is devoted to a discussion of coding approaches and
techn iques . Stopping just short of the gory details, the final chapter gives a care fu l
d e s c r i p t i o n of how to deal wi th several common program structures in light of the
I l l iac's a rch i tec ture ; more than anything else these topics should give the reader a c lear
idea of t h e p o w e r and limitations of the machine, and of a single instruction s t r e a m
mul t iprocessor in genera l .

2

T h e r e a r e t w o appendices. The first consists of a discussion of selected aspects of
t h r e e p r o j e c t s which w e r e designed to use the Illiac. The second is a se lected and
a n n o t a t e d b ib l iography on parallel computation in general and on the Illiac in part icular .

A no te on nomenclature is appropr iate at this point. The usual descr ipt ion of t h e
I l l iac is an a r r a y processor. The rationale for this is that the processing e lements a r e
not comple te processors since they do not decode their own instructions but r e l y on a
c e n t r a l processor for direction. On the other hand, the ability to calculate the location
of o p e r a n d s , togther wi th one insruction (the symmetric d i f ference, for example) , is
su f fc ien t for genera l computing, i.e. Mis equivalent to a Turing machine.*' Thus e a c h
process ing e lement is essentially a computer in its own right (provided the cent ra l
p rocessor r e p e a t e d l y issued a symmetric dfference instruction). Both points of v i e w
a r e va luab le ; in some contexts one seems more appropriate than the other . This p a p e r
t e n d s to use the te rm multiprocessor for the Illiac, if for no other reason than its
pedagogica l shock value.

Final ly , t h e r e are a number of places where timing information is used in ana lyz ing
v a r i o u s aspects of the Illiac. These reflect the state of the machine during the fall of
1 9 7 5 . Since a number of enhancements to the hardware are planned, and e v e n more
a r e poss ib le , t h e y sould be v iewed as conservative, even obsolete.

3

I. S Y S T E M CONFIGURATION AND PROBLEM FORMULATION

T h e gross fea tures of the Illiac to a large extent determine what forms of
c o m p u t a t i o n can be executed eff iciently on this type of architecture. The ex ten t to
w h i c h a p rob lem can be formulated so that the computation it requires fits one of these
f o r m s (or a combination of these forms) will determine the degree of uti l ization of the
c o m p u t e r that can be expected. There are two levels of any proposed calculation o v e r
a l a r g e da ta base on the Illiac that must be considered. The first involves the global
in te rac t ions of the data base which determine the data movement b e t w e e n a la rge
r o t a t i n g mass s torage device and a smaller buffer memory w h e r e the actual computat ion
is p e r f o r m e d .

A l though this br ief discussion is couched entirely in terms of the Illiac, it is qu i te
l ike ly tha t character ist ics associated wi th a heirarchical storage will a lways occur in
scient i f ic comput ing dealing wi th large data bases. The reason for this may be due to
t e c h n o l o g y : the physical limit of the size of random access memories is less than t h e
in fo rmat ion requi rements for computational models; or due to economics: semiconductor
m e m o r i e s a r e more expensive per bit than disk memories; or due to algorithmic
r e q u i r e m e n t s : most large scale computations can be formulated so that each s t e p
r e q u i r e s random access to a relat ively small section of the data, and the en t i re da ta
b a s e can b e par t i t ioned into such sections. In sequential computations, the global
cons idera t ions a re wel l known, since scientific computations over a large data base can
e a s i l y e x c e e d the pr imary storage capacity of even the largest current technology,
s t a n d a r d arch i tec ture computers. The techniques developed for a sequential computer
t o o b v i a t e this problem are relevant to the Illiac and to parallel computers in genera l
a n d a r e included here mainly as a convenience for the reader.

T h e second level considerations involve local interactions of data within the bu f fe r
memory. As such it is new with the I l l iac-type architecture, and requires some care to
k e e p f r o m signif icantly degrading the rate of computation. This arises f rom the fact
t h a t e a c h memory module has an associated processing unit. Thus the more operands
f o r a g i v e n instruction which lie in dif ferent memory modules, the f e w e r the tota l
n u m b e r of instructions which will be required to process all data. This is in
cont rad is t inc t ion to a sequential computer which requires one instruction (memory f e t c h)

4

f o r e a c h datum in memory. Thus the random access memory of an a r ray computer is
m o r e a special t y p e of pseudo - random access memory when computer ef f ic iency is
c o n s i d e r e d . Again this is inherent to a multi-processor (single instruction s t ream or
n o t) s ince the problem is basically transferr ing information from the memory to t h e
a p p r o p r i a t e processing element. The idea is essentially to produce a data s t ruc tu re
such that most processors are "close" to the information they need, or such that the
n e c e s s a r y informat ion can be distr ibuted to the processors quickly. On the Illiac, t h e
dec is ion w a s made to put the mechanics of interprocessor communication (or processor
access of non- local memory) explicitly under central program control . This w a s
poss ib le since the single instruction stream dictates a synchronous processor
con f igura t ion , and one result is a simplification in the necessary ha rdware swi tching
mechanism. Another result is a transfer of the hardware complexity up to the s o f t w a r e
l e v e l .

I.A. Sys tem Conf igurat ion

T h e Illiac is a large disk memory connected to a multiple-unit arithmetic faci l i ty w i t h
a semiconductor buf fer memory. The disk is a f ixed-head physically rotat ing dev ice
w i t h a capac i ty of about sixteen million 64 -b i t words with a 4 0 millisecond ro ta t ion
p e r i o d and a maximum data transfer rate of about 15 million words per second to t h e
b u f f e r memory . The buffer memory consists of s ixty- four modules, each module having
2 0 4 8 w o r d s . Data t ransfers to or, from the buffer are program init iated and a r e
p e r f o r m e d in blocks of 1 0 2 4 words; the same contiguous locations in each module a r e
a f f e c t e d . T h e t ransfer time for 1 0 2 4 words is approximately sixty-six microseconds, or
t o r e f r e s h half the buf fer memory takes a transfer time of 4.2 milliseconds.

Each b u f f e r memory module has its own processing e lement—roughly the equiva lent
of a convent iona l computer 's arithmetic unit. These execute the same instruction on
d a t a located in their own module. Information may be t ransfer red among the modules
o n e w o r d per module in a carrousel fashion; for speed, special data paths make the t ime
r e q u i r e d for this routing less than linear in the number of modules by -passed . I t is also
poss ib le to disable processing elements either under a central control or under
condi t ions based on the contents of respective memory modules.

As a ru le of thumb a general floating point operation (producing up to s i x t y - f o u r
r e s u l t s) takes about 1.7 microseconds. Typical bookkeeping operat ions b y t h e
p rocess ing e lements take about 1.2 microseconds, and bookkeeping opera t ions
p e r f o r m e d b y the central control unit take about 0.7 microseconds.

T h e re la t i ve occurrences of each type of instruction in the calculation of shor t ,
s imple ar i thmet ic expressions that occur in inner- loop calculations is roughly t w e n t y to
t h i r t y - f i v e percent arithmetic, for ty to sixty per cent processor bookkeeping, and
t w e n t y to t h i r t y per cent central control bookkeeping. As for execution t ime, the rat ios

5

a r e approx imate ly fo r ty to f i fty to ten, respectively. These f igures do not include
p r o g r a m control logic (i.e. loop counter updates and tes ts) w h i c h are usually w e i g h t e d
t o w a r d cen t ra l control unit instructions, nor do t h e y inc lude arithmetic control logic (e .g.
if x (i)< epsi lon then x(i) :« 0) which increases the amount of processor control ; but t h e y
do include the address calculation overhead due to i ndexed a r rays , The numbers to
s o m e e x t e n t re f lect the particular instruction r e p e r t o i r e of the I l l iac and the h a r d w a r e
imp lementa t ion , but they give an indication of how much time and e f f o r t is spent in this
f o r m of para l le l computation making sure that the c o r r e c t data is being suppl ied to t h e
a p p r o p r i a t e processors.

Using these f igures to estimate the computation cons t ra in t s fo r d i s k - t o - b u f f e r data
t r a n s f e r to balance computation, about two h u n d r e d to t w o hundred f i f t y ar i thmetic
o p e r a t i o n s per unknown should result in computation t ime equalling t ransfer time. This
assumes o n e page (1 0 2 4 words) is t ransferred at a t ime, a t w e n t y millisecond a v e r a g e
ro ta t iona l de lay , and a high concentration of arithmetic operations as occurs in
e v a l u a t i n g ari thmetic expressions. This last assumption is grossly unrealistic for
g e n e r a l p r o g r a m behavior , of course, s ince genera l p rog rams w i l l have more control
o v e r h e a d per arithmetic operat ion. Thus in genera l f e w e r a r i t hmet i c operat ions per
u n k n o w n will suff ice to balance I/O with computation t ime. If t h i r t y - t w o pages (one
f o u r t h of the buf fer memory) are t ransferred at a t ime, the constraint drops to an
a v e r a g e of s e v e n to nine arithmetic operations per operand. If the data has b e e n
a r r a n g e d on the disk so that the rotational delay is fou r milliseconds (one t en th of a
r o t a t i o n) t h e n the arithmetics per unknown fo r computation time to equal I /O t ime is
a b o u t f o r t y to f i f ty for one page transfers and around two f o r t h i r t y - t w o page
t r a n s f e r s . The point of these numbers is t o indicate the need to match buf fer size and
disk p lacement to the computational requirements of a program.

LB. Prob lem Formulations: Global Considerations

W h a t t y p e of problem formulations lend t hemse lves t o an hierarchical memory
s t ruc tu re? A r e v i e w of some forms of computation wh i ch can eff iciently be implemented
o n a d i s k - b a s e d memory is relevant at th is point. C lear l y fo r la rge data bases which
cannot b e he ld in the buffer memory fo r the ent ire computation it w i l l be necessary to
b r i n g blocks of data into the b u f f e r for processing. Thus the computation may be
v i e w e d as data f lowing from the d isk into the b u f f e r memory fo r processing and then
r e t u r n i n g to the disk for storage until needed again.

T h e most obvious form of computation suited to th is environment would be one in
w h i c h each block of data on the d isk could be t reated independent from the o thers .
This suggests that any information w h i c h is transmitted among the blocks be d o n e in an
ind i rec t fashion through tables that reside permanently in the buffer m e m o r y . A
simpl i f ied example will clar i fy matters.

6

Suppose that a simulation is to follow a group of particles moving about in some
r e g i o n and the region is divided into many areas. Suppose fur ther that the w a y a
p a r t i c l e moves depends only upon quantities local to it, plus a knowledge of how many
par t i c les a r e in each area of the region. Then the particles may be grouped a rb i t ra r i l y
in to blocks on the disk and the particle interaction can be handled by a table in the
b u f f e r indicating how many particles are in each area. Each pass through the data wil l
s imula te o n e t ime step. During each pass information pertaining to each part ic le is
u p d a t e d and also information is gathered as to how the table of particle concentrat ion is
to b e modif ied. B e t w e e n passes over the disk-based data the table in core is updated .

A second genera l form of computation which lends itself to the constraints of this
s y s t e m w o u l d be one for which the computation performed on each block depends only
o n blocks that have recent ly been brought into the buffer and have not y e t b e e n
w r i t t e n out to the disk again. As an example, consider a simulation p e r f o r m e d on a
m e s h cover ing the surface of a cylinder. Each node of the mesh is updated according
to the va lues of its neighbors during the previous time step. Suppose all the
in fo rmat ion for the nodes on the top of the cylinder fit into a block, and that the nodes
o n e a c h circle of the mesh around the cylinder fit into a block also. T h e n the
computa t ion may proceed as follows. First the blocks containing information about the
t o p nodes and the nodes in the ring nearest the top are read into the buf fer . The top
nodes a r e u p d a t e d and the second ring is read into the buffer. Next the nodes on t h e
f i rs t r ing a r e updated, the updated nodes on the top are wr i t ten to the disk, and the
n o d e s of the th i rd ring are brought into the buffer. This pat tern continues until all
nodes h a v e b e e n updated.

Not ice that in this form of computation it is possible that more than one
computa t iona l pass may be per formed with each physical pass through the data. This
can b e i l lustrated in the preceding example. After the first ring has been updated , t h e
v a l u e s for the top nodes for the next time step may be calculated. Af ter the th i rd r ing
is u p d a t e d , the second ring may be advanced another time step if the necessary
in fo rmat ion for this second time step (the once updated first and third r ings) remains in
t h e bu f fe r . In genera l , suppose that six blocks can be held in the buf fe r for
computa t iona l purposes. At the same moment ring i at time t + 1 , ring i+1 at t ime t and
t + 1 and r ing i+2 at time t are in the buffer. Then if ring i+3 at time t is read in, the
v a l u e s of r ing i+2 at t ime t+1 may be computed, then the values for ring i+1 at t ime t + 2
m a y b e computed and wr i t ten out to the disk. Thus after ring i+2 is read in, t h e
u p d a t e d va lues for ring i at time t+2 may be wr i t ten back onto the disk, and so t w o
computa t iona l passes through the data will have been ef fected using only one physical
pass th rough the data. The method can be general ized, limited only by the number of
b locks that can be held in the buffer memory for computational purposes.

A th i rd form of computation deals with several streams of data . If the
computa t iona l dependence among the streams is such that the streams may be al igned
and b r o u g h t into the buf fer from the disk so that all interactions involve only e lements

7

res id ing in the buf fer , then this computation may be per formed ef f ic ient ly on a
d i s k - b a s e d memory. The simplest example of this is a vector formulat ion of
c o m p u t a t i o n , w h e r e all computing may be expressed as component-wise combination of
v e r y long vec tors . Here the long vectors on the disk are part i t ioned and a p p r o p r i a t e
s e g m e n t s f r o m each vector which enter into the combination are brought into the b u f f e r
fo r processing.

I t should be obvious that these three forms of computation lend themselves wel l to
e f f i c ien t computat ion on the Illiac or on any disk based computer w i th a sui table
b a n d w i d t h b e t w e e n disk and core. Suitability depends, of course, on the computat ion
r e q u i r e d per data e lement . The greater the amount of processing requi red per e lement ,
t h e l o w e r the threshold for the bandwidth to be considered acceptable. The d e g r e e to
w h i c h data dependencies depar t from these three forms will determine the di f f icul ty in
managing the data f low from the disk to the buffer. And the greater the di f f icul ty , t h e
m o r e b o o k k e e p i n g overhead will be neeeded to keep track of the added complexi ty .

I.C. P rob lem Formulat ion: Local Considerations

Computat ions are per formed on data while it resides in the buffer ; h e r e t h e
p a r t i t i o n e d s t ruc ture of the Illiac memory is the main consideration. The reason for this
is that e a c h memory module has its own arithmetic unit, hence in order to uti l ize as
m a n y of t h e s e units as possible, a premium is put on the alignment and distr ibut ion of
o p e r a n d s e n t e r i n g into a parallel computation. There are several programming
techn iques to mitigate the effects of an unfortunate data structure, and these a r e
d iscussed in chapter th ree , but the best technique is to minimize the dif f iculty at the
t i m e of the prob lem formulation.

T h e r e a re t w o conceptually di f ferent ways of viewing the arithmetic faci l i ty. T h e
f i rs t is that each address generated by the central facility specifies a location in
s i x t y - f o u r d i f f e ren t contexts: the semantic meaning attached to each memory location b y
t h e p r o g r a m m e r may differ depending upon the particular context. For example ,
s u p p o s e that the fol lowing two computations are to be per formed: A*X+B and C - D (t h e
f i rs t may b e prepar ing to update a variable, the second prepar ing to check if an
i t e r a t i o n may be terminated) . Assume that the contents of the memory is

module 0 module 1
locat ion # 0

« 1
* 2

A
B
X

D
C
-1

8

T h e n t h e sequence of instructions

Load 0 (load the accumulator from location 0)
Mul t ip ly 2 (multiply accumulator by location 2)
Add 1 (add contents of location 1 to accumulator)

wi l l l eave the f irst result in the accumulator of memory module 0 and the second in the
accumulator of memory module 1.

A n example of w h e r e this technique might be useful may clarify matters. In some
models which simulate the earth's weather , the ground condition can be in one of a f e w
s t a t e s (typ ica l ly about six). The calculations of several variables, such as the heat
c a p a c i t y of a sur face node, va ry in their complexity according to the state of the g round
at tha t node , but have roughly the same form for all states. A sequential code branches
accord ing to the ground state to separate sections of code, one for each state . A n
inef f ic ient para l le l code will turn on only those PE's processing surface nodes in a g iven
s t a t e , and do this in turn for each possible state. An efficient paral lel code wi l l
in i t ia l ize c e r t a i n var iables (to values which appear as constants in the various cases of
t h e scalar code) and then process all nodes with the same instruction sequence using
t h e s e var iab les to encode the effect of the ground condition on the computation.

T h e second w a y of viewing the arithmetic facility is that each instruction init iates a
computa t ion on groups of homogeneous data. For example, suppose a vector A has
A (0) in location 0 of module 8, A (l) in location 0 of module 9, and in genera l A(i) in
locat ion i / 6 4 of module number (i+8) mod 64. Suppose a vector B has B(i) in location
i / 6 4 + 1 2 of module number i mod 64. Then to add the first s ix ty- four e lements of A to
t h e f i rst s i x t y - f o u r elements of B—that is to form A(i)+B(i) for i«0 , l , . . . ,63—the fo l lowing
inst ruct ions

If module number > 8 then index register :*= 0
else index register :« 1;

Load R 0+ index register (load the first 6 4 elements of A into routing register R)
Route 8 (align vector A with corresponding components of B by

routing a distance of 8 modules)
Load R (put contents of routing registers into the accumulator)
Add 12

p r o d u c e t h e des i red result: A(i)+B(i) is in the accumulator associated w i th memory
module i.

T h e s e t w o points of v iew suggest two alternative forms of computation and data
s t r u c t u r e s which will be eff icient on the Illiac. The first is a homogeneous computat ion
o n d a t a that is a r ranged analogously in different memory modules. An extension of this
idea is to t r e a t special cases, which in sequential programs would be handled b y

9

condi t ional tests and branches, by means of data rather than by enabling and disabling
s e l e c t e d ar i thmetic units, the parallel equivalent of multiple branches. A pract ical
appl ica t ion of this is the treatment of physical boundary points in a mesh w i t h
computa t ions analogous to the interior nodes by the judicious addition of p s e u d o - g r i d
po in ts . This is discussed fur ther in chapter two.

T h e second point of v iew suggests that homogeneous data (e.g. vectors) p rocessed
in a uni form fashion (e.g. by consecutive location within the vector) can also be
e x e c u t e d e f f ic ient ly on the Illiac. As a consequence, the greater the number of
i r r e g u l a r i t i e s in the underlying model's structure which give rise to i rregular i t ies in the
d a t a s t ruc ture 's representa t ion and treatment, the greater the penalty in programming
c o m p l e x i t y and execut ion time on the Illiac. Put quite simply, it may v e r y wel l be that a
f i n e , regu lar s t ructure which requires a great deal of raw computational p o w e r is
ac tua l ly super io r to an irregular structure (which might reflect the i r regular i t ies of the
phys ica l p r o b l e m) which requires fewer arithmetic operations but considerably more
d e t a i l e d bookkeeping . This shift towards brute force is much more pronounced in the
Il l iac than in a sequential computer for the following reasons. On a sequent ia l
c o m p u t e r , each arithmetic operat ion, even on a regular structure, requi res some
b o o k k e e p i n g , wh i le on the Illiac, most of the comparable bookkeeping is implicit in t h e
v e c t o r opera t ions , and whatever explicit bookkeeping is done can be amort ized o v e r
m a n y opera t ions (up to s ix ty- four) . And secondly, bookkeeping operat ions on the Illiac
(e v e n se t t ing a bit in a register) are much, much more expensive than the p e r - o p e r a n d
e x e c u t i o n t ime w h e n many arithmetic units are utilized.

It should be noted that most problems assumed to be ammenable to paral le l
c o m p u t a t i o n wil l have some sections which are best formulated in terms of a single
ins t ruc t ion s t ream direct ing computations having dif ferent meanings in d i f fe rent PE
m e m o r i e s , wh i le other sections are most efficiently formulated as vector opera t ions .
O n e of the reasons for this lies in the character of much of scientific computing. These
p r o b l e m s a re o f ten formulated as solving sets of partial differential equations over t ime,
and expl ic i t f in i te d i f ference methods make a vector formulation at t ract ive in s tepp ing
t h r o u g h t ime. But the functions which determine the coefficients enter ing into the
e q u a t i o n s a r e o f ten based on incompletely understood physical models, statist ical
approx imat ions to subscale phenomena, or empirical measurements; w h a t e v e r the
r e a s o n , the result is usually an approximation based on a few parameters and severa l
d is jo int cases. Thus the calculation of those coefficients is f requent ly formulated using
t h e f i rs t method.

LD. Summary

In summary , as far as problem formulation is concerned, the major character ist ics of
t h e Illiac a r e a large rotat ing device for its primary memory and a 6 4 - w a y par t i t ioned
m e m o r y b u f f e r w h e r e arithmetic computation is performed. During the course of a

10

computa t ion , blocks of the data base are read into the buffer from the centra l memory;
t h e e x t e n t to which these blocks are accessed in a regular fashion, and the amount of
computa t ion that can be per formed per block read into the buffer , will de termine t h e
o v e r a l l e f f ic iency of an Illiac program. Three forms of data i n t e r d e p e n d e n c e s among
t h e blocks w e r e discussed; each should form the basis of an eff icient uti l ization of t h e
disk memory .

If the data base is so poorly designed and arranged on the disk that most
computa t ion t ime is spent shuffling data between the disk and the buf fer memory, t h e n
a n y a r r a n g e m e n t of data within a block will suffice. But assuming that a problem is we l l
f o r m u l a t e d for the Illiac wi th respect to gross data in terdependences (or that the e n t i r e
d a t a base can be contained within the memory buffer) , then the format of data w i th in
t h e blocks can be of crucial importance. This is the result of each memory module
hav ing its o w n arithmetic unit, the capability of operating on data within its o w n module
or o n data that has been uniformly routed among the modules. Since the same
inst ruct ion is executed in each module at a given time, the form of each computat ion to
b e p e r f o r m e d in parallel must be roughly the same; however , the actual meaning and
r e l a t i v e location of each operand may vary from module to module. Also, since each
o p e r a n d in a route instruction must move the same distance, operat ions on da ta
s t r u c t u r e s must be able to exploit uniform accesses across memory modules. Both local
considerat ions point to homogeneous data structures replicated across memory modules.
T h e rema inder of this paper is essentially an elaboration of dealing wi th the local da ta
cons idera t ions — the interaction of a single instruction stream with a par t i t ioned local
m e m o r y .

11

I I . PROGRAM AND DATA STRUCTURE

T h e major program design considerations on the Illiac arise from the restr ict ions of
a s ingle instruct ion stream and a partit ioned memory. The effects of the instruct ion
s t r e a m a re more noticable in the program control structure than the e f fects of the
m e m o r y o n the data representat ions, but the two isuess are intimately connected. It is
poss ib le , h o w e v e r , to divorce the discussion of control structures from the problems of
d a t a r e p r e s e n t a t i o n s , and at the level of program design such a separat ion is des i rab le .
T h e single instruct ion stream is particularly attractive in parallel computation both f r o m
its conceptua l simplicity and for the implementation advantages. For large scientif ic
computa t ions on large machines, neither advantage is to be underest imated. The same
cou ld be said for the part i t ioned memory, since in the Illiac the ef fect of the par t i t ioning
is manifest in the program only because the processing power has been d is t r ibuted
c lose to the data ra ther than separated into a separate processing facility as in more
convent iona l designs and because the inter-processor routing necessitated b y the
d is t r ibu t ion is under explicit program control.

T w o over r id ing principles are relevant in the context of a mult i -processor. T h e
f i r s t is that genera l ly the more processing elements doing useful work the be t te r . (Of
c o u r s e , t h e caveat is that a reformulation of the problem might use f e w e r ar i thmetic
uni ts for a shor ter total elapsed time and hence be better while making less use of t h e
ful l paral le l ism of the machine.) For a single instruction stream this means that more
a r i thmet ic units should have some use for the current instruction being decoded by the
c e n t r a l cont ro l unit; t w o techniques for achieving this are t ime-sharing the instruct ion
s t r e a m and associative processing.

T h e o ther principle in multi-processors is to insure that the right informat ion is
ava i lab le to the right processing element at the right time. There are t w o aspects to
this pr inc ip le . The f irst is the question as to whether it is bet ter to recompute
in fo rmat ion n e e d e d at a particular site or to calculate the location of the s t o r e d
in fo rmat ion and r e t r i e v e it. This question is much more complex for a mul t i -processor
t h a n for a single processor computer with a random-access memory (or random-access
and ro ta t ing s torage configuration). In the multi-processor it is usually a quest ion of an
inde te rminan t number of processing elements, say n, calculating the information t h e y

12

n e e d versus their calculating the location of the needed information (probably in f e w e r
t h a n n m e m o r y modules) and (if required by the architecture as in the Illiac) the var ious
r o u t i n g r e q u i r e d for the information to reach the desired destination b e f o r e f inal ly
g e t t i n g the s to red information to the appropriate processing element . Some
p r o g r a m m i n g techniques useful in implementing such a table look-up on the Illiac a r e
d iscussed in chapter three .

T h e o ther aspect of the principle of aligning data to processing e lements involves
r e d u c i n g the o v e r h e a d associated with bookkeeping. In some cases the expl ici t
b o o k k e e p i n g can be reduced by judiciously inserting dummy data in the data
r e p r e s e n t a t i o n s s tored in local processor memories and thereby forcing the d e s i r e d
a l ignment . Thus wi th the expense of some superfluous computation on this dummy da ta
t h e cont ro l o v e r h e a d of aligning data for computation can be great ly reduced. T w o
e x a m p l e s of this phenomenon are discussed below.

One last idea should be mentioned in passing. In sequential computing the idea of a
dynamica l ly v a r y i n g data structure (e.g. a balanced binary t ree) arises in an a t tempt to
minimize the t ime spent t raversing a linked data structure. In the Illiac an analogous
s i tua t ion ar ises w h e n t ry ing to minimize the time spent routing information among
process ing e lements . The di f ference is that instead of changing pointers (and on ly
logical ly changing the representat ion) , portions of the structure actually change modules
(a n d hence the site of the physical representat ion changes).

H A Inst ruct ion Stream and Program Organization

If e a c h memory module is v iewed as a separate context in which computat ion is
p e r f o r m e d , then the problem arises as to which context will control the instruct ion
s t r e a m so that meaningful computation can proceed in its memory. In a
m u l t i - p r o g r a m m e d sequential computer the same problem is solved by t ime-shar ing the
s ingle instruct ion stream; the only difference is that in a sequential computer t h e
p r o g r a m s running in d i f ferent contexts are largely or completely independent , w h e r e a s
in t h e Illiac t h e r e is likely to be rather strong and relatively f requent interact ion among
t h e d i f f e r e n t contexts, otherwise the question would arise as to w h y many smaller ,
i n d e p e n d e n t machines w e r e not used instead of a large multi-processor.

All this means is that the level of. t ime-sharing (or level of coordination) is l ikely to
b e much f iner in the Illiac — in units of one to several instructions - - and the cr i te r ia
fo r schedul ing which group of instructions is to be executed next will be based e i ther
o n a pr ior i est imates as to which sequences are likely to keep the maximum number of
p rocess ing e lements active or based on some form of polling to determine wh ich
inst ruct ions wil l in fact be executed by the maximum number of elements.

13

T h e o ther approach to the problem is to have not one but several contexts wi th in
e a c h m e m o r y module in the hope that when any given group of instructions is broadcast
f r o m t h e cen t ra l unit, it will be applicable to at least one context in each module.

A n e x a m p l e should clar i fy these ideas. Suppose that the main body of an a lgor i thm
consists of r e p e a t e d executions of

If A then B else C.

This f o r m of computat ion occurs, for example, in a t r e e searching algorithm w h e r e A
d e c i d e s w h e t h e r to continue the search down a branch (i.e. execute B) or to backt rack
(i .e. e x e c u t e C); h e r e e v e r y memory module contains the information needed to search
a s u b - t r e e dur ing the computation. The problem with this form of computat ion on the
Il l iac is that in some contexts (memory modules) the execution of A will indicate that B is
to b e p e r f o r m e d next , whi le in other contexts it will indicate that C is to be p e r f o r m e d
next . T h e w a y this is handled is to turn off all processing elements which want to
e x e c u t e C wh i le the instructions for B are issued, and then turn off all processing
e l e m e n t s wh ich have executed B while the instructions for C are issued. Thus the code
is equ iva len t to r e p e a t e d executions of the sequence

A; If bool then B; If not bool then C

w h e r e bool is a boolean quanti ty set at the end of executing A.

H o w e v e r , a f ter B is executed, rather than issue the instructions for C, A could be
e x e c u t e d w i t h the expectat ion that more processing elements will then be ut i l ized w h e n
t h e instruct ions for C are issued. Thus the loop of the algorithm becomes

If bool t h e n (B;A); If not bool then (C;A)

w h i c h r e q u i r e s that A be executed before the loop is en tered to initialize the value of
boo l c o r r e c t l y .

Does this modification improve the processor utilization significantly? For g e n e r a l
fo rmulas to est imate the processor utilization in this example, let p be the probab i l i ty
t h a t b o o l - t r u e af ter the execution of A and let a be the time to execute A, b the t ime to
e x e c u t e B and c the t ime to execute C. Then the per centage of procesor ut i l izat ion
u n d e r t h e f i rst scheme is

14

j + p b + U - p) c .
a+b+c

For t h e second scheme assume that a steady state has been reached, that is in
N « p / (l - p + p * p) of the modules bool«true at the start of the loop (and hence a f ter e a c h
pass t h r o u g h the loop). Then the estimated processor utilization for the second vers ion
is

a + N b + (l - p N) c .
2a+b+c

W e p r e s e n t a f e w examples. If p - 1 / 2 then a«b«c means 6 7 7 processor ut i l izat ion
f o r t h e f i rs t scheme versus 5 8 7 for the second and the first is clearly be t te r . If t h e
ra t ios of a:b:c a re 1:1:4 then the utilizations are 5 8 7 and 6 2 7 , or about the same. For
ra t ios of 1:4:4 the result is 5 6 7 to 6 3 7 and the second is clearly bet ter . Now assuming
p - 1 / 3 t h e a b o v e t h r e e cases are 6 7 7 vs. 5 7 7 , 6 7 7 vs. 7 0 7 , and 5 6 7 vs. 6 1 7 .

A n o t h e r approach is to Keep track of how many contexts are in a state w h e r e the i r
p rocess ing e lements would be enabled if the code for A w e r e broadcast, and the same
f o r B and C. T h e n if the number which would execute A w e r e greater than a speci f ied
n u m b e r , the code for A would be broadcast, otherwise the number of processing
e l e m e n t s wh ich would execute the code for B is checked, and so for th . If the demands
f o r codes A, B and C are all insufficient, then the threshold is lowered. A l te rna t i ve ly ,
t h e code for which there is the greatest demand could be chosen for execut ion
w h e n e v e r t h e r e is a choice.

T h e next modification is to have not one context in each memory module, but
s e v e r a l independent ones. The assumption is that most of the time at least one of the
c o n t e x t s in each memory module will be in a state that can utilize whatever sequence of
inst ruct ions is being broadcast by the central control unit. With three d i f fe rent s ta tes ,
as in t h e a b o v e example, this is fair ly easy to insure with a re lat ively small number of
c o n t e x t s per module. However with a physical model which may have many logical
s t a t e s for any g iven context , this may not be possible given the small memory s ize of
e a c h module. I t is in this case that the form of the computation becomes re levant , as
d iscussed in the f irst chapter .

Since it is only the instruction stream that must be shared by the d i f ferent contexts
and not the semantics attached to how the instruction is modifying the context in w h i c h
it is e x e c u t e d , distinct physical states should be formulated so that they can uti l ize t h e
s a m e instruct ion s t ream, the semantic differences being encoded in data var iables . This

15

is in cont ras t to the practice in sequential computing where computational d i f fe rences
r e f l e c t i n g the physical /semantic differences are imbedded in the instruction s t ream itself
b y means of branches. This di f ference from considerations enter ing into the p r o b l e m
f o r m u l a t i o n for a sequential computer requires that more care be taken both in t h e
p a r a l l e l formulat ion and in the actual program design and coding (and especial ly in t h e
documenta t ion) .

All of t h e above discussion implicitly assumed that the execution time for each g r o u p
of instruct ions was e i ther the same in each context or that the var iance w a s
insigni f icant , i.e. that there are no loops requiring widely vary ing numbers of
execut ions . The problem of eliminating program branches can thus be conceptual ly
s o l v e d b y means of using associative programming: the state of a part icular context
exp l ic i t l y de te rmines what sequence of actions are to be executed in it. But sequences
t h a t a r e of v a r y i n g length in varying contexts defeat the st rategy of init iating on ly
t h o s e sequences which maximize processor utilization, since the tendency is for the
w o r s t - c a s e local behavior of a given context to become the expected global behavior of
a n e n s e m b l e of contexts executing the same loop, and hence most processors will b e
id le wa i t ing for the wors t -case to terminate. This suggests going to a f iner scale of
computa t iona l resolut ion. Again the same idea of associative programming can b e
e m p l o y e d , but it takes on the flavor of time-slicing the instruction s t ream in a
r o u n d - r o b i n fashion.

T o r e t u r n to the above example, suppose that each block of code is itself a loop.
For e x a m p l e

A - Whi le A l do AL.

T h e n the condit ional expression can be re-coded for parallel execution as

If a l t h e n (AL; a l : * A l) ;
If b l then (BL; b l : - B l ; a l : - not b l) ;
If c l t h e n (CL; c l : - C l ; a l : - not c l)

w h e r e AL has b e e n modified to set b l or c l as appropr iate when the loop AL is to
t e r m i n a t e .

Thus e a c h processor gets a chance to execute one pass through the a p p r o p r i a t e
loop on e a c h pass through the reconstructed program. The obvious advantages in this
r e f o r m u l a t i o n a r e that all processors are busy at least some of the time dur ing the loop
a n d tha t no processor has to wait for all other processors to leave a g iven sta te b e f o r e
it can p r o c e e d to execute in another state. The disadvantage is, aside f rom the
addi t ional o v e r h e a d , that a processor will necessarily be inactive through at least o n e
and usual ly t w o of the if statements in any pass through the three statements.

16

All of the above program formulations have t reated the processing e lements as
e x e c u t i n g in separa te contexts. Thus the programs look v e r y much like programs for
sequent ia l computers , except that exceptional cases are handled by data ra ther than
b r a n c h e s and that locally (within any one context) the code looks rather ineff icient to
t h e sequent ia l ly o r ien ted programmer. But the efficiency comes from util izing re la t i ve ly
m o r e processing elements; e.g. significantly more than twice as many active processing
e l e m e n t s execut ing code that runs about half as fast as a previous formulat ion will show
a n increase in total eff iciency and a decrease in total execution time despi te the more
w i d e - s p r e a d local inefficiencies!

I I .B . Par t i t ioned Memory and Data Structures

If t h e Illiac is programmed as a vector machine capable of combining vectors of
l engths up to s ix ty - four in a given instruction, then the problems of the single
ins t ruct ion s t ream t r e a t e d in the previous section disappear, since by definit ion vec tors
a r e combined using the same arithmetic operation between individual components. A
v e c t o r a p p r o a c h presents two di f ferent problems, however; one is specific to the Illiac's
a r c h i t e c t u r e and the other is inherent in the vector formulation of a program.

Vec tor operat ions on the Illiac directly encounter the effects of a par t i t ioned
m e m o r y , since to opera te in parallel on two vectors in the buffer , they must be al igned
so tha t components to be combined are available to the same processing e lement . A n
e x a m p l e in chapter one i l lustrated a particular case. The problem of vector alignment is
m o r e of a programming and data structure implementation detail , and will not be t r e a t e d
in this chapte r which is aimed more at the level of program design. It is suff icient to
r e a l i z e that it is a nuisance that must be dealt with at the lower level of programming.

W h a t must be dealt wi th at the level of program design is the elimination of special
cases (which a re usually handled with only a very limited degree of parallel ism) and the
c r e a t i o n of vectors that are as long as possible (so the overhead of calculating rout ing
and indexing for the vector alignment can be amortized over more paral lel ar i thmetic
o p e r a t i o n s) . Both of these concerns can be met by using computational art i f ices at the
p r o g r a m design level . The aim is to t ry to enhance the computational parallel ism of a
p r o b l e m formula ted for solution on a parallel computer.

T h e idea of t rea t ing special cases ("boundary conditions") by means of special da ta
r a t h e r than b y means of special instructions has already been discussed w h e n the same
ins t ruc t ion is to be executed in dif ferent contexts. The same technique can be appl ied
to v e c t o r - o r i e n t e d computation; the goal is to incorporate special cases in such a w a y
as to make the vectors involved in the program longer. As an example, suppose that a
v e c t o r u is updated by

17

u(i) : * c l (i) * u (i) + c2 (i) * [u (i - l)+u (i+ l)+u (i - k) *u (i+k)]

fo r most va lues of i except for the k values of I when i is a multiple of 2 0 0 w h e r e t h e
r e l e v a n t computat ion is

u(i) :« c3(«)*u(i) + c4 (i)<u (i - l) H i (i +k)+u (i - k)] .

T h e e n t i r e computat ion can be put in the first form and all the original values of u
u p d a t e d in the same fashion if zeros are inserted into u be tween e v e r y 2 0 0 e lements ,
t h e v e c t o r c l a l te red by inserting zeros and elements of c3 , and the vector c2 a l t e r e d
b y inser t ing z e r o s and elements of c4.

This example arises from a computation performed on a rectangular mesh, w i t h t h e
e x c e p t i o n a l components of u corresponding to points along one boundary of the mesh.
T h e expans ion of the vector u corresponds to introducing pseudo-gr id points along t h e
phys ica l b o u n d a r y of the gr id so that the original boundary mesh points can be t r e a t e d
in t h e same fashion as interior grid points. Notice that this is nothing more than a
comput ing dev ice designed for program efficiency; the pseudo-gr id points do not a f fect
t h e u n d e r l y i n g physical model, they merely affect the representat ion of this model. T h e
r e s u l t s of the t w o implementations should be identical (they are formally identical; any
computa t iona l problems that may arise are due to the calculation and addition of z e r o
a f fec t ing the low order bits of the addend because of f loating-point vagar ies of t h e
a r i thmet ic unit , but this should be negl igible in any event) , The only signif icant
d i f f e r e n c e b e t w e e n the t w o formulations should be that the second, involving the longer
v e c t o r s , runs faster .

As another example , suppose the 18 by 18 matrix A can be part i t ioned into 3 b y 3
b locks so that it has the form

XX....
XXX...
.XXX..
..XXX.
...XXX
....XX

w h e r e e a c h X is a possibly di f ferent 3 by 3 sub-matrix and each dot (.) r e p r e s e n t s a

18

block consist ing of all zeros. Thus recording only the elements in the s ixteen n o n - z e r o
blocks of t h e matrix A uses 1 6 * 9 « 1 4 4 elements. On the other hand, all the n o n - z e r o
e l e m e n t s lie in e leven diagonals of A, centered around the main diagonal; t w o diagonals
a r e k n o w n to b e about one- th i rd zeros and two others are known to be t w o - t h i r d s
z e r o s . Stor ing by diagonals (including the 'padding' zeros) takes about 1 1 * 1 8 - 1 9 8
e l e m e n t s . For genera l matrices with this structure, storing the 3 by 3 blocks takes
a b o u t 9 / 1 1 of the storage as storing by diagonals.

To mult ip ly a vector x by the matrix A in the first scheme requires s ixteen smaller
m a t r i x - v e c t o r multiplies (the sub-vectors of x of length 3 by the 3 by 3 sub-matr ices of
A) f o l l o w e d by summing appropriate results and combining them to form the f inal
p roduc t vec tor Ax. In the second scheme with A stored by diagonals, the product Ax
r e q u i r e s component -w ise multiplication of eleven diagonals and x and then summing the
resu l ts . T h e second scheme in general takes more scalar arithmetic operat ions and, at
least theore t ica l ly , slightly more parallel arithmetic instructions. But the second scheme
r e q u i r e s a less complex control logic to keep track of the sub-computat ions involved in
f o r m i n g the product .

T h e f inal considerat ion is the lay-out of the data, both in the buffer memory and on
t h e disk. H e r e the amount of routing and control necessary to align the data for
c o m p u t a t i o n wi th in the buffer , together with the complexity of arranging the data into
b locks and deciding which blocks should be brought into the buffer , can be much
g r e a t e r for the f irst scheme than for the second. The real complexity of the f i rst
a p p r o a c h depends upon the degree of general vectorization: whether the blocks a r e
t r e a t e d as genera l components of the three block-diagonals of the matrix A or as
g e n e r a l n o n - z e r o blocks of the matrix. A successful implementation of the f irst scheme
is discussed in section 1 of the first appendix, which also discusses the use of the Illiac
ins t ruct ion s t ream for associtive processing.

T h e cent ra l idea to notice in this discussion (which is also the thesis of APL) is the
d e g r e e of contro l that can be subsumed by adopting a vector approach or a g e n e r a l i z e d
v e c t o r a p p r o a c h (w h e r e vectors are themselves composed of matrices). This is a
r e f l e c t i o n of the use of the implicit bookkeeping possible when the Illiac is used in a
v e c t o r mode.

I I .C Summary

T h e t w o sections of this chapter have attempted via program design to deal w i t h
t h e issues of implementing a problem which has been formulated for a paral lel computer .
T h e chief aspects of the architecture of the Illiac which affect the p r o g r a m
implementa t ion are the single instruction stream and the part i t ioned buf fer memory .
T h e single instruct ion stream enhances the desirability of a vector formulat ion, or of the

19

u n i f o r m t r e a t m e n t of various contexts in the memory modules. To some ex ten t e i t h e r
c a n b e accomplished by programming techniques, provided that the program is or ig inal ly
f o r m u l a t e d to admit the use of such approaches.

T h e success of a mult iple-context formulation depends upon the product of t h e
n u m b e r of possible computational states active at any stage of the computation and t h e
n u m b e r of var iab les necessary for each state. A relat ively small product means s e v e r a l
i n d e p e n d e n t contexts per memory module and this insures a high probabi l i ty that at
least o n e of the contexts can be active for whatever section of code is being broadcast
at a g i v e n t ime. T w o w a y s w e r e indicated for reducing the number of states. The f i rst
i n v o l v e d a deta i led knowledge of state transition so that several states could b e
c o m b i n e d (in the example, state A always followed state B so that the t w o could b e
c o m b i n e d into a new state , (B;A), and the same for (C;A), thus the number of d i f f e r e n t
computa t iona l states was reduced from three original states to two) . The o ther w a y to
r e d u c e the number of distinct computational states was to formulate the w a y d i f f e r e n t
phys ica l s ta tes w e r e to be handled in a computationally similar form so that the same
ins t ruc t ion s t ream, wi th di f ferent parameters, is relevant to each state (an example of
th is o c c u r r e d in the wea ther simulation discussed chapter one).

T h e success of a vector approach depends upon the ratio of except ional cases to
g e n e r a l cases. When this ratio is small, the vectors are long and thus a high d e g r e e of
para l le l ism can be ut i l ized for long periods of time. Long vectors are the k e y to
e f f i c i en t ut i l izat ion of parallel computers since the vector s ta r t -up t ime, the t ime
r e q u i r e d to calculate alignment procedures for the vectors, can be amort ized o v e r many
a r i thmet ic operat ions .

2 0

I I I . PROGRAMMING TECHNIQUES

Specif ic programming examples indicate the range of considerations that ar ise in
p r o g r a m m i n g the Illiac, or any single instruction stream — multiple processor computer .
T h e essent ia l problems are keeping track of the data and arranging the computat ion to
p rocess the data eff iciently. Whereas in the proceeding chapter ef f ic iency was
assumed to be synonymous wi th processor utilization, here the term will be used to
ind icate minimal overhead to manage data and computation. There are severa l sources
of o v e r h e a d that appear unique to this type of parallel computing. One is data
m a n a g e m e n t — having to rearrange data to get it to the right processor by rout ing.
A n o t h e r is processor management—having to decide which processors need to be act ive
o r inact ive dur ing a particular instruction sequence.

Rout ing, or in ter -processor communication, plays a key role in all of the examples ,
e v e n though t h e y are all v e r y simple (and basic). This arises for t w o reasons. T h e
f i r s t is the decision to put control over processor memory accessing in the instruct ion
s e t of the computer rather than having a hardware implemented switch which resolves
poss ib le memory conflicts and routing problems. The second factor is that f r e q u e n t
i n t e r - p r o c e s s o r communication should be characteristic of programs on a computer
d e s i g n e d specif ical ly for such rapid data swapping; problems which need far less
p rocessor in teract ion are probably better suited to a less tightly coupled n e t w o r k of
p rocess ing e lements .

I I I .A . Row Sum

Given s i x t y - f o u r numbers x(0) , x (l) , x(2) , ... x (63) to sum, a sequential computer
must e x e c u t e s i x t y - t h r e e addition instructions. However, if more than one add can be
p e r f o r m e d in paral le l , f e w e r addition instructions are needed. The minimum number
n e e d e d is six. This can be achieved as follows. First

2 1

x(i) x (i) + x (i + l) for e v e n i.

N e x t

x (i) x (i)+x(i+2) for > 0 mod 4.

T h e t h i r d instruct ion per forms

x(i) :« x (i)+x(i+4) for i « 0 mod 8.

I n g e n e r a l , t h e nth equat ion is

x(i) x(i)+x(i+k) for i~0 mod 2k, where k - 2 * * (n - l) .

T h e implementat ion on the Illiac uses the route instruction to ef fect the of fset b y k,
using bo th t h e rout ing register and the accumulator. This example was used b y D. J.
Kuck in "Illiac IV So f tware and Application Programming," IEEE Trans, on Comp., vo l .
C - 1 7 , 1 9 6 8 , pp. 7 5 8 - 7 7 0 . Although the mathematical description implies that f e w e r
scalar addit ion operat ions are done at each subsequent parallel s tep, in the Illiac it tu rns
ou t that it is more eff icient to perform sixty-four additions at each paral lel s tep than it
is to select that subset of processing elements which is needed to pe r fo rm the useful
addi t ions. Assuming that x(i) is in the accumulator of memory module i, the code looks
l ike

N :« 1
Loop:

S t o r e R (put contents of accumulator in R)
Route N (rou te the R registers a distance of l\l)
A d d R (Add contents of R to accumulator)
N :« N + N
If N < 3 3 t h e n goto Loop

w h i c h te rmina tes w i th the sum in e v e r y accumulator.

If m o r e than s ix ty - four numbers are to be summed, say k numbers spread e v e n l y
a m o n g t h e memory modules, then k / 6 4 additions are per formed in each module b e f o r e
t h e r o w sum is computed. Obviousy the technique is not limited to addition but may b e
a p p l i e d to any associative b inary operator , for example finding the maximum.

22

T h e r e a re t w o points which should be noted. The first is that a paral lel a lgori thm
can r e q u i r e much f e w e r instructions and take less time than a sequential formulat ion
p r o v i d e d that the problem is formulated in a fashion amenable to parallel computat ion
(h e r e an associat ive operator was necessary) and that the data structure allows the
para l le l a lgor i thm to proceed in parallel (if the summands w e r e all in the same memory
module , no paral lel ism would be possible without spending more time rear rang ing the
d a t a for a paral le l algorithm than solving the problem sequentially on the a r rangement
as g iven) . The second point to notice is that most of the executed additions a re
i r r e l e v a n t to the parallel computation (only 6 3 of the executed 3 8 4 additions a r e
n e c e s s a r y) , y e t no penal ty was paid in increased execution time.

I I I .B . Routing Various Distances

T h e r o u t e instruction has the two attributes that the contents of all rout ing
r e g i s t e r s move , and they are all t ransfered the same distance. Thus w h e n the des i red
goal is for e lements in the routing registers to be routed varying distances, more than
o n e instruct ion is necessary, but hopefully fewer than s ixty- four will suff ice. A
p a r t i c u l a r l y e legant solution to this problem is given in SAV- IV: A Three Dimensional
M o n t e Car lo Radiation Penetrat ion Code for the Illiac IV by Troubetzkoy , Kalos and
S t e i n b e r g , DNA 3 3 0 3 F , 1973 .

T h e cent ra l idea is that each element has a distance that it is supposed to move.
T h e f i rs t s tep is to move elements whose distance has a one in its b inary expansion ,
nex t those whose distance has a two in its binary expansion, then those wi th four , and
so on . For example , an element which must move a distance of t w e n t y - o n e would be
m o v e d one on the first instruction, four on the third instruction, and sixteen on the f i f th
ins t ruc t ion , since l + 4 + 1 6 * = 2 1 . It would be held in the local memory of some module
d u r i n g the instructions which move elements two, eight and t h i r t y - t w o memory modules,
and this suggests the major difficulty with the technique. It is possible that an e lement
wi l l a r r i v e in a memory module and have to be stored when another element is a l ready
b e i n g kept t h e r e , and neither is supposed to move on the next instruction. This
bunching phenomenon requires a temporary buffer in each module.

T h e r e a re t w o alternat ives in scheduling the routing instructions. The f irst is to
m o v e all e lements which require a distance of one sometime in their move (this will t ake
at most one rou te instruction), next all those which require a distance of t w o (this may
t a k e t w o r o u t e instructions because of the bunching effect) , next all those needing four
(w h i c h may take up to four route instructions), and so on. The other a l ternat ive is to
s e q u e n c e th rough the routing distances: moving a distance of one, next two , four, e ight ,
s i x t e e n , t h i r t y - t w o , then two, four, ...

T h e a b o v e technique is especially helpful in implementing a table look-up on the
I l l iac. Not ice, however , that it does require that the information know how far it must

2 3

t r a v e l at the outset . To accomplish this, each processing element must be able to
ca lcu la te in which memory module the desired information is stored and send a message
t o tha t module indicating the desired information. If the table is s to red in an
assoc ia t ive fashion, then there is no way to avoid a worst -case behavior requ i r ing
s i x t y - t h r e e rou te instructions: the keys to the information are passed among all the
m e m o r y modules so the appropr ia te module can respond to the request.

T h e genera l principle that is being exploited here is breaking an action (h e r e
r o u t i n g var ious distances) into constituent sub-actions, each having increased
para l le l ism, in an at tempt to increase the parallelism in solving the original problem and
t h e r e b y to decrease the total execution time for the action (hopeful ly the advantage
g a i n e d by t h e increased parallelism is not lost by the additional bookkeeping requ i red to
m a n a g e the sub-act ions) . The procedure can be more efficient when deal ing w i t h
r o u t i n g m o r e than s ix ty - four elements since wi th several elements in each m e m o r y
module the probabi l i ty is increased that some element in each memory will be a f f e c t e d
b y e a c h sub-ac t ion .

H L C Higher Level Languages on the Illiac

T h e higher level languages available for programming the Illiac all possess the same
f a t a l f l aw: t h e y make e v e r y ef for t to reveal all the vagaries of the machine to t h e
p r o g r a m m e r . By making the programmer painfully aware of the characterist ics of the
a r c h i t e c t u r e , t h e y mitigate the power of abstraction from machine details which is the
g r e a t e s t s t r e n g t h of a higher level language. The revelation is explicit in the da ta
dec la ra t ions w h e r e t h e r e is a new data type , a variable which consists of s i x t y - f o u r
sca lars . (Needless to say it corresponds to one word in the identical location in e a c h
m e m o r y module.) The result of such an extension to languages otherwise much like
F o r t r a n or Algol is felt in the semantics of the language. Whenever one of these n e w
d a t a t y p e s occurs in an arithmetic expression, not one but s ix ty - four computat ions a r e
p e r f o r m e d in paral le l . And there is a new monadic operator , the route opera to r , wh ich
w h e n appl ied to the new data object causes the contents of its scalar positions to
r o t a t e . T h e assignment operator can even be modified when one of these new d a t a
t y p e s occurs on the left hand side of an assignment; a mode word determines which of
t h e s i x t y - f o u r consti tuent elements are to be altered by the assignment.

W h a t has b e e n for fe i ted by the languages must be recouped by programming
techn iques . Essentially what this means is that the program should be designed to run
o n a para l le l computer wi th characteristics amenable to the problem, then this ideal
c o m p u t e r s imulated by the Illiac. The degree to which this logical machine resembles
t h e actual computer will determine how efficiently the simulation can be done. This
s imulat ion may be explicit ly programmed, or merely implicitly indicated by handling da ta
s t r u c t u r e s larger than s ix ty - four elements in one dimension by sequencing th rough
b locks of t h e s t ruc ture , t reat ing each block in parallel. Some techniques for simulating

2 4

m o r e amenab le archi tectures for parallel problem formulations are discussed in the next
sect ions .

Only a f te r a program is running correctly should the question of coding e f f ic iency
b e cons idered , since wi th the current level of understanding of parallel computat ion it
r e q u i r e s some work ing pro to type to be able to estimate accurately the d i s k - t o - b u f f e r
d a t a movement characterist ics, the intra-buffer routing, the amount of bookkeeping, and
t h e f inal d e g r e e of arithmetic parallelism of a given problem formulation and p r o g r a m
des ign . T h e r e a re enough cases of a priori optimization decisions that w e r e simply
w r o n g to cause any thoughtful person to question squandering resources on opt imiz ing
w h a t may v e r y wel l turn out to be irrelevant to the computing characterist ics of a
r u n n i n g p r o g r a m .

HLD. Simulat ing Processing Elements

One of the f irst difficulties that confronts a user of the Illiac is that t h e r e a re
s i x t y - f o u r ar i thmetic units, no more and no less. To formulate a problem or w r i t e a
p r o g r a m so that this exact number coincides with one of the dimensions of the major
d a t a s t r u c t u r e s may be too restr ict ive. On a conventional computer the problem of data
s t r u c t u r e s larger than the number of arithmetic units is handled by having the single
p rocess ing unit sequence over the structure one element at a time; on the Illiac the
ana logous opera t ion is to sequence over the data structure s ixty- four e lements at a
t i m e .

In e f f e c t , wha t is being done is having the sixty-four processing elements simulate a
machine w i t h more (or f e w e r) processing elements. If the simulation is explicit then the
p r o g r a m is designed to run on a computer with N processors, where N is a natura l
p a r a m e t e r of the problem (for example, the number of grid points along one dimension
of a c o v e r i n g mesh) and then in some fashion simulating the logical computer having N
p rocess ing e lements by the physical computer having sixty- four processing e lements.

For such a simulation, each memory module has N / 6 4 contexts, complete w i t h
accumulator and routing register. Then the logical code is executed N / 6 4 t imes, one for
e a c h contex t in the local memory module, except whenever a routing instruct ion is
e n c o u n t e r e d . The routing instruction is the only means of communication among the
s imula ted contexts , and a special subroutine is needed to simulate the genera l rou te
a m o n g t h e simulated contexts.

T h e main dif f iculty in simulating a route instruction arises from the fact that the
n u m b e r of memory modules simulated need not be a multiple of s ix ty- four , nor need the
r o u t i n g distance be a multiple of s ixty-four. The result of this is that the re will be one
r o w of t h e physical memory that will require special consideration, the row which
conta ins the e lement dest ined for the first simulated processing element. In g e n e r a l ,

25

s o m e of the e lements in this row will have to be routed one distance in order to b e
a l igned w i t h the physical memory modules which contain the first simulated memories,
w h i l e the rest will have to be shifted a dif ferent distance in order to be aligned w i th the
phys ica l memories containing the last numbered simulated memories.

Of course , the full general i ty of simulating many processing elements is seldom
n e e d e d in genera l scientific computing on the Illiac. But the problem does ref lect the
common diff icult ies encountered when dealing with a data s t ructure w h o s e
r e p r e s e n t a t i o n must be folded along one dimension to fit into the buffer memory.

I I LE . Vec tor Instructions

T h e instruct ion set of the Illiac allows the programmer to deal in one instruct ion
w i t h v e c t o r s having a maximum length of sixty-four, but these vectors must f irst b e
a l igned b e f o r e the components can be combined. Again the restr ict ion to s i x t y - f o u r for
t h e v e c t o r length is an artificial constraint for a problem formulation, and it is eas i ly
c i r c u m v e n t e d b y part i t ioning longer vectors into sub-vectors of length s ix ty - four and
o p e r a t i n g in t u r n on each sub-vector in parallel. This has the additional advantage in
t h a t the computat ion required to calculate the necessary routing to align the f i rst
c o m p o n e n t of the t w o vectors gives the distance necessary to route each component
and n e e d not be recalculated during the course of the vector calculation. The saving is
p r o p o r t i o n a t e l y g rea te r as the lengths of the vectors increase.

One tr iv ia l problem wi th operat ing on vectors is that they may not star t in the f i rst
m e m o r y module; this may be the result of an algorithm which performs x(i)+x(i+j) o v e r i
f o r d i f f e r e n t values of j , or the result of packing vectors into memory w h e n the vec tor
lengths a re not multiples of s ixty- four and no "gaps" occur b e t w e e n vectors . T o
i l lus t ra te the technique of dealing wi th vectors, suppose the first th i r ty e lements of a
v e c t o r a r e in memory location M in modules th i r ty - four through s i x t y - t h r e e , the next
s i x t y - f o u r e lements are in memory location M + l in modules zero through s i x t y - t h r e e ,
a n d so on. To o p e r a t e on the first s ixty- four elements in parallel , the index reg is te rs
a r e used , having b e e n set to 1 in processing elements zero through t h i r t y - t h r e e and to
z e r o in the rest . Then any indexed fetch from the memory will a lways r e t r i e v e
s i x t y - f o u r contiguous vector elements. Although there is a slight penal ty for indexing
in a m e m o r y fe tch , the simplification of the control structure makes this pr ice
insignif icant .

In calculat ing the vector addition a :« b + c there are three al ternat ives in aligning
t h e v e c t o r s . First b could be aligned with c, the sum computed and the result a l igned
w i t h a for s torage; second c could be aligned with b and the resulting sum aligned w i t h
a; or t h i r d b o t h b and c could be aligned with a before the sum is calculated. In genera l
t w o of the t h r e e vectors b, c and the sum b+c must be routed to accomplish the vec tor
o p e r a t i o n . T h e r e are cases when each of these three alternatives is the most e f f ic ient ,

26

and for long vectors the savings in routing time by choosing the most eff icient can be
signi f icant .

T h e r e is a slight complication in calculating the best alignment s t rategy. This ar ises
b e c a u s e the t ime it takes to route a distance d is not linear in d. For example, it takes
jus t as long to route a distance of eight memory modules as to route one memory
module; this results from a rectangular interconnection scheme to connect the rout ing
r e g i s t e r s .

T h e cent ra l idea in this section, as in the previous section, is in extending the
h a r d w a r e instructions via sof tware to act on more data items with a single conceptual
inst ruct ion. Once one begins to think in terms of a single instruction stream acting on
mul t ip le data streams, the extension is rather natural, even if the implementat ion is
s o m e w h a t baroque due to the hardware design (or mis-design wi th respect to the
r o u t i n g o p e r a t i o n — the problems encountered and their circuitious solutions are akin to
t h e di f f icul t ies in implementing via software multiple-precision arithmetic wi thout having
access to the over f low bit).

IH.F. Data St ructures

W h e n a data s t ructure is represented in the buffer memory, the e f fect of the
p a r t i t i o n e d memory is again felt , depending upon how the structure is to be accessed,
s ince the processor in each memory module enhances the desirabi l i ty of having
in te rac t ing components in the same module, or in n e a r - b y modules. For example ,
consider the a r r a y x(i), i *0 to 6 3 9 . One arrangement is to have x(i) in memory module i
mod 6 4 , so that t h e r e are ten elements in each module.

If t h e a r r a y x is to be used in a computation of the form

f (x (i> ,x (i+ l)) for 0 < i < 6 3 8 ,

t h e n t h e a b o v e storage requires no fewer route instructions than the number of
funct ion evaluat ions. If, however , x(0) through x(9) are stored in module number 0 ,
x (1 0) th rough x (1 9) in module number one, and in general x(i) in module i / 1 0 mod 6 4 ,
t h e n t h e r e is only one route per ten function evaluations. Of course, if f involves much
computa t ion , the t ime needed for routing becomes insignificant in ei ther case.

If the o f fset is t, then the routing distance in the first scheme is also t, w h e r e a s in
t h e second it is e i ther 0 and 1 for l < t < 9 , 1 and 2 for l l < t < 1 9 , and so for th . Shor te r
r o u t i n g distances genera l ly take less time, and if t varies during the algori thm, the
second scheme is def ini te ly pre ferab le , especialy as x becomes longer.

2 7

T h e point h e r e is quite simple. The way in which a data structure is r e p r e s e n t e d in
t h e b u f f e r memory can significantly affect the efficiency of any code which real izes the
i n t e n d e d a lgor i thm, depending upon whether the representat ion is designed to ease or
t o t h w a r t the pa t te rns of access to the structure. A poorly conceived implementat ion
can ru in e v e n the most careful ly designed parallel problem formulation and algori thm
const ruc t ion .

I I I .G . Summary

T h e programming techniques discussed in this chapter i l lustrate t w o genera l
p r inc ip les : decmposing an algorithm into sub-actions which are highly paral lel and
decompos ing a data structure into blocks which can be handled in paral lel . The f i rst is
l a r g e l y in response to the limitations of a single instruction stream, plus the real i t ies of
c o m p u t a t i o n (which dictate what computations depend upon previous results) and of
a r c h i t e c t u r e (which controls how the information generated by one computat ion can be
m a d e avai lable for another) . If it is a sequential algorithm that is being decomposed,
t h e n any paral lel ism in the resulting sub-tasks will result in a s p e e d - u p in the
r e f o r m u l a t i o n . However , the additional time required to set up for each sub- task and to
m a n a g e the sub- tasks may make the theoretical speed-up of academic interest only .
This is especia l ly t rue if the re is a great deal of management necessary to go f rom one
s u b - t a s k to another .

T h e second principle is largely in response to the opportuni ty a f forded b y e a c h
m e m o r y module having its own arithmetic unit, again tempered by the real i t ies of
c o m p u t a t i o n and archi tecture. Here the accessing requirements of the in tended
s t r u c t u r e will largely determine the suitability of various representat ions. And if no
r e p r e s e n t a t i o n seems part icularly well suited for the parallel algorithm, this is a pr ima
f a c i e case that the fault lies in the parallel algorithm being parallel in t h e o r y only and
t h a t a re formula t ion is in order .

2 8

CONCLUSION

T h e r e a r e cer ta in ver i t ies of computing that, when explicitly stated, are ra ther banal
bu t w h i c h h a v e a tendency to be forgotten when attention shifts to a new and
unfami l iar computing domain. The first is that e v e r y computer, being a physical
r e a l i z a t i o n of some architecture, has its limitations which, once understood, a r e
t rad i t iona l ly renamed as its computing characteristics. On a multiple processor
c o m p u t e r , the outstanding limitation/characteristic is the number of processors .
Sequent ia l computers are able to cope with operations on arbi t rar i ly long vec to rs
d e s p i t e having only one arithmetic unit} the fact that the Illiac has only s i x t y - f o u r
a r i thmet ic units limits only the amount of parallelism possible in a given instruct ion, it
has no e f f e c t on limiting the size of a data structure (its higher level languages
notwi ths tand ing) .

A n o t h e r observat ion is that operations on large data bases must, by the def in i t ion
of l a rge , contend wi th the problems of multiple levels of storage and the management
t h e r e o f . T h e numerical boundary for large may change from machine to machine, but
t h e techniques of arranging computation in such an environment do not. The re la t ive
s izes of the memories, the bandwidth between them, and the amount and ra te of local
computa t ion on blocks of the data base may determine the relat ive importance of the
v a r i o u s s t ra teg ies to minimize the multiple level problem, but the problem is formal ly
i n d e p e n d e n t of w h e t h e r the actual computation is parallel or sequential . That t h e
p r o b l e m natura l ly arises in some form or other in parallel computation can be seen f rom
t h e fo l lowing argument . One of the factors which makes parallel computation a t t rac t ive
is doing re la t i ve ly simple things that are largely independent; the point of paral lel ism is
to d e c r e a s e execut ion t ime, and the only way simple independent actions could take a
long t ime on a sequential computer is for them to be performed over a large data base.

T h e th i rd comment is that meaningful computation entails some o v e r h e a d ; the
r e l e v a n t tauto logy is that nothing of value is f ree . The difficulty is to decide how much
is too much, and the problem is complicated by these two facts of mul t i -processor
computa t ion : not only must the information's location be calculated (as in a sequent ia l
c o m p u t e r) but also it must arr ive at the right processor; and processors must b e
c o n t r o l l e d so that when they can do useful work, they do, and when they cannot, t h e y

2 9

do not i n t e r f e r e wi th active computations. Some computations require less o v e r h e a d
m a n a g e m e n t than others , which is another way of saying that some actions are b e t t e r
s u i t e d to o n e t y p e of architecture than other actions are. It is improbable that any
n o n - t r i v i a l p rogram can consist ent irely of low-overhead computations. The ideal
p r o g r a m is one which spends most of its time doing what its computer is best sui ted for .
U n f o r t u n a t e l y life is not all that simple. For example, consider a problem which consists
of t w o p a r t s A and B. On a sequential computer A requires ninety per cent of t h e
c o m p u t a t i o n t ime; a parallel computer can execute A twenty times faster , but takes
t w i c e as long to per form B. The parallel computer solves the problem four times fas ter
t h a n t h e sequent ia l processor, but spends eighty per cent of its time doing B!

This br ings up the final point: any program must spend most of its t ime doing
someth ing ; hopefu l ly it spends it where the power of its computational formulat ion l ies,
o r at least in doing what captures the essence of the problem (and sets it apart f r o m
c o m p u t a t i o n which avoids this time consuming aspect). If this is not the case, then it is
d o u b t f u l w h e t h e r the program as formulated should be running on that part icular t y p e
o f compute r .

3 0

ACKNOWLEDGMENTS

T h e author wishes to thank S. K Fuller, A. K. Jones, and E. A. Rich, CMU, for
the i r comments on an ear l ier draf t of this paper. In addition, the author is g r e a t l y
i n d e b t e d to Ms. Rich for the final production of the report .

3 1

APPENDIX I: CASE STUDIES

T h e fo l lowing are some selected observations on several programs which have b e e n
w r i t t e n for the Illiac. The intention is that they may shed some light on the n a t u r e of
scient i f ic comput ing that may be amenable to parallel computation. These case studies
a r e impor tant both for the problem formulation strategies, program design decisions and
cod ing techniques.

1 . S p a r s e matr ix multiply

T h e fo l lowing t h r e e paragraphs are a somewhat edited quotation from a r e p o r t on
t h r e e - dimensional stress w a v e simulation for the Illiac, authored by Gerald Fraz ier and
Chr is t i an P e t e r s e n (DNA 3 3 3 I F repor t by Systems, Science and Software) ,pages 4 8 and
4 9 ,

T h e t ime stepping process for this problem consists of the calculation U « V + A * W
for each time step. The first term V is a vector and its calculation involves
v e c t o r operat ions which require no interaction among the Illiac PE's. As a
resu l t , it is easily computed in parallel. Similar operations are involved in the
calculat ion of the vector W. The significant calculation is the multiplication of
the vector W by the large sparse matrix A. This multiplication accounts for
almost all of the computation time that is required to complete one numerical
t ime s tep . A sophisticated but simple mechanism has been d e v e l o p e d to
p e r f o r m the sparse matrix multiply in parallel. The non-zero terms of A lie in
3 x 3 submatr ices of A, no more than 27 such submatrices in any row of A.
T h e s e are ar ranged on disk so that when read into memory each arr ives in the
PE wh ich contains the three elements of W which enter into the computat ion of
t h e product of the submatrix of A and W. Furthermore, as successive terms of
A a r e r e a d f rom disk the matrix row numbers increase monotonically (but not
necessar i ly sequential ly) . This is done so that the sparse matrix multiply can b e
comple ted in the order of ascending row number.

T h e f i rst submatrix to arr ive in each PE from the disk is multiplied b y the
a p p r o p r i a t e t h r e e components of the vector W and the results are accumulated

3 2

in a buf fer along wi th the row number identifier. This operat ion allows some
PE's to w o r k ahead on other row numbers. Since several rows may b e
processed simultaneously, a look-ahead buffer is maintained in each PE which
contains both the elements and their row numbers. Since rows wil l
cont inuously be completed as new ones are started, the buffer need only be
large enough to contain the maximum number to be worked on at one t ime in
any g iven PE. On the average, all of the multiplies for about 2.4 rows of the
sparse matrix multiply are completed at a time.

Dur ing the matrix multiply, a test is made to see if all contributions f rom the
sparse matrix multiply are ready to be summed for the node numbered n. If all
of the row numbers from the submatrix multiply are greater than n, then all
contr ibut ions for n are calculated (all PE's are now working on contr ibut ions to
higher node numbers). The contributions for n are then summed and added to
the o ther terms to obtain the advanced nodal displacement U(n). This
displacement vector is stored in PEk, where k«n mod 64. If the contr ibut ions
f rom row n+1 are completed, then node n+1 is also advanced in t ime, o t h e r w i s e
the next submatrix multiply in line for each PE is per formed. The para l le l
submatr ix multiplies, row sums, and disk reads continue until all of the A matr ix
has b e e n processed and all nodes have been advanced in time. The e n t i r e
o p e r a t i o n is repea ted for each time step.

This ends the quotat ion from the text. Some points are wor th mentioning h e r e .
F i rs t of all is the surpr ise that the matrix-vector product is not programmed as vec tor
o p e r a t i o n s but ra ther as separate processes (in the terminology of chapter one , the
Il l iac is be ing used not as a vector processor, but as multiple processors, each work ing
l a r g e l y in its o w n "context"). The difference in this case is essential ly 9 9 vec tor
c o m p o n e n t - w i s e multiplies (of vectors of length 3N, where N is the number of mesh
n o d e s) plus aligning and summing the 9 9 result vectors, versus 2 7 N mat r ix -vec tor
p r o d u c t s (involving 3 x 3 matrices) plus aligning and summing the 2 7 N vectors (of length
3) . T h e vec tor formulation costs about 182 more storage - - the added padding of
z e r o s is necessary for alignment purposes—plus the concomitant increase in
a r i t h m e t i c s — t h e multiplications by the padding zeros. On the other hand, the v e c t o r
fo rmula t ion el iminates the control structure which tests to see when all information for
u p d a t i n g each node has been assembled and can be combined. It also el iminate the
b u f f e r management for these intermediate results. The real subt lety of the p rob lem
l ies in the aligning and summing involved in the two approaches, plus the possible
necess i ty (based on small core memory) to partit ion long vectors.

T h e n o n - v e c t o r approach does lend itself to matrices which arise f rom arb i t ra r i l y
c o n n e c t e d gr ids. But the automatic grid generation used by this project g e n e r a t e s
g r ids which a re unions of regions homeomorphic to a cubical lattice, hence the s t ruc ture
of t h e matr ix A will have large blocks along its diagonal w h e r e the above vector
a p p r o a c h wil l hold, and its off-diagonal blocks, most of which are identically z e r o , wil l
h a v e an analogous vector izable structure.

3 3

2 . A model for disaster

T h e Tensor code (F ind Report of the Tensor/I l l iac IV Project, ARPA Order 1 8 3 9
(U C R L - 5 1 4 6 7) by Tad Kishi, 1 9 7 3) is based on a grid which moves with the mater ia l ; the
so lut ion at a gr id point involves information from nine neighboring points. H e r e
w h a t e v e r regu la r i t y exists in the grid at the beginning of the simulation is rap id ly
d e s t r o y e d o v e r the i terat ions, so a vector formulation of the sparse matrix is
i n a p p r o p r i a t e . The next question is, can an I l l iac-type architecture, v i e w e d as each
p rocessor w o r k i n g in its separate context but doing roughly the same thing, prov ide a
su i tab le env i ronment for such calculations? Or is this a formulation best suited for some
o t h e r t y p e of computer?

U n f o r t u n a t e l y , the project gives no answer, since it was a complete fai lure. In fact ,
T h e char i tab le thing would be to forget this fiasco ent i re ly , but since a computer is
w h a t it appears to its users to be, it is important to consider this project , if only as a
s t u d y in cognat ive psychology.

The pro ject was essentially doomed by its charter. "Bound by the p r i m a r y
requ i rement to reconfigure an existing production code, the development of
e f f e c t i v e paral lel processing methods for the Illiac computer system has b e e n an
exceed ing ly difficult one. It could not have been accomplished by a simple
t ransla t ion of the existing Fortran code to a comparable language for the Illiac.
T h e F o r t r a n listing of the Tensor code is a poor substitute for documentat ion.
It is next to impossible to understand the Tensor code or to der ive e f f e c t i v e
algori thms for parallel processing from a code that was programmed in assembly
language for a conventional computer and then brute force c o n v e r t e d to
F o r t r a n . The task has only been accomplished by reformulat ing and
reexamin ing the basic finite difference equations. Unfortunate ly , ne i ther
consistent nor complete set of equations of the existing code was available and
had to be redepr ived [sic] by members on the ARPA Tensor project ." (One can
on ly w o n d e r what the sequential code has actually been computing all this t ime) ,
(p . 3)

To seal the project 's fa te , it was decided to code in an assembler language. T h e
r e a s o n s g iven w e r e that the higher level languages were undergoing development and
h e n c e a) did not genera te reasonable object code (which is i rrelevant; bad code can be
s e l e c t i v e l y tuned) and b) their programming support was minimal at best. The result of
this decision was predictable , "once a course of action was decided upon, it was l i tera l ly
e m b e d d e d in 'cement. ' Programming in assembly language left little or no f lexibi l i ty in
o u r code deve lopment ." (pp. 3 - 4) Thus the conclusions drawn by this pro ject w e r e
l a r g e l y due to the propogat ion of poor ear ly design decisions. A stunning example of
this o c c u r r e d w h e n the program was restructured, proving "that skewing of data, which
w e or ig ina l ly be l ieved to be essential for efficient boundary calculations, was immaterial .
T o recons ider the skewing of data at this point in our code development was next to

3 4

impossible . This is the price one pays when a code of this complexity is programmed in
assembly language." (p. 14) There was an even greater price: the code never ran .
" T w o simulations runs have been attempted in this configuration. The code has c rashed
in loop 1 in the k « 0 boundary routine. The results have been evaluated, but t h e r e a r e
no plans to cont inue debugging." (p. 15)

W h a t w e r e the perce ived problems of programming this formulation on the Illiac?
T h e r e w e r e essential ly three . First, "The inherent geometric structure of the 6 4 - P E
Il l iac computer system imposes an artificial boundary (modulo 6 4) on the gr id sys tem
and must be contended wi th throughout the program for an ar ray not commensurate
w i t h this base." (p. 6) Second, "considerations of the boundary calculations ... r e q u i r e d
s k e w i n g as a fundamental requirement of the problem logistics for eff icient PE usage.
H o w e v e r , a g iven storage assignment for one phase of the calculation may not be sui ted
fo r another par t of the calculation." (p. 7) And finally third, "The calculational
p r o c e d u r e s of the slip lines for the Illiac array processors require extensive movement
of da ta across the PE's in order to meet the nearest neighbor requirements for t h e
n i n e - p o i n t d i f fe rence scheme. This is the result of the change in the nearest ne ighbor
re la t ionsh ip w i t h time. Thus the values necessary for interpolation may be in some
a r b i t r a r y assignment across the processing elements." (p. 6 3)

T h e f i rs t pe rce ived problem is illusory; it is solved by logically programming in a
s y s t e m of N processing elements and then simulating N processors using 6 4 or f e w e r
p rocessors . As seen above, the second problem actually turned out to be a r e d
h e r r i n g , and probab ly a costly one at that. The third problem, which is the hear t of the
m a t t e r of w h e t h e r this formulation can be effectively used on an I l l iac- type computer ,
a r ises f rom assuming a f ixed data structure; but if the grid moves wi th the physics of
t h e process , it seems reasonable to entertain the notion that its representa t ion moves
w i t h the computat ion of the algorithm; this may not solve the problem, but it might
mi t igate its presumed seriousness. Another possible approach would be to use a gr id
s t r u c t u r e f ine enough so that slip lines and any other physically interest ing phenomenon
could be d e r i v e d from calculations performed on the fixed grid-~this would be an
e x a m p l e of using raw computational power in place of the potential ly s tagger ing
o v e r h e a d of bookkeeping and routing of information needed for a more sophist icated
fo rmula t ion . This solution may not be aesthetically pleasing, but it might be the best
c o s t - e f f e c t i v e method (or even the only technologically feasible method for v e r y la rge
models) . Since the purpose of computing is insight, the only question is w h e t h e r this
insight should be der ived directly from the mechanics of the algorithm or be i n f e r r e d
f r o m the resul ts of the calculation.

Not ice that all three problems have a common thread: the vagar ies of the
p r o g r a m m i n g language, in reveal ing all of the machine characteristics, has g iven the
g r e e d y p rogrammer more than enough rope to hang himself in t ry ing to pull the last bit
of s p e e d out of the machine. This is a ve ry serious problem, since it distracts f rom the
r e a l issues. "Skewing and the pseudo 64 -PE boundary are new exper iences and add to
t h e di f f icul t ies in visualizing parallel processes in the Illiac." (p. 7)

3 5

3 . M o n t e Car lo Methods on the Illiac

T h e rea l problem in the Tensor code is the interaction among dynamically v a r y i n g
g r o u p s of nodes, and the attendant bookkeeping necessary to locate specific nodes or
assemble t h e necessary information. Monte Carlo methods which are formulated so that
in te rac t ions among constituent elements are implicit can ef fect ively minimize this
o v e r h e a d prob lem, but at the expense of substituting an apparent "randomness" in the
c o n t r o l - f l o w . That this substitution can be successful on the Illiac must cer ta in ly be
o n e of the ironies of contemporary computing, since "conventional wisdom" had held
t h a t the s ingle- instruct ion stream was the constraining factor to the eff icient ut i l izat ion
of t h e Illiac, which does not obviously lend itself to branch-dr iven programs.
(Convent iona l wisdom also ignored the impact of the memory structure on e f fec t ive da ta
u t i l i za t ion , which probably will be the constraining factor once more exper ience w i th the
Il l iac is r e p o r t e d .)

A successful Monte Carlo code for the Illiac is repor ted in S A M - I V : a t h r e e
d imensional Monte Carlo radiation penetrat ion code for the Illiac IV by E. S.
T r o u b e t z k o y , M. K Kalos and H. Steinberg of Mathematical Applications Group, Inc,
DNA 3 3 0 3 F , 1 9 7 3 . Of particular insterest is the mechanics used to implement a
d i s o r d e r l y contro l f low (one which takes many dif ferent branches w h e n e x e c u t e d
success ive ly of d i f ferent data by a sequential computer).

"The major diff iculty wi th attempting to implement a Monte Carlo code ... on the
Illiac lies in the intrinsic disorderly nature of Monte Carlo logic. ... The o r d e r
and the nature of the physical events have little, if any, corre lat ion f rom
[par t ic le to part icle] . The naive approach of following 6 4 histor ies
simultaneously is there fore not feasible as the parallelism breaks d o w n almost
immediately . Our approach is to initiate many histories in each PE, and hold all
of them in abeyance until any calculation is required"—that is, until enough PE's
h a v e part icles upon which the same calculation can be per formed, (p. 10)

T h e basic idea here is reminiscent of the control mechanism in a production system, or
M a r k o v a lgor i thm, w h e r e at least conceptually processes are activated in an associat ive
m a n n e r w h e n e v e r cer ta in specified conditions in the data base arise. In the M o n t e
C a r l o p r o g r a m cer ta in computations are performed whenever a certa in amount of
para l le l ism is possible.

Conclusions

A g e n e r a l statement of the philosophy underlying the successful programming
s t r a t e g y descr ibed in both sub-sections one and three would be: divide the p rob lem
f o r m u l a t i o n into as many independent steps as possible—steps which would have to be

3 6

e x e c u t e d r e p e a t e d l y on varying data by a sequential computer—and then at each point
of t h e para l le l computat ion, choose to execute that step which will uti l ize the g r e a t e s t
amount of paral lel ism. The ultimate success of any code seems to lie in the abi l i ty to
minimize the o v e r h e a d of bookkeeping, either implicitly (as in sub-sect ion one w h e r e ,
fo r e x a m p l e , the computation required for a particular node is known to be comple ted
w h e n all PE's are working on computations involving higher numbered nodes) or
exp l ic i t ly (as in sub-sect ion three where the formulation is in theory without any
dynamica l ly v a r y i n g interrelationships among distinct components; that is, the aggr igate
e f f e c t s of in terest can be v iewed as data reduction which can be done without r e g a r d
t o o r d e r and in a cumulative fashion and hence lends itself well to homogeneous para l le l
process ing) .

One of the unifying characteristics of these three projects is their unwil l ingness to
v i e w the Illiac as a vector computer. This may be because of the small random access
m e m o r y (implicit in the approach of sub-section one) or because of the short natura l
v e c t o r length (explicit ly mentioned in sub-section two). Or it could be a (pe rhaps
d e s e r v e d) infatuat ion wi th a sequential program (as in sub-section three w h e r e , desp i te
t h e dazz l ing programming techniques used to cope with the architecture of the Illiac, the
code is essent ia l ly a parallel implementation of a sequential program). However , if one
g e n e r a l i z e s the notion of a vector operation from component-wise scalar operat ions to
m o r e complex operat ions on structured components, then these programs may b e
i n t e r p r e t e d as at tempts to simulate general ized vector computations.

3 7

APPENDIX I I : BIBLIOGRAPHY

T h e fo l lowing annotated biblography of papers dealing wi th algorithms for a g e n e r a l
s ing le instruct ion st ream multiple data stream computer and for the Illiac in part icular
w e r e se lec ted f rom the open l i terature and hence should be readi ly accessible. T h e
f i r s t four a r e interest ing both for the particular application discussed and also for t h e
u n d e r l y i n g technques which are applicable to a much wider range of problems.

S . -C . C h e n and D. J. Kuck, "Time and Parallel Processor Bounds for Linear
R e c u r r e n c e Systems," IEEE Trans, on Comp., vol. C - 2 4 , 1 9 7 5 , pp. 7 0 1 - 7 1 7 . T h e
p a p e r contains an example of folding an algorithm designed for n PE machines to
e x e c u t e o n an m PE machine w h e r e m<n.

K Rober t Downs, "Real-Time Algorithms and Data base Management on Illiac IV," IEEE
T r a n s , o n Comp., vol . C - 2 2 , 1 9 7 3 , pp. 7 7 3 - 7 7 7 . Although couched in terms of radar
t r a c k i n g , the " rea l - t ime" constraint can arise from viewing the disk location as the
e x t e r n a l ©vent dr iv ing the course of a computation. There are also a number of
i n t e r e s t i n g ideas in managing a data base with special dynamic characteristics.

A. H. Sameh, "On Jacobi and Jacobi-like Algorithms for a Parallel Computer ," Math .
Comp. , vo l . 2 5 , 1 9 7 1 , pp. 5 7 9 - 5 9 0 . Many steps in the Jacobi method for reducing a
mat r ix to diagonal form in solving a linear system of equations are independent and
g r o u p s of them may be done in parallel (i.e. the computation is folded in t ime). T h e
de ta i l s of this in terms of the Illiac are presented.

H. S. S tone , "An Efficient Parallel Algrithm for the Solution of a Tridiagonal Linear
S y s t e m of Equations," J. of ACM, vol. 20 , 1973 , pp. 2 7 - 3 8 . This paper p resents an
e x p o s i t i o n of the technique known as recursive doubling in terms of solving f i rst and
s e c o n d - o r d e r l inear d i f ference equations on the Illiac.

T h e fo l lowing t w o papers are mostly of historical interest in describing the Illiac at
v a r i o u s points in t ime.

3 8

G. H. Barnes , R. M. Brown, M. Kato, D. J. Kuck, D. L Slotnick, R. A. S toker ,
" T h e Illiac IV Computer ," IEEE Trans, on Comp., vol. C - 1 7 , 1968 , pp. 7 4 6 - 7 5 7 .

W. J. Bouknight , S. A. Denenberg, D. E. Mclntyre, J. M. Randall, A. K Sameh,
D. L Slotnick, "The Illiac IV System," Proc. IEEE, vol. 60 , 1 9 7 2 , pp. 3 6 9 - 3 8 8 .

F inal ly , t w o additional bibliographies in the field conclude this list.

D o n Hel ler , "A Survey of Parallel Algorithms in Numerical Linear A lgebra ,"
C a r n e g i e - M e l l o n Universi ty Department of Computer Science Technical Report , to be
pub l ished .

W. G. Poole , Jr. and R. G. Voigt, "Numerical Algorithms for Parallel and Vec tor
C o m p u t e r s : A n Annotated Bibliography," Computing Reviews, vol. 15 , 1 9 7 4 , pp.
3 7 9 - 3 8 8 .

S E C U R I T Y C L A S S ' F f C - T\ou OF 7 H t ̂ *»AOE (Wh«n Oat* Entered)

1 ~ iiFoiTD^^
1. R E P O R T N U M O E R 2. G O V T A C C E S S I O N NO

4. T I T L E (tand Subtitle)

PROGRAMMING THE ILLIAC IV

7. AUTHORf .1)

David K. Stevenson

S. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D ADDRESS

Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

I I . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Office of Naval Research
Arlington, VA 2 2 2 1 7

U. M O N I T O R I N G A G E N C Y N A M ? & A O O R E S S f i / 'diiletent from Controlling Office)

1 * . D I S T R I B U T I O N S T A T E M E N T (of thi* Rmpofi)

I I I ; i : M ; ! f i : U
— 3 6 * 4 6 5 f l u b 13 L16D?

n
B E F O R E C u ' n F L r / n N G FORM

P E C ! ° ' FK' T ' ^ u A ' ^ v . : ~. u >}*z F R

5. T V F E O F R E P O R T & P E R I O D C O V E R E D

Interim
€• P E R F O R M I N G O R G . R E P O R T N U M B E R

S C O N l R A C T OR GRANT N U M 8 E ft(s)

N 0 0 0 1 4 - 6 7 - 0 3 1 4 - 0 0 1 0 ,

NR 0 4 4 - 4 2 2

10. PPQGPfiV E L E M E N T , P R O J E C T . TASK
A P E A A WORK U N I T N U M B E R S

U - R E P O R T D A T E

November 1 9 7 5
tS. N U M B E R O F P A G E S
41

15. S E C U R I T Y CLASS, (of this report)

UNCLASSIFIED
15* . D E C L A S S I F I C A T I O N / D O W N G R A D I N G "

S C H E D U L E

Approved for public release; distribution unlimited.

17. D I S T R I B U T I O N S T A T E M E N T (of the mbetrmct entered in Block 20, It different from Report)

IS. S U P P L E M E N T A R Y N O T E S

I

19. K E Y WORDS (Continue on reverae side if nec**s*ry and identify by block number) - j

20. A B S T R A C T (Continue on r «ve rc# side If n « e * s « e r y *nd Identify by block number) A S imp le mO de F~ oT~p afaTT^i j
computation is a single instruction stream controlling a multiple processor con- I
figuration. Programs for such computers entail a host of considerations absent \
from programs for a conventional sequential computer. This paper explores the j
main considerations in using such a computer, largely in terms of the Illiac IV* I
It deals with gross system characteristics and how they affect the suitability
various problem formulations, parallel programs structures and data representa- j
tions, and coding strategies and techniques. The paper is self-contained in thatf
it does not require any previous knowledge of the Illiac; it should be of int
llelt"com u*-f e^ e r a^ ^^P^ting sommunity as a survey of practical a s p e c t s f pa:-. r

^ 0 | fjtTl^ 1473 E D I T I O N D P 1 NOV €S is C 3 S O L E T E JAM "73 ~ . — » . ^

