NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Programming the [iliac IV

David K. Stevenson

November, 1975

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa.

This research was supported in part by the Office of Naval Research under contract
NOO14-67-0314-0010, NR 044-422, and by the National Science Foundation under grant
GJ32111.



ABSTRACT

A simple model of paralle! computation is a single instruction stream controling &
muitiple processor configuration. Programs for such computers entait a host of
considerations absent from programs for a conventional sequential computer. This
paper explores the main considerations in using such a computer, largely in terms of the
lliac IV. It deals with gross system characteristics and how they affect the suitability
of various problem formuiations, parallel program structures and data representations,
and coding strategies and techniques. The paper is self-contained in that it does not
require any previous knowledge of the llliac; it should be of interest both to the general
computing community as a survey of practical aspects of parallel computation and to
those actually contemplating using the llliac,



INTRODUCTION

One of the simplest models of parallel computation is a single instruction stream
controlting a multiple processor configuration. Programs for such a computer entail a
host of considerations absent from programs for a conventional sequential computer.
This paper contains some of the ideas that anyone who is formulating a problem,
designing a program, or writing code for such a parallel computer should consider.
They are drawn from the author's own experience and from conversations and
published reports of many people who have used a particular realization of this
. architecture, the Illiac V. Using a real computer to focus the discussion provides a
concrete basis for these observations, but each problem is considered both as to how it
aftects programming the Ilitiac and as to why it is probably endemic to any realization of
this paraile! architecture. As a result this paper should be of use to scientists
interested in programming the litiac to solve their computer modeied problems. And it
should also be of interest to the general computing community since it discusses the
considerations involved in programming a single instruction stream multiple-processor
computer and the various techniques that have evolved to exploit the power of a
particular parallel machine within the restrictions of its architecture.

The three chapters display a progression from global considerations toward local
and more specialized issues. The first chapter deals with system characteristics and
how they affect the suitability of various problem formulations for efficient
implementation on the Illiac. It is intended to give the reader some feeling for what
paraliel computation on the Illiac is really like (at least as it is practiced in 1975). The
second chapter takes up the issue of parallel program structure and data
representations, As these problems are only recently being understood in the
sequential computer context, it is probably not surprising that this chapter only
sketches some options which are available and indicates what appear to be the main
issues involved. The final chapter is devoted to a discussion of coding approaches and
techniques. Stopping just short of the gory details, the final chapter gives a careful
description of how to deal with several common program structures in light of the
llitac’s architecture; more than anything else these topics should give the reader a clear
idea of the power and limitations of the machine, and of a single instruction stream
multiprocessor in general.



There are two appendices. The first consists of a discussion of selected aspects of
three projects which were designed to use the llliac, The second is a selected and
annotated bibliography on paraliel computation in general and on the llliac in particutar.

A note on nomenclature is appropriate at this point. The usual description of the
llllac is an array processor. The rationale for this is that the processing elements are
not complete processors since they do not decode their own instructions but rely on a
central processor for direction. On the other hand, the ability to calculate the location
of operands, togther with one insruction (the symmetric difference, for example), is
suffcient for general computing, i.e. "is equivalent to a Turing machine.” Thus each
processing element is essentially a computer in its own right (provided the central
processor repeatedly issued a symmeiric dfference instruction). Both points of view
are valuable; in some contexts one seems more sppropriate than the other. This paper
tends to use the term multiprocessor for the Iiiiac, if for no other reason than its
pedagogical shock value.

Finally, there are a number of places where timing information is used in anelyzing
various aspects of the Iliac. These reflect the state of the machine during the fall of
1975, Since a number of enhancements to the hardware are planned, and sven more
are possible, they sould be viewed as conservative, even obsolete.



L. SYSTEM CONFIGURATION AND PROBLEM FORMULATION

The gross features of the llliac to a targe extent determine what forms of
computation can be executed efficiently on this type of architecture. The extent to
which a problem can be formulated so that the computation it requires fits one of these
forms (or a combination of these forms) will determine the degree of utilization of the
computer that can be expected. There are two leveis of any proposed calculation over
a large data base on the liliac that must be considered. The first involves the global
interactions of the data base which determine the data movement between a large
rotating mass storage device and a smaller bufter memory where the actual computation
is performed.

Although this brief discussion is couched entirely in terms of the Iiliac, it is quite
likely that characteristics associated with a heirarchical storage will always ocecur in
scientific computing dealing with large data bases. The reason for this may be due to
technology: the physical limit of the size of random access memories is less than the
information requirements for computational models; or due to economics: semiconductor
memories are more expensive per bit than disk memories; or due to algorithmic
requirements: most large scale computations can be formutated so that each step
requires random access to a relatively small section of the data, and the entire data
base can be partitioned into such sections. In sequential computations, the global
considerations are well known, since scientific computations over a large daeta base can
easily exceed the primary storage capacity of even the largest current technology,
standard architecture computers. The techniques developed for a sequential computer
to obviate this problem are relevant to the llliac and to parailel computers in general
and are included here mainly as a convenience for the reader.

The second level considerations involve local interactions of data within the buffer
memory. As such it is new with the liliac-type architecture, and requires some care to
keep from significantly degrading the rate of computation. This arises from the fact
that each memory module has an assoctated processing unit. Thus the more operands
for a given instruction which lie in different memory modules, the fewer the total
number of instructions which will be required to process all data. This is in
contradistinction to a sequential computer which requires one instruction (memory fetch)



for each datum in memory. Thus the random access memory of an array computer is
more a special type of pseudo - random access memory when computer efficiency is
considered. Again this is inherent to a multi-processor (single instruction stream or
not) since the problem is basically transferring information from the memory to the
appropriate processing element, The idea is essentially to produce a data structure
such that most processors are "close” to the information they need, or such that the
necessary information can be distributed to the processors guickly. On the llliac, the
decision was made to put the mechanics of interprocessor communication {or processor
access of non-local memory) explicitly under central program control. This was
possible since the single instruction stream dictates a synchronous processor
contiguration, and one result is a simplification in the necessary hardware switching
mechanism. Another result is a transfer of the hardware complexity up to the software
level.

1.A. System Configuration

The Iiliac is a large disk memory connected to a multiple-unit arithmetic facility with
a semiconductor butfer memory. The disk is a fixed-head physically rotating device
with a capacity of about sixteen million 64-bit words with a 40 millisecond rotation
period and a maximum data transfer rate of about 15 million words per second to the
buffer memory. The buffer memory consists of sixty-four modules, each module having
2048 words. Data transfers to or from the buffer are program initiated and are
performed in blocks of 1024 words; the same contiguous locations in each module are
affected. The transter time for 1024 words is approximately sixty-six microseconds, or
to refresh half the buffer memory takes a transfer time of 4.2 milliseconds.

Each buffer memory module has its own processing element--roughly the equivalent
of a conventional computer’s arithmetic unit. These execute the same instruction on
data located in their own module. Information may be transterred among the modules
one word per module in a carrousel fashion; for speed, special data paths make the time
required for this routing less than linear in the number of modules by-passed. It is also
possible to disable processing elements either under a central control or under
conditions based on the contents of respective memory modules.

As a rule of thumb a general floating point operation (producing up to sixty-four
results) takes about 1.7 microseconds. Typical bookkeeping operations by the
processing elements take about 1.2 microseconds, and bookkeeping operations
performed by the central control unit take about 0.7 microseconds.

The relative occurrences of each type of instruction in the calculation of short,
simple arithmetic expressions that occur in inner-loop calculations is roughty twenty to
thirty-five percent arithmetic, forty to sixty per cent processor bookkeeping, and
twenty to thirty per cent central control bookkeeping. As for execution time, the ratios



are approximately forty to fifty to ten, respectively. These figures do not include
program control logic (i.e. loop counter updates and tests) which are usually weighted
toward central controt unit instructions, nor do they include arithmetic control logic (e.g.
if x(i)< epsilon then x(i) := 0) which increases the amount of processor contro!l; but they
do include the address calculation overhead due to indexed arrays. The numbers to
some extent reflect the particular instruction repertoire ot the Hliac and the hardware
implementation, but they give an indication of how much time and effort is spent in this
form of parallel computation making sure that the correct data is being supplied to the
appropriate processors.

Using these figures to estimate the computation constraints for disk-to-buffer data
transfer to balance computation, about two hundred to two hundred fifty arithmetic
operations per unknown should resuit in computation time equalling transfer time. This
assumes one page (1024 words) is transferred at a time, a twenty millisecond average
rotational delay, and a high concentration of arithmetic operations as occurs in
evaluating arithmetic expressions. This last assumption is grossly unrealistic for
general program behavior, of course, since general programs will have more control
overhead per arithmetic operation. Thus in general fewer arithmetic operations per
unknown will suffice to balance 1/0 with computation time. If thirty-two pages (one
fourth of the buffer memory) are transferred at a time, the constraint drops to an
average of seven to nine arithmetic operations per operand. If the data has been
arranged on the disk so that the rotational delay is four milliseconds (one tenth of a
rotation) then the arithmetics per unknown for computation time to equal 1/Q time is
about forty to fifty for one page transfers and around two for thirty-two page
transfers. The point of these numbers is to indicate the need to match buffer size and
disk placement to the computational requirements of a program.

I.LB. Problem Formutations: Global Considerations

What type of problem formulations lend themselves to an hierarchical memory
structure? A review of some forms of computation which can efticiently be implemented
on a disk-based memory is relevant at this point. Clearly for large data bases which
cannot be held in the buffer memory for the entire computation it will be necessary to
bring blocks of data into the buffer for processing. Thus the computation may be
viewed as data flowing from the disk into the butfer memory for processing and then
returning to the disk for storage until needed again.

The most obvious form of computation suited to this environment would be one in
which each block of data on the disk could be treated independent from the others.
This suggests that any information which is transmitted among the blocks be done in an
indirect fashion through tables that reside permanently in the buffer memory. A
simplified example will clarify matters.



Suppose that e simulation is to follow a group of particies moving about in some
region and the region is divided intoc many areas. Suppose further that the way a
particle moves depends only upon quantities local to it, plus a knowledge of how many
particles are in each area of the region. Then the particles may be grouped arbitrarily
into blocks on the disk and the particle interaction can be handled by a table in the
buffer indicating how many particies are in each area. Each pass through the data will
simulate one time step. During each pass information pertaining to each particle is
updated and also information is gathered as to how the table of particle concentration is
to be modified. Between passes over the disk-based data the table in core is updated.

A second general form of computation which lends itself to the constraints of this
system would be one for which the computation performed on each block depends only
on blocks that have recently been brought into the buffer and have not yet been
written out to the disk again. As an example, consider a simulation performed on a
mesh covering the surface of a cylinder. Each node of the mesh is updated according
to the values of its neighbors during the previous time step. Suppose all the
information for the nodes on the top of the cylinder fit into a block, and that the nodes
on each circle of the mesh around the cylinder fit into a block also. Then the
computation may proceed as follows. First the blocks containing information about the
top nodes and the nodes in the ring nearest the top are read into the buffer. The top
nodes are updated and the second ring is read into the buffer. Next the nodes on the
first ring are updated, the updated nodes on the top are written to the disk, and the
nodes of the third ring are brought into the buffer. This pattern continues until ell
~ nodes have been updated.

Notice that in this form of computation it is possible that more than one
computational pass may be performed with each physical pass through the data. This
can be illustrated in the preceding example. After the first ring has been updated, the
values for the top nodes for the next time step may be calculated. After the third ring
is updated, the second ring may be advanced another time step if the necessary
information for this second time step (the once updated first and third rings) remains in
the buffer. In general, suppose that six blocks can be held in the buffer for
computational purposes. At the same moment ring i at time t+1, ring i+l at time t and
t+1 and ring i+2 at time t are in the buffer. Then if ring i+3 at time t is read in, the
values of ring i+2 at time t+1 may be computed, then the values for ring i+1 at time t+2
may be computed and written out to the disk. Thus after ring i+2 is read in, the
updated values for ring i at time t+2 may be written back onto the disk, and so two
computational passes through the data will have been effected using only one physical
pass through the data. The method can be generalized, limited only by the number of
blocks that can be held in the buffer memory for computational purposes.

A third form of computation deals with several streams of data. [f the
computational dependence among the streams is such that the streams may be aligned
and brought into the buffer from the disk so that all interactions involve only elements



residing in the buffer, then this computation may be performed efficiently on a
disk~-based memory. The simplest example of this is a vector formulation of
computation, where all computing may be expressed as component-wise combination of
very long vectors. Here the long vectors on the disk are partitioned and appropriate
segments from each vector which enter into the combination are brought into the buffer
for processing.

It should be obvious that these three forms of computation lend themselves wel! to
efficient computation on the Miac or on any disk based computer with a suitable
bandwidth between disk and core. Suitability depends, of course, on the computation
required per data element. The greater the amount of processing required per element,
the lower the threshoid for the bandwidth to be considered acceptable. The degree to
which data dependencies depart from these three forms will determine the difficulty in
managing the data flow from the disk to the buffer. And the greater the difficulty, the
more bookkeeping overhead will be neeeded to keep track of the added complexity.

I1.C. Problem Formulation: Local Considerations

Computations are performed on data while it resides in the buffer; here the
partitioned structure of the Illiac memory is the main consideration. The reason for this
is that each memory module has its own arithmetic unit, hence in order to utilize as
many of these units as possible, a premium is put on the alignment and distribution of
operands entering into a parallel computation. There gre several programming
techniques to mitigate the effects of an unfortunate data structure, and these are
discussed in chapter three, but the best technique is to minimize the difficulty at the
time of the problem formulation.

There are two conceptually different ways of viewing the arithmetic facility. The
first is that each address generated by the central facility specifies a location in
sixty-four different contexts: the semantic meaning attached to each memory location by
the programmer may differ depending upon the particular context. For example,
suppose that the following two computations are to be performed: AsX+8 and C-D (the
first may be preparing to update a variable, the second preparing to check if an
iteration may be terminated), Assume that the contents of the memory is

module O module 1
location #0 A D
#1 B C
#2 X -1



Then the sequence of instructions

Load 0 {load the accumulator from location Q)
Multiply 2  (multiply accumulator by location 2)
Add 1 {add contents of location 1 to accumulator)

will leave the first result in the accumulator of memory module O and the second in the
accumulator of memory module 1.

An example of where this technique might be useful may clarify matters. In some
models which simulate the earth’s weather, the ground condition can be in one of a few
states (typically about six). The calculations of several variables, such as the heat
capacity ot a surface node, vary in their complexity according to the state of the ground
at that node, but have roughly the same form for all states. A sequential code branches
according to the ground state to separate sections of code, one for each state. An
inefficient parallel code will turn on only those PE’s processing surface nodes in a given
state, and do this in turn for each possible state. An efficient parallel code will
initialize certain variables (o values which appear as constants in the various cases of
the scalar code) and then process ali nodes with the same instruction sequence using
these variables to encode the effect of the ground condition on the computation.

The second way of viewing the arithmetic facility is that each instruction initiates
computation on groups of homogeneous data, For example, suppose a vector A has
A(0) in location O of module 8, A1) in tocation 0 of module 9, and in general A(i) in
focation /64 of module number (i+8) mod 64. Suppose a vector B has B(i) in location
/64 + 12 of module number i mod 64. Then to add the first sixty-four elements ot A to
the first sixty-four elements of B--that is to form A(i}+B(i) for i=0,1,..,63--the following
instructions

If module number > 8 then index register ;=0

else index register := |;
Load R O+index register (load the first 64 elements ot A into routing register R)
Route 8 (align vector A with corresponding components of B by
routing a distance of 8 modules)
Load R {put contents of routing registers into the accumulator)
Add 12

produce the desired result: A(i)+B(i) is in the accumulator associated with memory
module i.

These two points of view suggest two alternative forms of computation and data
structures which will be efficient on the llliac. The first is a homogensous computation
on data that is arranged analogously in different memory medules. An extension of this
idea is to treal special cases, which in sequential programs would be handled by



conditional tests and branches, by means of data rather than by enabling and disabling
selected arithmetic units, the parallel equivalent of multiple branches. A practical
application of this is the treatment of physical boundary points in a mesh with
computations analogous to the interior nodes by the judicious addition of pseudo-grid
points. This Is discussed further in chapter two.

The second point of view suggests that homogeneous data (e.g. vectors) processed
in a uniform fashion (e.g. by consecutive location within the vector) can also be
executed efficiently on the Illiac, As a consequence, the greater the number of
irregularities in the underlying model’s structure which give rise to irregularities in the
data structure’s representation and treatment, the greater the penaity in programming
complexity and execution time on the Iiliac, Put quite simply, it may very well be that a
fine, regutar structure which requires a great deal of raw computational power is
.actually superior to an irregular structure (which might reflect the irregularities of the
physical problem) which requires fewer arithmetic operations but considerably more
detailed bookkeeping. This shift towards brute faorce is much more prenounced in the
Hiiac than in a sequential computer for the following reasons, On a sequential
computer, each arithmetic operation, even on a regular structure, requires some
bookkeeping, while on the llliac, most of the comparable bookkeeping is implicit in the
vector operations, and whatever explicit bookkeeping is done can be amortized over
many operations {(up to sixty-four). And secondly, bookkeeping operations on the llliac
(even setting a bit in a register) are much, much more expensive than the per-operand
execution time when many arithmetic units are utilized.

It should be noted that most problems assumed to be ammenable to paralle!
computation will have some sections which are best formulated in terms of a single
instruction stream direcling compuiations having different meanings in different PE
memories, while other sections are most efficiently formulated as vector operations.
One of the reasons for this lies in the character of much of scientific computing. These
problems are often formulated as soiving sets of partial differential equations over time,
and explicit finite difference methods make a vector formulation attractive in stepping
through time. But the functions which determine the coetficients entering into the
equations are often based on incompletely understood physical models, statistical
approximations fo subscale phenomena, or empirical measurements; whatever the
reason, the result is usually an approximation based on a few parameters and several
disjoint cases. Thus the calculation of those coefficients is frequently formulated using
the tirst method.

LD. Summary
In summary, as far as problem formulation is concerned, the major characteristics of

the Illiac are a large rotating device for its primary memory and a 64-way partitioned
memory buffer where arithmetic computation is performed. During the course of a



10

computation, blocks of the data base are read into the buffer from the central memory;
the extent to which these blocks are accessed in a regular fashion, and the amount of
computation that can be performed per block read into the buffer, will determine the
overall efficiency of an llliac program. Three forms of data interdependenicies among
the blocks were discussed; each shouid form the basis of an efficient utilization of the
disk memory.

If the data base is so poorly designed and arranged on the disk that most
computation time is spent shuffling data between the disk and the buffer memory, then
any arrangement of data within a block will suffice. But assuming that a problem is well
formulated for the Ilfiac with respect to gross data interdependencies (or that the entire
data base can be contained within the memory buffer), then the format of data within
the blocks can be of crucial importance. This is the result of each memory modute
having its own arithmetic unit, the capability of operating on data within its own module
or on data that has been uniformly routed among the modules. Since the same
instruction is executed in each module at a given time, the form of each computation to
be performed in parallel must be roughly the same; however, the actual meaning and
relative location of each operand may vary from module to module. Also, since each
operand in a route instruction must move the same distance, operations on data
structures must be able to exploit unifarm accesses across memory modules. Both local
considerations point to homogeneous data structures replicated across memory modules.
The remainder of this paper is essentially an elaboration of dealing with the local data
considerations ~~ the interaction of a single instruction stream with a partitioned local
memory.



i1

II. PROGRAM AND DATA STRUCTURE

The major program design considerations on the llliac arise from the restrictions of
a single instruction stream and a partitioned memory. The effects of the instruction
stream are more noticable in the program control structure than the effects of the
memory on the data representations, but the two isuess are intimately connected. It is
possible, however, to divorce the discussion of control structures from the problems ot
data representations, and at the level of program design such a separation is desirable.
The single instruction stream is particularly attractive in paralle! computation both from
its conceptua! simplicity and for the implementation advantages. For large scientific
computations on large machines, neither advantage is to be underestimated. The same
could be said for the partitioned memory, since in the llliac the effect of the partitioning
is manifest in the program only because the processing power has been distributed
close to the data rather than separated into a separate processing facility as in more
conventional designs and because the inter-processor routing necessitated by the
distribution is under explicit program control.

Two overriding principles are relevant in the context of a multi-processor. The
first is that generally the more processing elements doing useful work the better. (Of
course, the caveat is that a reformulation of the problem might use fewer arithmetic
units for a shorter total elapsed time and hence be better while making less use of the
full parallelism of the machine.) For a single instruction stream this means that more
arithmetic units should have some use for the current instruction being decoded by the
central control unit; two technigues for achieving this are time-sharing the instruction
stream and associative processing.

The other principle in multi-processors is to insure that the right information is
available to the right processing etement at the right time. There are two aspects to
this principle. The first is the question as to whether it is better to recompute
information needed at a particular site or to calculate the location of the stored
information and retrieve it. This question is much more compiex for a multi-processor
than for a single processor computer with a2 random-access memory (or random-access
and rotating storage configuration). In the multi-processor it is usually a question of an
indeterminant number of processing elements, say n, calculating the information they



12

need versus their calculating the location of the needed information (probably in fewer
than n memory modules) and (if required by the architecture as in the Illiac) the various
routing required for the information to reach the desired destination before tinally
getting the stored information to the appropriate processing element. Some
programming technigues useful in implementing such a table look-up on the Iiliac are
discussed in chapter three.

The other aspect of the principle of aligning data to processing elements involves
reducing the overhead associated with bookkeeping. In some cases the explicit
bookkeeping can be reduced by judiciously inserting dummy data in the data
representations stored in local processor memories and thereby forcing the desired
alignment. Thus with the expense of some supertluous computation on this dummy dats
the contro! overhead of aligning data for computation can be grestly reduced. Two
examples of this phenomenon are discussed below.

One last idea should be mentioned in passing. In sequential computing the idea of &
dynamically varying data structure (e.g. a balanced binary tree) arises in an attempt to
minimize the time spent traversing a linked data structure. In the Illiac an anelogous
situation arises when trying to minimize the time spent routing information among
processing elements. The difference is that instead of changing pointers (and only
togically changing the representation), portions of the structure actually change modules
(and hence the site of the physical representation changes).

ILA. Instruction Stream and Program Organization

It each memory module is viewed as a separate context in which computation is
performed, then the probklem arises as to which context will control the instruction
stream so that meaningful computation can proceed in its memory. In a
multi-programmed sequential computer the same problem is solved by time-sharing the
single instruction stream; the only difference is that in a sequential computer the
programs running in different contexts are largely or completely independent, whereas
in the llliac there is likely to be rather strong and relatively frequent interaction among
the different contexts, otherwise the question would arise as to why many smaller,
independent machines were not used instead of a large multi-processor.

All this means is that the level of. time-sharing (or level of coordination) is likely to
be much finer in the llliac -- in units of one to several instructions -- and the criteria
for scheduling which group of instructions is to be executed next will be based either
on a priori estimates as to which sequences are likely to keep the maximum number of
processing elements active or based on some form of polling to determine which
instructions will in fact be executed by the maximum number of elements.



13

The other approach to the problem is to have not one but several contexts within
each memory module in the hope that when any given group of instructions is broadcast
from the central unit, it wili be appliicable to at least one context in each module.

An example should clarify these ideas. Suppose that the main body of an algorithm
consists of repeated executions of

If A then B else C,

This form of computation occurs, for example, in a tree searching algorithm where A
decides whether to continue the search down a branch (i.e. execute B} or to backtrack
(i.e. execute C); here every memory module contains the information needed to search
a sub-tree during the computation. The problem with this form of computation on the
llliac is that in some contexts (memory modules) the execution of A will indicate that Bis
to be performed next, while in other contexts it will indicate that Cis to be performed
next. The way this is handled is to turn off all processing elements which want to
execute C while the instructions for B are issued, and then turn off all processing
elements which have executed B while the instructions for C are issued. Thus the code
is equivalent to repeated executions of the sequence

A; If bool then B; If not bool then C

where bool is a boolean quantity set at the end of executing A,

However, after B is executed, rather than issue the instructions tor C, A could be
executed with the expectation that more processing elements will then be utilized when
the instructions for C are issued. Thus the toop of the algorithm becomes

If bool then {B;A); If not bool then (C;A)

which requires that A be executed before the ioop is entered to initialize the value of
bool correctly,

Does this modification improve the processor utilization significantly? For general
formulas to estimate the processor utilization in this example, let p be the probability
that bool=true after the execution of A and let a be the time to execute A, b the time to
execute B and c the time to execute C. Then the per centage of procesor utilization
under the first scheme is



14

2+pbH(1-pic .

at+b+c

For the second scheme assume that a steady state has been reached, that is in
N=p/(1-p+p*p) of the modules bool=true at the start of the loop (and hence sfter each
pass through the loop). Then the estimated processor utilization for the second version
is

a+Nb+(1-pN)c .
Za+b+c

We present a few examples. [f p=1/2 then a=b=c means 677 processor utilization
for the first scheme versus 587 for the second and the first is clearly better. If the
ratios of a:b:c are 1:1:4 then the utilizations are 587 and 627 , or about the same. For
ratios of 1:4:4 the result is 567 to 637 and the second is clearly better. Now assuming
p=1/3 the above three cases are 677% vs. 577, 677 vs. 707, and H67 vs. 617,

Another approach is to keep track of how many contexts are in a state where their
processing elements would be enabled if the code for A were broadcast, and the same
for B and C. Then if the number which would execute A were greater than a specified
number, the code for A would be broadcast, otherwise the number of processing
elements which would execute the code for B is checked, and so forth. If the demands
for codes A, B and C are all insufficient, then the threshold is lowered. Alternatively,
the code for which there is the greatest demand could be chosen for execution
whenever there is a choice. ‘

The next modification is to have not one context in each memory module, but
several independent ones. The assumption is that most of the time at least one of the
contexts in each memory module will be in a state that can utilize whatever sequence of
instructions is being broadcast by the central control unit. With three different states,
as in the above example, this is fairly easy to insure with a relatively small number of
contexts per module. However with a physical model which may have many logical
states for any given context, this may no! be possible given the small memory size of
each module. It is in this case that the form of the computation becomes relevant, as
discussed in the first chapter.

Since it is only the instruction stream that must be shared by the different contexts
and not the semantics attached to how the instruction is modifying the context in which
it is executed, distinct physical states should be formulated so that they can utilize the
same instruction stream, the semantic differences being encoded in data variables. This



15

ts in contrast to the practice in sequential computing where computational differences
reflecting the physical/semantic differences are imbedded in the instruction stream itself
by means of branches. This difference from considerations entering into the problem
formulation for a sequential computer requires that more care be taken both in the
parallel formulation and in the actual program design and coding (and especially in the
documentation),

All of the above discussion implicitly assumed that the execution time for each group
of instructions was either the same in each context or that the veriance was
insignificant, ie. that there are no loops requiring widely varying numbers of
executions, The probiem of eliminating program branches can thus be conceptually
solved by means of using associative programming: the state of a particular context
explicitly determines what sequence of actions are to be executed in it. But sequences
that are of varying length in varying contexts defeat the strategy of tnitiating only
those sequences which maximize processor utilization, since the tendency is for the
worst-case local behavior of 2 given context to become the expected global behavior of
an ensemble of contexts executing the same loop, and hence most processors will be
idle waiting for the worst-case to terminate. This suggests going to a finer scale of
computational resolution. Again the same idea of associative programming can be
employed, but it takes on the flavor of time-slicing the instruction stream in a
round-robin fashion.

To return to the above example, suppose that each block of code is itself a loop.
For exampla

A = While Al do AL.
Then the conditional expression can be re-coded for parallel execution as

It al then (AL; al:=Al);
If bl then (BL; bl:=B1; al:= not bl)
If c1 then (CL; cl:=Cl; al:= not cl)

where AL has been modified to set bl or ¢l as appropriate when the loop AL is to
terminata.

Thus each processor gets a chance to execute one pass through the appropriate
loop on each pass through the reconstructed program. The obvious advantages in this
reformulation are that all processors are busy at least some of the time during the loop
and that no processor has to wait for ali other processors to leave a given state before
it can proceed to execute in another state. The disadvantage is, aside from the
additional overhead, that a processor will necessarily be inactive through at least one
and usually two of the if statements in any pass through the three statements.



16

All of the above program formulations have treated the processing elements as
executing in separate contexts. Thus the programs look very much like programs for
sequential computers, excep! that exceptional cases are handled by data rather than
branches and that locally (within any one context) the code looks rather inefficient to
the sequentislly oriented programmer. But the efficiency comes from utilizing relatively
more processing elements; e.g. significantly more than twice as many active processing
elements executing code that runs about half as fast as a previous formulation will show
an increase in total efficiency and a decrease in total execution time despite the more
wide-spread local inefficiencies!

11.B. Partitioned Memory and Data Structures

If the llliac is programmed as a vector machine capable of combining vectors of
lengths up to sixty-four in a given instruction, then the problems of the single
instruction stream treated in the previous section disappear, since by definition vectors
are combined using the same arithmetic operation between individuai components. A
vector approach presents two different problems, however; one is specific to the Illiac’s
architecture and the other is inherent in the vector formulation of a program.

Vector operations on the llliac directly encounter the effects ot a partitioned
memory, since to operate in parallel on two vectors in the buffer, they must be aligned
50 that components to be combined are available to the same processing element. An
example in chapter one illustrated a particular case. The problem of vector alignment is
more of a programming and data structure implementation detail, and will not be treated
in this chapter which is aimed more at the level of program design. It is sufficient to
realize that it is a nuisance that must be dealt with at the lower level of programming.

What must be dealt with at the level of program design is the efimination of special
cases (which are usually handled with only a very limited degree of parallelism) and the
creation of vectors that are as long as possible (so the overhead of calculating routing
and indexing for the vector alignment can be amortized over more parallel arithmetic
operations). Both of these concerns can be met by using computational artifices at the
program design level. The aim is to try to enhance the computationa! parallelism of a
problem formulated for solution on a parallel computer.

The idea of treating special cases ("boundary conditions”) by means of special data
rather than by means of special instructions has already been discussed when the seme
instruction is to be executed in different contexts. The same technique can be applied
to vector-oriented computation; the goal is to incorporate special cases in such a way
as to make the vectors involved in the program longer. As an example, suppose that a
vector u is updated by



17

uli) := cL{i)*ui) + c2(isfuli-L)+uli+1)+uli-k)+u(i+k)]

for most values of i except for the k values of i when i is a multiple of 200 whers the
relevant computation is

u(i) := c3(i)suli) + cA(iyefuli-1}+uli+k)+uli-)].

The entire computation can be put in the first form and all the original values of u
updated in the same fashion if zeros are inserted into u between every 200 elements,
the vector cl altered by inserting zeros and elements of ¢3, and the vector ¢2 altered
by inserting zeros and elements of ¢4, ’

This example arises from a computation performed on a rectangutar mesh, with the
exceptional components of u corresponding to points along one boundary of the mesh.
The expansion of the vector u corresponds to introducing pseudo-grid points along the
physical boundary of the grid so that the original boundary mesh points can be treated
in the same fashion as interior grid points. Notice that this is nothing more than a
computing device designed for program etficiency; the pseudo-grid points do not affect
the underlying physical model, they merely affect the representation of this model. The
results of the two implementations should be identical (they are formally identical; any
computational problems that may arise are due to the calculation and addition of zero
affecting the low order bits of the addend because of floating-point vagaries of the
arithmetic unit, but this should be negliglible in any event). The only significant
difference between the two formulations should be that the second, involving the longer
vectors, runs faster.

As another example, suppose the 18 by 18 matrix A can be partitioned into 3 by 3
biocks so that it has the form

xX...
XXX...
XXX..
~XXX.
XXX
wn XX

where each X is a possibly different 3 by 3 sub-matrix and each dot (.} represents a



18

block consisting of all zeros. Thus recording only the elements in the sixteen non-zero
blocks of the matrix A uses 16%9=144 elements. On the other hand, all the non-zero
elements lie in eleven diagonals of A, centered around the main diagonal; two diagonals
are known to be about one-third zeros and two others are known to be two-thirds
zeros. Storing by diagonals (including the ’padding’ zeros) takes about 11x18=198
elements. For general matrices with this structure, storing the 3 by 3 blocks takes
about 9/11 of the storage as storing by diagonals.

To multiply a vector x by the matrix A in the first scheme requires sixteen smaller
matrix-vector muitiplies (the sub-vectors of x of length 3 by the 3 by 3 sub-matrices of
A} followed by summing appropriate results and combining them to form the final
product vector Ax. In the second scheme with A stored by diagonals, the product Ax
requires component-wise multiplication of eleven diagonals and x and then summing the
results. The second scheme in general takes more scalar arithmetic operations and, at
least theoretically, slightly more parallel arithmetic instructions, But the second scheme
requires a less complex control logic to keep track of the sub-computations involved in
forming the product.

The final consideration is the lay-out of the data, both in the buffer memory and on
the disk. Here the amount of routing and control necessary to align the data for
computation within the buffer, together with the complexity of arranging the data into
blocks and deciding which blocks should be brought into the buffer, can be much
greater for the first scheme than tor the second. The real complexity of the first
approach depends upon the degree of general vectorization: whether the blocks are
treated as general components of the three block-diagonals of the matrix A or as
general non-zero biocks of the matrix. A successful implementation of the first scheme
is discussed in section 1 of the first appendix, which also discusses the use of the Illiac
instruction stream for associtive processing.

The central idea to notice in this discussion (which is also the thesis of APL) is the
degree of control that can be subsumed by adopting a vector approach or a generalized
vector approach (where vectors are themselves composed of matrices). This is a
reflection of the use of the implicit bookkeeping possible when the Illiac is used in a
vector mode.

IL.C Summary

The two sections of this chapter have attempted via program design 1o deal with
the issues of implementing a problem which has been tarmutated for a paraliel computer.
The chief aspects of the architecture of the Illiac which affect the program
implementation are the single instruction stream and the partitioned buffer memory.
The single instruction stream enhances the desirability of a vector formulation, or of the



19

uniform treatment of various contexts in the memory modules. To some extent either
can be accomplished by programming techniques, provided that the program is originally
formulated to admit the use of such approaches.

The success of a multiple-context formulation depends upon the product of the
number of possible computational states active at any stage of the computation and the
number of variables necessary for each state. A relatively small product means several
independent contexts per memory module and this insures a high probability that at
teast one of the contexts can be active for whatever section of code is being broadcast
at a given time. Two ways were indicated for reducing the number of states. The first
involved a detailed knowledge of state transition so that several states could be
combined (in the example, state A always followed state B so that the two could be
combined into a new state, (B;A), and the same for {(CiA), thus the number of different
computational states was reduced from three original states to two). The other way to
reduce the number of distinct computational states was to formulate the way different
physical states were to be handled in a computationally similar form so that the same
instruction stream, with different parameters, is relevant to each state {an example of
this occurred in the weather simulation discussed chapter one).

The success of a vector approach depends upon the ratio of exceptional cases to
general cases. When this ratio is small, the vectors are fong and thus a high degree of
parallelism can be utilized for fong periods of time. Long vectors are the key to
efficient utilization of parallel computers since the vector start-up time, the time
required to calculate alignment procedures for the vectors, can be amortized over many
arithmetic operations,



20

1II. PROGRAMMING TECHNIQUES

Specific programming examples indicate the range of considerations that arise in
programming the Illiac, or any single instruction stream -- muitiple processor computer.
The essential problems are keeping track of the data and arranging the computation to
process the data efficiently, Whereas in the preceeding chapter efficiency was
assumed to ba synonymous with processor utilization, here the term will be used to
indicate minima! overhead to manage data and computation. There are several sources
of overhead that appear unique to this type of parallel computing. One is data
management-- having to rearrange data to get it to the right processor by routing.
Another is processor management--having to decide which processors need to be active
or inactive during a particular instruction sequence.

Routing, or inter-processor communication, plays a key role in all of the examples,
even though they are all very simple (and basic). This arises for two reasons. The
tirst is the decision to put control over processor memory accessing in the instruction
set of the computer rather than having a hardware implemented switch which resolves
possible memory conflicts and routing problems. The second tactor is that frequent
inter-processor communication should be characteristic of programs on a computer
designed specifically for such rapid data swapping; problems which need far less
processor interaction are probably better suited to a less tightly coupled network of
processing elements.

I11.LA. Row Sum

Given sixty-four numbers x(0), x(1), x{2), .. x(63) to sum, a sequential computer
must execute sixty-three addition instructions. However, if more than one add can be
performed in parallel, fewer addition instructions are needed. The minimum number
needed is six. This can be achieved as follows, First



21

®(i) 1= x(i}+x(i+1) for even i.
Next

x(t) 1= x(i)}+x(i+2) for i=0 mod 4.
The 1'hird instruction performs

%(i) := x(i)+x(i+4) for i=0 mod 8.
In general, the nth equation is

x() 2= x(i)+x(i+k) for i=0 mod 2k, where k=2sx(n-1),

The implementation on the liliac uses the route instruction to effect the offset by k,
using both the routing register and the accumulator. This example was used by D. J.
Kuck in "liliac IV Software and Application Programming,” IEEE Trans. on Comp., vol.
C-17, 1968, pp. 758-770. Afthough the mathematical description implies: that fewer
scalar addition operations are done at each subsequent paralle! step, in the Illiac it turns
out that it is more efficient to perform sixty-four additions at each parallel step than it
is to select that subset of processing elements which is needed to perform the useful

additions. Assuming that x(i} is in the sccumulator of memory module i, the code loaks
like

Nl

Loop:

Store R (put contents of accumulator in R)
Route N (route the R registers a distance of N)
Add R (Add contents of R to accumulator)

N := N+N

If N < 33 then goto Loop

which terminates with the sum in every accumulator.

If more then sixty-four numbers are to be summed, say k numbers spread evenly
among the memory modules, then k/64 additions are performed in each module before
the row sum is computed. Obviousy the technique is not limited to addition but may be
applied to any associative binary operator, for example finding the maximum.,



22

There are two points which should be noted. The first is that a parallel algorithm
can require much fewer instructions and take less time than a sequential formulation
provided that the problem is formulated in a tashion amenable to parallel computation
(here an associative operator was necessary) and that the data structure allows the
paraliel algorithm to proceed in parallel (if the summands were all in the same memory
module, no parallelism would be possible without spending more time rearranging the
data for a paralle! algorithm than solving the problem sequentially on the arrangement
as given) The second point to notice is that most of the executed additions are
irrelevant to the parallel computation (only 63 of the executed 384 additions are
necessary), yet no penalty was paid in increased execution time.

IILB. Routing Various Distances

The route instruction has the two attributes that the contents of all routing
registers move, and they are all transfered the same distance. Thus when the desired
goal is for elements in the routing registers to be routed varying distances, more than
one instruction is necessary, but hopefully fewer than sixty-four will suffice. A
particularly elegant solution to this problem is given in SAV-IV: A Three Dimensiona!
Monte Carlo Radiation Penetration Code for the Illiac IV by Troubetzkoy, Kalos and
Steinberg, DNA 3303F, 1973.

The centrat idea is that each element has a distance that it is supposed to move.
The first step is to move elements whose distance has a one in its binary expansion,
next those whose distance has a two in its binary expansion, then those with four, and
s0 on, For example, an element which must move a distance of twenty-one would be
moved one on the first instruction, four on the third instruction, and sixteen on the fifth
instruction, since 1+44+16=21. It would be held in the local memory of some module
during the instructions which move elements two, eight and thirty-two memory modules,
and this suggests the major difficulty with the technique. It is possible that an element
will arrive in a memory module and have to be stored when another element is already
being kept there, and neither is supposed to move on the next instruction. This
bunching phenomenon requires a temporary buffer in each module.

There are two alternatives in scheduling the routing instructions. The first is to
move all elements which require a distance of one sometime in their move (this will take
at most one route instruction), next all those which require a distance of two (this may
take two route instructions because of the bunching effect), next all those needing four
{which may take up to four route instructions), and so on. The other alternative is to
sequence through the routing distances: moving a distance of one, next two, four, eight,
sixteen, thirty-two, then two, four, ...

The above technique is especially helptul in implementing a table look-up on the
Iitiac, Notice, however, that it does require that the information know how- far it must



23

travel at the outset. To accomplish this, each processing element must be able to
calculate in which memory module the desired information is stored and send a message
to that module indicating the desired information. If the table is stored in an
associative fashion, then there is no way to avoid a worst-case behavior requiring
sixty-three route instructions: the keys to the information are passed among all the
memory modules 50 the appropriate module can respond to the request.

The general principle that is being exploited here is breaking an action (here
routing various distances) into constituent sub-actions, each having increased
parallelism, in an attempt to increase the parallelism in solving the original problem and
thereby to decrease the total execution time for the action (hopefully the advantage
gained by the increased parallelism is not lost by the additional bookkeeping required to
manage the sub-actions). The procedure can be more efficient when dealing with
routing more than sixty-four elements since with several elements in each memory
module the probability is increased that some element in each memory will be affected
by each sub-action,

IILC. Higher Leve! Languages on the llliac

The higher level languages available for programming the lltiac all possess the same
fatal flaw: they make every effort to reveal all the vagaries of the machine to the
programmer. By making the programmer painfully aware of the characteristice of the
architecture, they mitigate the power of abstraction from machine details which is the
greatest strength of a higher level language. The revelation is explicit in the data
declarations where there is a new data type, a variable which consists of sixty-four
scalars. (Needless to say it corresponds to one word in the identical location in each
memory module.) The result of such an extension to languages otherwise much like
Fortran or Algol is felt in the semantics ot the language. Whenever one of these new
data types occurs in an arithmetic expression, not one but sixty-four computations are
performed in paraliel. And there is a new monadic operator, the route operator, which
when applied to the new data object causes the contents of its scalar positions to
rotate. The assignment operator can even be modified when one of these new date
types occurs on the left hand side of an assignment; a mode word determines which of
the sixty-four constituent elements are to be altered by the assignment.

What has been forfeited by the languages must be recouped by programming
techniques. Essentially what this means is that the program should be designed to run
on a parallel computer with characteristics amenable to the problem, then this ideal
computer simulated by the Illiac. The degree to which this logical machine resembles
the actual computer will determine how efficiently the simulation can be done. This
simulation may be explicitly programmed, or merely implicitly indicated by handling data
structures larger than sixty-four elements in one dimension by sequencing through
blocks of the structure, treating each block in parallel. Some techniques for simulating



24

more amenable architectures for paraliel problem formulations are discussed in the next
sections,

Only after a program is running correctly should the question of coding efficiency
be considered, since with the current level of understanding of parallel computation it
requires some working prototype to be able to estimate accurately the disk-to-buffer
data movement characteristics, the intra-buffer routing, the amount of bookkeeping, and
the final degree of arithmetic parallelism of a given problem formulation and program
design. There are enough cases of a priori optimization decisions that were simply
wrong to cause any thoughtful person to question squandering resources on optimizing
what may very well turn out to be irrelevant to the computing characteristics of a
running program.

IILD. Simulating Processing Flements

One of the first difficulties that confronts a user of the llliac is that there are
sixty-four arithmetic units, no more and no less. To formulate a problem or write a
program so that this exact number coincides with one of the dimensions of the major
data structures may be too restrictive. On a conventional computer the problem of data
structures larger than the number of arithmetic units is handled by having the single
processing unit sequence over the structure one element at a time; on the llliac the
analogous operation is to sequence over the data structure sixty-four elements at a
time.

In etfect, what is being done is having the sixty-four processing elements simutate a
machine with more (or fewer) processing elements. If the simulation is explicit then the
program is designed to run on a computer with N processors, where N is a natural
parameter of the problem (for example, the number of grid points along one dimension
of a covering mesh) and then in some fashion simulating the logical computer having N
processing elements by the physical computer having sixty-four processing elements.

For such a simulation, each memory module has N/64 contexts, complete with
accumulator and routing register. Then the logical code is executed N/64 times, one for
each context in the local memory module, except whenever a routing instruction is
encountered. The routing instruction is the only means of communication among the
simulated contexts, and a special subroutine is needed to simulate the general route
among the simulated contexts,

The main difficulty in simulating a route instruction arises from the fact that the
number of memory modules simulated need not be a multiple of sixty-four, nor need the
routing distance be a multiple of sixty-four. The resuit of this is that there will be one
row of the physical memory that will require special consideration, the row which
contains the eiement destined for the first simulated processing element, In general,



25

some of the elements in this row will have to be routed one distance in order to be
alighad with the physical memory modules which contain the first simuiated memories,
while the rest will have to be shifted a different distance in order to be aligned with the
physical memories containing the last numbered simutated memories.

Of course, the full generality of simulating many processing elements is seldom
needed in general scientific computing on the Ifiac. But the problem does reflect the
common difficulties encountered when dealing with a data structure whose
representation must be foided along one dimension to fit into the butfer memory.

IILE. Vector Instructions

The instruction set of the Illiac allows the programmer to deal in one instruction
with vectors having a maximum length of sixty-four, but these vectors must first be
aligned before the components can be combined. Again the restriction to sixty-tour for
the vector length is an artificial constraint for a problem formulation, and it is easily
circumvented by partitioning longer vectors into sub-vectars of length sixty-four and
operating in turn on each sub-vector in parallel. This has the additional advantage in
that the computation required to calculate the necessary routing to align the first
component of the two vectors gives the distance necessary to route each component
and need not be recalculated during the course of the vector calculation. The saving is
proportionately greater as the lengths of the vectors increase.

One trivial problem with operating on vectors is that they may not start in the first
memory module; this may be the result of an algorithm which performs x(i)+x(i+j) over i
for different values of j, or the result of packing vectors into memory when the vector
lengths are not multiples of sixty-four and no "gaps" occur between vectors. To
ilustrate the technique of dealing with vectors, suppose the first thirty elements of a
vector are in memory location M in modules thirty-four through sixty-three, the next
sixty-four elements are in memory location M+l in modules zero through sixty-three,
and so on. To operate on the first sixty-four elements in paraliel, the index registers
are used, having been set to 1 in processing elements zero through thirty-three and to
zero in the rest. Then any indexed fetch from the memory will always retrieve
sixty-four contiguous vector elements. Although there is a slight penalty for indexing
in a memory fetch, the simplification of the control structure makes this price
insignificant.

In calculating the vector addition a := b + ¢ there are three alternatives in aligning
the vectors. First b could be aligned with ¢, the sum computed and the result aligned
with a for storage; second ¢ could be alighed with b and the resulting sum aligned with
a; or third both b and c could be aligned with a before the sum is calculated. In general
two of the three vectors b, ¢ and the sum b+c must be routed to accomplish the vector
operation. There are cases when each of these three alternatives is the most efticient,



26

and for long vectors the savings in routing time by choosing the most efficient can be
significant, ‘

There is a slight complication in calculating the best alignment strategy. This arises
because the time it takes to route a distance d is not linear in d. For example, it takes
just as long to route a distance of eight memory modules as to route one memory
module; this results from a rectangular interconnection scheme to connect the routing
registers,

The central idea in this section, as in the previous section, is in extending the
hardware instructions via software to act on more data items with a single conceptual
instruction. Once one begins to think in terms of a single instruction stream acting on
muitiple data streams, the extension is rather natural, even if the implementation is
somewhat baroque due to the hardware design {or mis-design with respect to the
routing operation -- the problems encountered and their circuitious solutions are akin to
the difficulties in implementing via software multiple-precision arithmetic without having
access to the overfiow bit).

IILF. Data Structures

When a data structure is represented in the buffer memory, the effect of the
partfitioned memory is again felt, depending upon how the structure is to be accessed,
since the processor in each memory module enhances the desirability of having
interacting components in the same module, or in near-by modules. For example,
consider the array x{i}, i=0 to 639. One arrangement is to have x(i} in memory module i
mod 64, so that there are ten elemenis in each module.

If the array x is to be used in a computation of the form
f{x(i}x(i+1)) for 0<i<638,

then the above storage requires no fewer route instructions than the number of
function evaluations. 1f, however, x(0) through x{9} are stored in module number O,
x(10) through x(19) in module number one, and in general x(i) in module i/10 mod 64,
then there is only one route per ten function evaluations. Of course, if f involves much
computation, the time needed for routing becomes insignificant in either case.

If the offset is t, then the routing distance in the first scheme is also t, whereas in
the second it is either 0 and 1 for 1<t<9, 1 and 2 for 11<t<19, and so forth. Shorter
routing distances generally take less time, and if t varies during the algorithm, the
second scheme is definitely preferable, especialy as x becomes longer.



27

The point here is quite simple. The way in which a data structure is represented in
the buffer memory can significantly affect the efticiency of any code which realizes the
intended algorithm, depending upon whether the representation is designed to ease or
to thwart the patterns of access to the structure. A poorly conceived implementation
can ruin even the most carefully designed parallel problem formulation and algorithm
construction.

HLG. Summary

The programming techniques discussed in this chapter illustrate two genere!
principles: decmposing an algorithm into sub-actions which are highly parallel and
decomposing a data structure into blocks which can be handied in parallel. The first is
largely in rasponse to the limitations of a single instruction stream, plus the realities of
computation (which dictate what computations depend upon previous results) and of
architecture (which controls how the information generated by one computation can be
made available for another). If it is a sequential algorithm that is being decomposed,
then any parallelism in the resulting sub-tasks will result in a speed-up in the
reformulation. However, the additiona! time required to set up for each sub-task and to
manage the sub-tasks may make the theoretical speed-up of academic interest only.
This is especially true if there is a great deal of management necessary to go from one
sub-task to another,

The second principle is largely in response to the opportunity efforded by each
memory module having its own arithmetic unit, again tempered by the realities of
computation and architecture. Here the accessing requirements of the intended
structure will largely determine the suitability of various representations. And if no
representation seems particularly well svited for the parallel algorithm, this is a prima
facie case that the fault lies in the parallel algorithm being parallel in theory only and
that a reformulation is in order.



28

CONCLUSION

There are certain verities of computing that, when explicitly stated, are rather banal
but which have a tendency to be forgotten when attention shifts to a new and
unfamiliar computing domain. The first is that every computer, being a physical
realization of some architecture, has its limitations which, once understood, are
traditionally renamed as its computing characteristics. On a multiple processor
computer, the outstanding limitation/characteristic is the number of .processors.
Sequential computers are able to cope with operations on arbitrarily long vectors
despite having only one erithmetic unit; the fact that the llliac has only sixty-four
arithmetic units limits only the amount of paralletism possible in a given instruction, it
has no effect on limiting the size of a data structure {(its higher level languages
notwithstanding),

Another observation is that operations on large data bases must, by the definition
of large, contend with the problems of muitiple levels of storage and the management
thereof. The numerical boundary for large may change from machine to machine, but
the techniques of arranging computation in such an environment do not. The relative
sizes of the memories, the bandwidth between them, and the amount and rate of local
computation on blocks of the data base may determine the relative importance of the
various strategies to minimize the multiple leve! problem, but the problem is formally
independent of whether the actual computation is parallel or sequential. That the
problem naturally arises in some form or other in paraliel computation can be seen from
the following argument. One of the factors which makes parallel computation attractive
is doing relatively simple things that are largely independent; the point of paralielism Is
to decrease execution time, and the only way simpie independent actions couid take a
long time on a sequential computer is for them to be performed over a large data base.

The third comment is that meaningful computation entails some overhead; the
relevant tautology is that nothing of value is free. The difficulty is to decide how much
is too much, and the problem is complicated by these two facts of multi-processor
computation: not only must the information’s location be calculated (as in a sequential
computer) but also it must arrive at the right processor; and processors must be
controlled so that when they can do useful work, they do, and when they cannot, they



29

do not interfere with active computations. Some computations require less overhead
management than others, which is another way of saying that some actions are better
suited to one type of architecture than other actions are. It is improbable that any
non-trivial program can consist entirely of low-overhead computations. The ideal
program is one which spends most of its time doing what its computer is best suited for.
Unfortunately life is not all that simple. For example, consider a problem which consists
of two parts A and B. On a sequential computer A requires ninety per cent of the
computation time; a parallel computer can execute A twenty times faster, bul takes
twice as long to perform B. The parailel computer solves the problem four times faster
than the sequential processor, but spends eighty per cent of its time decing B!

This brings up the final point: any program must spend most of its time doing
something; hopetully it spends it where the power of its computational formulation lies,
or at least in doing what captures the essence of the problem {and sets it apart from
computation which avoids this time consuming aspect). If this is not the case, then it is
doubtful whether the program as formulated should be running on that particular type
of computer.



30

ACKNOWLEDGMENTS

~ The author wishes to thank S, H Fuller, A. K. Jones, and E. A. Rich, CMU, for
their comments on an earlier draft of this paper. In addition, the euthor is greatly
indebted to Ms. Rich for the final production of the report.



31

APPENDIX I: CASE STUDIES

The following are some selected observations on several programs which have been
written for the llliac. The intention is that they may shed some light on the nature of
scientific computing that may be amenable to parallel computation. These case studies
are important both for the problem formulation strategies, program design decisions and
coding technigues.

1. Sparse matrix multiply

The following three paragraphs are a somewhat edited quotation from a report on
three- dimensiona! stress wave simulation for the liliac, authored by Gerald Frazier and
Christian Petersen (DNA 3331F report by Systems, Science and Software),pages 48 and
49,

The time stepping process for this problem consists of the calculation Us=V+AsW
for each time step. The first term V is a vector and its calculation involves
vector operations which require no interaction among the llliac PE's. As a
result, it is easily computed in parallel. Similar operations are involved in the
calculation of the vector W. The significant calculation is the muitiplication of
the vector W by the large sparse matrix A. This multiplication accounts for
almost all of the computation time that is required to complete one numerical
time step. A sophisticated but simple mechanism has been developed to
perform the sparse matrix multiply in parallel. The non-zero terms of A lie in
3x3 submatrices of A, no more than 27 such submatrices in any row of A
These are arranged on disk 50 that when read into memory each arrives in the
PE which contains the three elements of W which enter into the computation of
the product of the submatrix of A and W. Furthermore, as successive terms of
A are read from disk the matrix row numbers increase monotonically (but not
necessarily sequentially). This is done so that the sparse matrix multiply can be
completed in the order of ascending row number.

Ths first submatrix to arrive in each PE from the disk is multiplied by the
appropriate three components of the vector W and the results are accumulated



32

in a buffer along with the row number identifier. This operation allows some
PE’s to work ahead on other row numbers., Since several rows may be
processed simultaneously, a look-ahead buffer is maintained in each PE which
contains both the elements and their row numbers. Since rows will
continuously be completed as new ones are started, the buffer need only be
large enough to contain the maximum number to be worked on at one time in
any given PE. On the average, all of the multiplies for about 2.4 rows of the
sparse matrix multiply are completed at a time.

During the matrix multiply, a test is made to see if all contributions from the
sparse matrix multiply are ready to be summed for the node numbered n. If all
of the row numbers from the submatrix multiply are greater than n, then all
contributions for n are calculated (all PE’s are now working on contributions to
higher node numbers). The contributions for n are then summed and added to
the other terms to obtain the advanced nodal displacement Wn). This
displacement vector is stored in PEk, where k=n mod 64. If the contributions
from row n+l are compieled, then node n+l is also advanced in time, otherwise
the next submatrix multiply in line for each PE is performed. The paraliel
submatrix multiplies, row sums, and disk reads continue until all of the A matrix
has been processed and all nodes have been advanced in time. " The entire
operation is repeated for each time step,

This ends the quotation from the text. Some points are worth mentioning here.
First of all is the surprise that the matrix-vector product is not programmed as vector
operations but rather as separate processes (in the terminology of chapter one, the
llliac is being used not as a vector processor, but as multiple processors, each working
largely in its own "context”). The difference in this case is essentially 99 vector
component-wise multiplies {of vectors of length 3N, where N is the number of mesh
nodes) plus aligning and summing the 99 result vectors, versus 27N matrix-vector
products (involving 3x3 matrices) plus aligning and summing the 27N vectors (of length
3). The vector formulation costs about 187 more storage -- the added padding of
zeros is necessary for alignment purposes--plus the concomitant increase in
arithmetics--the multiplications by the padding zeros. On the other hand, the vector
formulation eliminates the control structure which tests to see when ail information for
updating each node has been assembled and can be combined. It also sliminate the
buffer management for these intermediate results. The real subtlety of the problem
lies in the aligning and summing involved in the two approaches, plus the possible
necessity (based on small core memory) ta partition long vectors.

The non-vector approach does lend itself to matrices which arise from arbitrarily
connected grids. But the automatic grid generation used by this project generates
grids which are unions of regions homeomorphic to a cubical lattice, hence the structure
of the matrix A will have large blocks along its diagonal where the above vector
approach will hold, and its off-diagonal blocks, most of which are identically zero, will
have an analogous vectorizable structure.



33

2. A model for disaster

The Tensor code (Final Report of the Tensor/Illiac IV Project, ARPA Order 1839
(UCRL-51467) by Tad Kishi, 1973) is based on a grid which moves with the material; the
solution at a grid point involves information from nine neighboring points. Here
whatever regularity exists in the grid at the beginning of the simulation is rapidly
destroyed over the iterations, so a vector formulation of the sparse matrix is
inappropriate. The next question is, can an llliac-type architecture, viewed as each
processor working in its separate context but doing roughly the same thing, provide &
suitable environment for such calculations? Or is this a formulation best suited for some
other type of computer?

Untortunately, the project gives no answer, since it was a complete faiture. In fact,
The charitable thing would be to forget this fiasco entirely, but since a computer is
what it appears to its users to be, it is important to consider this project, if only as a
study in cognative psychology.

The project was essentially doomed by its charter. "Bound by the primary
requirement to reconfigure an existing production code, the development of
effective parallel processing methods for the liliac computer system has besn an
exceedingly difficult one. It could not have been accomplished by a simple
translation of the existing Fortran code to a comparable language for the llliac.
The Fortran listing of the Tensor code is a poor substitute for documentation.
It is next to impossible to understand the Tensor code or to derive effective
algorithms for parallel processing from a code that was programmed in assembly
language for a conventional computer and then brute force converted to
Fortran, The task has only been accomplished by reformulating eand
reaxamining the basic finite difference equations. Unfortunately, neither
consistent nor complete set of equations of the existing code was available and
had to be redeprived [sic] by members on the ARPA Tensor project.”" (One cen
only wonder what the sequential code has actually been computing all this time).
(p. 3)

To seal the project’s fate, it was decided to code in an assembler language. The
reasons given were that the higher level languages were undergoing development and
hence a) did not generate reasonable object code (which is irrelevant; bad code can be
selectively tuned) and b) their programming support was minima! at best. The result of
this decision was predictable, "once a course of action was decided upon, it was literally
embedded in ‘cement.’ Programming in assembly language left litite or no flexibility in
our code development.” {(pp. 3-4) Thus the conclusions drawn by this project were
fargely due to the propogation of poor early design decisions, A stunning example of
this occurred when the program was restructured, proving "that skhewing of data, which
we originally believed to be essential for etficient boundary cealculations, was immaterial.
To reconsider the skewing of data at this point in our code development was next to



34

impossible. This is the price one pays when a code of this complexity is programmed in
assembly language." (p. 14) There was an even greater price: the code never ran.
"Two simulations runs have been attempted in this configuration. The code has crashed
- in loop 1 in the k=0 boundary routine. The results have been evaluated, but there are
no plans to continue debugging." (p. 15)

What were the perceived problems of programming this formulation on the Illiac?
There were essentially three. First, "The inherent geometric structure of the 64-PE
llliac computer system imposes an artificial boundary (modulo 64) on the grid system
and must be contended with throughout the program for an array not commensurate
with this base.” {p. 6) Second, “considerations of the boundary calculations ... required
skewing as a fundamental requirement of the problem logistics for efficient PE usage.
However, a given storage assignment for one phase of the calculation may not be suited
for another part of the calculation.”" (p. 7) And finally third, "The calculational
procedures of the slip lines for the liliac array processors require extensive movement
ot data across the PE’s in order to meet the nearest neighbor requirements for the
nine-point difference scheme. This is the result of the change in the nearest neighbor
relationship with time. Thus the values necessary for interpolation may be in some
arbitrary assignment across the processing elements.” (p. 63)

The first perceived problem is illusory; it is solved by logically programming in a
system of N processing elements and then simulating N processors using 64 or fewer
processors. As seen above, the second problem actually turned out to be a red
herring, and probably a costly one at that, The third probiem, which is the heart of the
matter of whether this formulation can be effectively used on an Illiac-type computer,
arises from assuming a fixed data structure; but if the grid moves with the physics of
the process, it seems reasonable to entertain the notion that its representation moves
with the computation of the algorithm; this may not solve the problem, but it might
mitigate its presumed seriousness. Another possible approach would be to use a grid
structure fine enough so that slip lines and any other physically interesting phenomenon
could be derived from calculations performed on the fixed grid--this would be an
exampic of using raw computational power in place of the potentially staggering
overhead of bookkeeping and routing of information needed for 2 more sophisticated
formulation. This solution may not be aestheticelly pleasing, but it might be the best
cost-effective method (or even the only technologically feasible method for very large
models). Since the purpose of computing is insight, the only question is whether this
insight should be derived directly from the mechanics of the algorithm or be inferred
trom the results of the calculation.

Notice that all three problems have a common thread: the vagaries of the
programming language, in revealing all of the machine characteristics, has given the
greedy programmer more than enough rope to hang himself in trying to pull the last bit
of speed out of the machine. This is a very serious problem, since it distracts from the
real issues. "Shewing and the psesudo 64-PE boundary are new experiences and add to
the difficulties in visualizing paraliel processes in the llliac.”" (p. 7)



35

3. Monte Carlo Methods on the llliac

The real problem in the Tensor code is the interaction among dynamically varying
groups of nodes, and the attendant bookkeeping necessary to locate specific nodes or
assemble the necessary information. Monte Carlo methods which are formulated so that
interactions among constituent elements are implicit can effectively minimize this
overhead problem, but at the expense of substituting an apparent “randomness” in the
control-flow. That this substitution can be successful on the Iliiac must certainly be
one of the ironies of contemporary computing, since "conventional wisdom" had heid
that the single-instruction stream was the constraining factor to the effictent utilization
of the llliac, which does no! obviously lend itseif to branch-driven programs.
(Conventional wisdom also ignorad the impact of the memory structure on effective data
utilization, which probably will be the constraining factor once more experience with the
Iliac is reported.)

A successful Monte Carlo code for the llliac is reported in SAM-IV: a three
dimensional Monte Carlo radiation penetration code for the Illiac IV by E. 6.
Troubetzkoy, M. H. Kalos and H. Steinberg of Mathematical Applications Group, Inc,
DNA 3303F, 1973, Of particular insterest is the mechanics used to implement a
disorderly control flow (one which takes many different branches when executed
successively of different data by a sequential computer).

"The major difficulty with attempting to implement a Monte Carlo code .. on the
Illiac lies in the intrinsic disorderly nature of Monte Carlo logic. .. The order
and the nature of the physical events have little, if any, correlation from
[particle to particte]l The naive approach of following 64 histories
simultaneously is therefore not feasible as the parallelism breaks down almost
immediately. Qur approach is to initiate many histories in each PE, and hotd all
of them in abeyance until any calculation is required"-~that is, unti! enough PE’s
have particles upon which the same calculation can be performed. (p. 10)

The basic idea herg is reminiscent of the control mechanism in a production system, or
Markov algorithm, where at least conceptually processes are activated in an essociative
manner whenever certain specified conditions in the data base arise. In the Monte
Carlo program certain computations are performed whenever a certain amount of
parallelism is possible.

Conclusions
A general statement of the philosophy underlying the successful programming

strategy described in both sub-sections one and three would be: divide the problem
formulation into as many independent steps as possible--steps which would have to be



36

executed repeatedly on varying data by a sequential computer--and then at each point
of the parallel computation, choose to execute that step which will utilize the greatest
amount of parallelism. The ultimate success of any code seems to lie in the ability to
minimize the overhead of bookkeeping, either implicitly (as in sub-section one where,
for example, the computation required for a particutar node is known to be completed
when all PE’s are working on computations involving higher numbered nodes) or
explicitly {as in sub-section three where the formulation is in theory without any
dynamically varying interrelationships among distinct components; that is, the aggrigate
effects of interest can be viewed as data reduction which can be done without regard
to order and in a cumulative fashion and hence lends itself well to homogeneous pearallel
processing).

One of the unifying characteristics of these three projects is their unwillingness to
view the Illiac as a vector computer. This may be because of the small random access
memory (implicit in the approach of sub-section one) or because of the short natural
vector length (explicitly mentioned in sub-section two). Or it could be a (perhaps
deserved) infatuation with a sequential program (as in sub-section three where, despite
the dazzling programming techniques used to cope with the architecture of the llliac, the
code is essentially a parallel implementation of a sequential program), However, if one
generalizes the notion of a vector operation from component-wise scalar operations to
more complex operations on structured components, then these programs may be
interpreted as attempts to simulate generalized vector computations,



37

APPENDIX 11: BIBLIOGRAPHY

Tha following annotated biblography of papers dealing with algorithms for a gsneral
single instruction stream muitiple data stream computer and for the llliac in particular
were selected from the open literature and hence should be readily accessible. The
first four are interasting both for the particular application discussed and also for the
underlying technques which are applicable to a much wider range of problems.

S.-C. Chen and D. J Kuck, "Time and Parallel Processor Bounds for Linear
Recurrence Systems,” IEEE Trans. on Comp, vol. C-24, 1975, pp. 701-717. The
paper contains an example of folding an slgorithm designed for n PE machines to
execute on an m PE machine where m<n,

H. Robert Downs, "Real-Time Algorithms and Data base Management on lliiac IV,”" IEEE
Trens. on Comp, vol. C-22, 1973, pp. 773-777. Although couched in terms of radar
tracking, the "real-time" constraint can arise from viewing the disk location as the
external event driving the course of a computation. There are also a number of
interesting ideas in managing a data base with special dynamic characteristics.

A. H  Sameh, "On Jacobi and Jacobi-like Algorithms for a Paralle! Computer,” Math.
Comp., vol. 25, 1971, pp. 579-590. Many steps in the Jacobi method for reducing a
matrix to diagonal form in solving a linear system of equations are independent and
groups of them may be done in parallet (ie. the computation is folded in time). The
details of this in terms of the llliac are presented.

H. S. Stone, "An Efficlent Parallel Aigrithm for the Solution of a Tridiagonal Linear
System of Equations,” J. of ACM, vol, 20, 1973, pp. 27-38, This paper presents an
exposition of the technique known as recursive doubling in terms of solving first and
second-order linear difference equations on the llliac.

The following two papers are mostly of historical interest in describing the Illiac at
various points in time.



38

G. H. Barnes, R. M. Brown, M. Kato, D. J Kuck, D. L. Slotnick, R. A. Stoker,
"The llliac IV Computer,” IEEE Trans. on Comp., vol. C-17, 1968, pp. 746-757.

W. J. Bouknight, S. A, Denenberg, D. E. McIntyre, . M. Randali, A. H Sameh,
D. L. Slotnick, "The llliac IV System,” Proc. IEEE, vol. 60, 1972, pp. 369-388.

Finally, two additional bibliographies in the field conclude this list.

Don Heller, “"A Survey of Parallel Algorithms in Numerical Linear Algebra,”
Carnegie~Mellon University Department of Computer Science Technical Report, to be

published.

W. G. Poole, Jr. and R G. Voigt, "Numerical Aigorithms for Paraliel and Vector
Computers: An Annotated Bibliography,” Computing Reviews, vol. 15, 1974, pp.
379-388.



H

:g‘flé :
T 3 &uie 0
-

D
s

N QF THIS BAaGE ‘Whay Tlela Entered)

:

. APEA A WORK UNIT NUMBERS
Carnegie-Mellon University

Computer Science Dept.
Pittsburgh, P4 15213

% . o H X ¥
[ S?\:T %CUME[!.‘E }'1} i{:‘l‘f! {-JAGE BEFCORE Cusipl = '
1. REPORT RUMOER T GovT ACCESE 1 3. PECI®ENT S CATAWC T Hums
& TITLE (end Subtitle) T - . 5. YNFE QF REPLAT & PERIOD COVERED
PROGRAMMING THE ILLIAC IV Interim
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(#} & CONTRACT OR GRANT NUMBER/s)
David K. Stevenson N00014-67-0314-0010,
NR 0444272
9. PERFORMING ORGANIZATION NAME AND ADDCRESS 0. PPOGRAM ELEMENT GROJECT, TAE

11, CONTROLLING OFFICE NAME AND ADDRESS iZ, REFPORT DATE
November 1975

13, NUMBER OF PAGES

Office of Naval Research
Arlington, VA 22217

TE MONITORING AGENCY NAME & ADDRESS ! < ifarant from Controlling Oifica) | 15. SECURITY CL ASS. (of this report)

UNCLASSIFIED

158, DECLASSIFICATION: DOWNGRADING
SCHEDULE

5. DISTRIBUTION STATEMENT (of this R”P‘og:}"""

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of ths abetract entersd in Block 26, If different from Report)

18. SUPFLEMENTARY NOTES

19. KEY WORDS (Continus on reverss sids i neczazery and identify by block number)

figuration, Programs for such computers entail a host of comsiderations absent
from programs for a conventional sequential computer. This paper explores the
main considerations in using such a computer, largely in terms of the Illiac IV.

various problem formulations, parallel programs structures and data representa-
tions, and coding strategies and techniques. The paper is self-contaimed in thal

20. ABSTRACT (Continus on raversse sids I nscsssery and identify by Block nunbar) A S}'_mp_]_e modet of ?3.1'&11&1_ ;
computation is a single instruction stream controlling a multiple processor corni- ¢

It deals with gross system characteristics and how they affect the suitabilicy o4

%ottdmég ggt requirei any previous knowledge of the Illiac; it should be of intere:
e general computing sommunity as 2 survey of practiczl aspects of pac. .
tallel computitiom and fr rbngp_g;r“qxsx Rt ot 3 practl I aspects of ?;7 :

£ .
z % v e

P e S

DD N0 1473 emirion oF troves i casoLrre

e
[



