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ABSTRACT 

The concepts of the condition number, numerical stability and well-behavior for solving systems of 
nonlinear equations F(x) = 0 are introduced. Necessary and sufficient conditions for numerical stability 
and well-behavior of a stationary iteration are given. We prove numerical stability and well-behavior 
of the Newton iteration for solving systems of equations and of some variants of secant iteration for 
solving a single equation under a natural assumption on the computed evaluation of F. Furthermore we 
show that the Steffensen iteration is unstable and show how to modify it to have well-behavior and hence 
stability. 

1. INTRODUCTION 

An algorithm for the solution of nonlinear equations and systems of equations should satisfy a num­
ber of criteria. Among these criteria are that it should enjoy good convergence properties, be effici­
ent, and be numerically stable. Convergence continues to be extensively studied (see Ortega and 
Rheinboldt (1970)). Analytic computational complexity, which deals with the theory of efficient itera­
tion, is under current investigation (see Traub (1973), (1974) for recent surveys). 

In this paper we study numerical stability for solving nonlinear equations. We wish to solve 
F(x) = 0. Assume that the function F is sufficiently smooth and depends parametrically on a data vector 
d, i.e., F(x) = F(x;d) (Section 2). Then we define the condition number cond(F;d) of F with respect to 
d which measures the relative sensitivity of the solution with respect to a small relative perturbation 
of the data vector (Section 3). Section 4 deals with numerical stability and well-behavior of iterative 
methods for the solution F(x;d) =0. An iteration is said to be numerically stable if it produces a 
sequence [x̂ } of the approximations of the solution a such that for large k the relative error 
||x̂-Of||/||a|| is of order £(1 + cond(F;d)) where £ is the relative computer precision. An iteration is 
said to be well-behaved if a slightly perturbed x̂  is an almost exact solution of a slightly perturbed 
problem, i.e., F(xR + 62̂  ;d + 6^) = 0(f ) where ||6xk||/||xk|| and ||/||d|| are of order £. Note that 
well-behavior implies numerical stability. Next we prove necessary and sufficient conditions for a 
stationary iteration to be numerically stable and well-behaved. 

In Section 5 we discuss numerical properties of Newton iteration for the multivariate case and 
secant iteration for the scalar case. We prove that Newton iteration is well-behaved under a natural 
assumption on the computed evaluation of F. Secant iteration is also well-behaved whenever an addition­
al assumption holds. This assumption does not hold for the Steffensen iteration which implies that 
Steffensen iteration is numerically unstable. However, it is shown how to modify Steffensen iteration 
to get well-behavior. 



2. DATA VECTOR 

We consider the numerical solution of the equation 

(2.1) F(x) = 0, 

where F is in general a nonlinear function, 

is the N dimensional complex space. 
We want to define a condition number of the function F. The condition number should measure the 

sensitivity of the solution (output) with respect to the change of the data (input). The first question 
which arises is what we mean by data of a nonlinear function. For a particular F a data vector can be 
given implicitly. For instance if N = 1 and 

F(x) = ^ V 1 

it is natural to assume that the data are all coefficients of the polynomial. Next if F(x) = Ax+b 
for a NxN matrix A and N dimensional vector b we usually mean by data all entries of A and b, while if 
the matrix A is sparse we can mean by data only nonzero entries of A. 

In general, we shall assume that the function F from (2.1) parametrically depends on a vector "d", 
i.e., 

(2.2) F(x) - F(x;d) where d £ Dd c (£m, 

This vector "d" will be called a data vector. We shall treat d as an element of a normed vector space 
and, in general, one should pay much attention how to choose a norm in that space to fit the problem 
(see Section 3). For certain F it may not be obvious how d should be chosen. An example is given by 

(2.3) F(x) = x2 - eX, N = 1. 

We present a general idea how to define a data vector. As it was mentioned at the outset we want 
to solve (2.1) by iteration. Let x be a sufficiently close approximation of the solution a, F(a) = 0. 
Suppose we use the value of F(x) to get the next approximation. In numerical practice instead of the 
exact value F(x;d) we only have the computed value of F(x;d) in t digit floating point binary arithmetic 
(see Wilkinson (1963)). Let us denote that computed value by fl(F(x;d)). At best we can expect that a 
slightly perturbed computed value is the exact one of a slightly perturbed function at slightly per­
turbed inputs (see Kahan (1971)), i.e., 
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(2.4) fl(F(x;d)) = (I + AF) F(x + Ax;d + Ad) 

where I denotes the unit NxN matrix, 
| | A F | | ̂  £ Kp, AF is a NxN matrix, 
INI* C K J Y , 

L|Ad|| * CK d||d|| 

for constants K̂ , and which can only depend on the sizes N,m, and £ = 2"t denotes the relative 
computer precision. Here ||d|| is a choosing norm i n ( Q M which should fit the problem. 

The condition (2.4) can be treated as an equation on a data vector. It means that for a given 
algorithm for the evaluation of F we want to define a data vector such that the condition (2.4) holds. 
Let us illustrate this point by an example. 

Example 2.1 
Let N 2 x _ _ F(x)=x - e , x £ D . x 

We assume that the result of a computer subroutine for the evaluation e X satisfies 

fl(eX) = (1+ e i)e X + A x 

where | Ax| ^ C- £ |x| and jej ^ C£ for a constant C which does not depend on x $ D . Then 

(2.5) fl(F(x)) = (l+e3)(x2(1+e2) - (l+e1)ex+Ax) = (1+^ ) (1+Tl2)((x+Ax)2 - e X + A x ) . 

where 2 
1+T11 = (1+€3) • (1+^), * 2 - C + 0(£ ), 
1+T12 = (1+e2)[(l+e1)(1+Ax/x)2]"1, \\\ * 2(C+1)£ + 0(£2). 

The factor 1+TVj is a perturbation of the computed value and Ax is a perturbation of x. The factor 
may be interpreted as a perturbation of a data vector. Let us define 

(2.6) F(x;d) = d x 2 - eX, d € (£, m = 1. 

Hence, our problem is to solve F(x;1) = 0. From (2.5) and (2.6) it follows 

fl(F(x;l)) - (1+AF)F(x+Ax; 1+Ad) where 
A F = T\v | A F | * 2-C + 0(£2), 
Ad = T]2, |Ad| £ 2(C+1)£ + 0(0. 

Hence (2.4) holds. 

The definition of a data vector does not need to be unique. For instance, from (2.5) we can 
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interpret the computed value as 

«<'<*» = ^ « W " T ^ • 
Setting 

F(x;d) = x2 - deX 

we get 

(2.7) fl(F(x;l)) = (1+AF)F(x+Ax; 1+Zd) 

where now F(x;1) = F(x;l) = F(x) and 

1+AF = —i-; |AF| * 2(C+2)£ + 0 (C) , 

i+aq* = | a3| ^ 2(c+nc + o(C 2). 

Hence (2.4) also holds. f§ 

The lack of the uniqueness of a data vector causes no problems. In the next section we shall de­
fine the condition number of F with respect to the data vector. As the condition number measures the 
sensitivity of the solution when the data vector slightly changes it is reasonable to seek a data vec­
tor which minimizes the condition number and for which we can find an algorithm such that (2.4) holds. 

3. CONDITION NUMBER 

We want to solve the equation 

(3.1) F(x;d) = 0 

where F is now assumed that 
F: DxxDd 

and Dx*D^ is an open subset of (LN x (L m . 

Let 2f = rd(d) denote t digit representation of d in floating point arithmetic, fl. Then for all 
components of d hold 3L = d̂ (H-T)̂ ) where 11] , J £ £, i = l,...,n, and 

(3.2) | M | * C c | | D | | . 

Here C, - 2 fc is the relative computer precision and C only depends on the size m and the given norm. 
If the norm ||* ||p is used, 1 £ p £ +«, then C - 1. 

It should be stressed the necessity of choosing a norm of d which fits the problem. For instance, 
in many cases we can set Dd = {y: ||y-d|| ^ T] where T is small enough (say, F= 0(C)). Then if all 
components of d are nonzero numbers we can define 

A v j d j where y± = H/̂ dJ for any H > 0. 
i=l 



Now (3.2) holds with C = 1 and moreover, this norm exposes the inaccuracy in all components of d (see 
Stewart (1973), p. 186). 

In general we shall assume that the considered norm of d fits the problem. Note that if £ is 
small enough, then d £ D̂ . Usually d ̂  d which means that instead of the equation (3.1) we can at best 
approximate the solution of a perturbed equation 

(3.3) F(x;d) = 0. 

Note that this unavoidable change of the data vector does not depend on a method which uses d and solves 
(3.1). 

Assume (3.1) has a simple root a and let F be a sufficiently smooth function of x and d, (In fact, 
it is sufficient for (3.4) to assume that F has a Lipschitz first derivative in a neighborhood of (o/,d))# 
If t is sufficiently large, then it is straightforward to verify that (3.3) has a unique, simple solu­
tion a in a neighborhood of a and 

(3.4) 5 - a - - F ^ d ) " 1 Fj(c*;d)(d-d) + 0(£2), 

where F̂  and F̂  denote the derivatives with respect to x and d. The constant which appears in the "0" 
notation can depend on F, oi and d. For a ̂  0, from (3.2) and (3.4) it follows 

(3.5) J^jll £ C£ cond(F;d) 4- 0(£2) 

where 

(3.6) cond(F;d) = ||F^(a;d)(<*;d) | Jdl 

is called the condition number of F with respect to the data vector d. 
Note that (3.5) is, in general, sharp. This means that an unavoidable change of the solution 

mainly depends on two factors: 

(i) £ which is the relative computer precision; for modern computers; £ £ [10 10 ̂ ] 
for most machines 

(ii) cond(F;d) which measures the relative sensitivity of the solution with respect to small 
relative perturbations of the data vector. 

Hence, we can at best compute an approximation of a with the relative error of order £ • cond(F;d). If 
the problem is ill-conditioned, i.e. cond(F;d) » 1, it is impossible to compute a good approximation of 
ot no matter how sophisticated a method is used. If the problem is extremely ill-conditioned, 
cond(F;d) ̂  j» then in general we do not compute any reasonable approximation of <v. For such a case 



(which can be called numerically singular) it seems to be necessary to increase the relative precision 
t o £] = C f o r k s u c h t h a t cond(F;d)q « 1. (See a similar approach in Wilkinson (1963).) 

Let us illustrate the concept of the condition number by a few examples. 

Example 3,1. Solution of a Linear System 
Let ^ v r 

F(x;d) <= Ax + b, A = [ar...,aN], a.,b € (L , b ̂  0, 

where the data vector d = [â ,...,aN] For the sake of simplicity we do not include b as 
a part of the data vector. Thus, 

F̂ (x;d) = A, F̂ (x;d) = [xjI,...,xNI] 

T 
where x = [x..,...,xN] and I is the unit NxN matrix. The condition number cond(F;d) is now equal to 

lr' "2 lr'»2 
\K\(°;V\\2 1NI2 ...... ,,, 

cond(F;d) D M I I IK Ho INI, 

Hence for a linear system cond(F;d) is the usual condition number of the matrix A, Tc(A) = ||A ̂I^IM^* ' 

Example 3.2. Root of a Scalar Polynomial 
Let n 

F(x;d) = £ d.x1, d = [dQ,...,dn]T £ (Lm, m = n+1 . 
i=0 

Then, (3.4) becomes n 
5 -* = Ffer I A di + 0 ( c 2 ) 

i=0 

where Adt is the ith component of Ad = d - d, ||Ad|| £ ||d|| , (see Wilkinson (1963) pp. 38-41). The 
condition number is equal to " 

cond(F;d)=y£ la]2 1" 1 ||d l̂ /1F'(or) |. 
i=0 1 

It should be stressed that one can normalized the considered problems in Examples 3.1 and 3.2 by choos­

ing a suitable norm. 

Example 3.3. Solution of a Nonlinear System 
Suppose we solve F(x) = 0 by Newton iteration. Let x̂  be a sufficiently close approximation of o/. 

The next point x k + 1 is given by 

(3.7) F'Oc^ - - F(xk), 

*k+l = *k + v 



It might seem that the numerical accuracy of depends mainly on the condition number 
Tc(F'(a)) = |(F'(a)|| ||F' (<y) ̂  || , which is crucial for the relative accuracy of the solution of linear 
equations. (Note that for N = 1 , Tc(F'(a)) - 1 which might imply that all scalar nonlinear problems are 
perfectly well-conditioned!) We shall show that the numerical accuracy for nonlinear problems depends 
on the condition number cond(F;d) which is, in general, not related to*fc(F'(a)). An intuitive reason 
that "R(F'(a)) does not reflect on the numerical accuracy for nonlinear problems is that the righthand 
side of (3.7) tends (at least in theory) to zero and we can exactly solve a homogeneous system no mat­
ter how ill-conditioned it is. 

To illustrate this point we consider an idealized case of (3.7). Namely let F(x̂ ) and F^x^) be 
error free and the only one rounding-error source is the solution of the linear system (3.7). We can 
assume that the computed ẑ  is the exact solution of a slightly perturbed problem, i.e., 

(3.8) (F1 (x^ + Ek)zk = - FO^) , ||Ek|| £ CC, || F' (x^ || 

for a constant Cj = (̂ (N). 
Assume that q - CC^F' (of))/(l-C1Ck(Ff (a)) < 1. Then for the "computed" x ^ holds 

&k+1 - V k T 4 Ck " v"2ck T q ; ek 

where ê  = Ĥ 'Ofl! and = (F) . Thus if ê  < (1-q)/c2 then the "computed" sequence tends to a, al­
though for large k the convergence is linear, = qê  and it depends on Tc(F'(a)). However, if for 
fixed F, the relative precision £ tends to zero the condition number *fc(F1(a)) gets less important. 

A real case when F(x^) an<* F' (x̂ ) are not error free is considered in Section 5. 
We wish to finish this example by showing a problem for which Tc(F'(a)) is extremely large but 

cond(F;d) is very moderate. 
T 

Let N = 2, x = [Xj,x2] and 
F(x) = [X] - x2, x2 + Cx2 - C] T 

where a constant C > 0. The solution ot = Vy^- C1,1 ] - We need to define a data vector for F. For 
x = rd(x) we get 

fl(F(x)) = (I - AF) 
Xl " X2 
(1+ei)(x2+Cx2) - C 

where 11AF11 ̂  2• 2 f c, | € | ̂  K-2-t, K 
Setting 

F(x;d) = [Xl - x2, d(x2 + Cx2) - C] T, d e (L, m = 1, 

our problem is to solve F(x;1) = 0. 
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S I N C E , 1 

F X ( A ; 1 ) F J T O 1 ) 4 A 

W E C O N C L U D E 

C O N D ( F ; 1 ) - J V C > 0 , 

W H I C H M E A N S T H A T T H E P R O B L E M I S E X T R E M E L Y W E L L - C O N D I T I O N E D . B U T 

L I M * K ( F ' (a)) = +00 

0 0 

O R C - H - « 

W H I C H P R O V E S T H A T C O N D ( F ; 1 ) A N D K ( F ' ( A ) ) A R E N O T I N G E N E R A L R E L A T E D . 

4 . N U M E R I C A L S T A B I L I T Y A N D W E L L - B E H A V I O R O F I T E R A T I O N S 

L E T U S S U P P O S E T H A T F ( X ; D ) = 0 I S S O L V E D B Y A N I T E R A T I O N C P . L E T { X ^ } B E A C O M P U T E D S E Q U E N C E O F T H E 

S U C C E S S I V E A P P R O X I M A T I O N S O F a B Y A N I T E R A T I O N C P . W E K N O W W E C A N A T B E S T A P P R O X I M A T E 5 , T H E S O L U T I O N O F 

F ( X ; D ) = 0 . I T M E A N S T H A T , I N G E N E R A L , W E C A N N O T E X P E C T X ^ T O B E C L O S E R T O a T H A N C | | 3 ? | | . T H U S , F O R 

L A R G E K , 

L ^ - A L L ^ | | S - A R | | + L L V S L F * I M + ^ D L S L I , 

K ^ I S A C O N S T A N T . K E E P I N G I N M I N D T H A T S ^ - A I S G I V E N B Y ( 3 . 4 ) A N D ( 3 . 5 ) W E G E T T H E F O L L O W I N G D E F I N I ­

T I O N S . 

D E F I N I T I O N 4 . 1 

( I ) A N I T E R A T I O N CP I S C A L L E D N U M E R I C A L L Y S T A B L E I F 

( 4 . 1 ) L I M | | ^ - O | | £ C O C J H I + K 2 | | F ; ( « ; D ) _ 1 F ^ ( O ; D ) | | | | D | | ) + 0 ( £ 2 ) . 

K 

( I I ) A N I T E R A T I O N CP I S C A L L E D W E L L - B E H A V E D I F T H E R E E X I S T { ^ X ^ } A N D { 6 D ^ } S U C H T H A T 

( 4 . 2 ) L I M 1 ^ ( 3 ^ + 6 ^ ; D + 6 D K ) | | = 0(Q2) 

K 

A N D 1 1 6 ^ 1 1 * K 3 C | | X K | | , | | 6 D K | | £ K 4 C | | D | | F O R L A R G E K 

W H E R E K , ^ C A N O N L Y D E P E N D O N N A N D M , I = 1 , . . . , 4 . ( S E E J A N K O W S K A ( 1 9 7 4 ) , K I E L B A S I N S K I ( 1 9 7 4 ) . ) 

• 
W E L L - B E H A V I O R S T A T E S T H A T A S L I G H T L Y P E R T U R B E D C O M P U T E D X ^ , K L A R G E , I S A N A L M O S T E X A C T S O L U T I O N 

O F A S L I G H T L Y P E R T U R B E D P R O B L E M ( S E E K A H A N ( 1 9 7 1 ) . 
2 

I T S H O U L D B E S T R E S S E D T H A T 0 ( £ ) I N ( 4 . 1 ) A N D ( 4 . 2 ) C A N B E D R O P P E D W H E N E V E R W E R E D E F I N E D 

K I = K I ^ N » M ) + ° ( C W E P R E F E R T H E F O R M O F A N D ( 4 - 2 ) A S I T : I S A S I M P L E G E N E R A L I Z A T I O N O F ( 3 . 4 ) 

A N D ( 3 . 5 ) . 
I N P R A C T I C E W E O F T E N W A N T T O F I N D A N A P P R O X I M A T I O N S U C H T H A T H X ^ - A H ^ E F O R A M O D E R A T E 
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-5 -2 
value of e, say e € [10 ,10 ]. This is possible if the problem is sufficiently we11-conditioned, 
with respect to the available numerical arithmetic, namely if cond(F;d)£ is of order e. 

Note that if cp is well-behaved then it is also numerically stable but in general not vice versa. 
However, for scalar problems, N = 1, these two concepts are equivalent which is proved in Lemma 4.1. 
Lemma 4.1 

If N = 1 then numerical stability of cp is equivalent to well-behavior of C D . • 

Proof 
It is enough to assume that CD is numerically stable and to prove it is well-behaved. Without loss 

of generality we can assume to use the second norm, ||-|| = ||'||2. Hence, from (4.1) it follows 

x k - <*- C Ck kjal + C Ck k2||F'(a)|| ||d||/|F'te)| + 0(C2> 

for large k, constants such that |CjJ * 1 and F1 (a) = F̂ (<y,d), F̂ (cv) = F̂ (a;d). We want to show that 

F(xk+6xk; d+6dk) = 0(£2) 

for suitable chosen 6x̂  and 6dk« From numerical stability it follows 

F(xk+6xk; d+6dk) = F,(a)(xk-of6xk) + F̂ (a)6dk + 0(||6dk|f + l̂ -orf-Ŝ IJ2) = 

- F'(c)(CCkk1|xk| + 6xk) + F̂ (a)5dk + CCkk2|^'(a)|| ||d|| + OCHedJj2 + l^-cr^xjf) 

where IcJ = |Ck| £ 1. 

Setting 6xk = -C k̂jx̂ .1 and 6dk = -C^k

2\ftW'u w h e r e u = F^T/\^'dM || we get 
2 

F(xk+6xk; d+6dk)= 0(£ ) which means that cp is well-behaved. • 
The next part of this section deals with numerical stability and well-behavior for stationary iter­

ative methods. Let (xk,...,xk_^) be approximations sufficiently close to the solution a, F(a) = 0. 
•k 

Suppose that the next approximation is given by a stationary iteration cp, namely, 

( 4' 3 ) Xk+1 = * < V F ) 

where cp(xk;F) = © < V - , x k - n ; ^ x
k»"' - , xk-n ; F ) ) 

and W = ̂ xk'' #' ,xk-n;F^ i s 8 e n e r a l i z e d information of F at xk,...,xk ̂  points. For instance 9t can be 
so called standard information given by values of F and its first derivatives, 

(4.4) <Jt(xk,...,xk_n;F) = {F ( l )(x k_ j): i = 0,1,...,s; j = 0,1,...,n} 

(for details see Wozniakowski (1975a)). 



N O T E T H A T T H E N O N N E G A T I V E I N T E G E R N I S T H E N U M B E R O F I T E R A T I O N P O I N T S A T W H I C H O N E R E U S E S T H E I N F O R M A ­

T I O N O F F . N E X T , S U P P O S E T H A T T H E R E E X I S T S A C O N S T A N T C = C ( F ) S U C H T H A T F O R A L L S U F F I C I E N T L Y C L O S E 

A P P R O X I M A T I O N S ( X ^ , . . . > X
K _ N ) T O a S U C H T H A T | ( X K - O | | ^ . . . ^ L ^ K - N " ^ ' T * I E N E X T S A T I S F I E S 

( 4 . 5 ) LLX^-ORLL S c NIL^.J-OLL^ 

N 

W H E R E P . . ^ 0, V = ^ P ̂  ^ 1. I F V B 1 £ H E N A S S U M E C < 1. I F (4.5) I S S H A R P T H E N T H E U N I Q U E P O S I T I V E 

Z E R O P , P ^ 1, O F I H E P O L Y N O M I A L T * 1 " ^ - ^ P ^ T N ^ I S C A L L E D T H E O R D E R O F CP ( F O R D E T A I L S S E E W O Z N I A K O W S K I 

(1974)). J = ° 

C O N D I T I O N S ( 4 . 3 ) A N D (4.5) D E S C R I B E T H E O R E T I C A L P R O P E R T I E S O F A S T A T I O N A R Y I T E R A T I O N C P . I N F L O A T ­

I N G P O I N T A R I T H M E T I C , I N S T E A D O F ( 4 . 3 ) , W E H A V E 

( 4 . 6 ) V ] = < P ( V F ) + ? K 

W H E R E 

(4.7) 5 K = F K C P O ^ F ) ) - C P ( X K ; F ) 

I S T H E C O M P U T E D E R R O R I N O N E I T E R A T I V E S T E P . T H E V A L U E O F ^ D E P E N D S O N T H E C O M P U T E D E R R O R O F T H E G E N ­

E R A L I Z E D I N F O R M A T I O N !JL A S W E L L O N T H E C O M P U T E D E R R O R O F A N A L G O R I T H M W H I C H I S U S E D T O P E R F O R M O N E I T E R A ­

T I V E S T E P . W E W A N T T O S H O W N E C E S S A R Y A N D S U F F I C I E N T C O N D I T I O N S O N { ^ K } T O G E T N U M E R I C A L S T A B I L I T Y A N D 

W E L L - B E H A V I O R . 

T H E O R E M 4.1 

L E T CP B E A S T A T I O N A R Y I T E R A T I V E M E T H O D D E F I N E D B Y ( 4 . 3 ) A N D (4.5). L E T X
N » X

N •J> , , ,> XO ^ E I * 1 * ^ 3 ! 

A P P R O X I M A T I O N S O F A S I M P L E Z E R O A O F A S U F F I C I E N T L Y S M O O T H F U N C T I O N F , F ( A ? ; D ) = 0 , F ( X ) = F ( X ; D ) . L E T 

V-1 N
N 

||XN-A|| ̂  ... ̂  IÎ Q-ALL ̂  F W H E R E C ( F ) T < 1 F O R V = 2J PJ ^ 1 A N D C ^ I S A C O N S T A N T F R O M (4.5). 

S U P P O S E T H A T ^ ® 

V-1 
IFJJI * |~O - C ( F ) T ) F O R A 1 1 K -

( I ) L E T V ^ 2. A S T A T I O N A R Y I T E R A T I O N CP I S N U M E R I C A L L Y S T A B L E I F F 

( 4 . 9 ) LIM ||?K|| £ G = CO^IHI + *2\^W>~'iV'i(otiU\\ IMII ) + 0 « 2 ) . 
K 

( I I ) A S T A T I O N A R Y I T E R A T I O N CO I S W E L L - B E H A V E D I F F F O R K ^ K Q T H E R E E X I S T { A X ^ } A N D { A D K } S U C H T H A T 

( 4 . 1 0 ) ? K = * K - 9 ( X K ; F ) - F ; ( X K ) - 1 F ( X K ) - F ; ( X K ) - 1 { F ; ( X K ) A X K + ^ \ ^ \ ] + 

W H E R E I K H * K 3 DLXJL, | | A D K | | * K , CIMII • 

( C O N S T A N T S K ^ C A N O N L Y D E P E N D O N N A N D M . ) 
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Proof 
(i) First we deal with numerical stability. Suppose that cp is numerically stable. This means that 

e = lim |k * 3. 
k * 

From (4.6), (4.3) and (4,5) it follows 

nm||sk||= rim INk+1-<p(vF)ll * 1 5 (ll*k+rall+ l^k+r^l} * 3 + c ( F ) p v-

k k k 

Since g = 0(£) and v ̂  2, then 
lS ||S || £ p + o(c2) 
k K • 

which completes this part of the proof. 
2 

Assume now that (4.9) holds. We want to prove that e ̂  3 + 0(£ ). First of all, suppose by induc­
tion that e k = ||xk-a|| ̂  [~ . This is valid for k = 0,1,...,n due to the assumption. Next, from (4.6), 
(4.5) and (4.8) it follows 

ek+1 * C ( F ) T V + lfekll * C(F)fV + f " C(F)fV - r Thus, e = lim e £ j~ and once more from (4.6) and (4.5) we get 
k k 

(4.11) e ̂  C(F)eV + p. 
v-1 

Since e ̂  |~ , then e ̂  p/(1 - C(F) ["" ) = 0(0- From this and the fact that v ̂  2, (4.11) implies 

e * p + 0(C2) 
which completes the proof of numerical stability. 

(ii) We now deal with wel 1 -behavior. Let cp be well-behaved. It means that for k ̂  k̂  there exist 
(6xk) and {6<*k} such that 

0(C2) - F(x k + 1 +6x k + 1; d + 6d k + 1) = F( Vd) + F ^ d ) (z^-^+Bx^) + F' (x^d) 6dfc+1 + 0( -xjf) 40(C
2), 

for 
I K + 1 n £k 3 cHxk+1n, ii6dkn u 4 C||d||. 

Since ? k = x k + 1 - cp(xk;F) and ||xk+1 - x̂ H = 0(C), we get 

(4.12) 116x̂ 11 sk 3 C||xkl|+ 0(C2), 

(4.73) ? k = ̂  - w(xk;F) - - F ^ ) " ] ( F ^ ) 6xk+1 + F' (x^ 8dk+1 } + 0(C
2) . 

Due to (4.12) we can split Sx
k+-j a s follows 

5 xk +i • 6 ° ) x
k + 1

 + 5 ( 2 > x
k + 1 

ii 



where l l ^ ^ l l * k

3 C l U ««1 | | s t Z \ + 1 II = 0 ( C

Z ) . 

Set 
A x k " 8 ( 1 > x k + i a n d A d k = 5 d k+r 

Then (4.10) follows from (4.13) which completes this part of the proof. 

Assume now that (4.10) holds. For k ^ kg, (4.6) becomes 

which implies that 
e k + 1 = 0(e k) + 0(C) = 0(C). 

We want to find (6x k) and [6dk) of order £ such that (4.2) holds. From (4.14), (4.6) and (4.10) we get 

(4.15) F ( x k + 1 + 6 x k + 1 ; d + 6 d k + 1 ) = F(xk) + F ^ ) -^+6^+1 > + F

d

( x k ) 5 d

k + 1 + 

+ 0( C

2 ) = F ' ( x k ) ( 6 x k + r A x k ) + F^(x k)(6d k + 1-Ad k) + 0 ( C

2 ) . 

Since ||Axk|| £ k 3 dk kll s * 3 Cll*k+1 II + 0(C 2), we can split Ax^ Axfc = A 0 ) x k + A ( 2 ) x k > | |A ( 1 )x k |^k 3C||x k + 11|, 

l|A ( 2 )x kl| = 0 ( C

2 ) . 

Finally, setting 
6 \ + i = A \ a n d 8 d k + i = A d

d 

(4.15) yields (4.2) which defines well-behavior of cp and which completes the proof. • 

Theorem 4.1 states an assumption on the vector g which implies numerical stability and well-be­

havior. Assumption (4.8) means that ĝ  n a s t o ^ e small enough. It is a natural assumption as many 

iterations are well-defined and have property (4.5) in a small neighborhood of the solution. In case 

(i) of Theorem 4.1 we assume v ^ 2. If 1 < v < 2 then i t is straightforward to verify that the same 

results hold with 0(£V) in place of 0(£^). However, if v is close enough to unity one cannot neglect a 

term 0(£V) in the presence of 0(£) for common used values of £. Thus, we prefer to assume v ^ 2 which 

seems to be valid for all iterations of practical interest with order higher than O N E I 

An interesting question is numerical stability of iterations with linear convergence, v = 1 and 

C(F) < 1. It is easy to verify that 

(4.16) lim II?. || ^ (1 - C(F ) ) P 
k K 

assures numerical stability. Furthermore (4.16) seems to be necessary for numerical stability (see 

Wozniakowski (1975c), where the method of successive approximations for large linear systems x = Bx+g is 

discussed. See also a proof of the numerical stability of Chebyshev method for large linear systems 

which is an example of a nonstationary iteration with linear convergence, Wozniakowski (1975b).). 
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N O T E T H A T F O R W E L L - B E H A V I O R W E N E E D N O A S S U M P T I O N O N V . H O W E V E R , I F v ^ 2 T H E N ( 4 . 1 0 ) C A N B E S I I 

P L I F I E D . N O T E T H A T 

\ " < P < V * > " F X ( V " L F ( X K ) = A " * < V F ) + 0 ( £ 2 ) 8 3 ° ( C V + C 2 ) = O ( C 2 ) 

F O R L A R G E K . T H U S , I T I S E A S Y T O V E R I F Y T H E F O L L O W I N G C O R O L L A R Y . 

C O R O L L A R Y 4 . 2 

L E T v ^ 2. A S T A T I O N A R Y I T E R A T I O N cp I S W E L L - B E H A V E D I F F F O R K ^ K ^ T H E R E E X I S T ( A X ^ } A N D { A D ^ } 

S U C H T H A T . 2 

? K = A X K + W F ; ( X K ) A D K + O ( C ) 

W H E R E H A X J I ^ K 3 C I N K I U 1 1 ^ 11 * \ C I M 1 1 

A N D K - K ^ N . M ) F O R I - 3 , 4 . 

5. N E W T O N I T E R A T I O N 

I N T H I S S E C T I O N W E P R O V E W E L L - B E H A V I O R O F N E W T O N I T E R A T I O N U N D E R N A T U R A L A S S U M P T I O N S O N C O M P U T E D 

V A L U E S O F F . W E R E C A L L T H A T T H E N E W T O N M E T H O D C O N S T R U C T S T H E N E X T A P P R O X I M A T I O N A S 

( 5 . 1 ) F ' ( X K ) ( X K - X ^ + 1 ) = F ( X K ) 

A N D I F X ^ I S C L O S E E N O U G H T O A S I M P L E Z E R O a O F A " S M O O T H " F U N C T I O N F T H E N 

L C R A | | - 0 ( | | V A | F ) . 

A N A L G O R I T H M O F O N E N E W T O N S T E P I N F L A R I T H M E T I C I S G I V E N B Y 

( I ) C O M P U T E F ( X K ) , F ' ( X K ) , 

( I I ) S O L V E A L I N E A R S Y S T E M 

(5.2) F ' ( * K ) Z K = F ( X K ) T H E N 

( 5 - 3 ) = V 

L E T U S A S S U M E A W E L L - B E H A V E D A L G O R I T H M F O R T H E C O M P U T A T I O N O F F , I . E . , 

( 5 . 4 ) F L ( F ( X K ; D ) ) = ( I + A F K ) F ( X K + A X K ; D + A D K ) = F ( X K ) + 6F R 

W H E R E ||AFJ| * £ K P , ||AxJ| ^ K X | ^ K | | , | | A D K | | ^ K D | | D | | ( S E E ( 2 . 4 ) ) , 

A N D 

(5.5) 6F K = A F K F ( X K ) + F ' ^ ) / ^ + W *\ + 0 ( £
2 ) . 

1 3 



Further, let us assume that 

(5.6) fKF'^d)) = F'(xk) + 6F^, 6F^ - 0 ( C ) . 

This means that we do not need a well-behaved algorithm for the evaluation of F'tx^). The constant which 
appears at SF̂  in the "0" notation can be arbitrary. Finally, let us assume that a computed solution of 
the linear system (5.2) satisfies 

(5.7) (F'(xk) + 6F^ + Ek)zk = F^) + 6F K 

where E k = 0 ( C ) . 

Condition (5.7) means that z k is the exact solution of a perturbed system, however we only claim that E k 

is of order C and we do not specify what constant appears in the "0" notation. If one uses Gaussian 
elimination with pivoting or the Householder method then HEJJI ̂  C K ll*"1 O^ll an(* K depends on the size N. 

A computed approximation x̂ +1 from (5.3) satisfies 

(5.8) - (1+ 6 V < V V 

where 6I K is a diagonal matrix and \\b~L^\\ ^ C^Q9 Ĉ  depends on a considered norm (if ||-|| = |H|p, 
1 £ p ̂  +« then C1 = 1). 

Theorem 5.1 
If (5.4), (5.6) and (5.7) hold then Newton iteration is well-behaved. Specifically it produces a 

sequence {x^} such that 

(5.9) lim" |^(xk+1+AxK-6Ikxk; d+AdR) || = 0(Q2) 
k 

where Axfc, 6I K and Adfc are defined by (5.4) and (5.8). • 

Proof 
Let 

F'(xk) + 6F^ + E k = F,(xk)(I+Hk) where 

^ = F,(xk)"1{6F^ + Ek} = 0( C ) 
due to (5.6) and (5.7). 

Thus for small £, I + is invertible and 

a+V" 1 = I - \ + 0 ( C 2 ) . 

From (5.8) and (5.7) the next approximation x k + 1 is given by 
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V H - < I + 6V<*k - < I +V~'F'(xk>~,F(xk> + 5 V> = \ - F'(V " ' F ( V + 5k 
where 
(5.10) £ k = 6Ik(xk - F'(xk)'1F(xk)) - F'(xk)"16Fk + ̂ F' (3̂ ) "*F (x^ + 0(C2). 

We want to use Theorem 4.1. Condition (5.10) states that ̂ k
 = 0(£) which means that for small £ 

assumption (4.8) holds. Hence it is enough to show that £ k has the form of (4.10), e.g., 

(5.11) ? k - - F'(xk)-1{F'(xk)Axk + F'^A^} + 0(£2) 

for suitable A*k and Adk» 
For a sufficiently good initial approximation we get 

ek+i = 0 ( e k ) + I M = 0 ( e k ) + 0(c> - °<o> 

where as always e k = ||x̂-Qf||« 
From this and (5.5), condition (5.10) turns out 

(5.12) ?FC = 8 1 ^ - F'(xk)-16Fk + 0(C2) = - F' (x^ _ 1 {F1 (x^ - 6 1 ^ ] + tyx^*^} + 

which is equivalent to (5.11) with 

S dk = A dk ' IKII * C Kd Ml-

Due to Theorem 4.1 this means that the Newton method is well-behaved. To prove (5.9) it is enough to 
observe that 

F(xk+i + ^k " 6 I k V d + A dk ) - F ( V + ^ V ^ + i - xk + ^k - 6Ikxk> +  

+ Fd ( xk ) A d
k
 + °^ 2 ) = F' ( xk ) ( ?k + A xk • 6 W + Fd ( xk ) A dk + 0 ( £ 2 ) = 0 ( c 2 ) 

which completes the proof. • 
A crucial point of the well-behavior of Newton iteration is assumption (5.4), i.e., how accurate 

the values of F can be computed. The accuracy of the evaluation of F1 and the solution of the linear 
system (5.2) is not so important as long as (5.6) and (5.7) hold. To illustrate this point we assume 
that one wants to approximate a with high relative precision for an ill-conditioned problem, say, 
cond 

- - - - - r r — « 

( F ; d ) i^'Cy * F r o m ( 5 , 9 ) u f o l l o w s 

H*k+r»ll , lUdJi 2 

_M * C ( Kx + Cl ) + cond(F;d)-pj^-+0(r). 

If ||Adk|| <. Kd̂
2||d|| then x k + 1 is almost the best possible approximation of a in fl arithmetic. The last 
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assumption holds if we use double precision for the function evaluations. Thus, to compute a with high 
relative precision for an ill-conditioned problem by Newton iteration it is sufficient to use double 
precision for the evaluation of F and single precision for the evaluation of F' and for the solution of 
the linear system (5.2). 

6. SECANT ITERATION IN THE SCALAR CASE 

In this section we deal with two variants of secant iteration in the scalar case. Let and ŷ  
be two different sufficiently close approximations of a simple zero a of a "smooth" scalar function F, 
i.e., F(a;d) = 0 and N = 1. The next approximation is given by 

V Y K 
V l = \ • F(Xl)-F(yi) F ( V 

Then 
xk+i " « - o ( ( V « > < V A ) ) ' 

We shall assume that ŷ  is equal to + y^F(x^) where {YK3 ^s a bounded sequence or ŷ  is equal to 
x̂  .J. If F( v

k) requires a new function evaluation then it is a two-point secant iteration. For in­
stance, if = 1 and ŷ  = x^ + F ( x

k ^ this variant of secant iteration is often called Steffensen itera­
tion. If ŷ  = x̂  ̂ , then it is secant iteration with memory (see Traub (1964)). 

In fl arithmetic due to unavoidable rounding errors it could happen that the computed x
k+-j is a 

worse apprxoimation (or even not well-defined) than x̂  and ŷ . Therefore we slightly modify (6.1) as 
follows. 

Algorithm 
(i) Let XQ and ŷ  be sufficient close approximations of a, k = -1 ; 
(ii) CON: k := k+1 ; 

(6.2) if |fl(F(zk))|< |fl(F(xk))| then x ^ = zfc, y k + 1 = xfc+1 + Y K + 1 F ( X
K + 1 ) or go to CON; 

(6.3) if |fl(F(zk)| :> |fl(F(xk))| and yk = x ^ then x k + ] = x k and y k + 1 = x k + 1 + Y k + 1F(x k + 1), go to CON; 

(6.4) if |fl(F(zk))| ̂  |fl(F(xk))| and Y k
 55 \ + Y ^ O ^ ) then go to END; 

END: x k +j = for all j. • 

This means that if |fl(F(zk))| ̂  |fl(F(xk))| and v
k
 = x

k
 + Y k

F( x
k) w e terminate the iteration and 

formally set x̂ .. = x k # If the latter inequality holds and yk = x ^ then we locally switch to a two-
point secant iteration setting y k + 1

= x
k + Y k + 1

F(\) a n d x
k + 1

 = \- N o t e t h a t i n a n v c a s e t h e computed 
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S E Q U E N C E { | F L ( F ( X ^ ) ) | } I S N O N - I N C R E A S I N G . 

L E T U S A S S U M E A W E L L - B E H A V E D A L G O R I T H M F O R T H E C O M P U T A T I O N O F F , I . E . , 

(6.5) F L ( F ( X ; D ) ) = ( 1 + A F ) F ( X + A X ; D + A D ) = F ( X ) + 6 F X 

W H E R E |AF| ^ G * F , | A X | ^ C ^ X | X | , | | A D | | ^ C^IMI A N D 6 F X I S G I V E N B Y (5.5). I F Z R I S W E L L - D E F I N E D T H E N 

( X - Y K ) ( F ( X W 6 F X ) 

(6.6) V ^ ' V E ^ V V ^ ( 1 + V > 

W H E R E | \ | * C A N D | E J £ 3 £ + 0 ( C 2 ) . 

T H E O R E M 6.1 

I F T H E R E E X I S T S A P O S I T I V E C O N S T A N T Q I N D E P E N D E N T O F F S U C H T H A T 

F ( X K ) 

F ( X K ) - F ( Y K ) * Q 

F O R A L L K U N D E R C O N S I D E R A T I O N T H E N S E C A N T I T E R A T I O N I S W E L L - B E H A V E D . • 

P R O O F 

6 F X K - 6 F Y K Q F E 

L E T Q K = F ( X K ) - F ( Y K ) A N D L E T Q K "* " 1+ Q ^ " ' S U P P O S E F O R N O W T H A T K K L * J R S I N C 6 8 F X K * ^ V " 0 * ^ 

T H E N Y K " X
K

 = 0 ( 0 - D U E T O (6.7) A N D (5.5) W E G E T 

| F ( X K ) | £ 2 Q | 6 F X K - 6 F Y K | * 4 ( ^ 1 F ^ ) | + KJXJ I F ^ I + K D | | D | | . ||F' ( X F C ) | | ) + 0 (£*) , 
A N D 

( 6 . 8 ) | X K - < * | S 4 Q C ( K X | A | + K D | | D | | | | F ' ( A ) _ 1 F ^ ( O R ) | | ) + 0 ( C * ) . 

S I N C E | F L ( F ( X K + J ) ) | £ | F L ( F ( X K ) ) | F O R A L L J 2 0, T H E N | F ( X F C + J ) | * | F ( X K ) | + | 6FXJ + | FIFS^ | W H I C H 

Y I E L D S 

LX

K+J-«L ^ 2 C ( 2 Q + 1 ) ( K X | A | +KD||D|| ||F' («) "V' (A) ||) + 0 ( G 2 ) . 

T H I S M E A N S N U M E R I C A L S T A B I L I T Y A N D D U E T O L E M M A 4.1 A L S O W E L L - B E H A V I O R O F S E C A N T I T E R A T I O N . 

T H U S , W I T H O U T L O S S O F G E N E R A L I T Y W E C A N A S S U M E T H A T | Q K | <. j F O R A L L K . T H I S I M P L I E S T H A T 

| Q K | ^ 1. N O W Z K I S W E L L - D E F I N E D A N D W E C A N R E W R I T E (6.6) A S F O L L O W S . 

( X K ' Y K ) ( F ( X K ) + 6 F X K ) * 
(6.9) Z K . ( 1 + V ( X K - K

F ( X K ) . F ( V K ) ( ^ K ) ( H C K ) ) - X ^ + G K 

W H E R E 

lk - V - F ' ( X K ) - 1 { 6 F X K ( L + K K ) + F ( ^ ^ ( ) < 5 F V S F \ > < 1 + ^ + 0 ( C ( V « ) ) 
F O R 
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1 + \ " ^ V ^ W 1 0 ^ 0 ^ ^ 

From (5.5), (6.6) and (6.7) we have 

(6.10) |5J * £{(1 + 2(2Q+1)KX)M + 2(2Q+1)Kd||F'(cv)"1F̂ (a)||||d|| ] + 0(C|yk-or| +CLVAL+ ^) • 

Suppose for a moment that (6.4) holds, i.e., |fl(Fzk)| 2> |fl(F(xk)| and y^-a = O^-a). Then, it is 

easy to verify that 

(6.11) lî -al ̂  CC(l-̂ 4(Q+1)Kx) |cv| + 4((̂ -l)Kd||F,<or)"1F̂ (a)|| ||d|| }+0(£2). 

Since x̂ +j ~ x
k> then (6.11) means well-behavior of secant iteration. Note that if (6.3) holds then we 

perform one iterative step using and x
k"tyk+]F(x

k) a s t w o approximations of a and at next iterative 
step we can pass to (6.4). Thus, without loss of generality, let |fl(F(zk))| < |fl(F(xk))| for all k. 
This implies that 

V H = *k+1 + V 

Since ? k = 0(£) then (4.8) holds for small £ and it is straightforward to verify that (6.10) is equiva­
lent to (4.9). Then from Theorem 4.1 and next from Lemma 4.1 follows well-behavior of secant iteration 

which completes the proof. • 
We discuss assumption (6.7) for different values of ŷ . 

Case I. Let ŷ  = x̂  + F(x^). This is a two-point secant method. Note that (6.7) is now equal to 

F(xk)-F<:yk) ~ ykF'(o>) ' 

Since the lefthand side requires a bound by a constant Q which is independent of F then y^ has to ap­
proximate F'(of)"1. It means that in Steffensen iteration with Y k - 1 > (6.7) does not hold in general. 
This can cause instability. To prove instability of Steffensen iteration we consider the problem 
cF(x;d) = 0 where c is a small positive constant and <y = 1. The condition number of cF with respect to 
the data vector d does not depend on c although cF' (oi) tends to zero as c tends to zero. In fl arith­

metic 
yk = FK^ + cF(xk)) = x k 

whenever x k ~ 1 and |cF(xk)| s Thus, the next Steffensen step is not well-defined and we can have 
only an approximation x k such that ̂ -a — Jc F ' ^ A ^ 1 C - Hence, even for very well-conditioned problems 
Steffensen iteration can produce extremely bad approximations of a which means instability of this 
iteration. Numerical tests on a PDP-10 computer confirm this. However, if y^ s« F'(a) 1 then (6.7) 
holds and this variant of secant iteration is well-behaved. Moreover, if lim y = - Ff(o?) 1 then the 
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Traub (1964), pp. 185-187.) 

S S S S ^ ' L e t y k = \ - r is the secant iteration with memory. Now (6.7) becomes 

k 
F(x f c)-F(yk) m ° « x

k . 2 - « ) ) + 0(C/(x. -„)) . 

Note that at least for some initial steps |x -a\ » r and 7̂  K 
P |x k _ 7 or| » C and (6.7) holds. If not we can modify y a s 

follows. k 

(6.12) y k 

V l if l F ( x

k ) / ( F ( x k ) - F ( x k - 1 ) ) | ^ Q 

^Xk + V ( x k } otherwise 

where y k ought to approximate F1(a) ^ and Q ̂  2, say. 

Summarizing, modified Steffensen iteration and secant iteration with memory defined by (6.12) are 
well-behaved. 

Numerical stability of the multivariate secant method is considered by Jankowska (1974). This 

method is stable under some assumptions on a suitable distance and position of successive approximations. 
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