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ABSTRACT

The concepts of the condition number, numerical stability and well-behavior for solving systems of
nonlinear equations F(x) = 0 are introduced. Necessary and sufficient conditions for mmmerical stability
and well-behavier of a stationary iteration are given. We prove numerical stability and well-behavior
of the Newton iteration for solving systems of equations and of some variants of secant iteration for
solving a single equation under a natural assumption on the computed evaluation of F. Furthermore we
show that the Steffensen iteration is unstable and show how to modify it to have well-behavior and hence

stability.

1. INTRODUCTTON

An algorithm for the solution of nonlinear equations and systems of equations should satisfy a num-
ber of criteria, Among these criteria are that it should enjoy good convergence properties, be effici-
ent, and be numerically stable, Convergence continues to be extensively studied (see Ortega and
Rheinboldt (1970)), Analytic computational complexity, which deals with the theory of efficient itera-
tion, is under current investigation (see Traub (19733, (1974) for recent surveys),

In this paper we study numerical stability for solving nonlinear equations. We wish to solve
F(x) = 0. Assume that the function F is sufficiently smooth and depends parametrically on a data vector
d, i.e., F(x} = F(x;d) (Section 2). Then we define the condition number cond(l;d) of F with respect to
d which measures the relative sensitivity of the solution with respect to a small relative perturbation
of the data vector (Section 3). Section 4 deals with numerical stability and well-behavior of iterative
methods for the solution F(x;d)} = 0. An iteration is said to be numerically stable if it produces a
sequence {xk] of the approximations of the solution g such that for large k the relative error
|kk-d]V{bH is of order [(! + cond(F:d)}) where € is the relative computer precision. An iteration is
said to be well-behaved if a slightly perturbed X is an almost exact solution of a slightly perturbed
problem, i,e., F(xk + éxk;d + 5dk) = 0(52) where (hkuVIMkll and ”&dkiVJH||are of order [. Note that
well-behavior implies numerical stability. Next we prove necessary and sufficient conditions for a
stationary fteration to be numerically stable and well-behaved,

In Section 5 we discuss numerical properties of Newton iteration for the multivariate case and
secant iteration for the scalar casa. We prove that Newton iteration is well-behaved under a natural
assumption on the computed evaluation of F. Secant iteration is also well-behaved whenever an addition-
al assumption holds. This assumption does not hold for the Steffensen iteration which implies that
Steffensen iteration is numerically unstable, However, {t is shown how to modify Steffensen iteration

to get well-behavior,



2. DATA VECTOR
We consider the numerical solution of the equation
(2.1} F@x) =0,

where F is in general & nonlinear function,

N N
F: Dx-'q: ,DXC(I:,
N . :
where Q} is the N dimensional complex space.

We want to define a condition number of the function F. The condition number should measure the
sensitivity of the solution (output) with respect to the change of the data {input). The first question
which arises is what we mean by data of a nonlinear fumction. For a particular F a data vector can be
given implicitly. For instance if N =1 and

h

Foo = ) et
1

i=1
it is natural to assume that the data are all coefficients a, of the polynomial, Next if F(x) = Axtb
for a NxN matrix A and N dimensional vector b we usually mean by data all entries of A and b, while if
the matrix A is sparse we can mean by data only nonzero entries of A.

In general, we shall assume that the function F from (2.1) parametrically depends on a vector "d',

i,e.,
(2.2) F(x) = F(x;d) where d € Dd c (LF,

This vector "d" will be called a data vector. We shall treat d as an element of a normed vector space
and, in general, one should pay much attention how to choose & norm in that space to fit the problem

{see Section 3). For certain F it may not be obvious how d should be chosen, An example is given by

2.3) Fx) =x° - e, N=1.

We present a general idea how to define a data vector. As it was mentionmed at the outset we want
to solve (2.1) by iteration. Let x be a sufficiently close approximation of the golution e, F(g) = 0.
Suppose we use the value of F(x) to get the next approximation. In numerical practice instead of the
exact value F{x;d) we only have the computed value of F{x;d) in t digic floating point binary arithmetic
(see Wilkinson (1963)). Let us denote that computed value by £1(F{x;d)). At best we can expect that a
slightly perturbed computed value is the exact one of a slightly perturbed function at slightly per-

turbed inputs (see Kahan (1971)), i.e.,



(2.4) FL(r(x;d)) = (I + AF) F(x + Ax;d + pd)

where 1 denotes the unit NxN matrix,
[l5F]] = € K., AF is a NxN matrix,
sl < € &bl
lleall = ¢ &l

for constants KF’ Kx and Kd which can only depend on the sizes N,m, and [ = 27% denotes the relative
ot . . mo_ .
computer precision. Here |h||is a choosing norm 1n([ which should fit the problem.
The condition (2.4) can be treated as an equation on a data vector. It means thatr for a given
algorithm for the evaluation of F we want to define a data vector such that the condition (2.4) holds.

Let us illustrate this point by an example.

Example 2.1

Let F(x) = x> - ¥, x ¢ D .

We assume that the result of a computer subroutine for the evaluation e> satisfies
R
fl1(e™) = (T+e])ex bx
where [Ax| <€ g {x| and !s1| = CC for a constant C which does not depend om x € Dx. Then

(2.5 FLE) = (Hey) & (ey) - (e e™) = (4n) (4 )oeran? - 5%,

where

(1+e)), |m{sbg+M6L
1

1+n1 = (l+e3)

T, = (1+32)[(1+e1)(1+ax/x)2w' , rmb\ = 2(CH1)C + o(gz).

The factor 1+ﬂ] is a perturbation of the computed value and Ax is a perturbation of x. The factor ]+ﬂ2

may be interpreted as a perturbation of a data vector, Let us define

(2.6) F(x;d) = d 2 - e*, d¢ ([, m=1,

Hence, our problem is to solve F(x;7) = 0, From (2.5) and (2.6) it follows

f1(F(x;1)) = (MHAFIF(x+Ax; 1+Ad)
where

AF = Ty, |aF] =2-.¢ + O(GZ),
td =T, [ad] = 2¢c+1)C + o(gz).
Hence (2.4) holds.

The definition of a data vector does not need to be unique. For instance, from (2.5) we can



interpret the computed value as

_ 2 1 xtax
f1{F(x)) = T;ﬁ;((X+Ax) - Tem. @ Y.
2
Setting
E(x;d) = x2 - de®
we get

(2.7) FL(F(x:1)) = (1+8F)F (xbdx; T+0d)

where now F(x;1) = F(x;1) = F(x) and

. 147 -
WeF = s |aF] s 2000 + 0ich),
1 2
]+Aa=mlz-—; |AH' 52(C+])C+O(C )-

Hence (2.4) also holds, [ ]

The lack of the uniqueness of a data vector causes no problems. In the next section we shall de-
fine the condition number of F with respect to the data vector. As the condition number measures the
sensitivity of the solution when the data vector slightly changes it is reasonable to seek a data vec-

tor which minimizes the condition number and for which we can find an algorithm such that (2.4) holds.
3, CONDITION NUMBER
We want to solve the equation

(3,1) F(x;d) =0
where F is now assumed that
F: D D, — G:N

x"d
and Dxde is an open subset of G:N X (Lm.

Let d = rd(d) denote t digit representation of d in floating point arithmetic, fl. Then for all

components of d hold Ei = di(1+ni) where |ﬂi| =f,i=1,,,.,n, and

.2 (-2l = ¢ lull

Here [ = 2-t is the relative computer precision and C only depends onr the size m and the given norm.

If the norm ]|-]Pis used, 1 Sp S +©, then C = 1,

It should be stressed the necessity of choosing 2 morm of d which fits the problem. For instance,
in many cases we can set Dy = {y: |l-d|| = T} where [ is small enough (say, [ = 0(£)). Then if all
components of d are nonzero mumbers we can define

||5” = ./z -\(ilgiiz where vy, = H/ldilz for any H > 0.

i=1



Now (3.2) holdswith ¢ = 1 and moreover, this norm exposes the inaccuracy in all components of d (see
Stewart (1973), p. 186).

In general we shall assume that the considered normm of d fits the problem. Note that if [ is
small enough, then d € D, Usually d # d which means that instead of the equation (3.1) we can at best

approximate the solution of a perturbed equation
(3.3) F(x;d) = 0,

Note that this unavoidable change of the dat& vector does not depend on a method which uses d and solves
(3.1).

Assume (3,1) has a simple root o and let F be a sufficiently smooth function of x and d. (In fact,
it is sufficient for (3.4) to assume that F has a Lipschitz first derivative in a neighborhood of (e, 9)),
If ¢ is sufficiently large, then it is straightforward to verify that (3.3) has a unique, simple solu-

tion o in a neighborhood of « and
. , -1, ~ 2
B.4) &F-o=- F (a;d) Filaid)(d-d) + 0(57),

where F; and Fé denote the derivatives with respect to x and d. The constant which appears in the "Q"

notation can depend on ¥, o and d. For o # 0, from (3,2) and (3.4) it follows

(3.5) l%ﬁﬂ < ¢ eond(F;d) + 0(;2)

where

(3.6) cond(F3d) = [ (es)™'F] (o) | H

is called the condition number of F with respect to the data vector d.

Note that (3.5) is, in general, sharp. This means that an unavoidable change of the solution

mainly depends on two factors:

-1 -6
(i) ¢ which is the relative computer precision; for modern computers; £ € [10 6, 10 7]

for most machines

(ii) cond(F;d) which measures the relative sensitivity of the solution with respect to small

relative perturbations of the data vector.

Hence, we can at best compute an approximation of o with the relative error of order { + cond(F;d), 1If
the problem is ill-conditioned, i.e. cond(F;d) >> 1, it is impossible to compute a good approximation of
@ no mdtter how sophisticated a method is used. If the problem is extremely ill-conditioned,

1
cond(F;d) =z E’ then in general we do not compute any reasonable approximation of n. For such & case



{which can be called numerically singular) it seems to be necessdary to increase the relative precision

to g] = gk for k such that cc.vﬂd(l’;d)g.| << 1. (See a similar approach in Wilkinson (1963).}

Let us illustrate the concept of the condition number by a few examples,

Example 3.1. Solution of a Linear System
Let
Faxid) = Ax + b, A=[a,...al, a,beCbio,
T T.T
where the data vector d = [81""’8N] E(]:m, m= Nz. For the sake of simplicity we do not include b as
a part of the data vector. Thus,

Fo(x;d) = A, Fi(x;d) = [E30 PP

where x = [x.l,...,xN]T and I is the unit NXN matrix. The condition number cond(F;d} is now equal to

R ol Kk,
cond (F;d) = 4 '”anz 2 2 = [ ]“2 ”A”g_ .

Hence for a linear system cond(F;d) is the usual condition mumber of the matrix A, K(A) = ||£’k-]”2”A||2 [ ]

Example 3.2, Root of a Scalar Polynomial

n
Let
F(x;d) = Z dixi, d = [do,...,dn]T ¢ (™, m=ntl.
1=0

Then, (3.4) becomes

~

n

-1 i 2
a-u=m)-z Adia + 0(()
i=0

where Adi is the ith component of Ad = d - d, ||Ad|| < C¢ “d” , (see Wilkinson (1963) pp. 38-41). The

condition number is equal to /‘n—
cond(®5d) = o 3 lal®* [Rll/IF (@)

i=0

it should be stressed that one can normalized the considered problems in Examples 3.1 and 3.2 by choos-

ing a suitable norm.

Example 3,3, Solution of & Nonlinear System
Suppose we solve F(x) = 0 by Newton jteration. Let X be a sufficiently close approximation of a.

The next point %y 18 given by

(3.7) F‘(x.k)zk = - F(xk),
g1 - B e



It might seem that the numerical accuracy of Xt depends mainly on the condition number
k(F' () = [F (]| |F‘(a)_1” » Which is crucial for the relative accuracy of the solution of linear
equations. (Note that for N = 1, k(F'(¢})) = 1 which might imply that all scalar nonlinear preblems are
perfectly well-conditioned.) We shall show that the numerical accuracy for nonlinear problems depends
on the condition number cond(F;d) which is, in general, not related to k(F'{(a)). An intuitive reason
that R(F' (@)} does not reflect on the numerical accuracy for nonlinear problems is that the righthand
side of (3.7) tends (at least in theory) to zero and we can exactly solve a homogeneous system no mat-
ter how ill-conditioned it is.

To illustrate this point we consider an idealized case of (3,7). Namely let F(xk) and F'(xk) be
error free and the only one rounding-error source is the solution of the linear system (3.7). We can

assume that the computed z) is the exact solution of a slightly perturbed problem, i.e.,

(B3.8) (F'(x) +Epz = = Feg), B | < Soy | B g |
for a constant C1 = C1(N).
Assume that q = GCIR(F'(a))/(1—C1CR(F'(u)) < 1. Then for the "computed" L. holds

2
= =
€] Czek + qe, (Czek + q)ek

where e = |&k-au and c, = CZ(F)' Thus if ey < (l-q)/C2 then the "computed" sequence tends to &, al-

though for large k the convergence is linear, e e qe, and it depends on k(F'(a)). However, if for

k+1

fixed F, the relative precision { tends to zero the condition number k(F'(e)) gets less important.
A real case when F(xk) and F'(xk) are not error free is considered in Section 5.
We wish to finish this example by showing a problem for which k(F'(a)) is extremely large but
cond (F;d) is very moderate,

Let N=2, x = [x],xz]T and

_ 2 2 T
F(x) = [x] T Ky X + sz - C]

where a constant C > 0. The solution g = IEC [l,l]T. We need to define a data vector for F, For

x = rd(x) we get

X - x,
f1(F(x)) = (1 - AF) 2 2
(1+a])(x]+Cx2) -C

t t

where |larlj s 2:27%, Je | < x27, K a3,

Setting
2 2 T
Fd) =[x = x,, d(xy + 0x5) - ¢, d e, m=1,

our problem is to solve F(x;1) = 0,



Since F‘(a'1)_1 P lal) = 1
x % a % 2 @

we conclude

[
cond(F;1) = 5 vC=>0,
which means that the problem is extremely well-conditioned. But

lim k(F'{a)) = 4=
c0
oy C=

which proves that cond(F;1) and k(F'(a))} are not in general related.
4. NUMERICAL STABILITY AND WELL-BEHAVIOR OF ITERATIONS

Let us suppose that F(x;d} = 0 is solved by an iteration ¢, Let {xk} be a computed sequence of the
successive approximations of ¢ by an iteration ¢. We know we can at best approximate &, the solution of

F(x;a) = 0, 1t means that, in general, we cannot expect X to be closer te & than QIH

. Thus, for

large k,

b el = H-all + [be -3l = [-ell + & il

k] is a constant., Keeping in mind that &k-a is given by (3.4) and (3.5) we get the following defini-

tions.

Definition 4,1

(i) An iteration p is called numerically stable if

1

@y T l-all < oy lell + ey I Ry || k) + occh.
k

(ii) An iteration ¢ is called well-behaved if there exist {5xk] and {6dk'} such that
4.2) 1im |Fex +sx 5 a+sd ) || = o(¢H
. . e k

and flox 1| < kgl el < ,¢ ol or large k

where ki can only depend on N and m, i = 1,...,4. (See Jankowska (1974), Xielbasimski (1974).)
|

Well-behavior states that a slightly perturbed computed ¥ k large, is an almost exact solution
of a slightly perturbed problem (see Kahan (1971).

It should be stressed that O(QZ) in (4.1) and (4.2) can be dropped whenever we redefined
ki = ki(N,m) + O(Cz). We prefer the form of (4.1) and (4,2) as it is a simple generalization of (3.4)
and (3.5}.

In practice we often want to find an approximation x such that |hk-aH =€ |hk” for a moderate

8



value of ¢, say € € [10_5, ]0-2}. This is possible if the problem is sufficiently well-conditioned,

with respect to the available numerical arithmetic, namely if cond(F;d){ is of order e.
Note that if ¢ is well-behaved then it is also numerically stable but in general not vice versa.

However, for scalar problems, N = 1, these two concepts are equivalent which is proved in Lemma 4,1,

Lemma 4.1

If N =1 then numerical stability of o is equivalent to well-behavior of [ [

Proof

It is enough to assume that ¢ i3 numerically stable and to prove it is well-behaved. Without loss

of generality we can assume to use the second norm, ||| = ||| Hence, from (4.1) it follows

-
' 2
Xe ~ &% g Ck k.‘IGJ +C Ck kz”Fé(u')” ||d“/IF (O')I +0(C)
for large k, constants G, such that ICkl % 1 and F'(a) = F;(a;d), Fé(a) = Fé(a;d). We want to show that
F(xk+5xk; d+5dk) = 0(52)
for suitable chosen ka and 6dk. From numerical stability it follows
Flqorbx d4od) = F'(a) G mottx) + EjCadsdy + o([lsay | + e -ortox |F) =
= PGl I |+ sx) + Fy@e + @R,y |+ oclla P + b -t P

where !Ekl = {Ck! = 1.

i = = C = ! T 1
Setting 8x, —;Ckkllxkl and &d, = -ngkzlh -u where u = F}(a) /|Fd(a)” we get
F(xk+6xk; d+5dk)= 0(;2) which means that ¢ is well-behaved. [
The next part of this section deals with numerical stability and well-behavior for stationary iter-

ative methods. Let (xk""’xk—n) be approximations sufficiently close to the solution o, Fla) = 0,

*
Suppose that the next approximation L is given by a stationary iteration (p, namely,
4.3y x
(4.3) X4y = ¢(xk,F)

where ¢(xk;F) = m(xk,...,xk_n; m(xk,-..,x )

k-n

and M= W(xk,...,xk_n;F) is generalized information of F at L peints, For instance T can be

e 3 X
*“k-n

so called standard information given by values of F and its first derivatives,

(4.4) m(xk,...,xk_n;F) = {F(i)(xk_j): i=0,1,...,8; j=0,1,,..,n1

(for details see Wozniakowski (1975a)).



Note that the nonnegative integer n is the number of iteration points at which one reuses the informa-
tion of F, Next, suppose that there exists a constant C = C(F) such that for all sufficiently close

approximations (Xk""’xk—n) to o such that |hk-aH LS |hk_n-a“, the next x§+1 satisfies

* n Pj
(4.5) ||xk+'| 'Q‘” =C m[]”xk_j'ﬁ”
J=

n
where pj 20, v = z' pj =1, Ify=1 then assume C < 1. If (4.5) is sharp then the unique positive
EED . o+l n-j .
zero p, p = 1, of the polynomial ¢ - Z; Pjt is called the order of ¢ (for details see Wozniakowski
(1974)). 3=0
Conditions (4.3) and (4.5) describe theoretical properties of a stationary iteration g. In float-

ing point arithmeric, instead of (4.,3), we have

(4.6) X4y = w(xk;F) + gk

where

4.7) g = fl{p(x ;F)) - wlx ;F)

is the computed error in ome iterative step., The value of gk depends on the computed error of the gen-
eralized information M as well on the computed error of an algorithm which is used to perform one itera-
tive step. We want to show necessary and sufficient conditions on {gk] to get numerical stability and

well-behavior.

Theorem 4,1

Let ¢ be a stationary iterative method defined by (4.3) and (4.5}, Let X 5% be initial

n=17""*%p

approximations of a simple zero o of a sufficiently smogth function F, F(m;d) = 0, F(x) = F(x;d). Let
v=1 \

]hn-a” < ... = Iho—an < [ where C(F}| < 1 for v = Z‘ Py = 1 and C(F) is a constant from (4.5).

j=0

Suppose that

w1
@8 [gll=l0-cm] ) forall k

(i) let v = 2. A stationmary iteration ¢ is numerically stable iff

et ol + iyl o) TRy Cenad || il )+ occ®).

©.9 1l [gll =8
k

(ii) A stationmary iteration p is well-behaved iff for k = k, there exist {Axk} and {Adk} such that

@10 & = m - 9D - FLlg) Foy) - EL0q) 7 IR + FaGg)ad )+ 0(c)

where [l il = ey Clblls llag, ff < &, clal

{Constants k; can only depend on N and m,)

10



Proof

(i) First we deal with numerical stability. Suppose that g is numerically stable. This means that

e = lim |#k-a” < B,
k
From (4.6), (4.3) and (4.5) it follows

— —_ = * v
lltmIEk!l = Llim lbeeyq -0 B | < Lim Ubqey-ell + by q-all > < 8 + cmre”.
Since B = 0({) and v = 2, then
v 2
lim Jg |l < B + 0(g")
k .
which completes this part of the proof.
2
Assume now that (4.9) holds, We want to prove that e = B+ 0(¢ ). First of all, suppose by induec-

tion that & = |hk-a” = f_. This {s valid for k = 0,1,...,n due to the assumption., Next, from (4.6),

(4.5) and (4.8) it follows

A% v A\
eepy SCB + e ll=em +[ -cmd[ =T,

—

Thus, e = lim & < r and once more from (4,.6) and (4,5) we get
k

(4.11) e < c(Fe” + B,

v=1
Since e = {-, then e = B/(1 - C(F)r- ) = 0(f). From this and the fact that v = 2, (4.11) implies

e < B+ 0(c)

which completes the proof of numerical stability.

(ii) We now deal with well-behavior. Let tp be well-behaved. It means that for k 2 k, there exist

{ka] and {Gdk} such that

2
0407 = Rl tbo qs d¥bdg) = FOGGE) + F)(xyd) (g i rox )+ FlGsd) sy + 0y I +0ED,

for

ey = ey Tyl sl < e, clielL
Since £, = x .y - @(x;F) and [k . - x |l = 0(0), we get
@12 x|l =k clhe Il + 0%,
@19 8 = - 0B - FL00) T FGG) - Bpe) T L) bx,,, + By 8, )+ 0(ED).
Due to (4.12) we cam split 6xk+] as follows

_ (D (2)
i WO R WU L AR

1t



1 2 2
where 6 Il =ty clbe Il and s x 1= 0cc™.
Set

- <N -
ka = § X and pd, = 8d

k k+1°

Then (4.10) follows from {(4.13) which completes this part of the proof.

Assume now that (4.10) holds, Tor k 2 kD, (4.6) becomes

Rl T ¥ T F;«("k)-]“"k) +0(0)

which implies that

ey = Oep) + 0() = 0(Q).

We want to find {6xk] and {Gdk] of order [ such that (4.2) holds. From (4.14), (4.6) and (4,10} we get
(4.15)  Fly +ex g5 d+sdy ) = Flog) + Fo (5 ) (3 gy tox ) + Falx )84 o

£ 0(¢H) = BLg) (B ) + Ty ) (8 -8,) + 02D,

) _
since [lox | = ks Cliell S Ky Cli [+ 0(C), ve can splie ox, o = 2 W+ 6w, 1D [y Il

Pl = 0.
Finally, setting (1)
By T A TX and 8y = Ay

(4.15) yields (4.2) which defines well-behavior of p and which completes the proof. |

Theorem 4.1 states an assumption on the vector Ek which implies numerical stabi}ity and well-be-
havior. Assumption (4,8) means that g has to be small enough, It is a natural assumption as many
iterations are well-defined and have property (4.5) in a small neighborhood of the solution. In case
(i)} of Theorem 4.1 we assume v = 2. If 1 <y <2 then it is straightforward to verify that the same
results hold with o(g“) in place of D(;z). However, if v is close enough to unity one cannot neglect a
term o(g“) in the presence of 0(f) for common used values of [. Thus, we prefer to assume y = 2 which
seems to be valid for all iterations of practical interest with order higher than omne.

An interesting question is numerical stability of iterations with linear convergence, v = 1 and

C(F) < 1. Tt is easy to verify that
%.16) 1im g || = (1 - c(F))B
k

assures numerical stability. Furthermore (4.16) seems to be necessary for numerical stability (see
Wozniakowski (1975c), where the method of successive approximations for large linedar systems x = Bx+g is

discussed, See also a proof of the numerical stability of Chebyshev method for large linear systems

which is an example of a nonstationary iterarion with linear convergence, Wozniakowski (1975b}.).

12



Note that for well-behavior we need no assumption on v. However, 1f v = 2 then (4.10) can be sim-

plified. Note that
-1 _ 2 v, 2 2
X - 90 F) - F () F(x) = o - w(x ) + 0(L7) = 0(C™+(7) = o(g)
for large k. Thus, it is easy to verify the following corollary.

Corcllary 4.2

Let v 2 2, A stationary iteration ¢ is well-behaved i{ff for k = k, there exist {Axk} and [Adk}

such that -1 9

S T g+ FL(x) F;(xk)ﬂdk + 0(g")
where oIl < 1y clix o llea Il =k, clial
and ki = ki(N,m) for i = 3,4,

5, NEWTON ITERATION

In this section we prove well-behavior of Newton {teration under natural assumptions on computed

values of F. We recall that the Newton method constructs the next approximation as

(5.1) F'(x) (e ) = Flx)

and if X is close enough to a simple zero g of a "smooth" function F then
lhe -l = o¢ [l -aIf").

An algorithm of one Newton step in fl arithmetic is given by

(i) compute F(x), F'(x),

(i1) solve a linear system

(5.2) F'(xk)zk = F(x) then

(5:3) M =% - 7

Let us assume a well-behaved algorithm for the computation of F, i,e.,
(5.4) £1(F(x,;d)) = (I+AFk)F(xk+Axk; dtad ) = Flx) + 8F,

where [l || = grps llox [l s kDl flad Il <k  [bl csee (2.4)),

and

- ) t 2
(5.5) BF, = AF, F(xk) + Fx(xk)axk + Fd(xk)adk + 0(L7).
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Further, let us assume that

(5.6} fI(F'(xk:d)) =F'(x) + 5F1'(, f)Fi'c = 0(5).

This means that we do not need a well-behaved algorithm for the evaluation of F'(xk). The comstant which
appears at 5Fé in the "O" notation can be arbitrary, Finally, let us assume that a computed solution of

the linear system (5.2) satisfies

(5.7) (F'{x) + 6F + EJz, = F(x ) + OF,

where E = o(g).

Condition (5.7) means that zp is the exact solution of a perturbed system, however we only claim that Ek
is of order [ and we do not specify what comstant appears in the "O" notation. If one uses Gaussian
elimination with pivoting or the Householder method then |Ek“ < [X |F'(xk)“ and K depends on the size N,

A computed approximation x . from {5.3) satisfies

(5.8) x4 = (1 + elk)(xk-zk)

vhere 51, is a diagonal matrix and ”6IkH =G0, Gy depends on a considered norm (if s

P

1 =p < += then cy = 1.

Theorem 5.1
If (5.4), (5.6) and (5.7) hold then Newton iteration is well-behaved. Specifically it produces a

sequence {xk} such that
— , a2
(5.9) 1lim |IF (x, y¥0%, -5 5 d+ad ) || = (D)

where Axk, 5Ik and Adk are defined by (5.4) and (5.8). [ |

Proof

Let

F'(xk) + BFé +E = F'(xk)(I+Hk) where

B, - F'(x.k)-1 foF) + B, 1 = 0€O)
due to (5.6) and (5.7).

Thus for small €, I+ H is invertible and
-1 2
(HH) = I - H +0(C).

From (5.8) and (5.7) the next approximation X4 is given by

14



Mo = (FT) g = (TH) 7T (o) TG ) + 6R)) =k - F ) TR + g

where

(5.10) g = 61, Gq - F' Oy FG0) - F o) ToE, + B ) RO + 0(cD).

We want to use Theorem 4.1, Condition (5.10) states that gk = 0({) which means that for small o

assumption (4.8) holds. Hence it is enough to show that gk has the form of (4.10}, e.g.,
= ] '1 ] . 1 i 2
(5.11) g = -F'Og) ' fF (e ddm + Folg)ad, ¥+ 0(L0)

for suitable Exk and A, .

For a sufficiently good initial approximation we get
ey = 06Dy + [lg Il = 0(e®) + 0¢0) = 0¢p)
k+1 k k k !

where as always e = ”xk-c(”.

From this and (5.5), condition (5.10) turns out
(5.12) g = Bha - B q) 7o + 0L = - g0 T (R () [y - BT x 1 + o) ad, ) + (g
which is equivalent to (5.11) with

Axk = Axk - SIkxk’ ”EXk” = C(Kx-H:T)”xk“’

B, = Ad s B )l = ¢y, (la

.

Due to Theorem 4.1 this means that the Newton method is well-behaved. To prove (5.9} it is enough to

observe that

F(xk+1 + Axk - 8L d+ Adk) = F(xk) + F'(xk)(ka - Xt - aIkxk) +
' 2 \ , 2, _ 2
+ 1-'(:1(x.k).tmk +0(£°) =F (xk)(gk + Axk - E)Ik:ﬁ{) + Fd(xk)ﬁdk + 0(7) = 0L

which completes the proof. B

A crucial point of the well-behavior of Newton iteration is assumptiom (5.4), i.e., how accurate
the values of F can be computed. The accuracy of the evaluation of F' and the solution of the linear
system (5.2) is not so important as long as (5.6) and (5.7) hold. To illustrate this point we assume
that one wants to approximate o with high relative precision for an ill-conditioned problem, say,

11
cond(F;d) E[JE,E . From (5.9) it follows

Jbeiey -2l llaa
%]-— < C(Kx+cl) + cond(F;d)‘l‘ﬁ'rl',*'O(Cz)-

2
If HAdk“ = Kdg ”d“ then Xy i1 is almost the best possible approximation of o in fl arithmetic. The last
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assumption holds if we use double precision for the function evaluations. Thus, to compute @ with high
relative precision for am ill-conditioned problem by Newton iteratiom it is sufficient to use double
precision for the evaluation of F and single precision for the evaluation of F' and for the solution of

the linear system (5.2).
6. SECANT ITERATION IN THE SCALAR CASE

In this section we deal with two variants of secant iteration in the scalar case. Let x and Y
be two different sufficiently close approximations of a simple zero o of a "smooth" scalar functiom F,
i.e., F(o;d) = 0 and N = 1. The next approximation is given by

* X _yk
(6.1 e = x - F(x )- F(yk F(Xk)

Then *

Kpp1 = @ 0((xk—u)(yk—a))-
We shall assume that Yy is equal to X + ku(xk) where {yk} is a bounded sequence or Yy is equal to
LT If F(yk) requires a new function evaluation then it is a two-point secant iteration. For in-
stance, if Y F 1 and Y T % + F(xk) this variant of secant iteration is often called Steffensen itera-
tion, If Y = Epo1e then it is secant iteration with memory (see Traub (1964)).
Tn f1 arithmetic due to unavoidable rounding errors it could happen that the computed X is a
worse apprxoimation {(or even not well-defined) than % and Vs Therefore we slightly modify (6,1} as

follows.

Algorithm

(i) Let X and Yo be sufficient close approximations of o, k = -1;

(ii) CON: k := k+Hl;
kK
= ——-—-—F
7, = £l - F(o ) -F(y,) )3
(6.2) if Ifl(F(zk))|< |f1(F(xk))| then x4 = 25 Y41 = ¥ + Yy Fxq? or %, o to CON;

(6,3) 1if |f1(F(zk)| z |f1(F(xk))| and Y = K1 then el = % and Vel = T4l + Vk+1F(xk+])’ go to CON;

(6.8) if [f1(F(z, 0| = |£1(F)) | and 3, = % + v F(x) then go to END;

. = 11 3,
END: Xk+j X, for all j L

This means that if |f1(F(zk))l > Efl(F(xk))[ and Ve = *x + ku(xk) we terminate the iteration and
formally set Xyt] = X If the latter inequality holds and Y = % then we locally switch to a two-

point secant iteration setting yk+1=xk + yk+1F(xk) and X T e Note that in any case the computed
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sequence {‘fl(F(xd))f} is non-increasing.

Let us assume a well-behaved algorithm for the computation of F, i.e.,
(6.5) £1(F(x;d)) = (1+aF) Fxtix;d+nad) = F(x) + §Fx
where |AF| = Keo |ax| = ch]xl, llad]] < K, Rl and 8Fx is given by (5.5). 1f 2z, is well-defined then

(x -y, ) (F(x }+8Fx )
M T (PO (148.1)
F(xk)~F(yk)+ank-aFyk k

(6.6) z, = (]+T|k)(xk -

where |nk| < [ and lek[ <304 O(Qz).

Theorem 6,1

If there exists a positive constant ( independent of F such that

Fix, )
(6.7) ‘——“—‘—“‘1 =Q
for all k under consideration then secant iteration ig well-behaved, [
Proof
6ka-6Fy 9 1
Let q = ;T;isjgf;zj and let Q = - T;E;-. Suppose for now that ]qkl 2 5. Since 8Fx, - 5Fy, =0(()

then Y - X = 0(C). Due to (6,7) and (5.5) we get

[FGg) | = 20| sr -ory, | = ARG |+ K [ | L) | + Ralkll - 7y o b+ 0ch,

and

(6.8) lxk-al < 400K [of + K, k] HF‘(a)"Fé(a) D+ o).

Since |f1(F(xk+j))] s Jfl(F(xk))] for all j = 0, then [F(xk+j)| = jF(xk)} + |5ka| + ]«Ska_'_jl which
yields
|xk+j-uJ < 20D & o +x, k] ”F'(a)-]Fé(a)”) + o).

This means numerical stability and due to Lemma 4,1 also well-behavior of secant iteration,
. . 1 . .
Thus, without loss of generality we can assume that lqkl = 7 for all k. This implies that

]le = 1. Now z is well-defined and we cdn rewrite (6.6) ag follows,

(xk-yk)(F(xk)+6Fx )]

6.9) z = ) (=, - FOIF G (+Q ) O+e ) = x:H + g
where F(x, )

S = My - F'(xk)-]{ﬁka(1+“k) + F(xk)-;(Yk) (5Fyk'5ka)(]+Bk)] T 0L 0y -a))
for
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+
x
n

o= (1) (400 1)) (4R (%)

+
w
=
]

(1+1,) (1403, =) (1+e,) / (T ).

From (5.53), (6.6) and (6,7) we have
6.10) |g | = ¢l + 2040k ) o + 2(2w>xdlrﬁ'ca)"F,;(u)IIHdH 1+ 0y, el + et .

Suppose for a moment that (6.%4) helds, i.e., |f1(sz)[ z |fl(F(xk)| and Yy~ = O(xk-a). Then, it is

easy to verify that
611 Ix -l = CLOR@DRI o] + G, IF (@7 By || [l Y+ o)

Since xk+j = xk, then (6.11) means well-behavior of secant iteration. Note that if (6.3) holds then we
perform one iterative step using Xy and xk+yk+1F(xk) as two approximations of o and at next iterative
step we can pass to (6.4). Thus, without loss of gemerality, let |fl(F(zk))| < \fl(F(xk))1 for all k.,
This implies that
*

Bt Fert ¥ Sk
Since §k = O(() then {(4.8) holds for small { and it is straightforward to verify that (6.10) is equiva-
lent to {&4.9). Then from Theorem 4.1 and next from Lemma 4.1 follows well-behavior of secant iteration
which completes the proof. [

We discuss assumption (6.7) for different values of Vi

Case I, Let y, = X + F(xk). This is a two-point secant method. Note that (6.7) is now equal to

Fx,) 1
F(xk)—F(yk) a ka‘(a) .

Since the lefthand side requires a bound by a constant Q which is independent of F then Vi has to ap-
proximate F'(a)-1. It means that in Steffensen iteration with v = 1, (6.7) does not hold in general.
This can cause instability. To prove instability of Steffensern iteration we consider the problem
cF{x;d) = 0 where ¢ is a small positive constant and o = 1. The condition number of cF with respect o
the data vector d does not depend on c although cF' (o) tends to zero as ¢ tends to zero. In fl arith-
metic

Y = fl(xk + cF(xk)) = X
whenever X, =1 and IcF(xk)l = %g. Thus, the next Steffensen step is net well-defined and we can have
only an approximation x such that x -a = E% F'(UY1Q. Hence, even for very well-conditioned problems
Steffensen iteration can produce extremely bad approximations of ¢ which means instability of this
iteration. Numerical tests on 2 PDP-10 computer confirm this. However, if v = F‘(nf)—1 then (6.7)

-1
holds and this variant of secant iteration is well-behaved. Moreover, if lim i = - F' (o) then the
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iteration has order greater than two. Specifically, if Y = - F'(xk)-] the order is equal to three
while if Y = - vk_1F(xk_])/(F(xk_] + Yk-1F(xk-T)) - F(xk-T)) then the order is equal to 1 + JE . (See

Traub (1964), pp. 185-187.)

Case I, Let yk = LARE This is the secant iteration with memory. Now (6.7) becomes

F(xk) xk-a

Fop)-FGr) T Ty ) + o G-

X
( —a) (1=
xk-'l o x

r"“)

Note that at least for some initial steps ka_]-a' »> € and (6.7) holds. If not we can modify Yy as
follows,

X1 PO/ (Fix)-Fix,_ )| = q
{(6.12) Y =

% + ku(xk) otherwise

where Yi cught to approximate F'(cy)"I| and Q = 2, say.

Summarizing, modified Steffensen iteration and secant iteration with memory defined by (6,12) are
well-behaved.

Numerical stability of the multivariate secant method is considered by Jankowska (1974)., This

method is stable under some assumptions on a suitable distance and position of successive approximations,
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