
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

D[

A PROVABLY SECURE OPERATING
SYSTEM: THE SYSTEM, ITS
APPLICATIONS, AND PROOFS

Computer Science Laboratory Report CSL-116
Second Edition

May 7, 1980

By: Peter G. Neumann,
Robert S. Boyer,
Richard J. Feiertag,*
Karl N. Levitt, and
Lawrence Robinson**

Computer Science Laboratory
Computer Science and Technology Division

*Now at Sytek Corporation, Sunnyvale, California
**Now at Ford Aerospace and Communications Corp.

Palo Alto, California

Approved:

Jack Goldberg, Director
Computer Science Laboratory

David H. Brandin, Executive Director
Computer Science and Technology Division

International

A PROVABLY SECURE OPERATING SYSTEM:

THE SYSTEM, ITS APPLICATIONS, AND PROOFS

SECOND EDITION, 7 May 1980

ABSTRACT

This report provides a detailed description of the design o:
secure operating system and some of its applications, along with
informal proofs of some of the properties related to security.
Discussed here are:

* a formal methodology for the design and implementation
of computer operating systems and applications subsystems,
and for the formal proof of properties of such systems,
with respect to both the design and the implementation;

* the design of a secure capability-based operating system
according to this methodology to meet advanced security
requirements, together with relevant implementation
considerations;

* the design of several application subsystems for this
operating system, including support for multilevel
security classifications, for confined subsystems, for a
secure relational data management system, and for
monitoring of security;

* the statement and informal proof of properties of the
design for the operating system and for certain
application subsystems, and the consideration of proofs of
implementation correctness;

* consideration of the system design with respect to
distributed systems and networks;

* an evaluation of the significance of this work, and
considerations for future development of secure systems
and subsystems.

TABLE OF CONTENTS

Edition
First Edition

first
page

i
i i

i i i
i i i
iv
V

vii
vi i

vii i

tot
pag

(3)

Abstract
Table of contents
Preface to This (Second) Edition

Preface to the First Edition
Incremental Preface for This
Incremental Preface from the

List of Illustrations
List of Tables
Index

PART 0 Technical Summary 0.1 (6)

PART I The Approach
1-1. Overview 1-1.1 (16)
1-2. The design, implementation and proof methodology 1-2.1 (10)

PART II Description of the operating system (PSOS) II.1 (58)

PART III Proof considerations for PSOS
III-l. Proofs of security — specification properties III-l.l
III-2. Proofs of security — implementation properties III-2.1

PART IV Applications of PSOS
IV-1. Secure object manager and proofs
IV-2. Confined system manager
IV-3. A Secure relational data management system
IV-4. Monitoring
IV-5. Distributed system and network considerations

PART V Perspective
V-l. A summary of progress in related work
V-2. Conclusions

PART VI References VI.1

APPENDICES
A. SPECIAL — A SPECIfication and Assertion Language A.I
B. Specifications for the basic design B.I
C. Illustrative implementations and implementation proofs C.I
D. Specifications for the Secure Object Manager D.I
E. Specifications for the Confined Subsystems Manager E.I
F. Specifications for the Data Management Subsystem F.I
G. Foundations of PSOS G.I
H. Computer System Security Evaluation H.I

i i

IV-l.l
IV-2.1
IV-3.1
IV-4.1
IV-5.1

V-1.1
V-2.1

(40)
(5)

(14)
(10)
(8)

(5)
(6)

PREFACE TO THE SECOND EDITION

This report is being issued in a second edition for several
reasons. First, several design changes have occurred since the
first edition of February 1977. Second, substantially more is
known about the verification of designs and of implementations --
although work still remains to be done on modeling the PSOS
protection mechanism formally. Third, the on-line tools
supporting the methodology have progressed further, and can have
a big impact on any future PSOS developments. Fourth, the state
of the hardware art has progressed substantially, to the point
where an implementation is now quite feasible, based on partly oi
the availability of new machines with sufficiently flexible
microcode. Fifth, there is additional related work that is wort]
referencing. Sixth, a detailed prototype implementation study ii
just beginning,. Finally, the demand for copies of the first
edition has exceeded the supply. Thus it seems appropriate to
make a revised version available at this time.

For the convenience of the careful reader of the 1977 report, an
incremental summary of the changes introduced in this second
edition is included here. For historical reasons, we have chosei
to leave intact the original incremental preface which related
the 1977 report to its precursor of 1975. A reader not familiar
with the earlier versions may well choose to skip both
incremental prefaces, at least on the first reading of this
report. We have also added a new chapter, to provide a summary
of recent related work.

PREFACE TO THE FIRST EDITION [11 February 1977]

This report provides a self-contained description
of work on the design of a secure operating system and
on proofs of significant properties of this system with
respect to security. This work has been done by
members of the Computer Science Laboratory of SRI [with
the work beginning on 3 April 1973].

The [first edition of this] report [in 1977]
supersedes an earlier report (Neumann et al. [75])
dated 13 June 1975. For the convenience of readers of
that report, an incremental preface follows that
indicates the differences between the two reports. For
readers unfamiliar with the earlier report, the
incremental preface may be omitted without loss of
understandability.

iii

INCREMENTAL PREFACE FOR THE SECOND EDITION [May 1980]
(FOR READERS OF THE 1977 REPORT AND FOR HISTORICAL PERSPECTIVE)

This second edition includes a few design changes that have been
made in the three years since the previous report. It also
includes references to new material that represents significant
advances in the development and use of the hierarchical
development methodology and related proof technology.

The only substantive change in the design involves the
introduction of "windows", which are a means of efficiently
obtaining protectable subsegments that can be addressed directly
by capabilities. Windows are particularly useful for small-sized
objects such as stack frames.

A minor change in the design affects primarily the internal
structure of the lowest levels of the specification hierarchy.
What was previously a level containing several modules has been
reorganized into several levels. The changes are reflected in
the tables at the end of the technical summary (Chapter 0).

Part V has been extended. It includes a brief summary of recent
uses of HDM for systems other than PSOSf as well as recent
progress in formal verification. Major secure systems
developments currently using HDM include KSOS-11 (Ford) and
KSOS-6 (Honeywell). Further, SRI has designed and specified a
family of secure, real-time systems, known as TACEXEC (for the
Army). In addition, SRI is using HDM to develop SIFT, an
ultrareliable fault-tolerant system, which includes both design
proofs of fault tolerance and code proofs. Perhaps most notably,
the KSOS-11 kernel specifications have now been thoroughly
subjected to tools determining whether they are multilevel
secure. Various verification systems have been built and are
being applied to some of these systems.

The references have been upgraded to include recent material.
Particularly noteworthy are new material on HDM (e.g., the
3-volume Handbook), a 1979 NCC paper on the foundations of PSOS
(added here as Appendix G), a 1978 NCC paper on the impact of HDM
on security (included here as Appendix H), a report on proving
multilevel security mechanically, Boyer and Moore's new book on
theorem proving, their axiomatization of HDM, and various
successful proofs. Also included are relevant references to
KSOS, TACEXEC, and SIFT.

IV

INCREMENTAL PREFACE FROM THE FIRST EDITION
(INCLUDED FOR HISTORICAL PERSPECTIVE)

For readers of the original PSOS report, dated 13
June 1975, this incremental preface provides a brief
indication of the differences between the two reports.
The entire report is newly written, and considerable
new material has been added.

The methodology has been extended and sharpened.
The specification language, now called SPECIAL
(SPECIfication and Assertion Language), has been
modified to simplify readability and proof. It is
defined in terms of a formally stated syntax. An
on-line environment has been developed to support the
checking of the consistency of the hierarchical
design, the specifications and the mappings between
levels. These tools aid in the design and the proofs.
Contemplated tools to aid in the implementations and
their proofs are also outlined.

The operating system has been expanded to include
input-output. The ordering of levels has been
modified slightly, with linkage moved above the user
process level. Revocable capabilities have been
eliminated, at least insofar as they must be supported
by the lowest levels of the system (including the
hardware). They may still exist at a higher level,
and are in fact found in the visible i-o level in a
somewhat different form. A new kind of capability has
been added, called a store-limited capability. Such
capabilities may be limited to the process in which
they are created (or just to its stack), cannot be
transferred further, and disappear altogether on
process termination (or stack pop). These
capabilities are useful in implementing some of the
applications indicated below.

All of the specifications have been subjected to
the checking of the on-line environment noted above.
Thus they are essentially free of syntactic errors.

The hardware required to support this design has
been studied in detail, including support for the
store-limited capabilities. (The elimination of
revocable capabilities simplifies both the hardware
and the software.) Specific hardware design
considerations are included.

System initialization, backup, and recovery are
treated in greater detail than before.

INCREMENTAL PREFACE FROM THE FIRST EDITION (CONTINUED)

Rigorous proofs that the specifications satisfy
the desired security assertions are outlined. These
proofs are largely syntactic in nature, and can be
extensively automated by the use of the specification
checking tools and related tools.

Proofs of implementation correctness are outlined
to support the claim that it is feasible to prove
formally that implementation programs are consistent
with the specifications. This is done first in a
uniprogramming mode, and then in a multiprogramming
mode. A fundamental theorem has been stated and
proved, relating these two modes under certain
well-defined conditions. Thus, if the proofs hold in
a uniprogramming sense, and if the required conditions
are met, the proofs hold in the multiprogramming
environment of the operating system. The proof effort
thus looks reasonable for proofs of the entire
operating system implementation. Illustrative proofs
of implementation correctness are now included.

Initial authorization and login protocols are
discussed. The conformance of the initial
authorization to the desired security of the system is
also discussed.

Detailed designs are provided for various
application areas. The secure document manager has
been extended, and proofs are given to show that the
specifications satisfy the desired multilevel security
properties. A design is given for the confined
subsystem manager. Part of a design for a data
management system is also given.

Monitoring is discussed in greater detail than
before. Specific examples are given to show how
monitoring would be carried out, and what its power
would be. It is also demonstrated that monitoring
does not compromise system security.

VI

LIST OF TABLES

Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table

Table
Table

Table

Table

0.1
0.2
0.3
2.1
2.2
2.3
3-1.1
4-3.1

4-3.2
4-3.3
4-4.1

4-4.2
4-5.1

4-5.2

5-2.1

PSOS abstraction hierarchy
PSOS generic hierarchy
Summary of the earlier PSOS design
PSOS levels of abstraction
Modules of levels 0 through 13
Access rights for system objects
Visible functions returning a capability
Summary of the lower-level data management
system functions
Result of "extract"
Result of "and_yiews"
Exception conditions of visible functions

Examples of monitorable events
Levels of potential intercommunications
and protocols
Some examples of virtualization of fault-
tolerance in a hierarchical system design
Topics for future study relating to PSOS
and the methodology

page 0.5
page 0.5
page 0.6

11.54
11.55
11.57

III-1.17

IV-3.14
IV-3.14
IV-3.14

IV-4.9
IV-4.10

IV-5.7

IV-5.8

V-2.6

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-2.1

1-2.2

1-2.3

2.1
3-2.1
3-2.2
3-2.3
3-2. 4
3-2.5
C-l

LIST OF FIGURES

Three equivalent views of the type of
hierarchy defined by the methodology
Mapping function relating the states
of two abstract machines
Flowchart diagrams for programs implementing
a V-function and an 0-function
Example directory hierarchy
Program execution — single process case
Program execution -- multiple process case
Partitioning
Parallel execution with partitioning
Abstract implementations
Structure of the sample system

1-2.9

1-2.10

I

III
III
III
III
III
C-I

-2.10
11.58
-2.28
-2.29
-2.30
-2.31
-2.32
1-1.1

vii

INDEX OF TERMS

abstract machine 1-2,1
abstract machine interpreter 1-2.6
abstract program 1-2.6
access code, see access rights
access rights 11.21, III-1.12
accessibility (iterative) 1-1.11, III-1.14
Accountability principle III-1.16
activation, procedure II.6
Alteration principle 1-1.6, 1-1.11, III-1.15
arithmetic 11-14
assertions 1-2.4
--, initial III-2.15

auditing IV-4.7
authorization IV-3.8
Bell and LaPadula 1-1.7
canonical form III-1.7
capabilities 1-1.9, II.2
— , secret III-2.11
— , store-limited 11.22

cited value 1-1.8, IV-1.5
clock II.9, 11.14, 11.16
confinement 1-1.7, IV-2.1
Confinement principle 1-1.7
covering III-1.13
data base management IV-3.1
detection, fault 11.36
Detection principle 1-1.6, 1-1.11, III-1.15
development data base manager 1-1.15
directories II.4,
distributed PSOS IV-5
effects 1-2.3,
environment, user II.
exceptions
function
O-function
OV-function
V-function

1-1.4,
1-1.4,
1-1.4,
1-1.4,
1-1.4,

V-function position
— , derived
— , hidden
— , primitive
— , visible

Guaranteed ser\
hierarchy

1-1.4,
1-1.4,
1-1.4,
1-1.4,
rice pr
0-5, I

hierarchy manager 1-1
ILPL
implementation
I/O devices
I/O, primitive
— , system

III-2.
1-1.4,
II.4
11.14
11.16

11.17
.1
III-2.13
20
1-2.3, III-213
1-2.3
1-2.3
1-2.3
1-2.3
III-2.9
III-1.9
III-l.ll
III-1.12
III-l.ll
inciple 1-1.6
-1.3, 1-2.9
.13
16
11.49, IV-1.35, IV-3.11

viii

INDEX OF TERMS, Continued

— , user 11.19
— , visible 11.19
indivisibility of operations III-2.3
indivisibility theorem III-2.7
initial values 1-1.4, 1-2.3
initialization 11.34
instantiation, function III-2.9
integrity 1-1.8, 1-1.11
interfaces 1-2.3
interface definition 1-1.3
interpreter, abstract machine 1-2.6
— , request 11.20
interrupts 11.13
invariance of capabilities III-1.13
invariant assertions III-2.15
Isolation principle III-1.16
iterative accessibility 1-1.11
keys 11.25
KSOS V-1.3
languages, programming 1-1.14
— , intermediate level programming

language, see ILPL
— , specification, see SPECIAL
levels 1-1.3
linker 11.26
locks 11.25
mapping functions 1-1.4, 1-2.5
mapping function analyzer 1-1.13
memory, primary 11.12
messages, interuser 11.30
methodology 1-1.3
modified value 1-1.8, IV-1.5
module 1-1.3
monitoring IV-4.1
rnonotonicity of access rights III-1.13
multilevel security, see security
networks IV-5.1
objects 11.10, 11.18
0-function — see function
operation — see function
OV-function — see function
pages 11.17
parallelism III-2.3
partitions II1-2.5
partitioning III-2.5
positions, V-function III-2.9
predicates, abstract III-2.24
procedures II.3
procedure activations II.6
procedure records 11.19

ix

INDEX OF TERMS, Continued

processes II.5. III-2.4
— , system 11.15
— , user 11.18

programs, abstract 1-2.6
program handler 1-1.15
program modules III-2.19
proof, correspondence — see specification proof
— , implementation III-2.1
— , specification III-l.1, IV-1.20, IV-1.32

protection mechanisms 11.21
PSOS design II.1
record, procedure 11.19
recovery 11.36
references 1-1.9, IV-1.5
— , dependent 1-1.9, IV-1.6
— , legitimate 1-1.9, IV-1.6
— , read 1-1.9, III-1.5, IV-1.6
--, write 1-1.9, III-1.5, IV-1.5
registers II.5, 11.12, 11.15, 11.18
relations IV-3.2
request interpreter 11.20
resource errors III-2.14
security 1-1.6
— , multilevel 1-1.7, 1-1.11, IV-1.1, IV-3.11

segments
— , type

separable fo
shutdown
SIFT
simple secur

rm

ity

II.3
III-2
III-l
11.34
V-1.4
cond

.26

.7

ition 1-1.8
SPECIAL 1-1.1, A.I
specifications 1-1.4, 1-2.1
specification analyzer 1.1.13
^-property 1-1.7
states 1-2.1
state clustering III-2.8
statements, control III-2.21
— , simple III-2.21

store-limitation II.22
substitution rules III-2.24
TACEXEC V-1.4
tools 1-1.13
transparency 1-2.2
transmitted features 1-2.2
types 11.17
typing III-l.10
users 11.28
verification 1-1.5
— , see also proof

views IV-3.3
V-function — see function
windows II.3

TECHNICAL SUMMARY OF THIS REPORT

INTRODUCTION

This report describes work on the design of a general-purpose
computer operating system intended to meet advanced security
requirements. The design is formally specified such that properties
about the security of the system can be formally proved. The design
is also amenable to efficient implementation and to efficient use.
Discussed here are:

* a formal methodology (HDM) for the hierarchical design
and implementation of computer operating systems and
applications subsystems, and for the formal proof of
properties of such systemsf with respect to both the
design and the implementation;

* the design of a secure capability-based operating system
(PSOS) designed according to this methodology to meet
advanced security requirements, together with relevant
implementation considerations;

* the design of several application subsystems for this
operating system, including support for multilevel
security, for confined subsystems, for a secure relational
data management system, and for monitoring of security;

* statement and informal proof of properties of the design
for the operating system and for certain application
subsystems, and the consideration of proofs of
implementation correctness;

* consideration of the system design with respect to
distributed systems and networks;

* an evaluation of the significance of this work, and
considerations for future development of secure systems
and subsystems.

Future work remains to be done in several areas to demonstrate
the feasibility of efficiently implementing the design of the
operating system and its applications. Such areas include formal
proofs of design properties, further support for a suitable
implementation language, the implementation of the existing
specifications, and formal proofs of implementation correctness.

THE METHODOLOGY

The Hierarchical Development Methodology (HDM), initially
developed and first used for the design of the operating system, is
intended to be generally useful throughout all stages of system
development, including design, implementation, debugging,
integration, and verification of the system. The methodology
integrates these stages by providing both a unified language for
specifications and assertions (SPECIAL) and a hierarchical structure

PART 0 TECHNICAL SUMMARY Page

for the design that is reflected in the implementation and in the
proofs. The methodology provides two dimensions of structure: a
staged decomposition of the system development effort, and a
hierarchical decomposition of the system design.

The first structural dimension partitions the design and
implementation into five stages, progressing in roughly sequential
order (with appropriate iteration) from a loosely defined system
concept, to a completely specified design, to a completely
implemented system. This staging encourages decisions to be made a
they are needed, in a reasonable order, and at a time appropriate t
the development.

The second structural dimension entails a hierarchical
decomposition of the design into different modules at different
levels. The functions at any one level depend for their
implementation exclusively on functions of lower levels or of the
same level. The specification of each level is self-contained;
i.e., it is independent of the specifications of other levels. It
is also relatively independent of the implementation. The
hierarchical decomposition contributes notably to the
understandability and manageability of the system development. It
also contributes to system reliability and recovery, initialization
and monitoring, in that each of these tasks is distributed in a
hierarchical manner reflecting the design structure. Although
hierarchical structures have been used previously, this work is the
first attempt to formalize such structure on a large scale and to
take advantage of it in related proof efforts.

Associated with each stage are properties that can be stated
and proved, first about the design and then about the
implementation. The proofs at successive stages provide increasing
confidence in the suitability of the ultimate system. The approach
is also suitable for handling incremental changes to the design, th
implementation, and the proofs. Changes at some stage affect only
that and later stages; proofs need be reconsidered only if they
apply to those stages. Thus a change in implementation that does
not alter the specifications does not affect the validity of the
design proofs.

THE SYSTEM DESIGN

The methodology mentioned above has been applied to the design
of PSOS. "PSOS" might be considered an acronym for a "Potentially
Secure Operating System", in that PSOS has been carefully designed
in such a way that it might someday have both its design and its
implementation subjected to rigorous proof; considerable effort ha
gone into trying to enhance that possibility. PSOS is generally
called a "Provably Secure Operating System", although that name is
really quite presumptuous and speculative until such time as the
proofs have actually been carried out. However, whenever that does
happen, "PSOS" can easily be made to stand for "Proved Secure
Operating System". (It might be noted that we sometimes get asked
about our "Probably Secure Operating System".)

PART 0 TECHNICAL SUMMARY Page 3

The PSOS concept is based on various data and procedure
abstractions available to users of PSOS that include the software
and the hardware. These include processes and virtual memory
objects (segments), as well as directories that provide catalogues
for symbolically named objects. They also include extended-type
objects of types that may be user-created. All objects of a
particular type are created, maintained/ and deleted by a collection
of programs known as the type manager for that type. An
extended-type manager coordinates the creation of new types.

In the operating system, all objects are accessed by means of
capabilities. A capability is a protected piece of data that refers
to a particular object. Each capability is protected in the sense
that it can be created only by the system, and cannot be forged or
modified. Each capability contains protection information (access
rights) that indicates how the corresponding object may be used with
that capability. In addition, capabilities may be constrained so
that their movement is restricted. Such capabilities are said to be
store-limited. The levels of abstraction provided by various
hierarchical levels within the operating system are summarized in
Table 0.1, while a generic decomposition of these levels is given in
Table 0.2. The lower levels would normally be implemented in
hardware (or microcode). For historical purposes, the earlier
decomposition of 1977 is given in Table 0.3.

APPLICATIONS OF THE OPERATING SYSTEM

An important potential application for the operating system is
in support of particular security policies. One such policy is
considered here as an illustrative example, in which multilevel
security requirements are typified by TOP SECRET, SECRET,
CONFIDENTIAL, and UNCLASSIFIED levels of classification, along with
rules as to when reading and writing is permitted. The extension oi
the design to support such an application of the operating system is
given. This illustration is not meant to justify the particular
policy, which is in fact incomplete. However, it demonstrates the
power of PSOS.

A subsystem to support confined execution is also given. This
subsystem provides an environment in which it can be guaranteed that
certain types of information leakage can be avoided.

The design framework and part of the design of a relational
data management system are also considered. Here the emphasis is
not on the design of a data-base management system, but rather on
the demonstration that the methodology is applicable to such
subsystems.

Another application area considered is the monitoring of both
system performance and system security. The way in which this can
be done without introducing new security violations is indicated.

The final application area considered is that of distributed
systems. First the notion of implementing PSOS as a distributed
system is considered. Then the notion of designing a network of

PART 0 TECHNICAL SUMMARY Page

operating systems such as PSOS is considered. Various design
alternatives are considered.

SYSTEM SECURITY

The desired security of the system and of its application
subsystems must be formally stated in terms of the methodologyf in
order that security be formally provable. Such statements and thei
proofs are facilitated by the use of capabilities in the operating
system, as is the security of the system itself.

A first step in the direction of design proofs is indicated
here. The two main properties that are desired of PSOS relate to
authorized reading and authorized writing of information. In simpl
terms, these properties are summarized as follows. Each is formall
stated and proved in the report.

DETECTION PRINCIPLE: There shall be no unauthorized reading o
information.

ALTERATION PRINCIPLE: There shall be no unauthorized writing
of information.

For the multilevel security classification environment,
corresponding properties have been formulated by Bell and LaPadula
(the simple security condition and the so-called "^-property"), and
these are used here. A more recent formulation that has been
extremely useful in obtaining automatic proofs of multilevel
security is given in Feiertag [80].

Proofs of these properties, appropriately formulated in terms
of the methodology, require the demonstration of the consistency of
the precise formulations with the specifications. These proofs are
presented informally. More rigorous proofs have been carried out
for other systems, and are indicated.

Additional properties relating to system security concern
denial of service and leakage of information through channels other
than reading and writing (e.g., inferences based on system
performance). These issues are discussed, but are by no means
resolved.

The security of any implementation ultimately depends on the
correctness of the implementation, i.e., its consistency with the
specifications. Significant advances are described here that will
aid in such proofs.

CONCLUSIONS

The work described here demonstrates the feasibility of
designing a general-purpose operating system to meet advanced
security requirements, and proving significant properties about sue
a design. It also indicates that the design can be efficiently
implemented. However, much work remains in order to achieve such a
implementation and to carry out the proofs.

PART 0 TECHNICAL SUMMARY Pag

Table 0.1
PSOS ABSTRACTION HIERARCHY

I Level I PSOS Abstraction or Function

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

user request interpreter *
user environments and name spaces *
user input-output *
procedure records *
user processes * and visible input-output
creation and deletion of user objects *
directories (*)[ell]
extended types (*)[cll]
segments and windows (*)[ell]
paging [8]
system processes and input-output [12]
primitive input/output [6]
arithmetic and other basic operations *
clocks [6]
interrupts [6]
registers (*) and addressable memory [7]
capabilities *

user
user

interface,
interface.

* = module functions visible at
(*) = module partially visible at
[i] = module hidden by level i.
[ell] = creation/deletion hidden by level 11.

Table 0.2
PSOS GENERIC HIERARCHY

I __ «.«.«. ———— — |
Generic
1 Level

1 F
I E
1 D
1 c
1 B
1 A

Generic Abstraction
in PSOS

user abstractions
community abstractions
abstract object manager
virtual resources
physical resources
capabilities

PSOS
1 Level

14-16
10-13
9
6-8
1-5
0

PART 0 TECHNICAL SUMMARY Page

Table 0.3
SUMMARY OF THE EARLIER PSOS DESIGN (1977)

iLevel Abstraction or Function

13 | user request interpreter
12 | user environments and user name spaces
11 | user input-output
10 | procedure records
9 I user processes (scheduling, interprocess

I communication, synchronization), visible i-o
8 | user objects
7 | directories
6 | extended types and extended-type objects
5 | segmentation
4 I paging
3 | system processes and system input-output
2 | arithmetic operations
1 | addressable memory and primitive input-output
0 j capabilities, interrupts, registers, clock

PART I
THE APPROACH

CHAPTER 1-1
OVERVIEW OF THE REPORT

1. INTRODUCTION

The Computer Science Laboratory at SRI has been engaged from
April 1973 to February 1911, with some recent effort as wellf in the
design of a general-purpose computer operating system called PSOSf
for Provably Secure Operating System. It was desired from the outse
that properties of PSOS could be formally proved about both its
formally stated design and its implementation. The approach
described here relies heavily on the use of a formal methodology thai
encompasses design, implementation, and proof. The methodology
developed for this purpose is called HDM, for Hierarchical
Development Methodology. HDM uses a hierarchical decomposition of
the design, with formally stated specifications for each system
function and formal assertions of each desired system property. The
desired design properties to be proved relate to the security of the
operating system and certain of its applications.

HDM is also being applied to the design of several other
systems, including two versions of KSOS, a UNIX(@TM Bell
Laboratories)-compatible system based on a security kernel, and an
ultrareliable computing system for commercial aircraft (see Wensley
et al. [76,78]). In the former case, the specifications are being
proved consistent with a formal model of multilevel security similar
to that described by Bell and LaPadula [74] and by Millen [75]. In
the latter case, properties are being proved about the system
fault-tolerance (e.g., stability of recovery and reconfiguration)
with respect to the design. The methodology has also been used
earlier by SRI for the design of a family of real-time systems (with
security as one option) (Feiertag et al. [79a]) and by Honeywell and
SRI for the design of a proposed kernel retrofit for Multics.

The design of PSOS is described here. This design is
essentially complete for the operating system, and is intended to be
illustrative for several application subsystems designed for use wit
PSOS. The multilevel security requirements are supported by one of
these applications, for which proofs of the desired properties have
been carried out. Also, security properties have been proved
informally for the specifications of the functions of the visible
interface to PSOS itself. These properties demonstrate that there
can be no "unauthorized" modification or acquisition of information
by use of the operating system functions (for a particular useful
definition of "authorization").

A language for writing specifications and assertions has been
developed in accordance with the methodology. This language is
called SPECIAL (SPECIfication and Assertion Language), and is
described in Appendix A. (See also Robinson et al. [76], Roubine et
al. [76]). In addition, on-line tools have been developed to suppor
the use of this language. These tools are intended to simplify the

HAPTER 1-1 OVERVIEW OF THE REPORT Page 2

verall development and proof effort* They contribute to the design
>y providing an on-line editable form for specifications, with
utomated checks of syntactic consistency. These tools also
ontribute to the proofs of security of the design.

To support the proof of the multilevel security properties for
:he multilevel security environment for PSOS (and for the Multics
;ernel work), the Bell and LaPadula model has been restated in terms
•f the concepts of the SRI methodology. This restatement is also
>resented, providing the basis for proof of the correspondence
)etween the model and the specifications. A more recent formulation
s found in Feiertag [80].

Tools have also been and are continuing to be developed for
itating and proving semantic properties of programs. These tools are
lesigned to be compatible with the tools mentioned above. As more of
:hese verification tools become available, semiautomatic proofs of
mplementation correctness will become more feasible. Some
>reliminary experience is cited in Chapter V-l, along with further
letails on some of the other work mentioned above.

This remainder of this chapter provides an overview of the work
reported in this report. It is written as a reasonably
self-contained document, and may be read to any desired depth on the
:irst reading of the report. Subsequently, this chapter may be used
is a detailed summary description of the work. In the remainder of
:his chapter, the methodology is summarized, first with respect to
Jesign and implementation, and then with respect to verification.
?he desired security properties are then summarized. In addition,
:he desired properties of the Bell and LaPadula model are given.
Properties of SPECIAL related to security are summarized, and the
Jesired security properties are explicitly restated using the
:oncepts of SPECIAL. After the design of the operating system is
)utlined, the correspondence proofs between the desired properties
and the specifications are discussed. Tools to support the
/erification effort are also discussed, as are several considerations
Involved in implementing the system. Chapter 1-2, which follows,
presents the methodology in greater detail. SPECIAL is described in
\ppendix A.

Part II discusses the design of the operating system (specified
in Appendix B) and some of its implementation issues. Part III
considers the proofs of security for the design (Chapter III-l) and
-ilso outlines the effort required to carry out proofs of
Implementation consistency (Chapter III-2). Specific implementations
and proofs of implementation correctness are given in Appendix C.
Part IV describes the design of several application subsystems
suitable for implementation using the operating system, and gives
proofs for security properties for some of these applications. In
particular, Chapter IV-1 discusses the design of the secure object
nanager supporting multilevel security (with specifications in
Appendix D). Chapter IV-2 discusses the confined subsystem manager
(specified in Appendix E). Chapter IV-3 considers the design of a
relational data-base system (specified in part in Appendix F).
Chapters IV-4 examines the monitoring of security. Chapter IV-5

CHAPTER 1-1 OVERVIEW OP THE REPORT Page 3

considers the distributed system and networking implications of PSOS.
Chapter V-l provides more background on related work using HDM,
particulaly those efforts concerned with security. Finally Chapter
V-2 presents conclusions resulting from this work.

2. THE METHODOLOGY FOR DESIGN AND IMPLEMENTATION

The methodology is summarized here. More complete documentation
is found in the three-volume HDM Handbook (Robinson [79], Silverberg
et al. [79], and Levitt et al. [79]). Earlier documents are also
relevant (Robinson et al. [75] and Robinson and Levitt [75]). The
methodology as described in this report separates the development of
a computer system or subsystem into stages corresponding to

(50) the choice of the visible interface,
(51) the hierarchical design,
(52) the specification of each function at each node of the

hierarchy,
(53) the definition of mappings among the data representations

at connecting nodes, and
(54) the writing of implementation programs for the functions at

each node.

These stages of design and implementation are described below.

(50) INTERFACE DEFINITION

In the initial stage (SO), the desired interface is defined that is
visible to the callers of the system or subsystem in question. This
interface is then decomposed into a set of MODULES (i.e., a set of
facilities), each of which manages OBJECTS of a particular type. An
object is a system resource such as a segment, a directory, or a
process. Each module consists of a collection of FUNCTIONS
(corresponding to operations and data-structure accesses). Each
function has an argument list and can be invoked either by a program
or directly by a user. Each function is either an O-function
(Operation) that changes the state of the module to which it belongs,
a V-function (Value-returning) that characterizes the state of the
module, or an OV-function that both changes the state and returns a
value.

(51) HIERARCHICAL DECOMPOSITION OF THE SYSTEM

The modules of the visible interface, together with other modules
whose functions are hidden by the interface but are part of the
eventual implementation, are arranged into a hierarchy of collections
of modules. For descriptive simplicity, it is assumed here that
there is only one visible interface, and so it can also be assumed
that the hierarchy is a linear ordering of these module collections,
each of which can then be referred to as a LEVEL. (For all cases
considered here, this simplified description is applicable.) The
implementation of each level depends only on the behavior of the next
lower level. However, a module may be included in more than one
level of the design -- e.g., the module supporting the "user"
hardware instructions, which would be part of most levels in a

IHAPTER I-l OVERVIEW OF THE REPORT Page 4

:ypical operating system. The structure of the decomposition is thus
explicitly declared at this stage.

;S2) MODULE SPECIFICATION

'or each module, a FORMAL SPECIFICATION is developed. In this
lethodology, specifications are used that are similar to those
suggested by Parnas [72a,b,c,d]. However, Parnas1 original approach
las been extended substantially here, in that the specification
Language (SPECIAL) and the hierarchical structure have been
formalized and supported by an on-line environment. V-functions of a
lodule are either PRIMITIVE (necessary for characterizing the state
>f the module) or DERIVED (computed from the values of primitive
^-functions). Some V-functions are VISIBLE at the interface to a
lodule (i.e., can be called by programs), while others are HIDDEN.
?he specification of each 0- or OV-function precisely describes the
effect of that operation as a state change. The state change is
Jefined by a set of EFFECTS, each of which relates values of
Primitive V-functions before the call on the specified function to
values of primitive V-functions after the return from that call. The
specification of each V-function gives either the INITIAL VALUE of
:he function (if it is primitive) or its DERIVATION from primitive
/alues (if it is derived). The specification for each visible
Eunction also gives EXCEPTION CONDITIONS for which a call on that
Eunction is to be rejected. Specifications are written independently
>f decisions that concern only the implementation of the module. For
3 well-conceived module, the specification is much easier to
anderstand than its implementing program (see (S4)).

(53) MAPPING FUNCTIONS

?or each module above the lowest level of the design, a MAPPING
FUNCTION is written that characterizes the state of the module in
berms of the states of lower-level modules. A mapping function is
vritten as a set of expansion rules, in each of which a higher-level
/-function value is expanded as an expression containing lower-level
/-function values. These expansion rules, called MAPPING FUNCTION
2XPRESSI0NS, are also written in SPECIAL. In this way, assumptions
are explicitly stated as to how the data structures of a module are
represented in terms of lower-level modules. For example, a mapping
function would relate the data structure of a user process to that of
a system process, or a segment to a sequence of pages.

(54) IMPLEMENTATION

Programs are then written to implement the visible functions of each
Level (except for the lowest level) in terms of those at the next
Lower level. Such programs are called ABSTRACT PROGRAMS since they
:all functions that implement abstract operations specified at lower
Levels of the system. The abstract programs may be directly compiled
into executable code.

Stages 0, 1, 2, 3, and 4 have formalized the following five
conventional steps in software development, respectively: interface
definition and decomposition; system modularization; specification;

CHAPTER 1-1 OVERVIEW OF THE REPORT Page 5

data representation; and coding. The results of Stages 0, 1 and 2
are considered to constitute the DESIGN; those of Stages 3 and 4
constitute the IMPLEMENTATION. In the methodology referred to here,
Stages 2, 3, and 4 are carried out for each level in the hierarchy.

3. THE METHODOLOGY FOR VERIFICATION

The stages of development provide the basis for the verification
effort. Associated with each of these stages of design and
implementation is the statement or verification of correctness
properties appropriate for that stage, for each level in the
hierarchical design.

(SO1) INTERFACE PROPERTIES

At Stage 0, the desired properties of the system can be explicitly
stated. The desired set of such properties for the operating system
is given by two principles regarding the prevention of unauthorized
reading and writing. The set of properties for the environment
supporting multilevel security consists of the *-property and the
simple security condition of Bell and LaPadula [74], along with theii
duals for integrity. These properties are discussed subsequently.

(SI1) HIERARCHY PROPERTIES

At Stage 1, the consistency of the hierarchical structure and of the
naming of functions can be demonstrated.

(S21) SPECIFICATION PROPERTIES

At Stage 2, the desired properties can be proved about the design
(i.e., about the specifications of the visible interface),
independent of subsequent implementations. For the purposes of this
report, SYNTACTIC properties are those that are algorithmically
checkable, while SEMANTIC properties need a formal proof procedure -•
in general, undecidable — to establish them. Proofs are based on

* syntactic properties of SPECIAL;

* syntactic properties not in SPECIAL but required of all
specifications in the system under consideration;

* semantic properties of the specifications.

The first class of syntactic properties is called INTRINSIC, while
the second is called EXTRINSIC. In addition, each module
specification can be shown to be self-consistent (i.e., satisfiable)
at this stage.

(S31) MAPPING PROPERTIES

At Stage 3, it can be proved that the mapping functions are
consistent with the specifications and the hierarchical
decomposition. An inconsistent mapping function is one in which two
distinct states at a higher level can both correspond to a single

HAPTER 1-1 OVERVIEW OF THE REPORT Page 6

tate at a lower level. Consistency of the mapping functions with
he outputs of the previous stages is demonstrated similarly to those
or self-consistency of the specifications.

S41) IMPLEMENTATION PROPERTIES

,t Stage 4, the implementation can be proved consistent with the
ipecifications and mapping functions resulting from the previous
;tages. Proofs of implementation consistency are done level by
evel. A given program intended to implement a visible V-, 0-, or
>V-function is proved correct with respect to its specifications, the
ipecifications of the modules that implement the program, and the
lapping function expressions relating these modules.

Once a verified system is obtained, it will tend to evolve with
:ime. Changes in specifications and in implementations require
corresponding reverification. However, reverification is required
>nly where changes in specifications and implementations have
iffected the validity of the earlier verification. The staged
ipplication of this methodology and the formally defined modular
lecomposition can considerably simplify the reverification effort.

On the basis of its applications to date, the staged development
ippears to give successively greater confidence in the resulting
jystems, from one stage to the next, first in terms of the
;uitability of the design and then in terms of the correctness of its
.mplementation. Subtle design bugs have been discovered relatively
easily in attempting proofs. Significant savings in development
:osts can result from detection of inherent insecurity in the design
>r implementation as early as possible.

i. SECURITY OF THE OPERATING SYSTEM

The desired security of the operating system is described by two
>asic principles that must be satisfied by all user-visible functions
>f the operating system.

DETECTION PRINCIPLE: There shall be no unauthorized acquisition
of information.

ALTERATION PRINCIPLE: There shall be no unauthorized alteration
of information.

rhe precise notion of authorization relates to the use of
:apabilities in the operating system. In essence, authorization to
access a particular piece of information requires the possession of a
suitable capability for that information. The creation and passage
>f capabilities is controlled by the operating system.

Two additional principles are related to security in a
jeneral-purpose operating system.

THE GUARANTEED SERVICE PRINCIPLE: There shall be no
unauthorized denial of service.

' vui\ v x u n

THE CONFINEMENT PRINCIPLE: There shall be no leakage of
information.

The guaranteed service principle states that users should never
be denied access to a resource to which they are entitled, for
example, as the result of an unfair scheduling algorithm.
Intuitively, a denial of service may be a security violation in the
sense that it can compromise a user's ability to perform an
authorized task. Whereas the alteration and detection principles are
satisfied by the operating system design, the guaranteed service
principle is only partially satisfied.

The confinement principle concerns information that may be
inferred from the behavior of the system, rather than read directly.
Such a leakage of information may occur from the system to a user, or
from one user to another. Although certain forms of leakage can be
characterized and controlled, this is not possible in general.
Nevertheless, a confined environment is provided for users of PSOS,
in which a well-defined sense of confinement can be ensured.

5. THE BASIC MULTILEVEL SECURITY MODEL

The security model of Bell and LaPadula [74] is considered next.
For security, each object (i.e., operating system resource such as a
segment or process) being written into or read from has a
classification level and a category set, collectively referred to as
the OBJECT SECURITY LEVEL. Also, each user has a clearance level anc
a category set,, collectively referred to as the USER SECURITY LEVEL.
Clearance and classification levels are linearly ordered (e.g., TOP
SECRET, SECRET); category sets are partially ordered. One security
level is AT LEAST that of another if and only if its classification
or clearance level is at least that of the other and its category set
contains the category set of the other. Similarly, for integrity,
each object or user has its own integrity level, and partial orderinc
is defined as for security levels. The ordered pair consisting of
the security level and the integrity level is called the ACCESS
LEVEL. (To avoid confusion, each such level is always identified by
an adjective. The term "level" used by itself refers to a collectior
of modules of the hierarchical design.)

The Bell and LaPadula model is expressed approximately as
follows.

SECURITY CONDITIONS:

The *-property for security: Writing is permitted only into an
object with AT LEAST the user's security level. That is, there
is no writing downward in security level.

The simple security condition: Reading is permitted only from
an object with AT MOST the user's security level. That is,
there is no reading upward in security level.

Note that writing up is not considered to be insecure, but is
nevertheless often undesirable. For example, overwriting existing

:HAPTER I-l OVERVIEW OF THE REPORT Page 8

information at a higher security level could be very damaging. Thus
writing up is also forbidden in many cases.

The desired integrity conditions are formally the duals of these
:wo security conditions, as follows.

INTEGRITY CONDITIONS:

The *-property for integrity: Writing is permitted only into an
object with AT MOST the user's integrity level. That is, there
is no writing upward in integrity level.

The simple integrity condition: Reading is permitted only from
an object with AT LEAST the user's integrity level. That is,
there is no reading downward in integrity level.

Appropriate use of the security and integrity levels enables the
system security officer to put strict limits on undesirable reading
and writing.

To prove that these four properties hold with respect to formal
specifications, it is desirable to restate them in terms of the
specification and assertion language, SPECIAL, whose properties are
Jiscussed next. Following that, the restatement of the desired
security properties in the form to be proved is given.

5. SPECIFICATION LANGUAGE PROPERTIES RELATED TO SECURITY

SPECIAL is a formal, nonprocedural specification language. It
hermits each function of a module to be specified independent of its
Implementation. Thus, properties of the design may be stated (in
SPECIAL) in an implementation-independent manner.

In SPECIAL, the effects of an 0- or OV-function of a module of
some design level are defined in terms of the new values of the
Drimitive V-functions of that level as related to the old values of
-hose V-functions, to the arguments to the specified function, and to
:he parameters of the modules of the given level. (A PARAMETER of a
nodule is a symbolic constant that is fixed for each particular
instance of that module, as for example the maximum size of a
segment.) Similarly, the value of a derived V-function or an
exception condition is defined in terms of the values of the
primitive V-functions of the level, the arguments of the specified
derived V-function, and parameters of the level. The initial values
:>f primitive V-functions are defined in terms of the module
parameters and the arguments of the function. The following
3efinitions are useful.

A primitive V-function value is CITED by the specified function
if and only if it appears as an old value in either an effect,
an exception, or a derivation.

A primitive V-function value is MODIFIED by the specified
function if and only if it appears as a new value in an effect.

CHAPTER 1-1 OVERVIEW OF THE REPORT Page y

SPECIAL requires as an intrinsic syntactic property that all
V-function values cited or modified in any module specifications must
be values of V-functions of the design level to which the given
module belongs. In addition, the PSOS specifications require that
all modified values must be values of V-functions of the same module.
This is an extrinsic syntactic property. Finally, semantic
properties are required of each cited or modified V-function value to
ensure that all of the arguments and cited values are legitimate, and
to assure that all modified values are dependent on only legitimate
values according to the following definitions. These definitions are
applicable to each specified function.

A READ REFERENCE is a cited V-function value, or a parameter of
the level of the specified function, or an argument to the call
on that function.

A WRITE REFERENCE is a modified V-function value, or the value
returned by a visible V-function or an OV-function, or the value
of an exception condition.

A read reference is LEGITIMATE if and only if it is the value of
a V-function all of whose arguments are arguments of the
specified function or parameters of the module or legitimate
read references.

A write reference is DEPENDENT on a read reference in a
specification if and only if two different legitimate values
exist for the read reference that would cause the write
reference to assume correspondingly different values.

It should be noted that exception conditions are included in the
definition of a write reference because the presence or absence of ar
exception condition can itself result in information transfer. The
occurrence of an exception condition can be viewed as a status value
that is returned for each function call.

7. THE DESIGN OF THE PROVABLY SECURE OPERATING SYSTEM

The basis for security in PSOS is the use of capabilities to
protect all user-visible objects. A CAPABILITY is a protected token
for an object and is interpreted by the operating system and the
hardware as an address for the object. Each capability also contains
authorization information defining how the object may be used,
subject to the rules for objects of the particular type. A
capability is itself protected in that it is nonalterable and
nonforgeable.

The design of the operating system is decomposed hierarchically
into various levels. The design is presented in detail in Part II,
with specifications given in Appendix B. The levels of the design
are summarized below, in order of decreasing abstraction (increasing
hardware dependence).

user environments *
user input-output *

HAPTER 1-1 OVERVIEW OF THE REPORT Page 10

procedure records *
user processes *
user objects *
directories *
extended types *
virtual memory (segments and windows) *
paging
system processes and input-output
basic operations (e.g., arithmetic)
real memory
capabilities * and interrrupts

iach of these levels provides an abstraction useful in the
implementation of the operating system. Some of these abstractions
denoted by "*") are visible at the interface to the operating system
except for the creation and deletion of objects). Note that
nterfaces at a higher level than the above can hide some of these
ibstractions from view — e.g., capabilities, new types, or new
>rocesses, as desired.

!. A DESIGN TO SUPPORT THE MULTILEVEL ACCESS PROPERTIES

Security levels and integrity levels are associated with every
>bject visible at the interface about which the desired properties
ire to be proved. In the case of the subsystem supporting secure
>bjects for PSOS, the visible interface consists of five modules, as
:ollows.

secure processes
secure directories
secure extended types
secure segments
secure capabilities

rhese five levels mimic five modules of PSOS noted above (namely
processes, directories, extended types, segments, and capabilities)
:hat do not have security and integrity levels associated with them.
Phe design is considered in Chapter IV-1. In implementation, each of
:hese modules uses only lower-level modules, with secure processes
Deing the highest and secure capabilities the lowest. (Note that if
svery system application were to require the multilevel security
properties, these five modules could completely replace the
:orresponding five operating system levels.)

). FORMULATION OF THE SECURITY PROPERTIES IN TERMS OF THE
4ETHODOLOGY AND THE SPECIFICATIONS

The various security properties stated above must be formally
stated in terms of the concepts of the specification language to be
formally proved. Although inadequate detail is available to the
reader at this point in order to fully comprehend the formality, the
following restatements of the above properties are given as an
illustration of the power of the methodology and the basic simplicity
of the statements to be proved. For the basic operating system, the

CHAPTER 1-1 OVERVIEW OF THE REPORT Page 11

alteration and detection principles may be stated as follows, based
on the notion of the accessibility of capabilities.

ITERATIVE ACCESSIBILITY: A capability is ITERATIVELY ACCESSIBLE
if and only if it is the value of a read reference, with
arguments that are themselves iteratively accessible.

DETECTION PRINCIPLE: For the specification of any visible
function, the capability value of any read reference must be
iteratively accessible.

ALTERATION PRINCIPLE: For the specification of any visible
function, capability values assumed by write references of the
specified function must be iteratively accessible.

These properties are satisfied by the specifications for the
operating system given in this report. These properties relate the
concept of authorized use with the mechanisms supporting capabilities
in the operating system. In essence, no access to a particular piece
of information is permitted without an appropriate capability for the
information; furthermore, the acquisition of capabilities is
controlled. These and additional properties of PSOS are discussed in
Chapter III-l.

For multilevel security, in the specifications of each function
of the visible interface, each possible primitive V-function value
(i.e., for each given set of argument values) has an access level
associated with it. This level is fixed. Similarly, each process
able to call that interface has an access level. The arguments of
all visible functions are at the same level as the caller (i,e., the
process invoking the function) because they are supplied by the
caller. The desired security conditions may then be expressed in
terms of SPECIAL as follows.

SECURITY CONDITIONS: In the specification of a visible
function, the security level of each write reference must be

(a) AT LEAST the security level of the caller, and

(b) AT LEAST the security level of each read reference upon
which the write reference is dependent.

Part (a) is precisely the *-property for security, while Part
(b) is the desired restatement of the simple security condition. The
duals for integrity are achieved by interchanging SECURITY and
INTEGRITY and by interchanging AT LEAST and AT MOST, as follows.

INTEGRITY CONDITIONS: In the specification of a visible
function, the integrity level of each write reference must be

(a) AT MOST the integrity level of the caller, and

(b) AT MOST the integrity level of each read reference upon
which the write reference is dependent.

IHAPTER 1-1 OVERVIEW OF THE REPORT Page 12

'hese conditions are satisfiable by the specifications for the
mltilevel security interface for PSOS. Not shown is that the stated
conditions imply conformance with the Bell and LaPadula model as'
itated here.

The correspondence between these properties and the
specifications for a set of visible functions for some system
juarantees that if the system was initially in a secure state, it
/ill subsequently be in a secure state after the execution of a call
>n any of the functions of the visible interface. It remains,
lowever, to show that the initial state is secure. Although checks
>n the consistency of the initial conditions can be made, it is noted
:hat the security of the initial system (i.e., the assignment of
.evels to users and shared objects) is basically a policy matter.

The above multilevel access properties must then hold for the
specifications of every 0-, 0V-, and V-function visible at the
interface. That is, no calls of a visible 0-, 0V-, or V-function are
Jefined except those satisfying the above security and integrity
conditions. Instead of returning an exception on a prohibited call,
jvery possible call follows the security rules. The proof technique
Is illustrated below, following a summary of a typical design to
support the access properties.

A recent formulation that is more suitable for formal proof is
jiven in Feiertag [80].

L0. CORRESPONDENCE PROOFS BETWEEN SPECIFICATIONS AND THE SECURITY
PROPERTIES

The proofs of the alteration and detection principles for PSOS
as stated in Section 1-1.9 require the demonstration that the
specification of each user-visible function satisfies those
properties. Part of this is ensured if the specifications satisfy
:he syntactic requirements of SPECIAL — that is, if they are
veil-formed specifications. The remainder is ensured because of the
^lose relationship between the capabilities of PSOS and the
3esignators of SPECIAL. A designator is precisely a nonforgeable
token for an object and is primitive in SPECIAL. In particular, the
PSOS design requires that every piece of information in the system
lave one or more capabilities associated with it. Every function
that references a piece of information must be presented the
appropriate capabilities as arguments. Since there are no operations
Ln the operating system that alter a capability or derive from it a
:apability for a different existing object, the alteration and
3etection principles can be readily enforced.

The proof procedures that demonstrate the multilevel security
properties for the PSOS subsystem described above all entail very
simple deductions. The proofs can be accomplished by deriving simple
rules from the security properties. When applied to the
specifications, these rules yield logical formulas whose validity
implies that the design is secure. Similar proofs apply to proving
the correspondence between the specifications for the proposed
^iultics security kernel and the desired security properties.

CHAPTER 1-1 OVERVIEW OF THE REPORT Page 13

Another security-related subsystem for PSOS provides an
environment in which processes may be constrained to operate in a
confined manner (e.g., see Lipner [75]). This is the confined
subsystems manager, discussed in Chapter IV-2. For this subsystem,
it is possible to state and prove that such a confined process cannot
transfer information out of the environment in which it must execute,
at least not by "storage channels". (A storage channel is any
communication that results from the use of V-function values, as
opposed to a "time channel", which uses inferences about the times
required for various programs.) However, at present these proofs have
not been carried out. In addition, the statement and proof of
security properties could be accomplished for the data management
system discussed in Chapter IV-3 and the monitoring subsystem of
Chapter IV-4, as well as for networks of operating systems (see
Chapter IV-5).

In the same way, the approach can be applied to arbitrary
applications. A further example of the potential applicability of
this approach is provided by the access control lists of Multics,
which are not a part of the proposed revised security kernel, but
which could also be specified as a higher-level interface.
Similarly, for PSOS access control lists may be formally specified,
and their desired security properties modeled. The proof approach
described here is then applicable to this additional software. In
this way, an implemented policy can become a mechanism.

11. TOOLS TO SUPPORT THE DESIGN AND THE CORRESPONDENCE PROOFS

We have developed an on-line environment to support the first
four stages of the methodology, i.e., the interface definition, the
hierarchical decomposition, the specifications, and the mapping
functions. This environment is also useful in performing the
syntactic checks needed in the proofs of correspondence between the
desired properties and the specifications. The design of this
environment is open-ended and is expected to be extended to support
implementations and proofs of implementations.

The environment currently runs on TENEX and is being implementec
on Multics. It is directly applicable to both PSOS and the Multics
security kernel, as well as other related efforts. The environment
currently exists in three parts, as follows.

(PI) The HIERARCHY MANAGER permits the establishment of a
hierarchy of collections of modules, and which is responsible
for maintaining the design structure.

(P2) The SPECIFICATION ANALYZER determines if each module
specification is syntactically correct. This part includes type
checking.

(P3) The MAPPING FUNCTION ANALYZER determines if the mapping
function expressions are syntactically correct and syntactically
consistent with the specifications of the modules involved.

In addition to these existing tools, a fourth tool is desirable to

HAPTER 1-1 OVERVIEW OF THE REPORT Page 14

•rove those cases involving semantic dependencies in the
orrespondence proofs.

(P4) The MODEL CONSISTENCY CHECKER performs extrinsic syntactic
checks, and also generates logical formulas whose validity is
equivalent to the satisfaction of the semantic conditions for
consistency with the model. Such a tool exists for proving
mechanically that every function in a set of specifications
satisfies a multilevel security model. A similar tool is
contemplated for the PSOS protection properties and for various
security policies that particular PSOS type managers may be
called upon to enforce.

The generation of the logical formulas is straightforward, and
ixperience shows that proof of many of the formulas is trivial while
•thers require theorem proving. Mechanical generation and proof are
rastly preferable to this effort being done manually, in order to
eliminate human error from the proof process.

.2. IMPLEMENTATION CONSIDERATIONS

The design of PSOS has been examined from the point of view of
ichieving an efficient realization. For a prototype development,
various existing hardware could support PSOS in a modest system
configuration, particularly with th help of new microcode. For a
commercial development, new hardware is preferable, although it may
>e possible to modify hardware currently in development. All of the
lardware required for efficient implementation of PSOS can be found
in various existing machines, but no single machine currently has all
>f the desired features. A small associative memory would have a
Iramatic effect comparable to that in Multics, for example. The
system is scalable, in that it could exist on one processor or on a
multiprocessor configuration, or as a distributed system,
furthermore, the processors could vary in capacity from minis to
naxis.

In general, the choice of programming language is not critical
:or implementing specifications. Appropriate syntactic constraints
>n the language can contribute to the qualtity of the resulting
software. However, if proofs of program correctness are desired, the
choice of a programming language in which to write the implementation
Programs strongly influences the provability of these programs. The
Language must be well structured and should provide considerable
Intrinsic security — e.g., via strong type checking and restrictive
scope rules. It must relate well to the methodology. It should also
simplify the task of program verification. It should include modern
features such as those found in EUCLID, ADA, MODULA, ALPHARD, SIMULA,
?LU, and GYPSY (such as module encapsulation, protection and data
abstraction). However it should not be as unconstrained as either of
:he first two of those languages in their full power.

The problem of implementing a module that is shared by
concurrent processes is important generally, as well as with respect
:o security. The SRI methodology includes a model of concurrent
computation that makes it possible to state and prove that a shared

CHAPTER 1-1 OVERVIEW OF THE REPORT Page 15

implementation is correct. In addition, synchronization conditions
have been derived that enable a set of correct stand-alone programs
to be automatically modified so that together they constitute a
correct concurrent implementation. Alternatively, it is possible to
check automatically whether the given synchronization conditions are
met. Thus, programs can be verified in isolation. If the required
synchronization conditions are satisfied, correctness in the real
operating environment is immediately ensured, given correct hardware
operation. (Unfortunately the view of concurrency that SPECIAL
currently supports is overly restrictive. This provides an important
topic for future research.) Issues related to implementation and
proofs of implementation are discussed in Part II and in Chapter
II1-2, respectively.

13. TOOLS TO SUPPORT IMPLEMENTATION

In addition to the tools outlined above to support the design
and the correspondence proofs, the following tools are also under
development at SRI to support implementation and program
verification.

(P5) The PROGRAM HANDLER determines for each program its
syntactic correctness and its syntactic consistency with the
specifications and mapping functions. Program handlers
currently exist for a subset of Modula (for use with KSOS) and
for a subset of Pascal (for SIFT). Both of these also provide a
bridge to the verification system in that they perform
translation necessary for interfacing with the verifier.

(P6) The DEVELOPMENT DATA-BASE MANAGER maintains a data base of
the specifications, programs, and proofs in (PI), (P2), (P3),
(P4), and (P5) , and keeps track of which modules are specified,
mapped, implemented, and verified.

Other tools that will support semiautomatic program verificatior
are also being developed, and can be used as appropriate. These
include various verification condition generators (including a
meta-VCG suitable for use with several different programming
languages), logical simplifiers, various program transformers (e.g.,
optimizers that preserve program equivalence), and other tools that
would enhance program verification. A more general view of the goals
of such an overall environment, including compatible tools for
partial execution, partial simulation, debugging, testing and
performance evaluation, is outlined in Neumann [74].

14. OUTLINE OF THIS REPORT

In the next chapter, the SRI methodology for the design,
implementation, and proof of large programming systems is described.
The specification language, SPECIAL, is described in Appendix A.
Part II presents the design in detail, with specifications in
Appendix B representing the results of the design part of stage 2.
Chapter III-l gives the properties of the specifications related to
security, and outlines their proofs. This represents the
verification part of stage 2. Chapter III-2 discusses implementatior

md proofs of implementation. Illustrative mapping functions (stage
!) and abstract programs (stage 4) are given in Appendix C, along
/ith illustrative proofs. Part IV then gives examples of the use of
:he methodology (and of PSOS) for various applications. Part V
>resents the conclusions of the work, which are now summarized
>rief ly.

L5. CONCLUSIONS

The operating system design described here has been developed
according to a formal methodology intended to support design,
implementation, and proof. Informal proofs of security properties of
:he specifications have been carried out, partly manually and partly
</ith the help of on-line tools. Formal correspondence proofs are
conceptually relatively simple, aided substantially by the syntax of
:he specification language and its specification analyzer, by the
abstraction afforded by the specifications, and by the simplicity of
:he model. Experience with the automatic multilevel security design
proofs in KSOS demonstrates the value of such proofs.

Considerable progress has been made toward proving the
correctness of implementations. Verification systems now exist at
SRI for meaningful subsets of Modula and Fortran, and one for Pascal
is under development for SIFT. Much work remains to be done.

The methodology is also being applied in other projects at SRI.
?or example, it is being applied to the design proofs of KSOS, and to
Illustrative code proofs. It is also being applied to the
Jevelopment and proof of other secure systems and of systems in which
security is not the major concern (as in Wensley et al. [76], in
tfhich fault-tolerance properties are to be proved).

A realistic assessment of the PSOS design presented here
requires a prototype implementation of the system, possibly
accompanied by proofs of the correctness of the implementation.
Although preliminary arguments indicate that PSOS can be implemented
efficiently, these arguments require demonstration. Similarly, the
security properties depend on correct implementation. A prototype
implementation study is just beginning.

A realistic assessment of the methodology requires such a
3evelopment, including implementation and proof of implementation.
Phe KSOS developments have shown the value of the methodology for
Jesign and the value of formal specifications as a medium for
communication (e.g., between the two KSOS efforts) and for design
proofs. A major conclusion of the PSOS work is that further
3evelopment seems warranted. Another conclusion is that much
research remains to be done, particularly in the areas of
Implementation and proofs of implementation.

CHAPTER 1-2

THE METHODOLOGY FOR DESIGN, IMPLEMENTATION, AMD PROOF

This section provides greater detail on the methodology
outlined in Chapter 1-1. Additional detail concerning the use o
the methodology is found in the discussion of the design (Part
II), the proofs (Part III) and the applications (Part IV).
Further background on the methodology is given in Robinson and
Levitt [75].

In recent years there has been increased recognition of the
benefits of using programming methods that introduce several
refinements (i.e.f levels of abstraction) between the statement
of the programming task and the runnable code. The stepwise
refinement method (Dijkstra [72]) allows a programmer to
elaborate his concept of a program in a sequence of refinements
and to prove «- formally or informally — the correctness of eacl
refinement. From the sequence of verified refinements, it is
then possible to deduce the correctness of the entire program.

The methodology is based on a formalization of the
refinement concept. Here a sequence of abstract machines
(MQ,M1,...,Mn) is defined, where MO is the most primitive machim
(possibly the hardware or a programming language). Each abstrac
machine consists of a state and a set of transformations for
effecting state changes. If MO is realized by hardware, the
state is the register set and physical memory, and the
transformations are the machine instructions. If MO is
represented by a programming language, then the state is the set
of program variables, and the transformations are the statements
in which assignment to variables takes place.

An abstract program is a program (written in an abstract
programming language) that can be run on an abstract machine.
Every abstract machine has an abstract machine interpreter that
can execute an abstract program on that abstract machine. Thus
the semantics of the abstract programming language are defined b
the actions of the interpreter. The issues concerning abstract
programmming languages and their interpreters are omitted from
this paper. The formal definition or specification of the
behavior of an abstract machine contains the only assumptions
that an abstract program (or its writer) may make about an
abstract machine. However, each non-primitive abstract machine
in the hierarchy (Mi, 0<i<n) is implemented in terms of its
descendant (Mi-1). In the terminology of Parnas [74], abstract
machines are the elements of the hierarchy, and the "implements"
relation is the defining relation of the hierarchy. The
"implements" relation has the following properties:

(1) The state of Mi is derivable from the state of Mi-1 by
a mapping fi.

CHAPTER 1-2 THE METHODOLOGY Page 1-2.2

(2) Each transformation rij of Mi is carried out by the
execution of an abstract program p(i-l)j running on
Mi-1.

The mapping and the abstract program must be consistent with the
specifications of Mi and Mi-1, in order for the implementation to
satisfy the specification. Thus the following diagram must
commute, where SI and S2 are states of Mi, Tl and T2 are states
of Mi-lf and rij and p(i-l)j are as above:

rij
SI > S2

fi fi

This first view of a hierarchy is restrictive in the sense
that it is a linear ordering, rather than a tree or a directed
acyclic graph. Thus each abstract machine occupies an entire
level. In this view, a level is implemented only in terms of the
level immediately below it (see Figure 1-2.la). Since each
non-primitive level i (i>0) of such a system adds features to
those available at level i-1, level i is different from — but
contains many of the features of — level i-1. On the other
hand, there may be some features that are available at level i-1,
but not at level i. When a feature of level i-1 (i>0) is visible
above level i, we say that the feature is transmitted by level i
(or that level i is transparent with respect to the feature) .
When a feature of level i-1 (i>0) is not visible above level i,
we say that the feature is hidden by level i (or that level i
hides the feature). However, for purposes of description, it is
important to look at several other views of this same hierarchy,
views in which an abstract machine may not completely define a
level.

In this second view, an abstract machine may be divided into
one or more component abstract machines called modules. There
are many possible modularizations of an abstract machine.
However, we shall be concerned here with a particular
modularization schema, having the following properties:

(1) .At level i (i>0), machine Mi (of Figure 1-2.la)
consists of module Mii (the defined module at level i),
and at most i other modules Mij ((Kj<i) , where Mij is
equivalent to Mjj. Thus Mii represents the set of
features that level i adds to the system, and Mij
represents the set of features that are transmitted to
level i from machines at lower levels (see Figure
1-2.lb).

CHAPTER 1-2 THE METHODOLOGY Page 1-2.3

(2) A module may be absent from the definition of a level's
abstract machine (see M31 of Figure 1-2,1b). This
absence represents the features that level i hides from
the levels above it. Thus if a module Mij is absent,
the module Mkj must also be absent, for all k, k>i.
This rule is needed in order to be consistent with the
first view of a hierarchy, that a level's features must
be either defined by that level or transmitted from
lower levels.

It is also possible to regulate transparency on the basis of
individual functions of a module, rather than an entire module.
If any of a module's features is visible at a level, then
statements can be made about the module's behavior at that level.
Thus the entire module can be treated as visible at that level
(even if some of its functions are invisible there) . The
highest-level module, according to this view, defines the user
interface of the system.

It is desired to provide modularization within a level, to
avoid redundant module definitions, and (at the same time) to
retain the rigor of the first two views of the hierarchy. Thus,
a third view is adopted, in which only a level's defined module
(in the second view) is explicitly described. The new diagram of
the same hierarchy appears in Figure 1-2.1c. Here module Mi' is
equivalent to Mii of Figure 1-2.lb, for all i. The
specifications of the example will be presented in this way, but
the system behaves in the same way as the equivalent hierarchies
of Figures la and lb.

Each module is formally defined using a notation derived
from Parnas [72a, 72b]. This notation allows the compact
description of a module having a large (possibly infinite) number
of states. A module's state and transformations are available to
its environment by means of functions that can be called by
abstract programs. Following the Parnas notation, the state
information is available via the outputs of V-functions
(value-returning). A module's state is changed by calling a
member of the set of transformations or O-functions (operation).
In certain cases the state information is available as the result
of a transformation. In this case the function is said to be an
OV-function.

Each V-function's specification contains a definition of its
initial value, and a delineation of the conditions (i.e.
except ion conditions) under which it may not be successfully
called. The specification of an O-function or an OV-function
contains exception conditions, and a description of the effects
of a call to the function. If an exception condition is
satisfied, no value is returned in the case of a V- or
OV-function, and no effects are executed in the case of an 0- or
C)V-function. In both cases control is returned to the calling
program, with special notification that an exception condition

CHAPTER 1-2 THE METHODOLOGY Page 1-2.4

has been satisfied.

Initial values, exception conditions, and effects are
expressed in terms of assertions. For initial values, the
assertions are written in terms of module constants. For
exception conditions, the assertions are written in terms of
constants and the module's V-function values (describing the
module's state before the call). For effects, the assertions are
written in terms of constants and two sets of V-function values
for the module: those before the call (in single quotes) and
those after the call (unquoted). The assertions for the effects
must be true after the call is completed. Thus, the effects
describe a relation between the two states that must be satisfied
upon exit from the 0-function.

The progression from the initial design formulation to the
specification and implementation of the system can proceed in
five stages. Except for the first stage, some amount of formal
proof can take place at each stage. The stages are intended to
represent the desired protocol for constructing a hierarchically
structured software system, but they may overlap somewhat -- with
possible backtracking when design changes must be made. However,
the most important fact is that, when completed, the design and
implementation will be visible in distinct stages as follows.

Stage £—The initial stage involves the definition of the
desired interface visible to callers of the system or subsystem
being developed. This interface is then decomposed into a set of
modules, each of which manages objects of a particular type. (An
object is a system resource such as a segment, a directory, a
process, or a data base.) Each module consists of a collection of
functions (corresponding to operations and data-structure
accesses). Each function has an argument list and can be invoked
either by a program, or directly by a user. Each function is
either an O-function, an OV-function, or a V-function.

Stage 2—Here all of the above modules, together with others
whose functions are hidden by the interface but are to be part of
the eventual implementation are placed in a hierarchical
ordering. For each module, we list the 0- and V-functions that
it will contain, and decide at which higher levels (if any) each
of these functions will be visible.

Stage 2—Each module is formally specified as described
above. Based on the specifications for a module, it is possible
to attempt to prove that the specifications are self-consistent
and that certain global assertions are true. A proof of
self-consistency involves demonstrating that, for each
O-function, no set of assertions in the effects is
self-contradictory over the domain of definition for the
V-functions. In general, an inconsistent module specification
prevents a proof of the implementation of the module from being
successful, and thus a proof of inconsistency need not be

CHAPTER 1-2 THE METHODOLOGY Page 1-2.5

explicitly carried out. However, for diagnostic purposes, it is
useful to perform consistency checking at this stage. Global
assertions (see Price [72]) are expressions written in terms of
the V-functions of the module. In order to show that they apply
to the module, it must be shown that they are true for the
initial state of the module and also after any sequence of
O-function calls. A similar method for proving properties of an
abstraction is suggested by Hoare [72], and Spitzen and Wegbreit
[75]. Global assertions describe general properties of a module,
and thus may be used as lemmas to simplify the proof of a program
that calls functions of the module. Some general system
properties (e.g., those pertaining to security) can be
represented as global assertions. General system properties are
usually associated with the user interface.

Stage . 3 " A t this stage, decisions are made regarding the
representations (or mappings) of the state of level i
(characterized by its V-functions) in terms of the state of level
i-1 (taking the view of Figure 1-2. la). It is also possible to
state and prove properties of the representations. This approach
is similar to that of Hoare [72]. The generalization to the
hierarchies of Figures lb and 1c is straightforward.

The state of a module is defined by a particular assignment
of values to the module's V-functions. In terms of the state
space S of Mi and the state space T of Mi-1, a mapping function
of level i is defined as a surjective (i.e. "onto") function
from T1 to S, where T1 is a subset of T. It is first shown that
this concept of a mapping function conforms to the desired
properties of the data representation. A method is then given
for writing relations among V-function values of Mi and those of
Mi-1 in a manner that ensures that such relations constitute a
mapping function.

With regard to the state mappings from T1 to S, the
following are observed:

(a) Numerous states in Mi-1 can map to a single state in
Mi, as depicted in Figure 1-2.2a, due to the
possibility of delaying the decision on the precise
representation of the state of Mi.

(b) Not all states of Mi-1 have images in Mi. As
illustrated in Figure 2b, a direct transition (S1,S2)
in Mi might correspond to a transition (Tl,T2) in Mi-1
that traverses several intermediate states that do not
map to states in Mi. Moreover, there might be several
paths between Tl and T2 (as shown), corresponding to
different implementation algorithms.

(c) The most general case is that in which each of the
states in a direct transition pair of Mi corresponds to
several states in Mi-1. In Figure 1-2.2c, SI
corresponds to Tl and T2, and S2 corresponds to T3 and
T4. A correct implementation of the direct transition

:HAPTER 1-2 THE METHODOLOGY Page 1-2.6

(S1,S2) in Mi could be any of the following transitions
in Mi-1: (Tl,T3), (TlfT4), (T2,T3) , or (T2,T4) .

A mapping function for level i is written as a set of
expressions containing the V-function values of machines Mi and
4i—1• Each mapping function expression contains a V-function
/alue of Mi (with formal parameters) set equal to an expression
containing V-function values of Mi-1, which gives the value of
the higher-level V-function in terms of values relevant to the
Lower level• A V-function value of Mi maps down to an expression
containing V-function values of Mi-1, even though mapping
functions are defined as an upward mapping of states. This is
because we can apply the mapping function expressions to a
ligher-level assertion in order to derive a lower-level assertion
(see the discussion of mapped specifications below).

Once mapping function expressions have been defined for each
)f the V-functions of Mi, it remains to be determined if they
characterize the properties of a mapping function, as enumerated
Ln the state-space description of abstract machines. The mapping
function expressions are consistent if such is the case. If
napping function expressions are inconsistent, it is impossible
to find an implementation satisfying the specifications of the
nodules Mi and Mi-1. The consistency of mapping function
expressions between Mi and Mi-1 is proved with respect to the
specifications of Mi by creating mapped specifications for Mi,
i.e., substituting each V-function reference in the specification
:>f Mi by its instantiated mapping function expression. The
napped specifications can be proved consistent in the same manner
jsed to show the self-consistency of a module specification in
Stage 2.

As discussed below, mapping function expressions are used to
transform module specifications of Mi into assertions expressed
in terms of only V-functions of Mi-1.

The effort in the first three stages results in a design for
a system. In our notion of a design, many of the important
system properties can be stated and proved before any code is
vritten. The specifications of Mi and Mi-1, and the mapping
function of level i are sufficient to generate the correctness
criteria (i.e., input and output assertions) for an
implementation of Mi in terms of Mi-1.

Stage 4^—Each of the functions of Mi, i>0, is implemented as
an abstract program using the functions of Mi-1 and the control
constructs of some formally-defined programming language. These
programs complete the binding of the decisions that were left
incomplete by the mapping functions of Stage 3. Each of these
abstract programs must be proven to be a "successful"
implementation, with respect to the specifications of Mi and to
bhe mapping functions between Mi and Mi-1. This is accomplished
3y deriving input and output assertions for the implementing

CHAPTER 1-2 THE METHODOLOGY Page 1-2.7

programs, which (if satisfied) imply such a "successful"
implementation. The input and output assertions for the
implementing programs are trivially derivable from the mapped
specifications of Mi. Then the correctness of the implementing
programs is proved with respect to these assertions using an
extension of Floyd's method (Floyd [67]) described in Robinson
and Levitt [75]. The extension axiomatizes the generation of
verification conditions for programs calling O-functions.

Each implementing program has an entry point with no
pre-conditions (i.e., an input assertion of TRUE) and several
exits. The program can exist without a pre-condition, because it
contains its own machinery for detecting exceptions and for
reporting them back to the caller (via the multiple exits) . If
the function has n exception conditions, there are n+1 exits: one
for each of the n exception conditions (with the mapped exception
conditions serving as corresponding output assertions), and one
for the normal exit. In the case of a V-function V (Figure
1-2.3a), the output assertion for the normal exit states that the
program returns a value equal to the instantiated mapping
function expression for V. In the case of an O-function 0
(Figure 1-2.3b), the output assertion for the normal exit
consists of the effects of the mapped specification for 0.

Each of the primitive functions, both of MO and of the
abstract programming language used in Stage 4, is implemented in
terms of programs in an available well-defined implementation
language, e.g., the instruction set of the hardware or a
high-level programming language. The communication mechanism
between the levels must also be decided. It could be any one of
the following: macro expansion at compile time, procedure calls,
or interprocess communication. The formal semantics of the
communication mechanism must be stated and proved correct. The
end product is a software system with the behavior of the
highest-level abstract machine Mn (according to Figure 1-2.la).
The users of such a system need not be concerned with the lower
levels, because their existence and behavior is completely hidden
by Mn.

The methodology localizes design issues to the proper
context, and it separates the issues of the behavior of an
abstraction from those of data representation and implementation.
This localization and separation is attractive because it reduces
the complexity to be dealt with at a given level and stage. The
methodology seems to lead to systems whose designs are
understandable and whose properties are intuitively evident, ever
in the absence of proofs. The methodology reduces the proof of a
large program to the proofs of numerous small programs, and
simplifies the input and output assertions that are applied to
each program. Due to the data abstraction provided by the
hierarchy, the assertions tend to be expressed in terms of
functions relevant to a particular level. Currently the main
impediments to proving large programs involve the difficulty of

CHAPTER 1-2 THE METHODOLOGY Page 1-2.8

framing assertions for the program and the difficulty of carry
out the deductions for large unstructured programs. This
methodology holds attractive prospects for the proof of large
software systems. The remainder of this report shows how the
methodology has been applied to the design of a secure operati
system whose security properties can be proved.

CHAPTER 1 - 2 THE METHODOLOGY P a g e 1 - 2 . 9

UJ

UJ
- J

<

IN
G

<rUJ

G
CO

O
O

t
UL
O
CO

soc
UJ

z

zo
UJ

i
D
G
O

G
UJ
Z
LIUJ

G

2>
11

«> .

»

o

A\

CO

8

z

U
Z

A
T

IO
LS

J U J

Q -*
OIL
S O

II

s"
A
11

o
A\

>

II

V

<
o

A

Q
UJ
Z
—*
LL
LU
D
Z
D
II

ft

A

<

V

o
A

»
Q
UJ

N
D

E
F

IN
D
II

IAI)

s
LUz
LL

=
U

N
D

E

Q

> •

X
oDC
<
CC
LU

I
LL

o
LU

T
H

E

T
Y

P

O

LU

>

n
D LU

a s
LU

QC
I >-
H 00

s
< UJ

i
UJ O

OS

LU
cc
D

LL

CHAPTER 1-2 THE METHODOLOGY Paqe 1-2 . 10

S, = fCT,)

(c)
SA-2581-7

FIGURE 1-1.2 MAPPING FUNCTION f RELATING THE STATES OF
TWO ABSTRACT MACHINES

V

Tnormal
* return

MAPPING FUNCTION
EXPRESSION FOR V

(a)

#> ex«

I normal
* return

MAPPED EFFECTS OF 0

(b)
ex- = Mapped Exception Condition

SA-2581-10

FIGURE 1*2,3 FLOWCHART DIAGRAMS FOR PROGRAMS
IMPLEMENTING A V-FUNCTION AND AN
O-FUNCTION SHOWING INPUT AND
OUTPUT ASSERTIONS

PART II
CHAPTER II

DESCRIPTION OF THE OPERATING SYSTEM

This chapter presents a description of the operating system. I
complete and rigorous description of the operating system is given
in the formal specifications of Appendix B. No attempt is made in
this chapter to duplicate the contents of the specifications.
Ratherf the following discussion considers the more significant
parts of the design. Readers interested in details of the design
should consult the specifications. In addition to the design
itself, this section discusses the motivations for the design and
some of the implementation considerations of the design.

The operating system is intended to be general-purpose and
therefore contains several facilities common to many general-purpos*
systems such as virtual memory, multiprocessing, a file system, and
virtual I/O devices. These facilities provide a basic and
sufficiently general set of resources for efficiently implementing <
wide variety of applications. These facilities have been designed
to be easy to use and understand so as to simplify the
implementation of the applications.

Since proving the security of the operating system is a major
objective of this work, the means of achieving security is cruciall;
important to the system design. Capabilities are an excellent
choice for the protection mechanism because they are simple enough
to be introduced as the most basic part of the system design. All
protection in the system derives from the basic capability
mechanism. Therefore, once a few security properties are proven
about capabilities, it is a straightforward matter to prove that
security properties hold for the entire system.

There are many different types of security policies that one
might wish to enforce upon a system or subsystem. Since the
operating system is intended to be general-purpose, it should be
able to support a wide variety of different security policies. The
capability mechanism is both general and efficient enough to allow
construction of a wide variety of protection mechanisms which can
enforce many different security policies.

ART II PSOS DESCRIPTION Page II.2

THE OPERATING SYSTEM INTERFACE

The operating system can be viewed by a user as a collection of
irtual resources. Examples of such resources are memory,
rocessing, and I/O. Each virtual resource is divided into abstract
nits called objects. For example, virtual storage is divided into
bjects called segments. The user-visible interface to the
perating system will be described in terms of the user-visible
bstract objects and the operations that can be performed on them.

APABILITIES

For purposes of security, the most basic type of object in the
ystem is the capability. Capabilities are the means by which all
ther objects in the system are identified and are the basis of
rotection and security in the system.

In order to perform any operation upon an abstract object of
he operating system, a user must invoke an operating system
unction appropriate to that object. All user-visible functions
hat operate upon an abstract object require a capability for that
bject as an argument. Every capability has two parts. One part is
unique identifier. The unique identifier can be thought of as an

nteger that serves to identify the object being operated upon,
herefore, each distinct object must be identifiable by one unique
dentifier, necessarily distinct from all others. The other part of
he capability is a set of access rights to the object. The access
ights define those operations which are permitted on the object,
he access rights are defined with respect to the type of object to
e operated upon. Therefore, each type of object can have different
ypes of access rights. There is a maximum number of access rights
hat may be defined for any type of object.

By invoking a system function, any program can obtain the
ccess rights associated with a given capability. It is necessary
or programs to be able to determine if the unique identifier parts
f two different capabilities are the same in order to determine if
hey represent the same object. A slave capability for a given
apability is defined to be the given capability with no access
ights. The function GET_SLAVE returns the slave capability of a
iven capability. The important property of a slave capability is
hat there is only one slave capability for each unique identifier,
herefore, if two capabilities have the same unique identifier
i.e., they represent the same abstract object) they will have the
ame slave capability. Determining if two capabilities represent
he same object is accomplished by comparing the slaves of the two
apabilities.

There are five visible functions that operate upon
apabilities. These functions comprise the CAPABILITIES module,
here is a function just described, GET__SLAVE, that returns the
lave of a given capability, and a function GET_ACCESS that returns
he access rights of a given capability. The function
REATE_CAPABILITY creates a new capability with a unique identifier

PART II PSOS DESCRIPTION Page II.3

which has never appeared in a previously created capability and
which has all possible access rights. The function
CREATE_RESTRICTED_CAP creates a new capability with a previously
unused unique identifier as with CREATE_CAPABILITY; however, only a
given subset of the possible access rights are included in the new
capability. The function RESTRICT_ACCESS returns a new capability
with the same unique identifier as a given capability and with a
specified subset of the access rights of the given capability.
These are the only operations permitted on capabilities. Note that
none of these operations modifies an existing capability, and that
whenever a new capability is created with the same unique identifier
as an existing capability by invoking the function RESTRICT_ACCESS,
the new capability contains a subset of the access rights of the
existing capability. These two properties are necessary for
maintaining the security of the system.

SEGMENTS

Segments are the primary means of storing data on the operating
system. Each segment consists of an array of storage cells. Each
cell is indexed by an integer from zero to one less than the number
of cells. Each cell can contain either a capability or an integer.
Any cell can be addressed by giving a capability for a segment and
the index of the desired cell in the segment. The READ_WINDOW
function of the SEGMENT module returns the contents of the cell at
the given address. The WRITE__WINDOW operation changes the contents
of the cell at the given address to be the value given. Functions
exists to create new segments and delete existing segments.

WINDOWS

It is often useful to be able to permit access to only a
portion of the data in a segment. A window permits access to any
contiguous block of data of a segment. The function CREATE_WINDOW
returns a capability that can be used to access some contiguous
portion of a given segment. The CREATE_WINDOW function specifies
the beginning and length of the portion of the segment to be
accessible from the window. A window capability can be used as an
argument to the READJtflNDOW and WRITE__WINDOW functions in a manner
similar to a segment capability. Functions exist to delete a windov
and to change the block of data to which a window refers.

PROCEDURES

A procedure is simply a sequence of instructions which can be
used by the operating system to control the execution of a process.
The instructions of a procedure are stored in a segment. All
segments can contain procedures. A segment capability can be used
as an argument to the CALL function (described later) to cause the
system to actually begin to interpret the instructions of the
procedure. A procedure may have several entry points, i.e., cells
at which execution of the procedure may begin. The entry points
must all be at the beginning of the procedure segment, i.e. the
entry points must occupy the first 'n' cells of the segment where
'n1 is the number of entry points. The CALL function will not

>ART II PSOS DESCRIPTION Page II.4

>ermit entering a procedure at an instruction that is not an entry
>oint.

I/O DEVICES

Any general-purpose operating system must support several types
)f I/O devices. However, the choice of precisely which I/O devices
:o support depends upon the specific needs of the users of the
system. For whatever I/O devices are selected, it is assumed that
:he operating system will provide a well engineered set of functions
:or operating those devices.

Whatever I/O devices are supported by the system, it is likely
:hat needs will arise to support other I/O devices. In addition to
functions that support specific I/O devices, it is necessary to have
functions which allow utilization of arbitrary I/O devices. It is
:hese functions that are described below.

Each device has four communication paths to the user program.
Cach path contains one fixed-size buffer. Two of the paths,
"command" and "status", are for transmitting control information
between the device and the user program and the other two, "input"
and "output", are for transmitting data. The function SENDjCOMMAND
Ls invoked to send control information to a device. This function
Places the control information in the "command" buffer. The device
Invokes the DEVICE__COMMAND function to retrieve the information from
:he command buffer. In the opposite direction, the device invokes
:he function CHANGE__STATUS to place control information in the
'status" buffer. This control information can be read by the user
program by invoking the RECEIVERSTATUS function. Similar functions
*xist for passing data between the device and the user.

It is assumed that the device will constantly monitor the
"command" buffer for control information, since executing these
commands is its only purpose. However, it is unreasonable to expect
the user program to constantly monitor the "status" buffer, because
such monitoring is a waste of time for the user process. For this
reason, the CHANGE_STATUS function will optionally notify a waiting
process of a change in device status by invoking the WAKEUP function
(see section on process coordination).

Note that none of the above functions incorporates knowledge of
specific devices. The communication paths have been designed to be
sufficiently general to permit communication with almost any type of
I/O device. Knowledge about any particular device must be
incorporated in the programs that invoke the communication
functions.

DIRECTORIES

Directories provide a means of associating names with
capabilities and, thereby, the objects that the capabilities
represent. A directory is a collection of named entries. Every
lame within a directory must be unique. However, the same name may
appear in different directories. Each entry contains one

PART II PSOS DESCRIPTION Page II.5

capability. The function GET_CAP of the DIRECTORIES module returns
the capability contained in the entry with the given name in the
given directory. Every entry is locked. This means that GET_CAP
will not return the capability unless the appropriate key is
supplied. The key is simply another capability. The lock mechanism
provides a way to control access to each entry in a directory
individually. The functions ADD_ENTRY and REMOVEJENTRY create and
delete entries. The functions CREATEJDIRECTORY and DELETEJ3IRECTORY
create and delete directories.

Certain designated entries in directories are treated
specially. These entries are termed distinguished. The function
REMOVEJENTRY cannot be applied to a distinguished entry and the
function DELETE_DIRECTORY cannot be applied to a directory
containing a distinguished entry. A distinguished entry is added to
some designated directory whenever a new object is created by the
system. The entry contains the capability for that object. The
object may be a segment, window, directory, user-defined object, or
process. The distinguished entry is removed only when the object is
deleted. Therefore, there is one and only one distinguished entry
for each existing user-visible object. The purpose of distinguished
entries is to guarantee that there exists at least one capability
for each existing user-visible object. This guarantees that there
is always a means of accessing every existing user-visible object.

PROCESSES

Processes are the most complex objects of the system. This is
largely because processes are made up of many other objects which
are themselves complex. However, the key to understanding the
operation of the system is understanding how a process operates.
The following subsections describe distinct aspects of a process.

i) Registers

Each process has associated with it a set of registers. The
registers are of two types: general registers and address registers.
The general registers can contain any type of data, i.e.
capabilities or integers. There is a fixed number of general
registers, and there is an operation to load each register and to
read the contents of each register. The address registers contain
addresses of cells (words) in segments or windows. Each address
register, therefore, contains a capability for a segment or window
and an offset of a word in that segment or window. There are
operations to load each address register and to read the contents of
each address register.

Some of the address registers are given special interpretations
by the system: the program counter, the stack register, and the
arguments register. The program counter contains the address of the
word of storage containing the instruction currently being executed
by the process, The program counter is automatically incremented
after execution of each instruction is completed or it is modified
by a CALL or RETURN (described below). The stack and arguments
register are used by the CALL and RETURN functions as part of the

ART II PSOS DESCRIPTION Page II.6

iscipline of invoking procedures. The interpretation and use of
hese registers is described below.

There are two special purpose capability registers: the process
egister and the instruction class register. The process register
ontains the capability for the process. From the point of view of
ach process, the value of the process register is constant and can
nly be read. The instruction class register enables the execution
f instructions, i.e.f an instruction can not be executed unless an
ppropriate capability is contained in the instruction class
egister. Typically, a single capability placed in the instruction
lass register enables many instructions. For example, a single
apability enables all user executable instructions. Functions are
rovided to read and modify the instructions class register.

i) Execution of instructions

The purpose of each process is to perform computations. These
omputations are defined by a programs that are contained in
rocedures. The essential component of each procedure is a sequence
f instructions. These instructions dictate the sequence of
unctions invoked by the process. Each process interprets
nstructions as follows:

1. Read the address in the program counter.
2. Read the contents of the word specified by this address.
3. Interpret the contents as an instruction, and invoke the

functions necessary to accomplish the intended effects of the
instruction.

4. Modify the program counter to contain the address of the next
instruction if the program counter has not already been
modified in the course of executing the instruction.

5. Go back to step 1.

nstructions may have only effects that are compositions of the
unctions described in the specifications. For example, a load
egister instruction might compose the READ_WINDOW function of the
fINDOWS module and the LOAD_GENERAL_REGISTER function of the
REGISTERS module. The choice of what functions to compose to make
;p instructions should be largely dependent on the intended
pplications of the system. The basic design of the system is not
ependent on the instruction set chosen.

ii) Procedure activation

A procedure activation is a very important element in the
peration of a process. At any given time, all the objects
ccessible to a process must derive from the procedure activation,
.e. a process cannot reference an object unless a capability for
hat object can be derived from a capability contained in the
rocess's procedure activation. A procedure activation consists of
hree parts:

1. a procedure,
2. an activation record, and

PART II PSOS DESCRIPTION Page II.7

A procedure has; been defined above, and is primarily a sequence of
instructions and possibly some data. The data and instructions may
contain capabilities, and these capabilities may be used to access
other objects. An activation record is an array of data words that
is accessible only to the process while it is executing in the
procedure activation. In other words, the activation record
contains data that is local to a given activation of a procedure.
The process registers are considered to be part of the current
activation record. An activation record is automatically created
when a procedure is invoked via the CALL function (see below). The
activation record initially contains the arguments of the procedure
invocation. The RETURN function deletes the activation record for
the activation.

A procedure record is also an array of data words. However,
the scope of a procedure record is different from an activation
record. A procedure record is accessible from all activations of a
given procedure within a process. A procedure record can be read or
written by invoking the functions READJPR or WRITE_PR of the
PROCEDURE_RECORDS module. The size of the procedure record cannot
be changed. The procedure record is deleted when the process is
deleted.

The three basic objects of a procedure activation provide the
various different types of storage necessary to an activation. The
procedure segment itself provides permanent storage. The procedure
record provides storage for the duration of the process and the
activation record provides storage during the activation.

A procedure activation is initiated by invoking the CALL
function of the USER_INVOKE module and the activation is terminated
by invoking the RETURN function of the same module. The CALL
function requires arguments: the address of the procedure being
invoked, the address of the instruction to return to when the new
activation is completed, the address of the arguments for the new
activation, and the address of the current top of the stack.

There are actually three types of procedure invocation: the
system procedure call, the protected call, and the unprotected call.
The system call is used whenever a system procedure is invoked and
looks to the user exactly like a protected call. The system call is
described fully below. The protected call creates a new segment to
be used as the activation record of the new activation and places a
pointer to this new segment in the stack register. It also places
the address of the arguments in the arguments register. The return
address is remembered by the system so that it may be utilized
during the return from the new activation. The address of the
called procedure is placed in the program counter causing control tc
transfer to the called procedure.

The unprotected call does not create a new segment to be used
as the activation record of the new activation. Instead it simply
loads the stack register with the given address of the top of the
stack. In other words the activation record for the new activation
will be placed wherever the calling procedure specifies the top of

?ART II PSOS DESCRIPTION Page II.8

:he stack to be. This implies that the new activation is not
Protected from the calling activation. In the unprotected call the
arguments are passed in the same manner as the protected call, i.e.,
:>y placing the address of the arguments in the arguments register.
Phe address returned by the unprotected call function is simply the
return address supplied by the caller. This information is used by
:he return operation to return to the calling activation.

The RETURN function is invoked by a procedure activation in
Drder to terminate the activation. The RETURN function requires one
argument: the return information returned by the CALL or
JNPROTECTED_CALL function. If the call was protected then the
return must find the return address from the system data base. If
the call was unprotected then the argument to the RETURN function is
:he return address. Control is then transferred to a fixed
Location. It is assumed that the instructions at that location will
:hen perform the necessary operations to cause the actual return to
:he calling activation using the return address as the source of
return information.

A few general comments are in order to fully explain the
invocation of procedures. The protected CALL function is provided
bo permit isolation between the calling and called activations. The
>nly direct communication path between the calling and called
activations in a protected call is through the arguments. The
sailing activation must be careful to pass as the arguments address
Dnly sufficient capabilities for the arguments it wants the called
activation to have access to. The calling activation will likely
create a window to use as the arguments address. The unprotected
sail is used when both the calling activation and called activation
are willing to trust one another. Since, in an unprotected call,
the calling activation provides the activation record for the called
activation record and the called activation has access to the return
information of the calling activation, they must both trust each
Dther. Because an unprotected call implies mutual trust, either the
sailing or the called activation can demand a protected call. The
sailing activation demands a protected call by invoking the
protected call operation instead of the unprotected call operation,
rhe called activation demands a protected call by failing to provide
"read" access in the capability contained in its address.

The return address supplied as an argument to a call must
actually be the address of sufficient information to restore the
state of the calling activation sufficiently so that it may proceed.
\t least two pieces of information are necessary to accomplish this:
the address of the activation record for the activation and the
address of the instruction at which execution is to be resumed in
the calling procedure. Other information may also reside here such
as the values of some of the registers which are to be restored.

It is important to note that when a new activation begins
execution via a protected call, the only objects it has access to
are those within the procedure segment, activation record (including
the registers), or procedure record of the new activation or objects
accessible via calling other procedures or functions for which

PART II PSOS DESCRIPTION Page II.9

capabilities exist in the procedure segment, activation recordf or
procedure record of the new activation. The only ways for the two
activations to share objects is through arguments or by
incorporating shared capabilities into the procedure segments
themselves. This makes it easy to construct procedures that are
well protected from other procedures in the system, and makes
possible the building of secure subsystems.

iv) Process Coordination

Different processes can share information by sharing data in
commonly accessible segments. There is a need for processes to
coordinate their activities in order that they do not interfere with
one another. The system provides two very basic, but powerful,
coordination facilities. The first of these is a very simple "test
and set" type of instruction provided by the SEGMENTS module. The
function DECREMENT_ANDJTEST decrements by one the integer value
stored in the given word of the given segment and returns true if
the resulting value is a negative integer. The function
INCREMENT_AND_TEST increments by one the value of the specified word
and returns true if the original value of the word was a negative
integer. These instructions can be used to assure mutual exclusion
of processes in a critical section of program and are as powerful as
the P and V operations of Dikjstra.

The second coordination facility is provided by functions of
the COORDINATOR module. These functions permit one process to queue
itself and wait for a wakeup from another process and permit a
process to cause another process to cease waiting and continue
execution. The test and set functions of the SEGMENTS module and
the wait and wakeup functions of the COORDINATOR module can be used
to construct more complex process coordination operations.

v) Clocks and timers

The system maintains a clock. The clock is simply a integer
value that is incremented at uniform intervals of time. The value
of the clock is maintained by invoking the function UPDATE_CLOCK of
the USER_JTIMERS module. It is assumed that some system controlled
process (probably dedicated to this purpose) is responsible for
invoking the UPDATE_CLOCK function at regular intervals. The value
of the clock is obtained by invoking the function READ__CLOCK.

Each process may (by invoking the function SETjCLOCKJTIMER)
declare a clock time at which it is to be awakened. When the value
of the clock becomes greater than the specified timer value, the
wakeup is performed.

Each process also has a virtual clock of its own. This clock
records the time the process spends executing instructions. The
virtual clock time does not include the time the process spends
suspended or waiting. The precise definition of this time is
implementation dependent. The function READ_PROCESS_TIMER returns
the value of this clock. Each process may also declare a process
clock time at which it is to be awakened. This declaration is made
by invoking the function SET PROCESS'TIMER.

PART II PSOS DESCRIPTION Page 11.10

/i) Creation and deletion of processes

As stated above, the objects accessible to a process at a given
:ime are determined by the procedure activation that is executing in
:he process at the given time. The objects accessible to a process
Eor its entire lifetime are determined by the procedure activation
bhat executes when the process is created. The task of creating a
process is logically similar to creating a procedure activation,
bhe function used to create a process (CREATE__UPROC of the
JSER__PRQCESS module) appears similar to the CALL function.

The CREATE_JJPROC function requires four arguments: a directory
capability and entry name for the directory entry into which the
capability for the new process is to be kept, the address of the
procedure to be invoked in the new process, and the address of the
arguments to this procedure. The CREATE_UPROC function creates an
activation record for the new activation. It also creates a set of
registers for the process and sets the program counter to the
specified procedure address. A new directory is also created for
:he new process. This directory, called the process directory, is
:o be used by the process for retaining capabilities for temporary
objects whose lifetime is less than or equal to the lifetime of the
process. A capability for this directory is returned by the
function GET_J>ROCESS_JHR. This directory, and all the objects in
bhe directory will be deleted when the process is deleted. The
process is suspended from executing. When the function START_JJPROC
Is invoked for the process, the process will begin execution in the
lewly created procedure activation.

A process is deleted by first invoking the function STOP_JJPROC.
rhis function stops the execution of the process to be deleted.
Invoking the function DELETEJJPROC then destroys the process. This
involves deleting all activation and procedure records of the
process, and deleting the process directory and all objects in the
process directory.

JSER CREATED OBJECTS

Users can, of course, write procedures that create and maintain
objects having properties that the user desires. The user must
simply create procedures with an entry for each function that is
permitted upon the new type of object. The procedures must use
existing objects to represent the new type of object. Capabilities
can be used to identify and control access to the new type of
object. The system provides functions to assist in creating and
naintaining user defined objects. Each type of object is identified
Dy a distinct unique identifier. The function CREATEJTYPE of the
2XTENDED_TYPES module creates a new type and returns the slave
capability,for the type. The function CREATE_OBJECT returns a
capability for an object of a given type. The extended type module
naintains a vector of capabilities for objects (primitive or
extended) which comprise the representation of each extended object
Lt has created. This representation may be modified only if the
extended type manager is presented a capability for the object whose
representation is to be modified and a capability for the object

type with appropriate access rights. There are four functions th
can be used to modify a representation. CREATE__IMPL_OBJ creates
new object of the specified type and inserts a capability for tha
new object into the representation vector at a specified locatior
INSERT_JEMPL_OBJ simply inserts a given capability into the
representation vector at a specified location. DELETE_JEMPL_OBJ
deletes a specified capability from the representation vector and
deletes the object represented by the deleted capability if the
object was created by CREATE_IMPL_OBJ. DELETE_IMPL_CAP deletes a
specified capability in the representation vector if the capabili
was inserted by INSERT_IMPL_OBJ. Since objects created by
CREATE_JLMPL_OBJ do not have directory entries, in order to assure
that a capability exists for each existing user-visible object, a
extended object can be deleted only if all the objects created fo
its representation by CREATED IMPL OBJ have been deleted.

>ART II PSOS DESCRIPTION Page 11.12

THE BASIC SYSTEM DESIGN

The operating system is decomposed into sixteen levels. The
levels are listed in Table 2-2. The short description of each level
below indicates the major functions implemented at that level that
are not implemented at some lower-numbered level. Each level is
discussed in turn, beginning with the lowest-numbered level and
proceeding sequentially upward through the levels. The
functionality of some of the levels has already been described as
part of the system interface above. These descriptions are not
repeated. Specifications for levels 0 through 13 are given in
Appendix B. The descriptions below concentrate on these levels,
kll the security-related mechanisms of the system are contained
within these levels. Levels 14 through 16 relate to tailoring the
user interface to the needs of the users and will be largely
dependent upon the applications desired for the system. These
higher levels are described, therefore, in general terms only.

The specification of each level consists of a collection of
nodules. The modules comprising each level are shown in Table 2-1.
rhe description of each level is in terms of modules. In the case
vhere a module appears in the specification of more than one level,
the description is given as part of the lowest level in which the
nodule appears.

LEVEL 0

:APABILITIES

Capabilities and the functions related to them are described
above.

LEVEL 1

REGISTERS

Registers are described briefly above. Each processor has its
own set of registers. The general registers and address registers
may be used by procedure activations to store appropriate values
temporarily. The special-purpose registers are used by various
other modules of the system for specific purposes. One of these
special-purpose registers, the process register PROC_CAP, contains a
capability for the processor of which the process register is a
part. The registers are distinct from other forms of memory because
they are constructed to be extremely efficient in performing a
particular^ job.

PRIMARY MEMORY

Primary memory consists of arrays of cells. Each cell can
contain any type of information of a predetermined fixed size. The
arrays themselves are fixed size. Each array is called a memory

PART II PSOS DESCRIPTION Page 11.13

block. The cells of a block are accessed by providing a cell
address. A cell address consists of a capability for the block
containing the cell and the index of the cell in the array. The
function BLOCK_READ of the MEMORY module returns the current value
of a cell, and the function BLOCK_WRITE changes the value of a cell.
The functions BLOCKJDECREMENT_ANDjrEST and BLOCK__INCREMENT_ANDJTEST
respectively decrement and increment the value of a given cell if
that cell contains an integer. These functions also indicate
whether the value of the cell is negative. These functions can be
used to synchronize processors or processes.

The size of each block is determined during initialization.
Each block provides memory for the implementation of some low
software level of the design. This enables the lower levels to be
isolated from one another. The higher levels of the design use the
virtual concept of segmentation to achieve this isolation.

LEVEL 2

INTERRUPTS

The hardware base of the operating system has been designed to
accommodate several processing units operating in parallel. There
may be several main processing units, called processors, that
execute user and system procedures. There may also be I/O
processors, communications processors, a capability generating
processor, a clock updating processor, etc. These various
processors can coordinate their activities by means of interrupts.

Each processor has a fixed number of interrupts. A processor
may send an interrupt to another processor or to itself by invoking
SET_INTERRUPT. A processor receives an interrupt by invoking
RECEIVE_INTERRUPT. It is assumed that all processors invoke
RECEIVE_INTERRUPT frequently in order that they will quickly respond
to any pending interrupts. RECEIVE__INTERRUPT modifies the program
counter to a predefined value for the interrupt that has occurred
and saves the previous value in the program counter. The new value
of the program counter should be the address of the first
instruction of a procedure that responds to the interrupt.
Interrupts for each processor can be individually masked or all
interrupts for a given processor can be inhibited for that
processor. If two interrupts are simultaneously pending on the same
processor, the one with higher priority will be processed first.
The address of the procedure that responds to a particular interrupt
can be set by invoking SET_INT_HANDLER.

The interrupt mechanism is by necessity quite primitive. It is
not well suited to the coordination needs of higher levels of the
operating system. It is also difficult to verify programs written
using interrupts. For these reasons the interrupt mechanism is usec
only by levels 0 through 6. At level 6 a new coordination mechanisr
is introduced that is better suited to the needs of higher levels,
and the interrupt mechanism is made invisible to higher levels.

PART II PSOS DESCRIPTION Page II.1-

LEVEL 3

CLOCK

Clock related functions have been described above. However,
since processes do not exist at this level there are no virtual timi
clocks and since the function WAKEUP_J?ROCESS does not exist at this
level notification that some time has elapsed is made by sending an
interrupt•

LEVEL 4

ARITHMETIC AND LOGIC FUNCTIONS

The ARITHMETIC module provides the functions necessary to
perform arithmetic, logical, and boolean computations. The
functions are ADD, SUBTRACT, MINUS, MULTIPLY, DIVIDE, LOGICAL_AND,
LOGICAL_OR, LOGICALJVJOT, LESSJTHAN, GREATERJTHAN, and EQUAL. Other
similar functions might be added for convenience. Note that all th<
functions in this module are derived and there are no O-functions.

LEVEL 5

PRIMITIVE I/O

The primitive form of input and output is very similar to the
user-visible form of input and output. The same four communication
paths, "command", "status", "input", and "output", are used to pass
control information and data between the system and the device.
Since the coordination function WAKEUP__PROCESS does not exist at
this level, the CHANGE_STATUS function of the PRIMITIVE_I/O module
uses an interrupt to notify a procedure that a change of status has
occurred.

In order to take the burden of performing trivial I/O
operations away from the main processors of the system, some system;
introduce special-purpose processors for the purpose of performing
the simpler I/O functions. These special processors are generally
called channels. A specification for an I/O facility using such
channels is given in the CHANNEL__IO module of Appendix B. The
introduction of channels changes the usage of the data communicatioi
paths, "input" and "output". Rather than actually supplying or
receiving a word of information in the WRITEJDEVICE or READJDEVICE
functions as in the PRIMITIVE_I/O module, the addresses of cells in
main memory are supplied to these functions. The channel will
either read these cells and send the data contained therein to the
device, or.place data from the device into these cells. A single
invocation of READ_DEVICE or WRITEJDEVICE can involve the
transmission of many words of data. The main advantages of channels
in systems built using contemporary technology is that the main
processors do not have to coordinate their timing with the timing o:
the device and the resources of the main processor are not wasted oi
very simple tasks. The channel processor handles the timing

PART II PSOS DESCRIPTION Page 11.15

problems* If the CHANNEL_IO module is used to replace the
PRIMITIVE_IO module at level 1, then a channel like interface should
be used for input and output at the higher levels as well, e.g., for
the SYSTEM_IO and VtSIBLE_IO modules.

LEVEL 6

SYSTEM PROCESSES

System processes are essentially the same as the processes
described as part of the user interface (hereafter called user
processes). There are four major differences. First, there are a
fixed number of system processes. Therefore, system processes are
not created or deleted. All the system processes exist after
initialization. Second, in system processes, procedure activations
do not have procedure records. Procedure activations are composed
of a procedure storage unit (a procedure storage unit can be a
procedure segment, procedure page, or procedure memory block
depending upon the level at which the procedure exists) and an
activation record. Third, system processes cannot be stopped or
started. Fourth, system processes do not have a process directory.
With the exception of these four differences, system processes
operate as do user processes.

System processes serve two purposes. They may perform certain
system tasks such as removing pages from primary memory, or may be
used to implement user processes. In general, a small fixed number
of system processes will be assigned to implement the large number
of user processes. This can be accomplished by time-multiplexing
the system processes among the running user processes. The function
INSTANTIATE_SPRQCESS of the SYSTEMJPROCESS module exists for this
latter purpose. If a user process is currently bound to a given
system process, the binding can be changed by invoking
INSTANTIATE_SPRQCESS. A different process can be bound to a given
system process by giving the state of the new process.
INSTANTIATE_SPROCESS will change the state of the given system
process to this state and return the old state of the system
process. This old state defines the state of the previously bound
process and can be saved until some later time when it can be bound
to a system process once again. The state of a process is simply
the contents of all the registers of that process.

REGISTERS

The registers of level 6 are exactly the same as the registers
of level 1 with the exception that at level 6 there is one set of
registers for each system process rather than one set per processor.
(This is why a new instantiation of the REGISTERS module is shown at
level 6 in Table 2-1.) The process register contains a capability
for the system process with which the register is associated. The
program counter contains the address of the cell containing the
instruction being executed; however, the address may refer to a
memory block, a page, or a segment depending upon the level at which
the executing procedure resides.

PART II PSOS DESCRIPTION Page II.1

CLOCK AND TIMERS

The clock and timers of level 6 have the same functions as
those visible at the user interface (described above as part of the
operating system interface). At level 6, the virtual timers apply
to system processes rather than user processes.

PROCESS COORDINATION

The coordination functions of the COORDINATOR module are
exactly those visible at the user interface (described above as par
of the operating system interface). The process capabilities refer
to system processes rather than user processes.

PROCEDURE INVOCATION

As stated abovef a procedure activation at this level, and all
higher levels through level 12, consists of an activation record an
a procedure storage unit. The invocation of a procedure activation
is accomplished by means of the SYSTEM__CALL. The system call is
quite similar to the unprotected user call, however, there are a fe
differences. First, because a system procedure may reside in
primary memory (rather than in a segment), the address of the
procedure cannot be distributed to users of the procedure. For
system procedures, special system procedure capabilities are used
for procedure invocation. The system maintains the mapping between
the procedure capabilities and the procedure addresses. Second,
calls to system procedures are always made from a procedure
implementing a higher or the same level of the system or from user
procedures. Calls are never made from a procedure at some level to
a procedure at a higher level. Therefore, it is necessary to
protect the called activation from a calling activation at a higher
level, but it is never necessary to protect the calling activation
from the called activation. A portion of memory or a segment is se
aside for the activation records of each level within each system
process. All the activation records within a level within a system
process will follow a stack discipline within the storage set aside
for that level in that process. Procedure invocations from an
activation at some level to an activation at a lower level cause a
stack switch so that the activation record of the activation at the
lower level is not accessible to activations at a higher level.
However, the arguments and return information passed from the highe
level activation are accessible to the lower level activation. Thi
is consistent with the general protection policy of the system.

Note that the user call and system call have been designed to
be uniform in structure so that a program need not know whether or
not it is or is invoking a system procedure when it is being
compiled. .This simplifies the maintenance and testing of programs
as well as simplifying the compiler.

SYSTEM I/O

The I/O functions of the SYSTEM__I/O module are identical to th
functions of the PRIMITIVE I/O module of level 5, with one

PART II PSOS DESCRIPTION Page 11.17

exception. Instead of using an interrupt to signal a change of
status, the CHANGE_STATUS function of the SYSTEM_I/O module uses the
WAKELJPJPROCESS function introduced at this level. This method of
signalling is better suited to the procedures of higher levels.

LEVEL 7

PAGES

A page is a convenient abstraction useful in the particular
implementation of segments chosen for this system. Conceptually, a
page is a fixed size block of contiguous storage cells in which each
cell can be addressed by giving a capability for the page and the
offset of the cell within the page. The functions READ_PAGE and
WRITE_PAGE are invoked to read and modify the contents of a cell in
a page. The functions CREATEJPAGE and DELETEJPAGE create a new page
and delete an existing page respectively. In the implementation the
page may be a very complex object because the cells of a page may be
represented as cells of a block of memory or cells of one or more
secondary storage devices, and the representation may change with
time. The complexity of the implementation does not appear in the
abstract view of the specification.

LEVEL 8

SEGMENTS

The functions of the SEGMENTS module have already been
described in the discussion of segments in the user interface.

WINDOWS

The functions of the WINDOWS module have already been described
in the discussion of windows in the user interface.

LEVEL 9

EXTENDED TYPE

The functions of the EXTENDEDJTYPE module have already been
described above under user-created objects of the user interface.
The functions of the EXTENDED_TYPE module can be used by higher
levels of the system as well as by users to create new object types.
The directory is a good example of where the system uses the
functions of the EXTENDEDJTYPE module to create a new system type.

LEVEL 10

DIRECTORIES

The functions of the DIRECTORIES module have already been

PART II PSOS DESCRIPTION Page II.1

described as part of the user interface. The functions
ADD_DISTINGUISHED_ENTRY and REMOVE JDISTINGUISHED__ENTRY that add and
delete distinguished entries are not visible at the user interface.
Distinguished entries can be added and removed by the user by
creating or deleting some object using functions of level 11. The
use of locks and keys is described later.

LEVEL 11

USER OBJECTS

The purpose of the USERJ3BJECTS module is to enforce the
constraint that for every user created object there is exactly one
distinguished directory entry. The USER__OBJECTS module contains
functions to create and delete segments, directories, and extended-
type objects. Whenever a user procedure creates an object by
invoking one of the create functions of this module, a distinguishe
entry is created for that object. Whenever a user procedure delete
an object by invoking a delete function of this module, the
distinguished entry for that object is deleted. Since a user
procedure has no other means to create or delete objects (the creat
and delete functions of the SEGMENTS, WINDOWS EXTENDEDJTYPE, and
DIRECTORIES module are not accessible to user procedures) the
desired relationship is ensured.

LEVEL 12

USER PROCESSES

All of the functions introduced at this level have been
described as part of the user interface. The primary differences
between this level and level 6 are:

1. All references to processes at level 12 are to user processe
rather than system processes.

2. Processes can be created and deleted.
3. Processes can be stopped and started.
4. Each process has a process directory in which it can create

entries for objects for the lifetime of the process.

REGISTERS

The registers of level 12 are identical to the registers of
levels 1 and 6 with the exceptions that each user process has a set
of registers and the process register contains a capability for the
user process.

COORDINATION

The COORDINATOR module of level 12 is the same as the
COORDINATOR module of level 6. Because the level 12 COORDINATOR ca
be implemented with segmented virtual memory and the level 6
COORDINATOR cannot, the implementation of the two COORDINATOR

PART II PSOS DESCRIPTION Page 11.19

modules may be different. They are, therefore, shown in Table 2-1
as separate instantiations.

USER TIMERS

The USERJTIMERS module of level 12 is the same as the TIMERS
module of level 6 except that each user process has a set of timers.

PROCEDURE INVOCATION

The call and return operations of level 12 have already been
described in the description of the user interface.

VISIBLE I/O

The user visible I/O of this level is identical to the system
I/O of level 6, with one exception. At level 6 each set of
communication paths has a single capability to identify it. This
capability is defined for the life of the system. If a capability
for an I/O device is to be given to a user procedure, it is
necessary that there is some means of invalidating this capability
so that a capability for the same device can later be given to some
other user procedure with the assurance that only that procedure has
access to the device. For this reason the ASSIGN__DEVICE function of
the VISIBLE__IO module creates a temporary capability for a device
given a permanent capability for the device. Either a permanent or
a temporary capability can be used in any of the other functions of
the VISIBLE_IO module. The function DEASSIGNJ5EVICE invalidates the
temporary capability for the specified device.

LEVEL 13

PROCEDURE RECORDS

The use of procedure records has been described as part of the
user interface. The only visible functions of the PROCEDUREJRECORDS
module are READ__PR and WRITE_PR which read and modify the cells of
the given procedure record. The function CREATE__PR creates a new
procedure record and associates with a given procedure. The
capability for a procedure record for some procedure can be obtained
by invoking the function GET_JPR_ADDRESS, giving the capability for
the procedure as an argument.

LEVEL 14 - USER I/O

The user-visible I/O interface of level 12 is very primitive
and very general. It allows the connection to and use by the system
of a very large class of I/O devices. However, it requires that the
user procedure invoking the functions of level 12 know all the
details of operating every different type of device. Most
applications will require somewhat less generality and somewhat more
convenience. An I/O interface is more desirable for most users if

it provides a few generic functions applicable to many different
types of devices and hides most of the particular details of
operating a particular device such as buffering, timing, data
format, and detailed control. The purpose of level 14 is to prov:
such an interface. An example of such an interface is given by
Feiertag and Organick [71]• The interface is not specified here
because it is not immediately relevant to the security of the
system.

LEVEL 15 - USER ENVIRONMENTS AND USER NAME SPACE

Any usable operating system must contain some functions that
perform high-level tasks. The implementation of these functions
translates the high level requests into the more basic functions c
the operating system. Examples of such high-level tasks are
compilers, debuggers, mail, linking, text editing, sorting, billii
report generation, etc. It is also convenient to be able to use
names to denote certain objects rather than capabilities; a user
cannot type a capability into a terminal. The purpose of level 1!
is to provide such functions. These functions are not specified
here because the totality of all such functions is too numerous ai
the ones that are useful to any given instance of the operating
system depend upon the applications of that instance. Some examp!
of such functions are given later in this section under the headii
"TYPICAL USER ENVIRONMENT". The difference between a user
environment and an application is not at all clear. Applications
such as the Secure Object Manager described in Section IV-1 can b<
considered environments.

LEVEL 16 - USER REQUEST INTERPRETER

If any process of the operating system is to perform tasks oi
behalf of the user, there must exist some language comprehensible
both a process and a user. Level 16 contains functions which acc<
requests in some such language and interpret them, i.e., invoke tl
functions necessary to implement the requests. A single operatin<
system may have many request languages and, therefore, may requin
several request interpreters.

PART II PSOS DESCRIPTION Page 11.21

PROTECTION MECHANISMS

A simple capability mechanism, with capabilities containing
only unique identifiers, is sufficiently general to implement any
desired form of protection. However, some useful types of
protection are difficult to construct using this simple capability
mechanism alone. For this reason, the operating system has four
different protection mechanisms other than a simple capability
mechanism. The four mechanisms are:

capabilities with access rights,
capability store limitations,
protection of hierarchical levels,
directory entry locks and keys.

Each of these mechanisms is described, in turn, below.

CAPABILITIES WITH ACCESS RIGHTS

Each capability has associated with it a fixed number of
boolean values called access rights. The access rights serve to
determine which of the operations on the object designated by the
capability can be invoked using this capability. For example, among
the access rights associated with a segment capability are the
rights for reading and writing the segment. If the read access
right of a segment capability has the value TRUE, then the read
operation, when invoked with this capability as an argument, will
complete successfully (assuming all other preconditions of the read
function are met). If the read access right has the value FALSE,
then invoking the read function with this capability will result in
an exception. The analogous actions will occur for the write
operation. There does not necessarily have to be a one-to-one
correspondence between access rights and functions; one access right
can control access to more than one function and one function could
require more than one access right.

Access rights are represented as a vector of boolean values.
The rights must be interpreted by the functions which operate upon
the type of object that the capability designates. The access
rights, therefore, only have meaning with respect to the type of
object that the capability containing those rights designates. The
number of different access rights that a single object can have is
limited by the number of boolean values that can be associated with
a single capability. This number is fixed for a given
implementation of the system. A list of the types of objects in the
system and the access rights associated with those types of objects
is given in Table 2-3.

The function CREATEJCAPABILITY of the CAPABILITIES module
returns a capability with a new unique identifier and with all its
associated access rights set to TRUE. The function RESTRICT_ACCESS
returns a capability with the same unique identifier as a given
capability, but with fewer access rights than the given capability
(i.e., some of the access rights that were true in the given

PART II PSOS DESCRIPTION Page 11,2:

capability may be false in the returned capability). The function
CREATE_RESTRICTED_CAP returns a capability with a new unique
identifier and with a given set of access rights. These are the
only functions that create capabilities. There is no function that
can modify a capability.

There is one important property that must be maintained by all
functions with respect to access rights. Assume that the presence
of an access right in a capability is designated by the value TRUE
in the appropriate boolean value and the absence of that right is
designated by the value FALSE. If there are two capabilities, Cl
and C2, for the same object (i.e., the capabilities have the same
unique identifier), and that C2 has a subset of the access rights o:
Cl (i.e., all the boolean values that are FALSE in Cl are FALSE in
C2 and some of the values that are TRUE in Cl may be FALSE in C2)
then any function that completes without exception using C2 as an
argument will also complete without exception using Cl as that same
argument. In other words, Cl is always at least as powerful as C2.
Recalling that RESTRICT_ACCESS is the only function that can create
a new capability for an object that already has a capability and
that the newly created capability must have the same or fewer access
rights than the given capability, it is evident that a process
cannot generate a capability for an object that is more powerful
than those already accessible to the process. This result is
important to the security of the system and to the proof of security
of subsystems.

CAPABILITY STORE LIMITATIONS

One of the difficulties of any general capability-based system
is controlling the propagation of capabilities. Any process can
make copies of any capability it has access to, and can store these
copies in any segment to which it has access. Such unrestricted
propagation of capabilities is not always desirable. A feature has
been included in the system to permit selected restriction on the
propagation of capabilities. The restriction used is called the
capability store limitation.

A capability store operation is an 0- or OV-function in which
the value of some primitive V-function is modified to return a
capability. Capabilities can propagate only by means of capability
store operations. Examples of capability store operations are the
WRITEJ3EGMENT function of the SEGMENTS module, the ADDJENTRY
function of the DIRECTORIES module, and the LOADJGENERALJREGISTER
function of the REGISTERS module.

All possible instances of V-functions in user visible modules
whose values can be capabilities are partitioned into objects, i.e.
each capability returning V-function is assigned to some object.
For example each possible instance of the H_READ hidden V-function
of the SEGMENTS module is part of some segment object. Each object
has a set of capability store permits associated with it. Each
permit is a boolean value. If all the permits are TRUE, then any
capability may be assigned to any V-function of the object (subject
of course, to other constraints). Similarly, each capability has a

PART II PSOS DESCRIPTION Page 11.23

set of store permissions. The store permissions are boolean values
and have all the properties of access rights. In fact, capability
store permissions are part of the access rights of each capability.
If all the store permissions of a capability are TRUE, then that
capability may become the value of any V-function of any object
(again subject to other constraints). Each capability has a
predetermined number of store permissions and each object has the
same number of store permits. Each store permission has a
corresponding store permit. The general rule regarding store
permissions of capabilities and store permits of objects is that a
V-function may take on a capability as a value only if, for each
store permission of the capability, that store permission is TRUE or
the corresponding store permit of the object of which the V-function
is a part is TRUE or both are true. If both the store permission
and the corresponding store permit are FALSE, then the capability
store operation will generate an exception. For the simple case of
one store permission for each capability and one store permit for
each object, the following table summarizes the result:

Capability Store
Permission

TRUE FALSE

I
Object TRUE | OK OK
Store I
Permit FALSE | OK EXCEPTION

The system supports one type of capability store limitation
(the user can construct subsystems to support other types of store
limitation if desired). The one type is termed the "process" store
limitation. The purpose of the process store limitation is to
guarantee that when certain selected capabilities are made
accessible to a process, the process cannot make these capabilities
or copies of these capabilities accessible to any other process.
Such a limitation is useful if one user wishes to give access to
some object to another user but wants to be assured that access will
go no further. The process store limitation is also useful in the
implementation of the Secure Object Manager in that the Secure
Object Manager can give some process direct access to a segment and
be assured that the direct access cannot be transmitted to some
other process. The remainder of this section shows how the above
purpose can be achieved using the capability store permissions and
object store permits described above.

The store permits of an object are determined when the object
is created, and are fixed for the life of the object. When an object
is created, the store permissions of the capabilities created to
access the new object must be the complement of the store permits of
the new object. For example, if a new segment is created with the
process store permit being TRUE, then the two capabilities created
to reference that object (the two capabilities are the one returned
by CREATE__SEGMENT and the one put in the directory entry for the

PART II PSOS DESCRIPTION Page II,2

segment) must have a process store permission of FALSE. This
guarantees that a capability for an object with a particular set of
store permits can only be stored in an object with at least those
store permits.

The system is initialized with one directory, the root
directory. The root directory's store permits are all FALSE.
Therefore, no object with store permits of TRUE can be created in
the root directory. This is because the capability for any object
with store permits of TRUE would have some store permissions FALSE
and therefore could not be stored in the root directory which has
only FALSE store permits. In fact, no object with TRUE store
permits can be created in any directory descended from the root
directory for the same reasons. Since all user-created objects mus
be entered in some directory, how can a user object with store
permits be created? Objects with store permits can be created only
in a process directory. All process directories have the process
store permit set to TRUE. The other objects in the system that hav
the process store permit set to TRUE are the process temporary
segments and windows created by functions in the USER__PROCESS modul
and the registers of the REGISTERS module. All of these objects ar
private to some process, and are not shared and can not be shared
with another process. Therefore, a capability stored in one of
these objects is not accessible to more than one process.

In order to create a capability accessible to only one process
a capability must be created with its process store permission bein
FALSE. Such a capability can be created by invoking
RESTRICT__ACCESS. This capability can be stored only in the
registers, the process directory, objects with the process store
permit that are descendant from the process directory, and the
temporary segments and windows, and, therefore, is accessible only
to that process. Any copy made of this capability must also have
its process store permission as FALSE and, by the same reasoning, i
accessible only to the same process.

PROTECTION OF HIERARCHICAL LEVELS

The operating system has several mechanisms for protecting its
own implementation. It is necessary to protect the implementation
from unauthorized modification by user programs (e.g., not allowing
a user program to modify the unique identifier generating algorithm
and to protect parts of the system from unauthorized modification b
users and other parts of the system (e.g., not allowing a program i
level 10 to delete an arbitrary page of level 7). This section
describes how the implementation is protected.

The functions that are implemented in hardware are protected
physically. A hardware algorithm cannot be changed without
physically changing the hardware itself. Functions that are
implemented in software are implemented as procedures. The
instructions for the procedures will reside on some form of storage
i.e. memory blocks, pages, or segments. This storage will be
partitioned by level so that a particular memory block, page, or
segment will contain procedures for only a single level. The

PART II PSOS DESCRIPTION Page 11.25

procedures will be protected because the capabilities for the memory
blocks, pages, or segments that contain the procedures for a given
level will be accessible to that level only. Therefore, no higher
level procedure or user procedure will be able to read or modify the
algorithms that implement the functions of a given level.

It is also necessary to control the accessibility of functions
at different levels. For example, many functions are not accessible
at the user interface. For software implemented functions,
accessibility is controlled by distribution of procedure
capabilities of the procedures that implement the functions. If a
function is to be accessible to a procedure of a higher level or to
a user procedure, then the capability for the procedure that
implements that function is made accessible to the higher-level
procedure. If a function is not accessible to a certain level, then
no procedures in that level should have access to the capability for
the procedure implementing the function.

The accessibility of hardware implemented functions also needs
to be controlled. The most straightforward technique for
controlling accessibility of hardware implemented functions is to
require that each instruction present an authorizing capability as
one of its operands. This technique requires that each instruction
have an additional operand and that each procedure contain the
capability for each of the instructions that it contains. These
requirements are both cumbersome and inefficient. The technique
adopted in the operating system is to have overlapping classes of
instructions. Each class contains the instructions necessary to
perform some useful set of operations. Each class has a distinct
unique identifier. In order to execute an instruction, a capability
with the unique identifier of a class containing the instruction
must be presented. Rather than make this capability an operand of
the instruction, the capability must be placed in a special register
called the instruction class register. The algorithm for each
hardware instruction must include a check to determine that the
instruction is a member of the class associated with the unique
identifier of the capability in the instruction class register. The
contents of the instruction class register need be changed only when
the class of instructions used by the executing procedure changes.
All user accessible instructions are contained in a single
instruction class.

DIRECTORY ENTRY LOCKS AND KEYS

The directory mechanism provides an additional protection
facility to allow control of access to capabilities in individual
directory entries. With each directory entry is associated a set of
locks. Locks are simply slave capabilities. In order to access the
capability in a directory entry, the calling procedure must present
a proper key for that entry. A proper key is simply a capability
whose slave is one of the locks associated with the entry. In order
to get a capability from a directory entry it is necessary to
present two capabilities: the capability for the directory with the
"load" access right and a proper key for the entry. This permits
the protection of individual entries or groups of entries.

PART II PSOS DESCRIPTION Page 11.26

TYPICAL USER ENVIRONMENT

The secure operating system presents to the programmer a very
diverse collection of facilities. It is the purpose of this section
to demonstrate how these diverse facilities can be used to create a
good working environment for the user of the system. The
demonstration will be by means of examples. The examples will be of
modules that would constitute part of a general purpose programming
environment. The purpose of the examples is to demonstrate how some
of the system functions can be used, how a user environment can be
constructed, and how a typical user can accomplish useful work on
the system. The examples are not to be taken as the suggested or
preferred way to accomplish a particular task, and the reader should
not consider the examples to be part of the system. The examples
provide only one possible alternative for use of the system. One of
the great strengths of the secure operating system is that it
provides a good base for many possible alternatives and ways of
accomplishing the alternatives.

Three facilities are described:

1. Linker - The linker is a procedure that returns a capability
for an object when given the symbolic path name of that
object. Since all user objects must have a symbolic path
name, the linker provides a means of getting to all user
objects subjedt to access constraints.

2. User - The concept of a "user" is identified. Each user is
associated with a particular initial process state. A user
coordinator process is created that listens to selected I/O
devices for requests to create a process for a user named in
the request. The process is created with the initial state
associated with the user. The new process is given the
capability for the I/O device upon which the request was
received. This facility permits users to log into the system
and have a process created to execute their requests.

3. Interuser messages - Functions are defined to permit data to
be sent to a message queue object associated with a particular
user. Each user has an associated symbolic name. The
messages may be read by a process created on behalf of the
target user.

The specifications for these facilities is given in Appendix B.

LINKER

As stated earlier, all objects accessible to a procedure
activation must be derived from either the arguments to that
activation or capabilities in the procedure segment of that
activation. It is often convenient to be able to reference objects
by symbolic name rather than by capabilities. The linker provides
one means of obtaining a capability for an object when given a
symbolic name for the object. All user objects must have symbolic
names because every user object must have a named distinguished
entry in some directory. Since every directory is an object, it

PART II PSOS DESCRIPTION Page 11.27

must also have a named distinguished entry. The only exception to
this rule is the single directory that exists when the system is
initialized. This directory is called the root directory. All
objects must have entries that are descendents of the root
directory. An example of a directory structure is diagrammed in
Figure 2-1. A capability for any object can be obtained by invoking
the function GET_CAP of the DIRECTORIES module with a capability for
a directory containing an entry for the object and the name of the
entry. The capability for this first level directory can be
obtained by invoking GET_CAP with a capability for a directory
containing an entry for the first level directory and the name of
this entry. The capability for the second level directory can be
obtained from a third level directory and this process can be
repeated until the directory containing the entry is the root
directory. At any given point in time, a capability for a
particular object can be obtained with a capability for the root
directory and the list of entry names of all the directory entries
that must be interrogated to finally get the desired capability.
This list of names is called the path name of the object. Given a
capability for the root, a path name of an object, and the
capability for the procedure implementing GET_CAP, a capability for
the object can be obtained by repeatedly invoking GET_CAP to obtain
capabilities for the directories in the path and finally the
capability for the object itself (1).

For example, a path name for the object numbered 3 in the
example of Figure 2-1 is ALPHA, QED, GOOD. This path name uniquely
identifies the object at this point in time. Since entries may be
deleted and recreated, it is possible that at some future time the
path name might indicate a different object. There may also be man^
path names for the same object. In the example the path names
ALPHA, QED, GOOD; GAMMA, ALPHA, LOWER; and ALPHA, QED, UGLY, ALPHA,
LOWER all refer to object 2. Path names are, therefore, not as
unique in identifying objects as unique identifiers, however, it is
this nonuniqueness that makes using names advantageous in some
situations.

The LINKER is the procedure that obtains a capability for the
object indicated by a given path name. The LINKER is used in
conjunction with the compilers and assemblers of the system to
permit symbolic references to objects in programs. Several
conventions must be obeyed in the procedure segment generated by a
compiler or assembler. Each symbolic reference is assigned a word
in the template procedure record in the procedure segment. This
word contains an integer indicating where the path name for the
object can be found in the procedure segment. This integer also
indicates where the keys necessary to unlock the entries in the patt
can be found in the procedure segment. A procedure activation of
the procedure references the desired object by reading the contents
of the word in the procedure record allocated to the object. The
activation then uses the contents of this word as if it were a

(1) It is also necessary to have the keys to all the entries in the
path and that the capabilities for the directories in the path have
the "load" access right.

PART II PSOS DESCRIPTION Page 11.28

capability for the object* On the first symbolic reference to the
object in a process, this will result in an exception because the
word will contain an illegal address, not a capability. Upon
encountering this exception, the procedure activation will invoke
the RESOLVE__REFERENCE function of the LINKER with the integer and
the capability for the procedure segment. The LINKER uses the
capability for the procedure segment and the integer to find the
path name and keys for the object. Since the procedure segment for
the LINKER contains a capability for the root directory, the LINKER
can obtain the capability for the desired object. The LINKER
returns this capability to the calling activation. The activation
then writes the capability into the associated word in its procedure
record and reinvokes the function on which it took the exception.
On all subsequent uses of this same reference in the same process,
the word of the procedure segment will contain the desired
capability and the LINKER need not be invoked. The binding of the
symbolic path name to an object occurs on the first reference in
each process. This linking technique is similar to that used in
Multics.

It should be noted that the linker specification contains only
V-functions, there are no O-functions or OV-functions. This means
that the linker has only one state. The linker is simply a
procedure with no memory. Any user can write a linker procedure.
The system could have several different linkers. A capability for
some linker procedure must be included in each procedure segment for
procedures that will make symbolic references. A given procedure
may use more than one linker or it may not use any linker. The
latter case would occur if the procedure did not reference any other
objects or if the capabilities for all objects that it references
are embedded in the procedure segment. Having different linkers
available is necessary if different types of symbolic referencing
are desired. For example, some procedures might wish to use path
names beginning at a directory other than the root directory. A
slightly modified form of the linker described above could implement
such symbolic names. Since capabilities for procedures that
implement the system functions will be kept in some directory
descendant from the root directory, system functions can be
referenced symbolically using the linker described above as well as
other linkers. If the only capability that is embedded in a
particular procedure segment is one for a linker, then the linker
can be used to control what objects activations of that procedure
can access.

USERS

It is very useful to be able to associate a process within the
operating system with a person or group of persons using the system.
The concept of a "user" must be identified within the system, and
some means of associating processes with users must be established.
The functions of the user module accomplish this. Each user has a
name. The only constraint on the name being that it be unique for
each different user. With each user is associated initial process
conditions. (Recall that the initial conditions of a process are
specified by the capability for the initial procedure of the process

PART II PSOS DESCRIPTION Page 11.29

and the arguments to that initial procedure. Each process that is
created on behalf of this user will have these initial conditions.
These initial conditions should include capabilities for the objects
that all processes of this user should have. The function
CREATE_USER_PROCESS of the USER module creates a process with the
initial conditions associated with the given user. The functions
CREATEJJSER and DELETE_USER create and delete users. A process can
determine the user for whom it was created by invoking
GETJJSERJSIAME. The function GETJDEVICEJZAP can be invoked by a
process to obtain the capability for the device with which it is to
establish communication with the user himself if such communication
is desired (see below for example).

The following scenario illustrates how the above functions can
be used to allow users to log into the systemf i.e., create
processes on their behalf, and use these processes to perform
computations. There is a special process called the user
coordinator. This process maintains a list of the names of all
existing users together with the capabilities for those users. The
user coordinator also has capabilities for a selected set of I/O
devices that are all terminals or terminal like. The user
coordinator sends commands to all of these devices to attempt to
read from the terminal and to notify it, via wakeup, when something
has been read. The user coordinator then waits for something to be
read by waiting for a wakeup. When the wakeup is performed, the
user coordinator attempts to read each device until it finds the one
that contains data. Once it has read all the data up to a specified
terminating character, it looks to see if the data matches a user
name. If not, it ignores the data and starts from the beginning.
If the data is a user name then the user coordinator creates a
process for the user by invoking CREATE_USER_PROCESS. A temporary
capability for the device is created by invoking the ASSIGNJDEVTCE
function of the VISIBLE_IO module and this temporary capability is
included as an argument in the invocation of CREATE_USERJPROCESS.
The new process will begin executing when STARTJPROC of the
USER_PROCESS module is invoked. The initial procedure activation of
the newly created process can obtain the capability for the device
by invoking GET_DEVICE_CAP. The activation can then communicate
with the user at the terminal. The initial procedure can verify
that the user at the terminal is the proper one by requesting a
password or series of passwords, by knowing that the device is
accessible only to this particular user, or by any other means
deemed appropriate. Once the identity of the user has been
established, the initial procedure can begin accepting and
interpreting requests of the user (an example is provided in a later
section). There should be a procedure that performs the function of
interpreting standard user requests. The initial procedure can
invoke this request interpreter. By inputting requests to the
request interpreter, the user can have the process perform desired
computations. When the user completes his desired tasks, he can
input a "log out" request to the request interpreter. This will
cause the request interpreter to destroy the process.

INTERUSER MESSAGES

PART II PSOS DESCRIPTION Page II.3

In order for processes to communicate with one another, they
must share some object. If they share a segment, they can
communicate by using the segment to pass data between them. If the
two processes were created by the same process, the creating proces
can place capabilities for a shared object in both their initial
states. However, it is useful to have a mechanism by which
processes can communicate without deliberate prearrangements on
their part. This is the purpose of the MAIL module.

The mail facility allows a user to send data to another user.
Since each user must have a process to perform computations on his
behalf, the mail facility can also be used to communicate between
processes. The function SEND_MESSAGE sends the data, called the
message, to a designated user. The target user is designated by
name rather than by capability. This makes it possible for a user
at a terminal to designate the target user. This would not be
possible if capabilities were used because capabilities cannot be
entered at a terminal. Names, however, do not provide protection a
do capabilities. A separate protection mechanism has been provided
Each user, by invoking ACCEPT_MESSAGE, must indicate the other user
from whom he is willing to receive messages. The function
SEND__MESSAGE will cause an exception if the target user has not
invoked ACCEPT_MESSAGE with the name of the sending user.
REJECT__MESSAGE is invoked to reject subsequent messages from the
given user. RECEIVE__MESSAGE is invoked to retrieve messages that
have been sent to a user. Messages are retrieved one at a time on
first in/first out basis. Each received message contains the name
of the user who sent the message. This allows the receiving user t
accurately determine who sent the message.

The three facilities described above are all quite simple to
specify and implement. In a particular instance of the secure
operating system, these facilities could be modified and augmented
to fulfill specific needs of users. These examples have been
presented to illustrate how the operating system can be used. In a
actual implementation of the operating system, many more facilities
and more elaborate facilities will probably be helpful in aiding
users in accomplishing their tasks.

EXAMPLE OF SYSTEM USE

In order to illustrate how the system might be used in a
general purpose way by a person communicating via some terminal, a
sample session follows. It is assumed that the person is known to
the system. The login procedure was discussed in the section
entitled USERS. The person enters his user name to the user
coordinator process which is initially listening to the I/O device.
The user coordinator process then creates a process for the user.
The initial procedure for the new process is a user request
interpreter and overseer. The user request interpreter may first
wish to validate that the user is whom he claims to be. This might
be done by requesting a password be typed or that an encoded card b
inserted into the terminal, by more sophisticated techniques such a
handwriting, fingerprint, or speech recognition, or by a simple

PART II PSOS DESCRIPTION Page 11.31

technique such as stationing a guard next to the terminal who
assures that each person enters his own name. The request
interpreter must obtain a capability for the user's I/O device by
calling the procedure GETJDEVTCE_CAP. In order to call
GET_DEVICE_CAP the request interpreter must get a capability for it
by calling the linker. It is assumed that the request interpreter
has a capability for the linker in its procedure segment. The
linker must contain, in its procedure segment, capabilities for all
the procedures that it will invoke. Once the request interpreter
has a capability for the procedure for GET_DEVTCE_CAP, it can retain
this capability for future use in its procedure record. Similarly
the capability for the user's I/O device can be retained in the
procedure record. In the remainder of this description it is
assumed that on first call to any procedure from some other
procedure within this process the linker is invoked to obtain a
capability for the called procedure. This capability is then
retained in the procedure record of the calling procedure for future
calls.

The request interpreter might now output a message requesting a
password to the user's I/O device by calling SEND_COMMAND and
WRITE__DEVICE and can similarly input the response. After validating
the password by comparing it to the correct value known to the
request interpreter (for example, the correct value might be passed
to the request interpreter as an argument by the user coordinator
process) , the request interpreter can acknowledge receipt of the
password and accept a request from the user. Assume that the user
wishes to input, compile, and execute a program. To do this the
user enters the name of some editor. The editor may be known to the
request interpreter in which case it may have a capability for it or
the request interpreter may link to it. If the editor is not
explicitly known to the request interpreter, a capability for it may
be found by looking in the system library. The system library is
some directory containing capabilities for procedures of general
interest to users. The request interpreter has a capability for the
directory containing the system library and can obtain a capability
for the editor by calling GET__CAP. The editor, once called by the
request interpreter, can create a temporary segment to temporarily
hold inputted text. Once editing is complete, the editor can
transfer the text to some permanent segment specified by the user
and delete the temporary segment.

The user can then enter the name of a compiler procedure. When
the compiler procedure is invoked by the request interpreter it will
generate a procedure segment containing the object code for the
indicated program. The procedure segment must also contain the
linking information and a capability for the linker (if the new
procedure is to link to anything).

The new procedure is now invoked by the user by entering the
path name of the directory entry containing the procedure
capability. The request interpreter extracts the procedure
capability from the directory and calls the procedure (it is assumed
that procedures invoked in this way by the request interpreter are
called at offset zero). The new procedure is then executed. The

procedure can link to any other procedure because it has a
capability for the linker, it can communicate with the user because
it can obtain the capability for the user's I/O device by calling
GET_DEVTCE_CAP, and it can create temporary objects by obtaining a
capability for the process directory. If the user desires that sor
program he is compiling run in a restricted environment without
access to all the facilities of the system, the compiler does not
place a capability for the linker in the procedure segment of the
compiled procedure. The compiler may, instead, embed in the
procedure segment a capability for a special linker that will link
to only certain restricted procedures or the compiler may "prelink'
the newly compiled procedure directly to the other procedures the
new procedure may call by embedding the capabilities for those oth<
procedures into the new procedure segment.

When the user has finished his task, he terminates the sessioi
by requesting a logout. Logout can be accomplished by having the
request interpreter send a message, via the mail facility, to the
user coordinator process. The user coordinator process can then
stop and destroy the user's process. This sample session
illustrates only one of many possible ways the PSOS might be used 1
carry out tasks for users.

PART 11 PSOS DESCRIPTION Page 11.33

SYSTEM INITIALIZATION

In order for an operating system to be correct it must be
properly initialized. A system is properly initialized if its state
is consistent with the initial state prescribed by the
specifications of the system. In order to define a correct system
initial state, some terms must be defined. A level is in a correct
initial state if the values of all the V-functions of the level are
consistent with the initial assertions of the specifications of the
V-functions. A level is in a consistent state if the state can be
achieved by starting with the level in a correct initial state and
invoking O-functions and OV-functions in some order. A correct
initial state is a consistent state.

From these definitions it is possible to define a correct
initial state for a system. A system is in a correct initial state
if the topmost level of the system is in a correct initial state and
all other levels are in consistent states. Note that by this
definition the lower levels need not be in an initial state for the
system to be in an initial state. It is expected that the initial
state for a given level will be constructed by invoking O-functions
and OV-functions of lower levels that have already been initialized.
Therefore, the lower levels will no longer be in their initial state
once the topmost level has been initialized. A module that is
included as part of the specification of many levels might,
therefore, assert a different initial state at each level. For the
sake of brevity, each module in the specifications of Appendix B
asserts only the initial state of the lowest level of which it is a
part. A complete specification should include separate assertions
of initial conditions for each level at which a module resides.

All operating systems must have some procedure or procedures
for taking the system from the non-functional or powered-down state
to the system initial state. These procedures may be manual or
automatic in software or hardware or some combination of these.
From the point of view of provability, the only important property
of these initialization procedures is that they place the system in
a correct initial state. There are no preconditions on the
initialization procedures, only post conditions. Although the
methodology does not in any way restrict how the initialization
procedures can go about achieving the correct initial state, there
is one technique that is straightforward and in keeping with the
general philosophy of the methodology. This technique is to perform
initialization by levels, beginning by initializing the lowest
level, and successively initializing the next higher level until all
levels are initialized. Each level is initialized to a correct
initial state for that level. Then the initialization of the next
higher level can be performed using only the functions of the level
just initialized. All that need be proved is that each level is
brought to a correct initial state. Since, once a level is
initialized, only functions of that level are used by the next
higher level, it is clear, by definition, that the level will always
be in a consistent state. Once the topmost level is brought to a
correct initial state then system initialization is complete. This

PART II PSOS DESCRIPTION Page II.I

technique is in keeping with the general philosophy of the
methodology because the specifications, implementation, and proof c
initialization can be done one level at a time. The proof that
system initialization is correct follows directly from the proofs
that initialization of each level is correct.

For those levels that are implemented as hardware,
initialization consists of setting all the registers of that level
to their proper initial value. The algorithms for the hardware ar<
permanently instantiated into the hardware circuitry. For those
levels implemented at least in part as software, it is necessary tc
first instantiate the algorithms that implement the functions of
that level by loading programs into memory from some I/O device anc
then initializing data bases to their proper initial values.

SHUTDOWN AND REINITIALIZATION

It is sometimes necessary to temporarily return an operating
system to its non-functioning or powered-down state so that the
equipment may be maintained as required or used for some other
purpose. When the system is returned to service, it should be in
essentially the same state as when it left service. This temporary
interruption of service is accomplished in two phases. The first
phase of bringing the system from an operating state into a non-
functioning state is called shutdown. The second phase of bringinc
the system from a non-functioning state back to its previous
operating state is called reinitialization.

The shutdown procedures must bring the system to a non-
functioning state in such a way that all the information necessary
to restore the system to its previous state is preserved in storag*
The storage media chosen for preserving this information should be
logically separable from the rest of the operating equipment of th<
system, so that it is not possible that this information could be
accessed or modified in any way during the non-functioning period.
This is necessary to preserve the security of the system and to
guarantee proper restoration of the system state at
reinitialization. The reinitialization procedures must use the
information preserved during shutdown to reconstruct the state of
the operating system. The state of most operating systems is
generally very complex requiring the preservation of large amounts
of information. However, it is usually the case that much of this
information is already on storage media suitable for preservation
and does not have to be moved during either shutdown or
initialization. For example, most of the state information of the
operating system described above resides in segments. Segments ar<
made up of pages and most pages in the system reside on secondary
storage devices such as disks. The disks are likely to be a
suitable medium for preserving state information, and so the bulk c
the state information for this operating system need not be moved.

In keeping with the hierarchical structure of the methodology,
both shutdown and initialization can be accomplished in a

hierarchical fashion. Each level is responsible for shutting itself
down and reinitializing itself. Shutdown is begun by invoking an 0-
function called "shutdown" at the topmost level of the operating
system. This function does the necessary preserving of state for
that level andf as its last actionf invokes the shutdown 0-function
of the next lower level. This ptocess repeats through all levels
down to the lowest level. When the lowest level has completed
preserving its state, its last act is to put the system in a non-
functioning state. Reinitialization proceeds much like
initialization. The lowest level is reinitialized and then each
succeeding higher level is reinitialized using the functions of the
newly reinitialized next lower level. Rather than bring each level
to a correct initial state, each level is brought to the state it
was in when the shutdown 0-function of that level was invoked. In
order to restore this state, the reinitialization procedure uses the
state information preserved by the shutdown procedure of the level.
When reinitialization of a level is complete, the level returns to
the next higher level as if it were returning trom the shutdown 0-
function.

To the next higher level, this temporary loss of service looks
like a simple 0-function invocation. Since the reinitialization
procedure for each level returns that level to the same state it was
in when the shutdown 0-function of that level was invoked, the
shutdown 0-function has no effects (a rather strange 0-function).
The specifications of all shutdown O-functions have no effects,
although they may have arguments and they may have exceptions. The
proof of the implementation of shutdown and reinitialization
involves proving that for each level, reinitialization restores the
state that existed when shutdown was invoked. In other words, the
combination of the shutdown and reinitialization procedures has no
visible effects. Shutdown and reinitialization are completely
specified by the shutdown 0-function of each level. Since the
shutdown 0-function is part of the specifications, its design is
proved secure as part of the proof of security of the
specifications.

The implementation of shutdown and reinitialization can be made
easier by restricting shutdown to being invoked only in certain
system states. By carefully choosing the allowable states at which
shutdown can occur, the amount of state information which has to be
preserved can be minimized. For example, it might be reasonable to
permit shutdown only when a single user process exists in the
operating system described above. In this case it is only necessary
to preserve the state of one process. Before attempting shutdown,
the system must destroy all the user processes but one. Clearly,
the restrictions on shutdown should be carefully chosen. For
example, it would be unreasonable to have the restriction that no
user segments exist at shutdown. This restriction defeats one of
the main purposes of the system, i.e., long term retention of stored
information.

PART II PSOS DESCRIPTION Page 11.36

FAULT DETECTION AND RECOVERY

One objective of this study is to design a system that is
provably secure. All proofs, however, are based on assumptions. In
the case of PSOS, one of the assumptions is that the primitive
functions of the specifications, i.e., those functions which are not
implemented in terms of lower level functions, can be correctly
implemented. Unfortunately, due to fundamental physical properties
of hardware, the actual realizations of the primitive functions can,
at best, be only close approximations to the function
specifications. If the system is to be secure, it must compensate
for such incorrect behavior in the realization of the primitive
functions. This is the purpose of recovery.

It is usually impossible to enumerate all those deviations from
the specifications which could possibly occur in a particular
realization. Fortunately, in any reasonable realization most
possible deviations have such a low probability of occurrence that
they are unlikely to occur within the lifetime of any
implementation. For a given realization it should be possible to
enumerate all potential deviations from the specifications which are
likely to occur within the lifetime of the system.

In order for the system to be able to deal with a deviation, it
must be able to detect the deviation. One means by which the system
may detect a deviation is by observing that some level is in an
inconsistent state. For example, on an attempt to read the contents
of a word of a segment, the implementation of the segment level
would invoke the page read function on a particular page. If
invoking the page read function caused an exception to occur because
the page did not exist, then the segment level has detected an
inconsistent state (assuming a particular implementation) because
only the segment level can create and delete pages and should never
cause that particular exception. The occurrence of an inconsistent
state implies that a deviation has occurred in some primitive
function, for, given the system will have been proved correct
assuming correct realization of primitive functions, it is only
within these functions that the deviation could have occurred.

It is, however, quite possible that a deviation occurring in a
primitive function could cause the system to incorrectly change from
one consistent state to another consistent state. For example, a
deviation in the memory level could cause the contents of a word of
memory to change. If this memory word is part of a page which is
part of a user segment, then the system will still be in a
consistent state at all levels. Since the system is still in a
consistent state, the deviation cannot be detected from the system
definition alone, the system requires additional information to
detect such a deviation. This additional information must be a
redundant form of the state information already present. The amount
of redundancy may vary from minimal, i.e., a parity bit on a word of
data, to complete duplication of the information, to many duplicates
of the information. There are many possibilities between these
extremes. Different pieces of information may necessitate different

PART II PSOS DESCRIPTION Page II.JV

amounts of redundancy. The amount of redundancy desired should be
determined by weighing the value of the information and the
probability that the information will be lost due to a deviation,
against the cost of maintaining the redundant information. Once a
deviation has been detected, an attempt must be made to correct the
cause of the deviation and to restore the system to the state it
would be in had the deviation not occurred. Unfortunately, the
detection techniques discussed above do not necessarily aid in
determining what the deviation was or the component that caused the
deviation. Determining what the deviation was and the component at
fault is diagnosis. Restoring the system state to what it would
have been had the deviation not occurred is recovery.

Neither diagnosis nor recovery can be 100% reliable. Both the
diagnosis and recovery algorithms can, at best, provide a partial
solution to the problem they are attempting to solve. However, if
the cases which are covered by the partial solutions are the ones
which are likely to occur within the lifetime of the system, a very
high degree of reliability can be obtained. Because both the
diagnosis and recovery algorithms are highly dependent upon the
particular implementation chosen for a given system design, a
meaningful set of algorithms for these purposes is not given in this
document. However, some general principles and specific examples
are given below.

Diagnosis of deviations could be performed at many levels of
the system. Some diagnosis can be incorporated into the hardware
directly. For this purpose some functions may be added to the
hardware levels of the system design in order that the hardware
diagnosis can be invoked by system software, and results of
diagnosis can be returned to the software. Some diagnosis
algorithms may be incorporated in the lowest levels implemented by
software. This is necessary because certain types of deviations can
render most of the software of the system incorrect. For example,
if the add function ceased to work properly, much of the software of
the system would operate incorrectly. However, diagnostic programs
that are carefully written and not dependent upon other software or
the add instruction can diagnosis a deviation such as this. Some
diagnosis programs may be incorporated at higher levels of the
system. For example, some deviations may not be diagnosable from a
single symptom. However, the deviation may be recognizable by
observing a pattern of symptoms. A high-level program could record
all symptoms which have not already been diagnosed and look for
patterns that may identify the deviation. Any diagnosis algorithm
implemented on some level of the system which has a visible effect
at some higher level must be included in the system specifications
as part of the design. Since the diagnostic functions are intended
to be included in the specifications, they will be proved secure as
part of the design security proof and there is no possibility of the
diagnostic functions creating a security violation.

In order for recovery algorithms to be able to restore the
proper state of the system after a deviation, state information must
be stored redundantly. The redundant information used for detection
of deviations and the redundant information used for recovery may or

PART II PSOS DESCRIPTION Page II

may not be the same. As with detection, the extent to which a gi
piece of information is maintained redundantly is dependent upon
probability that the information may be destroyed, the value of t
information, and the cost of maintaining the redundant informatio
Techniques for recovery will be illustrated by examples, followed
general principles for designing recovery into systems using the
methodology.

One type of deviation that occurs in many types of memories
that one bit of a memory word will be modified with no apparent
cause. This type of deviation from the specifications can be
detected by adding to each word of memory a parity bit, a single
of redundant information. Using the paricy bit, the system can
detect a spurious modification in a single bit of each word of
memory. Many techniques have been developed for recovering from
such errors within the memory itself. By adding some additional
bits of redundant information to each word of memory, the origina
contents of the word can be reconstructed with a high degree of
reliability when a hardware failure occurs. In general, the grea
the number of redundant bits, the greater the reliability of the
recovery. The advantage of such techniques to the methodology is
that the correction takes place at the same level as the failure
the failure is totally invisible outside the level. No
modifications to the specifications are necessary.

If, however, the correction is not implemented at the same
level as the failure, the failure will be visible outside the lev
and a deviation from the specifications can occur. It is,
therefore, necessary to incorporate the detection of the deviatio
into the design of the level at which the deviation occurs so tha
higher levels can detect the deviation and act upon it. The most
common way detected deviations will be reflected in the
specifications is through exceptions. In the case of the memory
parity error, the function block__read should have an additional
exception:

parity__error (u, i);

Because deviations are caused by events not naturally describable
terms of the specification language, their description in terms o
the language must be artificial. To describe the parity error
exception requires a new V-function and a new O-function in the
memory module. The new functions are defined as follows:

VFUN parity_match(slave_capability u; INTEGER i)
-> BOOLEAN b;
$(true if parity of word i of block u is correct)
HIDDEN;
INITIALLY b = TRUE;

OFUN cause_jpar ity__error (capabil ity c; capability b;
INTEGER i);

$(set parity bit for word i of block b)
EXCEPTIONS

no_parity_capability(c) ;
no__block (get__slave (b)) ;

PART II PSOS DESCRIPTION Page 11.39

EFFECTS

'parity_match(get_uid(b), i) = FALSE;

The exception parity_error can now be defined as:

parity_match(u, i) = FALSE;
This definition for parity errors assumes that there is some special
processor which invokes the function cause_j?arity_error• The first
argument of this function is a special capability for causing parity
errors possessed only by this special processor. The exception
no_j?arity_capability assures that only the parity processor can
cause parity mismatches. Of course, the special processor and the
function cause_parity_error are not explicitly implemented in the
system, they a7e simply a convenient way to describe a phenomena
that is not otherwise describable in the specifications.

Consider now two methods(l) of recovering from a memory parity
error. These are not the only methods, but are just two possible
solutions. The first method involves those memory words which are
used for paging, i.e., memory words that are constituents of pages.
Since a single parity bit per word provides only a detection
mechanism and is not sufficiently redundant to aid in recovery of
data, some additional redundancy is necessary. Assume that the page
level implementation maintains two copies of each page residing in
primary memory. Each invocation of the function page_write causes
both copies to be updated. When the function page_read is invoked,
an attempt is made to read one copy of the word of memory. If this
attempt is unsuccessful due to a parity error exception, then the
other copy of the word of the page is read. It is assumed that the
probability of parity errors occurring in both words is sufficiently
low as to be very unlikely to occur within the lifetime of the
system. (If one wished to account for the possibility of having a
parity error on both copies one could reflect this event as a parity
error exception of the page module).

The main disadvantage to the above method is its cost. The
method consumes twice the required memory and necessitates twice the
number of memory references on each write as the nonrecoverable
situation. A less costly solution is more desirable. Consider now
a method implemented at the segment level. Two copies of each
segment are maintained by the segment level, however, rather than
updating both copies at each write, one copy is updated less
frequently. For example, one copy may be updated only at specific
time intervals if a write operation on the segment has occurred in
the interval. This copy can be stored on a less expensive storage
medium than the original, e.g., on magnetic tape.

This second method is much less costly than the first method.
Even though the second method requires at least two copies of each

(1) Note that these methods are presented solely for the purpose of
illustrating some of the difficulties encountered in recovery
techniques. The discussion is superficial and does not constitute a
recommendation for or against the use of the two methods.

PART II PSOS DESCRIPTION Page II.4(

word of memory, one of these copies can be on an inexpensive storage
medium. Also the second method does not require two memory writes
for each page on each segment write* The main advantage of the
first method is that parity errors and parity error recovery are
totally invisible above the paging level (assuming that the
possibility that parity errors can occur on both copies of the same
word is negligible). The specifications for the paging level are
unchanged by the detection of and recovery from parity errors. Thii
is unfortunately not the case with the second method. Because
copies are not made on each segment write operation, full
duplication is not maintained and it is possible that a read of a
word of a segment that encounters a parity error upon referencing
the most recent copy of that word, would not be retrieving the valu<
supplied in the last invocation of write on that word. The value s<
retrieved might be a previous value which has since been modified.
This previous value may be inconsistent with the current state of
the segment. Even if the entire contents of the segment is
retrieved, there is no guarantee that the saved copy is consistent
because the copy may have been saved in the middle of an operation.
In this case the read function is actually causing a change of stat<
to the system and is therefore an OV-function rather than a V-
function. Clearly, in this case, some change to the specification
of the segment level is necessary if the specification is to be
consistent with the implementation. This may be accomplished simpl;
by redefining the read function, or, in order to preserve the
intuitive meaning of read, it may be more desirable to reflect the
parity error as an exception in the read function and introduce a
new O-function which recovers the state of the word from the most
recent copy. This new O-function would require write access in the
capability for the segment and would therefore preserve the
intuitive meanings for read and write access. The important
property is that whatever aspects of detection or recovery are
observable at any level must be included in the specifications of
that level. Since the specifications are to be proven secure, it i:
assured that the design of detection and recovery is secure. In
order to minimize the impact of recovery upon proof it is
advantageous to make recovery invisible as in the first method
above. This may, however, lead to system designs which cannot be
implemented in a cost effective manner. Some balance between cost
of implementation and cost of proof must be attained.

Recovery methods do not necessarily have to be applied
uniformly to all objects of a given level. For example, some
segments may be considered more critical than others, and it might
be most effective to apply the first recovery method above to the
pages of these critical segments. Also, some segments might be
critical for only a short period, and it might be advantageous to
apply the first method to the pages of these segments for only the
short period.

This nonuniform approach to recovery is particularly useful in
PSOS where the primary goal is security. Not all algorithms and
data in the system are essential to the security of the system, and
it is, therefore, reasonable to apply superior detection and
recovery techniques to those parts of the system that are critical

FAKT 11 fSUS UUibUKlfTlUJN i ' a g e J.l .<i±

to security. For example, the correctness of a capability is, in
general, more critical to security than the correctness of other
forms of data and might be represented in a more highly redundant
form to assure its correctness. Similarly, the algorithms that
implement the capability module might be implemented redundantly,
for example, as triply redundant hardware with voting.

The above paragraphs provide a few examples of how recovery
might be accomplished under certain circumstances. These examples
are not intended to represent optimal strategies in any sense, for
it is not possible to fully evaluate a recovery strategy without
detailed knowledge of the system implementation. The examples are
meant to illustrate some of the tradeoffs in recovery techniques and
to demonstrate how the recovery techniques are incorporated into a
system design using the methodology.

Some general principles of detection of and recovery from
deviations can now be stated:

1. Hardware failures can, in general, occur at any level of the
system. Detection of and recovery from such failures can
take place at the level of the failure or at any level higher
than the failure or some combination of these. A failure
need not be dealt with at any particular level, but may be
dealt with at the level or levels that the designer deems
appropriate. In the examples above, a failure at the memory
level is recovered from at the memory, page, and segment
level.

2. Each level of the system may provide functions which permit
implementations of higher levels to check the consistency of
the given level or to cause the given level to recover to a
consistent or proper state. These types of functions may be
necessary because some level may detect an inconsistency in
its state which may be due to an inconsistency in the state
of some lower levels that have not been detected by the lower
levels.

3. To promote the simplest design, it is desirable that
deviations be made invisible at the lowest possible level,
i.e., detection and recovery are implemented at this low
level. However, this goal may be incompatible with cost
effective implementation.

4. The most important principle is that all effects observable
at any level be included in the specifications. The design
can then be proven secure. This principle is, of course,
applicable to all areas of system design, not only recovery.

Certain tests for consistency are too costly to be performed
dynamically, i.e., to be performed routinely as the system is
running. Consider, as an example, the case of a capability that is
about to be deleted. The user object manager guarantees that there
will remain at least one capability for the object whose capability
is to be deleted. However, checking that this is actually true is a

very costly operation requiring a search of all directories in the
system for this other capability. Examples of other expensive
consistency checks include assuring that a given page is part of
only one segment and that CREATE_CAPABILITY returns a capability
with a unique identifier that does not appear in any existing
capability. Such consistency checks may be tried on an occasional
basis to try to detect otherwise undetected deviations. In addition
these consistency checks can be used to aid in restoring the system
to a consistent state once it has been determined that there is an
inconsistency. These checks might also be tried in the case that an
inconsistency is suspected. For example, a user might discover that
a segment to which only he should have access contains data that he
did not place there. Running these consistency checks might
disclose that the segment in question contains a page that is also
in another segment. It may be impossible to determine what the
proper consistent state should be. In a secure system, if the
proper consistent state is unknown, a conservative rectification of
the inconsistency is desirable. If unauthorized release of
information is paramount, an extreme solution might be to destroy
the system. A more moderate solution would be to destroy the page
in question. If"the system is properly implemented, the occurrence
of such situations will hopefully be extremely rare, however if
proper operation of the system is critical, it is necessary to
develop policies to handle these situations and to design the system
to aid in detecting and rectifying such inconsistencies. for
example, in PSOS prohibiting capabilities from being written into
user segments could make the detection and correction of certain
inconsistencies related to capabilities much easier. This
prohibition is a significant restriction in the functionality of the
system, but it may be worthwhile in certain applications where
security is crucial.

None of the techniques of detection and recovery described
above is new or unique to the design and proof methodology.
However, the methodology does enhance the usefulness of these
approaches by making the conditions that define a consistent state
of the system explicit and precise. Also the methodology, i.e., the
combination of specifications, mapping functions, and programs,
makes it straightforward to determine the effect upon the system
interface or any internal interface of a particular deviation. This
is essential to determining which deviations can have undesirable
effects, what the cost of a deviation is, and the best means for
recovering from the deviation.

PART II PSOS DESCRIPTION Page 11.43

IMPLEMENTATION CONSIDERATIONS

Although this report does not include a specific implementation
for the system described above, it is important to consider
selected issues relating to the implementation of the system. Some
of the decisions made in the design of the operating system are
derived from knowledge of how the system could be implemented. Also
the choice of implementation can seriously effect the efficiency and
verifiability of the implementation. The following sections relate
to specific topics related to software and the hardware/software
interface. Much of the implementation of PSOS is conventional,
i.e., there are existing systems that reasonably implement many of
the features of PSOS. There are several aspects of the
implementation that are fairly unique to PSOS. Two such aspects,
table management and procedure invocation, are now discussed.

TABLE MANAGEMENT

Much of the work of any operating system regards the management
of the resources of the system. Such management of resources is
accomplished through the maintenance of data bases or tables which
describe the state of the resources being managed. In those cases
where resources are utilized frequently and the utilization of the
resources requires reference to the tables associated with the
resource, effective table management becomes an important factor in
the overall efficiency of the system.

PSOS introduces a new wrinkle on the table management problem
by its use of capabilities to reference objects. In other systems,
references to frequently utilized resources is made via integers
(e.g., segment numbers, channel numbers, file numbers, device
numbers). Such integers are typically indices into tables used to
manage the type of resource being referenced. Locating the table
entry corresponding to a given resource is accomplished by a simple
arithmetic calculation involving the known beginning of the table
and the integer used to reference the resource. In PSOS, all
references to resources (objects) are made via capabilities. The
"integer" identifying the resource being referenced is actually the
unique identifier in the capability. Unfortunately, if the unique
identifier is used as a simple index to reference an entry in a
table, all tables would have to be very large and the meaningful
entries in the table would be very sparse. This is because the
number of unique identifiers is very large and the unique identifier
for each virtual resource is unique for all time and not reused. It
is necessary to have a very efficient means of mapping a given
unique identifier into the table entry corresponding to the resource
(or perhaps into the resource itself).

Consideration of this problem is divided into three cases:

1. perpetually existing resources,

2. resources created during initialization or reinitialization of
the system, and

PART II PSOS DESCRIPTION Page 11.44

3. resources created while the system is in normal operation.

Perpetually existing resources mainly consist of the physical
resources of the system such as primary memory, processors, I/O
devices, and the clock. These devices can be assigned permanent
unique identifiers. Because these unique identifiers associated
with perpetual resources can be determined before the system is
constructed and because these identifiers are unchanging, a
judicious choice of identifiers can make the process of mapping them
into the actual resources very efficient. For example, the unique
identifiers for I/O devices could consist of two parts: one part
being a code that indicates that this identifier corresponds to an
I/O device and the other part being the physical address of the
device. An operation referencing an I/O device via such a unique
identifier simply checks the first part to make sure the identifier
does correspond to an I/O device and then uses the second part to
make the actual reference. All the unique identifiers for the
physical resources can be assigned in this manner. Of course, the
algorithm that generates new unique identifiers for newly created
capabilities must never generate any of these predetermined unique
identifiers.

The best examples of resources create during initialization or
reinitialization of the system are the system procedures. Operating
system functions are invoked by using a capability for a system
procedure as an argument to the call operation. The system
maintains a table of all system procedures and, in order to perform
the invocation of a system procedure, the call operation must locate
the entry in this table for the system procedure corresponding to
the unique identifier in the given capability. All system
procedures are created during system initialization. If the unique
identifier corresponding to a system procedure could somehow be
directly related to the location of the entry for that system
procedure, then the call operation could be simplified and made more
efficient. One way to accomplish this would be to generate the
unique identifiers for all the system procedures in the sequence
their entries appear in the table, e.g., the system procedure
appearing in the fifth table entry would have the fifth unique
identifier in the sequence of unique identifiers generated for
system procedures. If the call operation knows the first identifier
in the sequence, and from this can easily determine the relative
position of all succeeding identifiers, then the location of the
table entry can easily be determined. Of course, this technique
assumes that the sequence of unique identifiers generated by the
unique identifier generating algorithm can be easily determined.
This is true of the simple integer successor algorithm, but is not
true for all algorithms.

Resources created while the system is running present more
difficult problems. The most obvious way a representing and
efficiently accessing a large and sparse table such as a table of
unique identifiers is via hash tables. It is expected that all
system tables indexed via unique identifiers will be hash tables.
Although there are a wide variety of hashing technique and hashing
algorithms that may be applicable, it is expected that one or two

T 11 fbus utibUKiJfTiuw fage 11. ̂o

techniques and algorithms will be chosen in order that they may be
implemented efficiently in hardware or firmware. Consider, for
example, the table that is used to implement the get_j?r_address
function of the procedure_records module. This table is indexed by
a procedure (segment) unique identifier. Efficiency might dictate
that this lookup be done by single machine instruction, requiring
that the hashing algorithm be implemented in hardware.

Consider now the table that is used to implement the
read_device, write__device, send__command, and receive__status
functions of the visible_io module. This table is indexed by a
virtual I/O device unique identifier and each entry contains the
capability associated with the physical I/O device. If very
efficient I/O is desired to support certain applications, then
simply implementing the hashing algorithm in hardware or firmware
may not be efficient enough. There is still a necessity for at
least two primary memory references for each table reference: one to
compare the referencing identifier with the entries identifier to
ascertain that the correct entry has actually been found, and one to
retrieve the capability for the I/O device. These memory references
can be eliminated in the majority of references and the hashing
eliminated by the use of a set of buffer registers that can be
addressed associatively. Because such associative memories are
expensive and cannot operate as quickly for a large number of
entries, the number of entries is kept small and only a few entries
of the table are stored in the associative memory. These entries
are typically the most recently referenced entries. A mechanism
must be constructed for adding entries to and removing entries from
the associative memory in a manner that keeps the most recently used
entries in the associative memory. It has been demonstrated that
using such associative buffer memories can eliminate most of the
references to primary memory necessary for table lookups.

The table necessary to implement the functions read__segment and
write_jsegment of the segments module introduces a further
complexity. Clearly, these functions must be implemented in a
highly efficient manner for every machine instruction invokes one of
these functions at least once (the read_segment necessary to read
the instruction itself). The problem arises because the table that
is used to translate segment unique identifiers into page
capabilities is likely to be very large because it has one entry for
every segment in the system. This table will likely be stored in
secondary memory necessitating long delays for each reference. The
use of an associative memory as described above would help
significantly. However, when a reference is made to a segment whose
entry is not in the associative memory, a long delay would still be
incurred. In order to obtain sufficient overall efficiency, the
number of references to secondary storage must be a very small
fraction of the overall references. It is not cost effective to
build an associative memory large enough to reduce the number of
secondary storage references to a sufficiently small fraction of the
overall number of references. This problem can be solved by using a
two level buffer strategy. The associative memory is still used,
however a second buffer is kept in primary memory. The number of
entries kept in primary memory can be much larger than the number of

PART II PSOS DESCRIPTION Page 11.46

entries in the associative memory, but will still be much smaller
than the total number of entries in the table. An attempt is made
to resolve each reference to the table first using only the entries
in the associative memory, if this fails then the primary memory
entries are used, and only if this fails is secondary storage
referenced. If the most recently used entries are kept in the
associative memory and primary memory, then references to secondary
storage for table entries should be very infrequent.

All the methods for table management described above require
very close cooperation between hardware, firmware, and software. In
the case of the table necessary to support the implementation of
segments, the associative memory and the algorithms that access the
associative memory are likely to be implemented in hardware, the
algorithms for adding entries to and removing entries from the
associative memory are likely to be implemented in firmware, and the
algorithms for adding entries to and removing entries from primary
memory are likely to be implemented in software. This implies a
great deal of coordination between the hardware, firmware, and
software, with much information accessible to all modes of
implementation. Such information as the location and size of many
system tables will have to be accessible to hardware firmware and
software.

PROCEDURE INVOCATION

The mechanism for procedure invocation is another area where
close cooperation is necessary between hardware, firmware, and
software. This is true both because the invocation mechanism
requires hardware assistance, the hardware algorithms are dependent
on software maintained tables, and many of the functions supported
by the system are implemented as software procedures and these
procedures must properly utilize the invocation mechanism in order
to assure proper operation of the system and maintain the security
of the system.

Each activation of a procedure has associated with it an
activation record. The activation records contains storage for the
values of variables local to the procedure activation. The
activation record should also contain control information necessary
to support the control structures of the system and the programming
language.

An activation record is created whenever an activation is
created (i.e., when a procedure is invoked via a call operation).
The address of the activation record is placed in the stack register
by the call operation. The call operation also returns an address
that is passed as an argument to the return operation when the
activation is to be terminated. This address is used by the return
operation to return to the invoking activation. In a particular
implementation this return address will likely be placed in a
designated register by the call operation.

It is essential that procedures obey certain conventions at
procedure invocation and return in order to maintain their

PART II PSOS DESCRIPTION Page 11.47

protection* If procedure PI wishes to invoke procedure P2 in a
manner such that procedure P2 cannot interfere with PI then
procedure PI must do the following before executing the call
operation on P2:

1. PI must create a segment or window containing only the
arguments for P2. The address for this window will be passed
to P2.

2. PI must clear all the registers containing information that PI
does not want P2 to have access to. PI may wish to save the
contents of the cleared registers before clearing them. The
hardware might provide an instruction that saves the contents
of and clears specified registers to make this step more
efficient. (Note that the instruction class register is
always effectively cleared, i.e., set to minimum privilege, on
a call, but PI may wish to save its value for later
restoration.)

3. PI must store the address of the instruction to be executed
upon return at some location established by convention. This
location will be at a fixed offset relative to the return
address passed to the call operation. The saved contents of
registers must also be placed at some predetermined offset
from this return address in order that the contents of the
registers can be restored.

PI must execute a protected call so that a new segment is created
for the activation record of P2 and so that the return address is
protected from access by P2.

If procedure P2 wishes to assure that it is invoked by any
procedure in a manner such that the invoking procedure cannot
interfere with the operation of P2 then the following must be done:

1. All capabilities for the procedure (segment) P2 must not have
the "read" or "write" access right and must have the "call"
access right. This guarantees that P2 can be invoked only in
a protected manner (will have a new segment created for its
activation record) and that P2 itself cannot be modified.

2. Before executing the return operation, P2 must clear the
registers containing values it does not want returned to its
invoking activation.

Using these conventions, the caller can be protected from the
callee, the callee can be protected from the caller, and the caller
and callee can be mutually protected. Since there is some overhead
involved in a protected call, an unprotected__call operation has been
provided for those invocations where neither the caller nor callee
requires protection.

The call to a system procedure operates somewhat differently.
This is because within the system, the caller never needs protection
from the callee. Also, some system procedures do not reside in

rouo

segments. Unlike capabilities for user procedures, capabilities fo
system procedures are not segment capabilities. If a call operatio
with a capability for a system procedure is attempted, the call
operation recognizes the capability as being for a system procedure
and determines the address of the system procedure by reference to
the system procedure table. The system procedure table also
specifies the location for the activation record for the procedure
and the contents of the instruction class register for the
procedure. The latter is necessary because the instruction class
determines whether addresses are interpreted as segment addresses o
memory block addresses. If a system procedure has a capability for
another system procedure within the same system level, then that
capability may contain the "read" access right. This allows the tw
procedures to share the same storage space for their activation
records. If a system procedure has a capability for another system
procedure at a lower system level, then that capability will have
the "call" access right, but not the "read" access right. This
guarantees that the two procedures will not share the same storage
space for their activation records.

An attempt has been made in the design of the call,
unprotected_call, system_call, return, and system__return operations
to make usage and conventions as uniform as possible. This makes
writing a compiler for a programming language much simpler because
the compiler does not have to know what kind of procedure it is
calling or whether or not the call is protected.

It is expected that the call and return operations will be
implemented in firmware. This is necessary for both conceptual
(otherwise how does one invoke call) and efficiency reasons. Moder
programming language make extensive use of modularization and
procedures and an inefficient procedure invocation mechanism leads
to poor system performance. The initialization of the system
procedure table will likely be done by software during system
initialization and the location and size of this table will have to
be made accessible to the firmware by the initialization software.

PART I I PSOS DESCRIPTION Page 11.49

IMPLEMENTATION CONSIDERATIONS

Although t h i s r epor t does not include a spec i f ic implementation
for the system described above, i t i s important to consider
selected i ssues r e l a t i n g to the implementation of the system. Some
of the decis ions made in the design of the operat ing system are
derived from knowledge of how the system could be implemented. Also
the choice of implementation can se r ious ly e f fec t the eff ic iency and
verifiability of the implementation. First, issues relating to
hardware will be discussed with respect to efficiency of the system.
Second, issues relating to verifiability of the software will be
discussed.

HARDWARE

The functions implemented by hardware are the visible functions
of levels 0 through 5 of the specifications, plus a few additional
features. Hardware (as opposed to software) is chosen as the
implementation medium for levels 0 through 5 primarily for two
reasons. First, levels 0 through 5 are the primitive levels of the
system, i.e. there are no mapping functions which map all the
states of these levels to other lower levels. The existence of
mapping functions for all other levels assures that the other levels
can be implemented in terms of the functions of the primitive
levels. The nonprimitive levels can, therefore, be implemented in
software if the functions of the primitive levels are implemented as
hardware. Second, the functions of levels 0 through 5 are, in
general, the most frequently invoked functions of the system and,
therefore, should be the fastest functions. Implementation of these
functions in hardware is the most convenient way of attaining fast
operation. In addition to the functions of levels 0 through 5 a few
other operations are implemented in hardware. These other
operations are also invoked frequently during the operation of the
system and are implemented in hardware to attain speed of execution.

The hardware described below is well within the state of the
art. All the hardware features exist, in some form, in commercially
available computers, although no single existing computer contains
them all. Construction of this hardware simply involves combining
and integrating existing techniques.

It is no coincidence that the primitive levels of the secure
operating system contain, in general, the most frequently invoked
functions and that these functions are straightforwardly
implementable in contemporary hardware. One of the objectives of
the design of any operating system by the methodology should be to
assure this association of primitive levels, frequently invoked
functions, and straightforward hardware implementation. This is the
case of the secure operating system where the choice of the
functions of the primitive levels was made with contemporary
hardware in mind.

The design of hardware to implement most of the functions of
levels 0 through 5 should be straightforward for any experienced

PART II PSOS DESCRIPTION Page 11.50

hardware designer as most of the functions are very conventional
(e.g., those relating to interrupts, registers, and the clock).
Some functions are not as conventional (e.g., those relating to
capabilities) and require some discussion. Only issues relating to
these less conventional functions will be discussed.

Capabilities

Since capabilities are the basis of all protection in the
secure operating system, it is essential that only the operations of
the capability module can access capabilities. To insure this it is
necessary that capabilities be distinguishable from other data in
the system. The most straightforward way of distinguishing
capabilities is to mark each piece of data with a single bit of
information indicating whether or not the data is a capability.
This bit of information is called a tag. In addition to the tag,
the capability must contain a unique identifier (the value retrieved
by GET_SLAVE) and an access vector (the value returned by
GET ACCESS). This can be represented schematically as follows:

I unique identifier I access vector i tag

This diagram indicates that a capability has three fields. The tag
field is one bit in length and always contains the same value. The
length of the unique identifier field must be large enough to take
on a sufficient number of different values so that the system will
never run out of unique identifiers during its lifetime. We can put
a reasonable upper bound upon this number by assuming that a system
might generate one unique identifier every microsecond and that the
lifetime of the system is about 60 years. These assumptions are
probably worse than could be expected in any real system. In this
case the number of different unique identifiers required would be

51
about 2 . This would require a field length of 51 bits. Any real
system could probably get away with a field shorter than 51 bits.
The length of the access vector field depends upon the number of
different access rights required for any given object. Although
there is no limit to the number of access rights an arbitrary object
might need, a reasonable number would be between six and twelve.
There is no system maintained object that requires more than six
access rights. Using the maximum possible length for each field,
the total length of the capability would be 1 +51 + 12 = 64 bits.
Some number of bits for error detection and correction should also
be added. From the point of view of capabilities, some value
slightly greater than or equal to the capability size should be the
optimal size for a memory word. However, a machine word less than
this size could also be accomodated by making capabilities multiple
word data items. The important properties that must be maintained
by the hardware are:

1. only the three hardware implemented operations GET SLAVE,

PART II PSOS DESCRIPTION Page 11.51

GET_ACCESS, and RESTRICT_ACCESS can read a data item whose
tag indica tes tha t i t i s a capab i l i t y , and

2. only the operations CREATE_CAPABILITY, CREATE_RESTRICTED_CAPf

and RESTRICT_ACCESS can generate a data item whose tag
indicates that i t is a capability.

The algorithms for the capability operations GET___SLAVE,
GET_ACCESS, and RESTRICT_ACCESS follow directly from the
specifications and the format of the capability i tself . These
capability operations must be sure that their argument is a
capability (by examining the tag) before returning any value. The
only capability operations whose implementations are not
straightforward are CREATE_CAPABILITY and CREATEJRESTHICTED_CAP."
These operations must generate a different unique identifier each
time they are invoked. A simple algorithm such as adding one to the
value of the last previously used unique identifier is acceptable.
However, any algorithm which generates a different unique identifier
each time is also acceptable.

As stated in the introduction to this section, i t is not
necessary that the hardware that implements capability operations be
separate from the hardware for other levels of the system. Although
the specifications call for a single instance of the capability
functions, i t is quite clear that the operations GET_SLAVE,
GET_ACCESSf and RESTRICT_ACCESS can be distributed into the
processors. Each processor can have an instance of these
operations. The distribution of the CREATEjCAPABILITY operation is
not quite as easy because each created capability must be unique for
the entire system rather than for just one processor. The system
can either have a single instance of the CREATEjCAPABILITY operation
or, if there are multiple instances of CREATEJCAPABILITY, these
instances will have to cooperate. The desirability of each of these
two alternatives for CREATEjCAPABILITY will depend upon the precise
machine architecture chosen.

The three hardware implemented object types (interrupts, memory
blocks, and I/O devices) are addressed via capabilit ies. This would
seem to imply that the hardware must maintain some mapping from the
unique identifiers within the capabilities to the physical addresses
of the objects. Logically, this implication is correct, however, in
practice the mapping can be t r iv ia l . Since the hardware implemented
objects are known when the system is init ialized, some unique
identifiers for these objects can be reserved for use by the
hardware. The unique identifiers reserved should be those bit
patterns which consist of the physical addresses of the objects plus
some bits to distinguish the three different types of hardware
objects from each other and from all other unique identifiers that
the system may generate. When the hardware is invoked to reference
one of the hardware objects, i t simply extracts the unique
identifier from the capability (once the access rights have been
checked) and checks to see if the type bi ts indicate a hardware
object of the correct type. If so, the bits which contain the
physical address of the hardware object are used to reference the
object i tself . This scheme makes insignificant the cost of using
capabilities to reference hardware implemented objects.

PART II PSOS DESCRIPTION Page 11.52

There remains the problem of efficiently implementing software
references to objects via capabilities. It must be possible for a
program implementing some abstract object to convert the slave
capability for that object into the representation of that object.
For programs implemented above level 9 (extended types), the
extended type manager can be used for this purpose. For programs
implemented below level 9 or for programs not wishing to use the
extended type manager some other facility is necessary. The
simplest mechanism that can be implemented efficiently for this
purpose is to implement a hashing function in the hardware. The
hashing function can be defined as follows:

VFUN hash(slave_capability u, INTEGER hs) -> INTEGER hi;
INITIALLY hi >= 0 AND hi < hs;

This is a constant function that always returns the same integer for
a given slave capability within the range of integers between 0 and
hs. This function can be used to efficiently locate an entry for
the object corresponding to a given capability in a hash table of
size hs. The algorithm of the HASH function must be carefully
chosen to permit efficient implementation and to minimize conflicts
in the hash table. The HASH function should logically be included
in the specification of the CAPABILITIES module.

Processors

The processor level provides the basic computational power of
the system. The processor level, therefore, includes functions for
arithmetic such as addition and subtraction, boolean algebra such as
fand? and fnotf, and relations such as equal, greater than, and less
than. The processor level also provides the primitive mechanism for
executing sequences of operations; there will, therefore, be
functions for controlling sequencing, such as transfers and
conditional transfers. Virtually all computers have processors with
functions such as these and any of these processors is generally
suitable for use in the secure operating system. The precise choice
of computational functions should depend more on the language chosen
to implement system and application programs than on the operating
system design. For this reason most of the computational functions
of level 4 are not given in the specifications. The specification
of these functions is generally trivial. A few have been specified
to illustrate how they might be done. The specification is by no
means complete. Also, most of the specifications of level 4 could
be modified to fit a different processor architecture without
effecting the overall system design.

Hardware assistance for higher levels

There are several instances, in the higher levels of the
operating system, of functions that will be invoked so frequently
that it is essential that their implementation be exceedingly fast
if the system is to operate at reasonable speed. For this reason,
the most frequently executed paths of the algorithms that implement
these functions must be implemented in hardware.

Hardware assistance is clearly necessary for operations that
read and write pages and segments since these operations are invoked
on every instruction. Hardware should be used to compute the
location of and retrieve or modify data in primary memory.
Techniques for efficiently accomplishing these tasks in hardware can
be found in many existing machines and typically involve the use of
buffer or associative memories. It may also be desirable to utilize
similar techniques for referencing I/O devices. Recall that
programs above level 12 are given temporary capabilities for I/O
devices so that access to the device may be revoked at some later
time. The implementation of the VISIBLE__IO module must, for each
transaction with a device, convert the temporary capability for the
device into the permanent capability for the device. If it is
essential that operations on I/O devices be highly efficient, the
functions that operate upon devices can be implemented in hardware
using an associative memory to obtain the permanent capability for
the device when given the temporary capability.

SOFTWARE

The most important software implementation consideration with
respect to the methodology is the choice of programming language.
The programming language must be suitable to the application (i.e.,
it must be a good system programming language) and it must be
amenable to program verification techniques. In order to make proof
as easy as possible, the programming language must relate well to
the methodology and particularly to the specification language. In
general, programs that are easily verifiable and constructed using
the methodology should have clarity and be eminently readable. Such
a language should contain features such as procedures and functions,
restrictive scope rules, strong type checking, simple but general
data and control structures, and means for generating and handling
exceptions.

Functions have been incorporated into the design of the
hardware to make it easy for a compiler to generate code for such a
language. The hardware has the CALL and RETURN functions for
procedure and function calls and a convention for the passing of
arguments. The existence of activation records and procedure
records can be used to enforce restrictive scoping of variables.
Conventions are included that allow a procedure to indicate to its
caller that an exception has occurred.

PART I I PSOS DESCRIPTION Page 11 .54

! Leve l

i 16
i 15
! 14
! 13
i 12
i 11
i 10
! 9
! 8
I 7
! 6
i 5
i 4
i 3
i 2
i 1
! 0

PSOS Abstraction

user request interpreter
user environments and name
user input-output
procedure records
user processes and visible

spaces !

input-output I
creation and deletion of user objects !
directories
extended types
segmentation and windows
paging
system processes and input-output !
primitive input/output
arithmetic and other basic
clocks
interrupts

operations !

registers and addressable memory i
! capabilities

Table 2,1 - PSOS levels of abstraction

rfl.ni xx Page 1 1 . 5 5

LEVEL 13
CAPABILITIES
SYSTEM_INVOKE
SEGMENTS
DIRECTORIES
USER INVOKE

PROCEDURE RECORDS

REGISTERS
COORDINATOR
WINDOWS
USER_OBJECTS
VISIBLE 1 0

ARITHMETIC
TIMERS
EXTENDEDJTYPES
USER PROCESS

LEVEL 12

USER_PROCESS
COORDINATOR

CAPABILITIES
SYSTEM_INVOKE
EXTENDED TYPES

USER_INVOKE
TIMERS

REGISTERS
SEGMENTS
DIRECTORIES

VISIBLE 10

ARITHMETIC
WINDOWS
USER OBJECTS

LEVEL 11 CAPABILITIES
SYSTEM_PROCESS
TIMERS
WINDOWS

USER OBJECTS

REGISTERS
SYSTEM_INVOKE
SYSTEM_IO
EXTENDED TYPES

ARITHMETIC
COORDINATOR
SEGMENTS
DIRECTORIES

LEVEL 10 CAPABILITIES
SYSTEM_PROCESS
TIMERS
WINDOWS

DIRECTORIES

REGISTERS
SYSTEM_INVOKE
SYSTEM_IO
EXTENDED TYPES

ARITHMETIC
COORDINATOR
SEGMENTS

EXTENDED TYPES

LEVEL 9 CAPABILITIES
SYSTEM_PROCESS
TIMERS
WINDOWS

REGISTERS
SYSTEM_INVOKE
SYSTEM 1 0

ARITHMETIC
COORDINATOR
SEGMENTS

SEGMENTS WINDOWS

LEVEL 8 CAPABILITIES
SYSTEM_PROCESS
TIMERS

REGISTERS
SYSTEM_INVOKE
SYSTEM 10

ARITHMETIC
COORDINATOR

LEVEL 7 CAPABILITIES
ARITHMETIC
COORDINATOR

PAGES

REGISTERS
SYSTEM_PROCESS
TIMERS

MEMORY
SYSTEM_INVOKE
SYSTEM 1 0

Table 2.2 (continue on next page)

PART II PSOS DESCRIPTION Page 1 1 . 5 6

LEVEL 6

SYSTEMJPROCESS
TIMERS

CAPABILITIES
ARITHMETIC

SYSTEMJCNVOKE
SYSTEM 10

REGISTERS

COORDINATOR

MEMORY

LEVEL 5
CAPABILITIES
INTERRUPTS

PRIMITIVE 10

REGISTERS
CLOCK

MEMORY
ARITHMETIC

LEVEL 4
CAPABILITIES
INTERRUPTS

ARITHMETIC

REGISTERS
CLOCK

MEMORY

LEVEL 3
CAPABILITIES
INTERRUPTS

CLOCK

REGISTERS MEMORY

LEVEL

LEVEL

LEVEL

2

1

0

CAPABILITIES

REGISTERS

CAPABILITIES

INTERRUPTS

REGISTERS MEMORY

MEMORY

CAPABILITIES

Table 2.2 - Modules of levels 0 through 13
(Modules above the dotted line of each level
represent functions newly added to the system
at that level. Modules below the dotted line
represent functions actually implemented at
lower levels. A module appearing above the
dotted line in more than one level indicates
different instantiations of the module, i.e.,
different implementations of the module with
possibly different parameter values.)

Type of object Access rights

clock
interrupt
memory block
primitive I/O device
processor
system process
system I/O device
page
segment
extended type

directory

user process
visible I/O device
procedure records

read, modify
setjiandler, mask, set_int
read, write
read, write, control, device
read, modify
read, modify
read, write, control, device
read, write, delete
read, write, delete, call
create, manage, delete, interrogate,
add_rep, delete_rep

add_entries, remove, load, l i s t ,
add_JLocks, delete

read, modify
read, write, delete, control, device
read, write

Table 2.3 - Access rights for system objects

ROOT

DIRECTORY

NAME

^ DIRECTORY
ENTRY

NONDIRECTORY ^(\
OBJECT r\ I

AN ARROW INDICATES THAT AN ENTRY
CONTAINS A CAPABILITY FOR THE OB-
JECT POINTED TO.

UPPER

LOWER

GOOD

BAD

UGLY

o

en
n

3
o

TA-790525-1

0)

H)

M
H

FIGURE 2.1 EXAMPLE DIRECTORY HIERARCHY 00

PART I I PSCS DESCRIPTION Page 11.59

READ-PAGE (c,i)-— w

c: Page Capability

i: Offset of Word in Page

w: Word of Data

u: Unique Identifier for Page

b: Capability for Memory Block

\

Found

w—-BLOCK-READ (b,i)

\

f Found

ENTER-PAM (u,b)

(DONEJ

TA-790525-2

FIGURE 2 3 COMPLETE HARDWARE ALGORITHM FOR READING A PAGE

PART II PSOS DESCRIPTION Page 11-60

WRITE-SEGMENT (s,i,w) s: Segment Capability

i: Offset in Segment

w: Word of Data

u: Unique Identifier of Segment

pn: Page Number of Page in Segment

off: Offset in Page

p: Page Capability

sp: Store Permits for Segment

u — - G E T - U I D is)
pn—- i /PAGE-SIZE
of f—- i -pn*P AGE-SIZE

WRITE-PAGE (p,off,w)

DONE

TA-790525-3

FIGURE 2.4 HARDWARE ALGORITHM FOR WRITING INTO A SEGMENT

PART III
PROOF CONSIDERATIONS

CHAPTER III-l
PROOFS OF SECURITY —

SPECIFICATION PROPERTIES

This section presents a statement of specific
security-related properties about the operating system design,
and outlines proofs of these properties. It is seen that the
security of the basic design thus rests on easily-enforced simple
properties of the specifications. The security of any
application rests on its abstract type managers. [The authors
feel strongly that this chapter is only a preliminary
formulation. Further research is needed to develop models that
better capture the user-view intuitive meaning of security —
particularly to model environment changes. Also, the present
description is too dependent upon SPECIAL.]

The staged development process discussed in Part I makes a
distinction among the following stages:

(50) the definition of the visible interface to the system
or subsystem to be developed;

(51) the decomposition of the functions of that interface
(along with internal system functions) into a hierarchy of
levels, each consisting of a set of modules;

(52) the design as represented by formal specifications for
each module;

(53) the abstract data representations as defined by mapping
function expressions; and

(54) the implementation of each function in terms of
lower-level functions.

The proofs of operating system security follow the same
distinction. First, proofs of design properties are considered,
i.e., proofs of the correspondence between the desired properties
and the formal specifications. Then proofs of the consistency of
the design (stage 2) and the implementation (stages 3 and 4) are
considered. This chapter is concerned with proofs of properties
relative to the design. The next chapter considers the proofs of
implementation consistency.

Two properties are basic to the security of system
operation. These are the Alteration Principle and the Detection
Principle, which state that there shall be neither unauthorized
modification nor unauthorized acquisition of information. These
principles are stated informally in Section 4 of Chapter 1-1, and
somewhat more rigorously in Section 9 of Chapter 1-1. In this

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 2

chapter, these principles are given a more detailed
axiomatization in terms of the specification language and the
concept of capabilities in the operating system design. It is
observed that these principles are satisfied by the
specifications for the operating system (Appendix B).
Furthermore, it is possible to check this consistency
automatically, although the anticipated on-line tools for doing
this checking have not yet been completed.

Additional properties are given that contribute to the
understanding of the security of the design. These properties
are decomposed into several categories, some relating to the
methodology in general or to the specification language in
particular, the rest relating to the operating system design.

TERMINOLOGY AND NOTATION

The terminology used here concerns 0-, 0V-, and V-functions,
hidden and visible V-functions, and derived and primitive
(nonderived) V-functions. For V-functions, "H" stands for
"hidden", "V" for "visible", "P" for "primitive", and "D" for
"derived".

The external interface to each level (e.g., that of the
user-visible interface) consists of a collection of visible
V-functions, O-functions, and OV-functions, each of which is
permitted to be called from certain higher levels. Each level is
composed of a collection of modules, specified independently.
Internal to a module are hidden V-functions (HV), which define
the state of the module. In specifications, hidden V-functions
may be cited and modified only by functions at the level of the
module to which they belong. They are totally invisible above
that level. Hidden V-functions may however appear in assertions
(e.g., mapping functions) about system behavior.

In general, protection is intrinsic to the functions of the
external interface to each module, via the exception conditions
and the use of capabilities as arguments. That is, each visible
function requires as arguments appropriate capabilities for any
objects to be accessed; these capabilities must contain proper
access rights in order for the function to be executed. Since
the hidden functions are not accessible, no protection is applied
to them.

Certain V-functions of each module are primitive (PV),
namely those whose values are used in the specification of
effects for the 0- and OV-functions of given module. Other
V-functions of the module are derived (DV), with the value of
each being derived as some function of the values of primitive
V-functions of the module. Being able to write effects solely in
terms of the most primitive V-functions of each module greatly
simplifies the specifications.

UHAFTfcK 1 1 1 - 1 FKUUFb U*' 5 f EU It'1UAT1UN i'KUFCiKTILD r a g e 3

All visible V-functions of the operating system are derived
V-functions VDV, being derived from corresponding hidden
functions HPV or HDV. As noted above, access rights are checked
by the visible V-functions.

PROPERTIES OF THE APPROACH AND OF THE DESIGN

The properties defined here are of four categories, relating
to

(Cl) intrinsic syntactic properties of the specification
language,

(C2) extrinsic syntactic properties (over and above the
intrinsic syntactic properties) and semantic properties
required of all PSOS specifications,

(C3) properties of the capability module of PSOS, and

(C4) the desired security properties of the PSOS visible
interface, to be derived from the actual specifications for
the modules forming that interface.

The properties of category C4 considered here relate specifically
to the mechanism provided by the user-visible operating system
interface. Additional policy relating to various applications is
not discussed in this section, but is described in detail in Part
IV. Included there are the secure object manager and the
confined subsystem manager. For the operating system interface,
the relevant properties of category C4 include the avoidance of
unauthorized modification and unauthorized acquisition of
information via the operating system. These properties will be
useful in proving correctness of the implementations of policies
using PSOS. For the secure document manager, the relevant
properties include the "*-property" and "simple security
condition" of the Bell and LaPadula model for handling classified
objects. Note that these two properties of the Bell and LaPadula
model are in fact specific instances of the avoidance of
unauthorized modification and unauthorized acquisition,
respectively.

In each of the following sections, the properties of each
category are defined. The satisfaction of these properties then
leads to a chain of reasoning resulting in a meaningful and
well-defined sense in which the operating system design is said
to be secure. Proofs of these properties are then outlined, and
the implications on the security of the implementation of the
system are considered.

1. Syntactic Properties of the Specification Language

The SPECIfication and Assertion Language (SPECIAL) is
described and defined precisely in Appendix A. In general, a
module specification at the highest level of simplification has

CHAPTER I I I - l PROOFS OF SPECIFICATION PROPERTIES Page 4

the fol lowing form.

MODULE modulename
TYPES
DECLARATIONS
PARAMETERS
DEFINITIONS
EXTERNALREFS
FUNCTIONS

ENDJ4ODULE

The form of a function specification depends on whether the
function is an O-, 0V-, or V-function. For example, an
O-function specification at the highest level of simplification
has the following form.

OFUN functionname ([arglist]);
$ (purpose as a comment)
DEFINITIONS
EXCEPTIONS
EFFECTS

Here each effect in the specification of an 0- or
OV-function is a list of expressions, relating the desired new
(quoted) values of primitive V-functions of the module to old
(unquoted) values of those functions. The language forbids the
quoted appearance of a nonprimitive V-function. As noted in the
next section, each expression is typically (but not necessarily)
of the form

'PV(x) = f (PV(x), PVl(y))f

where x and y are sets of arguments, where PV(x) and PV1 (y) are
primitive V-functions of the module to which the specified
function belongs, where PV(x) denotes the value of PV(x) before
the execution of the specified function, where 'PV(x) denotes the
desired value of PV(x) after the execution of the specified
function, and where f(PV(x), PV1 (y)) is a function of PV(x) and
PV1(y), of parameters of the module, and of external references
to V-functions of modules at the same level. Effects may also
include the construct "effects_of", which provides a means of
writing an implicit effect equivalent to the effects of 0- and
OV-functions of other modules of the same level.

The specification language imposes scope rules and type
checking on all expressions of the language. As seen below,
these constraints contribute significantly to the enforcement of
the desired security properties. The properties discussed in
this section are common to all specifications, and relate to the
syntax of the specification language used for the operating
system development.

For the purposes of this section, a primitive V-function
value in the specification of a module is CITED if and only if it
appears as an old value in an effect, an exception, or a

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 5

derivation. The value is MODIFIED by the specified function if
and only if it appears as a new value in an effect. The cited
variables have values that are established before the time a
function is invoked. The modified variables have values that are
established (explicitly) as a result of the execution of 0- or
OV-functions of the module. SPECIAL requires that all V-function
values cited or modified in any module specification must be
V-functions of the level to which the given module belongs. Note
that a module may appear as part of various (consecutive) levels.

Values are characterized as read references or write
references, as follows.

READ REFERENCES for a given specified function of some module are
precisely

* the arguments to the given function,

* the parameters of the module (which are fixed for the
module as a whole),

* the primitive objects of the specification language
(designators [e.g., capabilities and unique identifiers in
the operating system], integers, reals, booleans, and
characters; sets, vectors, and structures thereof),

* cited values (unquoted occurrences) of the primitive
V-functions of the module, all of whose arguments are read
references, and

* external references to cited values (unquoted occurrences)
of V-functions of modules belonging to the same level, all
of whose arguments are read references of the specified
function.

The WRITE REFERENCES of a specified 0- or OV-function of a module
are those that may take on a modified value as a result of that
0- or OV-function. Write references of a function may be either

* modified values (quoted occurrences) of the primitive
V-functions of the module or of another module of the same
level (via the effects_of construct for an external
reference), or

* modified values returned by the function (if it is an
OV-function of the module),

* the values of exception conditions of the specified
function.

In the specification of any function, the arguments to the
V-functions whose values are either cited or modified must be
read references of the specified function (or in the case of an
OV-function specification, the argument may be the return value).

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 6

Note that quoted values of nonprimitive V-functions may not
occur. Quoted values of primitive V-functions of other modules
at the same level do not occur, although this is an example of an
extrinsic syntactic property, required not by SPECIAL but by the
design of PSOS.

The value of a derived V-function of a module specification
is determined indirectly by changes in corresponding primitive
V-functions, never directly by mention of a quoted derived
V-function value in the effect of an 0- or OV-function.
Specifications for derived V-functions make this correspondence
explicit. A derived V-function may be hidden (HDV) or visible
(VDV) • The value of a hidden derived V-function may depend only
on the read references of the function; the value of a visible
derived V-function may depend only on the read references of the
function and on the values of the hidden derived V-functions of
the module. Thus VDV are derived from HDV and HPV, while HDV are
derived from HPV. This partial order avoids cyclic derivations.
In specifications, derived variables appear only in unquoted
form.

As an illustration of these definitions, consider the
directory module, as specified in Appendix B. The relevant read
references of the function "add_entry(d,n,c)", for example, are
the arguments, d, n, c; the parameters of the directory module,
root__slave, entry__name_JLength, and the access codes; the defined
variable u = get_slave (d) ; and the old values of the primitive
V-functions of the directory module, h_jvalid_dir (u) ,
h_get_cap(u,n) , and h_dir_jpermits (u) . The write references of
the function are the new values of the primitive V-functions
1 h__get__cap(u,n) and ' h_distinguished (u,n) . The derived variables
of the directory module are those with the derived V-function
values valid_dir (d) , get_cap(d,n,k), dir(d), and dir__size (d) ,
whose derivation employs u = get__slave (d) and appropriate
exception conditions.

The set of effects in the specification of an 0-function or
an OV-function provides a set of constraints on the values of the
write references of the module, by specifying their relations to
read references, using only the primitives of the specification
language. Thus the write references may have their values
established as a result of execution of the specified function,
but only consistent with the specified effects. However, any
primitive V-function that is not mentioned in quoted form in a
specification is constrained to have a value identical to its old
value (the unquoted form). Thus the only changes in the values
of the V-functions of the given level are those that are
explicitly stated. (There are no side-effects to those
V-function values, although those values may independently be
changed at other times by other functions of the module or by
different invocations of the same function.) Nesting of functions
is permissible. Explicit recursive effects are not permissible,
because of the fact that a write reference can take on only one
value. However, implicit recursion is possible, as, for example,
in the case of the function "resolve reference" in the linker.

CHAPTER III-1 PROOFS OF SPECIFICATION PROPERTIES Page 7

This primitive V-function is defined recursively in terms of the
mutually recursive macro definitions "subpath" and
11 resolve_path", which permit the resolution of a symbolic name
over multiple levels of directories. (Any implementation should
of course be consistent with these specifications, as is to be
proven in stages 3 and 4.)

Initial values of primitive V-functions can be specified
only in terms of the read references. The exception conditions
of derived V-functions and of 0- and OV-functions must also be
specified only in terms of read references.

Effects of O-functions and OV-functions can be written in
various forms* Two forms are of particular value in terms of
understandability of specifications, assurance of determinism,
and simplicity of proof. These are as follows.

SEPARABLE FORM. Each effect contains exactly one primitive
V-function mentioned in quoted form whose value is
constrained by that effect.

CANONICAL FORM. Each effect is in separable form; further,
the value of the primitive V-function that it constrains is
explicitly specified by being of the form

'PV(x) = g(X),

where x is some sequence of read references, and where X is
potentially the set of all read references of the module.
Note that quantification over this form is permitted, e.g.

FORALL n INSET { n I PRED(n) }:
BPV(x,n) = g(X,n);

Here PRED(n) is a predicate defining a set of n. Note that
the function g(X) may be defined in terms of values of
V-functions of the module, e.g., 'PV(x) = PV(x) + PV1(y),
where y is a read reference of the module, and PV1 is
another primitive V-function of the module. Note also that
fPV(x) = PVl(PV2(x)) is a legitimate effect in the
specification of 0(x) or 0V(x), with the value of PV2(x) as
the argument of the V-function PV1.

One of three types of transitions can arise in the
specification of effects for any 0- or OV-function. Given the
state of a module, i.e., the set of values of all of the
primitive V-functions of the module, the specification of a
particular 0- or OV-function can specify transition to

a) any one of a set of possible new states,

b) one particular new state, or

c) no possible new state.

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 8

These are the cases of nondeterminism, determinism, and
unrealizabilityf respectively, which are discussed next.

a) ANY ONE OF A SET OF POSSIBLE NEW STATES. This is the
case of nondeterminism. It may in fact be the correct
desired effect, or may be the result of an error in
specification. Nondeterminism in the specification of a
visible function is potentially harmful, in that information
can be passed between two supposedly isolated users by a
sequence of calls to the function. However, the only
possible instance of nondeterminism in the operating system
specifications is in the mechanism for creating
capabilities. However, this is nonintrinsic and can be
avoided. The actual choice of the capability-generating
algorithm is left as an implementation detail, although it
could of course be resolved deterministically in the
specifications by using (say) an add-one algorithm for the
next unique identifier. This instance of nondeterminism is
not harmful, since in this case the function get__uid is
hidden, and since the design permits only comparisons of
slave capabilities. (In general, the existence of any
nondeterminism is easily detected if the specifications are
in separable form, even more so if all specifications are in
canonical form.)

b) ONE PARTICULAR NEW STATE. This is the normal case,
except possibly for the case of creation of new objects.

c) NO POSSIBLE NEW STATE. This is the case of unrealizable
specifications for which no consistent implementation is
possible.

Note that in all three cases, the effects of an 0- or
OV-function are given by constraining the new values of the
various V-functions and the return values. However, write
references to higher-level functions are forbidden, as are write
references to lower-level functions that are not a part of the
given level. Unrealizable specifications
may be detected, either syntactically (e.g., as in the case of
conflicting effects defining the same V-function value), or by
inability to implement, or by the failure of proofs of
implementation involving mapping functions and implementations.

By virtue of the specification language, any specification
for a particular 0- or OV-function must be complete, in the
following sense: values of V-functions of the given level can be
changed only as stated; all other V-functions of the level are
explicitly forbidden from having their values changed by the
specified function. Therefore every V-function of the module is
accounted for by each specification of an 0- or OV-function of
the module. Thus the specification language prevents
incompleteness of individual specifications. Note that the
functional completeness of a design (i.e., the adequacy of the
specified functions) remains to be demonstrated subsequent to the
specification stage, first via the ability to represent state

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 9

information consistently (stage 3), and then via the ability to
realize the desired higher-level functions (stage 4), Thus the
functional completeness of the design as a whole is not resolved
at stage 2, although intelligence and carefulness in the design
certainly can contribute to attaining a functionally complete
design.

Every specification included in this report is in canonical
form; all are deterministic, except for several functions of the
capability module associated with new capabilities. (As noted
above, the only potential nondeterminism is in the creation of
new capabilities, and that can in fact be axiomatized in such a
way as to be deterministic.)

The syntactic properties of the specification language
discussed above are thus summarizable as follows.

*(la) EFFECTS. Effects of an 0- or OV-function of a module
are defined by constraining the new values of the primitive
V-functions of the given level (corresponding to occurrences
of write references) in terms of the old values of those
V-functions (corresponding to occurrences of read references
of the specified 0- or OV-function), using only primitives
of the specification language. As a result of execution of
any specified 0- or OV-function of a particular module,

* values of functions corresponding to unconstrained
write references of the given level must be identical
to the corresponding read references. Thus 'PV(x) =
PV(x) is implied, for all possible combinations of
(quoted) primitive V-functions and arguments not
explicitly constrained;

* values of functions corresponding to constrained
write references may change only as specified.

*(lb) INITIAL VALUES AND EXCEPTIONS. Initial values (of PV)
and exception conditions (of all other functions) are
defined only in terms of the read references of the
specified function.

*(lc) DERIVED "V-PUNCTIONS. The value of each nonprimitive
V-function DV is derived as a function of the read
references of the function DV (and possibly certain HDV of
the module), but not the write references.

*(ld) CONSISTENCY. All specifications should be locally
self-consistent. Whether deterministic or nondeterministic,
they should contain no constraints that are contradictory
(such as a multiply-defined function PV).

Any implementation should be consistent with the
(realizable) specifications. (Proof is of course required in
stages 3 and 4 that such consistency is actually attained.)

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 10

From a logical point of view, the execution of each function
is thought of as instantaneous, and hence indivisible and
nonoverlapable with parallel execution of other functions. In
actual implementation, considerable overlap with other functions
is possible without violating consistency. See Part III-2. In
general, overlap is permitted as long as no conflict arises in
attempting multiple use of the same variables.

2. Properties of the Operating System Specifications

This section concerns extrinsic syntactic properties and
semantic properties that must be satisfied by all specifications
of the operating system functions (see Appendix B).

The basic notion involved is that of a type for each
variable, including the type of each argument. Each type is
supported by a particular module of the design, or particular
primitives of the specification language. Once a variable has
been declared to be of a particular type, all instances of it
must conform in usage to that type. Thus type checking is -
required for every variable. Readability of the specifications
is enhanced by using a global convention on argument naming,
whereby the first letter of the argument name is descriptive of
the type. For example, "cfl denotes a capability, "u" a slave
capability; "s" denotes a segment capability; "t" denotes a
type-manager's capability; lfd" denotes a directory capability,
and so on. As a reminder for the reader, a capability for an
object consists of a unique identifier and an access vector
specifying which operations may be performed on that object.
Access to every user-visible object in the system requires
appropriate capabilities. The access vector is thus essential
for protection (and hence security) in the operating system.

*(2a) STRONG TYPING. Legitimate operations on a type at a
given level are precisely those defined by legitimately
visible functions (with arguments of the type).

As is seen below, capabilities are used as arguments to various
functions. However, the design permits no operations that permit
modification of the components of a capability. There are two
operations for creating new capabilities, namely the OV-functions
11 c = create_capability" and "c = create_restr icted_cap(mask) ".
There is one operation for creating a capability more restricted
than an already existing capability (and having the same unique
identifier), namely the V-function "cl =
restrict_access(c,mask)". Because of strong typing, these three
operations are the only way by which a new capability may be
created. (As elsewhere, proof is required that the
implementation does not compromise this property. In fact,
tagging of capabilities in the hardware is useful in assuring the
proper use of capabilities.) Similarly, the only operation
permitted in the specifications on slave capabilities is testing
for their equality. This enables determination of whether two
capabilities have the same unique identifier.

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 11

Certain kinds of functions are constrained to have
particular types of variables in their specifications, for all
specifications. In particular, there are constraints on the
capability arguments of hidden functions and visible functions,
and on the invisibility of primitive functions, as follows,
(Arguments and return values which are neither capabilities nor
slave capabilities may of course exist — subject to the strong
typing requirements — but are ignored here.)

*(2b) HIDDEN V-FUNCTIONS. In the operating system, each
hidden V-function (except for one) may have arguments of
type "slave capability", but not of type "capability". The
exceptional case is the hidden V-function "id - get__uid (c) ",
which has a capability argument (and which returns the
integer unique identifier corresponding to the capability
c) . Except for "get__uid (c) ", every hidden V-function has at
least one slave capability argument. A hidden V-function
may have a value of any type, e.g., slave capability, or
capability, or aggregate thereof. Note that hidden
functions have no exception conditions (e.g., no access
violations); they require no protection, since they cannot
be called from outside the module in which they occur. They
are used only in specifications, in mapping functions, and
in assertions.

*(2c) VISIBLE FUNCTIONS. An 0-function, an OV-function, or
a visible V-function of a module may have arguments of type
capability but not of type slave capability, and may have a
value which is of type slave capability or capability (or
aggregate thereof). The requirement of capabilities and the
exclusion of slave capabilities as arguments to visible
functions is the basis for security in the operating system.
It enforces access control on every operation on every
object, avoiding circumvention of the desired protection.
At least one capability argument is required for every
visible function, including the function "create_capability"
itself and the arithmetic operations, for which such a
capability is implicit.

*(2d) INVISIBILITY OF PRIMITIVE V-FUNCTIONS. All visible
V-functions in PSOS are derived (VDV). (This is an
extrinsic syntactic property.) Further, all primitive
V-functions in PSOS are hidden (HPV).

From properties (2b) and (2c), it follows that the general
forms for hidden V-functions, visible V-functions, OV-functions,
and O-functions, respectively, are (with the above-noted
exception of the HV "get__uid (c) ")

zi « HV(uil, ui2, ...)
zi = VV(cil, ci2, ...)
z = OV(cl, c2, ...)

O(cl, c2, ...) ,

ignoring arguments that are neither capabilities nor slave

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 12

capabilities. Here z denotes a return value which is arbitrary
(i.e., may include a capability or a slave capability, or an
aggregate thereof)• An examination of Appendix B shows only a
few hidden V-functions and corresponding derived visible
V-functions that return capabilities, along with 11
capability-returning OV-functions, all of which involve creating
a new object or creating a capability itself. The visible
functions are summarized in Table 3-1.1. There is only one
visible V-function that returns a slave capability, namely
"getjslave" itself. Since a slave capability contains no access
rights, the existence of this visible V-function returning slave
capabilities presents no security violation.

Examples from the directory module which illustrate the
above properties are included here as an aid to the reader. Let
"d" be a directory capability, and "u" be its slave capability;
n is a symbolic name. A hidden V-function HPV and a visible
V-function VDV derived from it are exemplified by "c =
h__get__cap(u,n) " and "c = get__cap(d,n ,k) ", respectively. The
derivation of the latter uses the former as a read reference, as
well as the visible lower-level V-function u = get_slave(d). 0-
and OV-functions are exemplified by "add_entry(d,n,c)" and "d =
create__directory(cdt,slv)", respectively. No visible function
has a slave capability argument; no hidden function has a
capability argument (except get_uid). (Here slv is a boolean
vector implying store-limitations, and is incidental to the
example.)

One further requirement is useful in defining the notion of
security. This concerns the relative strength of access codes
and their appearance in exception conditions.

*(2e) ACCESS CODES. Two restrictions are imposed on the use
of the specification language regarding access codes.

(i) Throughout the system, an access code bit of TRUE
in some position of the access vector of a capability
is more powerful than a FALSE in the same position.
Exception conditions may be triggered only if an access
code position contains a FALSE, never if it contains a
TRUE. Thus, the only exception macro permitted is of
the form "BOOLEAN no_ability(c,i)", defined as TRUE if
and only if get__access (c) [i] = FALSE. An exception
macro "ability(c,i)" defined as TRUE if and only if
get_access(c)[i] = TRUE is not permitted.

(ii) Neither the unquoted form nor the quoted form of
"get__access (c) " may appear in the specification of any
function other than "restrict_access", except that the
unquoted form may appear in exception macros. This
prevents effects or derivations that are dependent on
the access bits.

3. Properties of the Capability Module

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 13

Three basic properties are of interest in understanding the
protection mechanisms provided by PSOS for the implementation of
various security policies. Based on the specifications of the
capability module, these are (1) that capabilities once created
never change; (2) that access rights cannot be increased by any
operations; and (3) that stronger access rights have at least
equal power in terms of the results they may produce,

*(3a) INVARIANCE PROPERTY OF CAPABILITIES. A capability
never changes its unique identifier or its access rights.

*(3b) MONOTONICITY OF ACCESS RIGHTS. There exists no
function of the capability module that can make available a
capability with access more powerful than all already
available capabilities with the same unique identifier.
That is, access rights for a given object may never be
increased.

*(3c) COVERING PROPERTY FOR CAPABILITIES. Stronger access
rights have at least equal power. Consider an 0-, 0V-, or
visible V-function x=f (...,cl,...) that is successfully
completable for the given arguments and some initial state.
Suppose cl = restrict_access(c2,k), where k is any mask,
applied to the access code of c2. Then y=f(...,c2,...)
(with otherwise identical arguments) is also successfully
completable, assuming the same initial state.

Proofs of these three properties are straightforward. (3a)
follows from the observation that get_uid and get_access never
appear in quoted form. (3b) follows from the observation that
only " restr ict__access (c) " can create a capability with a unique
identifier identical to an already in use. The newly created
capability cannot have greater access rights, as is seen from the
specification of "restrict_access".

(3c) is somewhat more complicated. If the function
f (... ,cl, . •.) is successfully completable for the given set of
arguments and the given initial state, then none of the exception
conditions is triggered. It is to be shown that none of the
exception conditions can be triggered for f(...,c2, ...) . By (2e)
(i and ii), no exception condition can be triggered if none was
triggered by f (...,cl,...).

Note in (3c) that the effects of x=f (...,cl,...) and
y=f(...,c2,..«) on the V-functions of the given level are
essentially the same. However, since no effect in any function
of the system is dependent on the unquoted form of get_access,
the difference in the two effects can only be in the value
returned, e.g«, x-cl and y=c2.

The above properties relate to the protection mechanism
provided by the operating system, not to any policy that is
implemented using the operating system. The proofs indicated
here are purposely intuitive and informal, although examination
of the specifications clearly indicates that the desired

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 14

properties are satisfied. However, a more rigorous proof
involves a formal axiomatization of the semantics of SPECIAL,
which has not yet been done. Nevertheless, these properties
provide the basis for the implementation proofs for the
correctness of the policies implemented on top of PSOS.
implemented.

4. Security of the Operating System Design

The basic properties to be satisfied by the specifications
for PSOS are the Alteration and Detection Principles introduced
in Section 1.1.4, and restated in Section 1.1.9. These
properties are now formulated in terms of capabilities.

Security in the use of the system is based on capabilities
and their immutability, as well as on the uniqueness of their
identifiers. An object can be accessed only by presenting
suitable capabilities as arguments to visible 0-, 0V-, and
V-functions.

ACCESSIBILITY

Security is formalized here in terms of the (implicit)
accessibility of capabilities, using the concept of ITERATIVE
ACCESS. Intuitively, a capability is iteratively accessible from
an existing set of capabilities if and only if that capability
can be obtained as the value resulting from a sequence of calls
on V-functions, whose capability arguments are themselves at each
moment iteratively accessible. Iterative access is defined
rigorously as follows.

ITERATIVE ACCESS: iterative_access(S) =

Let S1 be the set of all values of PV(args) that are
capabilities (including elements of aggregated values
composed of capabilities), where PV is any primitive
V-function or parameter of the system (other than a
hidden V-function of the capability module), and "args"
is any argument list such that any capability in "args"
is a member of S:

IF S1 is contained in S THEN S
ELSE iterative_access(UNION (S,Sf))

Since all visible V-, 0V- and O-functions must have
capabilities as arguments when referring to objects, it is
sufficient to examine the accessibility of capabilities. It is
now possible to state the two fundamental theorems that
contribute to the security of the system design (as represented
by the hierarchical structure (stage 1) and by the specifications
for the system (stage 2)). These two theorems refer respectively
to the absence of unauthorized acquisition and the absence of
unauthorized modification of information, with respect to the use
of capabilities, as follows.

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 15

*(4a) ALTERATION PRINCIPLE. With respect to the
specification of any visible function f(args) of a module,
let S1 be the set of capability values assumed by write
references of f(args). Then S1 must be a subset of
iterative_access(S).

*(4b) DETECTION PRINCIPLE. With respect to the
specification of ay visible function f(args) of a module,
let S1 be the set of capability values of read references of
f(args). Then S1 must be a subset of iterative_access(S).

The satisfaction of the alteration and detection principles is
aided by the properties of the previous sections, particularly by
strong typing to guarantee the proper use of capabilities.
Strong typing, combined with the restrictions on quantification
imply that only accessible sets can be named. Thus, for example,
it is impossible to cite the set of all capabilities not
accessible, unless the set of all capabilities were accessible.
Thus the satisfaction of (4a) and (4b) is seen to depend largely
on the syntax of SPECIAL and on (2a) , but also in some cases on
the semantics of the specifications. Inspection of the
specifications of Appendix B shows that (4a) and (4b) are in fact
satisfied for all of those specifications. Above and beyond
these properties, (2e) , (3a) , (3b) and (3c) offer further
insights into the security provided by the system.

(Note that tagging of machine words supports the proper use
of capabilities in hardware. It is assumed at this point that
the hardware operates correctly. However, the design should be
defensive on this point, and should be prepared to recover from
malfunctions. It is also assumed that resource errors are
handled properly, e.g., the exhaustion of unique identifiers
(over decades). Overall, it must also be assumed that there are
adequate safeguards to prevent unauthorized modification of the
implementation, e.g., by an operator or system programmer. Some
of this can be handled by the operating system itself.)

5. Additional Security Properties

The properties described above are useful in describing the
security and protection of PSOS. In addition, they are useful in
proving the security properties of subsystems implemented using
PSOS, such as the Secure Object Manager described later. However,
some of these properties are described in terms of particulars of
the specification language, and are difficult to relate to
concepts of security and protection as they are commonly
understood. Such concepts include the ability to control access
to data by different users and to control communication between
different users. Properties that are expressed in terms of these
more abstract concepts (rather than in terms of particulars of
the specification) are more generally applicable, easier to apply
to proofs of properties of subsystems, and easier to understand.
Two useful properties are the Accountability and Isolation
Principles given below. These principles are described only
informally here, as their formalization is not yet complete; as

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 16

a result of the incomplete formalization, they have not yet been
applied to PSOS. They are discussed here in order to further
demonstrate the utility of the techniques of this report.

As an illustration, we first introduce the notion of a
suitably defined "similarity" relation between capabilities that
implies alternate ways of accessing the same data. Intuitively,
two capabilities are similar if and only if they are intended to
refer to the same data (e.g., the contents of a segment). For
any system (such as PSOS), a precise definition would be given as
to when two capabilities are (intended to be) similar, e.g.,
based on their unique identifiers. This is embodied in the
Accountability Principle, which states that no two dissimilar
capabilities can ever be used independently to access the same
data (i.e., the same data object, since the data itself can
always be copied into another object).

*(5a) ACCOUNTABILITY PRINCIPLE. All capabilities that can
be used to access a particular piece of data are actually
similar to one another.

In PSOS, two capabilities (other than capabilities for
windows) can be defined as similar if and only if they have the
same unique identifier. In this case determination of the
similarity of two capabilities is quite easy. However, the
presence of windows in the design of PSOS given here complicates
matters, in that the capability for a segment and the capability
for one of its windows may both be used to access the same data
(in the window), but those two capabilities have different unique
identifiers. PSOS as specified in this second edition therefore
requires a more complex definition of similarity than the version
of the system defined in the 1977 report.

The Accountability Principle is important because it reduces
the question of accessibility of data to one of the possession of
certain capabilities. But, to be useful, it requires that the
concept of similarity be well defined and easy to compute. This
is not the case in the current PSOS design.

From the Accountability Principle the following principle
can be derived.

*(5b) ISOLATION PRINCIPLE. Two processes that do not have
access to similar capabilities (i.e., none of the
capabilities of one process are similar to any of the
capabilities of the other process) cannot communicate (i.e.,
there is nothing one process can do that can affect the
operation of the other).

This principle is particularly useful in security-related
applications. One can derive variations of these principles that
are useful in particular situations. For example, the total
isolation between processes of the Isolation Principle is not
always desired. One may wish instead to guarantee one-way

CHAPTER III-l PROOFS OF SPECIFICATION PROPERTIES Page 17

communication only or to guarantee communication of a particular
type. Given that the underlying system obeys the Isolation
Principle, it is straightforward to create processes that share
some carefully chosen similar capabilities and prove that these
shared capabilities permit only the desired form of
communication.

Proof of the correctness of implementation is the subject of
the next section. If the system is correctly specified,
correctly implemented, and correctly initialized, it will then be
secure — at least with respect to the enforcement of the
alteration and detection principles. However, the properties
ultimately of interest are those of the applications. Multilevel
security is considered in Chapter IV-1. Confinement is
considered in Chapter IV-2. Denial of service is not considered,
except superficially.

module

12 user-processes

11 user-objects

10 directories

9 extended-types

8 segments

7 pages

0 capabilities

OV-functions

create_process

create_directory
create_jsegment
create_object

directory_create (10)

object_create (10)
create_type

segment__create (10)

c rea t e_ j ?age (7)

create__capability
create restricted cap

V-functions

get_cap

impl__cap

restr ict__access
get_slave [si]

TABLE 3-1.1
VISIBLE FUNCTIONS RETURNING A CAPABILITY

(Note: if visibility is restricted, the highest level of
visibility is indicated in parentheses. For simplicity,
functions of level 0 are omitted that are restricted to level 3,
"[sl]lf denotes slave capability only.)

CHAPTER III-2

PROOFS OF SECURITY —
PROPERTIES OF IMPLEMENTATION

I Introduction

Proofs of implementation correctness are by far the most
difficult stage of the program development process using the
hierarchical methodology. This chapter discusses the proof of a
subset of PSOS, including the assumptions made and the issues raise
There have been several years of experience to draw on in the proof
of specification properties, but there has been comparatively littl
experience in proofs of implementation (especially for systems of
reasonable complexity). The experience gained from the work
described in this chapter has shown that implementation proofs are
orders of magnitude more difficult than proofs of design, because o
the sheer complexity of the large number of states multiplied by th
number of ways of sequencing the state transitions. This complexit
can never be totally eliminated, but it can be reduced by placing
restrictions on the implementations (e.g., hierarchical structure,
call-by-value argument passing, type-checking). The remaining
complexity can be made more pleasant to deal with by developing
special notations to make formal statements easier to read and writ
and by designing on-line tools to keep track of the large amount of
material and to make the material easier to update. Some of the
proposed notations, e.g., predicate transformations, are presented
here. The implementation proofs presented here also involve a grea
many assumptions about the environment in which the programs must
run. Such assumptions must be stated and accounted for either
explicitly or implicitly in order for the proof to be meaningful in
real environment. Many formal methods have failed to be useful
because of omissions of necessary assumptions.

The handling of complexity has already been done to a certain
extent by the structuring inherent in the methodology. The system
structure explicitly limits the effects of a state change to a
particular part of the system. However, the hierarchical structure
of the design is not sufficient in itself to make the proofs
manageable. Additional constraints are: the way in which parallel
programs can interact (Section II), and the constraints imposed by
the programming language (Section IV) . Some of the methods used fo
handling the remaining complexity are the specification language an
the tools that support it (Section III) , and certain notations used
in the proof itself (Section V). Even with these complexity-handli
methods, it shall eventually be necessary to build interactive tool
to assist in the proof effort. One such tool is an interactive pro
manager that (1) keeps track of what has been proved and what must

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.

proved, and (2) allows the-prover to subdivide his proof into units
that can be processed by an automatic deductive system.

The ultimate goal of the implementation proofs is to formally
demonstrate, for each level of the system, that the implementation
satisfies the specifications. Exactly what does this mean? If one
proves programs in the applications environment of formal mathematic
(e.g., factorial, multiplication by successive additions), where a
complete set of defining axioms already exist, it is easy to say.
For a large system in a physical environment that cannot be fully
axiomatized, it is much more difficult to say. One can never be sui
that one has axiomatized all of the properties of the environment
that are relevant to the reliable behavior of the system. The firsi
few attempts to do so, including this one, are certain to leave out
some crucial properties. This chapter describes some of the most
important properties and groups them into classes concerning
parallelism (Section II), the specification language (Section III),
and the programming language (Section IV).

The new results presented in this section are a method for
handling parallelism (Section II), a programming language (Section
IV), and a notation for describing the proof (Section V) . The majoi
additions to the methodology are the use of invariants (Section III]
in the specifications, the mappings, and the proof. The major
difference between the current semantics of SPECIAL (Section III)
from those in previous descriptions occurs in the realm of exceptioi
handling. Many other points concerning the proof process, which ha\
been discussed elsewhere in simplified form, are amplified and
enlarged here.

There are several discrepancies between the complete PSOS
design, presented in Appendix B, and the example system for
implementation proofs, presented in Appendix C. Each module of the
example system is a subset of the corresponding module in the
complete system. The features not present in the example system arc
the following:

(1) Access codes in capabilities

(2) Store limitations for segments

(3) Creation and deletion of processes

(4) Arbitrary variation in the number of implementation
capabilities for extended-type objects.

There are no formal obstacles to the incorporation of any of the
above features into the system. However, it was determined that
these features made the proofs more difficult to present, and they
were left out in the interest of clarity.

Appendix C presents the syntax of ILPL (the abstract programmir
language) and the specifications, mappings. implementations, and a
sample proof of the example system.

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2,

II Parallelism

Parallelism is the major issue that distinguishes the proof of
an operating system from the proofs of other programs. The major
problem attacked and solved here is to define what it means for the
functions of an abstract machine (module) to be called concurrently
by programs executing in multiple processes, so that it is possible
to prove that an implementation for such a module is correct. This
section

* Establishes a framework for discussion of the problem.

* Provides a definition of parallel execution.

* States — and sketches the proof of — a synchronization
theorem stating that certain proofs of the implementation
programs are sufficient to guarantee a correct implementatioi
with parallel execution.

* Applies this definition to the methodology.

* Shows how the techniques are used in the example described ii
this section.

In the sequential model of program execution, there is a single
program whose execution is manifested as a sequence of instructions
i ,...,i (or state transitions) on an abstract machine (Figure III-
1 n

2.1(a)), The simplest way to describe program execution in the
sequential model is to consider each instruction as an indivisible
operation. An indivisible operation is defined with respect to an
axis that designates time. An operation on an abstract machine is
indivisible if and only if it appears as a point on the time axis
that is distinct from the points occupied by all other indivisible
operations. The state of an abstract machine is consistent for any
point on the time axis not occupied by an indivisible operation. Tl
module specification technique supports this view, because the
specification for each O-function describes only the relationship
between the old state and the new state of the abstract machine,
without regard to any intermediate state. In program execution the
new state of instruction x is the old state of instruction x+1. Th;
model of program execution is illustrated in Figure III-2.1(b).

However, the model of indivisible operations does not hold in
reality. Every realization of an abstract machine takes a finite
nonzero time to complete each one of its instructions. During the
time that an abstract machine is performing an operation, it may be
in an inconsistent state (i.e., a state that is not part of the stai
space of the machine, or alternatively one in which the machine doei
not meet its specifications). Of course, there is a definite
relationship between the two models, as shown in Figure III-2.1(c).
But the model of indivisible operations is useful for describing

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.4

sequential execution of programs, because, for the purpose of
analyzing these programs, it makes no difference whether the
operations are indivisible or not. This is true because the model
can be violated only by sampling the state while the abstract machine
is in the midst of an instruction (when the state may be
inconsistent). However, the state cannot be sampled except by the
program doing the execution, which cannot execute an instruction
until it has completed its previous one. It is thus possible to map
the model of finite-length operations to the model of indivisible
operations by supposing that an instantaneous state change takes
place at some time during a given finite-length operation, as shown
in Figure III-2.1 (c) .

In the parallel model of program execution, there is more than
one program to be executed on a single abstract machine (that can
include more than one physical processor). Each program in
execution, represented by a sequence of instructions, is called a
process, as shown in Figure III-2.2(a). However, the execution of
multiple processes is realized as a single instruction stream (of
indivisible operations) executing on an abstract machine. In this
instruction stream instructions of different processes may be
interleaved (Figure III-2.2(b)), with the constraint that, for every
x and y, i precedes i

x,y x,y+l

Again the model of indivisible operations is not observed in
reality. Each instruction takes a finite nonzero amount of time to
execute, and in addition the instructions may overlap in time (in the
interest of efficiency) as shown in Figure III-2.2(c). In this case
the discrepancy between the reality and the model of indivisible
operations does matter, because the instructions in different
processes can overlap. In the sequential model the indivisible
operations could be mapped to the finite-length operations and still
preserve the sequencing. In the parallel case in its full
generality, there is no such mapping, because the semantics of
overlapping instructions is not defined in the methodology, which
does not axiomatize intermediate states in a module specification.
As shown in the figure, the abstract machine may never be in a
consistent state, because at least one instruction may always be in
progress. However, the two models can be reconciled, by constraining
the overlapping of execution so that its semantics can be defined in
a manner that does not violate the spirit of the methodology.
Without some definition of overlapping operations (i.e., parallel
execution) , there is no way to prove the correctness of shared
implementations, because there is no formal system in which to carry
out a proof.

One might ask, "Why allow overlapping execution at all if it
causes so many problems in axiomatization and proof?" The answer is
that at the heart of multiprogramming is the efficient sharing of
physical resources. If the CPU were the only shared physical
resource, it would not hurt efficiency to forbid the overlapping of
abstract machine instructions, because it would always be possible to

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2

achieve 100% CPU utilization, no matter how large the time slices
were. However, the processes also share I/O devices, which run
asynchronously with the CPU. Thus, if an abstract machine
instruction involves an I/O operation, such as retrieving a page of
memory from disk, it is more efficient to block the process and
dispatch some other process, even though the current process is in
the midst of an abstract machine instruction. If this is not done,
the CPU becomes idle, and the response time for all processes
suffers. On the other hand it is unacceptable to allow arbitrary
overlapping of instructions. For example, instructions by two
processes on the same object might have to be mutually excluded,
because the object is in an inconsistent state during the instructs
performed by a single process. The proper policy lies somewhere in
between the two extremes.

Suppose it is possible to take a single abstract machine and
generate a set of independent abstract machines that is collectivel
equivalent to the original machine (i.e., the original machine is t
product machine of the set, or the set is a decomposition of the
original machine)• This can be done formally but is not presented
here. This set of machines is called a partitioning of the origina
machine, and each member of this set is called a partition of the
original machine* Each instruction of the original machine maps to
single instruction on a partition of the original machine. Often i
is not possible to achieve a partitioning for an abstract machine,
other than the trivial identity partitioning. However, it turns ou
that a nontrivial partitioning can often be accomplished, as is
illustrated in the example below. Given a partitioning of an
abstract machine, it is possible to forbid any overlapping in time <
instructions executing on the same partition, and to allow
unrestricted overlapping in time of instructions executing on
different partitions. This restriction, called the partition
exclusion, can be enforced in an implementation by synchronization
primitives such as P and V, which can be used to form a single
critical section for all code operating on a single partition. A
graphical description of partitioning is given in Figure III- 2.3.
The partition exclusion considerably simplifies the problem of
describing the semantics of parallel execution, because each
partition now has a well-defined sequence of instructions executing
on it, as is true for the single abstract machine in the sequential
model described above. Thus, any partition is in a consistent stat
during the time between the completion of one instruction and the
commencement of the next. Note that even with finite-length
operations, the beginning and ending of an instruction can each be
thought of as instantaneous events.

The partitioning of an abstract machine allows a definition of
the semantics of parallel execution, but by itself does not
immediately provide a satisfactory mapping to the single sequence o
indivisible operations of the sequential model. This is the case
because, although each partition"may be in a consistent state at so:
time, there may be no time at which all partitions are in a
consistent state. However, just as in the sequential case the

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.I

discrepancy between the model of indivisible operations and the
reality of finite-length operations does not matter, the discrepancy
between the model of indivisible operations and the reality of
parallel execution of instructions on a partitioned abstract machine
with partition exclusion also does not matter. Since no process can
determine the state of a particular partition, unless it executes en
instruction on that partition (and such execution is regulated in
time), it is possible to map the sequence of finite-length operation:
on each partition to an equivalent sequence of indivisible operation;
on that partition, as was done above for the sequential case. Now ii
remains to merge the sequences of indivisible operations for all
processes in order to get a single sequence. The only problem in
merging the many sequences of indivisible operations is what to do i:
two or more "indivisible" operations in different partitions occur ai
exactly the same time. If two operations A and B on different
partitions occur at exactly the same time, they can be considered as
happening in either of the two strict sequences "A;B" or flE;A".
Since the two operations are independent (because they occur on
different partitions), the effect of the two sequences on the
original machine is exactly the same. Thus, the model of parallel
execution with partitioning and partition exclusion can be mapped to
the model of a single sequence of indivisible operations as is shown
in Figure III-2.4.

The concept of a partitioning (explained above) must now be
carried through to the implementation of an abstract machine, so thai
a definition of a correct implementation may be established. As has
been described in the literature on the methodology, each function o:
an abstract machine is implemented by a program running on a lower-
level abstract machine. In addition to the implementing programs,
there is a mapping function that maps states of the lower-level
abstract machine onto the states of the higher-level machine. An
implementation p of an instruction i is correct with respect to a
mapping function f if and only if it takes a lower-level state that
maps up to an old state of i to a lower-level state that maps up to <
new state of i. One difficulty of the partitioning approach is that
a single partition of the higher-level state may not be mapped up to
by a single partition in the lower-level state. In such cases a
higher-level instruction might run on a single partition, but its
implementation may not. This can happen in the case of distinct
resources at the higher level being implemented by a shared resource
at the lower level. The result of this problem was the imposing of <
restriction on mapping functions that a partition at the higher leve:
must be mapped to by a partition at the lower level. Adherence to
this restriction can sometimes cause the addition of another level
(as is done in the case of the table module in the example presented
in Appendix C), but results in greatly simplified proofs. In
addition to the restriction on lower-level partitions, the lower
level must also provide synchronization primitives that enforce
partition exclusion. These primitives are called "grab" and
"release" in the example of Appendix C. Using these primitives, the
protocol for the implementation of an instruction is

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.

grab the partition;
perform the operation;
release the partition;

With this protocol, the operation can then be performed as if it wen
executing sequentially. Such protocol also eliminates the
possibility of deadlock, because all resources for a higher-level
instruction must be grabbed in a single indivisible lower-level
operation. Of course this simple protocol does not work in certain
routines in which complicated signaling must take place, such as I/O
drivers, but is useful for resource sharing at most levels of the
operating system.

It is now possible to state, and develop a proof for, a theorem
stating that if certain properties are proved about a set of
implementing programs, then it is a correct parallel implementation
of an abstract machine. The theorem is called the indivisiblity
theorem;

If (1) the lower-level machine behaves as an indivisible
sequence of operations with multiple processes, (2) each
implementation program adheres to the grab-release protocol
described above, (3) each program runs on the partition grabbed
by it (which maps up to a single higher-level partition), and
(4) each program is a correct sequential implementation of its
corresponding higher-level instruction, then the set of program
is a correct parallel implementation of the higher-level
machine, i.e., behaves as a sequence of indivisible operations
on the higher level.

In order to develop a proof for this theorem, it is first
necessary to define precisely what it means "to behave as a sequence
of indivisible operations." To do this involves a formalization of
the correspondence between the model of indivisible operations and
the reality of finite-length operations. In the sequential model
each instruction at the higher level is implemented by some sequence
of instructions at the lower level, as illustrated in Figure III-
2.5(a). Assume that the instructions at the lower level are
indivisible. However, only the initial and final states at the lowe:
level map up to distinct states at the higher level. When the lower-
level abstract machine is between its initial and final states, the
upper-level abstract machine may be in an inconsistent state. This
model must be changed in order to guarantee that the instructions of
upper-level abstract machine are indivisible.

In the new model, the mapping function and the lower-level
instructions are changed as follows: the state of the lower-level
machine always maps up to a valid higher-level state; and the entire
sequence of operations at the lower level maps into a single
instruction at the higher level. In the new mapping function
definition, all intermediate states of a sequence of lower-level
instructions implementing a higher-level instruction map up to the

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.

initial state of the higher-level instruction (a phenomenon known as
state clustering) , as shown in Figure III-2.5(b). Suppose the
original mapping function is the following:

higher_level_state: f(lower_level_state)

Then the new mapping function is the following:

higher_level_state: IF flag THEN f(lower_level_state)
ELSE f(lower_level_state_copy)

Initially the value of flag is FALSE, The first lower-level
instruction sets flag to TRUE and copies the data in
lower_level_state into lower__level_state_copy. This action is known
as state copying. All intermediate lower-level instructions change
only the data in lower_level_state, which leaves the value of the
higher-level state unchanged. The last lower-level instruction
resets flag to FALSE, causing the higher-level state to be derived
from the data in lower_level_state, which should by then have been
changed to reflect the upper-level state change. This operation is
called changing the map. The mapping does not really change, only
the incarnation of the lower-level state from which the higher-level
state is computed. The transformation of the mapping function and
the operations of state copying and changing the map are all formal
manipulations that do not have to be implemented in practice. This
is because the state cannot be sampled in the time between the first
and last lower-level operations. Thus these transformations do not
have to be explicitly written out, because State copying can thus
formalize the correspondence between finite-length operations and
indivisible operations, at least in the sequential case.

The state copying that must take place in the parallel case is
bit more complicated. Here the first lower-level operation makes a
copy of only the partition of the lower-level state that it is
operating on, and changes the map from the real partition to the
copy. The last operation changes the map from the copy back to the
real state, which by this time should map up to the new higher-level
state. This is quite appropriate in the parallel case, because the
first and last lower-level operations are "grab" and "release"
respectively, which can be formally defined to perform the state
copying and the changing of the map.

A proof for this theorem can now be sketched. It must be shown
that if the higher-level machine starts out in a consistent state, i
always remains in a consistent state, having arrived there from a
sequence of transitions corresponding to instructions invoked by
processes running programs on that machine. The four assumptions
outlined above are postulated for the proof. The proof is in an
induction on sequences of lower-level operations (a sequence of
indivisible operations, according to assumption 1), which have no
constraints on them, except for instructions within the same process
(which are strictly ordered in time) and instructions in processes
blocked attempting to perform a grab (which are not allowed to

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-:

execute until the a the process is unblocked by a release). Thus,
the induction hypothesis is that the current lower-level state maps
up to a valid higher-level state as described in the section on st<
clustering. The next lower-level operation can be any one of the
following:

* A grab, in which case the partition indicated by the grab i:
copied but the higher-level state is not changed. Note tha
if that partition of the state has already been grabbed by
another process, the attempted grab causes the calling proc<
to block and is not officially executed. Thus it is
impossible to execute a grab on a partition that has alread;
been grabbed.

* Some intermediate lower-level operation (any instruction otl
than a grab or a release) , which must operate only on a
grabbed partition (by assumptions 2 and 3) and thus does no
affect the higher-level state, which is mapped up to by a c<
of the grabbed partition.

* A release, which changes the map and the higher-level state
but does so in a way that corresponds to the correct
implementation of some higher-level instruction, by assumpt
4.

This completes the sketch of the proof.

In relating this parallel model of execution to the methodolo<
the most important issue is how to define a partition. Of course
abstract machines in this description correspond to interfaces or
levels in the methodology. A partition on a state of an abstract
machine is a set of V-function positions that have certain
properties, where a V-function position is a tuple consisting of a
name for a primitive V-function of a level followed by a sequence <
argument values. A V-function position is the most primitive
repository of information provided by the methodology. Thus a
partitioning is a set of disjoint sets of V-function positions wit]
certain properties, whose union is the entire set of V-function
positions of the abstract machines. The properties referred to ab<
depend on the specifications for the 0-, 0V-, and visible V-functi<
of the abstract machine. Consider an instruction of an abstract
machine to be a function instantiation, where a function
instantiation is a tuple consisting of the name for an 0-, 0V-, or
visible V-function, followed by a sequence of argument values. Ea<
function instantiation must reference only the V-function position;
contained in a single partition. A reference to a V-function
position in an 0-, 0V-, or visible V-function specification is an
appearance of that V-function position in either the exceptions,
effects, or derivation of the function's specification. In
implementation proofs it is necessary to generate the lower-level
state partitions, by mapping each V-function position at the upper
level to a corresponding set of V-function positions at the lower
level. The system must provide a module with the synchronization

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.!

primitives "grab" and "release" , and the user must provide some
mapping from the arguments of grab to the lower-level partition, to
carry out the proof.

The partitions for the small operating system example of
Appendix C can now be described. In describing a partition, the
following notation will be used:

< f(x)f < g(x, y) , for all y > >.

Here f and g are V-functions, and x and y are variables that can be
used as arguments to the V-functions. The above expression means
that there is a different partition for each value of x (because x :
a free variable — not quantified in the expression), consisting of
the position f(x) and the set of positions g(xf y) , for all y.
Partitions need only be described for the non-primitive modules of
the system, i.e., extended-types and tables. For extended-types, tl
partition is by type:

< is_type_manager(t), impl_length(t)
< is_type(c, t), < impl_cap(c, t, i),
original(c, t, i), for all i >, for all c > >.

The only purpose of the table module is to provide a partitioning
that could be used by the implementing programs of the extended-type
module. For tables there is only one partition:

< table(c), for all c >.

The mapped partition for extended-types is

< table(t), seg_exists(table(t)),

< read(table(t), i), for all i > >.

For tables the implementation partition is

< seg_exists(st), < read(st, i), for all i > >,

where st is a parameter of the implementation for tables.
For the synchronization primitives "grab" and "release" in the

example system, a partition is denoted by a vector of capabilities.
For protection purposes, a capability is useful in denoting an
object, which can also be described by the methodology as a set of ̂
function positions containing that capability as an argument. Grab
and release were also specified to allow a process to grab more thar
one partition in a single indivisible operation (the operation bloc!
if any of the partitions have already been grabbed), by having "grat
take a vector of capability vectors as arguments. A partition must
be uniquely defined by the capabilities passed as arguments to the
implementation program, in cases where an abstract machine has more
than one partition. However, the partition must also be protected
from unauthorized grabbing by higher-level programs. Thus, because

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2..

type defines a partition of the extended-type manager, the extended-
type implementations could conceivably grab VECTOR (VECTOR(t)) and
not endanger mutual exclusion. However, some higher-level program
could also do the same thing, since both grab and t are available t<
the higher level programs. This could endanger the correctness of
the implementation, because a higher-level program could cause a
process to become infinitely blocked by executing a grab on an
argument already grabbed by a higher-level program. This occurrenc
may not even be accidental, because there is nothing stopping two
different levels from having partitions denoted by exactly the same
argument! Fortunately the operating system structure has already
presented a solution to this problem in the form of the capability
mechanism. The integrity of lower-level data structures in the
system has always been guaranteed by preventing higher-level prograi
from getting access to the capabilities for those data structures.
This can be accomplished by requiring that the lower-level V-
functions never return the capability as a value. Thus, the
capability is a secret capability of the lower level. In order to
prevent higher-level programs from grabbing its partitions, it is
necessary for an implementation program to include a secret
capability in its partition designation. It must also be proved, a
part of the implementation proofs, that the implementation programs
do not "give away" any secret capabilities. The secret capabilitie
used in the grab operations of the example system are "ex_secret" f<
the extended-type module and "st" for the table module. Thus, the
arguments to grab for the extended-type and table modules are,
respectively:

VECTOR(VECTOR (t, ex_secret))

and

VECTOR(VECTOR(St)).

The use of grab and release in the implementation programs can be
seen in Appendix C.

Ill Semantics of the Specification Language

The semantics of SPECIAL has been characterized, but not
formally defined. To some extent, this has not been necessary,
because the assertions in SPECIAL are written in a notation based
heavily on mathematical constructs. However, some of the construct
especially those related to the methodology, are sorely in need of
definition. Such definition is needed before any meaningful proofs
can take place. This section defines the most important of these
constructs. The following issues are presented, along with their
implications for proof:

* Type and argument checking

* Mapping of modules repeated at different levels

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.1

* Mapping of types

* Exception signalling and returning of values

* Resource errors

* Assertions and invariants

A brief word on the significance of type checking with regard t
proof is in order. For formal arguments to a function, a type
declaration is equivalent to an input assertion regarding the type o
the arguments (this assumes that type checking is performed on the
programs that call the function); for results of functions, a type
declaration is equivalent to an output assertion regarding the type
of the result; for actual arguments to functions, type checking mean
a guarantee of the input assertion regarding the types of the
arguments. Automatic type checking is done in the processing of bot
the specification language and the programming language. The
presence of automatic type checking in both ILPL and SPECIAL
minimizes both run-time type checking and the need for explicitly
inserting assertions concerning an object's type. However, if a
function is visible at the user interface, its code must perform run
time type checking on the arguments. This checking can be done by a
level inserted between the highest system level and the lowest user
level, whose sole purpose is to perform run-time type checking.
Checking for the correct number of arguments can also be done in the
same manner.

In the operating system a module can be visible at many levels
and has the same specification for all levels at which it appears.
Although the specification of a module is the same for different
instances of the module (and even the code for implementation is
usually the same), the state of the module usually does differ among
its instances. For example, consider a simplified system structure,
in which the higher level contains directories, segments, and
capabilities, and the lower level contains segments and capabilities
Directories are implemented in terms of segments and capabilities.
The set of segments that are part of the top level state must exclud
the set of segments that implement directories; if this is not done,
any operations on such segments would have to be specified at the to
level (because a module specification must include all effects on th
state) . Then, the specifications of the directory module would have
to include assertions about the effects of the directory functions o
the segments that implement the directories. This is clearly
undesirable (a violation of abstraction), so a method was devised fo
describing the "hiding" of parts of the lower-level state in the
mapping functions. This can be done in the example here in the
mapping between the higher-level and the lower-level instances of th
capability module. The designator "capability" at the higher level
is mapped to the set of capabilities at the lower level, minus those
capabilities for segments that implement directories. Those
capabilities hidden by the mapping are known as secret capabilities,

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.1

and it must be proved that programs at the higher level cannon get
possession of any of them. Note that no special action is needed fo
the mapping of the higher-level segment module in terms of the lower
level, because all V-functions of the higher-level module are define
only over the domain of the higher-level capabilities. The values o
V-function positions (see Section II) whose arguments are not within
the domain of the higher-level types, have a value of UNDEFINED.
This is a constraint imposed by th methodology, for which specific
statements in the specifications and mappings do not have to be made

In a programming language with a built-in type mechanism that
includes abstract data types (e.g., CLU, ALPHARD, GYPSY), there is a
implicit mapping of types among the levels of a system programmed in
such a language. Suppose that in such a language stacks were
implemented in terms of arrays and integer pointers. The code for
implementing stacks would automatically consider arrays and pointers
at the lower level, when given an object of type stack at the higher
level (a stack s might be operated on in terms of the array s.a and
the pointer s.i). However, the methodology requires that such a
mapping be explicitly made, because there is no assumption of a
language facility to describe the mapping explicitly. Note that the
mapping of types is not necessarily connected to the representation
of abstract objects in terms of concrete objects. In the operating
system, this is done by the extended-type mechanism, because the
mapping is variable and must be under control of the operating
system. One kind of type mapping, which is not done in the example,
is that of types manipulated at the program level to their bit-strin
representations, in a more primitive description of the hardware.
For capabilities this mapping could be

capability: "{VECTOR_OF {1,0} bs I
LENGTH (bs) = bit_string length + 1 ANC
bs[l] « 1}

where "bit_string_length" is as specified in the previous section,
and "bs[l]n represents the tag bit distinguishing between
capabilities and all other kinds of machine words. The "abstract
programs" that might implement operations on capabilities (if such
programs existed), could use this representation. Of course,
integers, reals, etc., could also be mapped down in this way. The
mapping of secret capabilities, as described in Section II, must als
be performed.

The signalling of exception conditions and the returning of
values by functions of a module are closely related, because both
actions are ways in which the abstract machine communicates with the
program that runs on it. That is, the calling program must know
whether an exception has been signalled (and if so, which one), and
whether a value has been returned (and if so, what that value is).
No value is returned in the case of an O-function, or in any case
where an exception occurs. The most useful formal method is conside
both the signalling of exceptions and the returning of values as
state changes in the lower-level abstract machine, in the values of

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.14

the meta V-functions VALUE() and ERRORCODEO. If the specification
of an OV-function that returns the value v looks like this,

EXCEPTIONS
exl;
ex2;

exn;
EFFECTS

efl;
ef2;

efm;

then its output assertion (before mapping) is

IF exl THEN
'ERRORCODEO = "exl" AND 'VALUE () = ?

ELSE IF ex2 THEN
fERRORCODE() = flex2" AND 'VALUE () = ?

ELSE IF exn THEN
fERRORCODE() = "exn" AND 'VALUE() = ?

ELSE 'ERRORCODEO = "NORMAL" AND
'VALUE () = v AND
efl AND ef2 AND ... AND efm;

The value of the V-function "ERRORCODEO" is tested by the exception-
handling mechanism of the calling program in ILPL, so that changes in
control or returned values can be based on the detection of lower-
level exceptions. The value of the V-function VALUE() is used by the
expression evaluation mechanism of ILPL. Note that the above
notation can also be used for 0- and V-functionsf by assuming that v
is UNDEFINED (in the case of O-functions) or that m is 0 (in the case
of V-functions) .

However, a certain kind of exception condition, called a
resource £££O£# is handled slightly differently. The problem with a
resource error is that the conditions under which it occurs are
invisible to the higher level; if such conditions were visible, many
11 implementation details" would become part of the abstraction. For
example, if the maximum number of segments allowed were a
complicated, function of the implementation of segments on primary
and secondary memory, it might be necessary to include this
information in the specification of the segment module. However, the
inclusion of this information would make it difficult to use this
specification of the segment module with a different implementation.

IAPTER III-2 IMPLEMENTATION PROOFS Page III-2.15

istead, an exception named "RESCURCE_ERROR" could be placed in the
>ecif ica tion of the function that creates a segment, leaving
^specified the exact conditions under which there are too few
^sources to create a new segment. Thus, the exact conditions that
auses resource error ate hidden, as a price for preserving
>straction. If the EXCEPTIONS section of an OV-function with value
looks like this:

EXCEPTIONS

exi;
RESOURCEJERROR;
exi+1?

len the output assertion of the function looks like this:

ELSE IF exi THEN
'ERRORCODEO = "exi" AND 'VALUE () = ?

ELSE ('ERRORCODEO = "RESCURCE_ERROR"
AND 'VALUE () = ?) OR

(IF exi+1 THEN
'ERRORCODEO = "exi+1" AND 'VALUE () = ?

ELS E •• •

dually the resource error is the last one checked, because any
:tempt to get resources should be delayed until all other
requirements are satisfied.

Considerations of proof made it necessary to add the concepts of
litial assertions and invariants to the methodology. The former
instruct has been added to the specifications, and the latter to the
spping functions.

The purpose of the ASSERTIONS section in the specifications is
) enable formal statements to be made about the properties of a
^dule's parameters. Assertions can be made about the values of a
Ingle parameter, or about the relationships among parameters. In
le implementation of a module, the initialization program must
atisfy the module's assertions on output, as well as the initial
)nditions of all V-functions. An example of module assertions is
:>und in the capabilities module of Appendix C.

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.

The purpose of the INVARIANTS section of the mapping functions
is to place additional constraints on the lower-level state, to aid
in the proof of the implementation programs, A program is most
effective when it can assume on input restrictive properties of the
state of the machine on which it runs. The invariants are precisel
those properties. If an implementation program is allowed to assum
that the invariants are true on input, all implementation programs
(including the initialization program) must guarantee that the
invariants are true on output. For example, in the representation
tables in Appendix C, the invariants state that

(1) The size of the implementing segment is even.

(2) An entry occurs at most once in the segment.

(3) A null entry is designated by the capability for the
implementing segment.

Part of the implementation proofs involves demonstrating that the
invariants are satisfied.

IV Semantics of the Programming Language

In order to write abstract implementations for some of the
levels of PSOS, it became necessary to find a descriptive medium in
which to write the programs. All existing programming languages we
deemed unsuitable, because they lacked features to relate directly
the methodology and were too complex to allow verification conditio
generation and proof to be simply done. The language developed is
not much more complex than assembly language (this is not too
surprising because capability-based systems, especially those which
support abstraction, easily lend themselves to assembly language
programming), and for this reason is called an Intermediate Level
Programming Language or ILPL.

Whenever a programming language is used to write a verified
program, the compiler for that language onto the target machine mus
be verified. However, two related issues should be noted:

* ILPL is sufficiently simple that verifying a compiler would
easier than for most higher-level languages.

* Reliability in compilers can be achieved much more easily th
reliability in operating systems, because compilers are
amenable to exhaustive testing, whereas operating systems
(because of their highly parallel nature) are not.

The entire grammar for ILPL is given in Appendix C, and the
implementations for the table and extended-type modules are written
in ILPL. Several features distinguish ILPL.

APTER III-2 IMPLEMENTATION PROOFS Page III-2.17

* Restr iction of expressions ;thaj: change ^he J3tat_e. Places in
which state changes can occur are in an C-function call (a
single statement), an assignment to a V-function reference (in
which only the assigned variable changes), and an assignment
to an ©-function reference (in which the assigned variable
changes and the effects of the OV-function take place). Thus,
no state changes can take place in evaluating the BOOLEAN
expressions for IP...THEN...ELSE and WHILE statements or in
evaluating the arguments for any C-, V-, or OV-function. This
restriction is enforced by prohibiting references to 0V-
functions in any expression that is an argument to a function
or an operator of ILPL (e.g., +).

* Protection according tx> module boundaries. All programs that
implement a module are included in a block of code called the
program module. Besides the programs that implement the
visible functions of the module, there are an initialization
program, declarations of read-only parameters, and code for
subroutines shared by the implementation programs.

* Restricted usage of variables. ILPL allows local variables
that are declared for each subroutine or program implementing
a visible function. A local variable survives only for a
single activation of a procedure call. Local variables are
used mainly for indexing or temporary storage, since most data
structuring is performed by the V-functions of lower-level
modules. A variable can be of any valid type supported by
SPECIAL, except sets. Parameters, i.e., those shared by more
than one procedure of the module and that survive between
activations, are read-only. The initialization program must
initialize all such variables. The loader can then copy the
values for these shared variables in-line into the code for
the implementations. Shared variables are handled in this way
to restrict the part of the lower-level state that can be
changed to V-function values.

* Facilities for exception detection and handling. The facility
for exception detection is the predefined O-function
"RETURN(<exception name>)", which sets the identity of the
exception detected by the function implementation to be
"<exception name)". An exception name is either the string
corresponding to any exception of the function that is being
implemented or the string "NORMAL". For example, if an
exception condition for a function is

ptr(s) = 0

then the implementation program can execute the statement

RETURN("ptr(s) =0")

to signal this exception. The statement

&PTER III-2 IMPLEMENTATION PROOFS Page III-2.18

RETURN("NORMAL")

indicates to the calling program that no exception has been
detected. At least one RETURN statement must be executed in
every implementation activation. The RETURN statement sets
the value of the meta V-function ERRORCODEO (explained
earlier) for use by the exception-handling mechanism of the
higher-level program. The facilities for exception handling
state precisely what is to be done in the event that an
exception is detected during the execution of an C-, V-, or
OV-function. The first construct, called an exception case
statement, specifies a sequence of statements to be executed
when an exception is detected for a reference to an 0- or OV-
function, or when an exception is detected in a V-function
reference that is the right-hand side of an assignment
statement. An exception case statement is a simple statement
(either an 0-function reference or an assignment statement) ,
followed by list of exception names, each associated with a
sequence of statements to be executed if that exception is
detected. The following (taken from the code of
"insert_table"f presented in Appendix C) is an example of an
exception case statement as part as part of an 0-function
reference:

DO change_seg_size(stf seg_size(st)+2) WITH
"RESOURCE_ERROR" : RETURN ("RESOURCE_ERROR") ;
flbad_size(j) ": RETURN ("RESOURCE_ERROR") ;
"NORMAL": BEGIN
write(st, i, c);
write(st, i+1, w);
RETURN("NORMAL")

END
OD

The semantics of the exception case statement is that, in the
event that the lower-level exceptions "RESOURCE_ERRCR" or
"bad_size(j)" are detected in the call to "change_seg_size",
no effects are to be executed and the statement
"RETURN("RESOURCE_ERROR")" is to be executed, signifying that
the higher-level exception "RESOURCEJERROR" is to be
signalled. It must also be proved that the exceptions not
mentioned in an exception case statement do not occur. The
other construct, called the exception case expression,
replaces a V- or OV-function reference with a specific value
when the reference raises an exception condition. An
exception case expression is a list of exception names (except
"NORMAL"), each associated with an expression (without side
effects) to be substituted for the value returned by the V or
OV-function reference. For example, in the following
expression

read(st, i) {"address bounds(s, i)" : c} ~= c

*PTER III-2 IMPLEMENTATION PROOFS Page III-2.19

c would be substituted for "read(st, i)" if the exception
"address_bounds(u,i)" were detected in the function reference,
resulting in a value of FALSE for the entire expression.

* Call-by-value and multiple results. The methodology requires
that formal arguments to all functions be call-by-value. This
restriction is enforced in ILPLf with the additional
requirements that arguments to all subroutines (i.e.,
procedures internal to the module implementation) be call-by-
value and that formal arguments may not be assigned to. The
latter restriction simplifies verification, because arguments
(and read-only variables) can now be referred to as
mathematical variables, whose values do not change throughout
execution of the program, rather than as program variables,
whose values do change. The call-by-value restriction for
subroutines makes it difficult to allow for a subroutine that
returns multiple values, and for the assignment of the values
to more than one variable. The solution employed here is to
write a subroutine that returns an object of a structured type
of SPECIAL. The result of this subroutine need not be
assigned to a similar structure in the program, but may
instead be assigned to a tuple of individual program
variables. For example, if a subroutine f with one INTEGER
argument returns an object of the following type

STRUCT(BOOLEAN x; INTEGER y)

then the following assignment statement could be written

b, i <- f(j)

where b is BOOLEAN, and i and j are INTEGER. Note that b and
i need not be part of a structure in the calling program.

At the top structure of ILPL is a program module, corresponding
the module specifications of the methodology. A program module
ntains the following:

* Declarations of shared variables.

* An initialization program for the module.

* Procedures called function implementations that implement each
of the visible functions of the module specification. They
are labeled OFUNJPROG, VFUNJPROG, and OVFUN_PROG, for 0-, V-,
and OV-functions, respectively.

* Subroutines that can be called only from programs inside the
module. These are often needed for reasons of space
efficiency, and because programs within the module will often
share large sections of code that need only be proved once.
They are labeled 0FUNJ3UBR, VFUN_SUBR, AND OVFUN_SUBR, for 0-,

CHAPTER III-2 IMPLEMENTATION PROOFS Page :

derived V-, and OV-functions respectively (note that a
subroutine cannot implement a primitive V-functionf bee
subroutines have no state of their own). For subroutir
specifications are included with the implementations, c
assertions for verification purposes.

The structure of a typical program module looks like this

PROGRAM MODULE <symbol>
TYPES . . .
DECLARATIONS • . .
PARAMETERS . . .
DEFINITIONS . . .
EXTERNALREFS. . .
INITIALIZATION

<code for initialization program>
IMPLEMENTATIONS

<code for function implementations and subroutine*
END_MODULE

The first three paragraphs are similar to their corresponding
in a module specification•

The next level of ILPL concerns the syntax of a function
implementation. A function implementation starts with a head<
looks almost exactly like the function header of a specificat:
e.g.,

OVFUN_JPROG create_segment () —> capability c;
OFUN_PROG write(capability s; INTEGER i; machine_wor<
VFUN_PROG impl_cap(capability c, t; INTEGER i)

—> capability cl;

Next comes a list of declarations of variables that are local
procedure, followed by the executable statements:

DECLARATIONS dl; d2;...; dn;
<program> ;

where a program is defined in extended ENF* as

<statement> I BEGIN <statement list> END

Each statement in a statement list can be any of: (1) a simple

* In extended BNF, <...> means that the enclosed symbol is a
nonterminal of the grammar; [...] means that the enclosed
construct is optional; {...}* means that the enclosed consi
can occur 0 or more times, {••.}+ means 1 or more times, ax
{...I.•.I...} means an alternative among the enclosed consi
All special characters that are terminal symbols have been
enclosed in single quotes (e.g., ' : ') •

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2

statement, i.e., an assignment or an O-function reference (includii
RETURN); (2) an exception case statement, explained above; (3) a
control statement, i.e., an IF..THEN...ELSE, FOR or WHILE statemen
or (4) a TYPECASE statement, similar to the TYPECASE expression in
SPECIAL.

The syntax for the IF...THEN...ELSE statement is as follows

IF <expression> THEN <statement list>
[ELSE <statement list>] FI

where the expression may not contain any OV-function reference. Tl
syntax for a WHILE statement is

WHILE <expression> [ASSERT <assertion>]
DO <statement list> OD

where the expression may not contain any OV-function reference and
the optional assertion (necessary for verification) is an expressi*
at the assertion level of SPECIAL. The syntax for the FOR statemei
is similar to that of the WHILE statement.

V Protocol for Proof

This section discusses both the steps involved in the proof o
implementation, and the technique used for each of the steps. The
steps include proofs about parallelism, and the techniques include
some notational changes that make Floyd's method of verification
easier to understand.

The following are inputs to the proof effort:

* The specifications for the module to be implemented

* The specifications for the lower-level modules

* The mapping functions (including invariants)

* The lower-level programs (including the initialization
program)

* The lower-level partition and the mapping between the argum<
to grab and partitions.

The proof effort involves the following aspects:

* Prove that the invariants are maintained by each function
implementation.

* Prove that the lower-level programs are correct with respec
to the invariants (as input assertions), and to the mapped
specifications and exception conditions (as output
assertions).

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.22

* Prove that each lower-level program has grabbed its partition
in the correct way and "runs" on the partition corresponding
to the capability tuples that it has grabbed (the concept of
"running" on a partition has been defined in Section II).

* Prove that the initialization program is correct with respect
to the initial values of the lower-level specifications (as
input assertions), and to the invariants and the mapped
initial values of the higher-level specifications (as output
assertions).

Some of the proofs are "textual" in nature. A textual proof is
a proof that appeals to examination of the program text to show that
an assertion must be satisfied. Textual proofs are often used to
show that invariants are satisfied and that a program "runs" on its
partition. The following is an example taken from the proof of
implementation of the table module, presented in Appendix C. If the
invariant to be satisfied is " seg__exists (st) " , then a textual proof
might appeal to the fact that a program does not execute the function
"delete_seg (s) " for any s. Because "delete__seg (s) " is the only
operation that could change "seg_exists(s)" from TRUE to FALSE, this
would prove that if "seg_exists(st)" were TRUE at the beginning of
the program, then it is TRUE afterward (thus satisfying the
invariant).

The method used for correctness of programs is based on the
inductive assertion method of Floyd. Floyd's method has two major
variants. In verifying arbitrary flowchart programs, it is customary
to break the flowchart of the program up into "simple paths", each
simple path having an input assertion, an output assertion, and a
fixed number of program statements in between. A separate
verification condition is generated for each path. On the other
hand, in a program with a nested control structure (e.g., that
provided by ILPL), it is customary to "push" the output assertion
backward through the program text. This second method produces a
single verification condition, along with some auxiliary conditions
to be proved. The second method is used here.

Most program verification methods totally separate the process
of verification condition generation from the process of deduction
(or proof of the verification conditions). In these methods the
generation of verification conditions is done mechanically, often
producing an extremely long formula (perhaps several pages long)
which is then attacked by the deductive system, with some help from
the user. In examining these verification conditions, it can be
readily observed that about 90% of the proof consists of trivial
simplification and 10% consists of the "interesting" deductions to be
performed. Much of the needless length in such a formula comes from
the fact that unsimplified expressions are repeatedly substituted for
terms in the formula as the formula is being "pushed back" through
the program. These unsimplified expressions expand even further as
the formula continues to be pushed back. This results in the

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2

repeated presence of long expressions that can be written as very
simple expressions. For example, suppose the assertion

FORALL i | i >= 1 AND i <= char_length():
char (i) <= char(i+1)

is pushed back through the O~function reference

insert(j, k)

whose specification is as follows:

insert(x, y)
INPUT: 0 <= x AND x <= char_length();
OUTPUT:

•char_length() = char_length() + 1;
FORALL z: 'char(z) =

(IF z <= x THEN char(z)
ELSE IF z = x + 1 THEN y
ELSE char(z-1))

The resulting unsimplified output assertion becomes the following:

+ 1:

resulting

0 <= j
FORALL

(

<= (

unsimpl

AND j
i 1 i

IF i <=
ELSE
ELSE

IF i+1
ELSE
ELSE

ified output assertion becc

<= char length() AND
>= 1 AND i <=
j THEN char(

char length()
i)

IF i = j+1 THEN k
char(i-l))
<= j THEN cha
IF i+1 • j+1
char(i+1-1))

r(i+l)
THEN k

This is not only difficult to understand but is excessively long.
Upon simplification of the nine possible cases, this assertion
becomes

char(j) < = k AND k <= char (j+1) AND
FORALL i I i >= 1 AND i <= char_length () :

char(i) <« char(i+l)

which is both simpler and easier to understand.

In the conventional method the deductive system and the human
being guiding it are presented with a needlessly long formula to
prove. The task of deduction becomes more of a chore, thus
decreasing the reliability and believability of the proofs, even
taxing the ability of current automatic theorem proversf which are
already considered marginal for the logical formulae involved in
program verification.

The method used in the proofs presented here is to combine the
tasks of verification condition generation and deduction. It
contains the following specific advantages over the conventional
method:

HAPTER III-2 IMPLEMENTATION PROOFS Page III-2.24

* Incremental simplification of the verification conditions as
they are being generated, vastly reducing the amount of text
to be manipulated (as shown above)•

* Manipulation of unexpanded substitution rules, which reduces
text and allows the delaying of expansion until maximum
simplification can be performed. This further reduces the
amount of text to be manipulated.

* Closer association of the proof with the program. By
combining verification condition generation and proof, the
program text is now closely associated with the deduction
process. This improves the understandability of the proofs.

Verification condition generation in the example proofs is done
y expressing the effects of C-functions and the semantics of
tatements in the programming language as substitution rules. An
ssignment statement is a substitution rule for a variable, and an 0-
unction is a substitution rule for V-functions (in this case, entire
unctions receive new values). Assertions to be pushed back are
xpressed as abstract predicates, taking any V-functions and
ariables that may change during the course of the program as formal
rguments. In the example above, the assertion about the values of
char(i)" could be defined by the abstract predicate "P(j, char,
har_length)". The effects of the 0-function "insert(x,y)" could be
xpressed as the two substitution rules

char_length -> LAMBDA . char_length() + 1
char -> LAMBDA z . IF z <= x THEN char(z)

ELSE IF z = x+1 THEN y
ELSE char(z-1)

he LAMBDA notation is used to express the definition of a new
unction according to the well-known notation of lambda calculus
McCarthy [60]). When an assertion is pushed back, the substitutions
re made and the input assertions are conjoined to the transformed
dedicate. When P is pushed back through the 0-function call
insert(j ,k)", the abstract predicate becomes

0 <= j AND j <= char_length AND
PCjr

(LAMBDA z . IF z <= j THEN char(z)
ELSE IF z = j+1 THEN k
ELSE char(z-1)),

(LAMBDA . char_length() +1))

hen an assertion is pushed back through a sequence of 0-function
alls, the argument expressions can often be simplified before the
redicate is expanded.

The semantics of ILPL is now described in terms of verification
ondition generation. The notation of Dijkstra's predicate

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2,

transformers (Dijkstra [75]) can be used to abstractly describe a
substitution rule. For example, the effect on the abstract predica
"P(f)M of the 0--function call "O(args)" can be written "T[O(args)
]P(f)". The semantics of the statement "RETURN(exp)" on P is

T[ERRORCODE --> LAMBDA . exp]P

The semantics of

IF b THEN c ELSE d FI

on P is

(b AND T[c]P) OR (NOT b AND Tfd]P)

The semantics of

WHILE b ASSERT a DO c OD

on P is a, where the two formulae

NOT b AND a => P

and

b AND a => T[c]a

must be proved separately. If a statement s contains the following
V~function reference (with an exception case expression):

V(args) {"exl": expl}

but V also contains exceptions ex2 and ex3 that are not handled, the:
the semantics of the V-function reference are

IF exl THEN expl ELSE V(args)

and the semantics of "T[S]H on the predicate P are

(NOT ex2) AND (NOT ex3) AND Tf[s]P

where "T1[s]n is the effect of s without the consideration of
exceptions. Consider the following statement

DO O(args) WITH
"exl": si;
"ex2": s2;

. . «, ;
"exn": sn;
"NORMAL19: sO

OD

where the si are statement lists. The semantics of this statement on
P are

CHAPTER III-2 IMPLEMENTATION PROOFS Page III-2.

IF exl THEN T[sl]P
ELSE IF ex2 THEN T[s2]P
ELSE•••

ELSE IF exn THEN T[sn]P
ELSE T1 [O(args)] (T[sO]P)

where T1 is the transformation on an O-funccion reference without tl
consideration of exceptions.

These rules are applied in the proof of the example.

VI Description of the Example

The example presented in Appendix C is an implementation of tl
extended-type module in terms of the segment and capability modules
The design presented here is one in which an extended-type object Cc
have only a fixed maximum number of implementation capabilities,
which is the same for every object of a given type. This is a subs*
of the module in the operating system design presented in this
report; the subset loses almost no generality, and is much easier tc
implement. A diagram of the system is shown in Appendix C. Append:
C contains all of the specifications and mapping functions for the
sample system in SPECIAL (these have been systactically checked by
the specification handling program), and the implementations for the
table and the extended-type modules in ILPL (these have not been
syntactically checked because the processor for ILPL has not yet be*
implemented).

The representation consists of one segment, called the type
segment, for each type maintained by the extended-type manager. Th*
first location of the type segment contains the entry size (i.e., t\
plus the number of implementation for each object of that type).
This is followed by a sequence of entries, each of which is headed I
a capability for an extended-type object, followed by a fixed number
of slots, which each contains either an implementation capability ii
one exists or a 0 if none exists. A null entry is headed by a 0.
The end of the entry is a bit vector, for which a 1 in the ith
position indicates that the ith implementation capability is
"original", i.e., created by the extended-type manager particularly
for this extended-type object.

There is also a segment called the central table, whose keys ai
type manager's capabilities and whose values are capabilities for
their respective type segments. The maintenance of the central tab]
creates difficulties in the handling of parallelism. This is becaus
it was decided for efficiency reasons to have a separate partition
for each type maintained by the extended-type manager. However, all
type managers must reference the central table, so the partitions oJ

ach type manager overlap (in the V-function values pertaining to the
legment of the central table). To ameliorate this difficulty, a new
evel, containing the central table, has been inserted between the
segment and extended-type levels. This level has a single partition
ontaining the entire table. This change makes all references to the
entral table into indivisible operations so that segment operations
>y different processes on the representation of the central table do
tot overlap in time. This design decision is an example of how
onsiderations of parallelism dictate the placement of levels in a
;ystem.

Further discussion of the example appears in-line in Appendix C.

CHAPTER I I I - 2 IMPLEMENTATION PPCOFS Page TII-2

(a) PROGRAM EXECUTION

(b) INDIVISIBLE OPERATIONS ON TIME AXIS

'1 '2 '3 'n

(c) FINITE-TIME OPERATIONS WITH MAPPING TO
INDIVISIBLE OPERATIONS

1
'1

1

1
1
1
1

-4-

'2 '3
1 1 1

TA-790525-5

FIGURE III-2.1 PROGRAM EXECUTION—SINGLE
PROCESS CASE

CHAPTFR I I I - 2 IMPLEMFNTATICN PROOFS Page III-2

(a) MULTIPLE PROCESS EXECUTION

Pi p2 • • • pn PROCESS

'11

'12
j13

'in,

'21

'22

'23

'2n2

'ml

'm2

'm3

'mnm

(b) S I N G L E SEQUENCE O F I N D I V I S I B L E O P E R A T I O N S

• • • « « » » • • • • • •
'11 '12 'ml '21 f13 '23 'm3

(c» OVERLAPPING FINITE-TIME EXECUTION

Pi > M '. 11 — 1 1 — : H—; H
'11 '12 '13 '14

'22 '23
p2 • • • H — . H—; 1

Pn

'ml 'm2 ^ 3 'm4
TA-790525-6

FIGURE III-2.2 PROGRAM EXECUTION—MULTIPLE
PROCESS CASE

CHAPTEF I I I - 2 IMPLEMENTATION PRCCFS Page I I J - 2 . 3 1

PROCESSES

ABSTRACT
MACHINE

(a) MULTIPLE PROCESSES SHARING A SINGLE
ABSTRACT MACHINE

PROCESSES

SYNCHRONIZATION

PARTITIONED
ABSTRACT
MACHINE

(b) MULTIPLE PROCESSES SHARING A PARTITIONED
ABSTRACT MACHINE

TA-790525-7

FIGURE III-2.3 PARTITIONING

CHAPTER III-2 IMPLEMENTATION PRCCFS egp I I I - 2 . 3

PROCESS 1

PROCESS 2

PROCESS 3

-H-

(a) SEPARATION BY PROCESSES

PARTITION 1-f

PARTITION 2-

PARTITION 3-

SINGLE
SEQUENCE

-++•

'1 '4 '2 '7 '5

I

I

I I
I I
I I
I I

'8 '3 '6

(b) SEPARATION BY PARTITIONS AND
CORRESPONDING SINGLE SEQUENCE OF
INDIVISIBLE OPERATIONS

TA-790525-8

FIGURE HI-2.4 PARALLEL EXECUTION WITH PARTITIONING

CHAPTER III-2 IMPLEMENTATION PPOOFS Page. T I I - 2 . 3

• • • • HIGHER-LEVEL
STATE SPACE

MAPPING FUNCTION

LOWER-LEVEL
STATE SPACE

(a) MODEL OF FINITE-LENGTH OPERATIONS (THE
HORIZONTAL ARROWS ARE INSTRUCTIONS)

(b) MODEL OF INDIVISIBLE OPERATIONS
TA-790525-9

FIGURE III-2.5 ABSTRACT IMPLEMENTATIONS

PART IV
APPLICATIONS

CHAPTER IV-1
MANAGEMENT OF OBJECTS WITH MULTILEVEL SECURITY

INTRODUCTION

This chapter is concerned with the sharing of the operating
system among users whose security levels (defined precisely
below) are not necessarily identical. Although the system is
being shared, information should not be able to flow from a user
at a given security level to one at a lower security level. The
basic assumptions are that (1) users at a low security level
might attempt to use the system as a channel for acquiring
information from a user at a higher security level, (2) users at
a high security level might attempt to pass information to a user
at a lower security level. The first assumption is intuitively
appeal ing, but the second is not — since surely a human user
could give a document to another user outside the boundaries of
the system. However, each user executing on the system is
trusted as a human being, but is extended by programs that could
have been written by untrustworthy programmers who might collude
with users at low security levels. Thus the system must not be
used as a channel for transmitting information downward to lower
security levels.

The current Dot) practice is to permit a system to be shared,
at any given instant, only among users all operating at the same
security level. The "system" boundaries enclose the cpu, I/O
devices and all memory accessible via the calling of some system
function. Before users of a different security level are allowed
access to the system, all of the system state is cleared. This
conservative approach is undesirable because

* the loss of efficiency associated with flushing a system
can be severe?

* users can not expect to get immediate access to the
system;

* legitimate sharing of information is cumbersome.

For example, there is no security violation in a user
reading a document produced by a different user at a lower
security level? however, with the current practice, a distinct
copy of a document must exist for each security level at which it
can be read.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.2

In the system discussed here, at any instant processes can
exist for users at different security levels. The system will
prevent any "downward" flow of information, initiated by a user
doing the transmitting or the receiving. The purpose here is
two-fold, namely

* to show that a system satisfying this multilevel security
goal can be specified, and proven with respect to a formal
statement of of the model developed by Bell and La Padula
[74]. (An extended version of the model is introduced
here.) For this model, Millen [75] has specified and
proven an operating system kernel. The work described
here differs from Millen's in the following respects: (1)
the approach given here more closely approximates a
complete operating system, (2) the formal statement of the
security goals given here is more general, and (3) the
specification format and the design decisions given here
permit more easily developed proofs.

* to show that the multilevel security system can be easily
and efficiently implemented with the basic provably secure
operating system (PSOS). A particular challenge here has
been to retain the capability as the mechanism for the
read and write access of segments (documents) in order to
achieve high efficiency.

This chapter is intended to be illustrative of how
multilevel security can be efficiently implemented on top of PSOS
(or efficiently embedded within PSOS, if the system itself were
to support multilevel security for all applications). It is not
intended to imply acceptability of the particular model for
multilevel security, but rather as an indication of how such a
model can be supported.

The following sections present the meaning of multilevel
security in general terms, an informal statement of the
multilevel security principles, the design decisions implied by
the system interface, a formal model of multilevel security, a
formal mapping from the model to the specification language,
illustrative proofs of the specifications, the implementations of
the system on PSOS, additional issues involving design and proof,
and limitations of the model. The specifications are included in
Appendix D.

MULTILEVEL SECURITY

Each user of the system has one or more independent
processes operating solely on his behalf. Each process has
associated with it a CLEARANCE and a CATEGORY SET. The system
has a fixed finite number of clearances that are totally ordered
by the relation "greater than". For example, the clearance TOP

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.3

SECRET is greater than SECRET, which is greater than
CONFIDENTIAL, which is greater than UNCLASSIFIED. For
convenience, it is assumed that the clearances are a set of
integers.

A category set is any subset of the set of all possible
categories. Examples of categories might be ATOMIC and NATO.
The combination of a clearance and a category set is called a
SECURITY LEVEL or equivalently ACCESS LEVEL; for simplicity, it
is often called just a LEVEL, when ambiguity is not likely to
arise. A security level LI is said to be greater than or equal
to a security level L2 whenever the clearance of LI is greater
than or equal to the clearance of L2, and the category set of LI
is an improper superset of the category set of L2. LI is greater
than L2 whenever LI is greater than or equal to L2 and LI is not
identical to L2. Thus the security levels can be partially
ordered as a lattice. A process operating at a security level of
<SECRET, {ATOMIC, NATO}> has more POWER than one operating at
<SECRET, {ATOMIC}>, but two processes with respective security
levels <SECRET, {ATOMIC}> and <SECRET, {NATO}> are not
comparable.

A system is MULTILEVEL SECURE if and only if, for any two
processes Pi and P2, unless the security level of P] is higher
than or equal to the security level of P2, then there is nothing
that P2 can do to in any way affect the operation of PI. That
is, Pi is not able to know anything about P2, not even the
existence of P2. This constraint implies that P2 cannot affect
the operation of PI using an intermediate process P3 that is
incomparable with both PI and P2 (i.e., neither higher nor lower
in the lattice). Because a process at a particular security
level cannot in any way affect a process at a security level that
is not at least as high as that of the process, it is not
possible for the process at the higher level to transmit
information to the process at the lower level, either directly or
via an intermediate process. Therefore, INFORMATION CAN ONLY
FLOW UP OR REMAIN WHERE IT IS, i.e, can only flow to processes of
higher or equal security level.

The above constraint on information flow prohibits the
passage of information from PI to P2 if the security level of P2
is not greater than or equal to that of PI. Thus it prohibits
information flow between two processes whose security levels are
incomparable in the lattice sense. This constraint is consistent
with the real military security situation, since — for example
— an individual whose category set contains only ATOMIC cannot
pass information to an individual whose category set does not
contain ATOMIC, independent of the latter's clearance or the
other components of his category set.

In order to guarantee the upward flow of information, Bell
and LaPadula assigned secuirty levels to all data channels and

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.4

data repositories of the system. (Hereafter, data channels and
data repositories are called OBJECTS). A process P can READ
(extract) data from an object 0 only if the security level of P
is at least that of 0. A process P can WRITE (insert) data into
an object 0 only if the security level of 0 is higher than or
equal to the security level of P. These are the rules formulated
by Bell and La Padula [74] that guarantee the upward flow of
information. Unfortunately, these rules are overly restrictive.
A process P writing data into an object 0 with a lower security
level clearly violates these rules, but if no process with a
security level lower than that of P can read the data, the system
is still multilevel secure by the above general definition. At
first glance, such an object appears to be "write-only11, and
hence pathological. Although a "write-only" document is absurd,
our specifications actually contain other objects whose states
cannot be used as an information channel. A further example of
the restrictiveness of the Eell and La Padula rules is given
below when demonstrating the proof techniques.

For each user in the system, there is a maximum security
level at which he can operate, i.e., as the result of the login
routine assigning a process at that level to execute on his
behalf. The user can select at login time any security level
that is lower than this maximum level. Once he chooses the
particular operating security level, it is possible to assume
that all information he generates is at that level. Thus a user
cleared to TOP SECRET must login at a CONFIDENTIAL level if he
wishes to write a CONFIDENTIAL document. (It should be noted
that the model and the system design are not intended to prevent
a user from generating TOP SECRET information when logged in at
CONFIDENTIAL, or from showing a TOP SECRET document to an
uncleared colleague.)

MULTILEVEL SECURITY PROPERTIES — INFORMAL DESCRIPTION

In order to prove that a specification is multilevel secure,
it is necessary to have a definition of security. The definition
must be in terms of the specification language. The formulation
of this definition is part of stage 1 of the methodology. The
definition of multilevel security in terms of SPECIAL is begun in
this section, and is treated more formally in a subsequent
section. After giving this definition, some principles are
stated whose satisfaction by the specifications of each function
guarantees that the overall specifications are multilevel secure.

In the specification of a multilevel secure system, each
visible function must have as an IMPLICIT argument an
identification of the process invoking the function. An implicit
argument is one whose value is supplied by the system rather than
by the process calling the function. Therefore, the process
identifier being an implicit argument guarantees that the process

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.5

identifier cannot be forged. Each process operates at a single
level* A function together with a set of argument values for the
parameters of the function is called a FUNCTION INSTANTIATION,
whose security level is that of the process. The security level
of a process is fixed for the life of the process.

The RESULT of an invocation of a V-function or OV-function
instantiation contains two pieces of information. The first is a
boolean value indicating whether or not the invocation caused an
exception to arise. If an exception did arise, the second piece
of information consists of an indication of which exception
arose. If an exception did not arise, the second piece of
information is the return value of the function. The results of
invocations are the only information considered visible to a
process. (Thus the use of the time required to complete the
invocation is not considered here as a channel of information.)

The MULTILEVEL SECURITY property can now be defined as
follows: A system is multilevel secure if the invocation of any
visible ©-function or OV-function at security level LI has no
effect on the results of any future invocation of any visible V
or OV-function, except those at security levels L2 such that L2
is greater than or equal to LI.

This is a precise statement of the meaning of multilevel
security. Unfortunately, it is difficult to prove that the
specifications satisfy this property, since the proof
(potentially) requires an induction over all function
invocations. The proof process is significantly simplified by
utilizing principles which are proven to be satisfied
individually by each visible function.

Each primitive V-function specification contains an argument
position defining the security level of the V-function values.
Thus each instance of a V-function value (i.e., a V-function for
a particular argument tuple and output value) has a security
level associated with it.

The following definitions are useful;

* A primitive V-function value is MODIFIED by the specified
function if and only if it appears as a new value in an
effect.

* A primitive V-function value is CITED by the specified
function if and only if it appears as an old value in
either an effect, an exception, or a derivation.

* A WRITE REFERENCE is a modified V-function value, or the
return value of a visible V-function or of an OV-function,
or the value of an exception condition.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.6

* A READ REFERENCE is a cited V-function value of the
specified function, an argument to the invocation of that
function, a parameter of the module, or a bound variable.

* A read reference is TYPE-LEGITIMATE if it corresponds to
(1) a possible value for a V-function as given in its type
declaration or (2) a possible value for an argument,
parameter or bound variable satisfying its declared type
constraints. Note that this definition is conservative
with respect to a V-function value, since it does not
exclude such values that cannot be achieved by any
sequence of 0-or OV-function invocations.

* A write reference is DEPENDENT on a read reference in a
specification if and only if there exist two different
type-legitimate values for the read reference that would
cause the write reference to assume correspondingly
different values.

The STRONG SECURITY PRINCIPLE can now be given, which if
satisfied by each visible function specification guarantees that
the mt\ tilevel security property is satisfied:

In the specification of a visible function, the security
level of each write reference must be

(a) at least the security level of the function
invocation,

(b) at least the security level of each read reference
upon which the write reference is dependent.

Part (a) of the strong security principle is easy to prove
for the specifications of the secure object manager. The write
references that are returned values of a function invocation's
trivially satisfy (a) since they are, by definition, at the
security level of the invocation. It thus remains to show that
all V-functions that are modified are at a security level at
least that of the invocation. In the given specifications, this
is easily seen since all appearances of quoted V-functions in a
function specification have an associated security level that is
at least that of the function invocation.

Part (b) of the strong security principle is more difficult
to establish for the specifications. In a later section are
presented some rules that can be applied to each function
specification to establish its conformity with principles. These
rules provide an informal axiomatizaton of SPECIAL.

Part (a) of the strong security principle prevents the
caller of an 0- or OV-function from changing a V-function at a
lower security level, and thus from transmitting information to a

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.7

user at a lower security level* Part (b) prevents (1) the caller
of a V- or OV-function from being returned a value that is
dependent on a V-function (or a parameter) at a higher security
level, (2) the caller of any visible function from receiving an
exception value that is dependent on a V-function of a higher
security level, and (3) the caller of an 0- or OV-function from
acting as an "intermediary11 in causing a V-function of a security
level Ll (with LI greater than the security level of the caller)
from acquiring a value dependent on a V-function at a security
level L2 where L2 is greater than Ll. Note that Part (b) does
not exclude all read references to higher level V-functions, but
only those on which lower-level V-functions are dependent.

The strong security principle is stronger than necessary
since it excludes the modification of a V-function that is at a
lower security level than the caller, even if no visible function
invocation will return a value or exception that is sensitive to
the modification. However, it is possible, as seen below to
specify a useful system that satisfies the strong security
principle, and then, as discussed subsequently, to transform the
specifications in order to eliminate needless security level
arguments.

The requirement that each primitive V-function possesses an
argument position corresponding to its security level clearly
enhances proof. In particular, it is almost obvious from the
specifications that, for example, a write onto a document causes
a change in the document version at the writerfs security level
and at levels above that. However, the distinction of V-function
values at different security levels is just apparent in the
specifications, to enhance proof, but does not appear in the
implementation. For example, assume that a V-function V(argl,
arg2,..., security level) that is initially undefined later
attains a defined value only at security levels such that V(arg
1, arg2,..., Ll) « V(argl, arg2, ...,Li) for all Li greater than
or equal to Ll, and possibly later becomes undefined for all
security levels* (A V-function satisfying this property is
designated as a MINIMUM-LEVEL-INVARIANT V-function). The
implementation of such a V-function can be efficient since it is
not necessary to assign distinct representation states to all of
the security levels at which the function is defined.

In some cases the security-level argument position in a V-
function can be eliminated entirely, if it can be shown that the
sharing of the V-function among different levels does not lead to
any unwarranted inter-level information transfer. Here it is
shown that the V-functions that relate to capabilities do not
require security-level argument positions.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.8

DESIGN DECISIONS

The secure object manager consists of an eight-module
interface, with modules as follows,

secure external functions
secure environments
secure mailboxes
secure users
secure directories
secure extended types
secure documents
secure capabilities

security I officer user I
inter I face inter I f<

I I

I sec I I sec I I sec I I sec I I sec I I sec I I sec I I sec
I c a p I < — I doc j < — l e x t I < — I d i r I < — I users I < — I mail I < — l e n v I < - - I ex t e n
I I I I Ityp! I I I I I box I I i Ifuncti
I I I — I I — I I — I ! I I I I — I I

Here module A being to the left of module B indicates that the
specifications of B could reference functions of A. The manager
could have been specified as a single module, but the
decomposition enables design decisions to be localized. The
decomposition as shown above is only for specification purposes,
and does not imply that, for example, secure directories must be
implemented in terms of secure documents; in the implementation,
as discussed later, these objects are represented in terms of
PSOS objects, not each other. However, as we discuss later, the
current modules of PSOS could be replaced by the corresponding
secure versions*

Each of these modules is described briefly below, as a guide
for comprehending the specifications in Appendix D. However,
before presenting the modules it is appropriate to discuss the
major decisions motivating the design.

All V-functions of the system have an argument position for
security level. If the function is hidden, the argument is
explicit, otherwise it is implicit and hence wunforgeable". Each
O-function of the system is one of three types.

1. An O-function called only by the security officer, which
requires the presentation of the security officer
capability cdsm. All such functions are restricted to
the module SECURE_USERS.

2. An O-function that is NOT available externally at the

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.9

interface. Such O-functions are restricted to the six
modules SECURE_CAPABILITIES, SECURE_DOCUMENTS,
SECUREJEXTElNDEDjrYPES, SECUREJDIRECTORIES,
SECURE_MAILBOXES, and SECURE ENVIRONMENTS, and have an
implicit argument that identifies the security level of
an invocation. It is then possible to prove
independently for each of these modules that it satisfies
the strong security principle.

3. An O-function that is available externally at the
interface. Such O-functions are restricted to the module
SECURE_EXTERNAL_FUNCTIONS, and have an implicit argument
corresponding to the process capability. The only V-
function of this module is the hidden function that
stores the uids corresponding to the various process and
instances of each user. As noted below, the strong
security principle for the SECUREJEXTERNAL_FUNCTIONS
module is proved, assuming its satisfaction for the other
modules (except for SECURE_USERS, as noted.)

The use of capabilities has no bearing on multi-level
security. Their use in the system design is to provide a
discretionary protection mechanism and to provide a design that
is directly implementable in terms of the objects of PSOS, all of
which require capabilities for accessing.

With regard to the "discretionary" issue, the multi-level
security model does not exclude the sharing of objects among all
users at the appropriate security levels. We have provided an
augmentation of the model so that a user gains access to an
existing object only if (1) his security level is appropriate,
and (2) someone has given him access rights. Condition (2) could
be viewed as relating to "need-to-know11.

The specifications that are given can be proved multi-level
secure independent of the protection properties of capabilities.
The specifications can also be proved to satisfy the alteration
and detection principles, and thus are in conformance with the
need-to-know principle.

However, the protection properties of capabilities are
important when proving that any efficient implementation is
consistent with the specifications. In order to simplify the
proof of specifications, the following principles are useful.

1. Most V-functions, e.g. document_read, have instances of
numerous security levels, in particular, those at all
levels between that of the process creating the segment
and the maximum security levels.

2. For specification purposes, a read reference in a
function invocation is almost always to the particular

'HAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.10

instance of the V-function at the level of the
invocation.

3. For specification purposes a write reference is almost
always to all instances of the V-function at all security
levels at least that of the invocation* A write
reference is never to a V-function at a level LI that is
not at least that of the invocation,

4* Principle (3) seems to imply that each instance of a V-
function corresponding to a distinct level could have a
distinct value. However, it is almost always the case
that the writing will be initiated at the same level of
creation of the V-function. Thus all instances of a V-
function at different levels will have the same value and
hence the value of the V-functions at its "creation"
level is adequate to characterize it. This limitation is
achieved by not allowing capabilities with "modify" (or
equivalently "write") access to be moved upward in the
security sense. That is, a capability with "modify"
access is never moved from a V-function at LI to another
V-function at a different level. (Principle (3)
precludes the "downward" transmittal of a capability.)

5. Documents are to be directly implemented as segments, and
their access is not to be impeded by software
interpretation. That is, the level of a process is not
to be checked prior to the process achieving access to a
document. The possession of a capability is necessary
and sufficient for accessing the document. Thus
capabilities with "write" access are not allowed in
documents for the following reason, assuming a
representation for documents that assigns a single level
to a document — namely the creation level. Assume PI at
LI writes a "write" capability into a document created at
LI. If P2 at L2 (L2 > LI) reads the "write* capability,
it then can write into the document and hence violate the
multi-level security principle. In other words, by not
allowing "write" capabilities in documents it is possible
to ensure that all instances of a document, at different
levels, have the same state, and hence there is no
violation of the security principles in dropping the
multiple-level distinction. Note that there is no
security violation arising from the appearance of "read"
capabilities in documents. Indeed a procedure,
represented as a document, could contain capabilities to
call other procedures. The use of a hardware implemented
permit flag, distinguishes between "read" and "write"
capabilities.

6. Principle (5) prevents the transmission of "write"
capabilities via documents. However, the system would

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.11

not be useful if users, at the same level, could not
share write_access to documents. Other channels, i.e.
secure_directories and secure_mailboxes are provided for
the purpose of transmission of "write11 capabilities.
Here some software interpretation, reconciling the levels
of the object and the process is required, but the
penalty in access time can be borne in the case of such
objects. Generally, objects that can store "write"
capabilities will have two separate instances in
representation: (1) for access by processes of the
creation level of the object, and (2) for access by
processes at higher levels.

7. The "control11 effect of the exceptions has no bearing on
the proof of the specifications. That is, although an
exception condition evaluating to TRUE causes the
remaining exceptions and the effects to be ignored, each
exception condition and each effect can be considered
independently in the proof.

The modules are now discussed in detail.

SECURE CAPABILITIES: A secure capability, abbreviated as
SCAPABILITY, can be considered as containing three components:
an integer-valued uid and two boolean-valued flags: access and
permit. For each security level, the module is assumed to be
initialized with a set of scapabilities. This assumption is
for specification purposes only. In the implementation,
scapabilities would be implemented in terms of capabilities,
each of which is generated by a capability generator. There
are four possible scapabilities for each uid, corresponding to
TRUE and FALSE values for the two flags. Each of the functions
contains argument positions corresponding to the clearance and
category set (cat_set); for convenience the functions are
described as if the level and cat_set were combined into a
single argument position, security^level, or simply level.
The OV-function "create_scapability"*(level) w returns a
scapability whose uid component has never been previously
returned at ANY security level and whose access flag is TRUE.
The V-function "restrict^saccess (sc, level)11 returns the
scapability scl whose uid component and permit components are
the same as that of sc but whose access flag is FALSE. The
function "change_permit" can set the permit flag to TRUE or
FALSE. Note that no visible function of the module returns the
uid component of a scapability. The version of the scapability
with FALSE access flags will be used (obtained by calling
"get_slavel") instead of the uid as the argument that uniquely
identifies an object, e.g. document or sdirectory. Note also
that for each level there is an essentially infinite roster of
uids that can be earmarked to scapabilities initially created
at that level, and at all higher levels. As noted below, there
are no security violations if the scapabilities are not

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.12

segregated by security level. The global distinction of uids
(among distinct security levels) significantly simplifies the
implementation even if the segregation of scapabilities is
retained.

The properties of capabilities in PSOS to control the access
to objects (i.e., as arguments to all functions) is an integral
aspect of the security principles of PSOS. On the other hand
the use of scapabilities in the SOM specification has no
bearing on its multilevel security properties — which are
completely determined by security level arguments of the
functions. However, scapabilities are still used to constrain
object access, beyond that proscribed by the security level
arguments, but in the case of document access the constraints
imposed by the scapabilities are entirely adequate to satisfy
the multi-level security properties.

SECURE DOCUMENTS: Documents in the secure object manager
serve the same role as segments in the operating system. A
document is created by calling the OV-function
Hcreate_sdocument (size, level)11. After the call, a version of
the document apparently exists — at least with respect to the
specifications — at each security level greater than or equal
to •'level*. In fact, only one version will exist in the
implementation, namely that at wlevelH. The call is rejected
if the quota of documents at that security-level would be
exceeded. Separate quotas are needed for each security level
to prevent information flow via the exception mechanism. Any
modifications to any existing document, (i.e., changing the
size, writing a word, or deleting the document for a document
initiated at a security level L) are carried out on all
(apparent) versions of the document at security levels LI, LI
>* L. Each V-function returns a value that is dependent only
on the document version at the security level of the call.
Note that the O-function "write_document" returns an exception
if the word to be written is a scapability with permit flag of
FALSE. As observed below, the specifications are secure
independent of the presence of this exception condition.
However, its presence ensures that all versions of a document
at security levels at least that of the initiating level LI are
all identical. For all document scapabilities, if the access
flag is TRUE (indicating an ability to modify the referenced
document), then the permit flag is FALSE. Conversely a
document scapability with an access flag of FALSE will have a
permit flag of TRUE, and hence is writeable into a document.
Thus it is not possible for a write scapability for a document
to be inserted into a document of LI, which is read at security
level L2 (L2 > Ll), and then is used to write into the same
document at L2. In other words, the disallowing of the storage
of write scapabilities for documents in documents is essential
for ensuring that all versions of a document have the same
contents. (Again, this constraint is not essential for

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.13

multilevel security). As shown below, other channels
(directories, environments, etc.) can transfer write
scapabilities upward, but only at the same level.

SECURE EXTENDED TYPES: The purpose of this module is to
allow users to create secure extended type managers as a
service, for other users. Such types are created while the
user is operating within the SOM, compared with the CSM
(Chapter IV-2), where the creation is accomplished outside,
with the CSM certifying the type after the fact. For example,
a process operating at LI could create a type manager for a
particular type T of extended objects. A process at a lower
level could not make use of this service, simply because it is
not to be aware of the existence of any operations of a higher-
level process,, However, any process at L2, L2 >* Ll can create
objects of type T and can call on the type manager to process
such objects. Any objects so created will have creation level
L2.

It is important to note that although T is created at Ll,
and is possibly manipulating objects at L2 > Ll, it is not
possible for the programs of T to erroneously transmit any
information about such objects. There are two channels
potentially available for information transmission: segments
and the representation vectors for extended objects. However,
a segment used to implement the procedures of a type manager
cannot be used as a channel since it will not store any "write"
scapabilities. Thus an unscrupulous type manager could not
transmit information about a higher level object it is
processing to segments, directories, or other objects.

The other channel available to a type manager is the
representation vector for any object that it manages. If such
an object is at a higher level L2 than the creation level Ll of
the type manager then the object is accessed only in processes
operating at level at least L2, and hence no information about
the object remains with the type manager. A slightly more
difficult problem relates to objects at level Ll that the type
manager created to be available to higher levels during their
execution. Let us denote such an object as a CONSTANT OBJECT,
co. The important question is, can the type manager procedures
change the representation of co while manipulating a higher
level object, and later while operating at level Ll read the
representation? The answer is NO, as is now observed from the
specifications.

An object, for example co, created and initialized (i.e.
given a vector of representation scapabilities) at Ll, is for
specification purposes created and initialized at all levels
Li, Li >* Ll. Any modification of the representation vector,
at L2 > Ll, say by the function, delete_impl_scap,
delete_impl_sufoj, or insert_impl_subj, affects only those

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.14

instances of the representation vector at levels L3 >- L2, and
thus has no bearing on the representation vector at level LI.

As with secure documents, it appears from an initial
observation of the specifications that the different instances
of the representation vector for an object corresponding to
different levels, could all have distinct values. However,
this is not the case since, the representation vector is only
modifiable upon presentation of a scapability with "write11

access, i.e., access flag » TRUE. As observed above, such
scapabilities could not be transmitted "upward" via documents.
For the SECURE_EXTENDEDJTYPE module, the only V-function that
can store a scapability is h_impl_scap (u,level) , the vector of
representation scapabilities for object u. However, the
functions insert_impl_scap, and create_impl_sobj, invoked at
LI, insert scapabilities with "write" access only in those
instances of h_impl_scap (u,level) such that level = Ll. The
remaining instances get only "read" access. Thus this module
does not serve as a channel for the "upward" transmission of
"write" scapabilities.

SECURE DIRECTORIES: A secure directory, abbreviated as
SDIRECTORY in the specifications, stores scapabilities
associated with a user-applied name. A sdirectory serves as a
legitimate channel for the transmission of scapabilities among
users. In particular, a user operating at security level Ll
can give a scapability sc to a user at security level L2, L2 >=
Ll by writing the scapability in a sdirectory which both share.
If L2 > Ll and if sc is a document scapability, then the
transferred scapability should have no write access.
Consistent with the above notion of apparent existence, a
sdirectory newly created by a user at security level Ll will
potentially have versions at all security levels at least Ll.
When an entry is placed in the Ll version, it will also
apparently be placed in all higher level versions, except those
versions that already have an entry of that name. The user
operating at Ll cannot discover anything about the disposition
of his "insert_sentry" call at higher security levels. In
particular, the specifications indicate that an entry might not
be placed in a sdirectory instance at a certain higher level
such that the sdirectory is full.

The implementation of sdirectories is discussed below. At
this point, it suffices to say that the level distinctions can
be dropped in favor of two sdirectory instances, the level Ll
of each being that at which the sdirectory was created. One
instance contains "write-read" scapabilities for access by
processes at Ll, while the other contains only "read"
scapabilities for access by processes at higher levels.

In summary, modify operations on sdirectories potentially
occur on all versions of a sdirectory whose security level is

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-].15

at least that of the caller. Read operations occur only on
that version of the level of the caller. Unlike documents, all
versions of a sdirectory do not have identical states, but this
distinction is handled by visualizing two different versions
for each sdirectory.

SECURE USERS: The functions of this module provide an
interface by which the security officers can initiate and
delete users* These functions require the presentation of the
special capability cdsm. A newly created user, authorized to
operate at all levels up to Lm, will be given a sdirectory, The
scapability for which is stored in the function
initial_environment. However, "write" access will appear only
in the instance at LO, the lowest access level in the system.
The other instances of initial environment will store the
scapability with only "read" access.

The function augment_initial_environment is used to augment
the initial environment of a user in response to the creation
of a process for the first time at a level LI other than LO.
When the user logs in for the first time at LI, he will be
given write access to a new sdirectory. However, in order to
provide "read" access for objects that are created at LI to
other processes of the user at L2 > LI, the other such
processes will be given "read" access to the sdirectory of LI.
Such access to the sdirectory is provided by storing the "read11

scapability for the sdirectory in the initial environment of
user at all levels Li > LI.

Note that the V-function initial_environment, as with
document_read, h_impl_scap, and get_scap, is not a channel for
the upward transmission of "write" scapabilities. However,
differing from these other three functions, initial_environment
can assume as many different values as there are distinct
security levels. Nevertheless, the amount of real storage
devoted to this function is not excessive, and hence this is no
cause of concern.

An exception condition for delete_user prevents the security
officer from removing a user until all objects that he has
created have been deleted. The existence of such an object is
easily detected as the appearance of a corresponding
distinguished sentry in a sdirectory that the security officer
created for tKe user. A more realistic approach would allow
the security officer to himself delete all such objects. Such
a policy is easily incorporated by providing a function that
returns all distinguished entries in a tree of sdirectories.

Also a realistic system would allow for the changing of a
user's clearance. This function is trivially specified as
affecting only the value of initial environment.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.16

SECURE MAILBOXES: The mailbox operations allow a process to
send a vector of machine words to an identified user. As with
write operations for documents and sdirectoriesf the message is
sent at all levels at least that of the sender. The receiving
process will read the message at its level. It is necessary to
ensure that message buffers are not channels for the upward
transmissions of scapabilities with write access. If a
scapability is sent as part of a message, then at all security
levels exceeding the sending level, the scapability is inserted
with restricted access (i.e., no write). Note that the sending
function receives an exception only if the quota would be
exceeded by the lengths of the remaining messages that were
sent by other processes on behalf of the same user. There is
no unwarranted information transmission, but a process could
saturate the transmitting message buffer of a higher-level
version of the process. This relatively unimportant difficulty
could be eliminated, but requiring a slight increase in design
complexity.

SECURE ENVIRONMENTS: This module provides functions for the
maintenance of processes, similar to the processes module of
PSOS. An important aspect of this module, that distinguishes
it from those presented above, is that its V-functions,
environment_stack and environments_stack_size exist only at one
level — the security level of the process. This
simplification would be eliminated if we provided facilities
for a secure form of process sharing among different levels.
The module maintains a stack of environments, or equivalently
stack frames, with functions provided for writing, reading,
pushing a vector of smachine words, and popping a vector of
smachine words, all relative to the current, i.e. topmost
environment. A new frame is created by the function
new_context, and can be initialized with values. The external
function call would be implemented by new_context. Similarly
old_context removes the current stack frame. Ultimately the
specification would be augmented with control primitives
appropriate to a process interpreter.

SECURE EXTERNAL FUNCTIONS: This module provides the
interface to the user of the SOM. It has only the simple V-
function process_exists, thus achieving its state mostly by
externally referenciing the other modules. The specifications
are quite simple, involving references to functions of other
modules for exceptions and effects.

We now present a formal model of multilevel security in
order to demonstrate that proofs of the specifications can be
carried out.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.17

FORMAL MODEL OP MULTILEVEL SECURITY

A multilevel system is defined to be the following ordered
n-tuple:

<S, sQ, L, "<", I, fc, R, Nr, Ns>

where the elements of the system can be intuitively interpreted
as follows:

S - States: the set of states of the system

sQ - Initial state: the initial state of the system; sQ e s

L - Security levels: the set of security levels of the
system

"<M - Security relation: a relation on the elements of L that
partially orders the elements of L

I - Visible function instantiations: the set of
specifications of all the visible functions and
operations; if a function or operation requires
arguments then the function specification along with
each possible set of arguments is a separate element of
I

K - Function instantiation level: a function from I to L
giving the security level associated with each visible
function instantiation; K:I->L

R - Results: the set of possible values of the visible
function instantiations

N ,N Interpreter: functions from I*S to R and S that define
s how a given visible function instantiation invoked when

the system is in given state produces a result and a
new state; Nr :I

XS->R and N :lxS->S,*• s

In order to define the model of multilevel security, it is
useful to define the following functions:

Z(t) the value of the function Z is the last element of the
ordered n-tuple t

B(t) the value of the function B is the ordered n-tuple t
with the last element removed

C(t,e) the value of the function C is the ordered n-tuple t
with the element e added at the end.

The following parts of the model can now be defined:

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.18

T the set of all finite ordered n-tuples of visible function
instantiations or, in other words, all possible sequences of
operations

M the state resulting from the given sequence of operations
starting at some given state

M:SXT->S
M(s,t) « Ne(Z(t), M(s, B(t)))

E the sequence of operations that results when all the
operations whose level is not less than the given level are
removed from the given sequence of operations

E:TXL->T
E(t,l) * (K(Z(t)Xl V K(Z(t))-l) => C(E(B(t),l), Z(t))

V ~(K(Z(t))<l V K(Z(t))*l) *> E(B(t) ,1)

Multilevel security can now be defined as follows:

* (V i e I f s e S r t 1 # t 0 € T) *
* x * *
* *
* E (t v K (i)) - E (t 9 f K (i)) (PI) *E (t v K (i)) - E (t 9 f K (i)) (PI)

*

This says that if two sequences of operations are each applied to
a system in the same state and if these sequences differ only in
operations whose level is not less than or equal to some level,
then any operation of that level that is invoked immediately
following the two sequences will return the same result. In
other words, the operations whose level is not less than or equal
to this level can not effect results visible to the level.

STRONG MULTILEVEL SECURITY PROPERTIES

Unfortunately, it is difficult to prove that any
specification meets this definition because any direct proof
would require some induction on all possible sequences of
function instantiations. The number of such sequences is
generally very large. For this reason the following slightly
more restrictive set of properties is more useful for proof
because it does not involve sequences of function instantiations.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-].]9

It is first necessary to introduce the notion of a partial

state. There is a partial state set S for each security level 1

of the system. The cross product of all the partial state sets

(x S)is isomorphic to the set of states (S). Therefore, each
VleL
state seS can be represented by the ordered n-tuple consisting of

one element s from each of the partial state sets S .

Intuitively, one can think of a partial state set as all the

state variables assigned a given security level and a partial

state as one set of values for these state variables.

The following useful functions can now be defined:

C,:S->S has as its value the partial state of
each seS for the level 1

1 k
0 :S-> x S has as its value the partial state of

VkeL|k< = l each seS for all levels less than or
equal to 1

D. :S~> x S has as its value the partial state of
VkeL|~ (K^k). each seS for all levels not greater

than or equal to 1

It is now possible to define three new security properties
whose conjunction is stronger than PI above:

*
*

* (
if

*

* (

*

Vi

Vi

e l

e l

e l

) Oj)

, l e L)

r s e S)

(VseS) N

(3 j) (Vse

D K (i) (S)

r

S) °1

DK

) =

(N s

(1)

(l r S)

(M 8 (J

C (i) (s

1) = j

L,s))

;))

(s))

*
(P2a) *

*
(P2b) *

(P2c) *

*

The fi*:st property (P2a) states that the result of a function
instantiation at some level can be dependent only upon state
variables of a lower or equal level. The second property (P2b)
states that the value assumed by a state variable at some level
due to the action of some function invocation can be dependent

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1

only upon state variables at a lower or equal level. The thir
property (P2c) states that a function invocation at some level
can only change the values of state variables at a greater or
equal level.

PROOF OP STRONG PROPERTIES

The following is an outline of the proof that the strong
multilevel security properties (P2a, P2b, P2c) imply the gener
multilevel security property (PI); in other words that

P2a & P2b & P2c «> PI (Tl)

IT*************************************!

Using P2a in the last part of PI yields:

(3j) (VseS)

j (0 K U) (MCSitj))) « j (0 K U) (M(S,t2)))

=> Nr(i,M(sft1)) = Nr(i#M(s#t2))

and by eliminating the function j, the formula to be proven
becomes:

P2a & P2b & P2c

(Fl)

E(t1#K(i))«E(t2,K(i))

«> QK(i)(M(S,t1))*Q
K(i)(M(sft2)>

Now consider the cases in PI when E(t^,K(i)) • E(t2#K(i))

false. In these cases the theorem Tl is trivially true. Next

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.21

consider the cases where E(tj,K(i)) « E(t2,K(i)) is true. These

cases require an inductive proof. The induction will be over the

length of the reduced sequence E(t,K(i)). Since only the cases

where the reduced form of the two strings t, and t2 are equal are

being considered, it is known that the lengths of the two reduced

strings Eft^Kfi)) and E(t2,K(i)) will be equal.

The basis of the induction is a reduced length of 0. In

this case the sequences t, and t2 can contain only function

instantiations whose level is not less than or equal to K(i).

From property P2c one can observe that a function instantiation

whose level is not less than or equal to K(I) cannot change the

partial state of the system at levels less than or equal to K(i).

Therefore, the partial state at levels less than or equal to K(i)

must remain the same for sequences whose reduced length is 0.

For these sequences:

0K(i)(M(sft)) * 0K(i)(s)

and, therefore, Fl is true.

For the purpose of accomplishing the inductive step in the

proof, define the function G,:T->T to map a sequence of function

instantiations onto the beginning of that same sequence up to but

not including the last function instantiation whose level is less

than or equal to 1. Also define the function Hn:T->I to map a

sequence of function instantiations onto the last function

instantiation in the sequence whose level is less than or equal

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.22

to 1. If a sequence t has reduced length n with respect to some

level 1 then the sequence G,(t) has reduced length n-1 with

respect to 1. The induction hypothesis states that

QK(1)(M(s,GK(i)(t1)))-0
K(l) <M(s,GK(i)(t2))) for any two

sequences, t, and t^f whose reduced sequences are equal. Now it

is necessary to show that the last parts of sequences tj and t2

make identical changes to the partial states for levels less than

or equal to K(i). If Hv/..(t.) is not equal to H ,..(t0) then

E(tlfK(i))«E(t2,K(i))- is false and Fl is trivially true. Recall

that property P2b states that any partial state at some level

that results from the invocation of a function instantiation must

be a function of partial states with lower or equal level.

Therefore, the partial states with level less than or equal to

K(i) resulting from the invocation of H^.^ft,) and Hv/..(to)
JM1J 1 K(l) £

must be functions of CK (i) (MfSrG,,, ., (t«))) and
K \ 1) 1

CK(1)(M(sfGR(i)(t2))) respectively. If H R (i)(t^ is equal to

HR(i)(t2) and since 0 K U) (M(sfGK(i) (tj))) - Q
K (i) (M (s,GR (i} (t2)))

from the induction hypothesis then the partial states resulting

from the invocations of Hir/..(t1) and Hv/..(to) must be
I\ i 1 / 1 K(l) Z

identical. All that can be left in the sequences t, and t2 after

the last function instantiation whose level is less than or equal

to K(i) are obviously function instantiations whose level is not

less than or equal to K(i). From P2c it is known that such

function instantiations cannot change partial states with levels

less than or equal to K(i) . This completes the outline of the
proof.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.23

INTERPRETATION OF THE MODEL

In order to apply the security properties defined above to a
particular system design, it is necessary to relate the elements
of the model of a multilevel secure system to the specification
language and to the particular system. Recall that the model is
the following 9-tuple:

<S, sQ, L, "<
H, I, K, R, Nr, Ns>

The elements of the model can be interpreted as follows for the
SOM. specifications:

S - States: all possible collective values of all the
primitive V-functions of the specification; each state
can be represented by a particular set of values that
the primitive V~functions can assume

sQ - Initial state: the initial values of all the primitive
V-functions as given in the specifications

L - Security levels: each security level is defined by two
values, the clearance and the category set; the
clearances are totally ordered

"<" - Security relation: the security relation is a partial
ordering on the security levels; a security level is
less than (<) another security level if the clearance
of the security level is less than the clearance of the
other security level and the category set of the
security level is a subset of the category set of the
other security level

I - Visible function instantiations: each visible function
of the specifications together with a set of possible
argument values to that function is a visible function
instantiation

K - Function instantiation level: this is the level of the
visible function instantiation and must be defined for
each visible function instantiation

R - Results: a result is the return value of a visible V-
and OV-function invocation and the number of the first
exception, if any, in a visible function invocation
whose value is true; i.e. a result are the visible
effects of the visible functions

N ,N - Interpreter: the semantics of the specification
s language

The partial states S are represented by subdividing the

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.24

primitive V-function instantiations (i.e. primitive V-functions
together with a particular set of argument values) into disjoint
sets, one set for each security level. The partial state is
determined by the value of the primitive V-function
instantiations that are members of the partial state set.

STRONG SECURITY PROPERTIES IN TERMS OP SPECIFICATION LANGUAGE

The purpose of this section is to state the strong security
properties P2a, P2b, and P2c in terms of constructs of the
specification language. In order to formally relate the strong
security properties as given above in terms of the formal model
to the specification language it is necessary to have a formal
description of the semantics of the specification language.
Since such a formal description of the language has not been
completed, this section will discuss the strong security
properties in an informal manner. An English language
description of SPECIAL is given in Appendix A. The following
definitions, given earlier, are repeated here for the reader's
convenience:

* A primitive V-function instantiation is said to be modified
by a particular visible function instantiation iff the
primitive V-function instantiation appears as a new (quoted)
value in the effects section of the specification of the
visible function and the value of the primitive V-function
instantiation could be changed by invoking the visible
function instantiation.

* A primitive V-function instantiation is said to be cited by a
particular visible function instantiation iff the primitive
V-function instantiation appears as an old (unquoted) value
in the specification of the visible function.

* A write reference in a visible function instantiation is a
primitive V-function instantiation, the return value of a V-
or OV-function, or the exceptions.

* A read reference in a function instantiation is a cited
primitive V-function instantiation.

* The value of a read reference is legitimate iff it can be
assumed by the cited primitive V-function instantiation after
some sequence of 0- or 0V- functions applied to the system in
its initial state.

* The value of a read reference is type legitimate iff it is of
the type of the cited primitive V-function.

* A write reference is dependent upon a read reference with
respect to a particular function instantiation iff there

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.25

exists two different legitimate values for the read reference
that would cause the write reference to assume
correspondingly different values as the result of the
invocation of the function instantiation.

A slightly stronger form of the definition of dependency can be
obtained by substituting "type legitimate" for "legitimate" • It
is easier to determine the type legitimate values of a read
reference than it is to determine the legitimate values since
type legitimacy is a property of the language whereas legitimacy
is a property of a particular set of specifications* It is,
therefore, easier to identify dependencies if the type legitimate
version of the definition is used? however, for the purposes of
this discussion either version of the definition of dependent
suffices.

Given the above definitions it is possible to easily state
the strong security properties in terms of the specification
language* Note first that the above definition of dependence
simply defines a functional relationship, i.e., if a write
reference is dependent upon a read reference then the value of
the write reference is simply a function of the value of the read
reference. Recall that property P2a states that the result of
the invocation of a function instantiation of some level is a
function of (i.e., is dependent upon) the values of the state
variables (i.e., the primitive V-function instantiations) of
lower or equal levels. The results are the return values of V-
and OV-functions and the exception conditions of all visible
functions. Therefore, property P2a can be restated as:

P2a The return value of a V- or OV-function and the exceptions
of a visible function instantiation can be dependent, with
respect to that visible function instantiation, only upon
read references of lower or equal level.

Property P2b states that the value assumed by a state variable
(i.e., modified primitive V-function instantiation) at some level
can be dependent, with respect to a visible function
instantiation, only upon state variables (i.e., cited primitive
V-function instantiations) at a lower or equal level. Restated
this is:

P2b The value assumed by a modified primitive V-function
instantiation at some level can be dependent, with respect
to a visible function instantiation, only upon read
references at a lower or equal level.

The similarity in the restatements of properties P2a and P2b and
the fact that the return value, exceptions, and modified
primitive V-function instantiations of a visible function are
simply the write references of the function allows the following
combination of the statements of the two properties into:

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.26

P2a,b For each visible function instantiation, the security
level of each write reference must be at least the
security level of each read reference upon which the
write reference is dependent.

Property P2c states that the invocation of a function
instantiation at some level can change only the values of state
variables (i.e., modified primitive V-functions) at greater or
equal levels. If the return value and the exceptions are defined
to be at the level of the function instantiation of which they
are a part then this property can be restated as:

P2c For each visible function instantiation, the security level
of each write reference must be at least the security level
of the function instantiation.

Combining this statement and P2a,b above gives a general
restatement of the strong security properties in terms of
SPECIAL:

* •

* P3 For each visible function instantiation, the security *
* level of each write reference must be at least the *
* security level of: *
* *
* (a) the function instantiation, and *
* *
* (b) each read reference upon which the write reference is *
* dependent. *
* *

Given a formal description of the semantics of SPECIAL, property
P3 can be formally stated and the logical statement P3 -> P2 can
be rigorously proven true.

DETERMINING DEPENDENCIES

This section discusses means for identifying dependencies.
The objective is to find some simple algorithm for identifying
dependencies. Unfortunately, determining if some write reference
is dependent upon some read reference is, in general,
undecidable. The approach taken here is to identify potential
dependencies. If the set of all write references of a
specification is W and the set of all read references is R, then
the dependency relation DR is a subset of W R and the potential
dependency relation PDR is a subset of W R and a superset of DR.
If property P3 can be proven for potential dependencies rather
than for dependencies, then clearly P3 must be true for

CHAPTER IV-1 SECUPF OBJECT MANAGER Page IV-3.27

dependencies. Property P3 for potential dependencies rather than
dependencies will be termed P4. The problem then becomes to
identify the set of potential dependencies and show that all
dependencies are included in this set. However, the cardinality
of the set of potential dependencies must be kept as small as
possible to make the proof of P4 tractable.

There are two approaches to handling of DEFINITIONS,
EXCEPTIONS_OF, and EFFECTS_OF constructs. First, it is possible
to produce an expanded specification, i.e. one in which the
substitutions resulting from DEFINITIONS, EXCEPTI0NSJ3F, and
EFFECTS_OF expressions have been performed. These substitutions
are straightforward. In and expanded specification all read and
write references relevant to a visible function instantiation
will be explicitly present in the body of that visible function's
specification. Specifications may still be written in unexpanded
form, it is simply easier to describe the proof technique in
terms of expanded specifications. Second, it is possible to
prove multi-level security properties separately for each of the
EXCEPTIONS_OF and EFFECTS_OF expressions, and then assume the
correctness of these properties in proving the specifications
that invoke these expressions. This is an attractive approach in
that it decomposes the proof effort.

There are certain types of expressions that are legal in
SPECIAL, but make it very difficult to determine if dependencies
or potential dependencies exist. To eliminate the necessity of
dealing with such expressions a canonical form for specifications
is introduced,, The canonical form is a restriction of SPECIAL.
In the canonical form, the grammar of SPECIAL is modified and
augmented as follows. An <expression> in the body of a function
specification cannot contain the symbol which is the identifier
for the return value of the function. The definition of <call>
is modified to be:

<call> ::- <symbol> f(f f<expression> { ',' <expression>}*] ') •

The purpose of these two changes is to eliminate the possibility
of a write reference in an <expression>. A <write reference> is
either a quoted V-function or the identifier of the return value
for visible function in which the <write reference> occurs. The
following definitions are added (note that in the TYPECASE
alternative of <canonical expression> below that <symbol> must
not be the identifier of the return value):

<canonical expression>
::= <write reference> ls=f <expression>

I <canonical expression> AND <canonical expression>
j <expression> •»>• <canonical expression>
I {FORALL 1 EXISTS} <qualif\declarationlist>

11:" <canonical expression>
I IF <expression> THEN <canonical expression>
ELSE <canonical expression>

I LET <qualification> { •;• <cualification> }*
IN <canonical expression>

I TYPECASE <symbol> OF
{ <canonical case) ' ; ' }+ END

<canonical case>

::- <typespecification> •:' <canonical expression)

and finally the definition of <effects> is changed to:

<effects> ::= EFFECTS { <canonical expression) •;' }+
The purpose of the canonical form is to restrict how write
references can occur in specifications. This canonical form was
arrived at through experience with writing specifications and
attempts to prove the multilevel security of specifications. Our
experience shows no specifications that do not fit into this
canonical form.

In order to get some idea of how dependencies are indicated

by function specifications, it is necessary to have some rough

idea of the semantics of a function specification. For all

visible functions the semantics of exceptions can be stated as:

(Vi|o<i< = n) ((AND -EX.) AND EX.) « (EV=i) (Sla)
3 l

(AND ~EX.) • EV^O (Sib)
0<j<=n 3

where EX. is the ith exception, n is the number of exceptions,

and EV is the exception value. EV is the number of the first

exception whose value is true. If all the exceptions are false,

then EV is 0. In an 0- or OV-function the semantics of effects

are:

(AND ~EX.) = (AND EF.) (S2)
3 1

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.29

\

where EX^, n, and EV are as above and EF. is the ith effect

and m is the number of effects. Note that in an OV-function the

return value is specified by the identifier given in the function

header. In a V-function the semantics of the derivation is:

(AND ~EX.) = (RV=DE) (S3)

where EX., n, and EV are as above and RV is the value returned by

the function and DE is the derivation.

Consider now where potential dependencies can exist. As a
first approximation assume that a potential dependency exists
between all write references of a visible function instantiation
and all of its read references. This is clearly a superset of
all the dependencies that exist with respect to the function
since the semantics of SPECIAL does not allow the value of
primitive V-functions not appearing in the specification of a
function to be changed by the function and does not allow any new
values to be dependent on nonappearing primitive V-functions.
Unfortunately, this rather simple identification of potential
dependencies includes too many potential dependencies and it is
not possible to construct useful systems that are consistent with
property P4.

Consider the three types of write references separately.
First consider the value of the exceptions, EV. EV is clearly
potentially dependent only upon read references in the exceptions
section of the function specification. In fact, in some
circumstances it may be possible to prove that for some
instantiations of a visible function, that a particular exception
is always true. In this case EV is potentially dependent only
upon read references in exceptions coming before the one that is
always true for these instantiations of the visible function.

Now consider those write references that are modified
primitive V-functions. Modified primitive V-functions can only
occur in the effects section of an 0- or OV-function. A write
reference in an effect can only be potentially dependent upon
read references in that same effect and read references in the
exceptions. This follows from S2 above and the canonical form.
If a write reference appears in a series of conjoined expressions
then the write reference is not potentially dependent on read
references in any of the other conjoined expressions. This
follows from the definition of conjunction and the canonical
form.

Finally consider write references that are return values.
If the visible function is an CV~function then the rules for
modified primitive V-functions apply. If the visible function is
a V-function then the return value is potentially dependent upon
the read references in the exceptions and in the derivation.

In summary, the rules for potential dependency are as
follows:

PDRl The exceptions value is potentially dependent upon read
references in all exceptions up to the first exception
that is always true for the visible function instantiation

PDR2 Each modified primitive V-function in an 0- or 0V-
fuhction and each return value in an OV-function is
potentially dependent upon read references in exceptions
and all read references in the same effect as the write
reference with the exception of read references in
expressions conjoined with the expression containing the
write reference

PDR3 The return value of a visible V-function is potentially
dependent upon read references in the derivation and read
references in exceptions.

The following provide interesting and important exceptions
to the above rules:

FALSE -> exp_a
IF FALSE THEN exp a ELSE exp_b
IF TRUE THEN exp B ELSE exp_a
FORALL x INSET {J: exp_a
FORALL x I FALSE: exp_a
EXISTS x INSET {}: exp_a
EXISTS x I FALSE: exp_a
LET x INSET { } IN exp_a
LET x | FALSE IN exp_a

No write reference can be dependent upon any read reference in
exp_a of these expressions. This is evident from the semantics
of these expressions. Although it is unlikely to see expressions
precisely like these in well written specifications, it is
possible that such expressions effectively exist for some
instantiations of visible functions. Some examples of these will
be given below.

XV-JL bJbCUnt U D J t t i FmwAfcr*]* rage J v - 1 , JJ

THE PROOF TECHNIQUE

Before summarizing the steps in the proof technique, one
further observation is useful. Not all quoted primitive V-
functions necessarily represent modified primitive V-functions
and, therefore, do not necessarily represent write references.
For example in an expression of the form

FALSE *> 'pvf(args) « exp

the quoted primitive V-function pvf does not represent a write
reference because the expression does not constrain the value of
pvf(args) to change. This situation arises in all the
expressions listed in the previous paragraph as exceptions to the
potential dependency rules. Similarly, a quoted primitive V-
function in the effects section of a visible function
instantiation in which some exception is always true is never s
write reference.

The proof of multilevel security of a given specification is
quite straightforward. For each visible function specification
it must be shown that each instantiation of that function is
consistent with property P4. This can be accomplished by proving
that P4 holds for all possible argument values to the function or
it can be accomplished by dividing the possible sets of arguments
into collectively exhaustive subsets and then proving P4 for each
of the subsets. For each subset the write references must be
identified and then it must be shown that for each write
reference than is a modified V-function, that the level of that
V-function if greater than or equal to the level of the visible
function instantiation. Finally, it must be shown that for each
write reference^ each read reference upon which the write
reference is potentially dependent has a level less than or equal
to the level of the write reference.

Unfortunately, it is not always possible to determine the
level of a read or write reference in a particular function
instantiation by inspection of the specification. For example,
an argument to some primitive V-function might be the value of
some other primitive V-function. In this case it is necessary to
know what values the other primitive V-function might have in
order to know what the level of the read reference is. Such
information may be deducible from the specification of the
visible function in question (local assertion) or it may require
proving some invariant of the specification of the system as a
whole (global assertion). In either case it is necessary to
prove P4 for all possible values that the other primitive V-
function above may assume.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.32

ILLUSTRATIVE PROOF

As an example consider the external O-function "write
(idoc;i;wl)[se]". The security level of the invocation is given
by proc_stat(se).s_level (which we abbreviate below as LP), the
level of the environment. First consider the read reference
dependencies as embodied in the three exceptions.

EX1 expanded becomes

~process_exists(proc_stat(se).s_sue,proc_stat(se).s_username, LP

which involves a read reference to a V-function at LP. EX2
expanded becomes

~environment_exists(argl,LP) OP
~get_saccess(argl,LP),

which only involves read references to V-function at LP.

The expansion of EX3 leads to a complicated expression, but
the reader can deduce that it only contains read references to
V-functions at LP.

The expansion of the EFFECTS section becomes:

FORALL levell I gte(levell,LP)
fdocument_read

(get_slavel(current_environment(argl,idoc,levell),
levell), i,levell) * wl

First of all observe that all write references are to V-functions
at levels with levell >- LP. It remains to consider separately
each expression within the FORALL statement such that levell >=
LP. For each such expression, the write reference is at levell,
and the read references are either w at level LP, or the
arguments of get_slavel and current environment which are at
levell. Thus all write references are at a level at least as
high as the read references on which they depend.

TRANSFORMATION OF SPECIFICATIONS TO ELIMINATE UID PARTITIONING

In the specifications of the SOM, all primitive V-functions
have been partitioned according to security levels. In effect
there is a separate machine for each security level, with only
limited communication between machines. If there is to be no
information leakage via the exhausting of resources, then it is
clear that the resources must be partitioned. It would also, at
first glance, seem that the uids would also have to be
partitioned. (Indeed the strong security principle requires it).
In the absence of partitioning, it appears that a process could

CHAPTER IV-1 SECURE OBJECT MANAGER Paqe IV-1.33

acquire information about a process of a higher security level bj
creating an object and observing the uid associated with the
returned scapability. However, this channel does not exist,
since there is no SOM function that returns the uid to a user.

A more convincing proof that uids need not be partitioned
would proceed as follows. Consider two abstract machines: Ml
described by the specifications as given, and M2 for which the
level argument position is removed from all functions of the
scapability module; except for these functions, M2 has the same
specifications as Ml* Note that for both machines there is
assumed to be an unbounded supply of scapabilities? Ml has an
unbounded supply in each partition. Thus an attempt to create a
scapability in either machine never precipitates an exception.
Further, Ml and M2 are isomorphic as perceived by a user. There
exists a one-to-one onto mapping that will convert uids of one
machine to the other. Any function that a user calls in Ml will
have the same effect as calling the corresponding function in M2,
modulo the uid mapping. Hence a set of users executing on M2
with some sequence of calls would get no more information than a
set of users executing on Ml with the same sequence of calls.

Thus, by hiding the value of uids from the user, it is
possible to eliminate the uid function as a channel.
Unfortunately the complete hiding of uids results in
implementation inefficiencies. The implementation of the secure
object manager could use the uids of documents and directories
for efficient searching. If the only legitimate operation on
uids is an equality comparison, then a linear search is required.
One solution is to allow the SOM implementation to perform other
operations on uids, but to exclude these operations from the
processes that use the SOM. Another solution is to give the SOM
and the processes it serves access only to a transformation of
the uids. In effect the processes would perceive the uids as
random integers from which observation of one transformed uid
would yield very little information about other existing uids.

REMOVAL OF SECURITY-LEVEL ARGUMENTS FROM DOCUMENTS

The specifications of the secure document module seem to
indicate that distinct versions of a document exist,
corresponding to distinct security levels. This distinctness is
exists only in module's specifications. Indeed, if the
specifications are to conform to the common military view of
secure documents, all versions of the document should possess the
same state. The concept of a minimum-level-invariant V-function
is defined above. In this section it is shown that as a
consequence of the constraints on the movement of document
scapabilities, the three primitive V-functions of the document
module (document-exists, document-size and document-read) are all
minimum-level-invariant, and for a given document slave

CHAPTER IV-1 SECUPE OBJECT MANAGER Page IV-1.34

capability sudoc, their values all have the same minimum level of
definition. Once this property has been established, the
security-level argument positions can be removed from the
document specificationsr in which case the slave capability
argument is sufficient to uniquely identify the document, and
presentation of the capability is sufficient to access the
document. Thus there is no .checking for correspondence of the
process1 security level with that of the document.

The primitive V-functions of an existing document are
changed only by calling one of the 0-functions (document-write,
change-document-size, and delete-document) with a document
scapability scdoc that has write-access. It is now shown that
such a scapability is available only to processes that are
operating at the same security level as the level at. which the
document was created. This involves showing that (1) at document
creation the document-write scapabilities are acquired only by
V-function values at the creation security level? (2) for those
V-functions that have security level argument positions, values
at a higher security level never acquire a document-write
scapability — i.e. document scapabilities with write access
never move upward; (3) V-functions that do not have security
level argument positions are never modified to yield a
document-write scapability.

For case (1), only the sdirectory V-function h_get_scap
acquires the newly issued scapability, and although potentially
all sdirectory versions can acquire the scapability, only the
version at the creation level acquires the non-restricted
scapability.

For case (2), it first must be shown that a scapability with
FALSE access flag cannot be changed to one with true access flag.
There does not exist a function that can do this. Second,
document scapabilities can be moved, between or to (a)
sdirectories, (b) environments, (c) message buffers, (D)
representation vectors of extended objects, or (e) initial
environments. For (a) the relevant C-function is copy_sentry or
move_distinguished_sentry, which for document scapabilities
always does a restrict_document_access prior to moving the
scapability upward. For (c) the relevant>O-function is
send_mail, which likewise transfers upward only the restricted
version of the scapabilities. For (b) the transfer of any word
to an environment is at the same level as the source V-function,
i.e., there is no transfer upward. For (d), insertion and
deletion operations behave the same as the corresponding
sdirectory operations. For (e), only the security officer can
manipulate the scapabilities.

For case (3), those V-functions which can return
scapabilities must be considered whenever the security-level
argument positions have been elided. These are "document read11,

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.35

"restrict_saccess", and "change_j?ermitM . The latter two can be
quickly disposed of since they return a scapability with the same
slave scapability as presented, and never increase access rights.
The V-function "document_read" is modified by the O-function
"documentor ite (scdoc? i? w) ". If w is a scapability, the write
is allowed only if the permit flag of the scapability is true*
However, a newly created document scapability (that of course has
write access) has a permit flag of false, and is thus not
storable in documents. No visible function of the SOM causes the
permit flag of a document scapability to become true, except the
functions that restrict the access rights of the scapability.

Thus it is shown that all versions of a document are
identical, a property that will bear on the implementation of
documents*

IMPLEMENTATION OF THE SOM USING PSOS

A major objective of this work is to demonstrate that the
secure object manager can be efficiently implemented using the
visible functions of PSOS. Although, at the time of writing,
implementation is not complete, it can be discussed in enough
detail to demonstrate the feasibility. It is convenient to
discuss separately each of the SOM modules.

SCAPAEILITIES: The scapabilities, assuming the eliding of
security-level argument positions, are implemented in terms of
capabilities, with a natural correspondence between slave
scapabilities and slave capabilities. The access-flag and
permit-flag would be represented as bit positions in the access
vector. The scapability module visible functions
"create_scapability" and "restrict_access" are implemented
immediately by their corresponding capability functions. Only
the scapability function "change_j?ermit (sc, TRUE, level) -> scl"
poses some difficulties because it sometimes requires the
return of a capability scl with a 1 in the access vector of sc
replacing a 0. By intention, no capability function can
accomplish this. (Note that the function "change_permitlf would
not be required if no scapabil ities were storable in documents.
If document read scapabil ities are storable, but not document
write scapabilities, then by restricting the access rights of a
scapability its storing rights are increased—a situation not
handled by the capability module.) One simple solution is to
use a segment to implement the instances of change-permit,
where the permit flag is changed from false to true. The
segment holds the scapability versions with true permit flag.
Since change-permit will only be called infrequently, the
penalty involved in the look-up can be safely endured.

DOCUMENTS: Most of the instructions on secure objects will
involve combinations of reads and writes on documents. Hence

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.36

it is essential that these instructions be efficiently
implemented. It is shown here that such operations can be
interpreted directly as reads and writes on segments, and hence
no penalty is introduced by an interpretation through the SOM.
It is shown above that the functions of the document module do
not require security-level argument positions. (The SOM will
record the security-level of each document, but this does not
influence the read and write operations on documents.) The
creation of a document is then interpreted as the creation of a
segment. The segment will have an associated store permission,
and two versions of the capability — one which is store
limited, i.e. not store-permitted, and the other which is not
— are generated. The non-store limited is retained in the
segment that implements the scapability module; the store
limited versions, which also contains write access is returned
to the document creator. Reads and writes on documents are
then performed directly as read and writes on the corresponding
segment. An attempt to store into a segment a scapability
(which is really a capability) that is store limited will be
rejected.

SECURE DIRECTORIES AND SECURE EXTENDED TYPES: For these
modules, the primary V-functions are get_scap and h_impl_scap.
It is shown above that the instances of these V-functions can
be collapsed into two instances: one that is available to an
invocation at the creation level LI, and one that is available
to all invocations at level L2 >- LI. Thus the implementation
of each of these modules is easily carried out in terms of
their corresponding PSOS modules. In the case of secure
directories, each directory is represented as a directory with
two sets of er:ries, corresponding to the sdirectory entires of
LI and L2 >- LI, respectively. Each in the first such set
could be given a name Ll <name>, for each entry <name>.
Similarly, each in the second set could be given a name
gtLKname>. With this particular approach, a level check is
required at insertion but not at the time of entry retrieval.
Another approach that is probably more efficient is to provide
only one instance of these relevant V-functions, but to return
either the stored scapability or the restricted version,
depending on the level of the invocation.

DISCUSSION

An initial effort towards the design, proof of design, and
implementation of a subsystem that manages objects of multilevel
security has been completed. The global conclusions are as
follows.

* Multilevel security can be easily modeled using the
methodology.

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.37

* The specifications of the secure object manager are easily
proved to be in conformance with the multilevel models.

* The secure object manager can be easily and efficiently
implemented as a PSOS subsystem, although some
improvements are foreseen in the implementation of secure
directories.

The following are related issues that should be pursued*

Hybrid Documents: Many military documents are not uniform in
security level, i.e. sections, even paragraphs, of the
document can be individually classified. Such hybrid documents
could be handled here if each such individually classified
section is a distinct segment. A better solution, not
requiring such a potential proliferation of segments, would be
to associate subsegments with each individually classified
section. This solution, in order to be efficiently
implemented, requires the efficient handling of subsegments in
PSOS. This latter solution might still be unacceptable since
it requires the document creator always to log in at the
security level at which he expects to generate information.
Thus the nuisance of changing log in levels might bother him.

Secure Objects as Primitive System Objects: For an
application wherein only multilevel secure objects are to be
available to users, it is not necessary to have two sets of
modules — one for general objects and one for secure objects.
That is, the PSOS segment module could be replaced by the
document module, the directory module by the sdirectory module,
etc. For such a system all objects are implemented ultimately
in terms of documents, rather than segments. There is some
added system overhead associated with the assignment of
security levels to objects that need not be secure, but this
should only impact a small fraction of the instructions that
are executed.

Role of the Security Officer: There are certain SOM
operations that must be restricted to the security officer:
initializing a user, changing a user's clearance, and deleting
a user. In addition, there are operations that, in practice,
have been the responsibility of the security officer, e.g.
changing the security level of a document, changing the name of
a document, and changing the clearance of the name. These
latter operations are not incorporated explicitly. Instead, in
order to change the clearance of a document, the security
officer would first create a new document at the intended
security level, copy the contents of the old document to the
new one, and delete the old document. He could then give
selected users access to the new document. The SOM does not
assign names to documents as in the military world. The names
the users associate with the directory entries for documents

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.38

could serve this role, but their level is constrained to be
that of the corresponding document. The security officer could
retain a file of document names and their security level. Thus
the security level of the names could be at the discretion of
the security officer.

The programs that implement the security officer operations
could be verified with respect to the specifications. However,
it is clear that the security officer's specifications do not
conform to the multilevel security model. It is thus possible
that the security officer could be used maliciously as a
channel. Rules of operation need to be established for a
security officer to minimize the bandwidth.

Integrity: The multilevel security model does not prohibit
writing up in security level, even if it involves the
destruction of a TOP SECRET document by an uncleared user. The
specifications here are carefully constructed to exclude upward
writing by a process, except to those objects under its
control. However, it is not realistic to exclude all writing
upward. For example, an uncleared programmer could compose,
outside of the SOM, a Fortran system which will operate on TOP
SECRET data. If it can be assured that the system will operate
in a confined manner (Chapter IV-2), then it is reasonable to
allow the system (confined) access to the data — provided it
is accepted that the programmer is "trusted" enough not to
willingly (or unwillingly) destroy the data. In order to
formally handle the problem the MITRE group has developed the
concept of integrity as the formal dual to multilevel security.
Processes and objects are given integrity levels, and a process
can write only on objects whose integrity level is no higher
than its own.

Initial State of the SOM: In the presentation of the proofs
of the the specification, the security of the initial state is
not discussed. For the specifications that require each
V-function to contain security-level argument positions, any
initial state is secure. That is, if there exist some initial
documents, then provided the security officer has classified
them according to their contents, there is no possible
security violation in future references. The situation is not
as clear for the transformed specifications (with level
arguments deleted from documents and scapabilities) which rely
on the properties of capabilities to guarantee security. For
the transformed system a security violation could occur if for
some initial segment two environments at different security
levels were given scapabilities with write access. Even though
this situation can be considered beyond the scope of present
concern — the security officer is violating security by
improperly initializing two users — it is of interest to
detect such violations. Since there are no initial objects in
the system, except empty sdirectories for each user, the

CHAPTER IV-1 SECURE OBJECT MANAGER Page IV-1.3S

initial state is seen to be secure. However, in an actual
system those initial sdirectories would contain some
scapabilities, e.g. to call system functions and library
functions, and consequently a precise definition of secure
initial state is reouired.

AUTOMATING THE PROOFS

The proof of the specification of Fig. 1 is simple but
quite lengthy when fully documented. Proofs of complex systems
will be extremely lengthy. In general, the proof of multilevel
security of a specification is many times longer than the
specification* If these proofs are written manually, the
probability of their correctness is very small. Unfortunately,
even a small error in the design of a system can result in a
large breach of security. It is, therefore, necessary that there
be a high degree of confidence in the total correctness of the
security proofs. Such a high degree of confidence in the
correctness of the proofs cannot be effectively gained by manual
generation and checking of the proofs. The necessary degree of
confidence can only be gained by automatic generation or checking
of proofs or some combination of automatic and manual techniques.

The proof technique described above has been designed to
permit automatic generation of proof. The identification of read
references, write references, and potential dependencies of the
desired property P4 can be done very simply with knowledge of the
syntax and a little of the semantics of SPECIAL. The proof of
the relationships between the security levels of the read and
write references requires some theorem proving, but the types of
theorems involved are all of the same simple kind and most of
them can be handled by a simplifier. Those systems that require
global assertions in order to perform the proofs will probably
require human assistance in deriving the global assertions,
however, the proof of the global assertions can probably be
automated. For a given system specification, the same theorems
arise many times in proving the security of the different visible
functions. Once the security of a few of the visible functions
has been proven, the proofs of the remaining functions follow
similar patterns. Highly efficient operation can be achieved if
the automated prover is directed by a human operator for the
proofs of a few of the visible functions and then uses the same
techniques to automatically prove the security of the remaining
functions. Also, after the automated prover has proved the
security of a system specification once and is aware of the
necessary global assertions, it should be able to prove the
security of modified versions of the system with human
assistance. The use of such a semi-automated prover is essential
to having a high degree of confidence in the proofs, is within
the current state of the art of automated verification, and will
be more cost effective than manual proof techniques for large
systems even with the high initial cost.

iv-j. stcunk ueutti nBiNMUt-K raye xv-i

Most of the tools necessary for constructing a
semi-automated prover for the security of specifications alread
exist* There exists several theorem provers and simplifiers
which should be adequate for the types of theorems that will be
generated. A program exists to parse specifications written in
SPECIAL and to convert to a form suitable for processing. The
necessary additional programs are a verification condition
generator that formulates the theorems that express the desired
relationships between the security levels of the read and write
references and a suitable human interface. Verification
condition generators and human interfaces have been written to
aid in the proof of properties in several other languages and t
ideas in these programs can be used to create programs suitable
for proving the multilevel security of specifications.

CHAPTER IV-2
CONFINED SYSTEMS MANAGER

INTRODUCTION

There are application areas in which members of a set of
users do not trust each other, but are forced to depend on each
other for data, service, etc. Each such user desires assurance
that the damage causeable by others to him is limited. The
mutual dependency and mistrust between an income tax service,
e.g., H. & R. Block, and a customer is typical of the situation.
The customer cells on the tax service to prepare a return for
him, passing the service information that might be proprietary.
Once the return is complete, it is the customer's desire that the
service retain no memory of any of the propietary information.
The customer thus desires that the service execute in a CONFINED
ENVIRONMENT, wherein when it is processing the customer's data it
cannot communicate with any other process.

Note that the service could attempt to use the customer
himself as a channel. For example, the service and the Internal
Revenue Service could be colluding parties, and thus the IRS
could transmit information regarding the customer's tax return
back to the service. In addition, the charge for preparing the
return could be dependent on the customers data. The constraint
that the service not communicate with any process during
execution of the program precludes the service retaining such a
billing record. However, the service could attach a bill to the
return, which the service does not record for itself. This bill,
if paid by the customer, gives information to the service. In
this discussion, such channels are ignored — since the customer
can in principle shut them off. Instead, elimination of those
channels over which the customer has no control is considered.

The situation is more complex if the service, being
protective of its programs, does not wish the customer to be able
to detect any information about the programs. This more general
case has been called the MUTUALLY SUSPICIOUS SUBSYSTEM problem.
One would-be solution to this problem is to return no information
to the customer; however, this clearly contradicts the hypothesis
that the service performs a task for the customer. The full
generality does not appear to be needed. Thus this chapter
considers only the ONE-WAY confinement problem, although the
given solution generalizes to the TWO-WAY case.

The trade-offs between an interpretive and compiled solution
to the problem are discussed below. In contrast to the solution
for the secure object manager (Chapter IV-1), the compiled
solution is selected here. The specifications of the confined
systems manager are discussed here, along with a few limitations
of the approach. The design methodology is particularly
attractive for specifying a confined environment for use with
PSOS, since storage channels are easily identified with

CHAPTER IV-2 CONFINED SYSTEMS MANAGER Page IV-2.2

V-function values, and since the access to such channels is
achieved only by possession of an appropriate capability set for
O~ or V-functions.

INTERPRETIVE AND COMPILED SOLUTIONS

The secure object manager can be viewed as interpretive,
since all operations on secure objects are via calls on the
functions at the interface of the subsystem* A compiler-like
system could alternatively have been specified, as follows.
Users create and modify all objects off-line. An object can be
certified as a secure object by being presented to the secure
object manager (compiled version), which accepts it if it does
not contain any erroneous capabilities. Essentially, the
compiled SOM enforces the same rules as the interpreter version,
but on the object as a whole rather than on each operation. The
interpreter solution is attractive for the SCM, since the dynamic
manipulation of secure objects seemed more useful. Also the
clear identification of all interface operations greatly
facilitates the proof.

On the other hand, the confined system manager (CSM) is
better suited to a compiled solution. For the income tax
example, the customer would call a program provided by the
service, passing the tax data as an argument. The service would
be guaranteed to execute in a confined manner if its programs
have no access to any storage channels that survive the
invocation. Of course, the customer does not trust the service's
programs to be so constructed. Thus our solution requires that
the service present his programs to a mutually trusted third
party, namely the CSM, which will ensure that the service's
programs will operate in a confined manner, and then declare them
to be confined. In order to prevent the service from maliciously
modifying a previously certified program, the CSM will copy the
programs, retain the copies, and prevent their modification —
except via the CSM. Thus the CSM "compiles11 the programs, and
certifies that the compiled versions will operate in a confined
manner. The meaning of confinement, with respect to the
methodology and the operating system, is discussed in the next
section.

THE MEANING OF CONFINEMENT

When a user calls on the confined versions of a service's
programs, the execution will be confined if all "writes" are done
on objects that are returned only to the user, or on objects that
are local to the particular invocation of the procedure. The
execution will not be confined if in execution the service's
programs perform any of the following operations:

* write on a segment that is not local to the invocation;

CHAPTER IV-2 CONFINED SYSTEMS MANAGER Page IV-2.3

* change the size of such a segment;

* delete such a segment;

* perform any modification of a directory, other than the
user's process directory or a directory passed by the user;

* modify any extended object that is not local to the
invocation.

All such operations could be perceived by a process other than
the one running on behalf of the customer.

The above operations are illustrative of the "obvious"
storage channels that a malicious service might use for
information leakage. A more subtle one is the following: Assume
that the service requires "read" access to a previously created
extended object in processing the user's data. This object must
be a CONSTANT OBJECT, not modifiable in any way by execution of
the service's confined programs. All extended objects possess a
representation, i.e., the correspondence between a capability for
the extended object and capabilities for the objects that
implement the extended object, maintained by the extended-type
manager. The representation for constant objects cannot be
changed by an instruction in a confined procedure, since such a
modification could later be perceived by a user who had
type-manager's access to the object. The solution here shuts off
this channel.

An even more subtle form of leakage from the execution of a
confined procedure involves system resources. Here the
supposedly confined procedure could attempt to exhaust a
resource, e.g., segments, such that a colluding process would
detect information by being denied a new segment. This form of
leakage, in addition to that via time channels, is not addressed
here. Only leakage involving the V-functions of the operating
system modules is considered.

With these assumptions, it is necessary to consider only the
SEGMENT and EXTENDED TYPE modules. As noted below, a service can
create segments and extended types using the functions provided
by these modules. When the service has completed preparation of
these objects, it passes them to the CSM for certification. The
service is not allowed to pass to the CSM any capabilities for
existing directories, I/O devices, processes, mail-boxes, or any
other primitive storage medium.

A statement of the meaning of compiled confinement is cast
in terms of the following two principles.

Internal Confined Object Principle—Assume the existence of
a set S of capabilities (which can be viewed as
corresponding to segments, extended-types, or extended

CHAPTER IV-2 CONFINED SYSTEMS MANAGER Page IV-2.4

objects). The set S is INTERNALLY CONFINED if the use of
any subset of S as an argument to (1) any accessible 0- or
CV-function does not result in a modification of the value
of any V-function that has as argument the slave version of
a member of S, and (2) any accessible V- or OV-function does
not result in any capability being returned other than a
capability in S, possibly with reduced access rights, or a
previously unseen capability.

External Confined Object Principle-- A set S of capabilities
is EXTERNALLY CONFINED if the use of any subset of S as
arguments to any accessible 0- or OV-function does not
result in any hidden V-function that takes as argument a
slave version of a member of S having its value modified so
as to return a capability other than in S.

The Internal Confined Object Principle, if satisfied by a
set of objects, ensures that the objects do not contain any
capabilities that can be used to leak information out of a
confined environment. The External Confined Object Principle
relates to the capabilities that are returned to the service for
the copies of objects that it requested to be certified to be
confined. The principle, if satisfied, guarantees that the
service cannot modify the certified copies of the objects, (in
particular to insert capabilites for storage channels into the
objects) except to delete the objects. The deletion is
accomplished only via the CSM.

DISCUSSION OF THE SPECIFICATIONS

The specifications for the CSM are given in Appendix E. On
the basis of the above discussion, definitions can be provided
for a confined segment and a confined object. A segment is
confin¥3 iff any embedded capability is for one of the following:

1. a system function that is confined.

2. another confined segment, but without the special access
right lfconfined-delete" that allows the deletion of the
segment via the CSM. (It is not necessary to test for write
or delete access rights [via the segment module] , since such
rights are not returned by the CSM.)

3. a confined object, again without the access right
"conf ined-delete11 •

An object is confined iff each capability entry in its
representation vector is for one of the following:

1. a confined object, but without the "confined-delete"
access right.

CHAPTER IV-2" " CONFINED SYSTEMS MANAGE? Page IV-2.5

2. a confined segment, but without the Mconfined-delete"
access right.

The CSM maintains a set of objects — segments, extended
type objects — that have been certified to be confined. The
parameter system^capabilities is the set of capabilities for
system functions that are confined, including the basic machine
instructions, in addition to the interface functions of the
operating system. The V-functions: h_is_confined_segment,
h^is^confined_type, and h_is_confined_object return TRUE if their
argument is respectively a segment, type, and extended object
that has been certified to be confined. The visible versions of
these functions can be called by a user to determine if, for
example, a procedure capability passed to the user by a service
is indeed confined. The OV-functions: create_confined_type,
make segments_confined, and make_object confined are called (by a
service) to establish the respective objects as confined.

For example, the function make_segments_confined takes as
argument a vector of capabilities, cv. (Note that each of a set
of mutually recursive segments cannot be individually certified.)
In conformance with the Internal Confined Object Principle, the
specifications indicate that the call is rejected if any of the
segments in cv contains a capability other than for a confined
system function, a previously certified object, or a member of
cv. If this principle is satisfied, then a copy of each of these
segments is established, and again in conformance with the
Internal Confined Object Principle, all access rights for
modification, via the SEGMENT module or the CSM, are removed from
the capabilities that are stored in the segments. In conformance
with the External Confined-Object Principle, the returned
capabilities do not permit write access or delete access via the
SEGMENT module. However, the returned capabilities do contain
the confiried-delete access right which permits the deletion of
confined-segments. In implementation the CSM will delete the
concrete segment corresponding to a confined segment, using the
capabilities with delete access that it retains.

The function make_object_confined takes as arguments a
capability tl for a confined type and a vector of capabilites cv,
each member of which corresponds to a certified extended object
or segment. A new extended object cl is created whose
representation is the capability vector cv, although the access
right to delete (via the CSM function delete_confined_object) is
removed from the stored version of cv[i], for all i. Note that
the capability cl has no access rights corresponding to add_rep
and delete^rep, thus precluding leakage through the extended type
V_function impl_cap.

In this chapter a simple, although practical, solution to a
particular confinement problem is presented. The solution
prevents leakage from an environment via any storage channel. A
slight extension could handle the case of leakage via resource

CHAPTER IV-2 CONFINED SYSTEMS MANAGER Page IV-2.6

exhaustion. The problem of leakage via time channels remains as
an extremely difficult problem.

CHAPTER IV-3
A SECURE RELATIONAL DATA MANAGEMENT SYSTEM

NTRODUCTION

This chapter summarizes the design of a secure data
anagement system suitable for implementation on PSOS. The
esign is hierarchical and follows the methodology used for the
perating system and for the other applications discussed here.

The goals of the data management system discussed here are
amiliar. These are to provide storage and retrieval facilities
or large data collections, with a high degree of generality in
ata description, in query definition, and in the user interface,
lso included are the goals of efficiency of operation and ease
f use.

The main goal of this effort is not the data management
ystem itself, but rather the demonstration of the suitability of
he methodology for developing an application subsystem with
ppropriate security. To this end, the concept of a relational
ata base was chosen as being representative of suitable
enerality, while presenting realistic problems of efficiency of
peration and ease of use. It is recognized that there is much
ontroversy in the data management world over the various types
f data management systems. The choice of a relational model
ere should not be construed as an advocacy of that approach.

The main emphasis here is on the mechanisms of the lower
evels of the data management subsystem, namely, the notions of
elations and views and the access authorization that they
rovide. The higher-level issues of providing appropriate user
nterfaces are considered to be important, but secondary for
•resent purposes.

OVERVIEW OF THE DESIGN

The design given here is fairly simple, but general. It is
elatively easy to embellish so as to increase efficiency or ease
f use. However, where such embellishments do not add to the
llustration of the methodology, their presence has been
schewed.

In accordance with the use of the methodology, the design is
lecomposed into levels of abstraction. The fundamental
bstraction used here is that of relations. A relation contains
lata organized as a set of tuples that can be inserted and
etreived, and whose values can be read and modified. The
ndividual fields can be named and manipulated separately. The
text higher-level abstraction is that of views, which provide
luthorization for selective accessing of the data in a relation,

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.2

including reading and writing of data in particular data fields
by context. Views permit access to relations in a higher-level
language than that provided by relations themselves. The next
higher-level abstraction is that of queries, which permit
requests about the data in relations that are more user-oriented.
These three levels are part of the design, and can be augmented
with other levels, e.g., lower levels for retrieval efficiency,
and higher levels for user convenience. These levels of
abstraction are discussed below.

RELATIONS

The literature on the relational model of data has been
growing rapidly in the last few years, beginning with Codd [70].
For recent developments, the reader is referred to Chamberlin et
al. [75], Mylopoulos et al. [75], Held et al. [75], and Schmid
and Bernstein [75], for example. An excellent survey is given by
Chamberlin [76].

For present purposes, the terms DOMAIN, SCHEMA, RELATION,
and TUPLE are defined first, in order to develop the concept of a
relational data base. In informal terms, a DOMAIN is a basic
semantic variable of a body of data. More formally, a domain d
is a variable of a particular type (here considered as a
character string) whose range is a set of possible values. A
convenient example, given by Chamberlin et al. [75], involves
domains such as EMPLOYEE, SALARY, MANAGER, DEPARTMENT, ITEM,
VOLUME, and FLOOR. A SCHEMA s is a vector of domains chosen to
model some body of data. Three schemas are given.

Sl: EMPLOYEE, SALARY, MANAGER, DEPARTMENT

s2: DEPARTMENT, ITEM, VOLUME

S3: DEPARTMENT, FLOOR

In formal terms, a RELATION r for a schema s with domains
(dl, ..., dn) is a subset of the cartesian product dl X 62 X ...
X dn, i.e., a particular set of instances of a general schema.
Three relations rl, r2, and r3 are considered here, based on the
schemas sl, s2, and s3, respectively. These are given the
symbolic names EMPLOYMENT, SALES, and LOCATIONS by which they may
be identified at the query level. The symbol w (wl, w2, etc.) is
used to denote a value.

EMPLOYMENT is a set of tuples {[wl, w2, w3, w4]} : rl
SALES is a set of tuples { [w4, w5, w6]} : r2
LOCATIONS is a set of tuples {[w4, w7]} : r3

i

A TUPLE t of a relation r is an instance of the schema for
that relation. That is, it is a vector tw of values, one from

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.3

each of the domains in the schema for which the relation is
defined. A relation is then seen to be a set of tuples for its
schema. For example, the relation rl (EMPLOYMENT) may contain
tuples such as [Smith,9000,Kelly,personnel].

A RELATIONAL DATA BASE for a set of domains is a collection
of relations each of whose schemas is a subset of that set of
domains. In the design given here, the collection of relations
in any data base rdb is catalogued as a directory of relations
for that data base, r_set = get_relations(rdb). (The functions
pertaining to relations are summarized in Table IV-3.1.) In the
above example, the three relations rl, r2, r3 form a relational
data base rdb (called DEPARTMENTJSTORE) that may be one of many
data bases known to the system. A catalog of data bases is
provided by the function rdb_set - get_data_bases().

Additional functions provide the ability to create relations
and to modify their contents. For example, t_set =
get_tuples(rdb,r) provides the set of tuples forming the relation
r. The function tw - get_yalues(rdb,r ,t) provides the vector of
values tw[i] in a particular tuple t. The function
update_tuple(rdb,r,t,tw) permits the assignment of new values to
a tuple. The set of functions associated with the maintenance of
relations forms the module RELATIONS (see Table IV-3.1).
(Terminologies in the literature differ slightly from one to
another. The notion of relations given here is also slightly
different from the others. What is sometimes called an attribute
is here called a domain. Within a schema there may be
differently identified domains with the same range, but the
identically identified domain is not allowed to appear repeatedly
in the same relation.)

(For simplicity, it is assumed here that all relations are
in "third normal form" — see Chamberlin [76]. Intuitively this
means that each relation deals with a single concept and contains
at least one unique key. This assumption greatly simplifies
inserting, deleting, and updating. It avoids ambiguity and
minimizes inconsistency.)

VIEWS

Access to a data base is governed by the use of VIEWS on the
relations of that data base. A view acts as a selector, or mask,
which, when applied to a particular relation, selects specific
tuples from that relation, and extracts appropriate values from
those tuples. Queries, discussed below, are used to access data
by invoking views on different relations of the same data base.

In the given design, a view is applied to a relation by
means of the function tl_set = extract(rdb,view). In the sense
that the result of this extraction is itself a relation (with the
same schema), a view may conveniently be considered as itself
being a relation (i.e., as the result of extraction). However,

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.4

this can be confusing unless careful distinction is made between
the vectors defining a view and the tuples of either the original
relation or the extracted relation. This distinction is helpful,
since the definition of a view itself looks like that of a
relat ion.

In the sense that an authorized view is required in order to
extract information from a relation, a view also acts as a
capability for selective access to the relation. In the given
design, the set of authorized views for each relation is
catalogued in a directory of views, view_set = get_jviews (rdb,r) .
Access to these views may be granted as desired •

PRIMITIVE VIEWS

A view is either primitive or nonprimitive. A PRIMITIVE
VIEW v for a given relation r contains a single vector vw of
values for the schema of the relation, where vw =
get_view_vector(rdb,v). However, each value vw[i] may be either
a value from its own domain, or one of two special values "*" and
"%". Here "*" denotes the universal value, and "%" denotes the
null value. (For simplicity, "*" and "%" are considered to
belong to every domain. However, note that each domain could
also contain a null value of its own, other that "%".) In
essence, "*" extracts any given value, while "%" extracts only
itself, irrespective of the given value. Each view also contains
appropriate access authorization, discussed below.

More precisely, consider the value vw[i] (for domain s[i])
for a view v, and the value tw[i] of a tuple t to be considered
for selection, where tw = get_values(rdb,t). A value tw[i] is
EXTRACTABLE by vw[i] if and only if vw[i] is "*" or "%" or the
value tw[i] itself. A tuple is SELECTED if and only if each of
its values is extractable. If a tuple t of relation r is
selected, extraction takes place as follows, as a part of
extract(rdb,v). If vw[i] = "*" or vw[i] = tw[i], then tw[i] is
extracted; if vw[i] = "%", then "%" is extracted. (Note that if
neither of these cases applies, then by definition the tuple is
not selected.) Thus "*" acts as a "don1t-care" in the selection,
while "%" acts ds a filter (mask) in the extraction. No values
from domain s[i] may be viewed when vw[i] - "%". The null value
"%" is returned in place of the actual value in position i of any
selected tuple. The extraction of the tuple value tw[i] by the
view value vw[i] is summarized in Table IV-3.2.

Specifications for the modules RELATIONS and PRIMITIVE-VIEWS
are given in Appendix F. These represent a detailed design for a
prototype set of functions supporting the relational concept.
The following discussion of queries is purposely not specified in
detail, in that the relations and views modules are intended to
be general enough to support different query languages.

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.5

As an example, consider the schema si and the relation rl
(called EMPLOYMENT) on that schema. A primitive view on that
relation rl has the view vector vw = [*,*,*,*], which provides
access to each domain of each tuple in the relation. A
restricted primitive view on rl is vl with vwl « [*,%,*,*], which
provides access to all tuples, but with no SALARY information. A
still more restricted primitive view on rl is v2 with vw2 =
[*,%,Kelly,%], which provides access to just those tuples in rl
with Kelly as the manager, returning the employee information,
but filtering out the salary and department information. The
result of "extract(rdb,vl)" is thus a set of tuples
[wl,%,Kelly,%].

Since the result of tl_set = extract(rdb,view) is a set of
tuples over the same domain as that for r, this result is itself
a relation (with the convention that the values M%" and "*" are
included in every domain). Thus, one view for a given relation
may have a second view applied to it, and so on.

The above discussion concerns reading data through a view.
Similarly, operations exist to update, insert, and delete through
a view. In the case of updating, the function "v_updatefl permits
a value to be updated for each tuple in a relation selected by
the view. The function "v_insert" permits a new tuple to be
inserted. The function "v_delete" permits tuples selected by the
view to be deleted. Additional functions permit new views to be
created for existing relations and more restricted views to be
created for existing views. The set of functions provided by the
module PRIMITIVE-VIEWS is summarized in Table IV-3.1.

NONPRIMITIVE VIEWS

A NONPRIMITIVE VIEW for a relation r is a set of two or more
primitive views for r; it may be built up by set UNIONS of
primitive views. In general, then, a VIEW is either a
nonprimitive view or a set consisting of just one primitive view.
Although externally it is thought of as just a set of primitive
views, e.g., {[*,%,Kelly,*], [*,*,Jones,*]} on rl, a nonprimitive
view could be represented in some compressed internal form (see
below).

QUERIES

A QUERY is a request to obtain information from a data base
and is stated in some well-defined languaqe called a query
language. Queries operate on views and may provide more
flexibility than views with respect to formatting and searching.
They are often also far more concise. Whereas each view above is
for a single relation (although this is not a necessary
distinction — see below), queries may involve multiple
relations. (The distinction between queries and views is
somewhat similar to interpreted versus compiled access, although
a query may in fact be compiled into extractions using particular

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.6

views.)

As an example, consider the primitive view v3 with vw3 =
[*,*,Kellyf%] on the relation rl above. Suppose it is desired to
obtain the set of those employees whose salary is at most $8000.
This could be conceived of as a set of primitive views v4 with
vw4 = {[*,8000,Kelly,%], [*,7999,Kelly,%], ...} on rl, spanning
the entire salary range up to $8000. However, from an efficiency
viewpoint, such a representation would be ridiculous. Thus some
notation such as vw4 = [*,<8000,Kelly,%] would seem appropriate,
if this set were to be represented directly as a nonprimitive
view; An alternative is the construction of a query.

Many query languages can be implemented on top of the
mechanisms provided here. For illustrative purposes, SEOUEL is
used here. (See Boyce and Chamberlin [74], and Chamberlin et al.
[75].) Relative to the running example of the relations rl, r2,
r3 given above, SEOUEL permits queries of varying complexity,
such as the following.

01: SELECT EMPLOYEE,SALARY
FROM EMPLOYMENT
WHERE DEPARTMENT * personnel;

Q2: SELECT EMPLOYEE,FLOOR
FROM EMPLOYMENT,LOCATIONS
WHERE EMPLOYMENT.DEPARTMENT = LOCATIONS.DEPARTMENT;

Similarly, the example of the view v4 above would be handled by a
query

03: SELECT EMPLOYEE,SALARY
FROM EMPLOYMENT
WHERE MANAGER = Kelly
AND SALARY <= 8000

In attempting to honor such a query, the data management
system must first check that the query is consistent with views
authorized to the user (see below) and then retrieve and format
the desired information. Using the query language, it is
possible to rename or permute the order of the domains, to
convert the units or representation of a domain, and to eliminate
domains altogether.

As an example of the honoring of a query, consider the query
02. Two views are required, such as va = [*#%*%**] on rl and vb
= [*,*] on r3. The views [* ,<8000, %,*] and [*,*], respectively,
would also suffice, although the query would then provide the
desired information only for those employees with salaries under
$8000.

If such a query were to be used repeatedly, it would be
desirable to state it directly or compile it into a sequence of

(APTER IV-3 DATA MANAGEMENT Page IV-3.7

:atements in the view language. However, the accesses defined
' each view must be reevaluated on each such reuse to ensure the
:traction of the most recent version of the data and to
larantee that any revoked access will be correctly revoked. In
le case of Q2, the query corresponds to the set "result" of
dered pairs [EMPLOYEE , FLOOR] given by

LET ta_set = extract (rdbfrl,va);
LET tb_set = extract (rdb,r3,vb);
FORALL ta INSET ta_set

FORALL tb INSET tb_set
IF ta[4] = tb[l] THEN [ta[l], tb[2]] INSET result;

Note that queries could be named and parameterized. For
:ample, Ql could be generalized for an arbitrary department
iept", and cited as Ql(dept) — with the given example being
. (personnel) .

If the data management system ensures consistency of all
*ta entered into it, then it is possible to eliminate mention of
)ecific relations as well as specific views from the queries,
»d thus leave the choice of view and relation up to the data
magement system. For example, consider the more abstract
:atement of 02, as follows.

02: SELECT EMPLOYEE, FLOOR

lis query could be interpreted as before. However, if a
redundant) fourth relation existed that included both EMPLOYEE
id FLOOR, then ambiguity would exist as to how to interpret the
aery. Nevertheless, the correct interpretation would be made,
> long as the data base was consistent.

3RICHMENTS OF THE VIEW LANGUAGE

Since a view is the unit of authorization for selective
rcess, it may be desirable to provide increased granularity of
rotection. One way to do this is to treat queries as complex
Lews and to protect them in a similar manner. Another (possibly
?uivalent) approach is to enrich the scope of the view
^presentations, as suggested above by v4. In addition to the
'" notation mentioned above and the related comparisons (e.g.,
>lff "> = ") , it would be desirable to write arbitrary expressions
i the values of the tuples in a relation, such as

vw[l] > "Q", assuming vw[l] is a character (ASCII collating
sequence implied),

vw[2] < vw[3] + vw[4], assuming vw[i] are integers,
vw[5] AND vw[6] = TRUE, assuming vw[i] boolean,
vw[7] = vw[8], assuming vw[i] of the same type,

id so on. These constraints are easily expressible in the query
anquaqe. However, there could be advantages to expressing them
splicitly as views.

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.8

Another enrichment would be to require the vectors defining
views to contain sets rather than values, and to redefine "%" and
"*" to be the null set and the universal set, respectively. Then
extraction can be specified on the basis of set inclusion. This
seems somewhat more natural than the formulation presented here
in terms of the extraction; however, it significantly complicates
the view definition language. (On the other hand, the view
definitions would no longer look like relations.)

It is straightforward to make each relation and each view
order-independent, e.g., by requiring ordered pairs of
domain-typed descriptors and corresponding values. Then tuples
would look like [dl:wl, d2:w2, . . .] . This tends to complicate
the calls given here, although it may be desirable for other
reasons. However, note that the query language is
order-independent.

Another possible enrichment entails the creation and naming
of multirelational views. However, with the notion of views used
here, these are unnecessary if multi-relational queries are
compiled into efficient sequences of requests on views.

Some of these elaborations of the view definition language
could be included in a production relational data management
system. For present purposes, however, they are beyond the scope
of the desired illustration. Therefore they are not included in
the specifications. In general, views are expected to be fairly
simple, indicating essentially just what domains are accessible,
and how they may be restricted. The more sophisticated
selections are expected to be handled by the query language,
although frequently used queries should presumably be explicitly
stated — either written in or compiled into the view language.

ACCESS AUTHORIZATION

As noted above, authorization to access values of certain
domains in a relation requires possession of a suitable view for
that relation. Moreover, it requires authorization for the
intended use of the information accessible via the given view.
In particular, specific authorization is recruired to read
(extract) or update a relation, as well as to perform other
operations. Such authorization is associated with each relation
and with views on relations. Authorization to access a relation
is undifferentiated by domains. That is, if a relation is
directly readable (or writable), each value of every tuple in
that relation is readable (or writable). In general, however,
each relation is directly accessible only to its creator. He may
in turn grant selective access to others by means of views.

Specific authorization is required (and may be granted) to
destroy a relation, to grant and revoke access to a relation with
specified authorization, and to read, insert, delete, and update

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.9

tuples within a relation. There is also control over whether a
user may create relations at all within a given data base*

Access to a view of a relation is controlled by explicit
authorization associated with that view. However, this access is
differentiated by domains, based on the occurrences of "%" and
11 *" within the view. For a view of a particular relation,
different domains of the relation may have different
accessibility. For example, the maintainer of a relation may
disperse different views to different users, each reflecting
access to different domains within the tuples of that relation.

As an example, possession of the view vl = [*,%,*,*] on rl
with read authorization permits read access to the entire
relation except for the salary field, which is invisible to this
view. If this view is the only one provided for this relation to
a particular user, he can never read any salary information,
either explicitly or implicitly. He may in turn construct from
vl on rl (and pass to other users) more constrained views — for
example, v5 - [Green,%,*,*] on rl, or v6 = [*,%,Jones,*] on rl —
but can never construct more powerful views than what he has
available. Note that the absence of read authorization prohibits
the use of any operation (at the view level and at the query
level) that requires the reading of the prohibited domain
information.

Permission to update the values of any tuple within a
relation requires a view with "*" in the positions to be
modified, as well as "update" authorization associated with that
view. A view with a particular value, e.g., v3 = [*,*,Kelly,%]
on rl with "update" authorization would permit updating of just
those tuples containing the cited value for the appropriate
domain. Similarly, authorization to insert, delete, and indeed
to destroy the relation itself requires a view with the
appropriate authorization.

Note that a user may have one view for a relation with some
particular authorization, as well as a different view for that
relation with a different authorization. An example for views on
rl woulgl be vl with read authorization and v6 with update
authorization.

A view, like a capability, never changes once it is created.
It may be given to other users and may be used to qenerate more
restricted views, However, a revocable view may be created for a
given view; the revocable view retains the usefulness of the
original view until it is revoked — at which time it loses all
usefulness.

HIERARCHICAL STRUCTURE OF A RELATIONAL DATA MANAGEMENT SYSTEM

A data management system can be structured around these
abstractions, for example with five conceptual levels built

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.10

successively upon the primitives of an operating system
interface. From the top level of the data management system
downward, these levels are as follows.

COMMANDS (including queries)
VIEWS
PRIMITIVE VIEWS
RELATIONS
RETRIEVAL
THE OPERATING SYSTEM (including virtual memory)

The functions of each of these levels should now be fairly
self-evident. The COMMANDS level of the data management system
accepts requests in some convenient query language to define
relations, to instantiate them, and to retrieve data according to
available views. It is capable of interpreting multirelation
requests. The VIEWS level maintains sets of primitive views for
the same relation. The PRIMITIVE VIEWS level interprets
primitive views, and enforces the desired access authorization.
(It could be absorbed into the VIEWS level.) The RELATIONS level
maintains data in the form of various relations. The RETRIEVAL
level aids in obtaining an efficient implementation of relations
in terms of the primitives of the operating system. It is
particularly concerned with the efficient management of virtual
memory. It could conceivably be absorbed into the RELATIONS
level, but is kept separate here so as to expose some issues that
may have major impact on system performance. Table IV-3.1
provides a summary of specific functions of each level.

The design is conceptually similar in concept to those of
Mylopoulos et al. [75], Schmid and Bernstein [75], and Astrahan
et al. [76].

THE DETAILED DESIGN

The specifications for the RELATIONS module and for the
PRIMITIVE VIEWS level are given in Appendix F. Tables IV-3.2 and
3 illustrate the functions "extract" and "and_views" of the
PRIMITIVE VIEWS module.

Various nonprimitive functions have been omitted that can
easily be implemented by using the available functions. For
example, in the module RELATIONS, it may be desired to add a new
domain (initially with null values for each tuple) to a given
relation and thence to update the data for that domain.
Similarly, operations for flagging ("marking") certain tuples or
linking tuples of different relations can be conceived; however,
they can be conceptually handled by including extra domains
within a relation, to hold the marking or linking data by means
of the functions specified here. Other special mechanisms may be
readily added if desired for efficiency or ease of use.

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.11

Similarly, set operations on relations are desirable, such
as set union, set intersection, set difference, Cartesian
product, and projection (i.e., domain elimination). However, in
a data base in which updates are made continually, the derivative
relations thus obtained must also be maintained dynamically.
Thus, it is natural to use views to perform such operations.

As noted above, for simplicity, the order of domains within
a relation and within a view is made visible at the interfaces to
the relations and views modules, but not at the auery level.
This is not essential. Note also that update by domain rather
than by index is in fact provided by the function
"update_tuple_value".

IMPLEMENTATION

The specifications are given in terms of abstract
designators for domains, schemas, relations, tuples, relational
data bases, and views. The access authorization inherent in data
bases, relations, and views could be implemented either in terms
of capabilities, or in terms of access control lists, or perhaps
even as a combination of both. The designators for domains,
schemas, and tuples can be represented simply as integers or
symbolic names, as desired.

Considerable attention is paid in the literature to whether
relational data base systems can be as efficient as conventional
systems. The latter typically have lower-level language
interfaces, and devote greater attention to accessing details —
although in many cases putting greater burdens on the users. The
consensus seems to be that, whereas there are certain
applications for which a relational interface is less efficient,
clever optimization (e.g., at the RETRIEVAL level and in the
choice of normal form) can make relational systems essentially as
efficient for a very large and realistic class of applications.
Besides, where efficiency is critical, a user may be permitted to
use primitives of the views and relations modules directly.
(Additional primitives desirable for increasing efficiency are
omitted here.)

Numerous other implementation issues also arise naturally in
this design. such as efficient handling of multi-relation
Queries, associative bypasses to deferred-update (e.g.,
batched-update) data bases. For an interesting discussion of
various implementation issues, see Codd [75].

EXTENSIONS FOR MULTILEVEL SECURITY

Multilevel security is supported by the secure object
manager described in Part IV-2. The design of the data
management system presented here may be readily extended to
support the desired multilevel security and integrity properties

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.12

via one of several approaches. One approach is to treat
relations and views as secure objects, with all values of all
domains within a given relation or view being at the same access
level (security and integrity levels combined). In this case,
the data management system can be implemented directly on top of
the secure object manager.

A second approach is to permit each domain in a relation to
have a different access level. In this case, efficiency reasons
make it undesirable to treat the values of each domain as a
separate secure object. However, it is straightforward to add
access levels to the access information already present on each
domain of each view.

A third approach is to permit each value of each domain
within each relation applied to a relation to have its own access
level.

In the first approach, each relation or view on a relation
has an access level. That is, the functions lfget_access (rdb,r) "
and "get_view_access(rdb,v)" are supplemented by two new
functions, "get_access_level(rdb,r)" and
"get_view^access_level(rdb,v)", that return the access level of
the relation and the access level of the view, respectively.

A relation or view has READ AUTHORIZATION if the access code
for read is present. A relation or view has WRITE AUTHORIZATION
if the access code for update, insert, delete, grant, invoke, or
destroy is present. For all read and write authorizations, the
desired multilevel access properties must be satisfied. That is,

* For read authorizations, the user's access level must be
at least that of the relation or view.

* For write authorizations, the user's access level must be
at most that of the relation or view.

* For read and write authorizations, the user's access level
must be exactly that of the relation or view.

A view for a particular relation must always have a suitable
access level compared to that of the relation or view for which
it is created. In particular, the functions

11 v = create_view(rdb,r ,bv) " and
11 v = create_restricted_yiew(rdb,vl ,vwl,bv) "

must ensure that this is the case. Thus,

* If v is a view with a read authorization for the
relation r (or for the view vl), then the access level
of v must be at least that of r (or vl).

HAPTER IV-3 DATA MANAGEMENT Page IV-3.13

* If v is a view with a write authorization for the
relation r (or for the view vl), then the access level
of v must be at most that of r (or vl).

Iso, by combination,

* If v is a view with a read and a write authorization
for the relation r (or for the view vl), then the
access level of v must be exactly that of r (or vl).

The second approach mentioned above is essentially the same,
xcept that the access level information returned by
get_access_level(rdb,r)" and "get_view_access_level(rdb,v)" is a
ector of access levels, with the ith element corresponding to
he access level for the ith domain in the relation or view,
espectively. In this way, the first approach is made a special
ase of the second, in which all elements of each vector are
dentical.

The third approach appears to be significantly more complex,
oth to specify and to implement. It also seems frought with
itfalls concerning inferential leakage of information. To a
irst approximation, the second approach seems to be the one
orth pursuing.

ONCLUSIONS

This chapter presents the outline of a simplified relational
ata management system. The simple design specified here is
ntended to illustrate the applicability of the methodology to
he design of secure applications subsystems. It is noted that
he machine-independence of the relational interfaces makes them
ppropriate for implementation on various systems. However, the
apability-based addressing underlying the operating system is
articularly appropriate here, even though capabilities do not
ppear at all in the query language. Thus PSOS would be an
ppropriate system upon which to implement such a data management
ystem.

CHAPTER IV-3 DATA MANAGEMENT Page IV-3.14

TABLE 4-3.1.
FUNCTIONS

SUMMARY OP THE LOWER-LEVEL DATA MANAGEMENT SYSTEM

PRIMITIVE VIEWS:
extract
create_view
destroy__view
grant_access
revoke_access
v_update
v_insert
v delete

(create_restricted_view)
(revoke_restricted_view)

RELATIONS:
create_data_base
create_domain
create_schema
create_relation
create_tuple
delete_tuple
update_tuple_value
destroy_relation
rename relation

TABLE 4-3.2. RESULT OF extract(rdb,v) ON TUPLE tw[i],
if selected; "-" indicates no selection; w1 "« w.

EXTRACT: I
twl[i]= I

twfi]

w

vw[i]
%

w

I %
I % w

w

w1

w1

I

- I

TABLE 4 - 3 . 3 . RESULT OF a n d _ y i e w s (v w [i] , v w l [i]) ; w1 ~» w,

ANDVIEWS: I
v w 2 [i] = I

vw[i]
w w"

I v w l [i] * I % * w w'
%
*
w w w

CHAPTER IV-4
MONITORING

This section considers the role of monitoring in PSOS.
Monitoring of security and monitoring of performance are
both discussed. They are interrelated by the need to
prevent denial of service. They also must fit into the
system in similar ways, without compromising security.
Thus, it is advantageous to treat both kinds of monitoring
within the same framework. However, primary emphasis is
placed on monitoring of security.

Monitoring in this system is similar in purpose to its
counterpart in typical operating systems, but is different
in its design and implementation. First, it is integrated
with the operating system design, but is logically external
to the operating system. Most of the functionality is
outside of what would normally be called the security
kernel. Security of the monitoring functions themselves is
thus obtained by the isolation of these functions in the
design and by the judicious administrative control of the
distribution of the capabilities for these functions.
(Capabilities distributed dynamically can be process-limited
so as to prevent their propagation.) Second, proofs of the
intrinsic security of the monitoring functions can be given
in exactly the same way as the proofs concerning the
security of the operating system functions or of other
applications functions. Third, the monitoring subsystem can
be fairly general. It is possible to monitor most
interesting events directly, without extensive changes to
the system design. Since monitoring is basically a policy
matter, it should not require continual changes to the
system mechanisms upon which that policy is implemented —
assuming the system is well designed. The basic mechanisms
are considered here.

Administrative functions such as metering and billing
of resource usage and the enforcement of quotas on resource
usage are also related to monitoring. Quotas are explicitly
a part of the design, appearing as exception conditions in
all relevant specifications. Similarly, the detection and
correction of errors for fault-tolerance are related.
Fault-tolerance, for example, requires monitoring of the
reliability of system behavior and invoking appropriate
recovery when faults are detected. Although the hardware
can be made sufficiently redundant to avoid critical errors
in addressing or in input-output channel isolation resulting
in security compromises, there is also a need for software
monitoring to ensure the consistency of critical software
tables. Thus, the view taken here is sufficiently general
to provide a unified view of all such monitoring activities,
but is specific enough to permit efficient and secure
handling of security monitor ing.

CHAPTER IV-4 MONITORING Page IV-4.2

1. CONSISTENCY WITH THE DESIGN

In most systems, monitoring is potentially detrimental
to system security. In other words, the ability to monitor
system behavior is potentially tantamount to the ability to
compromise the security of the system. An example is
provided by the visibility of page-fault activity that is
the basis for the now-classical TENEX password detection
scheme (no longer a problem in TENEX). In this scheme, it
was possible to do a simple exhaustion of each character
position, one at a time, gaining knowledge of the correct
character on the basis of whether the next character
(residing across a page boundary) caused a page fault. By
shifting the would-be password one character after each such
correctly determined character, the effort to obtain a
password became linear instead of exponential. To minimize
the deleterious effects of monitoring, it is desirable that
all primitive monitoring functions be integrated into the
system design and proofs, rather than be subsequently added
onto the system design without being subject to proof.

la. THE DESIRE FOR PASSIVE MONITORING

The use of all information resulting from monitoring is
controlled by the capability-based addressing of the system.
No user or process can have access to monitoring programs or
monitoring data except via authorization by monitoring
officers and their explicit delegates. All monitoring
functions that return values exist at a level of abstraction
appropriate to the functions being monitored — i.e., high
enough to avoid undesired release of low-level, nonvisible
V-function values. In other words, implementation detail is
hidden throughout and is compatible with the data
abstractions involved. Thus, handling of monitoring
information is completely consistent with the system design.
For example, a monitoring routine can never directly alter
lower-level V-functions consistent with all 0- and
OV-functions of the system. (This constraint is imposed by
the specification language.j

Furthermore, an even stronger constraint is imposed on
the monitoring functions. The term "NORMAL CONDITIONS"
indicates that no threat to security has yet been detected.
Under normal conditions, monitoring functions are
constrained not to alter any system V-functions, not even
indirectly via invoking 0- or OV-functions. This constraint
(called the PASSIVITY CONSTRAINT) thus ensures that
monitoring is PASSIVE UNDER NORMAL CONDITIONS, where
"PASSIVE" implies no changes to any visible V-functions of
the operating system. Note that the V-functions of the
monitoring subsystem that may change under normal conditions
are considered to be an extension of the system V-functions,
not a part of them. Some monitoring functions are able to

CHAPTER IV-4 MONITORING Page IV-4

append to existing data bases of the monitoring subsystem,
but are unable to overwrite the monitoring data or any other
data. An example of this is the case of maintaining an
audit trail. Other monitoring functions are essentially
derived V-functions and cannot write at all — as in the
case of a monitoring program that determines which users are
currently logged in and what they are doing. Thus, in these
two cases there is READ-AND-APPEND-ONLY monitoring and
READ-ONLY monitoring respectively, although both are passive
(with respect to the operating system data bases).

1b. ACTIVE MONITORING UNDER ABNORMAL CONDITIONS

When the monitoring subsystem detects a potential
security threat, it may wish to take some sort of action.
This action could result either in a message to a security
officer or in some immediate action, such as logging a user
off of the system automatically, destroying a process, or
locking up a critical segment. Thus, the monitoring system
may become ACTIVE UNDER ABNORMAL CONDITIONS. Although it
may still not directly modify any lower-level V-functions
directly, it may modify them indirectly through use of
existing 0- and OV-functions explicitly authorized to the
monitoring subsystem. A few special functions (such as
forced_logout) may be required that would be restricted to
use by the active'monitor only. In each such case, however,
appropriate capabilities must be explicitly made available.
For example, the program that creates processes must
transmit to the monitoring subsystem the capability for each
process, including "delete" ability.

1c. INTRINSICALLY SECURE MONITORING

It is vital to recognize that any desired active
monitoring function not already supported by the operating
system is a potential violation of security. Thus, active
monitoring should be eschewed, except where the absence of
undesirable side-effects can be demonstrated. If it is in
fact ensured that the monitoring subsystem obeys the desired
constraints of the operating system even under abnormal
conditions, it follows that the monitoring subsystem itself
does not violate the security of the system and that it can
cause no harmful side-effects or interaction with parts of
the operating system (assuming that the subsystem is used
nonmaliciously by the security officers).

In connection with the secure object manager (SOM), a
monitoring subsystem for usage of the SOM must reside at or
above the implementation level of the SOM. It should obey
the security model (e.g., the *-property and the simple
security condition). Thus, a monitor with top-secret
security classification is needed. There may also be
monitors with lower classification levels that are unable to

CHAPTER IV-4 MONITORING Page IV-4.4

get access to monitoring information of higher
classification levels.

2. APPROACHES TO MONITORING

There are two modes of monitoring/ system-wide
(GLOBAL), and per-user (LOCAL). Per-user monitoring that
includes monitoring of several related processes for a
single user is considered to be local.

There are essentially three approaches to monitoring,
involving embedding, synchronous interposition, and
asynchronous monitoring. These may be categorized as
follows.

(Al) Embedding of monitoring functions into the modules
being monitored (synchronously);

(A2) Synchronous interposition of monitoring functions
* on calling,
* on invocation of an exception condition, or
* on returning; and

(A3) Asynchronous use of monitoring data bases

The first of these approaches is internal to the functions
being monitored. An example is the login monitor that
records incorrect attempts to log in (perhaps recording
terminal id and source — if via a network). On a correct
login, or perhaps by external notification, the authorized
user should then be notified of all such attempts. The
second approach is external to these functions, but internal
to the calls. The third approach is external to the use of
the functions being monitored. The first two approaches are
synchronous to the use of the function, and the third is
asynchronous to the invocation of the function being
monitored. For each of these approaches (Ai) , i= 1, 2, 3,
both global monitoring (AiG) and local monitoring (AiL) are
generally meaningful. However, in case (AIG), there is a
danger of the embedded monitoring facilitating a Trojan
horse, unless the module is either proved (e.g., if it is
part of the operating system), or if it is forced to execute
as confined subsystem. In case (A2G), global monitoring
requires global data bases in which to store its results.
Such data bases must either be append-only (no read) , or
else must be such that no information leakage can occur.
These approaches are discussed next.

EMBEDDED MONITORING FUNCTIONS

The traditional approach to monitoring is to permit all
sorts of monitoring activities to execute along with the
operating system, in many cases introducing ad hoc hooks and

CHAPTER IV-4 MONITORING Page IV-4.5

patches into the operating system. In the past, few
controls have been placed on the relative power of
monitoring operations within a system. Since prevention of
Trojan horses is important here, such a situation would be
intolerable. However, since every monitoring function must
be formally specified, proofs of the design and of the
implementation will also include the embedded monitoring
functions. Note that any embedded function must obey the
constraints of the specification language with respect to
accessible variables, e.g., using V-functions only of the
module in which it is embedded.

Because of the notion of information hiding,
appropriate information must be available via visible
V-functions sufficient to support the desired monitoring.
Thus, embedded monitoring functions are essential in certain
cases, such as in performance monitoring of page-fault
activity that would otherwise be unavailable outside of the
PAGES module. However, such performance information may be
strongly in violation of security requirements unless its
propagation is stongly limited (e.g., by administrative
policy). Thus, potentially critical interactions between
performance monitoring and security monitoring must be
resolved by administrative controls that limit who can have
access to which pieces of monitoring information.

In many cases, embedded monitoring may entail nothing
more than appending monitoring information to a data base.
Note that this must be done with great care below the
SEGMENTS module because paging is not available. Moreover,
care must be exerted above that module because paging
activity due to excessive monitoring can lead to system
thrashing.

Security monitoring occurs essentially only on
information explicitly available to the monitor operating at
the user interface. The most general interface includes the
CAPABILITIES, SEGMENTS, EXTENDED-TYPES, DIRECTORIES,
USER-OBJECTS, and USER-PROCESSES modules. However,
subsystems may mask the interfaces to these modules and
provide other more restricted interfaces. They may also
provide their own higher-level monitoring primitives. The
CAPABILITIES module is extremely simple and probably needs
no monitoring directly (apart from some check to ensure that
the generator of unique identifiers is behaving properly).
Thus, most security monitoring is in terms of higher-level
concepts such as user objects (including directories) and
user processes. The only embedded security monitoring is
expected to involve the use of these objects. Performance
monitoring, on the other hand, could require some embedded
functions of lower levels (e.g., for page activity),
although a strict enforcement of security may severely limit
the availability of performance information.

CHAPTER IV-4 MONITORING Page IV-4.6

SYNCHRONOUS INTERPOSITION

Much local monitoring can be achieved by the
synchronous interposition of a monitoring program
immediately preceding or as a part of the execution of the
exception handler for any exception condition. Such a
monitoring program should have access to all accessible
variables of the process (including the calling arguments),
but to nothing else. For reader convenience, a list of
illustrative exception conditions that may result from
invocations of user-accessible operating system functions is
shown in Table 4-4.1.

As an example of an exception condition of Table 4-4.1,
excessive occurrences of the exception condition
"notability" could be of interest in monitoring attempts to
access objects in ways other than those that are authorized.
This can be used to monitor every unsuccessful attempted
access. It could also be used in connection with the login
procedure to monitor all unsuccessful attempts to log in.
Excessive occurrences of the exception conditions
"toojmany_objects", "too_many", and
"invalid_type_correspondence" may imply attempts to cause
denial of service. The exception conditions from the secure
object manager, or other user applications subsystem, could
be of similar value.

ASYNCHRONOUS MONITORING

Much of the actual monitoring in the system is expected
to be done asynchronously, even though the data bases used
for such monitoring may have been established by embedded
functions or by synchronous interposition. The major reason
for this is that the monitoring operations at any operating
system level or user level cannot write into data bases at
higher levels. Thus, higher-level monitoring functions must
interrogate the visible V-functions corresponding to the
desired monitoring information maintained by lower-levels.
Note that the "monitor" mechanism in the user interface may
be used to set up events whose occurrence will wake up
monitoring processes designed to act upon those events.

3. EXAMPLES OF SECURITY MONITORING

The specific monitoring functions depend somewhat on
the actual choices of the command level and on the
interfaces of the various user subsystems. Thus, the
monitoring of PSOS deals with the objects of the PSOS
interface, while the monitoring of the SCM deals with the
objects of that interface. For present purposes, three
generic monitoring commands are given here. These commands
first require defining the desired monitoring information
(to be appended to a segment maintained at some appropriate

CHAPTER IV-4 MONITORING Page IV-4.7

level) and then reading that information. Reading may be
accomplished synchronously or asynchronously with respect to
the occurrence of an event to be monitored. The generic
commands are:

record(events, options, synchmode)
wait_on(events)
observe(events)

In these functions, the argument "event" indicates a
set of circumstances to be monitored; "options" indicates
how this is to be done. The "wait_on" function implies
synchronous monitoring, with immediate notification. It is
assumed to be a passive monitoring operation, unless an
active monitoring protocol has been administratively
established. Note that the active protocol must execute at,
and be certified as a part of, the appropriate lower level
to avoid the situation in which an uncertified higher-level
program can affect the correctness of lower levels. The
"observe" function implies asynchronous monitoring and is
clearly passive in itself. It may, however, provoke active
monitoring, e.g«, by human intervention. A collection of
illustrative options for these commands is given in Table
4-4.2.

For example, using the event "procedure call login" and
the exception condition "notability" (or perhaps just the
exception condition "illegal_j?assword" of the login
procedure itself), it is possible to monitor all
unsuccessful login attempts due to the presentation of a. bad
password. (After several such attempts, various actions
could be taken.)

4. AUDITING

With any event that can be monitored, it is also
possible to leave an audit trail of the occurrences of any
such event. This merely requires the copying of the desired
information from the record made during monitoring into a
longer-lived auditing data base, by the generic command
"audit(events)". In this way, an audit trail can be
obtained of all unsuccessful logins, calls to certain
procedures, all operator requests, or all requests by system
administrators. All audit trail entries are automaticaly
identified by user or process identifier, along with other
relevant identifying information.

Extensive monitoring and auditing are expected to be a
routine part of system operation. For example, all data
leaving the system should be logged, including printed
documents, external tapes being written, and data being
transferred via a network interface to another system.
Similarly, all logins and logouts should be logged, perhaps
both internally and on a dedicated terminal.

CHAPTER IV-4 MONITORING Page IV-4.8

Extensive monitoring and auditing are expected to
accompany the secure document manager and the confined
subsystem manager. Every change of classification level
(perhaps implemented via a fresh login) should be recorded.
Upgradings or downgradings of classification level should
also be recorded, whether automatic or manual. Attempts to
read up or write down could also be audited. Finally, it
may be desirable to provide routinely an audit trail for
every access to a document above some classification level
such as secret, including the user identification and other
relevant information.

5. ADMINISTRATION OF THE SYSTEM

Various software modules for accounting, billing, and
enforcing quotas will be associated with the system. These
modules must obey the security of the system. Their usage
should also be monitored and probably audited. Thus, all of
the monitoring and auditing tools should also apply to the
system administration functions.

CHAPTER IV-4 MONITORING Page IV-4.9

TABLE 4-4.1. EXCEPTION CONDITIONS OF VISIBLE FUNCTIONS

EXCEPTION CONDITIONS MODULE

SECURE ENVIRONMENTSnot_security_officer
no_user
bad_level
bad_j?assword
bad_cat_set
exists_user

too_many_directories
no__directory
name_exists
too_many_entr ies
bad__access
no__entries
no_entry
too_many_sdirectories
initiated
not^initiated

too man^documents
ba9"_document access
bad_scapabilTty_wr ite

device_in_use(u)
too_many_commands(u)
unitialized_device(u)
too much_output(u)
no_Tnput(u)

no_user_process(up)
not_suspended(up)
too_many_processes()
no_procedure(u)
out_of_bounds(up,n)
bad_stack_offset(upfn)
bad_call(upfufo)
bad_return(up)

too_many_segments
too_many_directories
too_many_objects
no_create(cdt)
impl_obj s_present(u)

no^dir(u)
name_used(u,n)

(u)inax_num (u)
no_entry(ufn)
not_distinguished(u,n)

SECURE DIRECTORIES

SECURE DOCUMENTS

INPUT-OUTPUTf level 10

USER PROCESSES: level 9

USER OBJECTS: level 8

DIRECTORIES: level 7

CHAPTER IV-4 MONITORING Page IV-4.

invalid_type(u) EXTENDED-TYPES: level 6
invalid_object(u)
too_many_objects(utv)
invalid_type_correspondence(u,ut)

notability(sfi) SEGMENTS: level 5
no_seg(u)
bad_size(i)
not_storable(u,slv)
address_bounds(u,i)

badJLength(bv) CAPABILITIES: level 0

TABLE 4-4.1. EXCEPTION CONDITIONS OF VISIBLE FUNCTIONS, cont1

TABLE 4-4.2. EXAMPLES OF MONITORABLE EVENTS.

MONITOPABLE "events" I "options" (EXAMPLES)

login I who, time, terminal_id or type
logout I who
create_jprocess I
create_directory I subsets of directories
change__working_dir I who
procedure_calls I subsets of procedures
exception conditions I subsets of exceptions (see Table 4-4.

(Note: Essentially all monitoring may be local or global and
used in either passive or active monitoring, subject to the d
security requirements.)

CHAPTER IV-5
DISTRIBUTED SYSTEM AND NETWORK CONSIDERATIONS

BACKGROUND

The foregoing sections have dealt with environments within the scope
of a single operating system, either as a part of the operating
system or as applications using the operating system. This section
examines the implications of distributed realizations of PSOS and
its inclusion into a network.

Generally speaking, a multiprocessing system is a system in which
different processors communicate through a common memory. The
communication can be of high bandwidth (e.g., when the operating
system itself resides in memory shared by multiple processors). The
communication among processors sharing common memory may be
read-write, as in typical multiprocessors (e.g., Multics), or
read-only (e.g., as in SIFT). Processors are often essentially
interchangeable, although that is not essential.

When the interconnections are external to the system, it is
generally called a distributed system of processors, or a network of
systems. These two terms are used almost interchangeably, and
therefore no hard distinction is made here. However, the former
often implies somewhat tighter coupling of control or higher
bandwidth communication. Either may be homogeneous (i.e., a
distributed system of identical processing units, or a network of
suitably similar operating systems) or inhomogeneous.
Intercommunication may be via explicit signalling channels, shared
disk, message passing, or external communication lines.

It is highly desirable that the differences among the component
systems in a network be hidden from the network user interfaces,
wherever this is feasible from an efficiency point of view.
Furthermore, advantage should be taken of the similarities, wherever
possible. In most existing networks, detailed knowledge is required
of any system to be used, including its login protocols, command
language syntax, error messages, etc. The task of abstracting
essentially irrelevant detail out of the user interface is the task
of the operating system and of its language translators. However,
most operating systems are highly nonstandard, and enforce
constraints that make inter-system compatibility difficult. Thus it
is desired to have a network operating system interface that serves
the unifying purpose of an operating system interface. Although
this is reasonable in a homogeneous network, it presents many
problems in an arbitrary nonhomogeneous network.

Common to systems and networks are various characteristics for
evaluation. These include

Ease of use
Understandability
Reliability
Security

CHAPTER IV-5 DISTRIBUTED SYSTEM AND NETWORK CONSIDERATIONS Pag

Functionality
Performance (e.g., responsiveness, throughput, etc.)
Efficiency and overall cost effectiveness
Flexibility, including evolvability and expandability
Certifiability of critical properties

To varying degrees, these characteristics are vital to successful
operation. Unfortunately, some of these characteristics may be
mutually antagonistic, especially when interconnecting systems no
designed to accommodate networking. On the other hand, a reasona
balance can be achieved with careful design and implementation of
both the component systems and the network, particularly if an
overall unifying approach is followed, such as that of the SRI
methodology for design, implementation, and verification.

RESIDENCE OF DATA AND PROCEDURE

In both distributed systems and networks, it is important to
characterize precisely the flow of control and the flow of data,
general, it is possible (from a given processor in a distributed
system, or from a given system in a network) to request that an
operation that is defined locally or remotely be performed locall
or remotely on data that is defined locally or remotely with resu
being delivered locally or remotely. In fact, since the source o
the request can itself be either local or remote, there are six
location variables to be specified, as follows:

(1) OPERATION SOURCE (command initiation)
(2) OPERATION DEFINITION
(3) OPERATION SITE
(4) DATA DEFINITION
(5) DATA SITE
(6) DATA DESTINATION (command completion)

Each of these location variables may be local or remote. Thus th
are sixty-four pure cases, with multitudinous hybrid cases involv
operations and data distributed among multiple systems. Many of
64 pure cases are common (all are meaningful), covering the stand
notions of program sharing, data sharing, and load sharing in
distributed systems and in networks, as well as message
store-and-forward applications.

PROBLEMS OF HOMOGENEITY AND HETEROGENEITY

In designing and implementing networks, numerous difficulties hav
been encountered. Some of these are intrinsic even in completely
homogeneous structures, while others arise only because of the
differences among the individual components.

In order to improve our understanding of distributed systems and
networks, it thus seems desirable first to isolate those issues o
the homogeneous category — arising even in homogeneity — and th
to isolate those of the nonhomogeneous category. Issues arising

CHAPTER IV-5 DISTRIBUTED SYSTEM AND NETWORK CONSIDERATIONS Page !

homogeneous structures include addressing, protection, data
distribution, and intercommunication. Issues arising in
heterogeneous structures include data representations (formatting,
word-lengths, etc.) and language uniformity.

The resulting isolation of issues contributes significantly to
a unified and structured design view. This view in turn can greatl;
enhance the fulfillment of many of the characteristics noted above,
and would be widely applicable over a wide range of designs for
distributed systems and networks. For example, in this way we coul<
conceive of a virtual interface including a homogeneous structure,
and then a virtual interface including a heterogeneous structure of
homogeneous substructures. Thus the approach discussed here divide
issues of network design into two classes. When these issues are
suitably isolated and understood, each of these classes will
contribute important and useful results.

HOMOGENEOUS DISTRIBUTED SYSTEM REALIZATIONS OF PSOS

The notion of distributed realizations of PSOS are considered
next. The basic hierarchical design of PSOS (see Table 0.1) appear
to represent a simple general-purpose nondistributed computer
system. Nevertheless, PSOS lends itself readily to distributed
implementations precisely because of its hierarchically structured
collections of cleanly encapsulated type managers.

Table 4.5.1 illustrates how the PSOS system concept can lead t<
distributed versions of the system, first in the design, and then i]
the implementation. The table shows various levels at which
potential intercommunications and protocols may meaningfully exist,
and some of the forms the distribution can take. In general,
virtual distribution and explicit distribution may both be
accomplished by the introduction of new levels into the design.
Virtual distribution may also be accomplished invisibly within an
existing level of the design.

As noted above, each level in PSOS acts as the type manager fo
some object type. This conceptual distribution of type managers
suggests one mode of distributed implementation for PSOS, in which
the implementations of the various type managers can be distributed
separately. The complete encapsulation of typed objects for any
particular type also suggests a mode of distribution, in which a
type manager may itself have a distributed implementation,
coordinated by communication at that level or a lower level. These
two modes are discussed next, at each of several levels of interest
beginning at the lowest level.

The creation of capabilities is centralized conceptually in th
lowest level of the PSOS basic design. It is thus used by each of
the higher levels. Nevertheless, capability creation can be
distributed with the aid of a simple system convention (see below).

The interpretation of capabilities is intentionally already
distributed in the design. Each type manager is responsible for
interpreting the capabilities for all objects of its type. For

CHAPTER IV-5 DISTRIBUTED SYSTEM AND NETWORK CONSIDERATIONS Page

example, the segment manager — implemented largely in hardware --
knows about all of the segments in the system. It could, however,
be distributed so that each of several segment managers knows only
about its local segments — using either virtual distribution or
explicit distribution. On the other hand, a collection of
distributed PSOSes could be conceived in which the distribution is
done at the user object level and in which the segment level of eac
component system is left intact.

In any distributed version of PSOS, universal uniqueness of
capabilities must be maintained. In a homogeneous distributed
system of PSOS systems, global uniqueness is trivial to achieve, if
each unique identifier contains a SITE_UID and a LOCAL_UID. (The
LOCAL__UID can be implicit in locally interpretable capabilities, or
could~~be explicit.) Since SITE_UIDs can be fixed forever at site
creation, it is relatively easy to ensure that they are unique.
Thus it is easy to ensure that the distributed-system-wide
capabilities are unique. Consequently a central mechanism for
generating capabilities is not needed, and each component can do it
own creation. Recognition of foreign capabilities at this level is
thus easy, based on the SITE_UID. Note that in such a scheme the
SITE___UIDs must also be trusted and thus nonforgeable.

The most commonly executed instructions in any PSOS
implementation are expected to be those that read or write at some
location in a segment designated by a capability and an offset.
Virtual distribution can be achieved by having a distributed segmen
manager that knows about nonlocal segments and that can redirect th
access to the appropriate local segment manager (e.g., basing its
action solely on the SITE__UID) . Explicit redirection can also be
handled at the user object level by redirecting a symbolic but
globally meaningful segment name to the appropriate local segment
manager. (Permitting explicit requests for foreign segments at the
level of the segment manager is probably a bad idea, although it
could be implemented.)

Given a distributed segment manager, the abstract-type manager
could be extended to take into account multisegment object
implementations in which the various segments forming an abstract
object are themselves distributed. Note that this effect can also
be achieved by extensions to the user object level.

The distinction between the abstract type manager and the
particular type managers (e.g., the directory manager) is important
Each type manager may use virtual and/or explicit distribution of
its implementation, depending on its needs. Each type manager is
responsible for encapsulating the implementation of objects of its
type, although the abstract-type manager facilitates the isolation
of the implementation capabilities from the abstract object
capability.

The directory manager lends itself nicely to a virtual
directory system in which there is distributed implementation of
various directory structures. It would also be easy to provide
redundant (e.g., distributed) directory information. However,

CHAPTER IV-5 DISTRIBUTED SYSTEM AND NETWORK CONSIDERATIONS Page 5

explicit separate directory roots are better accomplished at the
user object manager level. At the user object manager level, both
virtual and explicit distribution of object creation and deletion is
possible, with the options of distributed directories and
distributed segment managers noted above.

At the user process level, both virtual interprocess
communication (across distributed system boundaries) and explicit
signalling are possible. At the user input-output level, both
virtual input-output and explicit foreign names are possible.
Similarly, both options exist for user environments (virtual name
distribution and explicit foreign names) and for the user request
interpreter (virtual command distribution or explicit remote
logins)•

HOMOGENEOUS NETWORKS OF PSOS

Consider a homogeneous network of PSOS systems. There are
various strategies for using the network. For example, there may be

* explicit logins, as in the current ARPANET practice, e.g.,
using TELNET and FILEjrRANSFERJPROTOCOL. Here detailed
knowledge is required of each system used, and long sequences
of commands must typically be executed, such as

(on sysl:)
ftp sys2
login username password account
send local__name - t o remote_jiame

get namel -from name2
logout
quit

* implicit logins, in which a virti
top of the explicit logins, hiding
inefficiency. That is, each time <

virtual interface is layered on
I them, but retaining the
a command is executed, a

sequence such as the above must be executed, with the
inefficiency of repeated logins.

* a virtual interface that supports efficient direct access.

There are at least three options with respect to naming of location
variables.

* an all-inclusive unified network-wide naming scheme in which
the network is able to keep track of all named objects and
their locations;

* an extended naming scheme that includes the system
identification as an explicit part of each location variable,
e.g.,

copy sys l>local__name sys2>remote_jiame
with system-maintained authorization information to provide the
default username, password, and account information;

CHAPTER IV-5 DISTRIBUTED SYSTEM AND NETWORK CONSIDERATIONS Page 6

* a natural naming scheme that presupposes an explicit or
default declaration for each location variable, e.g.f

attach data_destination sys2 [authorization]
copy old_name new_name

where the default is the local system.

If the attachment implies opening a connection (e.g., the login
within the ftp above), or if there is an explicit connection, then
sequences of network operations may be made efficient in a virtual
interface without requiring repeated logins. In this way, a program
or sequence of commands can execute in any of the above 64 cases
without modification, requiring only the appropriate attachments.

FAULT TOLERANCE AND RELIABILITY

Relatively little has been said in this report about the
attainment of high reliability and high availability in an
implementation of PSOS. Certain aspects result from good
engineering practice in the hardware. However, the design must
include appropriate hardware and software measures in order for a
reliable and fault-tolerant system to be attained. Fortunately the
hierarchical design of PSOS lends itself naturally to certain
enhancements that can aid in attaining these goals. Some of these
are particularly aided by a distributed realization, while others
fit in nicely with a network. A brief outline of some of these that
result from virtualization of reliability and fault-tolerance
mechanisms within the various abstract type managers is given in
Table 4.5.2.

CONCLUSIONS

Combinations of these options are possible within a particular
network. It is significant to note that the PSOS specifications
permit great flexibility as to how distributed implementations and
networking can be handled. There could be a simple
network-operating system interface layered on top, or there could be
different interfaces incorporated into various levels, as
appropriate. The latter approach is intuitively more appealing from
an efficiency point of view, while the former may be more attractive
with respect to ease of use. In any event, PSOS provides an
excellent basis for further research in distributed systems and
networks. In addition, the design of a network in which homogeneous
and nonhomogeneous aspects are cleanly decoupled at different
hierarchical levels would be a significant step toward a unified
approach to networks.

Table 4.5.1
Levels of Potential Intercommunications and Protocols

user request interpreter (virtual command distribution;
explicit remote logins)

user environments (virtual name distibution;
explicit foreign names)

user input-output (virtual i-o; foreign names)

user processes (virtual ipc; explicit signalling)

user objects (virtual; explicit remote creation)

directories (virtual directory system; explicit roots)

abstract types (virtual distributed implementation;
explicit distribution of multisegment objects)

segmentation (virtual and explicit distribution
based on SITE_UID)

primitive input/output (controller signalling)

capabilities (creation distributed; no dynamic protocol)

CHAPTER IV-5 DISTRIBUTED SYSTEM AND NETWORK CONSIDERATIONS Pac

Table 4.5.2

Some Examples of Virtualization of Fault-
Tolerance in a Hierarchical System Design.

Visible
functions

Hidden
functions

Fault-tolerance
DISTRIBUTION IS

mechanisms.
INDICATED IN

[Protocols]
UPPER CASE.

Applica-
tion

Virtual
network

Virtual
system

Virtual
process

Virtual
i-o

Virtual
file
system

Virtual
memory

Virtual
unipro-
cessing

Multipro-
cessing

Network,
nodes

Other
nodes

Other
subsystems

Process
scheduling

Asynchrony
Buffering

Inaccessible
directories,
archiving

Storage
addresses

Multipro-
gramming :
dispatching

Processor
coordination

Application rollback features and DATA
DISTRIBUTION (redundant or not).
[APPLICATION-TO-APPLICATION PROTOCOLS.]

DISTRIBUTED CONTROL OF COMMUNICATION,cod i n g ;
REDUNDANT DISTRIBUTION OF DATA AND PROGRAMS
[NODE-TO-NODE PROTOCOLS.]

Compartmentalization, data security, system
integr i ty ; COOPERATING SUBSYSTEMS
[SUBSYSTEM TO SUBSYSTEM PROTOCOLS.]

REPLICATED PROCESSES; INDEPENDENT ALTERNATE
PROCESSES; automatic rollback; process
directories.
[HIGH-LEVEL INTERPROCESS PROTOCOLS.]

DISTRIBUTED 1-0 ARCHITECTURES, REMOTE
CONTROLLERS; safe asynchrony; e x t e n s i v e
handshaking and c r o s s - c h e c k i n g .
[1-0 DEVICE PROTOCOLS.]

REPLICATION OF CRITICAL DATA, e . g . , on
on d i f f e r e n t media; FILE ARCHIVING AND
ROLLBACK/RETRIEVAL; c r o s s - c h e c k i n g .
[FILE TRANSFER PROTOCOLS.]

Redundant phys ica l address c a l c u l a t i o n s ;
REPLICATION OF CRITICAL DATA.
[INTERDEVICE PROTOCOLS.]

Reliable interrupt mechanisms;
process isolation (e.g., domains of
protection).
[LOW-LEVEL INTERPROCESS PROTOCOLS.]

Redundant interprocessor signail ing
[INTERPROCESSOR PROTOCOLS.]

Highest level is at the top of the table. Each level tends to
hide some internal functionality from lower levels. Each level
depends exclusively on lower levels for its implementation.

PART V
PERSPECTIVE

CHAPTER V-l
SUMMARY OP RECENT PROGRESS IN RELATED SRI WORK

1. METHODOLOGY — DESIGN, IMPLEMENTATION, AND VERIFICATION

Boyer and Moore have rigorously formalized a subset of the
version of HDM described in Robinson and Levitt [75]. Their
formalization (Boyer and Moore [78]) in their theory (see Boyer
and Moore [79]) describes what it means to prove an
implementation consistent with its specification. This
formalization excludes syntactic typing and explicit
quantification. Specifications are written in a LISP-like
internal form (VSSL). The implementation language formalized —
now called CIF (Common Internal Form) — is a simple sequential
language resembling assembly language. It provides the
conventional control primitives plus instructions for invoking
the operations (OV-functions) of the lower module and for causing
and fielding exceptions. An extension of the verification system
exists for proving that a program (in CIF) is consistent with its
specs (in VSSL) for upper and lower level modules and the mapping
functions that relate the states (V-functions) of the two levels
of specifications.

2. VERIFICATION CONDITION GENERATION

Boyer and Moore have recently developed a verification condition
generator (VCG) for most of ANSI FORTRAN, while Elspas has
developed one for most of Jovial J73. In addition there are VCGs
for CIF and for the versions of Modula (which is translated into
CIF) and Pascal that are compatible with HDM. (Modula and Pascal
are being used for KSOS and SIFT, respectively — see below.)

and
has now been
expected to be

Recently we have succeeded in developing a meta-VCG described in
Flon and Moriconi [79]. This program is provided with a grammar
for a language L and an axiomatic definition of L,
automatically produces a VCG for L. This meta-VCG
used to generate a VCG for the HDM Pascal, and is
used for other languages as well.

3. TECHNIQUES FOR HANDLING CONCURRENCY

The basic method for proving correctness properties of
nondistributed "shared-variable" concurrent programs was
introduced by Owicki and extended by Lamport. Their ideas have
been extended to apply to temporal logic specifications of
concurrent behavior. (See their contribution.) Recent work by

CHAPTER V-l SUMMARY OF RECENT RELATED SRI WORK Page 2

Lamport and Schwartz has shown that temporal logic can be used to
specify both safety (partial correctness) and liveness (total
correctness) properties of concurrent systems. They have applied
their methods to the specification of the Alternating Bit
Protocol•

We believe that it is now possible axiomatically to define a
simple concurrent programming language using shared variables,
and to use this definition to prove correctness properties of
programs written in this language.

4. THEOREM PROVERS

The Boyer-Moore Theorem Prover has evolved throughout the last
decade. It is well described in their book (Boyer and Moore
[79]), and is not discussed further here. Rob Shostak has been
studying the problem of developing efficient simplifiers for
decidable domains, e.g., Presburger arithmetic.

5. ENGINEERING OF A DEVELOPMENT AND VERIFICATION ENVIRONMENT

Developing and maintaining verified designs and programs,
especially large ones, is an evolutionary activity.
Specifications, programs, and proofs are gradually creationed and
frequently revised. Consequently developers and verifiers are
continually faced with the problem of determining the effects of
changes. Mark Moriconi (when at UTexas) developed a program
called the Designer/Verifier's Assistant that assists in
reasoning about the effects of changes. This is being extended
and incorporated into the HDM/Pascal verification system.

6. MODELS FOR SYSTEM REQUIREMENTS AND DESIGN PROOFS

With regard to applications of the theory and supporting tools,
we are currently involved in design proofs and code proofs of
three systems in addition to PSOS (all using HDM), namely the
fault-tolerant system SIFT (in Pascal), and the kernel-secure
UNIX-compatible KSOS systems (one by Ford, one by Honeywell, as
noted in the next section). Our goal in such applications is to
verify correctness of executable code with respect to a model of
system requi rements.

MODELS FOR SECURITY

Feiertag has developed a formal model for multilevel security
based on the model of Bell and LaPadula, but somewhat easier to
relate to SPECIAL and the theorem prover (Feiertag [80]). The
model states in effect that information can flow only to a higher
level in a lattice, never lower and never laterally. Feiertag
has also developed a set of tools for proving that a set of specs
written in SPECIAL is consistent with that formal model.
Formulas are generated whose proof is sufficent (and in most

cases necessary) for the model to be satisfied. Those formulas
that cannot be proved trivially are given to the Boyer-Moore
theorem prover. (The tools are powerful enough to handle the
entire KSOS kernel.)

MODELS FOR FAULT TOLERANCE

We have developed a Markov model that characterizes the
conditions under which a multicomputer (e.g., SIFT) that employs
(1) voting to detect and mask failures and (2) reconfiguration to
eliminate faulty computers. This model can be instantiated with
rates for anticipated component failures and rates for detection
and reconfiguration as the basis for analyzing the reliability
(e.g., mean time to failure) of the modeled system.

7. APPLICATIONS — PROVING SYSTEMS CONSISTENT WITH MODELS

KSOS (Ford's KSOS/11 and Honeywell's KSOS/6)

KSOS (Kernelized Secure Operating System) is an operating system
based on a security kernel responsible for the maintenance of a
multilevel security policy. Its user interface is precisely the
UNIX (TM) user interface (as long as a user lives within a single
security partition).

KSOS exists in two versions, KSOS-11 (designed and implemented on
a DEC 11/70 by Ford Aerospace) and KSOS-6 (designed and
implemented on a Honeywell Level 6 machine by Honeywell).

On top of this kernel [which in the Ford version runs in 11/70
kernel mode] are successively (1) a collection of trusted
processes that are permitted to violate the standard kernel user
security in carefully controlled ways [in supervisor mode], (2)
an emulator that creates the UNIX user interface [in supervisor
mode], and (3) any desired UNIX-based software (including the C
compiler) [in user mode].

Both designs are specified in SPECIAL and are being subjected to
the Feiertag Multilevel Security specification prover. KSOS-11
(McCauley et al. [79]) has had its entire kernel interface run
through the prover. The result of that effort is a large number
of successful proofs that the kernel functions successfully
satisfy the multilevel security model, together with some
nonproofs that indicate various flaws in the design. Some of
thake~flaws have been or are being fixed, while others will
remain in the kernel as KNOWN potential low-bandwidth signalling
paths. The trusted processes (which are privileged to violate
the security of the kernel) are also being subjected to the same
tools, although in this case the resulting nonproofs must be
analyzed carefuliv to see if they actually imply flaws — as many
of the potential Violations are actually masked by the trusted
processses.

CHAPTER V-l SUMMARY OF RECENT RELATED SRI WORK Page 4

A few illustrative code proofs that Modula code is consistent
with SPECIAL specifications have beejn carried out. Several of
the limitations of the existing axiomatization of HDM have been
surmounted [e.g., in dealing with sets, structures, existential
quantification], but the there is no intent of carrying out
extensive code proofs for KSOS.

The same approach is also being applied to KSOS-6, which is being
implemented in UCLA-Pascal.

SIFT — A Fault-Tolerant Avionics Computer

SIFT (Wensley et al. [78]) is an experimantal, fault-tolerant,
multi-processor computer intended to provide extremely reliable
flight control for advanced air transports. As the central
computer system in an aircraft, SIFT is intended to (1) handle
around twenty computational tasks associated with modern computer
aircraft and (2) to have a mean time to failure of at least a
million years in the presence of hardware faults (i.e., a failure
probability of 10 to the minus 10 per hour). The architecture of
SIFT is a collection of Bendix BDX930 minicomputers
interconnected by a bus system. SIFT is connected to the sensors
and actuators of an aircraft by standard 1553 channels. The fault
tolerance is implemented in software, hence the name SIFT
(Software Implemented Fault Tolerance).

Reliability is achieved by replication and voting. The outputs
of tasks (where a task is executed by 3 or more processors) are
voted on, and discrepencies are processed by a special executive
task. Repeated errors by a processor are treated as permanent
faults, and the processor deemed to be faulty is logically
disconnected.

The reliability analysis is accomplished relative to the Markov
model in which state transitions correspond to fault occurrence,
fault detection, and reconfiguration. The design proof for SIFT
demonstrates the consistency of the model and the specifications
of the SIFT operating system. Several models have been
interposed between the Markov model and the operating system
(specified in SPECIAL and implemented in Pascal) to decompose the
proof into manageable size subproofs.

TACEXEC

SRI has designed and specified a family of secure, real-time
systems, known as TACEXEC (Feiertag et al. [79b]). The needs of
real-time applications were of particular concern. The
hierarchical structure and the system design concept of TACEXEC
are such that specifications may be readily configured for any
desired member of the family. For example, a resulting system
may or may not implement multilevel security, as desired.
Similarly, it may or may not have a virtual memory. At present,

CHAPTER V-l SUMMARY OF RECENT RELATED SRI WORK Page 5

TACEXEC is a paper system only.

8. FUTURE PLANS

Work is also unfolding on a new specification language which is
expected to overcome many of the deficiencies of SPECIAL, to
incorporate some of the theoretical bases of algebraic
specification languages, and to include the temporal logic. It
is expected to be applicable to the specification and proof of
concurrent systems, e.g., distributed systems and network
protocols.

Further work is also anticipated on extending the development
environment to include incremental evolution, the meta-VCG
approach, and adding more features of more real programming
languages (possibly including an extended subset of Ada!).

CHAPTER V-2
CONCLUSIONS

INTRODUCTION

This report has presented the design of PSOS (a Provably
Secure Operating System), including formal specifications, and
has considered several representative application environments.
PSOS is a general-purpose computer system capable of meeting
advanced security requirements* Among such requirements
satisfied by the design are basic security, multilevel security,
confinement of storage channels, and provability of the security
of both the design and its implementations. The report also
gives statements of the desired security properties that the
specifications should meet, and outlines their proofs. In
addition, it gives illustrative implementations and proofs of
those implementations.

The conclusions given in this final chapter represent the
opinions of the authors, based on their experience and on their
work with PSOS. The main conclusion is that PSOS has the
potential of meeting advanced security requirements significantly
more dependably than any existing general-purpose system.
Further, it appears that the design can be efficiently
implemented. More generally, the methodology used here is
thought to have great potential for the development of future
computer systems. However, much work is still required to
demonstrate and evaluate the usefulness of the methodology and of
the design. The most effective demonstration would be the
development of a useful prototype implementation, along with
proofs of the correctness of that implementation. In addition,
other issues concerning PSOS, e.g., relating to fault-tolerance,
performance evaluation, and networking, are considered
potentially rich areas of future research.

1. EVALUATION OF PSOS, ITS POTENTIAL IMPACT, AND ITS RELATION
WITH OTHER WORK

This section considers an evaluation of the work described
here and its potential impact on the computer field. It also
provides some general comparisons of this work with related work.
It treats, in order, the methodology, the operating system, the
role of specifications, and the role of proving.

THE METHODOLOGY

In recent years, approaches to the development of computer
systems have achieved varying degrees of success. The approach
taken here attempts to unify the entire development process, to
decouple design and implementation into stages, to enforce
structure in the resulting system, to provide a formal
representation for the design and a formal basis for
implementation and proof. This approach is the only one known to
the authors that considers the entire development process in a
formal way and permits formal proofs at each stage in the

CHAPTER V-2 CONCLUSIONS Page 2

process. Even in the absence of proofs, this approach seems to
greatly increase the understandability and precision with which a
design can be expressed, and the reasonableness of such a design
with respect to stated desired properties of the system. The
methodology should have considerable utility in future large
system developments requiring some sort of extremely reliable
service (e.g., security, fault-tolerance). It should also have
considerable utility where proofs of design and implementation
properties are desired.

THE OPERATING SYSTEM

The design of PSOS is of interest for several reasons. PSOS
has been designed from the outset with advanced security
requirements in mind, in such a way that security properties of
the operating system and its applications could be formally
proved. It is not restricted to any particular security policy.
It is the first general-purpose capability-based operating system
that has been designed hierarchically throughout. It has been
designed together with various security-specific applications,
such as the secure object manager and the confined subsystem
manager. It has been designed using the staged formal design
methodology noted above. PSOS was the first such system to be
formally specified, although MITRE, Honeywell, and Ford have
subsequently specified security kernels. It has substantial
potential for realizing advanced security requirements expected
in the next decade.

The choice of tagged capabilities is seen to be very natural
in PSOS for achieving a highly secure system, particularly with
the use of limited-store capabilities to prevent the uncontrolled
passage of capabilities. First, the use of tagged capabilities
in the design permits a conceptually simple design and greatly
simplifies the proofs of security, both for design properties and
for implementation. In particular, the direct relationship
between designators in the specification language and
capabilities in the design is beneficial to the proofs. This
puts a precise boundary on the protection mechanism within the
operating system. Second, various problems customarily
associated with capability-based systems have been resolved. For
example, the use of limited-store capabilities introduced here
greatly extends the usefulness of capabilities, without
complicating their implementation. In so doing, it surmounts the
common worry that capabilities might be intrinsically
uncontrollable. Third, the complexity of implementation in
hardware and software is seen to be competitive with conventional
systems.

This report represents the design of a family of operating
systems together with several important applications, with
respect to both software and hardware. For example, the
specifications can be simplified in various ways to produce
subsets of PSOS as specified, e.g., omitting paging, or omitting
user processes. Similarly, the specifications can be implemented
in various ways, on widely differing hardware. Thus PSOS is not

CHAPTER V-2 CONCLUSIONS Page 3

limited to just a relatively small kernel of an operating system
or to any particular hardware. The system could be the basis for
a large general-purpose time-sharing and batch system, or for an
efficient distributed system or network of minicomputers. Thus
PSOS and the approach taken to develop it are relevant to a wide
class of applications. This approach is both more general and
more powerful than the approach of designing a kernel of an
operating system with highly constrained functionality. It
avoids the inordinate dependence on a higher-level policy
embedded within a low-level mechanism. Note that in this kernel
approach, it is usually necessary to have some security-critical
code in trusted processes outside of the kernel. In such cases,
the operation of the trusted processes must of course also be
secure. The unified approach taken here seems to be superior to
the kernel approach in the long run, leading to a general-purpose
operating system capable of efficiently supporting arbitary
security needs. (Note that PSOS itself can be viewed as a
hierarchical collection of kernels, with each type manager
encapsulating any policy that it may enforce.)

It should be noted that PSOS, or a subset of it, could serve
as a secure kernel for a commercial operating system such as
TOPS-20 or TENEX. The command set that can be built on top of
PSOS is essentially arbitrary.

The closest comparable operating system effort in existence
seems to be the Multics system. However, the existing Multics
system is unprovable by contemporary techniques. Further, it is
precisely describable only in terms of the particular
implementation that currently exists. The proposal (which was
not funded) to retrofit Multics with a multilevel security kernel
might have produced a provable kernel. However, that effort
would still have been basically a short-term solution to the
multilevel security problem, whereas PSOS is a general solution
to a much wider class of long-range problems.

SECURITY

Some of the desired security properties have been precisely
stated. For PSOS, these are the Alteration Principle and the
Detection Principle, which state that there is no unauthorized
modification or acquisition of information. (It remains to
axiomatize these properties sufficiently for purposes of
automatic proof.) For the multilevel security subsystem, the
desired property is that information cannot move downward to a
lower security level. Because of the use of SPECIAL for
specifications, the proofs of some of these properties become
largely syntactic checks of the specifications.

THE ROLE OF SPECIFICATIONS

Formal specifications by themselves provide a significant
advance in the state of the art of software system development.
They provide a concise and precise functional statement of
exactly what any external or internal interface is expected to

CHAPTER V-2 CONCLUSIONS Page 4

do. They enforce abstraction on the design that hides many
details typically visible to the interfaces of a system,
consequently simplifying implementation, debugging, system
integration, and maintenance. They greatly enhance the
understandability of a design. They also make possible the
intuitive verification of certain desired properties that the
design should satisfy. As noted in the previous paragraph, they
support proof of specification properties.

THE ROLE OF PROVING

The ability to prove properties about a design (as
represented by a set of specifications) before that design is
ever implemented should have a significant impact on the computer
industry. Nevertheless, no system can justifiably be thought to
be secure unless appropriate properties of its implementation can
also be proved. As seen from the KSOS work, proving that a
specified design satisfies certain critical design properties is
straightforward and largely automatable by tools. This will also
apply to the PSOS security properties. In addition, proving the
consistency of implementation with respect to the specifications
is now becoming a realistic task, especially with the emergence
of recent theoretical advances and advances in suitable on-line
tools. Furthermore, the potential role of a language like ILPL
is considerable, either directly or combined with a preprocessor
translating to a desired programming language. In the latter of
these approaches, programs could be written, proved, and
maintained in the simple proof-oriented language (ILPL), although
their documentation versions could be either in that language or
in a more widely used language (e.g., Euclid or Modula). An
attractive alternative is to take a modern language like Euclid
or Modula, to extend it slightly in order to accommodate the
methodology, and to write programs directly in that language.

2. RECOMMENDATIONS FOR FUTURE WORK

The work reported here demonstrates the feasibility of
designing an operating system to meet advanced security
requirements, and of proving properties about that design. It
also indicates that the system can be efficiently implemented on
hardware that seems realistically obtainable in the near future.
However, much work remains to achieve such an implementation and
to carry out the proofs of correctness of that implementation --
including proofs that the hardware and microcode correctly
implement the PSOS specifications (e.g., those for the capability
module).

Many topics related to PSOS and to the methodology seem
worthy of future study. A summary of the most important of these
topics is given in Table 5-2.1. These topics include issues
concerning the language used in writing programs to realize PSOS
and its applications, system issues involved in choosing
appropriate hardware and suitable software configurations for a
prototype system development, further tool development to support
proofs, and further proving efforts. In addition, there are

significant issues relating to fault-tolerance, networking, and
performance issues, and to the support of the development of
incrementally changing systems and families of related systems.
These additional issues are important for future enhancements of
PSOS, but are not essential to achieving an early and useful

._ t I f~ ¥-*/»•« A r tprototype of PSOS

Preliminary consideration has been given to finding hardware
suitable for the development of a prototype, and to selecting a
viable subset of PSOS as specified here. A summary of these
considerations is as follows.

HARDWARE (AND/OR MICROCODE) SHOULD SUPPORT (AT LEAST)
* tagging of capabilities in memory
* support for limited-store capabilities (

* some support for segment windows
* hardware memory mapping of segment addresses
* small associative memory for segment accesses
* support for the capability instructions
* general address registers and stack register
* level register
* interval timer and clock
* input-output using capabilities

SOFTWARE SHOULD SUPPORT (AT LEAST)
* one processor (although more are desirable)
* segmentation (but not necessarily paging)
* extended types
* directories
* input-output
* processes
* some representative applications

Various existing machines could be used for the development of a
prototype, with reasonable modification. Alterable microcode is
particularly helpful. The complete operating system as specified
is conservatively estimated to be at most 8,000 lines of source
code (e.g., ILPL). A useful subset of PSOS would be smaller.

Some further development of the methodology and supporting
tools has been carried on in other projects in which the authors
of this report and other members of the SRI Computer Science Lab
are also involved (see Chapter V-l). This includes work on the
development of families of related systems, with applications to
message processing and to hardware architecture; real-time
operating systems, including highly fault-tolerant systems;
proofs of small, special-purpose, secure operating systems or
kernels thereof; and on-line tools to support proofs — of both
design properties and implementation correctness. Much of this
work is expected to have a significant impact on further PSOS
developments.

CHAPTER V-2 CONCLUSIONS Page 6

TABLE 5-2.1
TOPICS FOR FUTURE STUDY RELATING TO PSOS AND THE METHODOLOGY

Research to further develop the methodology:
Formalization of more of HDM and of the SPECIAL semantics.
Development of a new specification language better suited to proof.
Further work on modeling of specification properties other than
multilevel security, e.g., PSOS capabilities.
Further axiomatization of Euclid/Modula/Ada in the Boyer-Moore theory.
Further work on proofs of implementation correctness:

Initialization correctness.
Process implementation and register set / is ibi l i ty details.
Parallelism issues to enhance proof below system process level.
Abstract machine interpreters. Compiler correctness.
Use of second-order logic in proof methods.

Further tool development to support specification proofs other
than for MLS, e.g., PSOS capability properties.

Further tool development to support implementation and i t s proofs:
ILPL preprocessors for various commonly used languages?
Extend the power of the META-VCG environment.
Mapping function expander.
Interactive "proof supervisor". Definition expander.
Logical simplifiers. Assertion generation for types.
Other on-line consistency checkers; proof checker.

Implementation language issues: Choice of implementation languages
contributing to provability and security, compatible with the
methodology; directly compilable into executable code; direct
use of EUCLID, Modula, Ada, GYPSY, e tc . , or use of ILPL with
a preprocessor to the desired source language.

Abstract implementations for the system design, and for the
Secure Object Manager,
Confined Environment Manager,
Secure Data Management System.

Realization of the system and applications on actual hardware:
Choice of software configuration (including support for
multiprocessing and for the general-purpose interface) with
implementation sufficiently efficient to provide credibility.
Choice of hardware, prototype implementation, and proofs as desired.

Mechanical proofs of specification properties for PSOS and applications.
Mechanical proofs of implementation for the above design portions.
Network and distributed system issues, and fault-tolerance issues:

Design of a fault-tolerant provably secure distributed PSOS.
Monitoring of security in such a system.
Design to avoid crash-induced security violations:

Detection of and tolerance to security-related faults.
Proofs of fault-isolation and recovery properties, a la SIFT.

Performance issues, including:
Extending the methodology to handle analysis of performance.
Simulation of portions of the software and/or hardware.
Measures (e.g. , information-theoretic) of security,
confinement, denial of service, fault-tolerance.

Extended uti l i ty issues, including portability of specs, support for
specifications and implementation of related families of systems
and their incremental evolution.

PART VI
REFERENCES

Ambler [76a] A. L. Ambler, D. I. Good and W. F. Burger, Report on
the language GYPSY, University of Texas at Austin, Department of
Computer Sciences (June 1976).

Ambler [76b] A. L. Ambler, D. I. Good, J. C. Browne,
W. F. Burger, R. M. Cohen, C. G. Hoch and R. E. Wells, GYPSY: A
language for specification and implementation of verifiable
programs, University of Texas at Austin, Department of Computer
Sciences (August 1976). (Published in the proceedings of a DoD
Conference on Verification and Validation held 3-5 August 1976,
Syracuse, N. Y.)

Astrahan et al. [76] M. M. Astrahan, M. W. Blasgen,
D. D. Chamberlin, K. P. Eswaren, J. N. Gray, P. P. Griffiths,
W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl,
G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson, IBM
Research Memo RJ 1738 (25356), 27 February 1976 (San Jose).

Bell and La Padula[74] D. E. Bell and L. J. La Padula, Secure
computer systems: Mathematical foundations and model, Vols. I,
II, III, MITRE Corp., Bedford, MA (November 1973 - June 1974).

Bisbey and Popek[74] R. L. Bisbey II and G. J. Popek,
Encapsulation: An approach to operating system security,
Proc. ACM Annual Conf., pp. 666- 675 (1974).

Boyce and Chamberlin [74] R. F. Boyce and D. D. Chamberlin, A
structured english query language, Proc. ACM SIGFIDET, Ann Arbor,
Michigan, May 1974.

Boyer and Moore [75] R. S. Boyer and J S. Moore, Proving theorems
about LISP functions, J^ ACM 22, no. 1, pp. 129-144 (January
1965).

Boyer and Moore [78] R. S. Boyer and J S. Moore, "A Formal
Semantics for the SRI Hierarchical Development Methodology", SRI
Computer Science Lab Report, (November 1978).

Boyer and Moore [79] R. S. Boyer and J S. Moore, "A Computational
Logic", Academic Press (1979).

Burke[74] E. L. Burke, Synthesis of a software security system,
Proc. ACM Annual Conf., pp. 648-50 (November 1974).

Dahl et al.[70] O.-J. Dahl, B. Myhrhaug, and K. Nygaard, The
SIMULA 67 common base language, Publication S-22, Norwegian
Computing Center, Oslo (1970).

Chamberlin et al. [75] D. D. Chamberlin, J. N. Gray, and
I. L. Traiger, Views, authorization, and locking in a relational
data base system, Proc. National Computing Conference,
pp. 425-430, 1975.

PART VI REFERENCES ' Page 2

Chamberlin [76] D. D. Chamberlin, Relational data-base management
systems, ACM Computing Surveys, vol. 8, no. 1, pp. 43-66,
March 1976.

Codd [70] E. F. Codd, A relational model of data for large shared
data banks, Comm. ACM, vol. 13, no. 6, pp. 377-387, June
1970.

Codd [75] E. F. Codd, Implementation of relational data base
management systems, Panel Discussion from the 1975 NCC, Bulletin
of ACM SIGMOD, vol. 7, nos. 3-4, pp. 3-22, 1975.

Dennis and Van Horn[66] J. B. Dennis, and E. C. Van Horn,
Programming semantics for multiprogrammed computations, Comm. ACM
!3, pp. 143-155 (March 1966).

Dijkstra [68] E. W. Dijkstra, Complexity controlled by
hierarchical ordering of function and variability, in Report on â
Conference ori Software Engineering (Randell and Naur, eds.) , NATO
(1968).

Dijkstra[72] E. W. Dijkstra, Notes on structured programming, in
Structured Programming (O.-J. Dahl, E. W. Dijkstra,
C. A. R. Hoare), Academic Press, Academic Press, N. Y., pp.1-82
(1972) .

Dijkstra [75] E. W. Dijkstra, Guarded commands, nondeterminacy,
and formal derivation of programs, Comm. ACM 18, pp. 453 - 457,
August 1975.

Fabry[74] R. S. Fabry, Capability-based addressing, Comm. ACM 17,
pp. 403-412 (July 1974) .

Feiertag [78] R. J. Feiertag, "A Formal Technique for Designing
Secure Communications Systems", National Telecommunications
Conference, Birmingham, AL (December 1978).

Feiertag et al. [79] R. Feiertag, K. Levitt, P. Melliar-Smith,
"Tactical Executive (TACEXEC): A Real-Time Secure Operating
System for Tactical Applications", Final Report, SRI Project 5545
(July 1979) .

Feiertag and Neumann [79] R.J. Feiertag and P.G. Neumann, "The
Foundations of a Provably Secure Operating System (PSOS)", NCC
'79, AFIPS Conf. Proc, New York, NY, pp. 329-334 (June 1979).

Feiertag [80] R. J. Feiertag, "A Technique for Proving
Specifications are Multilevel Secure", SRI Computer Science Lab
Report CSL-109, 10 January 1980.

Flon and Moriconi [79] L. Flon, M. S. Moriconi, "Automatic
Generation of Verification Condition Generators — An Experiment
in Metaprogramming" (November 1979).

Floyd[67] R. W. Floyd, Assigning meaning to programs,

PART VI REFERENCES Page 3

Mathematical Aspects ojf Computer Science, vol. 19
(J. T. Schwartz, ed.) , American Mathematical Society, Providence,
RI, pp. 19-32 (1968).

Goldberg[74] R. P. Goldberg, A survey of virtual machine
research, IEEE Computer, pp. 34-45 (June 1974).

Goldberg et al. [79] J. Goldberg, W. Kautz, L. Lamport,
P. Neumann, "Formal Techniques for Fault Tolerance in Distributed
Data Processing (DDP)fl, Final Report, SRI Project 7242 (April
1979).

Good[75] D. I. Good, Provable programming, Proceedings 1975
International Conference on Reliable Software, Los Angeles,
pp. 411-419 (April 1975).

Graham and Denning[72] G. S. Graham and P. J. Denning,
Protection—principles and practice, Proc* AFIPS SJCC 40,
pp. 417-429 (1972).

Griffiths and Wade [76] P. P. Griffiths and B. W. Wade, An
authorization mechanism for a relational data base system, IBM
Research Memo RJ 1721 (25154), 11 February 1976 (San Jose).

Guttag et al. [76] J. Guttag, E. Horowitz, and D. Musser. The
Design of Data Structure Specifications, Proc. Second
International Conference on Software Engineering, San Francisco,
California (13-15 October 1976).

Held et al. [75] G. Held, M. Stonebraker, and E. Wong, INGRES— A
relational data base system, loc. cit., pp. 409-416.

Hoare[72a] C. A. R. Hoare, Proof of correctness of data
representations, ACTA Informatica 1, pp. 271-281 (1972).

Hoare[72b] C. A. R. Hoare, Proof of a structured program: the
sieve of Eratosthenes, Computer Journal, 15, pp. 321-325,
(Nov. 1972).

Hoare and Wirth [73] C. A. R. Hoare and N. Wirth, An axiomatic
definition of the programming language PASCAL, Acta Informatica
,2, pp- 335-355 (1973) .

Ichbiah et al.[74] J. D. Ichbiah, J. P. Rissen, and
J. C. Heliard, The two-level approach to data independent
programming in the LIS system implementation language, in Machine
Oriented Higher Level Languages (v. d. Poel and Maarsen, eds.) ,
North-Holland Publishing Company, pp, 161-174 (1974).

Lamport [78a] L. Lamport, "The Specification and Proof of
Correctness of Interactive Programs", Proc. of the Int'l Conf. on
Mathematical Studies of Information Processing, Koyoto, Japan
(August 1978).

Lamport [78b] L. Lamport, "The Implementation of Reliable

PART VI REFERENCES Page 4

Distributed Multiprocess Systems", Computer Networks 2 (1978).

Lamport [79] L. Lamport, "A New Approach to Proving the
Correctness of Multiprocess Programs", ACM Trans, on
Progr. Lang, and Systems, Vol 1, No 1 (July 1979).

Lamport [??] L. Lamport, "How to Make a Multiprocessor Computer
Which Correctly Executes Multiprocess Programs", IEEE Trans, on
Computers (Jan? 1980).

Lampson[69] B. W. Lampson, Dynamic protection structures,
Proc. AFIPS 1969 FJCC 35, AFIPS Press, Montvale, N.J. pp. 27-38
(1969):

Lampson[73] B. W. Lampson, A note on the confinement problem,
Comm. ACM 16, pp. 613-614 (October 1973).

Levitt [78] K. N. Levitt, "A Panel Session—Formal methods in
programming—When will they be practical?", NCC 1978, AFIPS Press
Vol. 47 (1978).

Levitt et al. [80] K. Levitt, L. Robinson, B. Silverberg, The HDM
Handbook, Volume III: A Detailed Example in the Use of HDM", SRI
Project 4828 (June 1979)

Lipner[74] S. B. Lipner, A minicomputer security control system,
COMPCON. pp. 26-28 (1974).

Lipner [75] S. B. Lipner, A comment on the confinement problem,
Proc. Fifth Symposium on Operating Systems Principles, ACM SIGOPS
Review, vol. 9, no. 5, pp. 192 - 196 (19-21 November 1975).

Liskov and Zilles[74] B. Liskov and S. Zilles, Programming with
abstract data types, SIGPLAN Notices 9̂, 4, pp. 50-59 (April
1974).

Liskov and Zilles[75] B. Liskov and S. Zilles, Specification
techniques for data abstraction, IEEE Trans. Software
Engineering, SE-1, pp. 7-19 (March 1975).

McCarthy [60] J. McCarthy, Recursive functions of symbolic
expressions and their computation by machine, Comm. ACM 3_ (April
1960).

Millen [75] J. K. Millen, Security kernel validation in practice,
CACM vol. 19 no. 5, pp. 243-250 (May 1976).

Moore [76] J S. Moore, The INTERLISP virtual machine
specification, Technical Report, Computer Science Laboratory,
Xerox Palo Alto Research Center, Palo Alto, California (September
1976).

Moriconi [79a] M. S. Moriconi, "Interactive Design and
Verification: A Message Switching Network Example", Technical
Report CSL-90, SRI International, (June 1979). (To appear in

PART VI REFERENCES Page 5

Springer-Verlag Lecture Notes in Computer Science)

Moriconi [79b] M. S. Moriconi, "A Designer/Verifier's Assistant",
published in IEEE Transactions on Software Engineering, Vol SE-5,
No 4, pp 387-401 (July 1979).

Mylopoulos et al. [75] J. Mylopoulos, S. Schuster and
D. Tsichritzis, A multi-level relational system, loc. cit.,
pp. 403-408, 1975.

Neumann et al.[72] P. G. Neumann, J. Goldberg, K. Levitt, and
J. Wensley, A Study of Fault-Tolerance Computing, SRI (July
1973). AD 766 974.

Neumann et al.[74] P. G. Neumann, R. S. Fabry, K. N. Levitt,
L. Robinson, and J. H. Wensley, On the design of a provably
secure operating system, Proc. Workshop on Protection in
Operating Systems, IRIA, Rocquencourt, France, pp. 1161-175
(August 1974) .

Neumann [74] P* G. Neumann, Toward a methodology for designing
large systems and verifying their properties, 4. Jahrestagung,
Gesellschaft fur Informatik, Berlin, October 9-12, 1974, in
Lecture Notes in Computer Science, vol. 26, Springer Verlag,
Berlin, pp. 52-67 (1974).

Neumann et al. [75] P. G. Neumann, L. Robinson, K. N. Levitt,
R. S. Boyer, and A. R. Saxena, A provably secure operating
system, SRI Final Report, Project 2581 (13 June 1975).

Neumann et al. [76] P. G. Neumann, R. J. Feiertag, K. N. Levitt,
L. Robinson, Software development and proofs of multi-level
security, Second Int. Conf. on Software Engineering, San
Francisco CA (13-15 October 1976).

Neumann et al [77], P. G. Neumann, R. S. Boyer, R. J. Feiertag,
K. N. Levitt, L. Robinson, "A Provably Secure Operating System:
The System, Its Applications, and Proofs", SRI Final Report,
Project 4332 (11 February 1977).

Neumann [78] P* G. Neumann, "Computer System Security
Evaluation", NCC '78, AFIPS Conf. Proc, Anaheim, CA,
pp. 1087-1095 (June 1978).

Neumann [79] P. G. Neumann, "The Use of Formal Specifications in
the Design, Implementation and Verification of Large Computer
Systems", in Research Directions in Software Technology,
P. Wegner (Ed.) pp 190-198, MIT Press (1979).

Neumann et al [80], P. G. Neumann, R. S. Boyer, R. J. Feiertag,
K. N. Levitt, L. Robinson, "A Provably Secure Operating System:
The System, Its Applications, and Proofs — Second Edition", SRI
Computer Science Laboratory Report CSL-116 (7 May 1980).

Organick[72] E. I. Organick, The Multics system: an examination

PART VI REFERENCES Page 6

of its structure, MIT Press, Cambridge, MA (1972).

Parnas[72a] D. L. Parnas, A technique for software module
specification with examples, Comm. ACM 15, pp. 330-336 (May
1972). ~ ~

Parnas[72b] D. L. Parnas, On the criteria to be used in
decomposing systems into modules, Comm. ACM 15, pp. 1053-58
(December 1972).

Parnas[72c] D. L. Parnas, Some conclusions from an experiment in
software engineering techniques, Proc. FJCC, pp. 325-329 (1972).

Parnas[72d] D. L. Parnas, Response to detected errors in
well-structured programs, Technical Report, Department of
Computer Science, Carnegie-Mellon University (July 1972).

Parnas[74] D. L. Parnas, On a buzzword: hierarchical structure,
Proceedings IFIP 74, Stockholm, pp. 336-339 (August 1974).

Popek and Kline[74] G. J. Popek and C. Kline, The design of a
verified protection system, Proc. Workshop on Protection in
Operating Systems, IRIA, Rocquencourt, France, pp. 183-196
(August 1974).

Price[73] W. R. Price, Implications of a virtual memory mechanism
for implementing protection in a family of operating systems,
Ph.D. thesis, Carnegie-Mellon University, Department of Computer
Science (June 1973).

Redell and Fabry[74] D. D. Redell and R. S. Fabry, Selective
revocation of capabilities, Proc. Workshop on Protection in
Operating Systems, IRIA, Rocquencourt, France, pp. 197-209
(August 1974) .

Robinson and Levitt[75] L. Robinson and K. N. Levitt, Proof
techniques for hierarchically structured programs, SRI Report
(January 1975). To appear, Comm. ACM (March 1977).

Robinson et al. [75] L. Robinson, K. N. Levitt, P. G. Neumann,
and A. K. Saxena, On attaining reliable software for a secure
operating system, Proc. International Conf. on Reliable Software,
SIGPLAN Notices, vol. 10 no. 6, pp. 267-284 (June 1975). A
revised and extended version is being published under the title,
"A Formal Methodology for the Design of Operating System
Software," in R. T. Yeh (ed.), Current Trends in Programming
Methodology, vol. 1, Prentice-Hall (1977).

Robinson [76], L. Robinson, Specification techniques, Proc. 13th
Design Automation Conference, IEEE cat. 76-CH1098-3C, pp. 470 -
478 (28-30 June 1976).

Robinson [79] L. Robinson, "The HDM Handbook, Volume I: The
Foundations of HDM", SRI Project 4828 (June 1979).

PART VI REFERENCES Page 7

Roubine and Robinson[76] 0, Roubine and L. Robinson, SPECIAL
(SPECIfication and Assertion Language): reference manual, SRI
memo (August 1976).

Saltzer[74] J. H. Saltzer, Ongoing research and development or
information protection, ACM Operating Systems Review £, pp. 8-24
(July 1974).

Schmid and Bernstein [75] H. A. Schmid and P. A. Bernstein, A
multi-level architecture for relational data base systems,
University of Toronto memo (1975).

Schorre[74] D. V. Schorre, Example of a module specification and
implementation for automatic verification, Working Paper TM-5310,
System Development Corporation, Santa Monica, California (May
1974)

Schroeder[72] M. D. Schroeder, Cooperation of mutually suspicious
subsystems in a computer utility, Ph.D thesis, MIT (1972). MAC
TR-104.

Schroeder [75] M. D. Schroeder, Engineering a security kernel for
multics, Proc. Fifth Symposium on Operating Systems Principles,
ACM SIGOPS Review, vol. 9 no. 5, pp. 25-32 (19-21 November 1975).

Silverberg et al. [80] B. Silverberg, L. Robinson, K. Levitt,
"The HDM Handbook, Volume II: The Languages and Tools of HDM" ,
SRI Project 4828 (June 1979).

Spitzen et al. [76] J. M. Spitzen, K. N. Levitt, and
L. Robinson, An example of hierarchical design and proof,
Technical Report CSL-30, Computer Science Laboratory, Stanford
Research Institute, Menlo Park, California (also submitted for
publication) (March 1976).

Spitzen and Wegbreit[75] J. M. Spitzen and B. Wegbreit, The
verification and synthesis of data structures, ACTA Informatica,
A (1975)

van Wijngaarten et al.[69] A. V. van Wijngaarten et al., Report
on the algorithmic language Algol 68, Numerische Mathematik,
pp. 79-218 (1969).

Wegbreit et al.[74] B. Wegbreit et al., ECL programmer's manual,
Center for research in computing technology, Harvard University,
Cambridge, Mass. (1974).

Wensley et al. [76] J. H. Wensley, M. W. Green, K. N. Levitt,
R. E. Shostak, The Design, Analysis, and Verification of the SIFT
Fault-Tolerant System, Second Int. Conf. on Software Engineering,
San Francisco CA (13-15 October 1976).

Wensley et al. [78] J. H. Wensley, et al., "SIFT: Design and
Analysis of a Fault-Tolerant Computer for Aircraft Control", IEEE
Proceedings (October 1978).

Wirth and Hoare [66] N. Wirth and C. A* R. Hoare, A contribution
to the development of Algol, Comm. ACM j), 6, pp. 413-432 (June
1966) .

Wulf[74] W. A. Wulf, ALPHARD: Toward a language to support
structured programs, unpublished paper (April 1974).

Wulf et al.[74] W. A. Wulf et al., HYDRA: The kernel of a
multiprocessor operating system, Comm. ACM 17y pp. 337-345 (July
1974).

APPENDIX A SFECIAL PAGE A.2

APPENDIX A
SPECIAL — e SPECIfication and Assertion Language

ABSTRACT

SPECIAL is a specification language developed in conjunction
with the SRI methodology for design, implementation, and formal
verification of software systems. Some of the language features ere
specific to the SRI methodology. Others, such as its non-procedural
nature, concept of type, and aggregate data types, are generally
useful for software specification and verification. A description of
the features of the language is supplied, along with several examples
of its use. The language has proved useful in the design of several
large software systems, including an operating system. A discussion
of the issues in the design of SPECIAL is presented, followed by a
description of its features and some examples.

I. INTRODUCTION

SPECIAL (SPECIfication and Assertion Language) is a language for
specifying software systems and was created with the following goals
in mind:

* To specify systems in conjunction with e particular
methodology for design, implementation, and proof of computer
systems. The methodology, called the SRI Hierarchical Design
Methodology, is described elsewhere [6, 7].

* To be powerful enough to specify a large class of systems,
including systems containing both hardware and software, yet
restrictive enough to permit syntactic checks of well-
formedness of a specification.

* To be usable directly in the statement and formal proof of
properties of software systems.

* To foster abstraction through the hiding of unnecessary data
and algorithms of implementation.

* To specify systems to be implemented in any programming
language.

SPECIAL describe? properties of the data contained in a software
system, but not properties concerning the time reauired to perform ?n
operation.

In order to fulfill these goals, we have developed s language
with the following features:

* An inner level that allows the writing of non-procedural
expressions, using predicate calculus and set theory. This
level is called the assertion level of the language.
Expressions at the assertion level are used to describe the
behavior of software systems *nd their abstract properties in
a precise way.

* An outer level, called the specification level, that enables
the description of a software system as a hierarchy of
modules, in which each module is an abstract machine having a
state and operations to change the state. The behavior of a
module is described in terms of a formal specification,
containing functions (1) that c?n be called by programs using
the module. The state of a module is represented by the
outputs of its V-functions (functions that return values).
The state transformations of a module are called O-functions
(functions that perform operations) of the module. Each
transformation is described as a set of assertions relating
the values of V-functions before the function cell to the
values of V-functions after the call. OV-functions are
functions that both return values and transform the state. In
addition to module specifications, assertions written in
SPECIAL are used to specify relations among the states (V-
function values) at different levels of the hierarchy. These
relations are called mapping functions.

* Its own notion of type and facilities for describing abstract
data types.

* Aggregate objects such as sets, vectors, and structures.

* An expression-based macro facility.

* Features to facilitate the characterization of objects without
overconstraining them, and the detection of abnormal
condit ions.

Section II of this paper describes some background in the design
of SFECIAL. Section III describes the assertion level. Section IV
describes the specification level. Section V presents two complete
examples of module specifications.

II. BACKGROUND AND GENERAL CONCEPTS

A. Background

Formal specification languages of some kind have always been
necessary for research in programming language semantics and program
verification. Recently there has been some emphasis on specification

(1) The term "function" hereafter refers to a V-, 0-, or CV-
function of a module and not to a mathematical function.

APPENDIX A SPECIAL PAGE A.3 APPENDIX A SPEC I AT: PAGE A.4

languages themselves — as design tools for software systems. Parnas
[4, 5] first suggsted the idea of designing a software system as a
collection of formally specified modules. Parnas' language was more
precise than the informal methods of software specification that
preceded it, but its syntax and semantics were not formally stated.
Recently there have been several efforts [1, 2] aimed at specifying
the formal properties of data structures and other software systems.
Yet oher specification languages have emphasized the theory of
primitive recursive functions [10] and the formal English of a
mathematics textbook [11] for describing properties of software.

The SPI Hierarchical Design Methodology suggests a particular
(hierarchical) way of structuring these modules in order to improve
the reliability of large software systems by:

* Formally stating all design decisions.

* Allowing a complex design to be structured so that it can
easily be understood.

* Allowing proofs of formally stated properties of the design.

* Allowing a proof of syntactic consistency of the
implementation with the design specifications.

Several small proofs have been completed (e.g. [6, 9]), and proofs
for the design and implementation of a general-purpose operating
system whose major design goal is security [3, 7] , are now in
progress.

SPECIAL was developed through numerous attempts to write module
specifications in the style of Parnas ([4]) for many different kinds
of software systems. This paper presents a self-consistent and
working version of the language, although it may change as more
experience is gained.

In the description of SPECIAL that follows, some of the examples
have been over-simplified for ease of explanation. One feature of
SPECIAL that is not discussed deals with the handling of parallelism.
However, the full grammar appears in the Appendix, and a complete
description of the language appears in the SPECIAL Reference Manual
[8].

B. General Concepts

The problem of designing a good specification language is
immense. There ere perhaps as many factors as there are in designing
a good programming language, and there is not much experience of
others to draw on. The language should be able to characterize the
objects of the system it is specifying (e.g., the variables,
procedures, and data structures), and may employ objects of its own
to facilitate that description — thus the distinction between
specification objects and implementation objects. Specification

objects ere not computed, and may not be computable, in the
implementation. The language must be well suited to the particular
kinds of systems it hopes to specify (e.g., operating systems, data
base systems), and at the same time must adhere to the constraints of
the design methodology being used with the language. The language
must allow as much machine checking of specifications as possible,
and also be amenable to formal mathematical proof. The language must
be powerful, but without a proliferation of specialized syntactic
features to suit every possible need. The language must be
conceptually elegant, but must have features that make specifications
in the language easy to read and write.

We shall now outline some of the desirable properties of a
specification language, with the intent of later motivating each of
the features of SPECIAL according to the list.

* Mathematical basis; A specification language must have some
features that relate directly to the mathematics on which the
language is based. In the case of SPECIAL, the mathematics
involved is that of set theory and first-order logic
(including quantification), with integer and real arithmetic.
SPECIAL allows the writing of arbitrary expressions in these
domains. Other specification languages, (e.g., [1] and 110])
may not permit such generality.

* Powerful, concise expressions: A specification language should
be able to state, in a straightforward way, properties shared
by different objects. Sets, vectors, and structures (as well
as their constructors) are supported by SPECIAL in order to
assist the writing of these expressions.

* Well-suited t̂o the speci f ied systems: A specification language
should be able to accomodate in a natural way the properties
of the systems being specified. For example, in operating
systems, it is desirable to be able to look at a machine word
as being of different types under different circumstances.
The concept of type in SPECIAL provides this facility (united
types) without restricting the kind of machine checking that
can take place.

* Formal statements: It is desirable in a specification language
to be able to make as many formal statements about an object
as possible. In SPECIAL one statement that can always be made
about an object is its type (i.e., the set of values that it
can assume). The macro facility in SPECIAL provides a formal
substitution rule based on expressions. O-functions in
SPECIAL are defined completely by the specification: every V-
function value not mentioned as changing in the specification
must stay the same.

* Characterizing an object: Although the above goal (formal
statements) is sometimes desirable, some specification
language objects must not be overconstrained for fear of

APPENDIX A SPECIAL PAGE A.5 APPENDIX A SPECIAL PAGE A.6

dictating a particular implementation (e.g., a particular
ordering among elements of a vector). Thus, a specification
language should be able to introduce new objects without
uniquely defining them. The existential quantifier in SPECIAL
allows this characterization, and we have introduced two other
constraints (LET and SOME) that make this process more
straightforward and readable.

* Abstraction and protection; One original goal of SPECIAL was
to foster abstraction, i.e, the definition, maintenance, and
protection of objects of an abstract data type [2J. Some
specification languages (e.g., [1]) deal explicitly with the
objects themselves, and write axioms about functions defined
on the objects in order to specify the abstraction. In
SPECIAL, an object is defined by the V-function values that
take the name for the abstract object as an argument. The
operations on an abstract object are defined by the 0-
functions that take the name for the abstract object as an
argument. SPECIAL provides a facility for defining protected
names (called designators) for these abstract objects, such
that the creation and modification of these names is limited.

* Support a methodology: It is extremely useful to couple a
specification language with a methodology for designing,
structuring, and implementing systems. Not only does it allow
the language to help constrain the systems to conform to the
methodology (a desirable trait) , but it helps restrict the
possible alternatives in specification language design, which
are many. This has characterized the relationship of SPECIAL
to the SRI Hierarchical Design Methodology.

* Support readability and writability: In certain cases there is
no possible justification for the inclusion of a feature in a
specification language other than that the feature makes the
specifications either more readable or writable. These
features come under the general category of shorthands and
mnemonics. Excessive length has been a problem with this
specification technique in the past, so shorthands, such as
macros and global declarations, are welcome for that reason.
These shorthands also make it possible for the user to
establish mnemonic names for macros and variables that are
used globally. Concerning readability, other specification
methods may produce more concise specifications (e.g., [1]);
but we believe that they are more difficult to understand than
those written in SPECIAL, especially when trying to implement
a complex system based on them or when trying to ascertain
whether or not they conform to the intentions of the
specification writer.

* Machine checking; Besides the usual grammatical checking, itng;
bleis also desirable to be able to check properties of variables

such as their types, declarations, and bindings. Thus,
SPECIAL provides mechanisms for separating the declaration of

a variable from its use, and scope rules that limit naming
ambiguities (see Section IV-B). Machine checking of these
rules is easily done. In fact we have implemented several on-
line tools at SRI to perform syntactic checking. The use of
such tools has reduced the frequency of errors (including
logical errors) in writing specifications, by immediately
flagging syntactically meaningless statements.

* Verification: The specifications in SPECIAL have already been
used in proofs of correctness (by hand) of small hierarchical
systems [6,9]- A semi-automatic verification system based on
SPECIAL as en assertion language is currently in the planning
stages. All of the constructs at the assertion level of
SPECIAL can be formally stated. The constructs at the
specification level of SPECIAL are in the process of being
defined, as part of a formal description of the SRI
Hierarchical Design Methodology.

The next two sections should be read with the preceding criteria in
mind.

III. THE ASSERTION LEVEL

A. Introduction

Assertions (or predicates) in SPECIAL are used to describe
properties of systems, e.g., state transformations, error conditions,
invariant properties, mapping functions, and conditions that roust be
true at a particular time in a program's execution. This section
describes the objects of the assertion level, and then describes the
various operators of the language.

B. Expressions

The primitive construct at the assertion level is an expression,
defined as either 1) a constant or a variable, or 2) an ordered pair
consisting of an operator and a sequence of expressions denoting its
operands. A constant represents a single value, while a variable may
represent several different values. Operators may be predefined
(e.g., + or NOT) or user-defined (e.g., functions or macros defined
by the user). The constants, variables, and operators of SPECIAL are
called the objects of the language.

C. Type s

Every object and expression in SPECIAL has a type. A type can
be thought of as a set of values (or constants in the assertion
language). With the exception of UNDEFINED as explained below, the
set of constants in SPECIAL is partitioned. The type of a constant
is of course the partition to which it belongs. For a variable, its
type is the set of values that it can assume. For any operator, its
operands as well as its result have a type. Thus, the type of an
expression is either 1) if the expression is defined by a single

APPENDIX A SPECIAL. PAGE A.7 APPENDIX A SPECIAL PAGE

constant or variable, then the type of the constant or variable; or
2) if the expression is an operator and a sequence of operands, then
the type of the result of its operator. The types of all objects are
explicitly specified: the type of each constant and predefined
operator is specified as part of the semantics of SPECIAL; the type
of each variable and user-defined operator in a specification must be
declared by the writer of the specification.

In SPECIAL, we have incorporated a more flexible attitude in
restricting the types of the operands for the predefined operators,
than has been done in most strongly typed programming languages
(e.g., [12]). The only restrictions imposed are those that would
prevent the writing of meaningless expressions. We have also
supplied a mechanism in SPECIAL (the TYPECASE expression) for going
back and forth between related types, so the term "coercion" has no
meaning here.

The definition of a valid type in SPECIAL is related to the ways
of naming sets of values in the language. Types in SPECIAL are of
three varieties: primitive types, subtypes, and constructed types. A
primitive type is a set of values that is disjoint from every other
pr imitive type (with the exception of UNDEFINED) and such that no
value in the set is defined in terms of any other values. There are
three kinds of primitive types in SPECIAL:

* Those types whose values have well-known mathematical
properties, called predefined types. The predefined types in
SPECIAL are BOOLEAN, INTEGER, PEAL, and CHAR. The usual kinds
of operations apply to these types.

* Those types whose values are used to name objects of an
abstract data type in specifications for abstract machines.
These types are called designator types, and the objects of
such types are called designators. The only operations that
apply to designators are equality, inequality, and NEW(t),
which returns a never-used designator of type t.

* Those types whose values are a set of symbolic constants,
called scalar types. For example, the scalar type
"primary_color" could be the set {red, blue, yellow}. There
is no added generality in including scalar types in SPECIAL,
because the objects of a scalar type could always be
represented by the integers. However, scalar types provide a
useful mnemonic, and increase reliability by restricting the
operations that can be performed on objects of scalar type to
equality and inequality. Thus, for example, one could never
have the expression "red + blue - yellow", which could occur
in an integer representation.

The other types can be built using the primitive types as a basis. A
subtype is an arbitrary subset of a given type. An example of a
subtype is the even integers. A constructed type can be any one of
the following:

An aggregate type, i.e., a set or vector of objects of the
same type.

* ^ united type, which is the union of several types.

* A structured type, which is the cartesian product of types
For example, a complex number can be thought of as a struc
Of "REAL X REAL".

Aggregate and structured types provide complex specification lang
objects, whose use often shortens the specifications. The types
of which a subtype or constructed type is made are called the
constituent types of the subtype or constructed type. The operat
on a subtype are the same as the operations on its constituent ty
However, syntactic checking cannot be made to determine whether o
not an expression of a given type is a member of a subtype of tha
type. The operations defined for constructed types will be discu
in later subsections.

In addition to the standard constants of all types, there is
constant, UNDEFINED (or ?), that is a member of any type, but
different from any other constant of any type. The semantics of
constant.are that an object whose value is UNDEFINED really has n
value. For example, the value of a stack pointer of a stack that
does not exist would be UNDEFINED.

D. Declarations

A variable or user-defined operation must be declared, or
associated with a type, before using it. The syntax of a
declaration, written in extended BNF (2), is

<declaration> ::= <type specification> <symbol>
f1,1 <symbol>}*

A type specification can be either an symbol that refers to a typ
an explicit type specification. Here are some examples of explic
type specifications:

predefined:

scalar:

subtype:

INTEGER
BOOLEAN

{red, green, blue}

{INTEGER x I x MOD 2 = 0 }
(the set of all integers x such th

(2) In extended BNF, < — > means that the enclosed symbol is a
nonterminal of the grammar; [...] means that the enclosed
construct is optional; {...}* means that the enclosed constr
can occur 0 or more times, { }+ means 1 or more times, and
{... I ... I ...} means an alternative among the enclosed
constructs. All special characters that are terminal symbol
have been enclosed in single quotes (e.g., ' ; ') .

PPENDTX A SPECIAL PAGE A.9 APPENDIX A SPECIAL PAGE A.10

aggregate:

structured:

united:

x MOD 2 is 0, i.e., the set of ell
even integers)

SFT_OF INTEGER
VFCTCR__OF BOOLEAN

STRUCT(REAL realpart, imagpart)

ONE OF(INTEGER, VECTOR OF CHAP)
named type is a type that has been associated with a symbol for use
n later declarations, e.g.,

STRUCT(REAL realpart, imagpart): complex_number

hen a new complex number xx can be declared as follows:

complex_number xx

designator type must be a named type, so we write

stack^name: DESIGNATOR

o define the type, and later

stack__name st

o declare a variable of type "stsck__name" .

A function is declared with its function type, name, formal
rguments, and result (in the case of a V-function). For example, a
-function declaration looks like this,

VFUN read(segment s, INTEGER i) -> machine_word w

here "segment11 and ltmachine_wordft are named types, s and i are the
ormal arguments, and w is the result. An O-function declaration
ooks like this,

OFUN write(segment s, INTEGER i, machine_word w)

he exact role of type specifications and declarations in a module
pecification is discussed in Section IV.

E. Simple Operations on Predefined Types

These include the logical, arithmetic, and relational operators,
hich apply to objects of types INTEGER, BOOLEAN, and REAL. The
Dgical operators are AND, OR, NOT, and IMPLIES, all of which take
DOLEAN arguments and have BOOLEAN results. The basic arithmetic
perators are +, - (unary or binary), *, and /. They operate on
bjects of types INTEGER or REAL, hereafter called numbers. Objects
f both types can be arbitrarily intermixed as arguments to the
rithmetic operators, with the following constraints on the results:

a binary operator having two INTEGER or two REAL arguments has an
INTEGER or REAL result, respectively; and a binary operator having
mixed arguments has a REAL result. The relational operators are =,
"=, >, >=, <f and <~, take numbers as arguments, and have a BOOLEAN
result. For objects of type CHAR there are no distinguished
operators; perhaps at a later time it will be advisable to define, as
pert of SPECIAL, a lexical ordering function, or a function that maps
from a character to its integer code.

F. Operations on Sets, Vectors, and Structures

SPECIAL provides the conventional set operators — union,
intersection, set difference, elementhood, a subset predicate, and
the number of elements in a set — as UNION, INTER, DIFF, INSET,
SUBSET, and CARDINALITY, respectively. The arguments to UNION can be
sets of any type, and the type of the result is the set of the union
of the constituent types of the arguments. For example, if the types
of si and s2 are "SETJDF INTEGER" and nONE_OF(SETJDF BOOLEAN, SET_OF
CHAR)", respectively, then the type of "si UNION s2" is "ONE_OF(
SET_OF CNE_OF(INTEGER, BOOLEAN), SET_OF CNEJDF (INTEGER, CHAR))".
The arguments to INTER must be sets whose constituent types are not
disjoint, and the type of the result is the set of the intersection
of the constituent types of the arguments. For example, if the types
of si and s2 are "SET_OF ONE_OF (INTEGER, BOOLEAN)" and "ONE_OF(
SET_OF INTEGER, SET_OF CHAR)", respectively, then the type of "si
INTER s2" is "SET_OF INTEGER". The arguments to DIFF must both be
sets whose constituent types are not disjoint, and the result has the
type of the first argument. The second argument to INSET must be a
set, the first argument must be of a type that is not disjoint with
the constituent type of the second argument, and the result is
BOOLEAN. The arguments to SUBSET must be sets whose constituent
type* are not disjoint, and the result is BOOLEAN. CARDINALITY
allows any set as an argument and returns an INTEGER result.

Constructors are expressions that define sets, vectors, and
structures in terms of objects of their constituent types. An
extensional constructor (used for all of the above types) requires
the individual elements. An intensional constructor (used for sets
and vectors only) supplies a necessary and sufficient property of the
elements. The syntax of the extensional constructor for sets is as
follows,

U , 3, 5, 7}

The syntax of the intensional constructor for sets looks like this,

{INTEGER i I 0<i AND i<9 AND i MOD 2 = 1 }

This reads, "the set of all integers i such that 0 is less than i and
i is less than 9 and i MOD 2 is eaual to 1," or "the set of all odd
integers on the open interval (0, 9)." Only the intensional
constructor can be used to specify infinite sets, e.g.,

APPENDIX A SPECIAL PAGE A.11 APPENDIX A SPECIAL PAGE A.12

{INTEGER i I i MOD 2 = 1 }

There are only two operations on vectors: length and extraction,
rhe length operation is written LENGTH(v), where v is a vector
expression. The result is of type INTEGER. The extraction operation
is written v[i]r where v is an expression of type "VECTORJ3F x

M and i
is an expression of type INTEGER, whose value is between 1 and
LENGTH(v), The result is of type x. The extensional vector
constructor is written as follows,

VECTOR(1, 3, 5, 7)

The intensional constructor for the same vector as above is written

VECTOR(FOR i FROM 1 TO 4: 2*i - 1)

Structures have an extractor. If a structured type has the
following declaration,

STRUCT(REAL realpart, imagpart): complex_number,

then the two extractors for the type are "x .realpart11 and
"x.imagpart", where x is an object of type "complex_number." The
extensional constructor for an object of type Mcomplex_number" whose
realpart is 1 and whose imagpart is 2 would be "<1,2>".

G. Quantified Expressions and Characterization Expressions

The syntax of a quantified expression is as follows:

FORALL x q(x) : p(x)

{FORALL|EXISTS} <aualification> {';' <qualification>}* ':'
<expression>

where

<qualification> ::= <symbol>
({INSET <expression> 1 'I1 <expression>}}

The purpose of a qualification is to optionally restrict the domain
of a quantified expression. This adds no generality but improves
readability. For example, we write

FORALL x INSET s : p(x)

to mean, "for all x in set s, p(x) is TRUE." This is equivalent to

FORALL x : x INSET s => p(x)

We write

to mean

FORALL x : q(x) => p(x)

Sometimes it is desirable to write expressions in which an
object with a particular value or property is used repeatedly. To do
this we have devised a construct called a characterization
expression, in which a variable is first characterized and then used
in an expression containing it. One of these, the LET expression,
has a syntax as follows:

LET <qualificationl> {•;' <qualificationl>}* IN <expression>

where

<gualificationl> :: = <symbol>
{INSET <expression> I 'I' <expression>}

In the LET expression the domain restriction is mandatory. As an
example of a LET construct, suppose we have a table implemented as a
function t, of one integer argument, where the key is in an even
position and the value is stored in the subsequent position. We
would like to calculate "f(x) + g(x)", where x is the value
corresponding to the key y in the table. We write

LET x I EXISTS z

IN f(x) + g(x)

: z >« 0 AND z MOD 2
AND x = t(z+l)

0 AND t(z)

Note that the function t may not define a table (i.e., have more than
one z whose key is y). Then the semantics is for the expression to
be calculated for any x (and z) satisfying the predicate, but it is
not known which ahead of time. If there is no x (or z), then the
value of the expression is UNDEFINED.

A restricted form of the LET expression is called a SOME
expression, and is written

SOME <qualificationl>

An expression of the form

SOME x I p(x)

is equivalent to

LET x | p(x) IN x

APPENDIX A SPECIAL PAGE A.13 APPENDIX A SPECIAL PAGE A.14

The variables defined by quantified expressions and
characterization expressions are called indicial var iables.

H. Miscellaneous Operators

The remaining operations are the eouality and inequality
operations, the conditional expression, and the TYPECASE expression.
Equality and inequality have already been discussed for numbers. For
other types, eauality and ineouality will permit objects of any two
non-disjoint types as arguments.

The conditional expression is of the form

IF b THEN eJ ELSE e2

where b is a BOOLEAN expression. If expressions el and e2 have types
tl and t2, respectively, then the type of the result is the union of
tl and t2.

Suppose we have a variable x of type "ONE_OF(tl,t2)", and wish
the result of an expression to be f(x) if x is of type tl and g(x) if
x is of type t2. The most obvious solution to this problem is to
provide a function "TYPE(x)" in SPECIAL to return the type of a
variable x and write

IF TYPE(X) = tl THEN f(x) ELSE g(x)

This would work in some cases, but would still produce a type error
if f required an argument of type tl. The error occurs because
automatic type checking cannot identify (without semantic checks)
that the context of the call has restricted the type of x. Instead
we provide the TYPECASE expression, which provides a context in which
the automatic type checking facility can detect that an object of a
united type has a particular constituent type. To solve the above
problem, we write

TYPECASE x OF
tl : f(x);
t2 : g(x);

END

The type labels (tl and t2 in the example) must refer to disjoint
types, the type of the object variable (x in the example) must be the
union of all the type labels, and the type of the entire expression
is the union of the types of the component expressions (f(x) and g(x)
in the example).

IV. THE SPECIFICATION LEVEL

A. Introduction

In the discussion of the specification level, we discuss how to
configure expressions at the assertion level in order to write module

specifications. The specification of a module is divided into six
optional paragraphs so that its top-level structure looks like this:

MODULE <symbol>
TYPES

DECLARATIONS

PARAMETERS

DEFINITIONS

EXTERNALREFS

FUNCTIONS

END_MODULE
<symbol> is the name of the module. The TYPES paragraph contains the
declarations for all named types (including designators). The
DECLARATIONS paragraph contains all global declarations for variables
(see the next subsection). The PARAMETERS paragraph contains the
declarations for symbolic constants (called parameters) that become
bound at some time before the module is used and that cannot be
changed. Module parameters are used to characterize a resource
(e.g., the maximum size of a stack) or the values of initialization
that are not bound to particular constants. The DEFINITIONS
paragraph contains the definitions of macros whose scope is global to
the module. The EXTERNALREFS paragraph contains the declarations of
objects of other modules (i.e., designator types, functions with
their arguments and results, scalar types, and parameters) that are
referenced in the specification. The FUNCTIONS paragraph contains
the definitions (and declarations) for all the V-, 0-, and 0V-
functions of the module.

Following a discussion of some general issues (e.g., as binding,
declaration, scope rules, macros, and external references) is a
description of function definition.

B. Binding, Declaration, and Scope

Every name in SPECIAL must have a binding, or a place where it

APPFNDIX A SPECIAL PAGE A.15 APPENDIX A SPECIAL PAGE A

is associated with a particular object. The scope of a binding is
the text in a module specification over which that particular binding
is in force. The scope of a binding depends on the object being
bound, and may be any one of the following:

* The entire module, in the case of module parameters, function
names, names for types, global macros, and constants of scalar
types.

* The function definition or macro definition, in the case of
formal arguments and results.

* The expression over which the variable is an index, in the
case of indicial variables.

The binding of a name for which a binding is already in force is
not allowed, thus eliminating the overlapping of scopes for the same
name.

In most programming languages the declaration of a variable is
inseparable from its binding. In SPECIAL this is the case for names
of functions, macros, module parameters, and constants of scalar
types, which are all bound when they are declared. However, the
declaration of a variable in SPECIAL (i.e., an indicial variable or
formal argument or result) may be separated from its binding. This
is done to allow a single global declaration for a variable name (in
the DECLAPATIONS paragraph) to apply to many different bindings.
Bindings for indicial variables occur in the expressions in which
they are introduced; formal arguments and results are bound either in
the function definition, the external reference, or the mecro
definition. The motivation for global declarations is to save
writing on the part of the module specifier, and to enable the
establishment of mnemonics in the choice of names for globally
declared variables. For example, this allows conventions such as
having the variable i be of type INTEGER in all bindings. A local
declaration supersedes a global one.

C. Macros

The concept of macros in SPECIAL is different from that of most
programming languages. In programming languages a macro definition
is generally a string substitution rule of of some complexity. The
string to which the macro expands need not be a particular syntactic
entity. All variables in the macro definition that are not formal
arguments are bound the context of the expansion, so that the macro
writer must be careful about using macro definitions with unbound
variables. In SPECIAL, a macro definition has a body which is an
expression and thus has a type that must be the same as the declared
type of the macro definition. All macro references, which look
syntactically like function references (excepting macros without
arguments, which look like variables), have the same type as the
declared type of the macro definition. In addition a macro

definition may not use any names except its own formal arguments, <
the type names and parameters of the module. Thus, there is no
chance of misusing the macro because of the context in which it is
referenced.

Macros in SPECIAL are a formal shorthand (corresponding to th<
definitions used by a mathematician) and are not expanded as part <
the syntactic processing of a module specification. They would be
expanded only for proving properties based on the specification.

The syntax of a macro definition is as follows:

<definition> ::= <typespecification>
<symbol> [<forraalargs>] IS <expression>

where

<formalargs> ::= '(f <declaration> {';' <declaration>}* f)

Local macros are defined within the DEFINITIONS section of a
function definition, and have a scope of that function definition
only. Global macros are defined in the DEFINITIONS paragraph of t
entire module and have global scope.

Further work on macros might include the ability to define
macros with complex type checking rules (such as the set operation
of SPECIAL described above). This would probably require some
restricted notion of a type variable. Also interesting would be t
ability to define new types of specification language objects for
which functions are part of the definition (e.g., bags as defined
[6]) and intensional constructors for these types. This kind of
definitional facility would put the put the complete power of a
mathematician (to define new mathematical concepts) in the hands o
the specification writer, but might require so much mechanism as n<
to be worthwhile.

D. V-function Definition

V-functions have two purposes: to describe the state of the
module and to provide information about the module's state to
programs using the module. The current value of a V-function that
defines a module's state is not explicitly described as part of th
module specification. Instead, its current value is defined by
induction: its initial value appears in its specification, and
subseauent values are determined by the seauence of O-functions ca
up to that point (since each O-function call relates the values of
functions before the call to values of V-functions after the call)

A V-function may be either hidden or visible, and either
pr imitiye or der ived. A hidden V-function is one that cannot be
called by programs using the module, whereas a visible V-function
he. A derived V-function is one whose value is an expression deri

APPENDIX A SPECIAL PAGE A.17 APPENDIX A SPECIAL PAGE A.

from other V-functions of the module, whereas a primitive V-function
contains part of the state definition. The form of a V-function1s
definition depends on its status. The syntax for a V-function
definition is as follows:

VFUN <symbol> <formalargs> •->• <declaration> •;•
[DEFINITIONS {,definition> ';'}+]
[HIDDEN I EXCFPTIONS {<expression> ';'}+]
[{ INITIALLY I DERIVATION} <expression> f;']

The first line, the function header, declares the formal arguments
and result of the V-function. The second line declares any macros
local to the function. The third line establishes whether the
function is hidden or visible. If the function is hidden, the
keyword "HIDDEN" appears: If the function is visible, the third line
contains the keyword EXCEPTIONS followed by a list of exception
conditions for the function. An exception condition is a BOOLEAN
expression which, if TRUE for a given call to the function, means
that the function is not executed (thus no value is returned in the
case of a V-function). Instead, control is returned to the calling
program with a notification of the exception that was detected. The
exceptions have an ordering, meaning that a single exception is be
signalled for a given function call, even if more than one exception
condition is satisfied. If the EXCEPTIONS section of a function
locks like this:

EXCEPTIONS el; e2; ... ; en;

then its semantics are

IF el THEN ERRORCODE = 1
ELSE IF e2 THEN ERRORCODE = 2

ELSE IF en THEN ERRORCODE = n
ELSE ERROPCODE = UNDEFINED

where ERRORCODE is an abstract variable used in passing the identity
of the exception beck to the calling program. Exception conditions
are the same for 0- and OV-functions, described in the next
subsection.

If the V-function is primitive, the fourth line has the word
INITIALLY followed by an assertion characterizing the function's
initial value. If the V-function is derived, the fourth line has the
word DERIVATION followed by an expression (of the same type as the V-
function's result) that denotes its initial value.

As an example of V-function definition, consider a stack of
integers maintained by a module. The state information for the
module is contained in the V-functions "stack" and "ptr", signifying
the elements of the stack and the stack pointer, respectively. Their
definitions are as follows:

VFUN ptr() -> INTEGER i;
INITIALLY i = 0;

VFUN stack(INTEGER i) -> INTEGER j ;
HIDDEN;
INITIALLY j = ?;

Note that Mptr" has no exceptions, that "stack* is hidden (to prevent
programs from examining intermediate values of the stack), and that
the initial values of "ptr" and "stack" are 0 and UNDEFINED (or ?),
respectively. The value of "ptr" signifies the number of values on
the stack (also the number of integers i for which "stack(i)" is
defined). We could also define a derived V-function, "top", that
returns the value of the top of the stack, as follows:

VFUN top() -> INTEGER j;
EXCEPTIONS ptr() = 0;
DERIVATION stack(ptr());

Note that "ptr" could also have been written as a derived V-function
whose derivation would be as follows,

CARDINALITY ({INTEGER k | stack (k) **=?})

This would do away with redundancy at the expense of some clarity.
Note also that asking for the top of an empty stack is meaningless,
so an exception condition prevents such a call.

E. C- and OV-function Definition

The syntax of an O-function definition is as follows:

CFUN <symbol> <formalargs> •;•
[DEFINITIONS { <definition> •;• }+]
[EXCFPTIONS { <expression> ';' }+]
[EFFECTS { <expression> ';' }+]

The syntax of an OV-function definition differs only in the header
(the first line), which is

OVFUN <symbol> <formalargs> •->• <declaration> •;•

The EFFECTS section describes a state transformation by using
assertions to relate values of V-functions before the call to values
of V-functions after the call. Values of V-functions before and
after the call are distinguished by preceding all references to
values of V-functions after the call by a single quote (f). For
example, to indicate that the value of a V-function f() is
incremented by an 0- or OV-function call, we write

ff() = f() + 1

PPENDIX A SPECIAL PAGE A.19 APPENDIX A SPECIAL PAGE A.20

ote that an effect is an assertion rather than an assignment, for we
an write

hich do not uniauely redefine the values of f() and g(). Note that
11 V-function values in the EFFECTS of an C-function that do not
ppear with a single quote are left unchanged by the C-function.

0- and OV-functions of other modules can be referenced by means
f the EFFECTS_OF construct. If "ol(args)w is a reference to an 0-
unction of another module, then the effect MEFFECTS_OF ol(args)H

ould expand all of the effects of "ol(args)" in the place where it
as written. OV-functions may also be referenced in this way. The
xpression "x = EFFECTS_OF ovl(args)", where "ovl(args)" is a
eference to an OV-function of another module, means that, Mx is
qual to the result of ovl (args) and all effects of ovl(args) are
RUE."

An example of an 0-function definition is the function "push",
o be used with the V-functions of the stack, described above:

OFUN push(INTEGER j);
EXCEPTIONS ptr() >= maxsize;
EFFECTS 'stack('ptr()) = j;

•ptr() » ptr() + 1;

maxsize" is a module parameter of type INTEGER that designates the
aximum permitted stack size.

An example of an OV-function definition is provided by "pop",
hich pops the stack and returns the popped value, as follows:

OVFUN pop() -> INTEGER j;
EXCEPTIONS ptr() = 0;
EFFECTS j = top();

•ptr() « ptr() - 1;
'stacMptr()) = ?;

ote that the value of j, the result of "pop", is also specified as
art of the EFFECTS.

. EXAMPLES

Table I displays the specification of a module that maintains a
et of stacks as an abstract data type. Its specification differs
lightly from the examples presented above, having the following
nteresting properties:

* A module parameter, "roaxstacks", to limit the number of stacks
that can exist.

* Designators of type "stack_name", to name the individual
stacks, and an extra argument in each function for the stack
designator.

* The functions "create_stack" and "delete_stack".

* Two global macros: "nstacks", the number of stacks that
currently exist (the existence predicate for stacks is wptr(s)
~= ?"); and "empty(s)", the empty predicate for stack s.
These are both examples of mnemonics. Using mnemonics for
exception conditions has been used frequently for writing
larger specifications.

Note the use of global declarations: s always refers to a stack;
i to a pointer value; and j to a stack value. Note also that
comments, denoted by $(...)", can be inserted anywhere in a
specification.

Table II is a specification for a telephone system of a single
area code. This is not a software system; it is implemented in
hardware and its O-functions correspond to physical acts performed by
people. However, the telephone system is a good example because
everyone understands it, as opposed to most complex software systems.
The system contains the following general design decisions:

* Telephones are named by a designator type (phone_id) rather
than a telephone number. This corresponds to real life, in
which a telephone is physically protected, i.e., knowing the
number of a phone is not sufficient to be able to pick up that
phone and dial from it.

* The mapping between phone numbers and connected phones is an
invertible function. This is not true in a phone system with
more than one area code, because a single phone number may
identify different phones in different areas and because a
phone is known by a different number when dialed from within
the area than when dialed from outside the area.

* The state of a phone is indicated by the scalar type
"phone_state". Based on the state of the phone, different
things happen when an 0-function is called. These states can
later be mapped to particular switch positions in the actual
phone circuits.

* The phenomenon that a connection can be terminated only by the
party that initiated the call. Thus if the called party hangs
up, the connection still exists, and the hung up phone hss
state "hung_up_but connected".

There are also several features of SPECIAL whose use is worth
pointing out:

* Use of a subtype to characterize a digit. Note that in this
case there is no chance of misusing the subtype, since digits
are only used with the equality operator.

* Use of vectors to represent phone numbers. The intensional
vector constructor is used in the O-function "dial11.

* Use of the SOME expression in the O-function "pick_up_phone".
In this case there is only one value of "phonel" satisfying
the given assertion.

MODULE stacks

TYPES

stack_name: DESIGNATOR;

DECLARATIONS

INTEGER i, j ;
stack name s;

The reader can see other ways of writing module specifications
with the same properties as those above. The style to be chosen in
writing specifications depends on one's desire for conciseness,
readability, or even provability of the specifications. It is also
possible to see that specifications may differ considerably from
their implementations. In fact, the difference between specification
and implementation is often so great that specifications cannot be
construed in any way as a guide to the programmer on how to write an
efficient implementation. Such information must often be supplied
separately from the module specification.

VI. CONCLUSIONS

SPECIAL has been shown extremely useful for designing certain
classes of systems, especially operating systems. It enables some
effects of crucial design decisions to be examined at an early stage
in the design process, resulting in "tight" designs for systems
specified in this way. Its usefulness for proof is currently being
examined. However, SPECIAL is only one of several techniques
currently in use for specifying software systems. Cur experience has
shown that specifications written in SPECIAL tend to be lengthy,
because

* SPECIAL tries to be as general as possible, and encourages the
writing of sufficient (as well as necessary) properties of
software systems.

* SPECIAL tries to be both easy to read and easy to use.

More work must be done concerning tradeoffs and criteria for
design of specification languages before the ultimate value of
SPECIAL can be determined.

Table I

PARAMETERS

INTEGER maxsize $(maximum size of a given stack) ,
maxstacks $(maximum number of stacks allowed)

DEFINITIONS

INTEGER nstacks IS CARDINALITY({ stack_name s | ptr(s)

BOOLEAN empty(stack_name s) IS ptr(s) = 0;

FUNCTIONS

VFUN ptr(s) -> i;
INITIALLY

i = ?;

VFUN stack(s; i) -> j;
HIDDEN;
INITIALLY

j - ?;

VFUN top(s) -> j;
EXCEPTIONS

ptr(s) = ?;
empty(s);

DERIVATION
stack(s, ptr(s));

OVFUN create_st3Ck() -> s;
EXCEPTIONS

nstacks >= maxstacks;
EFFECTS

s = NEW(stack_name);
'ptr(s) = 0;

OFUN delete_stack(s);

APPENDIX A SPECIAL PAGE A.23 APPENDIX A SPECIAL PAGE A.24

EXCEPTIONS
ptr(s) = ?;

EFFECTS
'ptr(s) = ?;
FORALL i: 'stack(s, i) =

OFUN push(s; j) ;
EXCEPTIONS

ptr(s) = ?;
ptr(s) >- maxsize;

EFFECTS
'stack(s, 'ptr(s)) = j;
•ptr(s) = ptr(s) + 1;

OVFUN pop(s) -> j;
EXCEPTIONS

ptr(s) = ?;
empty(s) ;

EFFECTS
j = top(s) ;
'ptr(s) = ptr(s) - 1;
•stack(sf ptr(s)) * ?;

END MODULE

Table II

MODULE telephone_system

TYPES

phone_id: DESIGNATOR;
phone_state:
{ hung-up, hung_up_but_connected, dial_tonef dialing,
dialed_unconnected_number, ringing_another_phone, being_rung,
connected, busy } ;

d i g i t : { INTEGER i I 0 <= i AND i <= 9 } ;
phone_number_id: VECTOROF d i g i t ;

DECLARATIONS

BOOLEAN b;
phone_id phone, phonel;
digit d;

phone_number_id phone_number;
phone_state ps;

FUNCTIONS

VFUN state(phone) -> ps; $(state of "phone")
HIDDEN;
INITIALLY ps = ?;

VFUN connect ion(phone) -> phonel; $("phonel" is the phone that
"phone" has dialed and is either
connected or ringing)

HIDDEN;
INITIALLY phonel - ?;

VFUN buffer(phone) -> phone_number; $(sequence of digits dialed
by "phone")

HIDDEN;
INITIALLY phone_number = ?;

VFUN valid_phone_number(phone_number) -> b; $(TRUE for all valid
phone numbers)

HIDDEN;
INITIALLY TRUE $(initialized by the phone company);

VFUN directory(phone_number) -> phone; $("phone_number" that
corresponds to "phone")

HIDDEN;
INITIALLY TRUE $(initialized by the phone company) ;

OVFUN install(phone_number) -> phone; $(creates a new designator
"phone" that corresponds to
"phone_number")

EXCEPTIONS
NOT valid_phone_number(phone_number);
directory(phone_number) "= ?;

EFFECTS
phone = NEW(phone__id) ;
'directory(phone_number) = phone;
1 state(phone) = hung_up;
•buffer(phone) = VECTOR();

OFUN disconnect (phone__number) ; $(disconnects phone corresponding
to "phone_number")

DEFINITIONS
phone_id phone IS directory(phone_number);

EXCEPTIONS
phone = ?;
state(phone) ~- hung_up;

EFFECTS
'directory(phone_number) = ?;
1 state(phone) = ?;

APPENDIX A SPECIAL PAGE A.25 APPENDIX A SPECIAL PAGE A

•buffer(phone) = ?;

OFUN pick_up_phone(phone); $("phone" is picked up)
EXCEPTIONS

state(phone) = ?;
NOT state(phone) INSET
{ hung_up, hung_up_but_connected, being rung };

EFFECTS
IF state(phone) = hung_up
THEN $(picking up to dial) 'state(phone) = dial_tone

ELSE IF state(phone) = being_rung
THEN $(answering phone)

'state(SOME phonel I connection(phonel) = phone)
= connected

AND 'state(phone) = connected
ELSE $(resuming existing connection)

'state(phone) = connected;

OFUN dial(phone; d); $(dials a digit "d" from "phone")
DEFINITIONS

INTEGER j IS LENGTH(buffer(phone));
phone_number_id newbuf

IS VECTOR(FOR i FROM 1 TO j + 1
: IF i O j THEN buffer(phone)[i] ELSE d);

phone_id phonel IS directory(newbuf);
EXCEPTIONS

state(phone) = ?;
EFFECTS

state(phone) INSET {dial_tone, dialing}
-> $(update buffer and change state)

'buffer(phone) = newbuf
AND (IF phonel "= ?

THEN $(a valid number has been reached)
IF state(phonel) = hung_up
THEN $(ringing begins)

'state(phone) = ringing_another_phone
AND 'state(phonel) = being_rung

AND 'connection(phone) = phonel
ELSE $(busy signal) 'state(phone) = busy

ELSE IF valid_phone_number(newbuf)
THEN $(not a connected number)

'state(phone) = dialed_unconnected_number
ELSE 'state(phone) = dialing);

OFUN hang_up(phone); $(hangs up "phone")
EXCEPTIONS

state(phone) = ?;
state(phone) INSET

{ hung_up, being rung, hung up but connected };
EFFECTS - - -

IF EXISTS phonel : connect ion(phonel) = phone
THEN $(connection NOT terminated)

1 state(phone) = hung_up_but_connected
ELSE $(back to original state)

1 state(phone) = hung_up
AND 'buffer(phone) = VECTOR()
AND (connect ion (phone) "*= ? => $ (connected to someone el:

•connect ion(phone) = ?
AND 'state(connection(phone)) =
(IF state(phone) = ringing_another_phone

THEN $(ringing stops) hung_up
ELSE $(terminates connection) dial tone));

END MODULE

REFERENCES

[1] J. Guttag, E. Horowitz, and D. Musser. "The Design of Data
Structure Specifications," Proc. Second International
Conference on Software Engineering, San Francisco, California
(October 1976).

[2] B. H. Liskov and S. Zilles. "Specification Techniques for Dai
Abstractions," Proc. International Conference on Reliable
Software, Los Angeles, California, pp. 72-87 (April 1975).

[3] P. G. Neumann, L. Robinson, K. N. Levitt, R. S. Boyer, and A
R. Saxena. "A Provably Secure Operating System," Final Repori
Project 2581, Stanford Research Institute, Menlo Park,
California (June 1975).

[4] D. L. Parnas. "A Technique for Software Module Specification;
with Examples," Comm. ACM lj>, 5, pp. 330-336 (May 1972).

[5] D. L. Parnas. "On the Criteria to Be Used in Decomposing
Systems into Modules," Comm. ACM 15, 12, pp. 1053-1058
(December 1972).

[6] L. Robinson and K. N. Levitt. "Proof Techniques for
Hierarchically Structured Programs," Technical Report CSL-27
Computer Science Laboratory, Stanford Research Institute, Mei
Park, California, to appear in Comm, ACM (November 1975).

[7] L. Robinson, K. N. Levitt, P. G. Neumann, and A. R. Saxena. '
Attaining Reliable Software for a Secure Operating System,"
Proc. International Conference on Reliable Software, Los
Angeles, California, pp. 267-284~(April 1975).

[8] 0. M. Roubine and L. Robinson. "SPECIAL Reference Manual,"
Technical Report CSL-45, Computer Science Laboratory, Stanfoi
Research Institute, Menlo Park, California (August 1976).

[9] J. M. Spitzen, K. N. Levitt, and L. Robinson. "An Example of
Hierarchical Design and Proof," Technical Report CSL-30,

APPENDIX A •SPECIAL PAGE A.27 APPENDIX A SPECIAL PAGE A.1

Computer Science Laboratory, Stanford Research Institute, Menlo
Park, California (also submitted for publication) (March 1976).

[10] R. S. Boyer and J S. Moore. "Proving Theorems About LISP
Functions,11 J^ ACM 22, 1 pp. 129-144 (January 1976).

[11] J S. Moore. "The INTERLISP Virtual Machine Specification,"
Technical Report, Computer Science Laboratory, Xerox Palo Alto
Research Center, Palo Alto, California (September 1976).

[12] C. A. R. Hoare and N. Wirth. "An Axiomatic Definition of the
Programming Language PASCAL," Acta Informatica 2, pp. 335-355
(1973).

APPENDIX: GRAMMAR OF SPECIAL

ROOT

<types>

<typedeclaration>

< t ype spec ification>

<simple declaration>

<declaration>

<declarations>

<parameters>

<parameterdeclaration>

<formalargs>

::= MODULE <symbol> [<types>]
[<declarations>] [<parameters>]
[<definitions>] [<externalrefs>]
[<functions>]
END_MODULE

::= MAP <symbol> TO
<symbol> { ',' <symbol> }* ';'
[<types>] [<declarations>]
[<parameters>] [<definitions>]
[<externalrefs>] [<mappings>]
END_MAP

::= TYPES { <typedeclaration> ';• }+

::= <symbol> { ',' <symbol> }* ':'
{ DESIGNATOR I <typespecification>

I <setexpression> }

= <symbol>
= INTEGER
= BOOLEAN
= REAL
= CHAR
= STRUCT '(' <declarationlist> ') '
» ONE_OF '(• <typespecification>

{ fr
f <typespecification> }+ ') '

= { SEf_OF I VECTOR_OF }
<typespec ification>

= <typespecification> <symbol>

= <simple declaration> { ',' <symbol> }*
= <symbol>

= DECLARATIONS { <declaration> ';' }+

= PARAMETERS
{ <parameterdeclaration> •;' }+

= <typespecification> <symbol>
[<formalargs>]
{ ',' <symbol> [<formalargs>] }*

= '(' [<declarationlist>] ') '
['[' <dec]arationlist> '] ']

APPENDIX A SPECIAL PAGE A.29 APPENDIX A SPECIAL PAGE A.30

<declarationlist>

<definitions>

<definition>

<externalrefs>

<externalgroup>

<externalref>

<functions>

<functionspec>

<delay>

<exceptions>

<effects>

<mappings>

<mapping>

<expression>

::= <declaration> { ';' <declaration> }*

::= DEFINITIONS { <definition> •;• }+

::= <typespecification> <symbol>

{<'formalargs>] IS <expression>

::= EXTERNALREFS \ externalgroup }+

::= FROM <symbol> •;• { <externalref> •;• } +
::= <pararoeterdeclaration>
::= <symbol> { •»• <symbol> }* ':' DESIGNATOR
::* <symbol> ':' <setexpression>
::= { VFUN I OVFUN } <symbol> <formalargs>

•->• <declaration>
::* OFUN <symbol> <formalargs>

::» FUNCTIONS { <functionspec> }+

::« VFUN <symbol> <formalargs>
•->• <declaration> ';•
[<definitions>]
{{ HIDDEN •;' I <exceptions> }]
{ INITIALLY I DERIVATION }

<expression> ';'
::« OVFUN <symbol> <forroalargs>

•->• <declaration> •;•
[<definitions>] f<exceptions>]
{ <delay> }* l<effects>J

::= OFUN <syrobol> <formalargs> '}'
(<definitions>) (<exceptions>J
{ <delay> }* f<effects>]

::= DELAY UNTIL <expression> •;•

::* EXCEPTIONS { <expression> •?'

I EXCEPTICNSOF <call> ';' }+

::« EFFECTS { <expression> •;• }+

::= MAPPINGS { <mapping> f;* }+
::= <symbol> (<formalargs>J *:' <expression>
::* <symbol> ':' <typespecification>

::* IF <expression> THEN <expression>
ELSE <expression>

::= LET <qualification>
{ •;• <oualification> }*
IN <cxpression>

::« SOME <qualification>
::= { FORALL I EXISTS }

<qualif\declarationlist>

<oualification>

<case>

<binaryoperator>

<structureconstructor>

<vectorconstruetor>

<range>

<setexpression>

. <qua)if\declarationlist> ':*
<expression>

= TYPECASE <symbol> OF [<case> •;• }+ END
= <expression> <binaryoperator>

<expression>
= { NOT I •"• } <expression>
- '-' <expression>
= •(' <expression> ') •
* <symbol>
* <nurober>
» <cbaracter constant>
* <string constant>
= TRUE I FALSE I UNDEFINED I ?
= <expression> M1 <expression> '}'
= <expression> •.• <symbol>
* { CARDINALITY I LENGTH j MAX j MIN I SUM

I INTPART I FRACTPART }
1(' <expression> *) '

» NEW '(' <syrobol> #) •
= [EFFECTSJDFJ <call>
* <structureconstructor>
* <vectorconstructor>
* <setexpression>

* Kqualification> I <declaration>}
{ •;• <qualification> j

<deciaration> }*

= (<typespecification>) <syrobol>
{ 'I * I INSET } <expression>

<typespecification> <expression>

::= '*• | V1 I INTER I f+' I •-• I UNION I
DIFF I '=' I *'=• I •>• | •>»' I
'<• I •<=' I INSET I AND | OR I
SUBSET I MOD I •*>•

::« I • • • J <symbol> •(' I <expression>
{ *,' <expression> }*] •) •

::= *<* f <expression>
{ ',* <expression> }* J •>•

::= •<• <range> *:' <cxpression> •>•

..- VECTOR •(* f <expression>
{ ',' <expression> }* J ') '

::= VECTOR '(' <range> •;• <expression> •) •

::= FOR <symbol> FROM <expression>
TO <expression>

::= ' { ' [<expression>
{ *,' <expression> }* 1 ' } '

PAGE A.31
APPENDIX A SPECIAL

::* M1 l<typespecification>] <syir.bol> 'I1

<exDression> • } *<expression

B.I

APPENDIX B
SPECIFICATIONS FOR THE BASIC DESIGN

APPENDIX B

B.2

PSOS SPECIFICATIONS

This appendix contains the formal specifications for the design
of the Provably Secure Operating System. The system is decomposed
into 14 levels listed in Table 2-1. Each level further decomposed
into modules as described in Table 2-2. The specifications of these
modules form the body of this appendix.

At first glance the reader may believe that attempting to
understand this many pages of specifications is a huge undertaking.
The total number of pages of specifications is large because the
system being specified is a large system and the specifications
include not only descriptions of the system interface, but
descriptions of all the internal interfaces of the system that are
not visible. However, the specifications are not as complex as
their size might suggest. The important ideas of the design are
expressed in relatively few lines of the specifications. Much of
the specifications are concerned with the syntax of the language,
the requirements of formality, and details of the design. The
details of the design are necessary for a precise formulation, but
are not essential to an understanding of the important ideas. As
with any language with which the reader is unfamiliar some
experience with reading the language is necessary before it becomes
possible to easily identify the important constructs.

The reader should not attempt to understand these
specifications without first reading Section II of this report.
Section II describes, in prose, the important ideas in the design.
It is also assumed that the reader is familiar with the SPECIAL
language in which the specifications are written. The reader
interested only in the system interface, and not in the internal
interfaces, should read only the interface and module specifications
of level 13.

To a large degree the readability and understandability of a
specification is dependent upon the style in which that
specification is written. One can write an unreadable program in
the best of programming languages and one can write an easily
readable program in the worst of programming languages. The same
can be said of specifications written in SPECIAL. Examples of
differences in style that can effect readability are use of global
or local declarations and definitions, liberal or limited use of
definitions, and frequent or infrequent use of data abstraction.
The specifications presented here are not consistent with respect to
style. The style differs in the different modules because the
specifications were written by different people at different times
while the language was emerging and while the authors were learning
how to use the language. This is unfortunate because a higher
degree of uniformity of style would enhance the readability of the
specifications as a whole. However, the variation in style does
serve to illustrate different styles of specification writing. Some
consistency has been enforced in the formatting of specifications.

This appendix is divided into four remaining sections:

* the specification of the interface for each of the levels 0
through 13,

* the specification of the modules of the levels 0 through 13,

* the specification of the example modules USER, MAIL, and
LINKER,

* and the specification of an alternative module CHANNEL_IO.

The modules of levels 0 through 13 are presented beginning with the
modules of level 0 and proceeding upward through the hierarchy to
level 13. It is suggested that the reader examine them in this
order. Modules that are included in the specification of more than
one level are not repeated and are introduced as part of the lowest
level in which they appear.

The interface specification for each level consists of a list
of the modules that comprise that level. It is assumed that all the
visible functions of all modules of the interface are visible at the
interface unless the functions are itemized in the WITHOUT clause of
that module in the interface specification.

CONTENTS

INTERFACES

LEVEL 0
LEVEL 1
LEVEL 2
LEVEL 3
LEVEL 4
LEVEL 5
LEVEL 6
LEVEL 7
LEVEL 8
LEVEL 9
LEVEL 10
LEVEL 11
LEVEL 12
LEVEL 13

SPECIFICATIONS FOR LEVELS 0 THROUGH 13

CAPABILITIES
REGISTERS
MEMORY
INTERRUPTS
CLOCK
ARITHMETIC
PRIMITIVE I/O
SYSTEM PROCESS
SYSTEM INVOKE
COORDINATOR .
TIMERS
SYSTEM I/O
PAGES
SEGMENTS
WINDOWS
EXTENDED TYPES
DIRECTORIES
USER OBJECTS
USER PROCESS
USER INVOKE
VISIBLE I/O
PROCEDURE RECORDS

SPECIFICATIONS FOR USER ENVIRONMENTS

LINKER
USER
MAIL

SPECIFICATION FOR ALTERNATE MODULE

CHANNEL I/O

B.I
B.I
B.I
B.I
B. 1
B. 1
B.I
B.2
B.2
B.2
B.2
B.3
B.3
B.3

B.4
B.7

B.ll
B.14
B.19
B.21
B.23
B.27
B.29
B.31
B.33
B.36
B.40
B.43
B.48
B.52
B.58
B.63
B.66
B.72
B.76
B.81

B.84
B.87
B.91

(INTERFACE LEVEL_O
capabilities)

(INTERFACE LEVEL_1
capabilities
registers
memory)

(INTERFACE LEVEL_2
capabilities
registers
memory
interrupts)

(INTERFACE LEVEL__3
capabilities
registers
memory
interrupts
clock)

(INTERFACE LEVEL 4
capabilities
reg isters
memory
interrupts
clock
arithmetic)

(INTERFACE LEVEL_5
capabilities
registers
memory
interrupts
clock
arithmetic
primitive io)

(INTERFACE LEVEL_6
capabilities
registers
memory
arithmetic
system process
system invoke
coordinator
system_io
timers)

6.94

APPENDIX B

(INTERFACE LEVELJ7
capabilities
registers
memory
arithmetic
system_process
coordinator
system_invoke
system_io
timers
pages)

(INTERFACE LEVEL__8
capabilities
registers
arithmetic
system_process
coordinator
system_invoke
system__io
timers
segments
windows)

(INTERFACE LEVEL_9
capabilities
registers
arithmetic
system__process
coordinator
system_invoke
system__io
timers
segments
windows
extended_types)

(INTERFACE LEVEL_10
capabilities
registers
arithmetic
system_process
coordinator
system__invoke
system__io
timers
segments
windows
extended__types
directories)

B.5

INTERFACES APPENDIX B

B.6

INTERFACES

(INTERFACE LEVEL__11
capabilities
registers
arithmetic
system_process
coordinator
system_invoke
system_io
timers
segments
windows
(extended__types WITHOUT object__create object_delete)
directories
user_objects)

(INTERFACE LEVEL_12
capabilities
registers
arithmetic
(system_invoke WITHOUT system_call system_return)
coordinator
timers
(segments WITHOUT segment_create segment_delete)
(windows WITHOUT window_create window_delete)
(extended__types WITHOUT object_create object_delete)
(directories WITHOUT directory__create directory_delete

add_distinguished_entry
remove_distinguished_entry)

user_objects
user_process
user_invoke
visible_io)

(INTERFACE LEVELJL3
capabilities
registers
arithmetic
(system_invoke WITHOUT system_call system_return)
coordinator
timers
(segments WITHOUT segment_create segment_delete)
(windows WITHOUT window_create window_delete)
(extended_types WITHOUT object_create object_delete)
(directories WITHOUT directory_create directory_delete

add_distinguished_entry
remove_distinguished_entry)

user_objects
user_process
user_invoke
visible_io
procedure_records)

B.7 B.8

APPENDIX B CAPABILITIES

MODULE capabilities

TYPES

capability: DESIGNATOR;
slave_capability:
{ capability c I EXISTS capability cl: get_slave(c) = cl };
access_string:
{ VECTOR_OF BOOLEAN as I LENGTH (as) = access_string_length }

$(access rights from a capability);
machine_word: ONE_OF(capability, INTEGER, CHAR, BOOLEAN);
slave_type: {interrupt_slave, processor_slave, inst_class__slave,

memory_block_slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

DECLARATIONS

access_string as, asl;
capability c, cl;
slave_capability u;
INTEGER id, idl;
BOOLEAN b;

PARAMETERS

INTEGER access_string_length $(access strings must be at least 7
bits long);

INTEGER n_store_permissions $(number of store permissions must be
less than access string length);

INTEGER read, write, modify, delete $(access rights) ;
machine_word zeroword $(initial value for machine words) ;
capabilTty null $(capability guaranteed for nothing);
capability minimum_instructions, maximum_instructions

$(capabilities for the smallest and largest instructio
classes);

capability resident_instructions
$(capability for instructions that interpret addresses

as resident memory locations);
slave_type predefined_slave(slave_capability u) $(type of a

predefined slave capability);

DEFINITIONS

access_string all_true
IS VECTOR(FOR i FROM 1 TO access_string_length: TRUE);

access_string all__false
IS VECTOR(FOR i FROM 1 TO access_string_length: FALSE);

access_string and_as(as; asl)
IS VECTOR(FOR i FROM 1 TO access_string_length

: as[i] AND asl[i]) $(the bitwise and of two bit
strings);

FUNCTIONS

APPENDIX B CAPABILITIES

VFUN make_cap(id; as) -> c; $(this function expresses the
relationship between uid's, access
rights, and capabilities)

HIDDEN;
INITIALLY

(FORALL idl:
FORALL asl:

(make_cap(id, as) = make_cap(idl, asl))
=(id = idl AND as = asl))

AND(FORALL cl:
EXISTS idl: EXISTS asl: cl = make__cap (idl, asl));

VFUN get_uid(c) -> id; $(this function returns the uid for a
capability)

HIDDEN;
DERIVATION

SOME idl | EXISTS as: c = make_cap(idl, as);

VFUN get_access(c) -> as; $(this function returns the access
rights of a capability)

DERIVATION
SOME asl | EXISTS id: c = make_cap(id, asl);

VFUN old (id) -> b; $(true if a capability with uid u has been
returned by create_capability or
create_restricted_cap)

HIDDEN;
INITIALLY

b
= (EXISTS slave_capability u

1 predefined_slave(u) ~- not_predefined:
get_uid(u) = id);

VFUN restrict_access(c; as) -> cl; $' returns a capability with
the uid of c and the access
rights of c reduced by as)

DERIVATION
make_cap (get_uid (c) , and_as (as, get__access (c)));

VFUN get_slave(c) -> u; $(returns the slave capability for c)
DERIVATION

make__cap(get_uid (c) , all_false) ;

OVFUN create_capability() -> c; $(returns a capability with a ui
with which no other capability
has been returned)

EXCEPTIONS
RESOURCE_ERROR;

EFFECTS
EXISTS id:

old(id) = FALSE AND 'old(id) = TRUE
AND c = make_cap(id, all__true)

AND(FORALL idl: old (idl) => 'old(idl));

APPENDIX B CAPABILITIES APPENDIX B REGISTERS

OVFUN create_restricted_cap(as) -> c;
$(returns a capability with a previously unused uid and
with the given access)

EXCEPTIONS
RESOURCE_ERROR;

EFFECTS
EXISTS id:

old (id) = FALSE AND 'old(id) = TRUE
AND c = make_cap(id, as)

AND(FORALL idl: old(idl) => 'old(idl));
END MODULE

MODULE registers

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) u };
machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);
address:
STRUCT__OF (capability add__cap; INTEGER add_offset) $(address of a

word of storage);
state:
STRUCTJ3F(capability inst_class_reg;

VECTOR_OF machine_word general_reg;
VECTOR_OF address address_reg) $(the state of a process

i.e., all its register

DECLARATIONS

INTEGER i;
VECTOR_OF BOOLEAN bv;
capability c, pc;
slave_capability u, up;
machine_word w;
state st;
address addr;

PARAMETERS

INTEGER max_offset $ (largest possible offset in address) ,
n_general_registers $(number of general registers) ,
n_address_registers $(number of address registers) ;

INTEGER program__counter, stack_register, arguments_register,
environment_register $(registers with special functions);

address starting_address $(initial contents of program counter);

DEFINITIONS

BOOLEAN no_ability(c; i) IS get_access(c)[ij = FALSE;
BOOLEAN bad_state(st)

IS LENGTH(st.general_reg) ~= n_general_registers
OR LENGTH (st.address_reg) ~= n_address__reg isters;

BOOLEAN out_of_bounds (INTEGER o) IS o < 0 OR o >= max_offset;
BOOLEAN no_general_register(i)

IS i < 0 OR i >= n_general_registers;
BOOLEAN no_address_register(i)

IS i < 0 OR i >= n_address_registers;
BOOLEAN valid_inst_class (u) IS predef ined_slave (u) ~= inst__class_slc

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
slave_type: {interrupt_slave, processor_slave, inst_class__slave,

memory_block__slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

slave_type predefined_slave(slave_capability u) $(type of a
predefined slave capability);

B.1I

APPENDIX B REGISTERS

INTEGER read, modify $(access rights) ;
capability maximum_instructions $(capability for executing

all instructions);
capability null $(capability for nothing);
machine_word zeroword;
VFUN get_slave(c) -> u;
VFUN get_access(c) -> bv;

FUNCTIONS

VFUN get_registers(pc) -> st; $(get state of process or processor pc)
DEFINITIONS

slave_capability up IS get_slave(pc);
EXCEPTIONS

no_ability(pc, read);
DERIVATION

STRUCT(h_inst_class_reg(up),
VECTOR (FOR i FROM 1 TO n_general_registers

: h_gen_reg(up, i)),
VECTOR(FOR i FROM 1 TO n_address_registers

: h_add_reg(up, i)));

OFUN set_registers(pc; st); $(change the state of the given process
or processor)

DEFINITIONS
slave_capability up IS get_slave(pc);

EXCEPTIONS
no_ability(pc, modify);
bad_state(st) ;

EFFECTS
'h_inst_class_reg(up) = st,inst_class_reg;
FORALL i:

(i >= 0 AND i < n_general_registers
= > 'h__gen_reg (up, i) = st.general_reg[i]);

FORALL i:
(i >= 0 AND i < n_address_registers
=> 'h_add_reg(up, i) = st.address_reg[i]);

VFUN h_inst__class_reg (up) -> c; $(instructions that can be executed)
HIDDEN;
INITIALLY

c = maximum_instructions;

VFUN inst_class_register()[pc] -> c; $(instructions that can be
executed)

DEFINITIONS
slave_capability up IS get_slave(pc);

DERIVATION
h_inst_class__reg (up) ;

OFUN load__inst_class_register (c) [pc] ; $(change level at which process
is executing)

DEFINITIONS
slave__capability up IS get_slave (pc) ;

EXCEPTIONS
valid_inst_class(get_slave(c));

EFFECTS

APPENDIX B REGISTERS

'h_inst_class_reg(up) = c;

VFUN h_gen_reg(up; i) -> w; $(value of general register i)
HIDDEN;
INITIALLY

w = zeroword;

VFUN general_register(i)[pc] -> w; $(value of general register i
DEFINITIONS

slave_capability up IS get_slave(pc);
EXCEPTIONS

no__general__reg ister (i) ;
DERIVATION

h_gen_reg(up, i);

OFUN load_general_register(i; w)[pc]j $(set general register i)
DEFINITIONS

slave_capability up IS get_slave(pc);
EXCEPTIONS

no_general_register(i);
EFFECTS

'h_gen_reg(up, i) = w;

VFUN h_add_reg(up; i) -> addr; $(capability part of address
register i)

HIDDEN;
INITIALLY

IF i - program_counter
THEN addr = starting_address
ELSE addr = STRUCT(null, 0);

VFUN address_register(i)[pc] -> addr; $(capability part of
address register i)

DEFINITIONS
slave_capability up IS get_slave(pc);

EXCEPTIONS
no_address_register(i) ;

DERIVATION
h_add_reg(up, i);

OFUN load_address_register(INTEGER i; address addr)[capability p
$(set address register i)

DEFINITIONS
slave_capability up IS get_slave(pc);

EXCEPTIONS
no_address_register(i);
out_of_bounds(addr.add_offset) ;

EFFECTS
*h_add_reg(up, i) = addr;

VFUN proc_cap()[pc] -> c; $(returns capability for invoking
process or processor)

DERIVATION
pc;

END MODULE

APPENDIX B MEMORY APPENDIX B MEMORY

MODULE memory

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
machine__word: ONE_OF (capability, INTEGER, BOOLEAN, CHAR);

DECLARATIONS

BOOLEAN b;
VECTOR_OF BOOLEAN bv;
slave_capability u;
capability c;
INTEGER i;
machine__word w;

PARAMETERS

INTEGER block_length(u) $(length of existing memory block);

DEFINITIONS

INTEGER integer_value(w)
IS TYPECASE w OF

INTEGER: w;
capability: 0;
BOOLEAN: 0;
CHAR: 0;

END;
BOOLEAN no_ability(c; i) IS get_access(c)[i] = FALSE;
BOOLEAN no_block(u) IS block_length(u) = ?;
BOOLEAN address_bounds(slave_capability u; INTEGER i)

IS i < 0 OR i >= block_length(u);
BOOLEAN not__integer (w)

IS TYPECASE w OF
INTEGER: FALSE;
capability: TRUE;
BOOLEAN: TRUE;
CHAR: TRUE;

END;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
slave__type: {interrupt_slave, processor_slave, inst_class_slave,

memory__block_slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

slave__type predef ined__slave(slave_capabil ity u) $(type of a
predefined slave capability);

INTEGER read, write $(access rights) ;
machine_word zeroword;
VFUN ge-t_slave(c) -> u;
VFUN get_access(c) -> bv;

FUNCTIONS
VFUN h_read(u; i) -> w; $(read a word at offset i in memory blc

u)
HIDDEN;
INITIALLY

w = zeroword;

VFUN block_read(c; i) -> w; $(read a word at offset i in block
with capability c)

DEFINITIONS
slave_capability u IS get_slave(c):

EXCEPTIONS
no_ability(c, read);
no__block (u);
address_bounds(u, i);

DERIVATION
h_read(u, i);

OFUN block_write(c; i; w); $(change word at offset i in block
with capability c to w)

DEFINITIONS
slave_capability u IS get_slave(c);

EXCEPTIONS
notability(c, write);
no_block(u) ;
address__bounds(u, i);

EFFECTS
fh_read(u, i) = w;

OVFUN block_decrement_and_test(c; i) -> b; $(try a P operation c
a specified word)

DEFINITIONS
slave_capability u IS get_slave(c);

EXCEPTIONS
rio_ability(c, read);
notability(c, write);
no_block(u) ;
address_bounds(u, i);
not_integer(h_read(u, i));

EFFECTS
b = (i n t e g e r _ v a l u e (h _ r e a d (u , i)) < 1) ;
• h _ r e a d (u , i) = i n t e g e r _ v a l u e (h _ r e a d (u , i)) - 1 ;

OVFUN block__increment_and_test (c; i) -> b; $ (do a V operation on
a specified word)

DEFINITIONS
slave_capability u IS get__slave (c) ;

EXCEPTIONS
no_ability(c, read);
no_ability(c, write);
no__block (u) ;
address_bounds(u, i);
not__integer (h__read (u, i));

EFFECTS
b = (i n t e g e r _ v a l u e (h _ r e a d (u , i)) < 0) ;
' h _ r e a d (u , i) = i n t e g e r _ _ v a l u e (h _ r e a d (u , i)) + 1 ;

B.15 B.16

APPENDIX B MEMORY

OVFUN block_conditional_write(c; i; w) -> BOOLEAN written;
$(modify word if contents were zero)

DEFINITIONS
slave_capability u IS get_slave(c);

EXCEPTIONS
no_ability(c, read);
no_ability(c, write);
no block(u) ;

i);address__bounds (u,
EFFECTS

IF h_read(u, i) = 0
THEN written AND »h_
ELSE "written;

read(u, i) = w

END MODULE

APPENDIX B INTERRUPTS Page B.14

MODULE interrupts

TYPES

slave_capability: { capability u I EXISTS c: get_slave(c) = u };
address: STRUCT_OF(capability add_cap; INTEGER add_offset);

DECLARATIONS

BOOLEAN b;
VECTOR_OF BOOLEAN bv;
capability c, pc;
capability int $(capability for interrupt) ;
slave_capability u, pu, ul;
VECTOR_OF capability iv $(list of interrupts) ;
VECTOR_OF slave_capability uv $(list of uid's for interrupts) ;
INTEGER o $(offset of word in memory) ;
INTEGER i, j;
address addr; v

PARAMETERS

INTEGER set_handler, mask, $(access rights: they assume values)
set_int $ (from 1 to access_length) ;

BOOLEAN init_interrupt_addr(addr) $(true if addr is address
of the initial interrupt procedure);

DEFINITIONS

BOOLEAN no_interrupt (u) IS h__interrupt_set (u) = FALSE;
BOOLEAN no_ability(c; i) IS get_access(c)[i] = FALSE;
BOOLEAN not_interrupt_vector(uv)

IS EXISTS j:
(j >= 0 AND j <= LENGTH(uv)
AND h_interrupt_set(uv[j]) = FALSE);

BOOLEAN no_ability_vector(iv; i)
IS EXISTS j:

(j >= 0 AND j <= LENGTH (iv)
AND get_access(iv[j])[i] = FALSE);

BOOLEAN not_maskable__vector (pu; uv)
IS EXISTS j:

(j >= 0 AND j <= LENGTH (uv)
AND h_masked(pu, uv[j]) = TRUE);

BOOLEAN not_unmaskable_vector(pu; uv)
IS EXISTS j:

(j >= 0 AND j <= LENGTH (uv)
AND h_masked(pu, uv[j]) = FALSE);

BOOLEAN no_processor(pu)
IS predefined_slave(pu) ~= processor_slave;

BOOLEAN no_value(pu) IS h_old_pc(pu) = ?;

EXTERNALREFS

B.17 B.18

APPENDIX B INTERRUPTS APPENDIX B INTERRUPTS

FROM capabilities:
capability: DESIGNATOR;
slave_type: {interrupt_slave, processor_slave, inst_class__sla

memory_block_slave, device_jslave, clock_slave,
not_predefined} $(types of predefined slaves);

slave_type predefined slave(slave capability u) $(type of a
predefined slave capability);

INTEGER read, modify $(access rights) ;
VFUN get_slave(c) -> u;
VFUN get_access(c) -> bv;

FROM r e g i s t e r s :
INTEGER program_counter $(index for program counter r e g i s t e r
VFUN h_add__reg(pu; i) -> addr;
OFUN l o a d _ a d d r e s s _ r e g i s t e r (i ; a d d r) [p c] ;

FUNCTIONS

VFUN h__old_pc (pu) -> addr; $(value of program counter befor
interrupt)

HIDDEN;
INITIALLY

addr = ?; v

VFUN old_pc()[pc] -> addr; $(external form of h_old_pc)
DEFINITIONS

slave_capability pu IS get_slave(pc);
EXCEPTIONS

no_processor(pu);
no_abi1ity(pc, read);
no_value(pu);

DERIVATION
h_old_pc (pu) ;

VFUN h_interrupt_mode(pu) -> b; $(true of interrupts can occ
HIDDEN;
INITIALLY

b = FALSE;

VFUN h_masked(pu; u) -> b; $(true if interrupt u is masked)
HIDDEN;
INITIALLY

b = (IF predefined_slave(u) = interrupt_slave
THEN TRUE ELSE ?);

VFUN h_interrupt_pending(pu; u) -> b; $(true if interrupt u
pending in processor j

HIDDEN;
INITIALLY

b = FALSE;

VFUN h_interrupt set(u) -> b; $(true if u is uid for an inte
HIDDEN; ""
INITIALLY

b =(predefined_slave(u) = interrupt_slave);

VFUN h__int_handler (u) -> addr; $(location for handler for
interrupt u)

HIDDEN;
INITIALLY

IF predefined_slave(u) = interrupt_slave
THEN init_interrupt_addr(addr) ELSE addr=?;

OFUN set_int_handler(int; c; o) ; $(set the location of the
handler for interrupt int)

DEFINITIONS
slave_capability u IS get_slave(int);

EXCEPTIONS
no_interrupt(u);
no_ability(int, set_handler);

EFFECTS
•h_int_handler(u) = STRUCT(c, o);

OFUN set_mask(pc; iv); $(mask interrupts for the given interrupt
capabilities)

DEFINITIONS
VECTOR__OF slave_capability uv

IS VECTOR(FOR j FROM 1 TO LENGTH (iv)
: get_slave(iv[j]));

slave_capability pu IS get_slave(pc);
EXCEPTIONS

not_interrupt_vector(uv);
not_maskable__vector (pu, uv);
no_ability_vector(iv, mask);
no_ability(pc, modify);
no_processor(pu);

EFFECTS
FORALL j:

(j >= 0 AND j <= LENGTH(uv)
=> 'hjnaskedfpu, uv[j]) * TRUE);

OFUN reset_mask(pc; iv); $(unmask interrupts for the given
interrupt capabilities)

DEFINITIONS
VECTOR_OF slave_capability uv

IS VECTOR(FOR j FROM 1 TO LENGTH(iv)
: get_slave(iv[j]));

slave_capability pu IS get_jslave(pc) ;
EXCEPTIONS

not_interrupt__vector (uv) ;
not_unmaskable_vector (pu, uv);
no_ability_vector(iv, mask);
no_ability(pc, modify);
no_processor(pu);

EFFECTS
FORALL j:

(j >= 0 AND j <= LENGTH (uv)
= > *h__masked (pu, uv[j]) = FALSE);

B.19

APPENDIX B INTERRUPTS

OFUN set_mode_normal()[pc]; $(permits interrupts)
DEFINITIONS

slave_capability pu IS get_slave(pc);
EFFECTS

lh_interrupt_mode(pu) = TRUE;

VFUN h_int_priority(u) -> i; $(higher integer means higher
priority, each interrupt must have
different priority)

HIDDEN;
INITIALLY

IF predefined__slave(u) = interrupt_slave
THEN i "= ?

AND "(EXISTS ul
I predefined_slave(ul) = interrupt_slave:
h_int_priority(ul) = i)

ELSE i = ?;

OFUN receive_interrupt()[pc]; $(now is the time to interrupt
processor pc)

DEFINITIONS
slave_capability pu IS get_slave(pc);

EFFECTS
h_interrupt_mode(pu) = TRUE
=>(FORALL u:

(predefined_slave(u) = interrupt_slave
AND h_interrupt_pending(pu, u) = TRUE

AND h_masked(pu, u) = FALSE
AND "(EXISTS ul:

(predef ined__slave (ul) = interrupt_slave
AND ul ~= u

AND h_interrupt_pending(pu, ul) = TRUE
AND h_masked(pu, ul) = FALSE

AND h_int_priority(ul)
> h_int_priority(u)))

= > fh_interrupt__mode(pu) = FALSE
AND fh_old_pc (pu) = h__add_reg (pu, program__counte
AND EFFECTS__OF load_address__reg ister

(program_counter,
h_int_handler(u) ,
pc)));

OFUN set__interrupt (pc; int) ; $(cause an interrupt to occur)
DEFINITIONS

slave__capability u IS get_slave(int) ;
slave_capability pu IS get_slave(pc);

EXCEPTIONS
no_interrupt(u) ;
no_ability(int, set_int);
no_ability(pc, set_int);
no_processor(pu);

EFFECTS
'h_interrupt_pending(pu, u) = TRUE;

END MODULE

APPENDIX B CLOCK

MODULE clock

TYPES

slave_capability:
{ capability u 1 EXISTS capability c: get_slave(c) = u };

DECLARATIONS

VECTOR__OF BOOLEAN bv;
capability c, pc;
slave__capability u, pu;
INTEGER i;
INTEGER time $(clock time) ;

PARAMETERS

INTEGER start_up_time $(time of clock initialization) ;

DEFINITIONS

BOOLEAN no_ability(c; i) IS get_access(c)[i] = FALSE;
BOOLEAN no_processor(pu)

IS predefined_slave(pu) ~= processor_slave;
BOOLEAN not__clock(u)

IS predefined_slave(u) ~= clock__slave;
BOOLEAN negative(i) IS i < 0;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
slave_type: {interrupt_slave, processor_slave, inst__class_s

memory_block_slave, devic-__slave, clock_slave,
not_predefined} $(types of predefined slaves

slave_type predefined_slave(slave_capability u) $(type of
predefined slave capability);

INTEGER read, modify $(access rights) ;
VFUN get_slave(c) -> u;
VFUN get_access(c) -> bv;

FROM interrupts:
INTEGER set_int $(access right) ;
OFUN set_interrupt(pc; c);

FUNCTIONS

VFUN h_clock() -> time; $(real clock time)
HIDDEN;
INITIALLY

time = start__up_time;

VFUN h_clock_int(c) -> BOOLEAN b;
$(interrupt for timer runnout)
HIDDEN;
INITIALLY

b -(predefined_slave(get_slave(c)) = interrupt_sla^

APPENDIX B

B.21

CLOCK

VFUN h_timer(pu) -> time; $(time when processor pu is to be
interrupted)

HIDDEN;
INITIALLY

time - ?;

VFUN h_timer__processor (pu) -> pc; $(capability for processor with
unique identifier pu)

HIDDEN;
INITIALLY

pc = ?;

VFUN read_clock(c) -> time; $(real time clock)
DEFINITIONS

slave_capability u IS get_slave(c);
EXCEPTIONS

no_ability(c, read);
not_clock(u);

DERIVATION
h_clock();

OFUN update_clock(c; i); $(maintains real time clock)
DEFINITIONS

slave_capability u IS get_slave(c);
EXCEPTIONS

no_ability(c, modify);
not_clock(u);
negative(i);

EFFECTS
•h_clock() * h_clock() + i;
FORALL pu | predefined_slave(pu) = processor_slave:

h_timer(pu) "- ? AND h_timer(pu) <= h_clock() + i
=> 'h_timer(pu) = ?

AND EFFECTS_OF set__interrupt(h_t imer_j?rocessor(pu) ,
SOME c | h _ c l o c k _ i n t (c)) ;

OFUN set__timer (i) [pc]; $(set interval timer value)
DEFINITIONS

slave_capability pu IS get_slave(pc);
EXCEPTIONS

no_ability(pc, modify);
no_ability(pc, set__int);
no_processor(pu);
negative(i);

EFFECTS
fh_timer(pu) = h_clock() + i;
'h_timer_processor(pu) = pc;

END MODULE

B.22

APPENDIX B ARITHMETIC

MODULE arithmetic
TYPES

machine__word: ONE_OF (capability, INTEGER, BOOLEAN, CHAR);
character^string: VECTOR_OF CHAR;

DECLARATIONS

INTEGER il, i2, i;
BOOLEAN bl, b2, b;
machine_word wl? w2# w;

PARAMETERS

INTEGER min_integer, max_integer $(interval of legal integers)

DEFINITIONS

BOOLEAN overf low(i) IS i > max_integer OR i < min__integer;
character_js t r ing type_id(w)

IS TYPECASE w OF
capability: "capability";
INTEGER: "INTEGER";
BOOLEAN: "BOOLEAN";
CHAR: "CHAR";

END;
BOOLEAN type_mismatch(wl; w2) IS type_id(wl) *"= type_id(w2);

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;

FUNCTIONS

VFUN add(il; i2) -> i; $(returns the sum of two integers)
EXCEPTIONS

overflow(il + i2);
DERIVATION

VFUN subtract(il; i2) -> i; $(returns the difference between t
integers)

EXCEPTIONS
overflow(il - i2);

DERIVATION

VFUN minus(il) -> i; $(returns the negation of an integer)
DERIVATION

- il;

VFUN m u l t i p l y (i l ; i2) -> i; $(m u l t i p l i e s two in tege r s)
EXCEPTIONS

overflow(il * i2);
DERIVATION

il * i2;

APPENDIX B

B.23

ARITHMETIC

VFUN divide(il; 12) -> i; $(divides il by 12)
EXCEPTIONS

i2 = 0;
overflow(il / i2);

DERIVATION

VFUN logical_and(bl; b2) -> b; $(logical and of two booleans)
DERIVATION

bl AND b2;

VFUN logical_or(bl; b2) -> b; $(logical or of two booleans)
DERIVATION

bl OR b2;
I

VFUN logical_not(bl) -> b; $(logical negation of a boolean)
DERIVATION

~ bl;

VFUN less_than(il; i2) -> b; $(true if il < i2)
DERIVATION

VFUN greater_than(il; i2) -> b; $(true if il > i2)
DERIVATION

VFUN equal (wl; w2) -> b; $(true if two values are equal)
EXCEPTIONS

type_mismatch(wl, w2);
DERIVATION

wl = w2;

END MODULE

B.24

APPENDIX B PRIMITIVE I/O

MODULE primitive_io

TYPES

slave capability:
{ capability u 1 EXISTS capability c: get_slave(c) = u };

machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);

DECLARATIONS

BOOLEAN b, int;
VECTOR_OF BOOLEAN bv;
slave_capability u;
capability c, cl;
capability d $(capability for an I/O device) ;
INTEGER stat, comm;
machine_word data;

PARAMETERS

INTEGER control,
device $(each of these assumes a different value from 1

access_length);

DEFINITIONS

BOOLEAN no_ability(capability c; INTEGER i)
IS get_access(c)[i] = FALSE;

BOOLEAN not_device(slave_capability u)
IS h_device_set(u) = FALSE;

BOOLEAN no_input(slave_capability u) IS h_input(u) = ?;
BOOLEAN no_output(slave_capability u) IS h_output(u) = ?;
BOOLEAN no_command(slave_capability u) IS h_command(u) = ?;
BOOLEAN too_much__input (slave__capabil ity u) IS h_input(u) "= ?;
BOOLEAN too_much_output(slave_capability u) IS h_output(u) ~= ?
BOOLEAN too__many_commands(slave_capability u)

IS h_command(u) ~= ?;
BOOLEAN uninitialized_device(slave_capability u)

IS h_status(u) = ?;
BOOLEAN no_interrupt(slave_capability u; BOOLEAN int)

IS IF int THEN h_device__interrupt (u) = ? ELSE FALSE;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
slave_type: {interrupt_slave, processor_slave, inst__class_slav€

memory_block_slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

slave_type predef ined__slave(slave_capabil ity u) $(type of a
predefined slave capability);

INTEGER read, write $(access rights) ;
VFUN get_slave(c) -> u;
VFUN get_access(c) -> bv;

APPENDIX B PRIMITIVE I/O APPENDIX B PRIMITIVE I/O

FROM interrupts:
OFUN set__interrupt (c; cl);

FUNCTIONS

VFUN h_device_set(u) -> b; $(true if uid u designates a device)
HIDDEN;
INITIALLY

b - (predef ined__slave(u) = device_slave) ;

VFUN h_device_interrupt(u) -> c; $(interrupt capability for
device with uid u)

HIDDEN;
INITIALLY

predefined_slave(get_slave(c)) - interrupt_slave;

VFUN h_device_processor(u) -> c; $(processor for handling
interrupts from device u)

HIDDEN;
INITIALLY

predefined_slave(get_slave(c)) = processor_slave;

VFUN h_input(u) -> data; $(one word of input data from I/O device
with uid u)

HIDDEN;
INITIALLY

data = ?;

OVFUN read_device(d) -> data; $(visible form of h_input)
DEFINITIONS

slave__capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, read);
not_device(u);
no_input(u);

EFFECTS
data = h_input(u);
*h_input(u) = ?;

OFUN write_device(d; data); $(output data to I/O device with
capability d)

DEFINITIONS
slave__capability u IS get_slave (d) ;

EXCEPTIONS
no_ability(d, write);
not__device (u);
too__much__output (u) ;

EFFECTS
*h_output(u) = data;

OFUN send_command(d; comm); $(send command to I/O device)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, control);
not_device(u) ;
too_many__commands (u) ;

EFFECTS
'h_command(u) = comm;

VFUN h_status(u) -> stat; $(status of I/O device with uid u)
HIDDEN;
INITIALLY

stat = ?;

VFUN receive_status(d) -> stat; $(visible form of h_status)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, read);
not_device(u) ;
uninitialized_device(u);

DERIVATION
h__status (u) ;

VFUN h_output(u) -> data; $(data to be output by I/O device wi
uid u)

HIDDEN;
INITIALLY

data = ?;

OVFUN device_receive(d) -> data; $(visible form of h_output)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, device);
not_device(u);
no_output(u);

EFFECTS
data = h__output (u);
•h_output(u) = ?;

OFUN device_send(d; data); $(input data to system)
DEFINITIONS

slave__capability u IS get_slave(d) ;
EXCEPTIONS

notability(d, device);
not_device(u);
too_much_input(u) ;

EFFECTS
'h_input(u) = data;

VFUN h_command(u) -> comm; $(command for I/O device with uid u)
HIDDEN;
INITIALLY

comm = ?;

OVFUN device_command(d) -> comm; $(gets a command for a device)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

notability(d, device);
not_device(u);
no command(u);

APPENDIX B

B.27

PRIMITIVE I/O

EFFECTS
comm = h_command(u);
1h_command(u) = ?;

OFUN change_status(d; stat; int); $(change the status of a device
and possibly send an interrupt)

DEFINITIONS
slave_capability u IS get_slave(d) ;

EXCEPTIONS
no_ability(d, device);
not_device(u) ;
no_interrupt(u, int);

EFFECTS
•h_status(u) = stat;
int

=> EFFECTS_OF set_interrupt(h_device_processor(u),
h_device__interrupt(u));

END MODULE

APPENDIX B

MODULE system_process
TYPES

B.28

SYSTEM PROCESS Page I

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) - u };
machine_word: ONE_OF(INTEGER, capability, BOOLEAN, CHAR);
address:
STRUCT OF(capability add_cap; INTEGER add_offset) $(address of a

~" word of storage);
state:
STRUCT__OF (capability inst__class_reg;

VECTOR_OF machine_word general_reg;
VECTOR_OF address address_reg) $(state of system process)

DECLARATIONS

BOOLEAN b;
VECTOR_OF BOOLEAN bv;
capability pc, c;
slave_capability up, u;
state st, old_state, new_state;
INTEGER i;

PARAMETERS

BOOLEAN h_sproc_exists(up) $(true if system process up exists) ;

DEFINITIONS

BOOLEAN no_ability(c; i) IS get_access(c)[i] = FALSE;
BOOLEAN no_sproc(up) IS h_sproc_exists(up) ~= TRUE;
BOOLEAN bad_state(st)

IS LENGTH (st.general__reg) ~= n_general_registers
OR LENGTH (st.address_reg) ~= n_address__registers;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, modify $(access rights) ;
VFUN get_slave(c) -> u;
VFUN get_access(c) -> bv;

FROM registers:
INTEGER n_general_registers,

n_address_registers $(number of registers of each type) ;
VFUN get_registers(pc) -> st;
OFUN set_registers(pc; s t) ;

FUNCTIONS

VFUN h_user_level(up) -> b;
$(true if system process up is executing user program)

HIDDEN;
INITIALLY

K = TRIIR -

APPENDIX B

B.29

SYSTEM PROCESS

OFUN indicate_user__level (b) [pc] ;
$(is system process pc executing user program)

DEFINITIONS
slave_capability up IS get_slave(pc) ;

EFFECTS
'h_user__level (up) = b;

OVFUN instantiate__sprocess(pc; new_state) -> old__state;
$(bind new user process to system process pc)

DEFINITIONS
slave_capability up IS get_slave(pc) ;

EXCEPTIONS
no_ability(pc, read);
notability(pc, modify);
no_sproc(up);
bad_state (new__state);

DELAY UNTIL h_user_level (up) ;
EFFECTS

old_state = get_registers(pc);
EFFECTS_OF set_registers(pc, new_state);

END MODULE

B.30

APPENDIX B SYSTEM INVOKE

MODULE system_invoke

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
machine_word: ONE_OF(INTEGER, capability, BOOLEAN, CHAR);
offset: {INTEGER i | 0 <= i AND i <= max_offset};
address:
STRUCT_OF(capability add__cap; offset add_offset) $(address of a

word of storage);

PARAMETERS

INTEGER callable $(access right) ;
address h function__address (slave__capability u)

~§ (addresses of all system functions);
address h_stack_address(slave_capability u, up)

$(stacks for all system functions);
address high_level_return $ (address of instruction that transfers

to return location of nonresident procedure);
address low_level_return $ (address of instruction that transfers

to return location of resident procedure);

DEFINITIONS

BOOLEAN no_ability(capability c; INTEGER i) IS get_access (c) [i] "*= TRUE;
BOOLEAN bad_call(slave_capability u; INTEGER o)

IS h_function_address(u) = ?;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
slave_type: {interrupt_slave, processor_slave, inst_class_slave,

~~ memory_block_slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

INTEGER read $(access rights) ;
capability minimum_instructions $(capability for executing the

smallest instruction class);
capability resident_instructions $(capability for interpreting

addresses as resident memory addresses);
slave_type predefined_slave(slave_capability u) $(type of a

predefined slave capability);
VFUN get_slave(capability c) -> slave__capabil ity u;
VFUN get_access(capability c) -> VECTOR_OF BOOLEAN bv;

FROM registers:
INTEGER max_offset $(maximum offset allowed in a register) ,

stack__register , arguments_register, program_counter
$(index of address registers used for specific purpose);

OFUN load_address_register(INTEGER i; address a) [capability pc] ;
OFUN load_inst_class__register (capability c) [capabil ity pc] ;

APPENDIX B SYSTEM INVOKE

FUNCTIONS
OVFUN system_call(address procedure_address, return_address,

arguments, top_of_stack)
[capability pc]
-> address return_info;

$(invoke a system procedure)
DEFINITIONS

slave_capability u IS get_slave(procedure_address.add_cap);
slave_capability up IS get_slave(pc);

EXCEPTIONS
no_ability(procedure__address.add_capf callable) ;
bad_call (u, procedure__address.add_offset) ;

EFFECTS
return_info = return_address;
EFFECTS_OF load_address__register

(arguments_register, arguments, pc);
EFFECTS_OF load__address_reg ister

(program_counter, h_function_address(u), pc);
IF predefined_slave(h_stack_address(u, up).add_cap)

= memory_block_slave
THEN EFFECTS_OF load_inst_class_register

(resident_instructions, pc)
ELSE EFFECTS_OF load_inst_class_register

(minimum_instructions, pc);
IF notability(procedure_address.add_cap, read)
THEN EFFECTS_OF load_address_register

(stack_register, h_stack_address(u, up), pc)
ELSE EFFECTS_OF load_address_register

(stack_register, top_of_stack, pc);
OVFUN system__return (address return_info) [capability pc]

-> address return_address;
$(Return to calling activation)

EFFECTS
return_address = return_info;
IF predefined_slave(return__info) = memory_block_slave
THEN EFFECTS_OF load_inst_class_register

(resident_instructions, pc)
AND EFFECTS_OF load_address_register

(pr og r am_co un t e r,
low__level_return,
pc)

ELSE EFFECTS__OF load_inst_class_reg ister
(minimum_instructions, pc)

AND EFFECTS_OF load_address_register
(program_counter,
high_level_return,
pc);

END MODULE

APPENDIX B COORDINATOR

MODULE coordinator

TYPES

slave_capability:

{ capability u I EXISTS capability c: get__slave(c) = u };

PARAMETERS

INTEGER wait, wakeup $(access rights);

DEFINITIONS
BOOLEAN no_ability(capability c; INTEGER i)

IS get_access(c)[i] ~= TRUE;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
VFUN get_slave(capability c) -> slave_capability u;
VFUN get_access(capability c) -> VECTORJ3F BOOLEAN bv;

FUNCTIONS

VFUN h_waiting_for(slave_capability u) -> slave_capability p;
$(given process u is waiting for wakeup from process p)

HIDDEN;
INITIALLY

P =* ?;

OFUN queue_for_wakeup(capability p)[capability pc];
$(place this process on list of processes waiting for

wakeup from process p)
DEFINITIONS

slave_capability u IS get_slave(pc);
EXCEPTIONS

no_ability(p, wait);
RESOURCE_ERROR;

EFFECTS
'h_waiting_for(u) = get_slave(p);

OFUN wait_for_wakeup()[capability pc]; $(wait for a wakeup)
DEFINITIONS

slave_capability u IS get_slave(pc);
DELAY UNTIL h_waiting_for(u) = ?;

OFUN wakeup_waiters(BOOLEAN all)[capability pc];
$(wake up one or more waiting processes)

DEFINITIONS
slave_capabil ity u IS get__slave (pc) ;

EFFECTS ~
IF all
THEN FORALL slave_capability up | h_waiting_for(up) = u:

'h_waiting_for(up) = ?
ELSE LET slave_capability un I h_waiting_for(un) = u

IN FORALL slave_capability up I h_waiting_for(up)

B,33

APPENDIX B COORDINATOR

IF up = un
THEN 'h_waiting_for (up) = ?
ELSE 'h_waiting_for (up) = un;

OFUN wakeup_process(capability p);
$ (wakeup process p)

DEFINITIONS
slave_capability u IS get_slave(p);

EXCEPTIONS
no_ability(pf wakeup);

EFFECTS
•h_waiting_for(u) = ?;

END MODULE

B.34

APPENDIX B TIMERS

MODULE timers

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };

DECLARATIONS

VECTOR_OF BOOLEAN bv;
capability c, pc;
slave__capability u, up;
INTEGER i;
INTEGER time $(clock time) ;

PARAMETERS

INTEGER start_up_time $(time of clock initialization) ;

DEFINITIONS

BOOLEAN no_ability(capability c; INTEGER i)
IS get_access(c)[i] = FALSE;

BOOLEAN not_clock (slave__capabil ity u)
IS predefined_slave(u) ~= clock_slave;

BOOLEAN negative(INTEGER i) IS i < 0;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, modify $(access rights) ;
slave_type: {interrupt_slave, processor_slave, inst_class_slave,

memory_block_slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

slave_type predefined_slave(slave_capability u) $(type of a
predefined slave capability);

VFUN get_slave(c) -> u;
VFUN get_access(c) -> bv;

FROM coordinator:
OFUN wakeup_process(capability pc);

FUNCTIONS

VFUN h_clock() -> time; $(real clock time)
HIDDEN;
INITIALLY

time = start_up_time;

VFUN h_process_time(up) -> time; $(time process has spent
executing)

HIDDEN;
INITIALLY

time = 0;

APPENDIX B

B.35

TIMERS APPENDIX B TIMERS Page B.35

VFUN h clock timer(up) -> time; $(time when V operation to be
done)

HIDDEN;
INITIALLY

time = ?;

VFUN h process timer(up) -> time; $(V operation to be performed
"~ ~ when process up uses time)

INITIALLY
time = ?;

VFUN read_clock(c) -> time; $(real time clock)
DEFINITIONS

slave capability u IS get slave(c);
EXCEPTIONS ~

no_ability(c, read);
not_clock(u);

DERIVATION
h_clock();

VFUN read_process_timer()[pc] -> time; $(returns time used by
process pc)

DEFINITIONS
slave_capability up IS get_slave(pc);

DERIVATION
h_process_timer(up);

OFUN update_clock(c; i); $(maintains real time clock)
DEFINITIONS

slave_capability u IS get_slave(c);
EXCEPTIONS

no_ability(c, modify);
not_clock(u);
negative(i);

EFFECTS
•h_clock() = h_clock() + i;
FORALL up:

h_clock_timer(up) ~= ?
AND h_clock_timer(up) <= h_clock() + i
=> 'h_clock_timer(up) = ?
AND EFFECTS_OF wakeup_process(up);

OFUN update_process_timer(pc; i); $(maintains process timer)
DEFINITIONS

slave_capability up IS get_slave(pc);
EXCEPTIONS

no_ability(pc, modify);
negative(i);

EFFECTS
*h_process_time(up) = h_process_time(up) + i;
h_process__timer (up) ~= ?

AND h_process_timer(up) <= h_process_time(up) + i
=> 'h_process_timer(up) = ?
AND EFFECTS_OF wakeup_process(up);

OFUN set_clock__timer (i) [pc] ; $(set interval clock_timer
value)

DEFINITIONS
slave_capability up IS get_slave(pc) ;

EXCEPTIONS
negative(i);

EFFECTS
'h_clock_timer(up) = h_clock() + 1;

OFUN set_process_timer(i)[pc]; $(set process timer value)
DEFINITIONS

slave_capability up IS get_slave(pc);
EXCEPTIONS

negative(i);
EFFECTS

'h_process_timer(up) = h__process_time (up) + 1;

ENDMODULE

B.37

APPENDIX B SYSTEM I/O

MODULE system_io

TYPES

slave_capability:
{ capability u I EXISTS capability c: get__slave (c) = u };

machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);

DECLARATIONS

BOOLEAN b, wake;
VECTOR_OF BOOLEAN bv;
slave_capability u;
capability c;
capability d $(capability for an I/O device) ;
INTEGER stat, comm;
machine_word data;

PARAMETERS

INTEGER control,
device $(each of these assumes a different value from 1

access_length);

DEFINITIONS

BOOLEAN no_ability(capability c; INTEGER i)
IS get_access(c)[i] = FALSE;

BOOLEAN not_device(slave_capability u)
IS h_device_set(u) = FALSE;

BOOLEAN no_input(slave_capability u) IS h_input(u) = ?;
BOOLEAN no_output(slave_capability u) IS h_output(u) = ?;
BOOLEAN no_command(slave_capability u) IS h_command(u) = ?;
BOOLEAN too_much_input(slave__capability u) IS h_input(u) "= ?;
BOOLEAN too_much_output(slave_capability u) IS h_output(u) ~= ?;
BOOLEAN too__many_commands(slave_capability u)

IS h__command (u) ~= ?;
BOOLEAN uninitialized__device(slave_capability u)

IS h_status(u) = ?;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, write $(access rights) ;
slave_type: {interrupt__slave, processor_slave, inst_class_slave,

memory_block_slave, device_slave, clock_slave,
not_pr¥defined} $(types of predefined slaves);

slave_type predefined_slave(slave_capability u) $(type of a
predefined slave capability);

VFUN get_slave(c) -> u;
VFUN get__access (c) -> bv;

APPENDIX B

B.38

SYSTEM I/O

FROM coordinator:
INTEGER wakeup $(access right);
OFUN wakeup_process(capability pc);

FUNCTIONS

VFUN h_device_set(u) -> b; $(true if uid u designates a d<
HIDDEN;
INITIALLY

b = (predef ined__slave(u) = device_slave) ;

VFUN h__device_process (u) -> capability pc;
$(process capability for device with uid u)

HIDDEN;
INITIALLY

pc = ?;

VFUN h_input(u) -> data; $(one word of input data from I
with uid u)

HIDDEN;
INITIALLY

to data = ?;

OVFUN read_device(d) -> data; $(visible form of h_input)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, read);
not_device(u);
no_input(u) ;

EFFECTS
data = h__input(u);
•h_input(u) = ?;

OFUN write_device(d; data); $(output data to I/O device
capability d)

DEFINITIONS
slave_capability u IS get_slave(d);

EXCEPTIONS
no_abili ty(d, wri te) ;
not_device(u);
too__much_output (u) ;

EFFECTS
*h_output(u) = data;

OFUN send_command(d; comm); $(send command to I/O device
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, control);
not_device(u) ;
too_many_commands(u) ;

EFFECTS
'h command(u) = comm;

APPENDIX B

B.39

SYSTEM I/O APPENDIX B

B.40

SYSTEM I/O

VFUN h_status(u) -> stat; $(status of I/O device with uid u)
HIDDEN;
INITIALLY

stat = ?;

VFUN receive_status(d) -> stat; $(visible form of h_status)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(df read);
not_device(u);
uninitialized_device(u);

DERIVATION
h_status(u) ;

VFUN h_output(u) -> data; $(data to be output by I/O device with
uid u)

HIDDEN;
INITIALLY

data = ?;

OFUN set_device__process(d; capability pc) ; $(indicate a process for
device d)

DEFINITIONS
slave_capability u IS get_slave(d);

EXCEPTIONS
no_ability(d, control);
no_ability(pc, wakeup);
not_device(u);

EFFECTS
'h_device_process(u) = pc;

OVFUN device_receive(d) -> data; $(visible form of h_output)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

notability(d, device);
not__device (u) ;
no_output(u);

EFFECTS
data = h_output(u);
•h_output(u) = ?;

OFUN device_send(d; data); $(input data to system)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

notability(d, device);
not_device(u);
too_much_input(u) ;

EFFECTS
*h_input(u) = data;

VFUN h__command (u) -> comm; $(command for I/O device with uid u)
HIDDEN;
INITIALLY

comm = ?;

OVFUN device_command (d) -> comm; $(gets a command for a device)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, device);
not_device(u) ;
no__command (u) ;

EFFECTS
comm = h__command (u) ;
'h_command(u) - ?;

OFUN change_status(d; stat; wake); $(change the status of a
device and possibly send an
interrupt)

DEFINITIONS
slave_capability u IS get__slave (d) ;

EXCEPTIONS
no_ability(d, device);
not__device (u) ;

EFFECTS
*h_status(u) = stat;
wake AND h_device_process (u) "*= ?
=> EFFECTS_OF wakeup_process(h_device_process(u));

END MODULE

B.41

APPENDIX B PAGES

MODULE pages
TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);

DECLARATIONS

BOOLEAN b;
VECTORJDF BOOLEAN bv;
slave_capability u $(unique identifier of a page) ;
INTEGER i;
machine_word w;
capability c $(capability for a page) ;

PARAMETERS

INTEGER max_pages $(maximum number of pages in system) ,
page_size $(number of words in a page) ;

DEFINITIONS

INTEGER npages IS CARDINALITY({ u I h_page_exists(u) = TRUE });
BOOLEAN no_ability(c; i) IS get_access(c)[i] = FALSE;
BOOLEAN no_page(u) IS h_page__exists (u) = FALSE;
BOOLEAN address_bounds(i) IS i < 0 OR i > page_size;
BOOLEAN too_many() IS npages >= max__pages;
BOOLEAN not__integer(w)

IS TYPECASE w OF
INTEGER: FALSE;
capability: TRUE;
BOOLEAN: TRUE;
CHAR: TRUE;

END;
INTEGER integer__value (w)

IS TYPECASE w OF
INTEGER: w;
capability: 0;
BOOLEAN: 0;
CHAR: 0;

END;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, write, delete $(access rights) ;
machine_word zeroword $(initial value of words of storage) ;
VFUN get_slave(c) -> u;
VFUN get__access(c) -> bv;
OVFUN create_capability() -> c;

APPENDIX B

B.42

PAGES

FUNCTIONS
VFUN h_page_exists(u) -> b; $(true for uid's of currently

, existing pages)
HIDDEN;
INITIALLY

b = FALSE;

VFUN h page read(u; i) -> w; $(returns the ith element of a
HIDDEN;"
INITIALLY

w = ?;

VFUN read_page(c; i) -> w; $(external form of h_page_read)
DEFINITIONS

slave_capability u IS get_slave(c);
EXCEPTIONS

no_page(u) ;
address_bounds(i);
no_ability(c, read);

DERIVATION
h_page_read(u, i);

OFUN write_page(c; i; w); $(writes machine word w into ith
location of page)

DEFINITIONS
slave_capability u IS get_slave(c);

EXCEPTIONS
notability(c, write);
no_page(u);
address_bounds(i);

EFFECTS
*h_page_read(u, i) = w;

OVFUN conditional_write(c; i; w) -> BOOLEAN written;
$(modify word if contents were zero)

DEFINITIONS
slave_capability u IS get_slave(c);

EXCEPTIONS
no_ability(c, read);
no_ability(c, write);
no_page(u);
address_bounds(i) ;

EFFECTS
IF h_page_read(u, i) = 0
THEN written AND 'h_page_read(u, i) = w
ELSE "written;

OVFUN page_decrement__and_test (c; i.) -> b; $(try a P operat:
a specified word]

DEFINITIONS
slave_capability u IS get_slave(c);

EXCEPTIONS
no_ability(c, read);
notability(c, write);
no_page(u);

APPENDIX B

B.43

PAGES

EFFECTS
b = (integer_value(h_page_read(u, i)) < 1);
1 h_page_read (11, i) = integer__value (h_page_read (u, i)) - 1;

OVFUN page_increment_and_test (c; i) -> b; $(do a V operation on a
specified word)

DEFINITIONS
slave_capability u IS get_slave(c) ;

EXCEPTIONS
notability(c, read);
notability(c, write);
no_page(u);
address__bounds (i) ;
not_integer (h_page_read (u, i));

EFFECTS
b = (integer_value (h_page_read (u, i)) < 0);
'h_page_read(u, i) = integer_value(h_page_read(u, i)) + 1;

OVFUN create_page() -> c; $(create a new page)
DEFINITIONS

slave__capability u IS get_slave (c) ;
EXCEPTIONS

too_many();
EFFECTS

c = EFFECTS_OF create_capability();
•h__page_exists(u) = TRUE;
FORALL INTEGER i INSET { INTEGER j | j >= 0

AND j <= page_size }:
*h_page_read(u, i) = zeroword;

OFUN delete_page(c); $(delete a page)
DEFINITIONS

slave_capability u IS get_slave(c);
EXCEPTIONS

no_ability(c, delete);
no_page(u);

EFFECTS
•h_page_exists(u) = FALSE;
FORALL INTEGER i INSET { INTEGER j | j >= 0

AND j <= page_size }:
'h_page__read (u, i) = ?;

END MODULE

B.44

APPENDIX B SEGMENTS

MODULE segments

TYPES

access_string:
{ VECTOR_OF BOOLEAN as I LENGTH(as) = access_string_length };
slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);
permit_string:
{ VECTOR_OF BOOLEAN ps I LENGTH(ps) = n_store_permissions };

character__string: VECTOR_OF CHAR;

PARAMETERS

INTEGER max_seg_size $(MAXIMUM SEGMENT SIZE) ;

DEFINITIONS
BOOLEAN no_seg(slave_capability u) IS h_seg_exists(u) = FALSE;
BOOLEAN address_bounds(slave_capability u; INTEGER i)

IS h_read(u, i) = ?;
BOOLEAN bad_size(INTEGER i) IS i < 0 OR i > max_seg_size;
BOOLEAN no_ability(capability s; INTEGER i)

IS NOT get_access(s)[i] = TRUE;
character_string type_id(machine_word w)

IS TYPECASE w OF
capabi1ity:"capability" ;
INTEGER:"INTEGER";
BOOLEAN:"BOOLEAN";
CHAR:"CHAR";

END;
BOOLEAN not_integer(machine_word w)

IS NOT type_id(w) ="INTEGER";
BOOLEAN not_writeable(slave_capability u; machine_word w)

IS TYPECASE w OF
capability:

EXISTS INTEGER i I 0 < i AND i < n_store_permissions:
"* get_access (w) [i] AND ~ h_store_permits (u) [i] ;

INTEGER: FAI^SE;
BOOLEAN: FALSE;
CHAR: FALSE;

END;
INTEGER integer_value(machine_word w)

IS TYPECASE w OF
INTEGER: w;
BOOLEAN: 0;
CHAR: 0;
capability: 0;

END;
INTEGER seg_size(slave_capability u)

IS CARDINALITY({INTEGER i | h read(u, i) ~= ?});

APPENDIX B

EXTERNALREFS

B.45

SEGMENTS APPENDIX B

B.46

SEGMENTS

FROM capabilities:
capability: DESIGNATOR;
INTEGER access_string_length $(number of potential access rights)
;
INTEGER n_store_permissions $(number of store permissions must be

less than access string length);
INTEGER read, write, delete $(access rights) ;
machine_word zeroword $(initial value of a word of storage) ;
OVFUN create_restricted_cap(access_string as) -> capability s;
VFUN get_access(capability s) -> access_string as;
VFUN get_slave(capability s) -> capability u;

FUNCTIONS

VFUN h_seg_exists(slave_capability u) -> BOOLEAN b;
$(TRUE FOR UID'S OF CURRENTLY EXISTING SEGMENTS)

HIDDEN;
INITIALLY

b = FALSE;

VFUN seg_exists(capability s) -> BOOLEAN b; $(EXTERNAL FORM OF
H_SEG_EXISTS)

DERIVATION
h_seg_exists (get_slave(s));

VFUN segment_size(capability s) -> INTEGER j; $(EXTERNALFORM OF
H_SEG_SIZE U)

DEFINITIONS
slave_capability u IS get_slave(s);

EXCEPTIONS
no_seg(u);

DERIVATION
seg_size(u) ;

VFUN h_store_permits(slave_capability u) -> permit__string ps;
$(store permits for segment with slave u)

HIDDEN;
INITIALLY

ps = ?;

VFUN h_read(slave_capability u; INTEGER i) -> machine_word w;
$(RETURNS THE ITH ELEMENT)

HIDDEN;
INITIALLY

w = ?;

VFUN h_procedure (slave__capabil ity u) -> capability s;
$(capability for segment with slave u)

HIDDEN;
INITIALLY

s = ?;

VFUN read_segment(capability s; INTEGER i) -> machine_word w;
$ (EXTERNAL FORM OF HREAD)

DEFINITIONS
slave_capability u IS get_slave(s) ;

EXCEPTIONS
no_ability(s, read);
no_seg(u) ;
address_bounds(u, i);

DERIVATION
h_read(u, i);

OVFUN segment_create (permit__string ps) -> capability s;
$(CREATES A NEW SEGMENT OF SIZE J)

DEFINITIONS
slave_capability u IS get_slave(s);
access_string as

IS VECTOR(FOR i FROM 1 TO access_string_length
: IF i <= n_store_permissions

THEN - ps[i]
ELSE TRUE);

EXCEPTIONS
RESOURCE_ERROR;

EFFECTS
s = EFFECTS_OF create_restricted_cap(as) ;
'h_seg__exists (u) = TRUE;
1h_store_permits(u) = ps;
'h_procedure(u) = s;

OFUN segment_delete(capability s); $(DELETES SEGMENT S)
DEFINITIONS

slave_capability u IS get_slave(s);
EXCEPTIONS

no_ability(sf delete);
no_seg(u);

EFFECTS
•h_seg_exists(u) = FALSE;
FORALL INTEGER i: 'h_read(u, i) = ?;

OFUN write segment (capability s; INTEGER i; machine__word w) ;
"$"(WRITES MACHINE WORD W INTO THE ITH LOCATION OF SEGME
S)

DEFINITIONS
slave_capability u IS get_slave(s);

EXCEPTIONS
notability(s, write);
no_seg(u);
bad_size(i);
not_writeable(uf w);
RESOURCE_ERROR;

EFFECTS
'h_read(u, i) = w;
seg_size(u) < i
=> (FORALL INTEGER j | seg_size(u)-1 < j AND j < i:

fh_read(u, j) = zeroword);

APPENDIX B

B.47

SEGMENTS APPENDIX B

B.48

SEGMENTS

OVFUN conditional_write(capability s; INTEGER i; machine_word w)
-> BOOLEAN written;

$(modify contents of a word if its contents were zero)
DEFINITIONS

slave_capability u IS get_slave(s) ;
EXCEPTIONS

no_abi1i ty(s, r ead);
no_ability(s, write);
no_seg(u);
address_bounds(u, i);
not_writeable(u, w) ;

EFFECTS
IF h_read(u, i) = 0
THEN written AND 'h_read(u, i) = w
ELSE "written;

OVFUN destructive_read(capability s; INTEGER i) -> machine_word w;
$(Read a word from a segment and destroy the contents of

the word)
DEFINITIONS

slave_capability u IS get_slave(s);
EXCEPTIONS

no_ability(s, read);
no_ability(s, write);
no_seg(u) ;
address_bounds(u, i);

EFFECTS
w = h_read(u, i);
IF i = seg_size(u)-1
THEN 'h_read(u, i) = ?
ELSE 'h_read(u, i) = zeroword;

OFUN truncate_segment(capability s; INTEGER i);
$(Reduce the size of the given segment to the indicated size

DEFINITIONS
slave_capability u IS get_slave(s);

EXCEPTIONS
no_ability(s, write);
no_seg(u);
address_bounds(u, i-1);

EFFECTS
FORALL INTEGER j I j >= i: 'h_read(u, j) = ?;

OVFUN decrement_and_test(capability s; INTEGER i) -> BOOLEAN b;
$(try a P operation on a specified word)

DEFINITIONS
slave__capability u IS get__slave (s) ;

EXCEPTIONS
no_ability(s, read);
no_ability(s, write);
no__seg (u) ;
address_bounds(u, i);
not_integer(h_read(u, i));

PPPrTQ

OVFUN increment_and_test(capability s; INTEGER i) -> BOOLEAN b;
$(try a V operation on a specified word)

DEFINITIONS
slave_capability u IS get_slave(s);

EXCEPTIONS
no_ability(s, read);
no_ability(s, write);
no_seg(u);
address_bounds(u, i);
not_integer(h_read(u, i));

EFFECTS
b =(integer_value(h_read(u, i)) < 0);
'h_read(uf i) = integer_value(h_read(u, i)) + 1 ;

VFUN h_procedure_entries(slave_capability u) -> INTEGER i;
$(the number of entries in procedure with slave u)

HIDDEN;
INITIALLY

VFUN procedure_entries(capability p) -> INTEGER i;
$(the number of entries in procedure with capability

DEFINITIONS
slave*_capability u IS get_slave (p) ;

EXCEPTIONS
no_ability(P/ read);
no_seg(u);

DERIVATION
h_procedure_entries(u) ;

OFUN declare_procedure_entries(capability s; INTEGER i);
$(declare a new procedure p with procedure segment s
i entries)

DEFINITIONS
slave_capability u IS get_slave(s);

EXCEPTIONS
no_ability(s, write);
no_seg(u);

EFFECTS
*h_procedure_entries(u) = i;

END MODULE

B.49 B.50

APPENDIX B WINDOWS

MODULE windows

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
machine_word: ONE_OF(INTEGER, capability, BOOLEAN, CHAR);
offset: {INTEGER i | 0 <= i AND i <= max_offset};
address:
STRUCT OF(capability add_cap; offset add_offset) $(address of a

word of storage);
access_jstring:
{VECTOR_OF BOOLEAN as I LENGTH (as) = access_string_length} ;
permit_string:
{VECTOR_OF BOOLEAN ps j LENGTH(ps) = n_store_permissions};

PARAMETERS

INTEGER max_depth $(the maximum depth of nesting windows);
INTEGER examine $(access right to examine base information of window);

DEFINITIONS

BOOLEAN no__ability(capability c; INTEGER i) IS get_access (c) [i] ~= TRUE;
address get_base(slave_capability u; INTEGER o, mode, depth)

IS IF depth = 0
THEN ?
ELSE IF h_seg_exists(u)

THEN IF h_read(u, o) = ?
THEN ?
ELSE STRUCT(u, o)

ELSE IF h_base_object(u) = ?
THEN ?
ELSE IF h__window_length(u) <= o

OR no_ability(h_base_object(u) , mode)
THEN ?
ELSE get_base(get_slave(h_base_object(u)),

h_base_offset(u) + o,
mode,
depth - 1);

BOOLEAN bad_permits(permit_string ps; machine_word w)
IS TYPECASE w OF

capability:
EXISTS INTEGER i I 0 < i AND i < n_store_pemissions:
~get_access(w)[i] AND ~ps[i];

INTEGER: FALSE;
BOOLEAN: FALSE;
CHAR: FALSE;
END;

BOOLEAN no_window(slave_capability u)
IS h_base_object(u) = ?;

APPENDIX B WINDOWS

EXTERNALREFS
FROM capabilities:

capability: DESIGNATOR;
INTEGER read, write, delete, modify $(access rights) ;
INTEGER n_store_permissions, access_string_length;
VFUN get__slave(capability c) -> slave_capabil ity u;
VFUN get_access(capability c) -> VECTOR_OF BOOLEAN bv;
OVFUN create_restricted_cap(access_string as) -> capability c;

FROM registers:
INTEGER max_offset $(maximum offset allowed in a register);

FROM segments:
VFUN h_read(slave_capability u; INTEGER i) -> machine_word w;
VFUN h__seg_exists(slave_capability u) -> BOOLEAN b;
VFUN h_store_permits(slave_capability u) -> permit_string ps;
OFUN write_segment(capability s; INTEGER i; machine_word w);

FUNCTIONS

VFUN h_base_object(slave_capability u) -> capability c;
$(capability for object to which window points)

HIDDEN;
INITIALLY

c = ?;

VFUN h_base_offset(slave_capability u) -> INTEGER o;
$(offset of beginning of window in base object)

HIDDEN;
INITIALLY

0 = ?;

VFUN h_window_length(slave_capability u) -> INTEGER 1;
$(length of window)

HIDDEN;
INITIALLY

1 = ?;

VFUN h_window_permits(slave_capability u) -> permit_string ps;
$(store permits for window u)

HIDDEN;
INITIALLY

ps = ?;

VFUN read_window(capability s; offset o) -> machine_word w;
$(Read a word from a window)

DEFINITIONS
slave_capability u IS get_slave(s);
address base_address IS get_base(u, o, read, max_depth);

EXCEPTIONS
no_ability(s, read);
base_address = ?;

DERIVATION
h_read (base_address .add_cap, base__address.add_of f s e t) ;

B.51 B.52

APPENDIX B WINDOWS APPENDIX B WINDOWS

OFUN write window(capability s; offset o; machine word w); OFUN modify_window(capability window; capability base_object;
$(Modify a word in a window) " offset base_offset; offset window_length);

DEFINITIONS $ (change the meaning of a window)
slave capability u IS get slave(s); DEFINITIONS
address base address IS get base(u, o, write, max_depth); slave_capability u IS get_slave(window);

EXCEPTIONS ~ ~ EXCEPTIONS
no_ability(s, write); no_ability(window, modify);
base address = ?; no_window(u);
bad_permits(h_store_permits(base_address.add_cap) , w) ; bad_permits(h_window_permits(u), base^object);

EFFECTS EFFECTS
EFFECTSJDF write_segment(base_address.add_cap, 'h_base_object(u) = base_object;

base_address.add_offset, •h_base_offset(u) = base_offset;
w); 'h_window_length(u) = window_length;

OVFUN window_create(capability base_object; offset base_offset; END_MODULE
offset window_length; permit_string ps)
-> capability window;

$(create a new window)
DEFINITIONS

slave_capability u IS get_slave(window);
access_string as

IS VECTOR (FOR i FROM 1 TO access_string__length:
IF i <= n_store_permissions
THEN ps[i]
ELSE TRUE);

EXCEPTIONS
bad_permits(ps, base_object);
RESOURCE_ERROR;

EFFECTS
window = EFFECTS_OF create_restricted_cap(as);
'h_base_object(u) = base_object;
1h_base_offset(u) = base_offset;
1 h_window_length (u) = window__length;
'h_window__permits (u) = ps;

OFUN window_delete(capability window);
$(delete an existing window)

DEFINITIONS
slave_capability u IS get_slave(window);

EXCEPTIONS
no_ability(window, delete);
no_window(u) ;

EFFECTS
1 h__base_object (u) = ?;
•h_base_offset(u) = ?;
' h _ w i n d o w _ l e n g t h (u) = ?;

VFUN examine_window(capability window)
-> STRUCT_OF(capability bo; offset bof; offset 1) window_info;

$ (get data about a window)
DEFINITIONS

slave_capabil ity u IS get__slave (window) ;
EXCEPTIONS

no_ability(window, examine);
no_window(u);

nRRTVATTHN

APPENDIX B EXTENDED TYPES APPENDIX B EXTENDED TYPES

MODULE extended_types
TYPES

access_string:
{ VECTOR_OF BOOLEAN as | LENGTH (as) = access_string_length };
machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);
slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
permit_string:
{ VECTORJ3F BOOLEAN ps ! LENGTH(ps) = n_store_pe m i s s i o n s };

DECLARATIONS

slave_capability ut, u;
capability t;
BOOLEAN b;

PARAMETERS

BOOLEAN type_type_slave(ut) $(true if ut is for type type),
segment_type_slave(ut) $ (true if ut is for segment type);

INTEGER max_impl_caps $(maximum number of implementation
capabilities in the representation of an
object);

INTEGER create, manage, interrogate $(access rights) ,
add_rep, delete_rep;

DEFINITIONS

BOOLEAN bad_type_manager(ut) IS ~ h_is_type_manager (ut) ;
BOOLEAN invalid_object(slave_capability u, ul)

IS ~ h__is_type (u, ul);
BOOLEAN invalid_impl_object(slave_capability u)

IS ~ h__is_type_manager (u) AND ~segment_type_slave(u);
BOOLEAN no_ability(capability c; INTEGER i)

IS get_access(c)[i] ~= TRUE;
BOOLEAN orig_impl_objs__present (u)

IS EXISTS INTEGER i: h_original(u)[i] = TRUE;
BOOLEAN bad_element(INTEGER i; ut)

IS i < 1 OR i > h_impl_length(ut);
BOOLEAN exc_original(u; INTEGER i) IS h__orig inal (u) [i] = TRUE;
BOOLEAN not_original(u; INTEGER i) IS h_original(u)[i] = FALSE;
BOOLEAN object_there_already(u; INTEGER i)

IS h_impl__cap(u) [i] ~= ?;
BOOLEAN no_impl_obj(u; INTEGER i) IS h_impl_cap(u) [i] = ?;
access_string no_delete_as

IS VECTOR(FOR i FROM 1 TO access_string_length
: IF i = delete THEN FALSE ELSE TRUE);

BOOLEAN not__writeable(u; capability c)
IS EXISTS INTEGER i | 0 < i AND i <= n_store__permissions:

~ get_access(c)[i] AND ~ h_permits(u)[i];
VECTOR_OF BOOLEAN insert_boolean(VECTOR_OF BOOLEAN bv;

INTEGER i; BOOLEAN b)
IS VECTOR (FOR j FROM 1

TO (IF LENGTH(bv) >= i THEN LENGTH(bv) ELSE i):
IF j = i THEN b
ELSE IF j <= LENGTH(bv) THEN bv[j] ELSE ?)

$(insert an element into a boolean vector);
VECTOR OF capability insert_capability(VECTOR_OF capability cv;

INTEGER i; capability c)
IS VECTOR(FOR j FROM 1

TO (IF LENGTH(cv) >= i THEN LENGTH(cv) ELSE i):
IF j = i THEN c
ELSE IF j <= LENGTH(cv) THEN cv[j] ELSE ?)

$(insert an element into capability vector);

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER delete $(access right) ;
INTEGER access_string__length $(potential number of access rights);
INTEGER n__store_permissions $(number of store limitations) ;
OVFUN create_capability() -> capability s;
OVFUN create_restricted_cap(permit_string ps) -> capability s;
VFUN get__access (capability s) -> access_string as;
VFUN restrict_access(capability s; access_string as)

-> capability si;
VFUN get_slave(capability s) -> slave_capability si;

FROM segments:
OVFUN segment_create(permit_string ps) -> capability s;
OFUN segment_delete(capability s) ;
VFUN h_seg__exists(slave_capability u) -> BOOLEAN b;

FUNCTIONS

VFUN h_is_type_manager(ut) -> b; $(true if ut is a type manager)
HIDDEN;
INITIALLY

b = FALSE;

VFUN is_type_manager(t) -> b; $(visible version of
h_is_type_manager)

EXCEPTIONS ~
no_ability(t, interrogate);

DERIVATION
h_is_type__manager (get_slave (t));

VFUN h_is_type(u; ut) -> b; $(true iff the type of extended-type
object u is ut)

HIDDEN;
INITIALLY

b = FALSE;

VFUN is_type(capability c; capability t) -> b; $(external form of
h_is_type)

DEFINITIONS
slave_capability ut IS get__slave (t) ;
slave_capability ul IS get_slave(c);

EXCEPTIONS
no_ability(t, interrogate);

DERIVATION
h_is_type(ul, ut);

APPENDIX B

B.55

EXTENDED TYPES APPENDIX B EXTENDED TYPES

VFUN h impl_cap(u) -> VECTOR_OF capability cv;
$(RETURNS THE TUPLE OF CAPABILITIES IMPLEMENTING THE
EXTENDED-TYPE OBJECT U)

HIDDEN;
INITIALLY

cv = ?;

VFUN impl_cap(capability c2; capability t; INTEGER i)
-> capability cl; $(EXTERNAL FORM OF H_IMPL_CAP U —

T IS THE TYPE manageR'S capability)
DEFINITIONS

slave_capability ut IS get_slave(t);
slave_capability u IS get_slave(c2);

EXCEPTIONS
no_ability(t, manage);
invalid_object(u, ut);
bad_element(i, ut);
no_impl_obj(u, i);

DERIVATION
IF h _ o r i g i n a l (u) [i]

THEN restrict_access(h__impl_cap(u) [i] , no_delete_as)
ELSE h_impl_cap(u) [i] ;

no_impl_obj(u, i) ;
DERIVATION

h _ o r i g i n a l (u) [i] ;

VFUN h_permits(u) -> permit_string ps;

HIDDEN;
INITIALLY

ps = ?;

$(store limitations for
object with slave u and
type ut)

VFUN h_impl_length(ut) -> INTEGER i;

HIDDEN;
INITIALLY

i = ?;

$(returns the length of the
vector of implementation
capabilities)

VFUN impl_length(t) -> INTEGER i; $(visible version of
h_impl_length)

DEFINITIONS
slave_capability ut IS get_slave(t);

EXCEPTIONS
no_ability(t, interrogate);
bad__type_manager (ut) ;

DERIVATION
h_impl_length(ut);

VFUN h_original(u) -> VECTOR_OF BOOLEAN bv;
$(states whether a representation object has been
created with a create_impl_object call on the
extended-type object u)

HIDDEN;
INITIALLY

bv = ?;

VFUN original(capability c; capability t; INTEGER i) -> BOOLEAN b;
$(external form of h_original)

DEFINITIONS
slave_capability ut IS get_slave(t);
slave_capability u IS get_slave(c);

EXCEPTIONS
notability(t, manage);
invalid_object(u, ut) ;
bad element(i, ut) ;

OVFUN create_type(capability t; INTEGER i) -> capability c;
$(CREATES an extended type type)

EXCEPTIONS
~type_type_slave(get_slave(t));
i < 1 OR i > max__impl_caps;
notability(t, create);
RESOURCE_ERROR;

EFFECTS
c = EFFECTS_OF create_capability();
1 h_is_type_manager (get__slave (c)) = TRUE;
1 h_impl_length (get__slave (c)) = i;

OVFUN object_create(capability t; permit_string ps)
-> capability c;

$(CREATES AN EXTENDED-TYPE OBJECT OF TYPE THE SAME AS
GETJJID T, RETURNS capability C, AND LEAVES THE OBJECT
UNINITIALIZED)

DEFINITIONS
slave__capability ut IS get_slave (t) ;
slave__capability u IS get_slave(c) ;

EXCEPTIONS
notability(t, create);
bad_type_manager(ut);
RESOURCE_ERROR;

EFFECTS
c = EFFECTS_OF create_restricted_cap(

VECTOR(FOR i FROM 1 TO access_string_length:
IF i <= n_store_permissions THEN ~ ps[i] ELSE TRUE));

•h_is__type (u, ut) = TRUE;
•h_original(u) = VECTOR ();
•h_impl_cap(u) = VECTOR ();
1 h__permits (u) = ps;

OFUN object_delete(capability c, t);
$(deletes AN OBJECT FROM THE EXTENDED-TYPE LEVEL, ITS
ORIGINAL REPRESENTATION OBJECTS HAVING PREVIOUSLY BEEN
deleteD;)

DEFINITIONS
slave_capability u IS get_slave(c);
slave_capability ut IS get_slave(t);

EXCEPTIONS
no_ability(t, delete);
invalid_object(u, ut) ;
orig_impl_objs_present(u);

EFFECTS
'h_is_type(u, ut) = FALSE;

APPENDIX B

B.57

EXTENDED TYPES APPENDIX B EXTENDED TYPES

lh_impl_cap(u) = ?;
1h_original(u) = ?;

OVFUN create_impl_obj(capability c; capability t;
INTEGER i; capability tl) -> capability cl;

$(creates an implementation object at position i of
implementation vector for object c. tl is the
type-creation capability for the type of the object
being created)

DEFINITIONS
slave_capability ul IS get_slave(tl);
slave_capability ut IS get_slave(t);
slave_capability u IS get_slave(c) ;

EXCEPTIONS
no_ability(t, manage);
notability(c, add_rep);
invalid_object(u, ut);
bad__element(i, ut) ;
object_there_already(u, i);
inval id__impl_object (ul);
no_ability(tl, create);
RESOURCE__ERROR ;

EFFECTS
EXISTS capability c2:

(IF segment_type_slave(ul)
THEN c2 = EFFECTS__OF segment_create(h_permits(u))
ELSE(c2 = EFFECTS_OF create_restricted_cap(

VECTOR(FOR i FROM 1 TO access_string_length:
IF i <= n_store_permissions
THEN - h_permits(u)[i] ELSE TRUE))

AND lh_is_type(get_slave(c2), ul) = TRUE
AND Ih_original(get_slave(c2)) =VECTOR()

AND fh_impl_cap(get_slave(c2)) = VECTOR()
AND lh_permits(get_slave(c2)) = h_permits(u)))

AND('h_impl_cap(u)
= insert_capability(h_impl_cap(u), i, c2))

AND(fh__original(u)
= insert_boolean(h_original (u) , i, TRUE))

AND(cl = restrict_access(c2, no_delete_as));

OFUN insert_impl_obj(capability c; capability t;
INTEGER i; capability cl);

$(inserts the capability cl to be get_impl_cap (c,t) (i)]
DEFINITIONS

slave_capability ut IS get_slave(t);
slave_capability u IS get_slave(c);

EXCEPTIONS
no_ability(t, manage);
no_ability(c, add_rep);
invalid_object(u, ut);
bad__element (i , ut) ;
object_there_already(u, i);
not_writeable(u, cl);

EFFECTS
'h_impl_cap(u) = insert__capability (h_impl_cap (u) , i, cl);
'h_original(u) = insert_boolean(h_original(u), i, FALSE);

OFUN delete_impl_cap(capability c; capability t; INTEGER i);
$(deletes the ith element of the implementation vector
of c, but only if the object is not original)

DEFINITIONS
slave__capability ut IS get_slave (t) ;
slave__capability u IS get_slave(c);

EXCEPTIONS
notability(t, manage);
no_ability (c, delete__rep) ;
inval id__object (u, ut) ;
bad_element(i, ut);
no_impl_obj(u, i);
exc__original (u, i);

EFFECTS
*h_impl_cap(u) = insert_capability(h_impl_cap(u), i, ?);
fh_original(u) = insert_boolean(h_original(u), i, ?);

OFUN delete_impl_obj(capability c; capability t;
INTEGER i; capability tl);

$(deletes the object and entry for the ith
implementation object of capability c. object must be
original)

DEFINITIONS
slave_capability ut IS get_slave(t);
slave_capability u IS get_slave(c) ;
slave_capability x IS h_impl_cap(u)[i];
slave_capability ux IS get_slave(x);
slave_capability utl IS get_slave(tl);

EXCEPTIONS
no_ability(t, manage);
no_ability(c, delete_rep);
invalid_object(uf ut) ;
bad_element(i, ut);
no_impl__obj (u, i);
not_original(u, i);
invalid_object(uxf utl);
orig__impl_objs_present (ux) ;

EFFECTS
IF h_seg_exists(ux)
THEN EFFECTS_OF segment_delete(x)
ELSE('h__is_type (ux, utl) = FALSE

AND lh_impl_cap(ux) = ?
AND 'h_original(ux) = ?);

•h_impl_cap(u) = insert_capability(h__impl_cap(u) , i, ?);
'h^original (u) = insert__boolean (h_or iginal (u) , i, ?);

END MODULE

B.59

APPENDIX B DIRECTORIES

MODULE directories

TYPES

access_string:
{ VECTOR_OF BOOLEAN as | LENGTH (as) = access_string_length };
character_string: VECTOR_OF CHAR;
machine_word: ONEJDF(capability, INTEGER, CHAR, BOOLEAN);
entry__name:
{ character_string cs I LENGTH(cs) <= entry_name_length };
slave__capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
permit_string:
{ VECTOR_OF BOOLEAN ps I LENGTH (ps) = n__store_permissions };

PARAMETERS

INTEGER entry_name_length $(number of machine words for an entry
name) ;

BOOLEAN root_slave(slave_capability u)
$(true if u is for the root directory) ;

INTEGER remove, add entries, load, list, add_locks;

APPENDIX B

B.60

DIRECTORIES

DEFINITIONS

FALSE;BOOLEAN no_dir (slave_capability u) IS h__valid_dir (u)
BOOLEAN no_entry(slave_capability u; entry_name n)

IS h_get_cap(u, n) = ?;
BOOLEAN no_ability(capability c; INTEGER i)

IS NOT get_access(c)[i] = TRUE;
BOOLEAN name_used (slave__capability u; entry_name n)

IS NOT h_get_cap(u, n) = ?;
BOOLEAN not_addable(slave_capability u; capability c)

IS EXISTS INTEGER i I 0 < i AND i <= n_store_permissions:
~ get_access(c) [i] AND ~ h__dir_permits (u) [i] ;

BOOLEAN directory_occupied(slave__capability u)
IS EXISTS entry_name n: h_get_cap(u, n) ~= ?;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER n_store_permissions $(number of store limitations) ;
INTEGER delete $(access right) ;
INTEGER access_string_length;
OVFUN create_restricted_cap(permit_string ps) -> capability c;
VFUN get_access(capability s) -> access_string as;
VFUN get_slave(capability s) -> slave_capability si;

FUNCTIONS

VFUN h_valid_dir(slave_capability u) -> BOOLEAN b;
$(true for all directories currently in existence)

HIDDEN;
INITIALLY

VFUN valid__dir (capability d) -> BOOLEAN b; $(external form of
h_valid_dir)

DERIVATION
h_valid_dir(get_slave(d));

VFUN h_get cap(slave_capability u; entry_name n) -> capability c;
^(returns the capability associated with the name n in
the directory u)

HIDDEN;
INITIALLY

c = ?;

VFUN h_locks (slave__capability u; entry__name n)
-> SET_OF slave_capability Is; $(set of locks for

entry)
HIDDEN;
INITIALLY

Is = { };

VFUN get_locks(capability d; entry_name n)
-> SET_OF slave_capability Is; $(returns locks for

entry)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, load);
no_dir(u);
no_entry(u, n) ;

DERIVATION
h_locks(u, n) ;

VFUN get_cap(capability d; entry_name n; capability k)
-> capability c; $(external form of h__get_cap)

DEFINITIONS
slave_capability u IS get_slave(d);

EXCEPTIONS
no_ability(d, load);
no_dir(u);
no_entry(u, n);
~(get_slave(k) INSET h_locks(u, n));

DERIVATION
h_get_cap(u, n) ;

VFUN dir(capability d) -> SET_OF entry_name n;
DEFINITIONS

slave_capability u IS get_slave(d);
SET_OF entry_name s

IS { entry__name n I h_get_cap(u, n) ~= ? };
EXCEPTIONS

no_dir(u) ;
no_ability(d, list);

DERIVATION
s;

APPENDIX B

B.61

DIRECTORIES

VFUN dir_size(capability d) -> INTEGER i; $(number of entries in
directory d)

EXCEPTIONS
no_dir(get_slave(d));

DERIVATION
CARDINALITY ({ entry name n I NOT h get cap(get slave(d), n)

- ? 1)7

VFUN h__distinguished (slave_capability u; entry_name n)
-> BOOLEAN b; $(true if given entry is a

distinguished entry)
HIDDEN;
INITIALLY

b = ?;

VFUN h_dir permits(slave_capability u) -> permit__string ps;
^(store permits for directory with slave u)

HIDDEN;
INITIALLY

ps = (IF root__slave(u)
THEN VECTOR(FOR i FROM 1 TO n_store_permissions: FALSE)
ELSE ?);

OVFUN directory_create(permit_string ps) -> capability d;
$(returns the capability for an empty, newly created
directory)

EXCEPTIONS
RESOURCEJ2RROR;

EFFECTS
d = EFFECTS_OF create_restricted_cap(

VECTOR(FOR i FROM 1 TO access_string_length:
IF i <= n_store_permissions THEN ~ ps[i] ELSE TRUE));

•h_valid_dir(get_slave(d)) =TRUE;
'h_dir_permits (get_slave(d)) = ps;

OFUN directory_delete(capability d) ; $(to delete directory d)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

notability(d, delete);
no_dir(u);
directory_occupied(u) ;

EFFECTS
fh_valid_dir(u) = FALSE;

OFUN add__entry(capability d; entry_name n; capability c);
$(to add entry (n,c) to directory d)

DEFINITIONS
slave__capability u IS get_slave (d) ;

EXCEPTIONS
no_ability(d, add_entries);
RESOURCE_ERROR;
no_dir(u);
name_used(u, n);
not addable(u, c);

B.62

APPENDIX B DIRECTORIES

'h_distinguished(u, n) = FALSE;

OFUN remove_entry(capability d; entry_name n); $(to remove entry
n from directory d

DEFINITIONS
slave_capability u IS get_slave(d);

EXCEPTIONS
no_dir(u) ;
no_entry(u, n) ;
no__abil ity (d, remove);
h_distinguished(ur n) = TRUE;

EFFECTS
*h_get_cap(u, n) = ?;

OFUN add_distinguished_entry(capability d; entry_name n;
capability c) ;

$(add distinguished entry (n, c) to directory d)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no__ability (d, add_entr ies) ;
no_dir (u) ;
name_used(u, n) ;
not_addable(u, c);
RESOURCE_ERROR;

EFFECTS
'h_get_cap(u, n) = c;
fh_distinguished(u, n) = TRUE;

OFUN remove_distinguished_entry(capability d; entry__name n);
$(remove distinguished entry n from directory d)

DEFINITIONS
slave_capability u IS get_slave(d);

EXCEPTIONS
no_ability(d, remove);
no_dir(u);
no_entry(u, n);
h_distinguished(u, n) = FALSE;

EFFECTS
fh_get_cap(u, n) = ?;

OFUN add_lock(capability d; entry_name n; capability k);
$ (add lock to the entry)

DEFINITIONS
slave_capability u IS get_slave(d);

EXCEPTIONS
no_ability (d, add__locks) ;
no_dir (u) ;
no_entry(u, n);
not_addable(u, k) ;
RESOURCE_ERROR;

EFFECTS
fh_locks(u, n) = h_locks(u, n) UNION { get_slave(k) };

APPENDIX B

B.63

DIRECTORIES

OFUN remove_lock(capability d; entry_name n; capability k);
$(remove lock k from the entry (d, n))

DEFINITIONS
slave_capability u IS get__slave(d) ;

EXCEPTIONS
notability(d, remove);
no_dir(u) ;
no_entry(u, n) ;

EFFECTS
fh_locks(u, n) = h_locks(u, n) DIFF { get_slave(k) };

END MODULE

B.64

APPENDIX B USER OBJECTS

MODULE user_objects
TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
offset:
{INTEGER i | 0 <= i AND i <= max_offset} ;
permit_string:
{ VECTOR_OF BOOLEAN ps I LENGTH(ps) = n_store_permissions };
character_string: VECTOR_OF CHAR;
entry__name:
{ character_string n I LENGTH (n) <= entry_name_length };
access_string:
{ VECTOR_OF BOOLEAN as I LENGTH (as) = access_string_length };

DEFINITIONS

capability dummy_cap(permit_string ps)
IS restrict_access(null,

VECTOR(FOR i FROM 1 TO access_string_length
: IF i <= n_store_permissions

THEN ~ ps[i]
ELSE TRUE));

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER n_store_permissions $(number of store limitations) ;
INTEGER access_string_length;
capability null $(capability for nothing) ;
VFUN get_slave(capability c) -> slave_capability u;
VFUN restrict_access(capability c; access_string as)

-> capability cl;

FROM registers:
INTEGER max_offset;

FROM segments:
OVFUN segment_create(permit_string ps) -> capability s;
OFUN segment_delete(capability s);

FROM windows:
OVFUN window_create (capability base__object; offset base_offset;

offset window_length;permit_string ps)
-> capability window;

OFUN window_delete(capability window);

FROM extended_types:
OVFUN object_create(capability t; permit_string ps)

-> capability c;
OFUN object_delete(capability c, t);

APPENDIX B USER OBJECTS

FROM directories:
INTEGER entry__name__length $(maximum number of characters in an

entry name);
VFUN h_get_cap(slave_capability u; entry_name n) -> capability c;
OVFUN directory_create(permit_string ps) -> capability d;
OFUN directory_delete(capability d);
OFUN add_distinguished_entry(capability d;

entry_name n;
capability c);

OFUN remove_distinguished__entry(capability d; entry__name n) ;

FUNCTIONS

OVFUN create_segment(capabi l i ty d; entry__name n;
permit_s t r ing ps) -> capab i l i t y s ;

$(crea te a segment with a d is t inguished d i r ec to ry entry)
EXCEPTIONS

EXCEPT I ONSJDF segment j r r e a t e (ps) ;
EXCEPTIONS_OF addj3is t inguished_entry (d, n, dummy_cap(ps)) ;

EFFECTS
s = EFFECTS_OF segment_create(ps) ;
EFFECTS_OF add_dis t inguished_entry(d, nf s) ;

OFUN delete_segment(capabi l i ty d; entry_name n) ;
$(de le te a segment and i t s d i s t inguished d i r e c t o r y entry)

EXCEPTIONS
EXCEPTIONSJDF removejHst inguished_entry(d, n) ;
EXCEPTIONS_OF segmentjJelete (h_get_cap (get_slave (d) , n)) ;

EFFECTS
EFFECTSJ)F removejUst inguished_entry(d, n) ;
EFFECTSJ5F segment_delete (h_get_cap (get_slave (d) , n)) ;

OVFUN create_window(capabili ty d; entry_name n;
capability base_object; offset base_offset;
offset window_length; permit_string ps)

-> capability window;
$(create a window for some base object)

EXCEPTIONS
EXCEPTIONS_OF window_create(base_object,

base_offse t ,
window_length,
p s) ;

EXCEPTIONS_OF addj3istinguished_entry(d, n, dummy_cap(ps));
EFFECTS

window = EFFECTS_OF window_create(base_object,
base_offset,
window_length,
ps);

EFFECTS_OF add_distinguished_entry(d, n, window);

OFUN delete_window(capability d; entry_name n; capability window);
$(delete a window and its directory entry)

EXCEPTIONS
EXCEPTIONS_OF remove_distinguished_entry(d, n);
EXCEPTIONS_OF window_delete(window);

EFFECTS
EFFECTS_OF remove_distinguished_entry(d, n);

APPENDIX B USER OBJECTS

EFFECTS_OF window_delete(window);

OVFUN create_object(capability d; entry_name n; capability t;
permit_string ps) -> capability c;

$(create an extended type object with a distinguished entry)
EXCEPTIONS

EXCEPTIONS_OF object__create (t, ps) ;
EXCEPTIONS_OF add_distinguished_entry(d, n, dummy_cap(ps));

EFFECTS
c = EFFECTS_OF object_create(t, ps);
EFFECTS_OF add_distinguished_entry(d, n, c);

OFUN delete_object(capability d; entry_name n; capability t);
$(delete extended type object and its distinguished
entry)

EXCEPTIONS
EXCEPTIONS_OF remove_distinguished_entry(d, n);
EXCEPTIONSJDF object_delete(h_get_cap(get_slave(d), n) , t);

EFFECTS
EFFECTS_OF remove_distinguished_entry(d, n);
EFFECTS_OF object_delete(h_get_cap(get_slave(d), n) , t);

OVFUN create_directory(capability d; entry_name n;
permit_string ps) -> capability dl;

$(create a directory with a distinguished directory entry)
EXCEPTIONS

EXCEPTIONSJDF directory_create(ps);
EXCEPTIONS_OF add_distinguished_entry(d, n, dummy_cap(ps));

EFFECTS
dl = EFFECTS_OF directory_create(ps);
EFFECTS__OF add_distinguished_entry(d, n, dl);

OFUN delete_directory(capability d; entry_name n);
$(delete directory and distinguished directory entry)

EXCEPTIONS
EXCEPTIONSJDF remove_distinguished_entry(d, n);
EXCEPTIONSJ3F d irectory_delete (h_get__cap (get_slave (d) , n));

EFFECTS
EFFECTS_OF remove_distinguished_entry(d, n);
EFFECTSJ3F directory__delete (h_get_cap (get_slave (d) , n));

END MODULE

APPENDIX B USER PROCESS APPENDIX B USER PROCESS

MODULE user_process

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
machine_word: ONE_OF(INTEGER, capability, BOOLEAN, CHAR);
address:
STRUCT_OF(capability add_cap; INTEGER add_offset) $(address of a

word of storage);
state:
STRUCT_OF(capabi1ity inst_class_reg;

VECTOR_OF machine_word general__reg;
VECTOR_OF address address_reg) $(the state of a processor);

access_string:
{ VECTORJDF BOOLEAN as | LENGTH (as) = access_string__length };
permit_string:
{ VECTOR_OF BOOLEAN ps I LENGTH(ps) = n_store_permissions };
character_string: VECTOR_OF CHAR;
entry_name:
{ character__string n I LENGTH (n) <= entry_name_length };
offset:
{INTEGER i | 0 <= i AND i <= max_offset};

DECLARATIONS
BOOLEAN b;
INTEGER i, o;
capability c, pc, d, cl;
slave_capability u, up;
state st;
entry_name n;
access_string as;
permit_string ps;

PARAMETERS

capability user_level $(level for user programs) ;
BOOLEAN initial_user_process(up)

$(true~if up is the process initially running),
initial__activation_record(SET__OF capability sc)
$ (true if sc contains only the activation record

for the initial user process) ,
initial_proc_dir(d)
$ (true if d is process dir of initial user process) ;

access_string process_permissions
$(access string for temporary segments and

windows);
DEFINITIONS

BOOLEAN no_ability(c; i) IS get_access(c)[i] ~= TRUE;
BOOLEAN no_uproc(up) IS h_uproc_exists(up) ~= TRUE;
BOOLEAN not_suspended(up) IS h_uproc_suspended(up) ~= TRUE;
BOOLEAN bad_entry(u; o) IS o >= h_procedure_entries(u);
BOOLEAN not__temp_window(slave_capabil i ty u, up)

IS ~(u INSET h_temp_windows (up)) ;
BOOLEAN not_temp_seg(slave_capability u, up)

IS ~(u INSET h_temp_segments(up));

EXTERNALREFS |

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, modify $(access rights) ;
INTEGER access_string_length;
INTEGER n_store_permissions;
capability null $(capability for nothing) ;
capability minimum_instructions;
machine_word zeroword;
VFUN get_slave(c) -> u;
VFUN get_access(c) -> as;
OVFUN create_capability() -> c;
VFUN restrict_access(cl; as) -> c;

FROM registers:
INTEGER n_address_registers,

n_general_registers $(number of registers) ;
INTEGER program_counter, arguments_reg ister, stack__reg ister ;
INTEGER max_offset $(maximum possible offset in an offset

register);
OFUN set_registers(pc; st);

FROM segments:
VFUN h_procedure_entries(slave_capability u) -> INTEGER i;
OVFUN segment_create(permit_string ps) -> capability s;
OFUN segment_delete(capability s);

FROM windows:
OVFUN window_create(capability base_object; offset base_offset;

offset window_length; permit_string ps)
-> capability window;

OFUN window_delete(capability window);

FROM directories:
INTEGER load $(access right) ;
INTEGER entry_name_length;
VFUN h_get_cap(u; n) -> c;
OVFUN directory__create(ps) -> d;
OFUN directory_de,lete(d) ;
OFUN add_distinguished_entry(d; n; c);
OFUN remove_distinguished_entry(d; n) ;

FUNCTIONS

VFUN h_uproc_exists(up) -> b; $(true if process up exists)
HIDDEN;
INITIALLY

b = initial_user_process(up);

VFUN h_uproc_suspended(up) -> b; $(true if process up can not
execute)

HIDDEN;
INITIALLY

b =(IF initial userjrocess (up) THEN FALSE ELSE TRUE);

APPENDIX B

B.69

USER PROCESS APPENDIX B

B.70

USER PROCESS Page

VFUN h__temp_segments(up) -> SET_OF capability sc;
$(all temporary segments for process up)

HIDDEN;
INITIALLY

IF initial_user_process(up)
THEN initial_activation_record(sc)
ELSE sc = {};

VFUN h_temp_windows(up) -> SET_OF capability sc;
$(all temporary windows for process up)

HIDDEN;
INITIALLY

sc = {};

VFUN h__proc_dir (up) -> d; $(capability for process directory of
process up)

HIDDEN;
INITIALLY

IF initial_user_process(up)
THEN initial_proc_dir(d) ELSE d=?;

OVFUN create_uproc(d; n; address init_proc, init_args) -> pc;
$(create a new user process)

DEFINITIONS
slave__capability u IS get_slave(init_proc.add_cap);
slave_capability up IS get__slave (pc) ;
permit_string ps

IS VECTOR (FOR i FROM 1 TO n__store_permissions: TRUE);
EXCEPTIONS

no_ability(init_proc.add_cap, read);
bad_entry(u, init_proc.add_offset);
EXCEPTIONS_OF add_distinguished_entry(d, n, null);
RESOURCE_ERROR;

EFFECTS
pc = EFFECTS_OF create_capability();
EFFECTS_OF add_distinguished_entry(d, n, pc);
'h_uproc__exists (up) = TRUE;
'h__proc_dir (up) = EFFECTS_OF directory_create (ps);
EFFECTS_OF set_registers

(pc,
STRUCT(minimum_instructions,

VECTOR(FOR i FROM 1
TO n_general_registers

: zeroword),
VECTOR(FOR i FROM 1

TO n__address_reg isters
: IF i = program__counter

THEN init_proc
ELSE
IF i = arguments_register
THEN init_args
ELSE
IF i = stack_register
THEN ~
STRUCT

0)
ELSE STRUCT(null, 0))));

OFUN delete_uproc(d; n); $(destroy a user process)
DEFINITIONS

slave_capability up IS get_slave(pc) ;
capability pc IS h_get_cap(get_slave(d), n);

EXCEPTIONS
EXCEPTIONS_OF remove_distinguished_entry(d, n);
no_uproc(up);
not_suspended(up);
EXCEPTIONS_OF directory_delete(h_proc_dir(up));

EFFECTS
•h_uproc_exists(up) = FALSE;
•h proc__dlr (up) = ?;
FORALL capability c INSET h_temp_segments(up):
EFFECTS_OF segment_delete(c);

FORALL capability c INSET h__temp_windows (up) :
EFFECTS_OF window_delete(c);

EFFECTS_OF directory_delete(h_proc_dir(up));
EFFECTS_OF remove_distinguished_entry(d, n);

OFUN stop_uproc(pc); $(suspend execution of a user process)
DEFINITIONS

slave_capability up IS get_slave(pc);
EXCEPTIONS

no_abi1ity(pc, modify);
no_uproc(up);

EFFECTS
*h_uproc_suspended(up) = TRUE;

OFUN start_uproc(pc); $(restart execution of a user process)
DEFINITIONS

slave_capability up IS get_slave(pc);
EXCEPTIONS

no_ability(pc, modify);
no__uproc (up) ;

EFFECTS
'h_uproc_suspended(up) = FALSE;

VFUN get_process_dir()[pc] -> d; $(get a capability for the
process directory of process pc)

DEFINITIONS
slave_capability up IS get_slave(pc);
access_string as

IS VECTOR(FOR i FROM 1 TO access_string_length
: IF i = load THEN FALSE ELSE TRUE);

EXCEPTIONS
notability(pc, read);
no_uproc(up);

DERIVATION
restrict_access(h_proc_dir(up), as);

B.71 B.72

APPENDIX B USER PROCESS APPENDIX B USER PROCESS

OVFUN create_temp_segment()[capability pc] -> capability s; fh_temp_windows(up)

$(create a temporary segment, i.e., one attached to = h_temp_windows(up) DIFF {u};
a process rather than a directory)

DEFINITIONS END_MODULE
slave_capability u IS get_slave(s);
slave_capability up IS get__slave (pc) ;

EXCEPTIONS
EXCEPTIONS_OF segment_create(process_permissions);

EFFECTS
s = EFFECTSJDF segment_create(process_permissions);
1h_temp_segments(up)
= h_temp_segments(up) UNION {u};

OFUN delete_temp_segment(capability s) [capability pc] ;
$(delete a process's temporary segment)

DEFINITIONS
slave_capability u IS get_slave(s);
slave__capability up IS get_slave (pc) ;

EXCEPTIONS
no t_temp_seg(u, up) ;
EXCEPTIONS_OF segment_delete(s) ;

EFFECTS
EFFECTSJDF segment_delete(s) ;
1h_temp_segments(up)
= h_temp_segments(up) DIFF {u};

OVFUN create__temp_window(capability base_object;
offset base_offset, window_length)
[capability pc]
-> capability window;

$(create a window associated withprocess pc)
DEFINITIONS

slave_capability u IS get_slave(window);
slave_capability up IS get_slave(pc);

EXCEPTIONS
EXCEPTIONS_OF window_create(base_object,

base_offset,
window_length,
process_permissions);

EFFECTS
window = EFFECTS_OF window_create(base_object,

base_offset,
window_length,
process_permissions) ;

'h_temp_windows(up)
= h_temp__windows (up) UNION {u};

OFUN delete_temp_window(capability window)[capability pc];
$(delete a temporarily created window)

DEFINITIONS
slave__capability u IS get_slave (window) ;
slave__capability up IS get_slave (pc) ;

EXCEPTIONS
not_temp_window(u, up);
EXCEPTIONS_OF window_delete(window);

EFFECTS
EFFECTS OF window delete(window);

B.73 B.74

APPENDIX B USER INVOKE

MODULE user_invoke

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
machine word: ONEJDF(INTEGER, capability, BOOLEAN, CHAR);
offset: {INTEGER i | 0 <= i AND i <= max_offset};
address:
STRUCT OF(capability add_cap; offset add_offset) $(address of a

~ word of storage);
permit_string:
{VECTORJDF BOOLEAN ps | LENGTH(ps) = n_store_permissions};

DEFINITIONS

BOOLEAN no_ability(capability c; INTEGER i) IS get_access(c)[i] "= TRUE;
BOOLEAN bad__call(slave_capability u; INTEGER o)

IS h_function_address(u) - ?
OR h_procedure(u) = ?
OR h__procedure_entries(u) <= o;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read $(access rights) ;
INTEGER n_store_permissions $(number of store permissions in a

capability);
capability minimum_instructions $(capability for executing the

smallest instruction class);
VFUN get_slave(capability c) -> slave_capability u;
VFUN get_access(capability c) -> VECTOR_OF BOOLEAN bv;

FROM registers:
INTEGER max_offset $(maximum offset allowed in a register) ,

stack_register, arguments_register, program_counter
$(index of address registers used for specific purpose);

OFUN load_address_register(INTEGER i; address a)[capability pc];
OFUN load_inst_class_register(capability c)[capability pc];

FROM system_invoke:
INTEGER callable $(access right) ;
address h function_address (slave__capabil ity u)

^(addresses of all system functions);
address h stack__address (slave_capability u, up)

T̂(stacks for all system functions);
address high_level__return $ (address of instruction that

returns to calling procedure);
OVFUN system_call(address procedure_address, return_address,

arguments, top__of_stack)
[capability pc]
-> address return info;

APPENDIX B USER INVOKE

FROM segments:
VFUN h_procedure (slave__capability u) -> capability s;
VFUN h_procedure_entries(slave_capability u) -> INTEGER i;

FROM user_process:
OVFUN create_temp_segment()[capability pc] -> capability s;
OFUN delete__temp_segment (capability s) [capability pc] ;

FUNCTIONS

VFUN h_activation_stack(siave_capabiiity up)
-> VECTOR_0F address return_address_stack;

$(the stack of protected calls)
HIDDEN;
INITIALLY

return_address_stack = VECTOR();

OVFUN call (address procedure_address, return__address,
arguments, top_of_stack)

[capability pc]
-> address return_info;

$ (invoke a procedure in a protected manner)
DEFINITIONS

slave_capability u IS get_slave(procedure_address.add_cap);
slave_capability up IS get_slave(pc);

EXCEPTIONS
no_ability(procedure_address.add_cap, callable);
bad_call(u, procedure_address.add_offset);
RESOURCE_ERROR;

EFFECTS
IF h_stack_address(u, up) ~= ?
THEN return__info

= EFFECTS_OF system_call(procedure_address, return_ac
arguments, top_of_stack, pc]

ELSE return_info
= STRUCT(EFFECTS_OF create_temp_segment(pc), 0)

AND EFFECTS__OF load_address_register
(arguments_register,
arguments,
pc)

AND EFFECTS_OF load_address_register
(program__counter,
STRUCT(h_procedure(u),

procedure_address,add__offset) ,
pc)

AND EFFECTS_OF load_inst_class_register
(minimum_instructions, pc)

AND EFFECTS_OF load_address_register
(stack_register, return_info, pc)

AND 'h_activation_stack(up)
= VECTOR (FOR i FROM 1 TO LENGTH(h_activation_stack(u]

IF i > 1
THEN h_activation_stack(up)[i-1]
ELSE return address);

B.75 B.76

APPENDIX B USER INVOKE APPENDIX B USER INVOKE

OVFUN unprotected_call(address procedure_address, return_address, (minimum_instructions, pc);
arguments, top_of_stack) EFFECTS_OF load_address_register

[capability pc] (program_counter,
-> address return_info; high_level_return,

$(invoke a procedure in a protected manner) pc);
DEFINITIONS

slave_capability u IS get_slave(procedure_address.add_cap); END_MODULE
slave__capability up IS get_slave (pc) ;

EXCEPTIONS
no_ability(procedure_address.add_cap, callable);
bad_call(u, procedure_address.add_offset);
RESOURCE_ERROR;

EFFECTS
IF no_ability (procedure__address.add_cap, read)
THEN return_info

= EFFECTS_OF call(procedure_address, return_address,
arguments, top_of_stack, pc)

ELSE IF h_stack__address(u, up) ~= ?
THEN return_info

= EFFECTS_OF system_call(procedure_address,
return_address,
arguments, top_of_stack,
pc)

ELSE return_info = return_address
AND EFFECTS JDF load_address_register

(arguments_register,
arguments,
pc)

AND EFFECTS_OF load_address_register
(program__counter,
procedure_address,
pc)

AND EFFECTS_OF load_inst_class_register
(minimum_instructions, pc)

AND EFFECTS_OF load_address_register
(stack_register, top_of_stack, pc);

OVFUN return(address return__info) [capability pc]
-> address return_address;

$(Return to calling activation)
DEFINITIONS

slave__capability up IS get_slave (pc) ;
EXCEPTIONS

IF return_info.add_offset = 0
THEN EXCEPTIONS_OF delete_temp_segment

(return_info.add_cap, pc)
ELSE FALSE;

EFFECTS
IF return__info.add_offset = 0
THEN return_address = h_activation__stack (up) [1]

AND 'h_activation_stack(up)
= VECTOR(FOR i FROM 1

TO LENGTH(h_activation_stack(up))-l:
h_activation_stack(up)[i+1])

AND EFFECTS_OF delete_temp_segment
(return_info.add_cap, pc)

ELSE return_address = return_info;
EFFECTS_OF load_inst_class_reg ister

B.77

APPENDIX B VISIBLE I/O

MODULE visible_io

TYPES

slave__capability:

{ capability u I EXISTS capability c: get_slave(c) = u };

DECLARATIONS

BOOLEAN b, wake;
VECTORJDF BOOLEAN bv;
slave_capability u, ut, ul;
capability c;
capability d, dt $(capability for an I/O device) ;

INTEGER stat, comm, data;

PARAMETERS

INTEGER control, device $(access rights) ;

DEFINITIONS
BOOLEAN no_ability(capability c; INTEGER i)

IS get_access(c)[i] = FALSE;
BOOLEAN not_device(slave_capability u) IS h_temp_device(u) = ?;
BOOLEAN not_perm__dev_cap(slave_capability u)

IS h_device_exists(u) "*= TRUE;
BOOLEAN already_temp(slave_capability u)

IS EXISTS ut: h_temp_device(ut) = u AND ut ~= u;
BOOLEAN no_input(slave_capability u) IS h_input(u) = ?;
BOOLEAN no_output(slave_capability u) IS h_output(u) = ?;
BOOLEAN no_command(slave_capability u) IS h_command(u) = ?;
BOOLEAN too_much_input(slave_capability u) IS h_input(u) ~= ?;
BOOLEAN too_much_output(slave_capability u) IS h_output(u) ~= ?;
BOOLEAN too_many_commands(slave_capability u)

IS h_command(u) ~= ?;
BOOLEAN uninitialized_device(slave_capability u)

IS h_status(u) = ?;
EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, write, delete $(access rights) ;
slave_type: {interrupt_slave, processor_slave, inst_class_slave,

memory_block_slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

slave_type predefined_slave(slave_capability u) $(type of a
predefined slave capability);

VFUN get_slave(c) -> u;
VFUN get_access(c) -> bv;
OVFUN create_restricted_cap(bv) -> c;

APPENDIX B

B.78

VISIBLE I/O

FROM coordinator:
OFUN wakeup_process(capability pc);

FUNCTIONS

VFUN h__device_exists(u) -> b; $(true if uid u designates a devi
HIDDEN;
INITIALLY

b =(predefined_slave(u) = device_slave);

VFUN h_temp_device(ut) -> u; $(returns permanent unique
identifier of device u)

HIDDEN;
- INITIALLY

u =(IF h_device_exists(u) = TRUE THEN u ELSE ?);

VFUN h_device_process(u) -> capability pc;
$(process capability for device with uid u)

HIDDEN;
INITIALLY

pc = ?;

VFUN h_input(u) -> data; $(one word of input data from I/O devi
with uid u)

HIDDEN;
INITIALLY

data = ?;

OVFUN assign_device(d) -> dt; $(assigns a temporary capability
for device d)

DEFINITIONS
slave__capability u IS get_slave (d);
slave_capability ut IS get_slave(dt);

EXCEPTIONS
not_perm_dev_cap(u);
already_temp(u);

EFFECTS
dt = EFFECTS_OF create_restricted_cap(get_access(d));
'h_temp_device(ut) = u;

OFUN deassign_device(d); $(eliminates temporary capability for
device d)

DEFINITIONS
slave_capability ut IS get_slave(d);
slave_capability u IS h_temp_device(ut);

EXCEPTIONS
no_ability(d, delete);
not_device(ut) ;

EFFECTS
FORALL ul: h_temp_device(ul) = u => ul = u;

OVFUN read__device(d) -> data; $(visible form of h_input)
DEFINITIONS

slave_capability u IS h_temp_device(ut);
slave_capability ut IS get_slave(d);

EXCEPTIONS
no ability(d, read);

APPENDIX B

B.79

VISIBLE I/O APPENDIX B VISIBLE I/O

not_device(ut);
no_input(u);

EFFECTS
data = h_input(u);
*h_input(u) = ?;

OFUN write_device(d; data); $(output data to I/O device with
capability d)

DEFINITIONS
slave_capability u IS h_temp_device(ut);
slave_capability ut IS get_slave(d);

EXCEPTIONS
no_ability(d, write);
not_device(ut);
too_much_output(u) ;

EFFECTS
*h_output(u) = data;

OFUN send_command(d; comm); $(send command to I/O device)
DEFINITIONS

slave capability u IS h_temp_device(ut);
slave~capability ut IS get_slave(d);

EXCEPTIONS
no_ability(d, control);
not_device(ut) ;
too_many_commands(u) ;

EFFECTS
1h_command(u) = comm;

VFUN h status(u) -> stat; $(status of I/O device with uid u)
HIDDEN;
INITIALLY

stat = ?;

VFUN receive_status(d) -> stat; $(visible form of h_status)
DEFINITIONS

slave_capability u IS h__temp_device (ut) ;
slave_capability ut IS get_slave(d);

EXCEPTIONS
no_ability(d, read);
not_device(ut);
uninitialized_device(u);

DERIVATION
h_status(u);

VFUN h_output(u) -> data; $(data to be output by I/O device with
uid u)

HIDDEN;
INITIALLY

data = ?;

OFUN set_device_process(d; capability pc) ;
$(indicate a process for device d)

DEFINITIONS
slave_capability u IS h_temp_device(ut) ;
slave_capability ut IS get_slave(d);

EXCEPTIONS

no_ability(d, control);
not_device(ut) ;

EFFECTS
1h_device_process(u) = pc;

OVFUN device_receive(d) ->• data; $(visible form of h_output)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

notability(d, device);
not_perm_dev_cap(u);
no__output (u) ;

EFFECTS
data = h_output(u);
*h_output(u) = ?;

OFUN device_send(d; data); $(input data to system)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

notability(d, device);
not_perm_dev_cap(u) ;
too_much_input(u);

EFFECTS
*h_input(u) = data;

VFUN h_command(u) -> comm; $(command for I/O device with uid
HIDDEN;
INITIALLY

comm = ?;

OVFUN device_command(d) -> comm; $(gets a command for a devi
DEFINITIONS

slave__capability u IS get_slave (d) ;
EXCEPTIONS

no_ability(d, device);
not_perm_dev_cap(u) ;
no_command (u) ;

EFFECTS
comm = h_command(u) ;
1h_command(u) = ?;

OFUN change_status(d; stat; wake); $(change the status of a
device and possibly send
interrupt)

DEFINITIONS
slave_capability u IS get_slave(d) ;

EXCEPTIONS
no_ability(d, device);
not__perra_dev_cap (u) ;

EFFECTS
*h_status(u) = stat;
wake AND h_device_process(u) ~= ?
= > EFFECTS__OF wakeup_process (h_device_process (u)) ;

END MODULE

n_store_permissions }

access_string_length

n store_permissions:

B.81

APPENDIX B PROCEDURE RECORDS

MODULE procedure_records
TYPES

machine_word: ONE_OF(INTEGER, capability, BOOLEAN, CHAR);
slave capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
permit__string:
{ VECTORJDF BOOLEAN ps I LENGTH (ps)
access_string:
{ VECTOR OF BOOLEAN as I LENGTH (as) _ _
address:~STRUCT_OF(capability add_cap; INTEGER add_offset)
offset: {INTEGER i I 0 <= i AND i <= max_offset};

DEFINITIONS

BOOLEAN notability(capability c; INTEGER i)
IS get_access(c)[i] ~= TRUE;

BOOLEAN not_writeable(machine_word w)
IS TYPECASE w OF capability:

EXISTS INTEGER i | 1 <= i AND i <=
~ get_access(w)[i]

AND " process__permissions[i] ;
INTEGER: FALSE;
BOOLEAN: FALSE;
CHAR: FALSE;

END;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, write;
INTEGER n_store_permissions;
INTEGER access_string_length;
machine_word zeroword;
VFUN get_slave(capability c) -> slave__capability u;
VFUN get_access(capability c) -> access_string as;
OVFUN create__restricted_cap(access_string as)

-> capability c;

FROM registers:
INTEGER max__offset;

FROM user_process:
access_string process_permissions;

FUNCTIONS

VFUN h_pr_read(slave__capability u; INTEGER i)
-> machine_word w;

$ (contents of a procedure record)
HIDDEN;
INITIALLY

w = ?;

Pag APPENDIX B

B.82

PROCEDURE RECORDS

VFUN h_pr_map(slave_capability u, up) -> capability pr;
$(procedure record for given procedure u in process u

HIDDEN;
INITIALLY

pr = ?;

VFUN get_pr_address(capability proc)[capability pc]
-> capability pr;

$ (return capability for procedure record for given
procedure)

DEFINITIONS
slave_capability u IS get_slave(proc) ;
slave_capability up IS get_slave(pc);

EXCEPTIONS ~
notability(proc, read);
h_pr_map(u, up) = ?;

DERIVATION
h_pr_map(u, up) ;

OVFUN create_pr(capability proc; offset 1)[capability pc]
-> capability pr;

$ (create a new procedure record for procedure proc
in process pc)

DEFINITIONS
slave_capability u IS get_slave(proc);
slave__capability up IS get_slave (pc) ;

EXCEPTIONS
no_ability(proc, read);
h_pr_map(u, up) ~= ?;
RESOURCE_ERROR;

EFFECTS
pr = EFFECTS__OF create_restricted_cap

(process_permissions);
'h_pr_map(u, up) = pr;
FORALL INTEGER i | 0 <= i AND i < 1:
'h_pr_read(get_slave(pr), i) = zeroword;

OFUN delete__pr (capability proc) [capability pc] ;
$(delete the given procedure record)

DEFINITIONS
slave_capability u IS get_slave(proc);
slave_capability up IS get_slave(pc);

EXCEPTIONS
no_ability(proc, read);
h_pr_map(u, up) = ?;

EFFECTS
'h__pr_map(u, up) = ?;
FORALL INTEGER i:
'h_pr_read(get_slave(h_pr_map(u, up)), i) = ?;

VFUN read_pr(capability pr; offset i)
-> machine_word w;

$(read a word from a procedure record)
DEFINITIONS

slave_capability upr IS get_slave(pr);
EXCEPTIONS

no_ability(pr, read);

APPENDIX B

B.83

PROCEDURE RECORDS

h__pr_read (upr, i) ~ ?;
DERIVATION

h_pr_read(upr, i);

OFUN write^pr(capability pr; offset i; machine_word w);
$(modify a wrd in a procedure record)

DEFINITIONS
slave_capability upr IS get_slave(pr);

EXCEPTIONS
notability(pr, write);
h_pr_read(upr, i) = ?;
not_writeable(w) ;

EFFECTS
1h_pr_read(upr, i) = w;

END MODULE

B.84

APPENDIX B LINKER

MODULE linker

TYPES

machine_word: ONE_OF(INTEGER, capability, BOOLEAN, CHAR);
slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
access_string:
{ VECTOR_OF BOOLEAN as I LENGTH(as) = access__string_length };
character_string: VECTOR_OF CHAR;
entry__name:
{ character_string n I LENGTH(n) <= entry_name_length };

DECLARATIONS

BOOLEAN b;
INTEGER i;
capability c, pg;
slave_capability u, ud, upg;
machine_word w;
entry_name n;
VECTOR_OF entry_name nv $(path name) ;
VECTOR^OF machine_word pgv $(a procedure) ;
SET_OF capability Is $(set of locks for an entry) ;

PARAMETERS

VECTOR_OF entry_name h_linkage_definition(pgv; i)
$(returns the path name for a given link i in procedure
pgv) ;

VECTORJ3F capability h_keys(pgv; i) $(returns keys for entries in
path name of link i in
procedure pgv);

DEFINITIONS

capability subpath(slave_capability ud; VECTOR_OF entry_name nv;
INTEGER i)

IS resolve_path(ud, VECTOR(FOR j FROM 1 TO i: nv[j]));
capability resolve_path(ud; nv) $(returns capability for path

name nv beginning at directory ud)
IS IF LENGTH (nv) = 1

THEN h_get_cap(ud, nv[l])
ELSE h_get_cap(get_slave(subpath(ud, nv, LENGTH (nv) - 1)),

nv[LENGTH(nv)]);
BOOLEAN no__ability(capability c; INTEGER i)

IS get_access(c)[i] ~= TRUE;
BOOLEAN bad__def (VECTOR_OF machine_word pgv; INTEGER i)

IS h_linkage__def inition (pgv, i) = ?
OR LENGTH(h_linkage_definition(pgv, i)) = 0;

BOOLEAN bad_path(slave_capability ud; VECTOR_OF entry_name nv;
VECTOR_OF capability kv)

IS h_valid_dir(ud) ~= TRUE OR LENGTH(nv) ~= LENGTH (kv)
OR (EXISTS i:

i > 0 AND i <= LENGTH (nv)
=> h_get_cap(IF i = 1 THEN ud

ELSE get slave(subpath(ud, nv, i - 1)),

APPENDIX B LINKER APPENDIX B USER

OR NOT(kv[i]
INSET h_locks(IF i = 1 THEN ud

ELSE get slave(subpath(ud, nv,
i - 1)),

nv[i])
OR(i ~= LENGTH (nv)

=> h_valid_dir(get_slave(subpath(ud, nv, i)))
"= TRUE

OR get_access(subpath(ud, nv, i))[load]
"= TRUE)));

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read $(access right) ;
INTEGER access__string_length;
VFUN get__slave(c) -> u;
VFUN get_access(c) -> access_string as;

FROM segments:
VFUN segment_size(pg) -> i;
VFUN h_read(upg; i) -> w;

FROM directories:
INTEGER load $(access right) ;
INTEGER entry_name_length;
BOOLEAN root_slave(u) $(true if c is slave for root dir);
VFUN h_valid_dir(ud) -> b;
VFUN h_get_cap(ud; n) -> c;
VFUN h_locks(ud; n) -> Is;

FUNCTIONS

VFUN resolve_reference(pg; i) -> c; $(returns capability for
object indicated by link i of
procedure pg)

DEFINITIONS
VECTOR_OF machine_word pgv

IS VECTOR(FOR i FROM 0 TO segment_size(pg) - 1
: h_read(upg, i));

slave_capability upg IS get_slave(pg);
EXCEPTIONS

no_ability(pg, read);
bad_def(pgv, i);
bad_path(SOME u I root_slave(u),

h_linkage_definition(pgv, i),
h_keys(pgv, i));

DERIVATION
resolve_path(SOME u I root_slave(u),

h_linkage_definition(pgv, i));
END MODULE

MODULE user
$ "This module introduces the concept of a user. A use

person or group of persons on whose behalf processes
created to perform computations as directed by the pi
persons. All processes created on behalf of the sam
will have the same initial conditions."

TYPES

slave_capability:
{ capability u I EXISTS capability c: get__slave(c) = u };
machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);
access_string:
{ VECTORJDF BOOLEAN as | LENGTH (as) = access_string_length
character_string: VECTOR_OF CHAR;
name: { character_string n I LENGTH (n) <= entry name_lengtl
offset: {INTEGER i | 0 <= i AND i <= max_offset7;
address: STRUCT_OF(capability add_cap; offset add_offset);

PARAMETERS

INTEGER create_proc; $ "Access rights."
capability user_dir;

$ "Capability for directory containing process capi

DEFINITIONS

BOOLEAN name_duplication(name user_name)
IS user__name INSET h_user_names ();

BOOLEAN no_ability(capability c; INTEGER ability)
IS get_access(c)[ability] ~= TRUE;

BOOLEAN no_user(slave_capability user_uid)
IS h_user_name(user_uid) = ?;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER delete; $ "Access rights"
INTEGER access__string_length;
VFUN get_slave(capability c) -> slave_capability u;

$ "Extracts the unique identifier of a capability
VFUN get_access(capability c) -> access_string as;

$ "Extracts the access bits from a capability."
OVFUN create_capability() -> capability c;

$ "Creates a new capability."

FROM registers:
INTEGER max_offset;

FROM directories:
INTEGER entry_name_length;

$ "Length of entry name is also length of user n<

APPENDIX B USER APPENDIX B USER

FROM user_process:
OVFUN create_uproc(capability d;

name n;
address procedure, args)
-> capability process__cap;

$ "Creates a new process with capability process_cap. The new
process will begin execution in the procedure whose
capability is procedure_cap at offset proc_offset with
arguments given in init__stack."

FUNCTIONS

VFUN h_user_name(slave_capability user_uid) -> name user_name;
$ "Returns the name associated with the user."

HIDDEN;
INITIALLY

user_name = ?;

VFUN h_user_procedure(slave_capability user_uid)
-> address procedure;

$ "Returns the address for the initial procedure of processes
created on behalf of this user."

HIDDEN;
INITIALLY

procedure = ?;

VFUN h_user_args(slave_capability user_uid)
-> address args;

$ "Returns the aguments to the initial procedure of any process
created on behalf of this user."

HIDDEN;
INITIALLY

args = ?;

VFUN h_user_names() -> SETJDF name user_names;
$ "Returns the set of all names ever associated with a user."

HIDDEN;
INITIALLY

user_names = { };

VFUN h_process_user_name(slave_capability process_uid)
-> name user_name;

$ "Returns the name of the user on whose behalf the process was
created."

HIDDEN;
INITIALLY

user_name = ?;

VFUN h_process_device(slave_capability process_uid)
-> capability device_cap;

$ "Returns the capability for the device which the given process
is to use to communicate with the user."

HIDDEN;
INITIALLY

device cap = ?;

VFUN get_user_name()[capability process_cap] -> name user_name;
$ "Returns the name of the user on whose behalf the currently

executing process was created."
DEFINITIONS

slave_capability process_uid IS get_slave(process_cap);
DERIVATION

h_process_user_name(process_uid) ;

VFUN get_device_cap() [capability process__cap]
-> capability device_cap;

$ "Returns a capability for the device on which the executing
process can communicate with the user."

DEFINITIONS
slave_capability process_uid IS get_slave (process__cap) ;

DERIVATION
h_process_device(process_uid);

OVFUN create_user(name user_name;
address procedure, args)
-> capability user__cap;

$ "CREATE_USER creates a new user of the system.
user_name - The name of the new user. The name must be

unique for the lifetime of the system,
procedure - The address for the procedure segment

of the procedure that will first be invoked in any
process created on behalf of this user,

args - The arguments to the initial procedure.
user_cap - The capability for the new user."

DEFINITIONS
slave_capability user_uid IS get_slave(user_cap) ;

EXCEPTIONS
name_duplication(user_name);
RESOURCE_ERROR;

EFFECTS
user_cap = EFFECTS_OF create_capability();
1 h_user__name(user_uid) = user_name;
1h_user_procedure(user_uid) = procedure;
*h_user_args(user_uid) = args;
•h_user__names () = h_user_names () UNION { user_name };

OFUN delete_user(capability user_cap);
$ "Deletes the user with capability user_cap."

DEFINITIONS
slave_capability user__uid IS get_slave (user_cap) ;

EXCEPTIONS
no_ability(user_cap, delete);
no_user(user_uid);

EFFECTS ~
'h_user_name(user__uid) = ?;
'h_user_procedure(user_uid) = ?;
fh_user_args(user_uid) = ?;

OVFUN create_user_process(capability user_cap; capability device_cap)
-> capability process_cap;

$ "Creates a new process with capability PROCESS_CAP on behalf of
the user with capability USER_CAP. The new process can
communicate with the user on the device whose capability

APPENDIX B USER APPENDIX B MAIL

is DEVICE_CAP."
DEFINITIONS

slave__capability user_uid IS get_slave(user_cap) ;
slave_capability process_uid IS get_slave(process_cap);

EXCEPTIONS
no_ability(user_cap, create__proc);
no_user(user_uid);
EXCEPTIONS_OF create__uproc(user_dir, h_user_name(user_uid)

h_user_procedure (user__uid) ,
h_user_args(user_uid));

EFFECTS
process_cap

= EFFECTS_OF create_uproc(user_dir, h_user_name(user_uid),
h_user_procedure (user__uid),
h_user_args(user_uid));

'h_process_user_name(process__uid)
= h_user_name (user_uid) ;
lh_process_device(process_uid) = device_cap;

END MODULE

MODULE mail
$ "This module permits users to send messages to one another.

Messages are arrays of data. Each user can send a message
to any other user who has given him permission to do so.
Users are indicated by symbolic name. Each message received
by a user is identified with the name of the sender."

TYPES

slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
character__string: VECTOR_OF CHAR;
name: { character_string n 1 LENGTH(n) <= entry_name_length };
machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);

message: VECTOR_OF machine_word;

PARAMETERS

INTEGER max_queue__size $(the maximum number of words in a queue) ;

DEFINITIONS
BOOLEAN invalid_target(name target_name; name sender_name)

IS "(sender_name INSET h_sender_list(target_name));
BOOLEAN message_too_long(INTEGER message_size;

VECTOR_OF STRUCT_OF(name sender_name;
message data)

message_queue)
IS SUM(VECTOR(FOR i FROM 1 TO LENGTH(message_queue)

: LENGTH(message_queue[i],sender_name)
+ LENGTH(message_queue[i].data)))

+ message_size
> max_queue_size;

$ "This exception is true if the message to be added will make
the message queue longer than its maximum length."

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
VFUN get_slave(capability c) -> slave_capability u;

$ "Returns the unique identifier of a capability."

FROM directories:
INTEGER entry_name_length; $ "Length of user name"

FROM user:
VFUN h_process__user_name (slave_capabil ity process__uid)

-> name user_name;
$ "Returns the name of the user on whose behalf the given process

was created."

APPENDIX B MAIL APPENDIX B MAIL

FUNCTIONS OFUN accept_message(name sender_name)[capability process_cap];
$ "The user on whose behalf the executing process was created

VFUN h_message_queue(name user_name) will accept messages from the user with name sender_name."
-> VECTOR_OF STRUCTJDF(name sender_name; DEFINITIONS

message data) message_queue; name user_name
$ "This function returns the queue of messages for the IS h_process_user_name(get_slave(process_cap));

given user." EFFECTS
HIDDEN • n_ s e n d e r__ l l s t (user_name)
INITIALLY = h_sender_list(user_name) UNION { sender_name };

message queue = VECTOR (); , . _ . _
— OFUN reject_message(name sender_name) [capabil ity process__cap] ;

VFUN h sender list(name user name) -> SET OF name name list; $ "The user on whose behalf the executing process was created
$ "^Returns the list of nlmes of users~who may send"the given user "i* 1 n o t accept messages from the user with name sender_nam

a message." DEFINITIONS
HIDDEN* name user name
INITIALLY IS h__process_user_name(get_slave(process_cap));

name list = { }; EFFECTS
~ 'h_sender_list(user_name)

OFUN send_message(name target_name; message data) = h__sender__list (user_name) DIFF { sender_name };
[capability process cap];

$ "The user indicated by target_Hame will be sent a message V F U N sender^list()[capability process cap]
containing the given data. The message will be marked . n "> SET_OF name name_list;
as coming from the user on whose behalf the process with $ "Returns the list of names for users from whom the user
capability process cap was created." on w h o s e behalf the executing process was created will

DEFINITIONS " accept messages."
name user_name DEFINITIONS

IS h process user name(get slave(process cap)); n a m e u s e r - n a m e
 n

EXCEPTIONS" _ _ — — IS h_process_user_name(get_slave(process_cap)) ;
invalid_target(target_name, user_name); DERIVATION
message__too_long (LENGTH (data) + LENGTH (user_name) , h_sender_list (user_name) ;

h message queue(target name));
EFFECTS - _ - END_MODULE

fh_message_queue (target_name)
= VECTOR(FOR i FROM 1

TO LENGTH(h_message_queue(target_name)) + 1:
IF i <= LENGTH(h_message_queue(target_name))
THEN h__messagenqueue (target_name) [i]
ELSE STRUCT(user_name, data));

OVFUN receive_message()[capability process_cap]
-> STRUCT_OF(name sender_name; message data) mail;

$ "Returns the earliest message sent to and not already received
by the user on whose behalf the executing process was
created."

DEFINITIONS
name user__name

IS h__process__user_name(get_slave(process_cap)) ;
EXCEPTIONS

LENGTH(h_messagenqueue(user name)) = 0; $ "No messages"
EFFECTS ~

mail = h_message__queue (user_name) [1];
1 h_message_queue (user_name)

= VECTOR(FOR i FROM 1
TO LENGTH(h_message_queue(user_name)) - 1:
h_message_queue(user_name)[i + 1]);

APPENDIX B CHANNEL I/O

MODULE channel_io

TYPES

machine_word: ONE_OF(capability, INTEGER, BOOLEAN, CHAR);
slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
access_string:
{ VECTOR_OF BOOLEAN as I LENGTH (as) = access_string_length };

DECLARATIONS

BOOLEAN b, int;
slave_capability u;
capability c, cl;
capability d $(capability for an I/O device) ;
INTEGER stat, comm, i, o, n;
machine_word data;

PARAMETERS

INTEGER control,
device $(each of these assumes a different value from 1 to

access_length);

DEFINITIONS

BOOLEAN no_ability(capability c; INTEGER i)
IS get_access(c)[i] = FALSE;

BOOLEAN not__device(slave_capability u)
IS h_device_set(u) = FALSE;

BOOLEAN no_block(slave_capability u)
IS block_length(u) = ?;

BOOLEAN address_bounds(slave_capability u; INTEGER i)
IS i < 0 OR i >= block_length(u);

BOOLEAN bad_count(INTEGER n) IS n <= 0;
BOOLEAN no_output(slave_capability u) IS h_output_count(u) = 0;
BOOLEAN no__command (slave_capabil ity u) IS h_command(u) = ?;
BOOLEAN too_much_input (slave_capability u)

IS h_input_count(u) = 0;
BOOLEAN too__many_commands(slave_capability u)

IS h_command(u) ~= ?;
BOOLEAN uninitialized_device(slave_capability u)

IS h_status(u) = ?;
BOOLEAN no_interrupt(slave_capability u; BOOLEAN int)

IS IF int THEN h_device_interrupt(u) = ? ELSE FALSE;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER read, write $(access rights) ;
INTEGER access_string_length;
slave_type: {interrupt_slave, processor_slave, inst__class_slave,

memory_block_slave, device_slave, clock_slave,
not_predefined} $(types of predefined slaves);

slave__type predef ined_slave (slave_capability u) $(type of a

APPENDIX B CHANNEL I/O

predefined slave capability);
VFUN get_slave(c) -> u;
VFUN get_access (c) -> access__str ing as;

FROM interrupts:
OFUN set_interrupt(c; cl);

FROM memory:
INTEGER block_length(slave_capability u)

$ (number of words in a memory block) ;
VFUN block_read(c; i) -> data;
OFUN block_write(c; i; data);

FUNCTIONS

VFUN h_device_set(u) -> b; $(true if uid u designates a device)
HIDDEN;
INITIALLY

b =(predefined_slave(u) = device_slave);

VFUN h__device_interrupt (u) -> c; $(interrupt capability for
device with uid u)

HIDDEN;
INITIALLY

predef ined_slave(get_jslave (c)) = interrupt_slave;

VFUN h_device_processor(u) -> c; $(processor for handling
interrupts from device u)

HIDDEN;
INITIALLY

predefined_slave(get_slave(c)) = processor_slave;

VFUN h_input_block(u) -> c; $(memory block for placing input da
HIDDEN;
INITIALLY

c = ?;

VFUN h_input_offset(u) -> o; $(offset for placing input data)
HIDDEN;
INITIALLY

VFUN h__input_count (u) -> n; $(number of cells remaining for inp
data)

HIDDEN;
INITIALLY

n = 0;

VFUN h__input_interrupt (u) -> b; $(true if interrupt to be sent
when input complete)

HIDDEN;
INITIALLY

b = ?;

APPENDIX B CHANNEL I/O APPENDIX B CHANNEL I/O

VFUN h__output_block(u) -> c; $(memory block from which data is to
be output)

HIDDEN;
INITIALLY

c = ?;

VFUN h_output_offset(u) -> o; $(position in block where output
begins)

HIDDEN;
INITIALLY

o = ?;

VFUN h_output_count (u) -> n; $(number of words to be output)
HIDDEN;
INITIALLY

n = 0;

VFUN h_output_interrupt(u) -> b; $(true if interrupt should be
sent when output complete)

HIDDEN;
INITIALLY

b = ?;

OFUN read_device(d; c; o; n; int); $(tell device where to put
next n words of data)

DEFINITIONS
slave_capability uc IS get_slave(c);
slave_capability u IS get_slave(d);

EXCEPTIONS
no_ability(d, read);
no_ability(c, write);
not_device(u);
no_block(uc);
address_bounds(u, o);
address_bounds(u, o + n - 1);
bad_count(n) ;

EFFECTS
fh_input_block(u) = c;
fh_input_offset(u) = o;
*h_input_count(u) = n;
*h_input__interrupt (u) = int;

OFUN write_device (d; c; o; n; int); $(tell device where to get
next n words of data)

DEFINITIONS
slave_capability uc IS get_slave(c);
slave_capability u IS get_slave(d);

EXCEPTIONS
notability(d, write);
no_ability(c, read);
not_device(u);
no_block(uc);
address_bounds(u, o);
address_bounds(u, o + n - 1);
bad_count(n);

EFFECTS
*h_output_block(u) = c;

'h_output_offset(u) = o;
'h_output_count(u) = n;
1h_output_interrupt(u) = int;

OFUN send_command(d; comm); $(send command to I/O device)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(df control);
not_device(u) ;
too_many_commands(u) ;

EFFECTS
1h_command(u) = comm;

VFUN h_status(u) -> stat; $(status of I/O device with uid u)
HIDDEN;
INITIALLY

stat = ?;

VFUN receive_status(d) -> stat; $(visible form of h_status)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, read);
not_device(u);
uninitialized_device(u);

DERIVATION
h_status(u);

OFUN device_send(d; data); $(input data to system)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, device);
not_device(u) ;
too_much_input(u);

EFFECTS
EFFECTS_OF block_write(h_input_block(u), h_input_offset(u),

data);
1h_input_offset(u) = h_input_offset(u) + 1;
1 h__input_count (u) = h__input_count (u) - 1;
h_input_interrupt(u) AND h_input_count(u) - 1 = 0
=> EFFECTS_OF set_interrupt(h_device_processor(u),

h_device_interrupt(u)) ;

OVFUN device__receive(d) -> data; $(get data from system)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

notability(d, device);
not_device(u) ;
no_output(u);

EFFECTS
data = block_read (h_output_block (u) , h__output_of f set (u)) ;
'h_output_offset(u) = h_output_offset(u) + 1;
1h_output_count(u) = h_output_count(u) - 1;
h_output_interrupt(u) AND h_output_count(u) - 1 = 0

APPENDIX B CHANNEL I/O

=> EFFECTS_OF set_interrupt (h_device__processor (u) ,
h_device_interrupt(u));

VFUN h__command (u) -> comm; $(command for I/O deevice with uid u)
HIDDEN;
INITIALLY

comm = ?;

OVFUN device_command(d) -> comm; $(gets a command for a device)
DEFINITIONS

slave_capability u IS get_slave(d);
EXCEPTIONS

no_ability(d, device);
not_device(u);
no_command (u);

EFFECTS
comm = h_command(u);
•h_command(u) = ?;

OFUN change_status(d; stat; int); $(change the status of a device
and possibly send an interrupt)

DEFINITIONS
slave_capability u IS get_slave(d);

EXCEPTIONS
no_ability(d, device);
not__dev ice (u);
no_interrupt(u, int);

EFFECTS
fh_status(u) = stat;
int

= > EFFECTS_OF s e t _ i n t e r r u p t (h_device__processor (u) ,
h _ d e v i c e _ i n t e r r u p t (u)) ;

END MODULE

APPENDIX C — PROOFS OF IMPLEMENTATION

CONTENTS

I GRAMMAR FOR ILPL

II SAMPLE SYSTEM HIERARCHY

Il-i SYSTEM ILLUSTRATION

II-2 HIERARCHY AND INTERFACE DESCRIPTIONS

III MODULE SPECIFICATIONS FOR SYSTEM

III-l EXTENDED-TYPES

IT1-2 TABLES

III-3 SEGMENTS

III-4 PROCESSES

III-5 CAPABILITIES

IV MAPPING FUNCTIONS FOR SYSTEM

IV-1 EXTENDED-TYPES

IV-2 CAPABILITIES2

IV-3 TABLES

IV-4 CAPABILITIES1

V IMPLEMENTATIONS FOR SYSTEM

V-l EXTENDED-TYPES

V-2 TABLES

VI PROOF OF IMPLEMENTATION — INSERT TABLE

GRAMMAR FOR ILPL

The nonterminals <symbol> and <number> are the standard ones a
in INTERLISP. Those nonterminals beginning with the word SPECI
derived from the grammar of SPECIAL, to be found in Appendix A.

<program module> PROGRAM MODULE <symbol>
[<SPECIAL types>]
[<SPECIAL declarations>]
[<SPECIAL parameters>]
f<SPECIAL definitions>]
<SPECIAL externalrefs>
<initialization>
<implementations>

END MODULE

<parameters> ::= PARAMETERS { <declaration> ';f } +

<declaration> :: = <typespecification> <symbol> { ',

<typespecifcation>

<symbol> }

= <symbol>
= INTEGER
- BOOLEAN
= REAL
= CHAR
- STRUCT '(• [<declaration>

{ '; ' <declaration> }*
= ONE_OF •(' <typespecification>

{ f,' <typespecification> }
= VECTOR_OF <typespecification>

<initialization> :: = INITIALIZATION <program> ';'

<program> ::= <statement> I BEGIN <statement list> END

<implementations> ::= IMPLEMENTATIONS { <implementation> •;'

<implementation> ::= <fnprog>
::= <subr>

<fnprog>

<subr>

OFUN_PROG I VFUN_J>ROG
[<declarations>]
<program>

OVFUN_PROG } <header>

{ OFUN_SUBR | OVFUN_SUBR | VFUN_SUBR } <header>

C-I-l.l

[<SPECIAL definitions>]
[<SPECIAL exceptions>]
{ <SPECIAL derivation>
f<declarations>]
<program>

<header> <symbol>
[<declaration>
<declaration>]

<SPECIAL effects>

<declaration> }*

<declarations> ::

<statement list>

DECLARATIONS { <declaration> ';• }+

:= <statement> { •?' <statement> }*

<statement> ::= <simple statement>
::= DO <simple statement> WITH <exception prog list> OD
::= WHILE <expression> [ASSERT <SPECIAL expression>]

DO <statement list> OD
::= IF <expression> THEN <statement list>

[ELSE <statement list>] FI
::= FOR <symbol> FROM <expression> TO <expression>

[BY <expression>]
. ASSERT <SPECIAL expression>]
DO <statement list> OD

::= TYPECASE <symbol> OF <case prog list> END

<siraple statement> ::= <call>

::= <multiple assignment>

<call> ::= <symbol> •(' [<expression list>] •) '

<expression list> :: = <expression> { ',' <expression> }*

<multiple assignment> ::= <symbol> { ',' <symbol> }*

'<-' <expression>

<exception prog list> ::= <exception prog> { ';• <exception prog} }*

<exception prog> ::= <string constant> ':' <program>

<case prog list> ::= <case prog> { ';' <case prog> }*

<case prog> ::= <typespecification> ':' <statement list>

<expression> ::= <simple expression>
['{' <exception value list> '}']

<exception value list> ::~ <exception value>
{ f;' <exception value> }*

<expression> <binaryop> <expresj
<unaryop> <expression>
1(' <expression ') '
<symbol>
<number>
<character constant>
<string constant>
TRUE I FALSE
<expression> 'ff <expression> ']
<expression> '.' <symbol>
{ INTPART I FRACTPART } <expres!

<structure constructor>
<vector constructor>
TYPECASE <symbol> OF

<case expression list> END
RETURN '(• <string constant> ') '

<binaryop> ::= '*' | '/' | •+• | '-•
::= '<«• I AND I OR I '=>' I MOD

<unaryop> ::= NOT I '"%

<structure constructor>

<vector constructor :: =

::= '<' <expression list> •>'

VECTOR f(f Kexpression list>]
VECTOR '(' FOR <syrabol> FROM O

<expression> ':' <expressi<

<case expression list> ::= <case expression>
{ ';' <case expression> }*

<case expression> <string constant> <expression:

<exception value> <string constant> •:' <expression>

<simple expression> ::= IF <expression> THEN <expression>
ELSE <expression>

LEVEL 2

CAPABILITIES 2

LEVEL 1

ID

PROCESSES]> (EXTENDED-TYPES)

CAPABILITIES!

LEVEL 0

ID

^

ID

EXTENDED-
TYPES

TABLES
ID

• EXTERNAL REF

MAPPING

FIGURE C-1 STRUCTURE OF THE SAMPLE SYSTEM

TA-790525-10

C-IJ-1.1

INTERCONNECTIONS FOR EXAMPLE SYSTEM

These expressions are a formal description of the diagram on pa
The interface specifications have a syntax as follows:

(INTERFACE <interface name> <list of modules>).
The hierarchy specification has a syntax as follows:

(HIERARCHY <hierarchy name) <list of implements relations))
where the syntax for an implements relation is

(<interface name> IMPLEMENTS <interface name)
USING <list of mapping functions)).

(INTERFACE LEVEL2 CAPABILITIES SEGMENTS PROCESSES EXTENDED-TYPE

(INTERFACE LEVELl CAPABILITIES SEGMENTS PROCESSES TABLES)

(INTERFACE LEVELO CAPABILITIES SEGMENTS PROCESSES)

(HIERARCHY SYSTEM (LEVELO IMPLEMENTS LEVELl
USING TABLES CAPABILITIES1)

(LEVELl IMPLEMENTS LEVEL2
USING EXTENDED-TYPES CAPABILITIES2))

C-II-2.1

SPECIFICATIONS FOR THE EXTENDED-TYPE MODULE

MODULE extended_types

DECLARATIONS

capability c, cl $(arbitrary capabilities) , t,
tl $(type-manager's capabilities) ;

BOOLEAN b?
INTEGER i;

PARAMETERS

capability ct $(type-creation capability) ,
cs $(type capability for type SEGMENT) ;

INTEGER max_impl_caps; $(maximum number of implementation
capabilities for any type)

INITIALLY
b = FALSE;

VFUN is__type(c; t) -> b;

INITIALLY
b = FALSE;

$(true iff the type of extended-type
object denoted by capability u is t)

VFUN impl_cap(c; t; i) -> cl;

EXCEPTIONS
invalid_object(c, t) ;
no_impl_obj (c, t, i) ;

INITIALLY
cl = ?;

$(the ith implementation capability
for the extended-type object
denoted by c, with type manager t)

VFUN impl_length(t) -> i;

EXCEPTIONS
bad_type_manager(t);

INITIALLY

$(the length of the vector of
implementation capabilities for type t]

DEFINITIONS

BOOLEAN bad_type_manager(t) IS NOT is_type_manager(t);
BOOLEAN invalid_object(c; t) IS NOT is_type(c, t);
BOOLEAN invalid_impl_type(t)

IS NOT(is__type_manager (t) OR t = cs) ;
BOOLEAN orig_impl_objs_present(c; t)

IS EXISTS i: original(c, t, i);
BOOLEAN e x c _ o r i g i n a l (c ; t ; i) IS o r i g i n a l (c , t , i) ;
BOOLEAN no_ impl_obj (c ; t ; i) IS i m p l _ c a p (c , t , i) = ?;
BOOLEAN b a d _ e l e m e n t (i ; t) IS i < 1 OR i > i m p l _ l e n g t h (t) ;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
OVFUN create_cap() -> c;

FROM segments:
OVFUN create_segment(i) -> c;
OFUN delete__seg(c) ;
VFUN seg_exists(c) -> b;

FUNCTIONS

VFUN is_type_manager(t) -> b; $(true if t is a type manager)

C-III-1.1

VFUN original(c; t; i) -> b;
$(true if the object denoted by impl_cap (cf t, i) was
created originally as an implementation object of the
object denoted by c)

EXCEPTIONS
invalid_object(c, t);
no_impl_obj(c, t, i);

INITIALLY
b = ?;

OVFUN create_type(t; i) -> c;
$(creates a new extended type (of type TYPE))

EXCEPTIONS
t ~= ct;
i < 1 OR i > max_impl_caps;
RESOURCE_ERROR;

EFFECTS
EFFECTS_OF create_cap() = c;
1is_type_manager(c) - TRUE;
1impl_length(c) = i;

OVFUN create_object(t) -> c;
$(creates a new extended-type of object of type t,
returns its capability c, and leaves the object
uninitialized)

EXCEPTIONS
bad type_manager(t);
RESOURCE_ERROR;

EFFECTS
EFFFCTS_OF create_cap() = c;

OIII-1.2

fis_type(c, t) = TRUE;

OFUN delete_object(c; t);
$(deletes an extended type object denoted by capability
c, with type manager t, assuming that all of its
implementation objects (that are original) have been
previously deleted)

EXCEPTIONS
invalid_object(cf t);
orig impl objs present(c, t);

EFFECTS""
'is_type(c, t) = FALSE?
FORALL i:

•impl cap(c, t, i) = ? AND 'original(c, t, i) = ?;

OVFUN create_impl_obj(c; t; i; tl) -> cl;
$(creates an implementation object at position i of the
implementation vector for object c. t is the type
manager's capability for c. tl is the type-manager's
capability for the type of the object being created)

EXCEPTIONS
invalid_object(c, t) ;
bad_element(i, t) ;
NOT no_impl_obj(c, t, i) ;
invalid_impl_type(t1);
RESOORCE_ERROR;

EFFECTS
IF tl * cs

THEN EFFECTS_OF create_segment(0) = c l
ELSE EFFECTS_OF create_object (t l) » c l ;

•impl_cap(c, t , i) * c l ;
•or ig inaKc, t f i) = TRUE;

OFUN insert_impl_cap(c; t; i; cl);
$(inserts the capability cl to be get_impl__cap (c, t, i))

EXCEPTIONS
inval id__obj ec t (c, t) ;
bad_element(i, t);
NOT no_impl_obj(c, t, i);

EFFECTS
'impl cap(c, t, i) - cl;
'originaKc, t, i) = FALSE;

OFUN delete_impl_obj(c; t; i; tl);
$(deletes the object and entry for the ith
implementation object of capability c. t is the type
manager's capability for c. tl is the type manager's
capability for the implementation capability, the
implementation object must be original.)

DEFINITIONS
capability cl IS impl_cap(c, t, i);

EXCEPTIONS
invalid_object(c, t) ;
no_impl_obj(c, t, i) ;

C-III-1.3

NOT exc_original(c, t, i);
invalid_object(cl, tl) ;
orig_impl_objs present(cl, tl);

EFFECTS
IF seg_exists(cl)
THEN EFFECTS_OF delete_seg(cl)
ELSE EFFECTS_OF delete_object(cl, tl);

•impl cap(c, t, i) = ?;
'original(c, t, i) = ?;

OFUN delete__impl_cap(c; t; i) ;
$(deletes the ith element of the implementation vector
of c, but only if the object is not original)

EXCEPTIONS
invalid_object(c, t);
no_impl_obj(c, t, i) ;
exc_original(c, t,

EFFECTS
i);

'impl^cap(c, t, i) =
'original(c, t, i) -

END MODULE

C-III-1.4

SPECIFICATIONS FOR THE TABLE MODULE SPECIFICATIONS FOR THE SEGMENT MODULE

MODULE tables
$(The purpose of this module is to provide the
synchronization required to implement the extended type
module. It is necessary that extended type operations
get exclusive access to the segements that implement the
type (or types) in question. Eut we do not want these
operations to tie up operations on other types.
Therefore, we provide an intervening level in which we
obtain indivisible access to the table that maps from
type managers capabilities to type managing segments.)

DECLARATIONS

capability c, cl;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;

FUNCTIONS

VFUN table(c) -> cl;
EXCEPTIONS

table(c) = ?;
INITIALLY

cl = ?;

OFUN insert_table(c; cl);
EXCEPTIONS

table(c) ~= ?;
RESOURCE_ERROR;

EFFECTS
'table(c) = cl;

OFUN delete_table(c);
EXCEPTIONS

table(c) = ?;
EFFECTS

•table(c) * ?;

END MODULE

bit_string_le

MODULE segments

TYPES

bit: { 1, 0 };
bit_string: { VECTOR_OF bit bs I LENGTH(bs)
character_str ing:
{ VECTOR_OF CHAR cs I LENGTH(cs) = character_string_length
machine_word:
ONE_OF(capability, INTEGER, bit_string, character_string, E

DECLARATIONS

capability s;
BOOLEAN b;
machine_word w;
INTEGER i, j;

PARAMETERS

INTEGER maxsize $(maximum segment size) ;

DEFINITIONS

BOOLEAN no_seg (capability s) IS seg__exists(s) « FALSE;
BOOLEAN address_bounds(capability s; INTEGER i)

IS read(s, i) = ?;
BOOLEAN bad_size(INTEGER i) IS i < 0 OR i > maxsize;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
OVFUN create_cap() -> capability s;
INTEGER bit_string_length, character_string_length;

FUNCTIONS

VFUN seg_exists(s) -> b; $(true for currently existing s
INITIALLY

b = FALSE;

C-III-2.1 C-III-3.1

SPECIFICATIONS FOR THE PROCESS MODULE
VFUN read(s; i) -> w; $(returns the ith machine work in segment s)

EXCEPTIONS
no_seg(s) ;
address_bounds(s, i) ;

INITIALLY
w - ?;

VFUN seg_size(s) -> i; $(size of segment s)
EXCEPTIONS

no_seg (s);
DERIVATION

CARDINALITY({ j I read(s, j) " = ? }) ;

OVFUN create_segment(j) -> s; $(creates a new segment s of size j)
EXCEPTIONS

bad_size(j) ;
RESOURCE_ERROR;

EFFECTS
EFFECTS OF create_cap() ~ s;
•seg_exlsts(s) = TRUE;
FORALL i I i >= 0 AND i < j: *read(s, i) = 0;

OFUN delete_seg(s); $(deletes segment s)
EXCEPTIONS

no_seg(s) ;
EFFECTS

*seg_exists(s) = FALSE;
FORALL i: »read(s, i) = ?;

OFUN write(s; i; w); $(writes machine_word w into the ith
location of segment s)

EXCEPTIONS
no_seg(s);
address_bounds(s, i);

EFFECTS
'read(s, i) = w;

OFUN change_seg_size(s; j); $(changes the size of segment s to j)
EXCEPTIONS

no_seg(s);
bad_size(j);
RESOURCE_ERROR;

EFFECTS
FORALL i:

*read(s, i)
=(IF 0 <= i AND i < j

THEN IF read(s, i) = ? THEN 0 ELSE read(s, i)
ELSE ?) ;

END MODULE

MODULE processes

DECLARATIONS

INTEGER i, j;
capability p $(process capability)
VECTOR_OF capability vc;
VECTOR OF VECTOR_OF capability w e ;

PARAMETERS

SET_OF capability process_set $(set of all processes) ;

DEFINITIONS

INTEGER grabstacksize(p) $(size of the grabstack for process p)
IS CARDINALITY({ i | grabstack(p, i) ~= ? });

capability grabbed_by(vc) $(capability for the process that
grabbed capability tuple vc)

IS SOME p |(EXISTS i; j: vc = grabstack(p, i)[j]);

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;

FUNCTIONS

VFUN grabstack (p; i) -> w e ;

HIDDEN;
INITIALLY

w e = ?

$(stack element i of vectors of
capability tuples grabbed by proc
P)

OFUN grab(vvc)[p]; $(grabs all capability tuples in w e ; block
if any of them have already been grabbed)

EXCEPTIONS
NOT p INSET process_set;
RESOURCE_ERROR;

DELAY UNTIL FORALL vc I EXISTS i: vvcfi] " vc:
grabbed__by(vc) = ?;

C-III-3.2 C-III-4.1

EFFECTS
•grabstack(p, grabstacksize(p) + 1) = w e ;

OFUN releaseO[p]; $(releases the last capability tuple grabbed
by p)

EXCEPTIONS
NOT p INSET process_set;

EFFECTS
1grabstack(p, grabstacksize(p)) = ?;

END MODULE

SPECIFICATIONS FOR THE CAPABILITY MODULE

MODULE capabilities

TYPES

capability: DESIGNATOR;
bit: { 1, 0 };
bit_string: { VECTOR_OF bit bs I LENGTH(bs)
character_string:
{ VECTOR^OF CHAR cs I LENGTH(cs) « character_string_lengt
machine_word:
ONE_OF(capability, INTEGER, bit_string, character_string,

bit_string_

PARAMETERS

INTEGER bit_string_length, character_string_length;

ASSERTIONS

character__str ing_length > 0;
bit_string_length > 0;

FUNCTIONS

OVFUN create_cap() -> capability c?
EXCEPTIONS

RESOURCE_ERROR;
EFFECTS

c = NEW(capability) ;

END MODULE

C-III-4,2 C-III-5.1

MAPPING FUNCTIONS FOR EXTENDED-TYPES

MAP extended_types TO segments, tables, capabilities;
$(The representation for the extended-type manager
consists of a type segment for each type maintained by
it, and a central table that maps type managers1

capabilities into type segments. The central table is
maintained by the table module. Each type segment
consists of an integer specifying the size of the entry
(impl_length + 2) in location 0, followed by a sequence
of entries. An entry consists of an extended-type
capability (a 0 designates a null entry), followed by a
sequence of impl_length implementation capabilities
(a 0 designates an undefined impl_cap), followed by a
single bit string whose ith element is 1 if the ith
impl_cap is original. If the ith impl_cap is undefined,
the bit MUST be 0. If the entry is null, all bits MUST
be 0 and all impl_caps must be 0. The invariants state
the above, plus the facts that all type segments exist
and have posistive sizes that are 1 MODULO the entry
size. The first word of the type segment is always an
integer, and for each entry of size n, the first n-1
posistion are either capabilities or 0 and posistion n
is a bit_string.)

TYPES

bit: { 1, 0 };
bit_string: { VECTORJ5F bit bs I LENGTH(bs) = bit_string_JLength };
character_str ing:
{ VECTOR_OF CHAR cs I LENGTH(cs) = character_string_length };
machine_word:
ONE OF(capability, INTEGER, bit_string, character_strinq, BOOLEAN);
macKine_word_type:
{ integer_type, capability_type, boolean_type, bit_string_type,
character_string_type };

DECLARATIONS

capability c, cl, $(arbitrary capabilities)
t, $(type manager's capability)
s; $(segment capability)

BOOLEAN b;
INTEGER i, j, k, kl, nobjs;
machine word w;

capability ctl,
csl, $(representations for type-creation a

segment-creation capabilities, respec
ex_secret; $(a secret capability for grabfc

DEFINITIONS

machine_word_type type_of(w)
IS TYPECASE w OF

INTEGER: integer_type;
capability: capability_type;
BOOLEAN: boolean_type;
bit_string: bit_string_type;
character string: character_string_type;

END;
bit_string allzeros

IS VECTOR(FOR i FROM 1 TO bit_string_length: 0);

EXTERNALREFS

FROM extended_types:
capability ct, cs;
INTEGER max impl_caps;
VFUN is_type_manager(t) -> b;
VFUN impl_length(t) -> i;
VFUN is_type(c; t) -> b;
VFUN impl_cap(c; t; i) -> cl;
VFUN original(c; t; i) -> b;

FROM tables:
VFUN table(c) -> cl;

FROM segments:
INTEGER maxsize;
VFUN seg_exists(s) -> b;
VFUN read(s; i) -> w;
VFUN seg_size(s) -> i;

FROM capabilities:
capability: DESIGNATOR;
INTEGER bit__string_length, character_string_length;

PARAMETERS

INVARIANTS

FORALL c; cl: table(c) = table(cl)
FORALL c: LET s * table(c) IN

seg_exists(s) AND
seg_size(s) > 0 AND
(LET nobjs = read(s, 0) IN
type_of(nobjs) = integer__type AND

C-IV-1.2

cl « c OR table(<

C-IV-1.1

nobjs > 1 AND
seg_size(s) MOD nobjs = 1 AND
(FORALL k I k > «1 AND k * nobjs < seg_size(s):
LET i = k * nobjs + 1 IN

$(first position contains capability for extended_type
object or 0 for ?. if ? then all original positions and
all impl-caps must be 0)
(type_of(read(s, i)) = capability_type OR

(read(sr i) = 0 AND read(s, i+nobjs-1) = all zeros AND
(FORALL j INSET { 1 .. nobjs - 2 }: read(s, i+j) =0)))

AND
$(the next nobjs-2 positions contain implementation
capabilities, a 0 in that position means ? and its original
bit must be 0)
(FORALL j I j > 0 AND j < nobjs - 1:
type_of(read(s, i+j)) = capability_type OR

(read(s, i+j) = 0 AND read(s , i+nobjs-1)[j] » 0) AND
(FORALL kl ~« k : read(s , i) ~ = read(s , k l*nobj s+ l))))) ;

IN(IF s = ?
THEN ?
ELSE IF i < 1 OR i > read(s, 0) - 2

THEN ?
ELSE LET k I k MOD read(sf 0) = 1

AND read(s, k) = c
IN(IF read(sr k + i) = 0

THEN ?
ELSE read(s, k + read(s, 0)

= D);
END MAP

MAPPINGS

ct: ctl;

cs: csl;

max_impl_caps: MIN({ bit_string__length, maxsize - 3 }) ;

is_type_manager(t): table(t) ~= ?;

is_type(c; t) :
LET s = table(t)
IN(IF s = ?

THEN FALSE
ELSE(EXISTS k:

k MOD read(sr 0) = 1 AND read(s, k) * c));

impl_length(t): read(table(t), 0) + 2?

impl_cap(c; t; i):
LET s * table(t)
IN(IF s = ?.

THEN ?
ELSE IF i < 1 OR i > read(s, 0) - 2

THEN ?
ELSE LET k I k MOD read(s, 0) = 1

AND read(s, k) = c
IN(IF read(s, k + i) = 0

THEN ?
ELSE read(s, k + i)));

original(c; t; i):
LET s I s = table(t)

C-IV-1.3 C-IV-1.4

HIGHER-LEVEL MAPPING FOR CAPABILITIES

MAP capabilities TO tables, capabilities;
$(The hidden capabilities are either capabilities for
type segments or ex_secret, used for grabbing to ensure
that no higher level program grabs the same capability
tuple)

TYPES

capabilityl:
{ capability c I c ~= ex_secret

AND(FORALL capability cl: table(cl) "- c) };

PARAMETERS

capability ex__secret;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER bit_string_length;
INTEGER character_string_length;

FROM tables:
VFUN table(capability c) -> capability cl;

MAPPINGS

capability: capabilityl;

bit_string_lengtb: bit_string_length;

character_string_length: character_string_length;

END MAP

OIV-2.1

MAPPING FUNCTIONS FOR TABLES

MAP tables TO segments, capabilities;
$(The table module is represented in segment st
(a parameter of this mapping) , with the keys
(i.e., the arguments to table) stored in even segment
locations and the corresopnding value stored in the
stored in the following location. A null entry has key
st, which is secret from the higher level
(as specified in the mapping capabilitiesl) %. The
invariants state that segment st exists, the size of st
is even, and that each key (except st) occurs at most
once in st)

TYPES

bit: { 1, 0 };
bit_string: { VECTOR_OF bit bs I LENGTH(bs) « bit__string_length };
character_str ing:
{ VECTOR_OF CHAR cs I LENGTH(cs) = character_string__length };
machine_word:
ONEJDF(capability, INTEGER, bit_string, character__string, BOOLEAN)

DECLARATIONS

INTEGER i, k;
BOOLEAN b;
capability c, cl, s;
machine_word w;

PARAMETERS

capability st;

EXTERNALREFS

FROM tables:
VFUN table(c) -> cl;

FROM segments:
VFUN seg exists(s) -> b;
VFUN rea<J(s; i) -> w;
VFUN seg__size(s) -> i;

FROM capabilities:
capability: DESIGNATOR;

C-IV-3.1

INTEGER bit_string_length, character_string_length;

INVARIANTS

seg_exists(st);
seg_size(st) MOD 2 = 0 ;
FORALL i I i MOD 2 * 0 ; k I k MOD 2 - 0 :

read(st, i) = read(st, k) =>
i = k OR read(str i) « st OR read(st, k)

MAPPINGS

table(c):
LET k I read(stf k) •
IN read(st, k + 1);

END MAP

c AND k MOD 2

LOWER-LEVEL MAPPING FOR CAPABILITIES

MAP capabilities TO capabilities;
$(This module makes the capability st secret from the
higher levels, by the appropriate designator mapping)

TYPES

capabilityl: { capability c I c ~= st };

PARAMETERS

capability st;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER bit_string_length;
INTEGER character_string_length;

MAPPINGS

capability: capabilityl;

bit_string_length: bit_string_length;

character_str ing_length: character_string_length;

END MAP

C-IV-3.2 C-IV-4.1

IMPLEMENTATION FOR EXTENDED-TYPE MODULE

PROGRAM MODULE extended-types

$(The implementation of extended-types first checks to see
whether the type capability t submitted to it is valid, by looking
it up in the central table (i.e., calling table(t)). If there is
no entry, an exception is returned. The result is the type segment
capability, tab. Any search for an extended-type capability
c involves a linear search over segment locations equal to 1
modulo the entry size (read(tab, 0) = impl_length(t) + 2).
The first location of the entry contains 0 if the entry is null.
The next impl_length slots contain the sequence of implementation
capabilities for c. A 0 designates an undefined implementation
capability. All slots must be 0 if the entry is null. The last
location contains a bit vector designating whether the ith
implementation capability is original (i.e., created specifically
for that extended-type object), by a 1 in the ith position of the
bit vector. The bit vector must contain a 0 in the ith position
if the ith implementation capability is undefined, and a 0 in all
positions if the entry is null.

The creation of a new type involves the creation of a new type
segment and a new type capability, and insertion of the
correspondence between them into the central table. The creation
of a new object involves the insertion of a new capability (for
the object) in the type segment as either the first location of
a previously null entry or the first location of a new entry
created by lengthening the segment. Object deletion involves
making the corresponding entry in the type segment null. The
implementation capabilities and the original bits MUST be zeroed out
by the deletion programs. Creation and deletion of impl_objects
and impl_caps is straightforward.

"The partitioning for this module is by types:

<is^type_manager(t), impl_length(t),
<Ts__type_manager (c, t) , <impl__cap(c, t, i) ,
original(c, t, i), for all i>, for all c>>.

The lower level is partitioned as follows:

<table(t), seg_exists(table(t)) ,
<read(table(t), i), for all i>>.

The grab arguments are

VECTOR(VECTOR(t, ex secret))

VECTOR* VECTOR(t, ex_secret), VECTOR(tl, ex_secret))

depending on whether one or two types are involved. ex_secret is
secret capability for grabbing.")

TYPES

bit: { 1, 0 };
bit_string: { VECTOR_OF bit bs I LENGTH(bs) = bit_string__length
character_string: { VECTOR_OF CHAR cs I

LENGTH(cs) = character_string_length };
machine_word: ONE_OF(capability, INTEGER, bit_string,

character_string, BOOLEAN);
not_cap: ONE_OF(INTEGER, bit_string, character_string, BOOLEAN)

DECLARATIONS

capability c, cl, $(arbitrary capabilities)
t, $(type manager's capability)
s, $(segment capability)
p; $(process capability)

BOOLEAN b;
INTEGER i, j, k;
machine_word w;
VECTOR_OF VECTOR_OF capability w e ;

PARAMETERS

INTEGER bit_string_length, $(length of a bit string in a machin
word)

character_string_length; $(length of a character string
a machine word)

capability ctl, csl, $(representations for type-creation and
segment-creation capabilities, respectively

ex_^secret, $(a secret capability for grabbing)
thTs_process; $(a capability for this process)

DEFINITIONS

bit_string allzeros IS
VECTOR(FOR i FROM 1 TO bit_string_length: 0);

BOOLEAN not_there(c; s) IS FORALL k I k >= 0:
LET i | read(s, 0)*k + 1 • i IN read(s, i) ~= c;

INTEGER max_impl_caps IS MIN({ maxsize-3, bit_string__length });

BOOLEAN bad_type_manager(t) IS table(t) = ?;

BOOLEAN invalid_object(c; t) IS LET s = table(t) IN
IF S = ? THEN TRUE
ELSE not_there(c, s);

BOOLEAN orig_impl_objs_present(c; t) IS LET s = table(t) IN
read(s, search_seg(c, s)+read(s, 0)-l) ~= ellzeros;

EXTERNALREFS

C-V-l.l
C-V-l.2

FROM tables:
VFUN table(c) -> cl;

FROM segments:
VFUN seg_exists(s) -> b;
VFUN read(s; i) -> w;
VFUN seg_size(s) -> i;
OVFUN create_segment(i) -> s;
OFUN write(s; i; w) ;
OFUN change_seg s i z e (s ; i) ;
OFUN delete__segTs) ;

FROM capabilities:
capability: DESIGNATOR;
INTEGER bit_string_length, character_string_lengthj
OVFUN create_cap() -> c;

FROM processes:
VFUN grabstack(p, i) -> we?
OFUN grab(vvc)[p];
OFUN r e l e a s e () [p] ;

INITIALIZATION

BEGIN
ctl <- create_cap();
csl <- create_cap();

END;

IMPLEMENTATIONS

VFUN PROG is_type_manager(t) -> b;
DECLARATIONS capability tab;
BEGIN

grab(VECTOR(VECTOR(t, ex_secret)))[this process];
$(use exception return on table lookup to determine if t
represents a type manager)

DO tab <- table(t) WITH
"table(c) « ?" : b <- FALSE;
"NORMAL": b <- TRUE

OD;
RETURN("NORMAL");
release()[this_process];

END;

$(the code and specifications for a subroutine is presented next,
this subroutine will be used by other programs of the module to
search a type segment for an entry headed by an extended-type
capability)

VFUN^SUBR search_seg(w; s) -> i;
ASSERT

C-V-1.3

seg_exists(s);
seg size(s) > 0;
reacf(s, 0) > 0;
seg_size(s) MOD (read(sf 0) + 2)
EXISTS t I table(t) = s; i; j:
grabstack(this_process, i)[j]

EXCEPTIONS
not_there(w, s);

DERIVATION
MIN({ k I (EXISTS j : k

= 1;

VECTOR(VECTOR(tf ex secret)]

read(s, 0)*j + 1 AND
= read(s, k)) }) ;

DECLARATIONS INTEGER skip;
BEGIN

$(search for capability c in segment s)
i <- 1;
skip <- read(s, 0);
WHILE read(s, i) {"address_bounds(s, i)" : c} "«

DO i <- i + skip OD;
IF i s seg_size(s)
THEN $(not found - signal exception)

RETURN("not_there(c, s)")
ELSE $(found - return location)
RETURN("NORMAL")

FI;
END;

VFUN_PRCG is_type(c; t) -> b;
DECLARATIONS capability tab; INTEGER i;
BEGIN

grab(VECTOR(VECTOR(t, ex_secret)))[this_process];
$(this function is false if t is not a type manager or if t
does not manage object c)
DO tab <- table(t) WITH

"table(c) « ?" : b <- FALSE;
"NORMAL":
DO i <- search_seg(c, tab) WITH

"not_there(c, s)" : b <- FALSE;
"NORMAL": b <- TRUE

OD;
OD;
RETURN("NORMAL");
release()[this_process];

END;

VFUN_PROG impl_cap(c; t; i) -> cl;
DECLARATIONS INTEGER j; capability tab;
BEGIN

grab(yECTOR(VECTOR(t, ex secret)))[this process];
$(this program returns "invalid_object" Tf t is not a type
manager, or if t is not the type manager for c. it returns
"no__impl_obj" if i is out of bounds, or if there is a 0 in th
ith impl_cap position)

C-V-1.4

DO tab <- table(t) WITH
"table(c)- ?" : RETURN (n inval id_object (c, t) ") ;
"NORMAL":
DO j <- search_seg(c, tab) WITH

"not__there(c, s) M : RETURN ("inval id^object (c, t) w) ;
"NORMAL":

IF i < 1 OR i > read(tab, 0)
THEN RETURN("no_impl_obj(c, t, i)")
ELSE
m <- read(tab, i+j);
TYPECASE m OF

not_cap: RETURN("no_impl_obj(c, t, i)");
capability:
BEGIN cl <- m;
RETURN("NORMAL")

END
END

FI
OD

OD;
release()[this_process];

END;

VFUN_PROG impl_length(t) -> i;
DECLARATIONS capability tab;
BEGIN

grab(VECTOR(VECTOR(t, ex_secret)))[this_process];
$(returns an exception if t is not a type manager, otherwise
returns the first location in the type segment)

DO tab <- table(t) WITH
"table(c)= ?" : RETURN("bad_type_manager(t)");
"NORMAL": BEGIN
i <- read(tab, 0);
RETURN("NORMAL")

END
OD;
release()[this_process];

END;

VFUN_PROG original(c; t; i) -> b;
DECLARATIONS INTEGER j; machine_word m; capability tab;
BEGIN
grab(VECTOR(VECTOR(t, ex_secret)))[this_process];
$(this procesure returns the exception "invalid_object" if t
is not a type manager, or not the type manager of c. it returns
the exception "invalid_object" if i is out of bounds or if no
implementation capability in position i exists, it returns TRUE
if the ith element of the bit vector is 1 and FALSE otherwise)

DO tab <- table(t) WITH
"table(c)= ?" : RETURN("invalid_object(c, t)");
"NORMAL":
DO j <- search_seg(c, tab) WITH

"not_there(c, s)"r RETURN("invalid_object(c, t) ") ;
"NORMAL":

IF i < 1 OR i > read(tab, 0)
THEN RETURN("no_impl_obj(c, t, i) ")
ELSE
m <- read(tab, i+j);
TYPECASE m OF

not_cap: RETURN("no_impl_obj(c, t, i)");
capability: BEGIN

IF read(tab, j+read(tab, 0)-l)[i] = 1
THEN b <- TRUE
ELSE b <- FALSE

FI;
RETURN("NORMAL")

END
END

FI
OD

OD;
release()[this_process];

END;

OVFUN_PROG create_Jrype(t; i) -> c;
DECLARATIONS capability cl, c2;
BEGIN

grab(VECTCR(VECTOR(t, ex_secret)))[this_j?rocess] ;
$(first t is checked to see if it is the type-creation
capability, if not, an exception is signalled. Next the bou
of i are checked, and an exception is returned if the bounds
not proper. Then a capability c2 is created, the type manag
capability for the new type. The type segment, with capabil
cl is also created, and inserted into the central table with
c2. Note that resource errors map upward to resource errors
and that segment cl is deleted if there is is a resource err
involved in making the table insertion. This latter action
not necessary for correctness, but certainly advisable with
regard to resource utilization.)

IF t ~= ctl THEN RETURN("t "= Ct")
ELSE

IF i < 1 OR i > max__impl_caps
THEN RETURN("i < 1 OR i > max_impl_caps");
ELSE

DO c2 <- create_cap() WITH
"RESOURCE_ERROR" : RETURN("RESOURCE_ERROR");
"NORMAL": DO cl <- create_segment(1) WITH
"RESOURCE_ERROR": RETURN("RESOURCE_ERROR");
"NORMAL": DO insert_table(c2, cl) WITH
"RESOURCE_ERROR": BEGIN
delete_seg(cl);
RETURN("RESCURCE_ERROR")

END;
"NORMAL": BEGIN
write(cl, 0, i);

C-V-1.5 C-V-1.6

c <- c2;
RETURN("NORMAL");

END
OD

OD
OD

FT
FI;
releaseO [this_process] ;

END;

$(Here is the most painful aspect of the implementation. We need
to be able to create objects both in create_object and
create_impl_obj. Hence we need a subroutine, but we cannot simply
call create_object from create_iropl_obj, because then create_obj
would try to do a grab that we have already done. So we have
included hidden_create_object to do the work. As in the case of
search_segr there is no protection here. As in the case of
search_seg, we could have expanded out the code in line.)

OVFUN_SUBR hidden_create_object(t) -> c;
EXCEPTIONS
bad_type_manager(t);
RESOURCE_ERROR;

EFFECTS
c - EFFECTS_OF create_cap();
EXISTS j, k I LET s = table(t) IN

j ~ k*read(s, 0) +1 AND
(read(s, j) » ? OR read(sf j) = 0) AND
'read(s, j) = c AND
'read(s, j+read(s, 0) - 1) = allzeros AND
(FORALL i INSET {j+1..j+read(s, 0)-l}: 'readfs, i) = 0);

DECLARATIONS INTEGER j; machine_word m; capability cl, tab;
BEGIN

DO tab <- table(t) WITH
"table(c)= ?": RETURN("bad_type_manager(t)");
"NORMAL": DO cl <- create_cap() WITH
"RESOURCE_ERROR": RETURN("RESOURCE_ERROR");
"NORMAL": DO j <- search_seg(0, tab) WITH
"not_there(c, s) n : DO
change_seg__size(tab, seg_size(tab) + read (tab, 0)) WITH

"bad_size(j)": RETURN("RESOURCE_ERROR");
"RESOURCEJSRROR": RETURN("RESOURCE_ERROR");
"NORMAL" : BEGIN
write(tab, seg__size (tab) - read(tab, 0), cl);
write(tab, seg_size(tab)-1, allzeros);
RETURN("NORMAL")

END
OD;
"NORMAL": BEGIN
write(tab, j, cl);
RETURN("NORMAL")

END
$(delete_object better clean up by making sure that all impl slots

C-V-1.7

are 0, the last slot is the bitstring allzeros of all 0's,
and the first slot is 0)

OD
OD

OD
END;

OVFUN_PROG create_object(t) -> c;
BEGIN

grab(VECTOR(VECTOR(t, ex_secret))) [this_process];
$(This function simply calls hidden_create_object, and maps
all exceptions directly upward)

DO c <- hidden_create_object(t) WITH
"bad_type_jnanager(t)": RETURN("bad_type_manager (t) ") ;
"RESOURCE_ERROR": RETURN("RESOURCE_ERROR");
"NORMAL": RETURN("NORMAL")
releaseO [this_process] ;

END;

OFUN_SUBR hidden_delete_object(c; t);
$(This subroutine deletes an object entry from the type segment,
but only if the object c is of type t and if there are no impl
objects present for c. The effects are to zero out all capability
locations and to write a bit string of all zeros into the last
location of the entry)
EXCEPTIONS

invalid_object(c, t);
orig_impl_objs__present(c, t) ;

EFFECTS LET s = table(t) IN
LET i = search_seg(c, s) IN

(FORALL j INSET {i..i+read(s, 0)-2}: 'read(s, j) » 0) AND
'read(s, i+read(s, 0)-l) = allzeros;

DECLARATIONS INTEGER j, stop; machine_word m; capability tab;
BEGIN

DO tab <- table(t) WITH
"table(c) = ?": RETURN("invalid_object(c, t)");
"NORMAL": DO j <- search_seg(c, tab) WITH
"not_there(c, s)": RETURN("invalid_object(c, t)");
"NORMAL": BEGIN
start <- read(tab, 0);
IF read(tab, start + j - 1) "= allzeros
THEN RETURN("orig_impl_objs_present(c, t) ")
ELSE FOR i FROM start TO start + j - 1 DO

write(tab, jf 0) OD;
write(tab, stop, allzeros)

FI
END

OD
OD

END;

C-V-1.8

OFUN PROG delete object(c; t);
BEGIN
grab(VECTORf VECTOR(t, ex_secret)))f this_processj;
$(This function simply calls hidden_delete_object and maps
up all exceptions uniformly)

DO hidden_delete__object(c, t) WITH
"invalid_object(c, t)": RETURN(" inval id__object(c, t) •) ;
"orig_impl objs_present(c, t)":
RETURN("^orig^imp^bjs^presenttc, t) "

OD;
release()[this process];

END; ~

IF k = i THEN 1
ELSE read(tab, j+read(tab, 0)-l)[k]));

RETURN("NORMAL")
END

OD
OD

END
FI

OD
OD;
release()f this_process];

END;

OVFUNJPROG create_impl_obj(c; t; i; tl) -> cl;
DECLARATIONS INTEGER j; machine word m; capability tab;
BEGIN
grab(VECTOR(VECTOR(t, ex_secret), VECTOR(tl, ex_secret)))

{ this_j>rocess];
$(This function returns an exception if c is not an object of
type t, then checks to see if i is out of bounds and returns
an exception. If there is an impl object present, then yet
another exception is returned. Otherwise an object of type t
is created (by calling hidden_create_object) and an empty entry
in the type segment is found for it.)

DO tab <- table(t) WITH
"table(c)= ?": RETURN("invalid_object(c, t)");
"NORMAL": DO j <- search_seg(c, tab) WITH
"not_there(c, s)": RETURN("invalidobject(c, t)");
"NORMAL": IF i < 1 OR i > read(tab, 0) - 2
THEN RETURN("bad element(i, t)");
ELSE m <- read(taB, i+j);
TYPECASE m OF

INTEGER: RETURN("NOT no_irapl_obj(c, t, i)");
capability:
IF tl * us THEN DO cl <- create_segment(0) WITH

"RESOURCE_ERROR": RETURN("RESOURCE_ERROR")
"NORMAL": BEGIN

write(tab, j+i, cl);
write(tab, j+read(tab, 0)-l,

VECTOR(FOR k FROM 1 TO bit_string_length:
IF k « i THEN 1
ELSE read(tab, j+read(tab, 0)-l)[k]));

RETURN("NORMAL")
END

OD
ELSE DO cl <- hidden_create_object(tl) WITH

"bad_type_manager(t)":
RETURN("invalid_impl_type(t1)");
"RESOURCE ERROR": RETURN("RESOURCE ERROR")
"NORMAL":"BEGIN
write(tab, j+i, cl);
write(tab, j+read(tab, 0)-l,

VECTOR(FOR k FROM 1 TO bit_string_length:

C-V-1.9

OFUN_PROG insert_impl_obj(c; t; i; cl);
DECLARATIONS j; machine_word m; capability tab;
BEGIN
grab(VECTOR(VECTOR(t, ex_secret)))[this_process];
$(This function first checks to see if c is a valid object of
type t, and if not returns an exception. Then it checks the
bounds on i, and if out of range, returns an exception. An
exception is also returned if the entry is occupied. Otherwise
the capability c is inserted in the ith slot for implementation
capabilities for c.)

DO tab <- table(t) WITH
"table(c)= ?": RETURN("invalid_object(c, t)");
"NORMAL": DO j <- search_seg(c, tab) WITH
"not_there(c, s)": RETURN("invalid_object(c, t)");
"NORMAL":
IF i < 1 OR i > read(tab, 0) - 2
THEN RETURN("bad element(i, t)");
ELSE m <- read(tab", i+j);
TYPECASE ro OF
not_cap: RETURN("NOT no_impl_obj(c, t, i)");
capability: BEGIN write(tab, i+j, cl);

RETURN("NORMAL")
END

FI
OD

OD;
release()[this_process];

END;

OFUN_PROG delete__impl_obj(c; t; i; tl);
DECLARATIONS INTEGER j; machine_word m; capability tab;
BEGIN
grab(VECTOR(VECTOR(t, ex_secret) ,

VECTOR(tl, ex_secret)))I this_process];
$(This function first checks to see whether c is a valid
object of type t, and if not retruns an exception. Then it
checks to see whether i is in bounds, and whether the ith
implementation capability for c exists. An exception is returned
if either of these two conditions are false. Next the ith

C-V-1.10

implementation object is checked to see whether it is a valid
object of type tl. If not, an exception is returned.
Otherwise, the object and the implementation capability are
deleted.)
DO tab <- table(t) WITH

"table(c)= ?": RETURN("invalid_object(c, t)");
"NORMAL": DO j <- search_seg(c, tab) WITH
"not_there(c, s)": RETURN("invalid_object(c, t) ") ;
"NORMAL": IF i < 1 OR i > read(tab, 0) - 2
THEN RETURN("no_impl_obj(c, t, i)");
ELSE m <- read(tab, i+j);
TYPECASE m OF

not__cap: RETURN("no_impl_obj (c, t, i) ") ;
capability:
IF read(tab, j-l+read(tab, 0))[i]=l
THEN IF seg_exists(m)

THEN delete_seg(m);
write(tab, j+i, 0);
write(tab, j + read(tab, 0) - 1,
VECTOR(FOR k FROM 1 to bit_string_length() :

IF k = i THEN 0
ELSE read(tab, j-l+read(tab, 0))[k]));

RETURN("NORMAL");
ELSE DO hidden_delete_obj(m, t) WITH

" i n v a l i d _ o b j e c t (c , t) " : RETURN(" i n v a l i d _ o b j e c t (c l , t l) ") ;
" o r i g _ i m p l _ o b j s _ p r e s e n t (c , t) " :
RETURN(" o r i g _ i m p l _ o b j _ p r e s e n t (c l , t l) ") ;
"NORMAL": BEGIN
write(tab, j+i, 0);
write(tab, j + read(tab, 0) - 1,

VECTOR(FOR k FROM 1 to bit_string_length() :
IF k = i THEN 0
ELSE read(tab, j-l+read(tab, 0))[k]));

RETURN("NORMAL")
END

OD
FI

ELSE RETURN("NOT exc_original(c, t, i)")
FI

END
FI

OD
OD;
releaseO [this_process] ;

END;

is checked for existence. If either condition is
exception is returned. Finally the bit string is
see whether the object is original. If it is, an
is returned. Otherwise the implementation capabi
deleted)
DO tab <- table(t) WITH

"table(c) = ?": RETURN("invalid_object(c, t)");
"NORMAL": DO j <- search_seg (c, tab) WITH
"not_there(c, s)": RETURN("invalid_object(c,
"NORMAL": IF i < 1 OR i > read(tab, 0) - 2
THEN RETURN("no_impl_obj(c, t, i)")
ELSE m <- read(tab, i+j);

TYPECASE m OF
not_cap: RETURN("no_impl_obj(c, t, i)")j
capability: IF read(tab, j-l+read(tab, (
THEN RETURN("exc original(c, t, i)")
ELSE write(tab, i+7# 0);
RETURN("NORMAL")

FI
END

FI
OD

OD;
releaseO [this_process] ;

END;

END MODULE

OFUN_PROG delete_impl_cap(c; t; i);
DECLARATIONS INTEGER j; machine word m; capability tab;
BEGIN
grab(VECTOR (VECTOR(t, ex_secret)))[this_process];
$(This function first checks to see whether c is a valid
object of type t. If not, an exception is returned. Next
the bounds of i are checked, and the ith implementation object

C-V-l.ll C-V-1.12

IMPLEMENTATION FOR TABLE MODULE

PROGRAM MODULE tables

$(The implementation of tables is straightforward. It is based on
a simple linear search to check for an entry. Table(c) does exactly
that, returning an exception if the entry is not found.
Insert_table(c, cl) first searches for an entry, and if none exists,
inserts the entry, otherwise returning an exception. In insertion
an empty slot is searched for, and if none is found, then the segment
size is changed. Note the use of "RESOURCE_ERROR" and how the
exception is mapped up.

Delete_table(c) signals an exception when the desired entry is not
found, and otherwise deletes the entry. In all cases, the search
loop is exited when the desired entry is found, or when the index
overflows the segment size (signalled by the exception value
"address_bounds"). In this method bounds checking is done only by
the lower level (the segment manager).

"Exclusion is obtained by having a single partition,

<table(c), for all c>.

The implementation partition is

<read(st, i), for all i>,

where st is a module parameter. The argument to grab is

VECTOR(VECTOR(St)).

TYPES

bit : {1, 0};
bit_string:

{VECTOR_OF bit bs I LENGTH(bs) « bit_string_length};
character_str ing:

{VECTOR_OF CHAR cs I LENGTH(cs) = character_string_length};
machine^word:

ONEJ5F(capability, INTEGER, bit_string, characterising,
BOOLEAN);

DECLARATIONS

INTEGER i;
capability c, cl, s, p;

machine word w;
BOOLEAN b;
VECTOR_OF VECTORJDF capability w e ;

PARAMETERS

capability st;

EXTERNALREFS

FROM segments:
VFUN read(s; i) -> w;
VFUN seg_size(s) -> i;
OVFUN create segment(i) -> s;
OFUN write(s; i; w);
OFUN change_seg_size(s; i);

FROM capabilities:
capability: DESIGNATOR;
INTEGER bit_string_length, character_string_length;

FROM processes:
OFUN grab (we) [p] ;
OFUN release()[p];

INITIALIZATION

st <- create_segment(O);

IMPLEMENTATIONS

VFUN_PROG table(c) -> cl;
DECLARATIONS INTEGER i;
BEGIN
grab(VECTOR(VECTOR(st)));
$(search for entry)
i <- 0;
WHILE read(st, i) {"address_bounds(s, i)" : c} ~«

DO i <- i + 2 OD;
IF i = seg_size(st)
THEN $(not found)
RETURN("table(c) = ?")

ELSE $(found — insert entry)
cl <- read(st, i+1)•
RETURN("NORMAL")

FI;
release();

END;

C-V-2.1 C-V-2.2

OFUN_PROG insert_table(c; cl);
DECLARATIONS INTEGER i;
BEGIN

grab(VECTOR(VECTOR(st)));
$(search for c in st)
i <- 0;
WHILE read(st, i) {-address_bounds(s, i)" : c} ~= c

DO i <- i + 2 OD
IF i ~= seg_size(st)
THEN $(signal entry already present)

RETURN("table(c) "= ?")
ELSE $(try to find an empty slot)

i <- 0;
WHILE read(st, i) {"address_bounds(s, i)• : st} "* st

DO i <- i + 2 OD;
IF i = seg_size(st)
THEN $(no empty slot - lengthen segment and insert entry)

DO change_seg_size(st, i+2) WITH
"RESOURCE ERROR- : RETURN("RESOURCE_ERROR");
*bad_size(j): RETURN("RESOURCE_ERROR") ;
"NORMAL" : BEGIN writefst, i, c) ;
write(st, i+1, cl);
RETURN(-NORMAL-)

END
OD

ELSE write(st, i+1, cl);
write(st, i, c) ;
RETURN(-NORMAL")

FI
FI;
release();

END;

OFUN_PROG delete_table(c);
DECLARATIONS INTEGER i;
BEGIN

grab(VECTOR(VECTOR(st)));
$(search for entry c)
i <- 0;
WHILE read(st, i) {-address_bounds(s, i)" : c} "- c

DO i <- i + 2 OD?
IF i = seg_size(st)
THEN $(not found - signal exception)

RETURN("table(c) = ?")
ELSE $(found - zero out the entry)

write(str i, st);
write(st, i+1, 0);
RETURN(-NORMAL-)

FI?
releaseO ;
END;

END MODULE

C-V-2.3

PROOF OF IMPLEMENTATION — INSERT TABLE

Things to be proved about the implementation of insert_table:
(1) The implementation "runs- on its partition.
(2) The invariants are satisfied.
(3) The implementation is correct with respect to the mapped

specifications.

First, the specifications and programs are presented. Then the pr
is developed.

Global declarations, used for all proofs and specifications:

INTEGER i, j, k, kl;
capability c, cl, $(arbitrary capabilities)

s; $(segment capability)

Higher-level specification:

OFUN insert_table(c; cl);
EXCEPTIONS

table(c) ~= ?;
RESOURCE_ERROR;

EFFECTS
•table(c) = cl;

Lower-level parameters:

capability st; $(capability for segment in which table is stored

Lower-level invariants:

seg_exists(st);
seg_size(st) MOD 2 * 0 ;
FORALL i I i MOD 2 = 0 ; k I k MOD 2 = 0 :

read(st, i) = read(st, k) =>
i = k OR read(st, i) * st OR read(st, i) = ?;

Mapping function:

table(c):
LET k I read(st, k) = c AND k MOD 2 = 0

IN read(st, k+1);

Implementing program in ILPL:

C-VI-1.1

OFUN PROG insert table(c; cl);
DECLARATIONS INTEGER i;
BEGIN
grab(VECTOR(VECTOR(st)))[this_process];
i <- 0;
WHILE read(st, i) {"address_bounds(s, i)" : c} "- c

DO i <- i + 2 OD;
IF i "« seg_size(st) THEN RETURNC table(c) ~= ?") ;
ELSE i <- 0;
WHILE read(st, i) {"address_bounds(s, i)" : st} "- st

DO i <- i + 2 OD;
IF i - seg_size(st) THEN
DO change seg sizefst, i+2) WITH

"RESOURC_ERROR": RETURN ("RESOURCE_ERROR");
"BAD_SIZE(j)": RETURN("RESOURCE_ERROR");
"NORMAL": BEGIN
write(str i, c);
write(st, i+1, cl);
RETURN("NORMAL")

END
OD

ELSE write(st, i+lr cl);
write(st, i, c) ;
RETURN("NORMAL")

FI
FI;
release()[this_process];

END;

Specifications of the segment module are not included here, for lack
of space.

Lemmas concerning segments:

FORALL s I seg_exists(s);
i INSET { O..seg_size(s)-1 } :
read(s, i) ~= ?;

FORALL s I seg_exists(s);
i I NOT i INSET { O..seg_size(s)-1 } :
read(s, i) * ?;

These lemmas can be proved by induction on all V-functions of the
segment module.

Derived V-function of the segment module:

seg_size(s): CARDINALITY({ i I read(s, i) ~= ? });

O-functions of the segment module (expressed as rewrite rules):

C-VI-1.2

write(s, i, w):
read -> LAMBDA c, k .

IF c » s AND k = i THEN w
ELSE read(c, k);

seg_exists -> seg_exists;

change_seg_size(s, j):
read -> LAMBDA c, k .

IF c = s
THEN 0 <= k AND k < j
THEN IF read(c, k) = ? THEN 0

ELSE read(c, k)
ELSE ?

ELSE read(c, k)
seg_exists -> seg__exists

Proof of insert_table(c,w)

Part (1) of the proof is trivial, because there is a single
partition, denoted by VECTOR* VECTOR(st)). The program obviously
runs on this partition.

In part (2) the first two invariants can be proved textually,
based on the assumption that they are true on program entry.
It is obvious that seg_exists(st) is prserved, because the
only O-functions called, write and change_seg_size, do not affect
that V-function.
seg_size is always even, because the only operation that changes the
segment size lengthens it by 2.
Both of these invariants are global, and can be used in the rest of
the Floyd proof at all points of the program.
The third invariant shall be combined with the mapped output
assertion, as part of the Floyd proof.

Floyd proof of the program:

The input assertions are:

1. The lower-level invariants
2. c ~= st AND cl "= st

(that none of the arguments are secret capabilities)

Output assertions

1. Invariant 3
2. ((table(c) '- ? AND *ERRORCODE() = "table(c) "= ?"

OR 'ERRORCODEO = "RESOURCE ERROR")
AND FORALL cl: ' table (cl) « "table (cl))
OR (table (c) = ? AND ' ERRORCODEO * "NORMAL" AND

FORALL cl: ftable(cl) =
(IF Cl = c THEN w ELSE table(c)))

C-VI-1.3

This assertion states essentially three cases:
1. The entry was in the table before the call, an exception is

signalled, and the state remains the same.
2. The entry was not in the table before the call, a

resource error is signalled, and the state remains the same.
3. The entry was not in the table before the call, a normal

return occurs, and the state changes as specified in the
effects.

This assertion must be mapped, and becomes quite complicated
when the semantics of LET are expanded.
The assertion allows any modification of the table that assures (1)
that none of the pre-existing entries are deleted, (2) that c is
inserted, and (3) that no other entries are inserted. This allows
for arbitrary reshuffling of the table according to these
constraints. We substitute instead a stronger assertion (which
implies both the mapped output assertion and invariant 6) that is
easier to state and prove)

Stronger assertion to be proved:

PSI (read, ERRORCODE) =

(NOT (FORALL k | even(k): read(st,k) ~= c)
AND 'ERRORCODE() = "table(c) ~= ?"
AND (FORALL k,s : 'read(s,k) = read(s,k)))

OR ((FORALL k 1 even(k) : read(st,k) ~= c)
AND (('ERRORCODE () = IfRESOURCE_ERROR"

AND (FORALL k,s : *read(s,k) = read(s,k)))
OR ('ERRORCODE() = "NORMAL" AND

(EXISTS k | even(k) AND
[read(st,k)= 0 OR read(st,k)=?]:
'read(st,k)=c AND 'read(st,k+l)=w) AND

(FORALL kl | kl ~= k AND kl "*= k+1:
•read(st,kl)=read(st,kl))

(where k is instantiated to the program variable i).

Note that the quoted V-functions represent the "current" values.
The unquoted V-functions represent the values at the beginning of
the program.

This program first searches the table to find an entry in the table
headed by c. If one is found, the exception "table(c) ~= ?" is
returned. Otherwise, the first empty table entry is found and the
entry <c,w> is inserted. If there is no empty table entry, then
the size of the segment is increased by 2, and the entry <c,w> is
inserted at the end of the table. The failure to be able to change
the segment size results in a resource error for the higher-level
program.

C-VI-1.4

The first thing to calculate is
T[IF i = seg_size(st) THEN ...]PSI(read,ERRORCODE) =

PSI(LAMBDA u,k . IF u = st THEN
IF k=i THEN c

ELSE IF k=i+l THEN w
ELSE read(u,k)

ELSE read(u,k)),
LAMBDA . "NORMAL"))

OR PSI(read,
LAMBDA . "RESOURCE_ERROR")

This simplifies almost unbelievably to the following

PSI1 =
(FORALL k,s | (k ~= i AND k ~ = i + 1) OR s ~= st :

•read(s,k) = read(s,k))
AND (FORALL k | k MOD 2 = 0 : 'read(st,k) ~ = c)
AND ('read(st,i)=st OR 'read(st,i)=?)

This simplification means that all entries except the one
denoted by i must be intact at this point in the program (or else
the output assertion will not be true), c was not in the table
before, and either (1) that i designates a previously undefined
entry, or (2) there was no insertion — a resource error

It must be proved that
NOT b AND q = > PSI1,

where b = the boolean condition of the previous WHILE statement,
and q is the loop assertion of that statement.
Note that the exception condition checking has been simplified out
of the predicate transform. This checking concerns the fact that st
exists (a GLOBAL invariant) and the fact that all references to
segment st are within bounds, which can be inferred from the fact
that 0 <= i AND i < seg_size(st)

q=

the input assertion to the program
AND (FORALL k,s : 'read(s,k) = read(s,k))
AND (FORALL k | k MOD 2 = 0 : 'read(st,k) ~ = c)
AND i >= 0 AND i <= seg_size(st) AND i MOD 2 = 0
AND (FORALL j | j < i AND j MOD 2 = 0 : 'read(st,k) ~= st)

The loop assertion states that none of the important conditions
that were true at the beginning of the program, have changed,
and that i either points to one of the table entries or is just
out of bounds, and that none of the table entries preceding i
contain an st (designating a blank entry).

NOT b =
*read(st,i) = st OR i >= seg_size(st) OR i < 0

C-VI-1.5

Conjunct 1 of PSI1 follows from conjunct 2 of q.
Conjunct 2 of PSI1 follows from conjunct 3 of g.
Conjunct 3 of PSI1 requires the proof that

'read(st,i)=st OR 'read(st,i)*?, given
Not NOT b above. Since it is true that

i >= seg_size(st) => 'read(st,i) = ?,
from the second lemma at the beginning of this section, and since
i >= 0 from conjunct 4 of g, conjunct 3 is true.

q.e.d. NOT b AND q => PSI1

Now it must be proved that

q AND b «> T[i <- i + 2]g

b is

*read(st,i) "• st AND i >= 0 AND i < seg_size(st)

ql - T[i <- i + 2]g =

the input assertion to the program
AND (FORALL k,s : fread(s,k) « read(s,k))
AND (FORALL k I k MOD 2 » 0 : »read(st,k) ~= c)
AND i+2 >» 0 AND i+2 <« seg_size(st) AND i+2 MOD 2 = 0
AND (FORALL j I j < i+2 AND j MOD 2 « 0 : *read(st,j) '« st)

The only conjuncts that need be proved are 4 and 5, because only i
changes.

The first part of conjunct 4 of ql follows from the first part of
conjunct 4 of q.

The second part of conjunct follows from these facts:
seg_size(st) is even
i is even
i < seg_size(st)

Thus i is at least 2 less than seg_size(st).

even(i+2) follows from even(i).

In conjunct 5 of ql, *read(st,j) ~= st for all values of j except i
and i+1 (from conjunct 5 of g). Since i+1 is odd, it can be
eliminated. This leaves *read(st,i) "* = st, which follows from b.

q.e.d. b AND q => gl

ql must now be pushed through i O 0, giving

g2 =

C-VI-1.6

the input assertion to the program
AND (FORALL k,s : 'read<s,k) * read(s,k))
AND (FORALL k I k MOD 2 = 0 : * r e a d (s t , k) ~* c)

PSI must a l s o be pushed back t h r o u g h t h e THEN p a t h o f
"IF i ""= s e g _ s i z e (s t) . . . " , g i v i n g

q3 *

NOT (FORALL k I k MOD 2 = 0 : fread(st,k) *"- st)
AND (FORALL k,s : 'read(k,s.) - read(k,s))

Both q2 and a3 are then used to go back through the IF statement,
giving, with some strengthening,

q4 =

the input assertion to the program
AND (FORALL k,s : 'read(s,k)= read(s,k))
AND ((i -- seg_size(st) AND

NOT (FORALL k I k MOD 2 = 0 : *read(st,k) **» c))
OR (i = seg_size(st) AND

(FORALL k I k MOD 2 = 0 : »read(st,k) ~= c)))

Next the first WHILE loop of the program is proved.
Let the inductive assertion for the loop be q5.

95 =
the input assertion to the program
AND (FORALL k,s : 'read(s,k) * read(s,k))
AND i >= 0 AND i <* seg_size(st) AND i MOD 2 * 0
AND (FORALL k I k MOD 2 = 0 AND k < i : fread(st,k) "« c)

The boolean condition for the WHILE loop is bl.

bl =

•read(st,i) ~= c AND i >= 0 AND i < seg_size(st)

First it must be proved that

q5 AND NOT bl => q4

NOT bl *
•read(st,i) = c OR i < 0 OR i >= seg_size(st)
The first two conjuncts of q4 follow directly.
The last conjunct divides into the three cases of NOT bl:

If 'read(stfi) = c, by counterexample,
the first disjunct of the last conjunct of q4 is satisfied.

If i < 0, there is a contradiction with the first conjunct of g5,
thus setirfying the last conjunct of g4.

C-VI-1.7

If i >= seg_size(st) , then i = seg_size(st) from the third
conjunct of q5, then by the last conjunct of g5 and the second lemma
on segmnet, the second disjunct of the third conjunct of g4 is
satisfied.

g.e.d. q5 AND NOT bl *> g4

The next formula to be proved is

g5 AND bl «> T[i <- i + 2]g5

q6 - T H <- i + 2]g_ *

the input assertion to the program
AND (FORALL k,s : (read(s,k) = read(s,k))
AND i+2 >« 0 AND i+2 <= seg_size(st) AND i+2 MOD 2 = 0
AND (FORALL k I k MOD 2 * 0 AND k < i+2 : 'read(st,k) "« c)

The first two conjuncts of q6 follow immediately, because they
involve no change in i.

The third and fourth conjuncts are proved in exactly the same way
as were the fourth and fifth conjuncts of gl.

g.e.d. q5 AND b => g6

The final proof is that

input assertion «> T[i <- 0]g6

This pushing back causes the last two conjuncts of q6 to go away,
because 0 is substituted for i.

The first conjunct of the transformed g6 follows immediately, and so
does the second (because the assignment statement does not affect
the value of read).

g.e.d. input assertion => t[i <- 0Jg6

This completes the proof of insert_table using Floyd's method.

C-VI-1.8

APPENDIX D

SPECIFICATIONS FOR THE
SECURE OBJECT MANAGER

CONTENTS

SECURE CAPABILITIES D.I
SECURE DOCUMENTS D.4
SECURE EXTENDED TYPES D.8
SECURE DIRECTORIES D.15
SECURE ENVIRONMENTS D.20
SECURE USERS D.25
SECURE MAIL D.29
SECURE EXTERNAL FUNCTIONS D. 32

APPENDIX D SECURE CAPABILITIES Page

MODULE secure_capabilities

TYPES

scapability: DESIGNATOR;
clearance: { INTEGER i I 0 <= i AND i <= max_clearance };
category_set: { SET_OF INTEGER cs I cs SUBSET max_set };
access_level: STRUCT(clearance security_clearance;

category_set security_categories);

DECLARATIONS

BOOLEAN b, bl, pb, pbl;
scapability sc, scl;
INTEGER u, ul;
access_level level, levell;

PARAMETERS

INTEGER max_clearance; $(maximum clearance allowed in system)
SET_OF INTEGER max_set; $(largest set of categories allowed in

system)
SET_OF INTEGER alloc_uid(level); $(set of uids allocated to an

access level)
scapability make_scap(u; level; b; pb);

$(the unique scapability corresponding to integer u,
access right b, and permit flag pb at the indicated
level. All scapabilities exist initially, for
specification purposes only.)

ASSERTIONS

FCRALL level; levell:
(level -= levell)

^XFORALL u I u INSET alloc_uid (level) :
~(u INSET alloc_uid(levell)));

(FCRALL u; ul; level; levell; b; bl; pb; pbl:
(make__scap(ul, levell, bl, pbl)
- make_scap(u, level, b, pb))

=(u = ul AND level = levell AND b = bl AND pb = pbl));
$(This assertion ensures that if two scapabilities are
equal then their corresponding uids, levels, access
flags and permit bits are equal)

(FCRALL scl:
EXISTS Ul:

EXISTS levell:
EXISTS bl:

EXISTS pbl: scl = make_scap(ul, levell, bl, pbl));
$(This assertion ensures that each scapability has uid,
level, access_flag and permit bit components.)

FUNCTIONS

APPENDIX D SECURE CAPABILITTFf Page D.2

VFUN get_suid(sc; level) -> u; $(returns the uid part of the
scapebility)

HIDDEN;
DERIVATION

(SOME ul I EXISTS b:
EXISTS b:

EXISTS pb:
sc = make_scap(ul, level, b, pb));

VFUN get_saccess(sc)[level] -> b; $(returns the access flag
portion of an scapability)

DERIVATION
EXISTS u:

sc = make_scap(u, level, TRUE, getjermit (sc, level));

VFUN getjperroit (sc)[level] -> b; $(returns the permit flag
portion of a scapability)

DERIVATION
EXISTS u:

sc * roake_scap(u, level, get_saccess(sc, level), TRUE);

VFUN old(u; level) -> b; $(returns true if u is a previously used
"uid" for a scapability at the indicated
level)

HIDDEN;
INITIALLY

b = FALSE;

VFUN restrict_saccess(sc)[level] -> scl;
$(returns a scapability with the same uid and permit
portions as sc, but with an access flag of false)

DERIVATION
make_scap(get_suid(sc, level), level, FALSE,

get_permit(sc, level));

VFUN change_permit(sc; pb)[level] -> scl;
$•(returns a scapability with the same uid and access
portion as sc but with a permit flag of pb)

DERIVATION
make_scap(get_suid(sc, level), level,

get__saccess(sc, level),
pb);

VFUN getjslavel(sc)[level] -> scl; $(returns the slave
scapability associated with a
scapability)

DERIVATION
make_scap(get_suid(sc, level), level, FALSE, FALSE);

OVFUN create_scapsbility()[level] -> sc;
$(returns a scapability with a previously unused uid,
with an access flag of TRUE, and a permit flag of TRUE.
An infinite supply of scapabilities is assumed for each
security level, thus precluding the need for any
exceptions.)

EFFECTS

APPENDIX D SECURE CAPABILITIES Page D.

u INSET alloc_uid(level) AND old(u, level) = FALSE
AND 'old(u, level) = TRUE
AND sc = make_scap(u, level, TRUE, TRUE);

END MODULE

APPENDIX D SECURE DOCUMENTS Page D.4 APPENDIX D SECURE DOCUMENTS Page

MODULE secure_documents
TYPES

fixed_string:
{ VECTOR_OF CHAR vc I LENGTF(vc) = char_string_length };
smachine_word: ONE_OF(INTEGER, fixed^string, scapability, BOOLEAN);
clearance: { INTEGER i |(i >— 0 AND T <= max_clearance) };
category_set: { SET_OF INTEGER cs I cs SUBSET max_set };
access_level: STRUCT(clearance security^clearance;

category_set securTty_categories);

DECLARATIONS

BOOLEAN b;
INTEGER if k, s i z e ;
scapabi l i ty scdoc, scdocl $(scapabi l i ty for secure document) ;
scapabi l i ty sudoc $(slave scapabi l i ty for secure documents) ;
smachine__word w;
access_level l e v e l , l e v e l l ;

PARAMETERS

INTEGER max_document_size $(maximum s i z e for a s e c u r e document) ,
max_documents(level) $(maximum number of documents t h a t

can be created at the given level),
char_string_length $(number of characters in a machine

word) ;

DEFINITIONS

BOOLEAN gte(levell; level)
IS (level.security clearance <= levell.security_clearance)
AND(level.securTty_categories

SUBSET levell.security_categories) ;
$(TRUE if levell is at least as high in the access
lattice as level)

BOOLEAN document_initiated(sudoc; level)
IS (document_exists(sudoc, level) - TRUE)
AND(FORALL levell I gte(level, levell) AND(level ~= levell):

document_exists(sudoc, levell) = FALSE);
BOOLEAN too_many_documents(level)

IS CARDINALITY({sudoc I document_initiated(sudoc, level) = TRUE})
>= max_documents(level);

BOOLEAN bad_document_size(size) IS size > max_document_size;
BOOLEAN no_document(sudoc; level)

IS NOT(document_exists(sudoc, level));
BOOLEAN out_of_document__bounds(sudoc; level; i)

IS i < 0 OR i >= document_size(sudoc, level);
BOOLEAN bad_document_access(scdoc; level)

IS get_saccess(scdoc, level) = FALSE;
BOOLEAN bad_scapability(w; level)

IS(TYPECASE w OF
scapability: get_permit(w, level) = FALSE;
ONE__OF (INTEGER, f ixed_str ing , BOOLEAN): FALSE;

END) ;

EXTERNALREFS
FROM secure_c?pabilities:

scapability: DESIGNATOR;
VFUN get_saccess(scdoc)[level] -> b;
OVFUN create__scapability() [level] -> scdoc;
VFUN change_permit(scdoc; b)[level] -> scdocl;
VFUN get_slavel(scdoc)[level] -> sudoc;
VFUN get_permit(scdoc)[level] -> b;
INTEGER max_clearance;
SET_OF INTEGER max_set;

FUNCTIONS

VFUN document_exists(sudoc; level) -> b;

HIDDEN;
INITIALLY

b = FALSE;

VFUN document_size(sudoc; level) -> i;

HIDDEN;
INITIALLY

$(True iff document
sudoc exists at
indicated level)

$(Number of machine words
in document sudoc)

VFUN documenthread(sudoc; level; i) -> w;

HIDDEN;
INITIALLY

w = ?;

$(contents of location
i of document sudoc)

VFUN document_readl(scdoc; i)[level] -> w; $(derived form of
document_read)

DEFINITIONS
scapab i l i t y sudoc IS g e t _ s l a v e l (s c d o c , l e v e l) ;

EXCEPTIONS
no__document (sudoc, l e v e l) ;
out_of_document_bounds(sudoc, l e v e l , i) ;

DERIVATION
document_read(sudoc, level, i);

OVFUN create_document(size)[level] -> scdoc;
$(creates a new document with indicated size, at all
security levels at least that defined by level. An
scapability is returned with full access rights, but
with a permit flag of FALSE. The call is rejected if the
quota of documents at that level would be exceeded)

EXCEPTIONS
too_many__documents(level) ;
bad_document_size (size) ;

EFFECTS
change_permit(EFFECTS_OF create_scapability(level), FALSE,

level)
= scdoc;
FORALL levell I gteflevell, level):

LET sudoc I sudoc = get_slavel(scdoc, levell)

APPENDIX D SECURE DOCUMENTS Page D.6 APPENDIX D SECURE DOCUMENTS Page D."

IN 'document_exists(£udoc, levell) = TRUE EFFECTS
AND 'document_size(sudoc, levell) = size FORALL levell I gte(levell, level)

AND(FORALL i: (0 <- i AND i < size AND document_exists(get_slavel(scdoc, levell),
=> 'document_read(sudoc, levell, i) =0))? levell):

fdocument_read(get_sl?vel(scdoc, levell), levell, i) - w;
OFUN change__document_size(scdoc; siz£)[level];

$(changes the size of the designated document to size at END_MODULE
all security levels at least that of level such that the
document exists)

DEFINITIONS
scapability sudoc IS get_slavel(scdoc, level);

EXCEPTIONS
no_document(sudoc, level);
bad_document_size(size);
bad_document_access(scdoc, level);

EFFECTS
FORALL levell I gte(levell, level)

AND document__exists(get_slavel (scdoc, levell),
levell):

LET sudoc I sudoc * get_slavel(scdoc, levell)
IN ldocument_size(sudoc, levell) = size
AND(IF size > document_size(sudoc, levell)

THEN(FORALL k:
(k >= document_size(sudoc, levell)
AND k < size
=> 'document_read(sudoc, levell, k) - 0))

ELSE(FORALL k:
k >= size

=> ldocument_read(sudoc, levell, k) = ?));

OFUN delete_document(scdoc)[level];
$(deletes the document corresponding to scdoc at all
security levels at least that defined by level)

DEFINITIONS
scapability sudoc IS get_slavel(scdoc, level);

EXCEPTIONS
no_document(sudoc, level);
bad_document_access(scdoc, level);

BFF ECT^
FORALL levell I gte(levell, level):

LET sudoc I sudoc = get_slavel(scdoc, levell)
IN 'document^existstsudoc, levell) = FALSE

AND 'document_size(sudoc, levell) = ? .
AND(FORALL k: "document_read(sudoc, levell, k) = ?);

CFUN documentorite(scdoc; i; w) [level] ;
$(writes machine word w into location i of the document
at all security levels at least that of the given level
such that the document exists The call is rejected if w
is a scapability with a permit flag of FALSE.)

DEFINITIONS
scapability sudoc IS get_slavel(scdoc, level);

EXCEPTIONS
no_document(sudoc, level);
bad_document_access(scdoc, level);
out_of_document_bounds (sudoc , level, i)";
bad_scapability(w, level);

APPENDIX D SECURE EXTENDED TYPES Page D.8

MODULE secure_extended_types

TYPES

clearance: { INTEGER i I 0 <= i AND i <= max_clearance };
category_set: { SET_OF INTEGER cs I cs SUBSET max_set };
access_level: STRUCT(clearance security_clearance;

category_set security_categories);

DECLARATIONS

scapability st, stl, sc, scl, scdoc;
scapability sutr $(slave scapability for type manager) su, sudoc;
BOOLEAN b, pb;
access_level level, levell;
INTEGER size, i;

PARAMETERS

INTEGER max_impl_caps; $(maximum numbers of implementation
. scapabilities in the representation of an
object)

INTEGER max__objects (level); $(maximum number of objects that can
be created at level of a given type)

scapability sdoc_cr; $(special scapability used by a type manager
to indicate need to create a document)

scapability sudoc_cr; $(slave version of sdoc_cr)

DEFINITIONS

BOOLEAN invalid_object(su; sut; level)
IS ~ is_stype(su, sut, level);

BOOLEAN bad_element(i; sut; level)
IS i < 1 OR i > h_impl_slength(sut, level);

BOOLEAN no_impl_obj(su; i; level)
IS h_impl_scap(su, level)[i] = ?;

BOOLEAN gte(levell; level)
IS (level.security^clearance <= levell.security_clearance)
AND(level.securTty_categories

SUBSET levell.security_categories);
BOOLEAN type_too_big(size) IS size > max_impl_caps;
BOOLEAN bad_type__manager (sut; level)

IS * is_stype_manager(sut, level);
BOOLEAN object_initiated_for type(su; sut; level)

IS (is_stype(su, sut, level) = TRUE)
AND(FORALL levell I gte(level, levell) AND(level "= levell):

is_stype(su, sut, levell) = FALSE);
BOOLEAN too_many_objects(sut; level)

IS IF(sut = sudoc_cr)
THEN(CARDINALITY({ sudoc I document_initiated(sudoc, level)})

>= max_documents(level))
ELSE(CARDINALITY({ su I object_initiated_for_type(su, sut,

level) })
>= max__objects (l e v e l)) ;

BOOLEAN bad_object_access(sc; level)
IS get_saccess (sc , l eve l) = FALSE;

BOOLEAN original_impl_objs_present(su; leve l)

APPENDIX D SECURE EXTENDED TYPES

IS EXISTS i: h_soriginal(su, level)[i] = TRUE;
BOOLEAN object_there__already(su; i; level)

IS h_impl_scap(su, l e v e l) [i] ~= ?;
BOOLEAN invalid_impl_type(sut; leve l)

IS " is_stype_manager(sut, level) AND ~(sut = sdoc_cr);
BOOLEAN document_initiated(sudoc; level)

IS document_exists(sudoc, level)
AND(FORALL levell I gte(level, levell) AND level ~= level:

document_exists(sudoc, levell) = FALSE);
VECTOR_OF scapability insert_scapability(VECTOR_OF scapability

i; sc)
IS VECTOR(FOR j FROM 1

TO(IF LENGTH(scv) >= i THEN LENGTH(scv) ELSE i)
: IF j * i THEN sc

ELSE IF j <= LENGTH(scv) THEN scvfj] ELSE ?);
$(inserts an element into a scapability vector)

VECTOR_OF BOOLEAN insert_boolean(VECTOR_OF BOOLEAN bv; i; b)
IS VECTOR(FOR j FROM 1

TO(IF LENGTH(bv) >= i THEN LENGTH(bv) ELSE i)
: IF j = i THEN b

ELSE IF j <= LENGTH(bv) THEN bv[j] ELSE ?);
$(Inserts a boolean value into a boolean vector)

BOOLEAN exc_original(su; i; level)
IS h_soriginal(su, l eve l) [i] = TRUE;

BOOLEAN not_original(su; i; level)
IS h_soriginal(su, l eve l) [i] = FALSE;

EXTERNALREFS

FROM secure_capabilities:
scapability: DESIGNATOR;
INTEGER max_clearance;
SET_OF INTEGER max_set;
VFUN get_saccess(sc)[level] -> b;
OVFUN create_scapability()[level] -> sc;
VFUN change_permit(sc; pb)[level] -> scl;
VFUN restrict_saccess(sc)[level] -> scl;
VFUN get_slavel(sc)[level] -> su;

FROM secure_documents:
OVFUN create_document(size)[level] -> scdoc;
OFUN delete_document(scdoc)[levelj;
VFUN document_exists(sudoc; level) -> b;
INTEGER max_documents(level);

FUNCTIONS

VFUN is_stype_manager(sut; level) -> b;

HIDDEN;
INITIALLY

b = FALSE;

$(true if sut is a tyj
manager at level)

APPENDIX D SECURE EXTENDED TYPES Page D.10 APPENDIX D SECURE EXTENDED TYPES Page D.ll

VFUN is_stype(su; sut; level) -> b; $(true iff the type of
extended object su is sut at
level)

HIDDEN;
INITIALLY

b = FALSE;

VFUN h_impl_scap(su; level) -> VECTORJDF scapability scv;
$(returns the tuple of scapabilities implementing the
extended type object su)

HIDDEN;
INITIALLY

scv = ?;

VFUN impl_scap(sc; st; i)[level] -> scl;
$(external form of h_impl_scap; sc is the extended
object, t is the type managers scapability, and i is a
selected position in the representation vector)

DEFINITIONS
scapability sut IS get_slavel(st, level);
scapability su IS get_slavel(sc, level);

EXCEPTIONS
invalid_object(su, sut, level);
bad_element(i, sut, level);
no_impl_obj(sc, i, level);

DERIVATION
IF h_soriginal(su, level)[i]
THEN restrict_saccess(h_impl_scap(su, level)[i], level)
ELSE h_impl_scap(su, level)[i];

VFUN h_impl_slength(sut; level) -> i;
$(returns the maximum length of the vector of
implementation scapabilities for objects of type sut)

HIDDEN;
INITIALLY

VFUN h_soriginal(su; level) -> VECTOR_OF BOOLEAN bv;
$(the i-th element of bv is TRUE iff the i-th
representation object of su was created with a
create_impl_sobject call)

HIDDEN;
INITIALLY

bv = ?;

OVFUN create^stype(size)[level] -> st; $(creates a new extended
type at all levels at
least that of level)

EXCEPTIONS
type_too_big(size);

EFFECTS
st

= change_permit ((EFFECTS_OF create_scapability(level)) ,
FALSE, level);

FCRALL levell I gte(levell, level):
('is_stype_manager(get_slavel(st, levell), levell)
= TRUE)

AND('h_impl_slength(get_slavel(st, levell), levell)
= size);

OVFUN sobject_create(st)[level] -> sc;
$(creates a new extended type object whose type is the
uid of st; the object is left uninitialized; the
creation is done at all levels levell, such that the
type exists at that level)

DEFINITIONS
scapability sut IS get_slavel(st, level);

EXCEPTIONS
bad_type_manager(sut, l e v e l) ;
too_many_objects(sut, l e v e l) ;

EFFECTS
sc

= change_permit((EFFECTS_OF c r e a t e _ s c a p a b i l i t y (l e v e l)) ,
FALSE, level);

FORALL levell I gte(levell, level)
AND is stype manager(get_slavel(sc, level l) ,

levell):
(•is_stype(get_slavel(sc, levell),

get_slavel(sc, levell),
levell)

= TRUE)
AND('h_soriginal(get_slavel(sc, levell), levell)

= VECTOR ())
AND(fh_impl_scap(get_slavel(sc , l e v e l l) , l e v e l l)

= VECTOR ()) ;

OFUN sobject_delete(sc; s t) [l e v e l] ;
$(de le tes the object (associated with sc) provided i t s

representation objects have been previously deleted)
DEFINITIONS

scapabi l i ty sut IS ge t_s lave3 (s t , l e v e l) ;
scapabi l i ty su IS g e t _ s l a v e l (s c , l e v e l) ;

EXCEPTIONS
bad_object_access(sc , l e v e l) ;
inval id_object(su, su t , l e v e l) ;

EFFECTS
FORALL levell I gte(levell, level):

('is_stype(get_slavel(sc, levell) ,
get_slavel(st, levell), levell)

= FALSE)
AND('h impl scap(get_slavel(sc, levell), levell) = ?)

AND('h_sorigTnal(get_slavel(sc, levell), levell) = ?);

OFUN create_impl_sobj(sc; st; i; stl)[level];
$(creates an implementation object scl, of type stl, for
objective of type st. The newly created scapability is
placed in position i of the representation vector for
sc. At all access levels exceeding the creating level
the newly crested scapability has no modify access
rights.)

DEFINITIONS
scapability sut IS get_slavel(st, level);
scapability sutl IS get_slavel(stl, level);
scapability su IS get_slavel(sc, level);

APPENDIX D SECURE EXTENDED TYPEC Fage D.12 APPENDIX D SECURE EXTENDED TYPES Page D

EXCEPTIONS
bad_object^access(sc , l e v e l) ;
inva l id_objec t (su , s u t , l e v e l) ;
bad_element(i, s u t , l e v e l) ;
object__there_already(su, i , l e v e l) ;
inval id_impl_type(sut1 , 1 e v e l) ;
too_many_objects(sutl , l e v e l) ;

EFFECTS
EXISTS scapab i l i t y s c l :

(IF(sut l = sudoc_cr)
THEN(scl = EFFECTS_OF create_document(0, l e v e l))
ELSE (sc l = EFFECTSJDF create__scapabil i t y (l e v e l)))

ANDfFORALL l e v e l l I g t e d e v e l l , l e v e l)
AND is_stype(get_slavel(sc, levell),

get_slavel(st, levell),
levell):

('h_impl_scap(get^slavel(sc, levell), levell)
~ insert scapabil7ty(h impl scap(get_slavel(sc,

levell),
levell),

i,
IF(level = levell)
THEN scl
ELSE restrict__saccess(

change_permit(scl, TRUE, levell),
levell)))

AND('h_soriginal(get_slavel(sc, levell), levell)
= insert boolean(h soriginal(get slavel(sc,

~ ~ level l) ,
level l) ,

i, TRUE)));

OFUN insert_impl_sobj(sc; st; i; scl)[level];
$(inserts scl into the i-th position of the
representation of sc. The same access right rules as for
create_impl_sobj apply here.)

DEFINITIONS
scapabi l i ty sut IS g e t _ s l a v e l (s t , l e v e l) ;
scapabi l i ty su IS g e t _ s l a v e l (s c , l e v e l) ;

EXCEPTIONS
bad_object_access(sc , l e v e l) ;
inva l id_object (su , s u t , l e v e l) ;
bad_element(i, s u t , l e v e l) ;
object_there_already(su, i , l e v e l) ;

EFFECTS
FORALL l e v e l l I g t e d e v e l l , l e v e l)

AND i s _ s t y p e (g e t _ s l a v e l (s c , l e v e l l) ,
get_slavel(st, level l) ,
levell):

(lh_impl_scap(get slavel(sc, level l) , levell)
- insert scapabilTty(h impl_scap(get_slavel(sc, level l) ,

level l) ,
i ,
IFdevel = levell)
THEN scl
ELSE restrict_saccess(

change_permit(scl, TRUE, levell) ,

levell)))
AND(*h_soriginal(get_slavel (sc, levell) , levell)

= insert_boolean(h_soriginal(get_slavel(sc, level l) ,
level l) ,

i, TRUE));

OFUN delete_impl_scap(sc; st; i) [level] ;
$(delete the i-th element of the representation of
sc,but only if that object is not original)

DEFINITIONS
scapabi l i ty sut IS get_s lave l (s t , l e v e l) ;
scapabi l i ty su IS g e t _ s l a v e l (s c , l e v e l) ;

EXCEPTIONS
bad_object^access(sc, l e v e l) ;
inva l id_objec t (su , s u t , l e v e l) ;
bad__element(i, s u t , l e v e l) ;
no_impl__obj (su , i , l e v e l) ;
exc_or ig ina l (su , i , l e v e l) ;

EFFECTS
FORALL l e v e l l I g t e d e v e l l , l e v e l) :

(l h_impl_scap(get_s lave l (sc , l e v e l l) , l e v e l l)
= insert__scapabil ity(h_impl_scap(get_slavel (s c , l e v e l l)

level l) ,
i , ?))

AND(f h_soriginal (get__slavel (sc, level l) , levell)
= insert_boolean(h_soriginal(get_slavel(sc, level l) ,

level l) ,
i , ?));

OFUN delete_impl_sobj(sc; st; i; s t l) [level] ;
$(deletes the i-th object and its entry in the
representation of sc, provided the object is original)

DEFINITIONS
scapabi l i ty sut IS g e t _ s l a v e l (s t , l e v e l) ;
scapabi l i ty sut l IS g e t _ s l a v e l (s t l , l e v e l) ;
scapabi l i ty su IS g e t _ s l a v e l (s c , l e v e l) ;
scapabi l i ty sx IS h_impl_scap(su, l e v e l) [i] ;
scapabi l i ty sux IS g e t _ s l a v e l (s x , l e v e l) ;

EXCEPTIONS
bad_object_access(sc , l e v e l) ;
inva l id_object (su , s u t , l e v e l) ;
no_impl_obj(su, i , l e v e l) ;
not_or ig ina l (su , i , l e v e l) ;
inval id object (sux , s u t l , l e v e l) ;
originaT_impl__objs_present (sux, l e v e l) ;

EFFECTS
IF document_exists(sux, level)

THEN EFFECTSJDF delete_document(sx, l e v e l)
ELSE(FORALL l e v e l l I g t e d e v e l l , l e v e l) :

('is_stype(get_slavel(sx, levell),
get_slavel(st, levell),
levell)

= FALSE)
AND('h_impl_scap(get_slave3(sx, levell), levell)

* ?)
AND(^soriginal (get_slavel(sx, levell), levell)

= ?));

APPENDIX D SECURE EXTENDED TYPES Page D.14

FORALL levell I gte(levell, level):
('h^impl^scapfget slavel(sc, levell), levell)
- insert_scapabilTty(h_impl_scap(get_slavel (sc, levell),

levell) ,
i, ?))

AND('h_soriginal(get_slavel(sc, levell), levell)
- insert_boolean(h_soriginal(get_slavel(sc, levell),

levell),
i, ?))?

END MODULE

APPENDIX D SECURE DIRECTORIES Page D.15

MODULE secure_directories

TYPES

clearance: { INTEGER i I 0 <= i AND i <= roax_clearance };
category_set: { SET_OF INTEGER cs I cs SUBSET max_set };
access_level:
STRUCT (clearance secur ity_^clearance?

category_set securTty_categories);
f ixed__str ing:
{ VECTOP_OF CHAR vc I LENGTH (vc) = char__str ing_length }?
name_vector:
{ VECTOR_OF fixed_string vf I LENGTH (vf) = naroe__length };

DECLARATIONS

BOOLEAN b, pb?
INTEGER i;
scapability scdir, $(scapability for secure directory) sc, scl?
scapability sudir $(slave scapability for secure directory) ;
name_vector name;
SET_OF name_vector entry_set;
access_level level, levell?

PARAMETERS

INTEGER name_length $(number of machine words in a name) ,
max__sdirectory_size $(maximum size for a secure directory),
max_sdirectories(level) $(maximum number of directories

that can be initiated at the level
and cat__set) ;

DEFINITIONS

BOOLEAN no_directory(sudir; level)
IS sdirectory_exists(sudir, level) = FALSE;

BOOLEAN name_exists(sudir? name? level)
IS h_get_scap(sudir, name, level) "*= ??

BOOLEAN too_many__entr ies(sudir ? level)
IS CARDINALITY({ name I h_get_scap(sudir, name, level) *"=?})

>= max_sdirectory_size?
BOOLEAN bad_access(scdir? level)

IS get_saccess(scdir, level) = FALSE?
BOOLEAN no_entry(sudir? name? level)

IS h_get_scap(sudir, name, level) = ??
BOOLEAN not_distinguished(sudir? name? level)

IS sentry_distinguished(sudir, name, level) - FALSE?
BOOLEAN distinguished(sudir? name? level)

IS sentry_distinguished(sudir, name, level) = TRUE?
BOOLEAN too_many__sdi rector ies (level)

IS CARDINALITY({sudir I sdirectory_initiated(sudir,level) = TRUE]
>= max_sdirectories(level)?

BOOLEAN distinguished_sentries_in_dir(sudir? level)
IS(EXISTS name: sentry_distinguished(sudir, name, level) = TRUE);

BOOLEAN gte(levell? level)
IS (level,security_clearance <- levell.security_clearance)
AND(level.security_categories

APPENDIX D SECURE DIRECTORIES

SUBSET levell.security_cetegories);
BOOLEAN sdirectory__initiated (sudir; level)

IS (sdirectory_exists(sudir, level) = TRUE)
AND(FORALL levell I gte(level, levell) AND(level "

sdirectory_exists(sudir, levell) = FALSE);

Page D.16

levell):

APPENDIX D SECURE DIRECTORIES Page D.

EXTERNALREFS

FROM secure_capabilities:
scapability: DESIGNATOR;
VFUN get_saccess(scdir)[level] -> b;
OVFUN create_scapability()[level] -> scdir;
VFUN change_permit(sc; pb)[level] -> scl;
VFUN restrict_saccess(sc)[level] -> scl;
VFUN get_slavel(scdir)[level] -> sc;
INTEGER max_clearance;
SET_OP INTEGER max_set;

FROM secure_documents:
INTEGER char_string_length;

FUNCTIONS

VFUN sdirectory_exists(sudir; level) -> b;
$(TRUE iff there exists a directory designated by sudir
at the particular level)

HIDDEN;
INITIALLY

b = FALSE;

VFUN h_get_scap(sudir; name; level) -> sc;
$(returns the scapability associated with name in the
designated directory at the particular level)

HIDDEN;
INITIALLY

sc * ?;

VFUN get_scapl(scdir; name)[level] -> sc; $(derived version of
h_get_scap for the
sdirectory module)

DEFINITIONS
scapability sudir IS get_slavel (scdir, level);

EXCEPTIONS
no_directory(sudir, level);
no_entry(sudir, name, level);

DERIVATION
h_get_scap(sudir, name, level);

VFUN sentry_distinguished(sudir; name; level) -> b;
$(TRUE if the entry is distinguished)

HIDDEN;
INITIALLY

b = ?;

VFUN sentries(scdir)[level] -> entry_set;
$(returns all of the entry names in directory sudir at
the level)

DEFINITIONS
scapability sudir IS get_slavel(scdir, level);

EXCEPTIONS
no_directory(sudir, level);

DERIVATION
{ name I h_get_scap(sudir, name, level) ~= ? };

VFUN sdir_size(scdir)[level] -> i; $(number of entries in the
sdirectory at the given level)

DEFINITIONS
scapability sudir IS get_slavel(scdir, level);

EXCEPTIONS
no_directory(sudir, level);

DERIVATION
CARDINALITY({ name I h__get_scap(sudir, name, level) ""- ? });

OVFUN create_sdirectory()[level] -> scdir;
$(causes a directory to exist at all security levels
greater than or equal to that corresponding to level)

EXCEPTIONS
too_many_sdirectories(level);

EFFECTS
change__permit (EFFECTS_OF create_scapability (level) , FALSE,

level)
* scdir;
FORALL levell I gte(levell, level):

'sdirectory__exists(get__slavel (scdir , levell), levell)
= TRUE;

OFUN insert_sentry(scdir; name; sc)[level];
$(inserts a new sentry into the directory. The new entry
will exist at all security levels greater than or equal
to that corresponding to level such that a directory
exists at that level. Any entry with name "name" exists
at a levell exceeding level is overwritten. At all
levels exceeding the insertion level "level" the
scapability has no modify access, but a TRUE permit
flag.)

DEFINITIONS
scapability sudir IS get_slavel(scdir, level);

EXCEPTIONS
no_directory(sudir, l e v e l) ;
name_exists(sudir, name, l e v e l) ;
too_many_entries(sudir, l e v e l) ;
bad_access(scdir, l e v e l) ;

EFFECTS
FORALL l e v e l l I g t e (l e v e l l , l eve l)

AND s d i r e c t o r y _ e x i s t s (g e t _ s l a v e l (s c d i r , l e v e l l) ,
levell)

AND ~too_jnany_entries(get_slavel (scdir ,levell) ,
levell):

'sentry_distinguished(get_slavel(scdir, levell), name,
levell)

= FALSE

APPENDIX D SECURE DIRECTORIES Page D.18 APPENDIX D SECURE DIRECTORIES Page D.19

AND 'h__get_scap(get_slavel (scdir, levell) , name, levell)
= (IF level « levell THEN sc

ELSE restrict_saccess(change_permit(sc,TRUE,levell) ,
levell));

OFUN delete_sentry(scdir; name)[level];
$(deletes the entry associated with name in all
directory versions whose security level is greater than
or equal to that of level.)

DEFINITIONS
scapability sudir IS get_slavel(scdir, level);

EXCEPTIONS
no_directory(sudir, level);
no_entry(sudir, name, level);
distinguished(sudir, name, level);
bad_access(scdir, level);

EFFECTS
FORALL levell I gte(levell, level):

'h_get_scap(get_slavel(scdir, levell), name, levell)
« ?

AND 'sentry_distinguished(get_slavel(scdir, levell),
name, levell)

= ?;

OFUN add_distinguished_sentry(scdir; name; sc)[level];
$(adds distinguished entry at all security levels at
least that defined by level. The same rules apply to the
entty overwriting and the access rights of the entry as
in the case of insert sentry)

DEFINITIONS
scapability sudir IS get_slavel(scdir, level);

EXCEPTIONS
no_directory(sudir, level);
name__exists (sudir , name, level);
too_many_entries(sudir, level);
bad_access(scdir, level);

EFFECTS
FORALL levell I gte(levell, level)

AND sdirectory_exists(get_slavel(scdir,levell) ,
levell)

AND ~too_jnany_entr ies(get_slavel (scdir ,levell) ,
levell):

'sentry_distinguished(get_slavel(scdir, levell), name,
levell)

= TRUE
AND fh_get_scap(get_slavel(scdir, levell), name, levell)

=(IF level = levell THEN sc
ELSE restrict_saccess(change_permit(sc,TRUE,levell) ,

levell));

OFUN remove_distinguished_sentry(scdir; name)[level];
$(removes the distinguished entry at all security levels
at least that that defined by level)

DEFINITIONS
scapability sudir IS get_slavel(scdir, level);

EXCEPTIONS
no_directory(sudir, level);

no__entry(sudir , name, l e v e l) ;
not_distinguished(sudir, name, l e v e l) ;
bad_access(scdir, l e v e l) ;

EFFECTS
FORALL l e v e l l I g t e (l e v e l l , l e v e l) :

'h_get_scap(get_slavel(scdir, l e v e l l) , name, l e v e l l)
= ?

AND 'sentry distinguished(get s l ave l (s cd i r , l e v € l) , name,
levell)

= ?;

OFUN delete_sdirectory(scdir)[level];
$(Deletes the directory at the security level defined by
level and all levels above. The call is rejected if
there are any distinguished entries at the deleting
security level.)

DEFINITIONS
scapability sudir IS get_slavel(scdir, level);

EXCEPTIONS
no_directory(sudir, level);
bad_access(scdir, level);
distinguished_sentries_in_dir(sudir, l e v e l) ;

EFFECTS
FORALL l e v e l l I g t e (l e v e l l , level)

AND " distinguished_sentries_in_dir(
ge t_s lave l (scd ir , l e v e l l)
levell):

(FORALL name:
1 sentry_dis t inguished(get_s lave l (scdir , l e v e l l) ,

name, l e v e l l)
= ?

AND 'h get scap(get s l a v e K s c d i r , l e v e l l) , name,
levell)

= ?
AND 'sdirectory exists(get slavel(scdir, levell),

levell)
= FALSE);

END MODULE

APPENDIX D SECURE ENVIRONMENTS Page D.20 APPENDIX D SECURE ENVIRONMENTS Page D

MODULE Secure_environments

TYPES

clearance: { INTEGER i I 0 <= i AND i <= max_clearance };
category_set: { SET_OF INTEGER cs I cs SUBSET max_set };
access_level:
STRUCT(clearance security clearance;

category_set securTty_categories);
fixed_string:
{ VECTORJDF CHAR vc I LENGTH(vc) » char_string_length };
smachine_word: ONE_OF(INTEGER, fixed_string, scapability, BOOLEAN);

DECLARATIONS

BOOLEAN b;
scapability sc, su, se, sue;
INTEGER i;
access_level level;
smachine_word w;
VECTOR_OF smachine_word wv;

PARAMETERS

INTEGER max_env_words; $(maximum number of words in an
environment)

INTEGER max_env_contexts;
$(maximum number at contexts (levels of depth) allowed)

INTEGER max_envs(level); $(maximum number of environments allowed
at access_level "level")

DEFINITIONS

BOOLEAN no_environment(sue; level)
IS ~ environment exists(sue, level);

INTEGER current_env7ronment_size(sue; level)
IS LENGTH(environment_stack(sue,

environment__stack_size(sue, level) ,
level));

BOOLEAN bad_element(sue; i; level)
IS 0 <= i OR i > current_environment_size(sue, level);

BOOLEAN too_many_environments(level).
IS CARDINALITY({ sue I environment_exists(sue, level) })

>= max__envs(level) ;
BOOLEAN bad_access(se; level) IS get_saccess(se, level) = FALSE;
BOOLEAN not_at_top(se; level)

IS environment_stack_size(get_slavel (se, level), level) *"= 1;
BOOLEAN overflow_current_env(sue; wv; level)

IS LENGTH(wv) + current_environment_size(sue, level)
>= max_env_words;

BOOLEAN underflow current_env(sue; i; level)
IS current_envTronment_size(sue, level) < i;

smachine_word current_environment_element(sue; i; level)
IS environment_stack(sue, environment_stack_size(sue , level),

level)[i];
BOOLEAN too__many_contexts (sue; level)

IS environment stack size(sue, level) >« max_env_contexts;

BOOLEAN top_context(sue; level)
IS environment_stack_size(sue, level) = 1;

BOOLEAN overflow_previous_env(sue; i; level)
IS i + LENGTH(environment_stack(sue,

environment_stack_size(sue,level)-1
level))

>= max__env_words;
INTEGER old_environment_size(sue; level)

IS LENGTH(environment_stack(sue,
environment_stack size(sue, level)-
level));

smachine_word old_environment_element(sue; i; level)
IS environment_stack(sue,

(environment stack size(sue, level) - 1),
level)[i]; ~

EXTERNALREFS

FROM secure_capabilities:
scapability: DESIGNATOR;
INTEGER raax_clearanee;
SET__OF INTEGER max_set;
VFUN get_saccess(sc)[level] -> b;
OVFUN create_scapability()[level] -> sc;
VFUN get_slavel(sc)[level] -> su;

FROM secure_documents:
INTEGER char_string_length;

FUNCTIONS

VFUN environment stack_size(sue; level) -> i;
$(numBer of environments in the stack of environments of
sue at level.)

HIDDEN;
INITIALLY

i « ?;

VFUN environment_stack(sue; i; level)
-> VECTOR_OF smachine_word env;

$(i-th element in the environment stack of sue—a vector
of machine words)

HIDDEN;
INITIALLY

env = ?;

VFUN environment_exists(sue; level) -> b;

HIDDEN;
INITIALLY

b = FALSE;

$(TRUE iff environment
sue exists at level)

VFUN current_environment(se; i)[level] -> w;
$(returns the i-th word of the current (top_most)
environment of se)

DEFINITIONS
scapability sue IS get_slavel(se, level);

APPENDIX D SECURE ENVIRONMENTS Page D.22 APPENDIX D SECURE ENVIRONMENTS Page D.23

EXCEPTIONS
no_environment(sue, level);
bad_element(sue, i, level);

DERIVATION
environment stack(sue, environment_stack_size (sue , level),

level) [i];

OVFUN create_environment()[level] -> se; $(creates a new
environment stack at
level)

DEFINITIONS
scapability sue IS get_slavel(se, level);

EXCEPTIONS
too_many__env ir onments (level) ;

EFFECTS
se * EFFECTS__OF create__scapability (level) ;
•environment_exists(sue, level) = TRUE;
'environment_stack__size(sue, level) = 1;
FORALL i: 'environment^stack (sue, i, level) = VECTORO;

OFUN delete_environment(se)[level];
$(delete the environment stack, but only if control is
at the top level, i.e. the current environment is 1)

DEFINITIONS
scapability sue IS get_slavel(se, level);

EXCEPTIONS
no_environment(sue, level);
bad_access(se, level);
not_at_top(sue, level);

EFFECTS
'environment_exists(sue, level) = FALSE;
'environment_stack_size(sue, level) = ?;
FORALL i: ' environment_stack (sue, i, level) = VECTORO;

OFUN write_environment(se; i; w)[level]; $(writes w onto location
i of current environment)

DEFINITIONS
scapability sue IS get_slavel(se, level);

EXCEPTIONS
no_environment(sue, level);
bad__access(se, level);
bad__element (sue, i, level);

EFFECTS
'environment_stack(sue,

environment_stack_size(sue, level) ,
level)[i]

= w;

OFUN push(se; wv)[level]; $(pushes the vector of words onto the
end of the current environment)

DEFINITIONS
scapability sue IS get_slavel(se, level);

EXCEPTIONS
no_environment(sue, level);
bad_access(se, level);
overflow_current_env(sue, wv, level);

•environment__stack(sue, environment_stack_size (sue, level),
level)

= VECTOR(FOR j FROM 1
TO current_environment_size(sue, level)+LENGTH (wv)

: IF(j >= 1
AND j <= current_environment_size(sue, level))

THEN current_environment_element(sue, j, level)
ELSE wv[j-current_environment_size(sue, level)]);

OVFUN pop(se; i)[level] -> wv; $(pops i elements from the current
environment)

DEFINITIONS
scapability sue IS get_slavel(se, level);

EXCEPTIONS
no_environment(sue, level);
bad_access(se, level);
under flow_current__env (sue, i, level);

EFFECTS
lenvironment_stack(sue, environment_stack__size (sue , level),

level)
= VECTOR(FOR j FROM 1

TO current_environment_size(sue, level) - i
: current_environment_element(sue, j, level));

wv = VECTOR(FOR j FROM 1 TO i
: current_environment_element(sue,

current_environment_size(sue, level)-j+1,
level));

OFUN new__context(se; i) [level] ;
$(creates a new context for the environment and loads it
with the i top words of the current environment)

DEFINITIONS
scapability sue IS get_slavel(se, level);

EXCEPTIONS
no_environment(sue, level);
bad_access(se, level);
too_many_contexts(sue, level);

EFFECTS
1env ironment_stack_size(sue, level)

= environment__stack_size (sue, level) + 1;
•environment_stack(sue, ' environment_stack_size(sue, level),

level)
= VECTOR(FOR j FROM 1 TO i

: current_environment_element(sue,
(current_environment_size(sue, level)-i+j) ,
level));

OFUN old_context(se; i)[level]; $(deletes current context and
appends first i words of current
context onto previous context)

DEFINITIONS
scapability sue IS get_slavel(se, level);

EXCEPTIONS
no_environment(sue, level);
bad_access(se, level);
top_context(sue, level);
overflow_previous_env(sue, i, level);

APPENDIX D SECURE ENVIRONMENT? Page D.24 APPENDIX D SECURE USERS Pac

EFFECTS
•environment_stack_size (sue, level)

- environment_stack_size(sue, level) - 1;
*environment_stack(sue, 'environment_stack_si2e(sue, level),

level)
= VECTOR(FOR j FROM 1

TO i + old_environment_size(sue, level)
: IF(1 <* j

AND j <= old_environment_size(sue, level))
THEN old_environment_element (sue, j, level)
ELSE current_environment__element (sue,

(j-old_environment_size(sue, level)) ,
level))?

END MODULE

MODULE secure__users

TYPES

clearance: { INTEGER i I i >= 0 AND i <*= max_clearanee };
category_set: { SET_OF INTEGER cs ! cs SUBSET max_set };
access_level:
STRUCT(clearance security^clearance;

category_set securTty_categories);
fixed_string:
{ VECTORJDF CHAR vc I LENGTH (vc) = char_str ing_length };
name_vector:
{ VECTORJDF fixed_string vf I LENGTH(vf) = naroe_length };

DECLARATIONS

BOOLEAN b;
scapability scdir, sudir, scdirlj
access_level level, levell;
name_vector password, username;
SET_OF scapability scap_set;
capability edsro; $(capability for security officer)

PARAMETERS

INTEGER max_users; $(maximum number of users that can be hanc
by the system)

capability udsm; $(slave capability for security officer)

DEFINITIONS

BOOLEAN no_user(username; level)
IS ~ user_exists(username, level);

BOOLEAN too_many_user s()
IS CARDINALITY({ username I EXISTS level:

user_exists(username, level) ~ TRUE }]
>= max users;

BOOLEAN gte(Tevell; level)
IS (level.security^clearance <= levell.security_clearance)
AND(level .securTty__categories

SUBSET levell.security_categories);
access_level gib IS < 0, { } >; $(the lowest level in the ac<

lattice)
BOOLEAN user_present(username)

IS EXISTS level: user_exists(username, level);
access_level max_level(username)

IS SOME level I user_exists(username, level)
AND(FORALL levell I gtedevell, level)

ANDdevel ~= levell):
user_exists(username, levell) = FALSE]

$(maximum level at which username is authorized to
operate)

BOOLEAN not_security_officer(edsm) IS get_slave(cdsm) ~= udsm;
BOOLEAN director ies__not_deletable (username)

IS EXISTS level:
EXISTS scdir I get_saccess(scdir, level) = TRUE

AND sdirectory_exists(get_slavel(scdir,]

APPENDIX D SECURE USERS Page D.26 APPENDIX D SECURE USERS Page D.27

level):
(scdir INSET initial_environment(username, level))

AND(EXCEPTIONSJDF delete_sdirectory(scdir, level));
$(This expression is TRUE iff some initial_environment
instance of username contains, for an existing
sdirectory, a sdirectory scapability with modify access,
such that the sdirectory contains distinguished entries.)

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
VFUN get_slave(cdsm) -> capability u;

FROM secure_capabilities:
scapability: DESIGNATOR;
VFUN get_jsaccess(scdir) [level] -> b;
VFUN changejpermit(scdir; b)[level] -> scdirl;
VFUN restrict_saccess(scdir)[level] -> scdirl;
VFUN get_slavel(scdir)[level] -> scdirl;
INTEGER max_clearance;
SET_QF INTEGER max_set;

FROM secure_documents:
INTEGER char_string_length;

FROM secure_directories:
INTEGER name_length;
OVFUN create_sdirectory()[level] -> scdir;
OFUN delete_sdirectory(scdir)[level];
VFUN sdirectory_exists(sudir; level) -> b;

FUNCTIONS

VFUN user_exists(username; level) -> b; $(TRUE iff user is
authorized to operate at all levels up to level)

HIDDEN;
INITIALLY

b = FALSE;

VFUN initial environment(username; level) -> scap set;
$(The vector of scapabilities that will be loaded into
username1s environment when he logs in)

HIDDEN;
INITIALLY

scap_set = {};

VFUN initial_environmentl(username)[level] -> scap_set;
$(external form of initial_environment)

EXCEPTIONS
no_user(username, level);

DERIVATION
initial environment(username, level);

VFUN user_password(username; level) -> password; $(password
assigned to user)

HIDDEN;
INITIALLY

password = ?;

OFUN initiate_user(cdsm; username; password)[level];
$(causer username to become authorized at all levels
between the lowest acess level and "level" %. A password
is associated with the user. A sdirectory is created,
the scapability for which is placed in the initial
environment of the user. Except at the lowest level the
inserted scapability has no modify access rights. Since
this function is only callable by the security officer
it need not satisfy either the rules of multi-level
security, or the alteration and detection principles.)

EXCEPTIONS
not_security_officer(cdsm);
too_many_users();
user_present(username);

EFFECTS
LET scdir I scdir = EFFECTSJDF create_sdirectory(gib)
IN(FORALL levell I gte(level, levell):

('user_exists(username, levell) = TRUE)
AND('user_password(username, levell) = password)

AND(finitial_environment(username, levell)
=(IF levell * gib THEN { scdir }

ELSE { restrict_saccess(change_permit(scdir,
TRUE,
levell),

levell) })));

OFUN augment_initial_environment(username) [level];
$(called when a user logs in for the first time at
level, in which case he must be given write access to
some newly created sdirectory. All instances of the
initial environment between (but not including level)
level and the maximum level at which the user can
operate are loaded with no modify versions of the newly
created sdirectory scapability.)

EXCEPTIONS
no_user(username, level);

EFFECTS
LET scdir I scdir = EFFECTS_OF create sdirectory(level)

IN(FORALL level l I gte(leve l l , l eve l !
AND gte(max_level(username), l eve l l) :

1 initial_environment(username, level l)
=(IF levell = level

THEN initial_environment(username, levell)
UNION { scdir }

ELSE initial_environment(username, level l)
UNION { restr ict__saccess(change_permit (scdir ,

TRUE,
levell)

levell) }));

APPENDIX D SECURE USERS Page D.28 APPENDIX D SECURE MAIL

OFUN delete_user(cdsm; username);
$(called by the security officer to delete a user from
the system. In order to avoid lost objects the call
(for simplicity) is rejected if any of the sdirectories
pointed to by the scapabilities in the initial
environments of the user contain distinguished entries.)

EXCEPTIONS
not_security_officer(cdsm);
directories_not_deletable(username);

EFFECTS
FORALL level:

(•user_exists(username, level) = FALSE)
AND('user_password(username, level) = ?)
AND(FORALL scdir I (scdir

INSET initial_environment(username,
level))

AND(get_saccess(scdir, level) = TRUE)
AND sdirectory_exists(get_slavel(scdir,

level),
level):

EFFECTS_OF delete_sdirectory(scdir, level));

END MODULE

MODULE secure_mailboxes

TYPES

clearance: { INTEGER i I 0 <= i AND i <= max_clearance };
category_set: { SETJDF INTEGER cs I cs SUBSET max_set };
access_level:
STRUCT(clearance security clearance;

category_set securfty_categories);
fixed_string:
{ VECTORJDF CHAR vc I LENGTH(vc) = char__string_length };
name_vector:
{ VECTOR_OF fixed_string vf I LENGTH(vf) = name_length };
smachine_word: ONE_OF(INTEGER, scapability, fixed__string, BOOI

DECLARATIONS

BOOLEAN b;
scapability sc, scl, su;
name_vector username, usernamel;
access_level level, levell;
VECTOR_OF smachine_word wv;
smachine word w;

PARAMETERS

INTEGER max mailbox;

DEFINITIONS

$(maximum number of words that a mailboi
hold)

BOOLEAN no_user(username; level)
IS " user_exists(username, level);

BOOLEAN mail_box_overflow(username; usernamel; wv; level)
IS LENGTH (h__mail (username, usernamel, level)) + LENGTH(wv)
>- max_mailbox;

BOOLEAN gte(levell; level)
IS (level.security^clearance <= levell.security_clearance)
AND(level .securTty__categories

SUBSET levell.security_categories);

EXTERNALREFS

FROM secure_capabilities:
scapability: DESIGNATOR;
VFUN change_permit(sc; b)[level] -> su;
VFUN restrict_saccess(sc)[level] -> scl;
INTEGER max_clearance;
SET_OF INTEGER max__set;

FROM secure__documents:
INTEGER char_string_length;

APPENDIX D SECURE MAIL Page D.30

FPOM secure_directories:
INTEGER name_length;

FROM secure_users:
VFUN user_exists(username; level) -> b;

FUNCTIONS

VFUN h_mail(username; usernamel; level) -> wv;
$(messages sent by username to usernamel at access_level
"level" ; a vector of smachine words)

HIDDEN;
INITIALLY

wv = VECTOR () ;

VFUN mail(username)[usernamel; level] -> wv; $(external form of
h_mail)

EXCEPTIONS
no__user (username, level);

DERIVATION
h_mail(username, usernamel, level);

OFUN send__mail (usernamel; wv) [username; level];
$(allows username to send a message—a vector of words—
to usernamel. The message will appear at all access
levels at least level. At all levels above level any
transmitted scapabilities will be read_only.)

EXCEPTIONS
no^user(usernamel, level);
roall_box_over flow (username, usernamel, wv, level);

EFFECTS
FORALL levell I gtedevell, level)

AND " no__user (usernamel, levell)
AND " mail_box_over flow(username, usernamel,

wv, levell):
'hjnail(username, usernamel, level)

= VECTOR(FOR i
FROM 1
TO LENGTH(hjnail(username, usernamel, levell))

+ LENGTH(wv)
: IF i

<= LENGTH (hjnail (username, usernamel, l e v e l l))
THEN hjnail(username, usernamel, l e v e l) [i]
ELSE(LET w | w = wv[i

- LENGTH(hjnail(username,
usernamel,
l e v e l l))]

IN TYPECASE w OF
scapabil ity:

restrict_saccess(change_permit(w,
TRUE,
levell),

levell);
ONE_OF(INTEGER, fixed_string,

BOOLEAN):
w;

APPENDIX D SECURE MAIL Page D.31

OFUN deletejnail(usernamel)[username; level];
$(allows username to delete all mail previously
delivered to usernamel at level or higher)

EXCEPTIONS
no_user(usernamel, level);

EFFECTS
FORALL levell I gtedevell, level):

•hjnail (username, usernamel, levell) = VECTORO;

END MODULE

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D.32 APPENDIX D SECURE EXTERNAL FUNCTIONS

MODULE secure_external_functions
TYPES

IS

i <= max_clearance };
cs SUBSET max_set };

clearance: { INTEGER i I 0 <= i AND
category_set: { SET_OF INTEGER cs I _
access_level:
STRUCT (clearance security_^clearance;

category_set securTty_categories);
fixed_string:
{ VECTOR_OF CHAR vc I LENGTH(vc) = char_string_length };
name_vector:
{ VECTORJDF fixed_string vf I LENGTH(vf) = name_length };
smachine_word: ONE_OF(INTEGER, fixed_string, scapability, BOOLEAN);

DECLARATIONS

scapability sc, se, scdirr scdoc, st, stl, scl;
scapability su, sue, suel;
BOOLEAN b;
access_level level, levell;
INTEGER i, idir, size, idoc, itype, iobj, itypel, iobjl, isc, iscl,

idirl,
jf jdoc;

name_vector username, password, usernamel, name;
SET_OF scapability scap_set;
smachine_word w, wl;
VECTOR_OF smachine_word wv;

DEFINITIONS

BOOLEAN bad_password(username; password; level)
IS user_password(username, level) ~= password;

VECTOR_OF scapability set_to_vector(scap_set)
IS SOME VECTOR__OF scapability scv I LENGTH (scv)

= CARDINALITY(scap_set)
AND(FORALL

sc I sc INSET scap_set:
EXISTS i | 1 <= i AND i <= LENGTH(scv): scv[i] = sc) ;

$(converts a set of scapabilities into a vector of
scapabilities)

STRUCT(name_vector s_username;
scapability s_sue;
access_level s__level) proc_stat(se)

IS <(SOME usernamel I EXISTS level:
process__exists(get__slavel (se, level) ,

usernamel,
level)) ,

(SOME suel I EXISTS username:
EXISTS level:

suel - get_slavel(se, level)
AND process_exists(suel, username, level))

(SOME levell I EXISTS username:
process_exists(get_slavel(se, levell),

username,
levell)) >;

BOOLEAN no_process(se)

process_exists(proc_stat(se),s_sue,
proc_stat(se).s_username,
proc_stat(se).s_level);

EXTERNALREFS

FROM secure_capabilities:
scapability: DESIGNATOR;
INTEGER max_clearance;
SET_OF INTEGER max_set;
VFUN get_saccess(sc)[level] -> b;
VFUN restrict_saccess(sc)[level] -> scl;
VFUN change_permit(sc; b)[level] -> scl;
VFUN get_slavel(sc)[level] -> su;

FROM secure_documents:
INTEGER char_string_length;
OVFUN create_document(size)[level] -> scdoc;
OFUN change_document_size(scdoc; size)[level];
OFUN delete_document(scdoc)[level];
OFUN documentorite(scdoc; i; w) [level] ;
VFUN document_readl(scdoc; i)[level] -> w;

FROM secure_extended_types:
OVFUN create_stype(size)[level] -> st;
OVFUN sobject_create(st)[level] -> sc;
OFUN sobject_delete(sc; st)[level];
OFUN create_impl_sobj(sc; st; i; stl)[level];
OFUN insert_impl_sobj(sc; st; i; scl)[level];
OFUN delete_impl_scap(sc; st; i)[level];
OFUN delete_impl_sobj(sc; st; i; stl)[level];

FROM secure_directories:
INTEGER name_length;
OFUN add_distinguished_sentry(scdir; name; sc)[level]
VFUN get_scapl(scdir; name)[level] -> sc;
OFUN remove_distinguished__sentry(scdir ; name) [level] j
OVFUN create_sdirectory()[level] -> scdir;
OFUN delete_sdirectory(scdir)[level];
OFUN delete_sentry(scdir; name)[level];

FROM secure_users:
VFUN user_password(username; level) -> password;
OFUN augment_initial_environment(username)[level];

FROM secure_mailboxes:
OFUN send_mail(usernamel; wv)[username; level];
VFUN mail(username)[usernamel; level] -> wv;
OFUN delete_mail (usernamel) [username; level];'

FROM secure_environments:
OVFUN create_environment()[level] -> se;
VFUN initial_environment(username; level) -> scap_se
OFUN push(se; wv)[level];
OFUN delete_environment(se)[level];
OVFUN pop(se; i)[level] -> wv;
VFUN current environment(se; i)[level] -> w;

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D. 34

OFUN write_environment(se; i; w)[level];

FUNCTIONS

VFUN process_exists(sue; username; level) -> b;
$(TRUE iff a process designated by sue exists on behalf
of user "username" at access_level "level" %.)

HIDDEN;
INITIALLY

b = FALSE;

OFUN log_in(username; password)[level]; $(called by username to
log into system)

EXCEPTIONS
bad_password(username, password, level);
EXCEPTIONS_OF augment_initial_environment(username, level);
EXCEPTIONS_OF create_environment(level);

EFFECTS
(FORALL scdir I scdir

INSET initial_environment(username, level):
get_saccess(scdir, level) = FALSE)

*> EFFECTS_OF augment^initial_environment(username, level);
EFFECTS_OF push((EFFECTS_CF create_environment(level)),

set to vector('initial environment(username,
" " ~ level)),

level);

OFUN log_out()[se]; $(called by a process,with implicit
scapability se, to log_off from the system)

EXCEPTIONS
EXCEPTIONS_OF delete_environment(se, proc_stat(se).s_level);

EFFECTS
EFFECTS_OF delete_environment(se, proc_stat(se).s_level);

OFUN create_document_e(idir; name; size)[se];
$(allows a process to create a new document; idir is the
position in the current environment that is a
scapability for a sdirectory that will store the entry
for the new document)

DEFINITIONS
smachine_word w

IS current_environment(se, idir, proc_stat(se).s_level);
EXCEPTIONS

no_process(se) ;
EXCEPTIONSJ3F current_environment(se, idir,

proc_stat(se).s_level);
EXCEPTIONS_OF add_distinguished_sentry(w,

name, w,
proc_stat (se) .s_level

); $(the second w argument serves as an arbitrary scapability for
exception testing only)

EXCEPTIONS_OF create_document(size, proc_stat(se).s_level);
EFFECTS

LET scdoc I scdoc
= EFFECTS_OF create_document(size ,

proc__stat (se) .
s level)

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D.35

IN EFFECTS_OF add_distinguished_sentry(w, name, scdoc,
proc_stat(se)•

s_level);

OFUN change_document_size_e(idoc; size)[se];
$(allows a process to change the size of a document;
idoc is a location in the current environment that holds
a scapability for a document)

DEFINITIONS
smachine_word w

IS current_environment(se, idoc, proc_stat(se),s_level);
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF current_environment(se, idoc,

proc_stat(se).s_level);
EXCEPTIONS_OF change_document_size(w, size,

x proc_stat(se).s_level);
EFFECTS

EFFECTS_OF change_document_size(w, size,
proc_stat(se).s_level);

OFUN delete_document_e(idir; name)[se];
$(allows a user to delete a document; idir is a location
in the current environment that stores a sdirectory
scapability; name is an entry name in that sdirectory)

DEFINITIONS
smachine_word w

IS current_environment(se, idir, proc_stat(se),s_level);
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF current_environment(se, idir,

proc_stat(se),s_level);
EXCEPTIONS_OF remove_distinguished_sentry(w, name,

proc_stat(se).
s_level);

EXCEPTIONS_OF delete_documert(get_scapl(w, name,
proc_stat(se).

s_level),
proc_stat(se),s_level);

EFFECTS
EFFECTS_OF remove_distinguished_sentry(w, name,

proc_stat(se).s_level
) ;

EFFECTS_OF delete_document(get_scapl(w, name,
proc_stat(se).s_level),

proc_stat(se).s_level);

OFUN create_stype_e(itype; name; size)[se];
$(allows a process to create a new extended type; stype
is a position in the current environment that stores a
sdirectory scapability)

DEFINITIONS
smachine_word w

IS current_environment(se, itype, proc_stat(se).s_level);
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF current_environment(se, itype,

APPENDIX D SECURE EXTERNAL FUNCTION'S Page D.36

proc_stat(se) .s__level) ;
EXCEPTIONS OF add distinguished_sentry(w, name, w,

proc_stat(se).s_level

EXCEPTIONSJ3F create_stype(size, proc_stat(se).s_level);
EFFECTS

LET st I St
- EFFECTSJDF create_s type(s ize ,

proc_s ta t (se) . s_ l eve l)
IN EFFECTS_OF addj3istinguished_sentry(w, name, s t ,

proc_stat(se).
s^level);

OFUN sobject_create_e(itype; idir; name)[se];
$(allows a user to create an object of extended type;
itype is a location in the current environment that
holds a scapability for a type)

DEFINITIONS
smachine_word w

IS current_environment(se , idir, proc_stat(se),s_level);
smachine_word wl

IS current_environment(se, itype, proc_stat(se).s_level);
EXCEPTIONS

no_process(se) ;
EXCEPTIONSJDF current_environment (se , i d i r ,

proc^stat(se) . s_ leve l) ;
EXCEPTIONSJDF current_environment(se, Ttype,

p r o c _ s t a t (s e) . s _ l e v e l) ;
EXCEPTIONS_OF add_distinguished_sentry(w, name, w,

proc_s ta t (se) . s_ l eve l

EXCEPTIONSJDF sobjectjrreate(wl , proc_stat (se) .s_JLevel) ;
EFFECTS

LET sc I sc
= EFFECTS_OF sobject_create(wl,

proc_stat(se).s_level)
IN EFFECTS_OF add_distinguished_sentry(w, name, sc,

proc_stat(se).
s_level);

OFUN sobjectj3elete_e(idir; name; itype)[se];
$(allows a process to delete an object of extended type)

DEFINITIONS
smachine_word w

IS current_environment(se, idir, proc_stat(se) .s__level) ;
smachine_word wl

IS current_environment(se, itype, proc_stat(se).s_level);
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF current_environment(se, idir,

proc_stat(se).s_level);
EXCEPTIONS_OF current_environment(se , itype,

proc_stat (se) .s_level).;
EXCEPTIONS_OF remove_distinguished_sentry(w, name,

proc_stat(se).
s_level);

EXCEPTIONS_OF sobject_delete(get_scapl(w, name,

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D.37

proc_stat(se).s_level

wl, proc_stat(se),s_level) ;
EFFECTS

EFFECTS_OF remove_distinguished_sentry(w, name,
proc_stat(se).s_level

EFFECTS__OF sobject_delete (get_scapl (w, name,
proc_stat (se) ,s_level) ,

wl, proc_stat (se) .s_level) ;

OFUN create_impl_sobj_e(iobj; itype; i; itypel)[se];
$(allows a user to create an implementation object for
an extended type object and to insert the newly created
scapability into the representation vector)

DEFINITIONS
smachine_word w

IS current_environment(se, iobj, proc_stat(se).s_level);
smachine__word wl

IS current_environment(se, itype, proc_stat(se).s_level);
smachine_word w2

IS current_environment(se, itypel,
procjstat(se).s_level);

EXCEPTIONS
no_process(se);
EXCEPTIONSJDF current_environment(se, iobj,

proc stat(se).s_level);
EXCEPTIONS_OF current_environment(se, itype,

proc stat(se) .s__level) ;
EXCEPTIONS_OF current__environment (se , Ttypel,

proc_stat(se) .s_level) ;
EFFECTS

EFFECTSJDF create_impl_sobj(w, wl, i, w2,
proc_stat(se).s_level);

OFUN insert_impl_sobj_e(iobj; itype; i; iobjl)[se];
$(allows a user to insert a scapability into the
representation vector of an extended type object)

DEFINITIONS
smachine_word w

IS current__environment(se, iobj, proc_stat(se) ,s_level) ;
smachine_word wl

IS current_environment(se, itype, proc_stat(se).slevel);
smachine_word w2

IS current__environment (se, iobjl, proc_stat (se) .s_level) ;
EXCEPTIONS

no__process(se) ;
EXCEPTIONS_OF current_environment(se, iobj,

proc^stat(se).s_level);
EXCEPTIONS_OF current_environment(se, Ttype,

proc_stat(se).s_level);
EXCEPTIONS_OF current_environment(se, iobjl,

proc_stat(se).s_level);
EXCEPTIONSJDF insert_impl_sobj(w, wl, i, wl,

proc_stat(se).s_level);
EFFECTS

EFFECTSJDF insert_impl_sobj(w, wl, i, w2,

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D. 38

proc_stat (se) ,s_level) ;

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D.39

OFUN delete_impl_scap_e(iobj; itype; i)[se];
$(allows a process to delete the i-th element of the
representation vector of an extended object)

DEFINITIONS
smachine_word w

IS current_environment(se, iobj, proc_stat(se).s_level);
smachine_word wl

IS current_environment(se, itype, proc_stat(se).s_level);
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF current_environment(se, iobj,

proc^stat(se) .s__level) ;
EXCEPTIONS_OF current^environment(se, Ttype,

proc stat(se).s_level);
EXCEPTIONS_OF delete_impl_scap(w, wl, I,

proc_stat(se).s_level);
EFFECTS

EFFECTS_OF delete_impl_scap(w, wl, i,
proc^stat(se).s_level);

OFUN delete_impl_sobj_e(iobj; itype; i; itypel)[se];
$(allows a process to delete an implementation object
for an extended type object and to remove the
corresponding entry in the representation vector)

DEFINITIONS
smachine_word w

IS current_environment(se, iobj, proc_stat(se).s_level);
smachine_word wl

IS current_environment(se, itype, proc_stat(se).s_level);
smachine_word w2

IS current_environment(se, itypel,
proc_stat(se).s_level);

EXCEPTIONS
no_process(se);
EXCEPTIONS_OF current_environment(se, iobj,

proc_stat(se).s_level);
EXCEPTIONS_OF current_environment(se, itype,

proc_stat(se).s_level);
EXCEPTIONS^OF current_environment(se, itypel,

proc_stat(se).s_level);
EXCEPTIONS_OF delete_impl_sobj(w, wl, i, w2,

proc_stat(se).s_level);
EFFECTS

EFFECTS_OF delete_impl_sobj(w, wl, i, w2,
proc_stat(se).s_level);

OFUN send_mail_e(usernamel; i)[se];
$(allows a user, via its process, to send a message to
user "username 1H ; the message to be sent is the
contents of the i topmost position of the current
environment.)

EXCEPTIONS
no__process(se) ;
EXCEPTIONS_OF pop(se, i, proc_stat(se),s_level);
EXCEPTIONS OF send mail(usernamel,

VECTOR(FOR j FROM 1 TO i: 0),
proc_stat(se).s_username,
proc__stat(se) .s_level) ;

$(the vector argument to latter exception is an
arbitrarily selected vector to test for mail box
overflow.)

EFFECTS
EFFECTS_OF send mail(usernamel,

(EFFECTSJDF pop(se, i,
proc_stat(se).s_level))

proc_stat(se),s_username,
proc_stat(se).s_level);

OFUN read_mail_e(username)[se]; $(allows a process to receive
mail sent by user "username11)

EXCEPTIONS
no_process(se) ;
EXCEPTIONS_OF mail(username, proc_stat(se).s_username,

proc_stat(se).s_level);
EXCEPTIONS_OF push(se,

mail(username,
proc stat(se).s_username,
proc_stat(se),s_level),

proc_stat(se).s_level);
EFFECTS

EFFECTS_OF push(se,
mail (username, proc_stat (se) .s__username,

proc_stat(se).s level),
proc_stat(se).s^level);

OFUN delete_mail_e(username)[se]; $(deletes mail sent to username)
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF delete_mail(username,

proc_stat(se).s_username,
proc_stat(se),s_level);

EFFECTS
EFFECTS_OF delete_mail(username, proc_stat(se).s_username,

proc_stat(se).s^level)?

OFUN restrict_saccess_e(isc; iscl)[se];
$(allows a user to reduce the access rights of the
scapability stored in location isc of the current
environment and to store the resultant scapability in
location iscl. The restricted scapability has a TRUE
permit flag.)

EXCEPTIONS
no_process(se);
EXCEPTIONS_OF current_environment(se, isc,

proc_stat(se),s_level);
EXCEPTIONS_OF current_environment(se , iscl,

proc_stat(se).s_level);
EFFECTS

EFFECTS_OF write_environment(se, iscl,
restr ict_saccess (chang e__perm it (

current_environment(se, isc, proc_stat(se).s_level),

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D.40 APPENDIX D SECURE EXTERNAL FUNCTIONS Page D.41

TRUE,
proc_stat(se) ,s_level) ,

s level),
proc_stat(se).

proc_stat(se),s_level);

OFUN create_sdirectory_e(idir; name)[se];
$(allows a user to create a sdirectory;location idir of
the current environment holds a scapability for a
sdirectory in which the new scapability wil l be stored
under entryjiame "name")

DEFINITIONS
smachine_word w

IS current_environment(se, id ir , proc_stat (se) . s_ leve l) ;
EXCEPTIONS

no_process(se) ;
EXCEPTIONSJDF current_environment(se , i d i r ,

p r o c _ s t a t (s e) . s _ l e v e l) ;
EXCEPTIONSJDF create_sd irec tory(proc_s ta t (se) . s_ leve l) ;
EXCEPTIONSJDF addj3istinguished_sentry(w, name, w,

proc_stat(se) ,s__level

EFFECTS
LET scdir I scdir

= EFFECTSJDF create_sdirectory(proc_stat (se) .
s_level)

IN EFFECTSJDF addj3istinguished_sentry(w, name, scdir ,
proc_stat(se) .

s_level) ;
OFUN delete_sdirectory_e(idir; name)[se];

$(allows a user to delete a sdirectory the scapability
for which is under entryjiame "name" in the sdirectory
pointed to by the scapabTlity in positon idir)

DEFINITIONS
smachine_word w

IS current_environment(se, id ir , proc_stat (se) , s_ leve l) ;
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF current_environment(se , idir,

proc_stat (se) .s__level) ;
EXCEPTIONS_OF remove_distinguished_sentry(w, name,

proc_stat(se).
s__level) ;

EXCEPTIONSJDF delete_sdirectory(get__scapl (w, name,
proc_stat (se) .

s_level),
proc__stat (se) .s_level) ;

EFFECTS
EFFECTS_OF remove_distinguished_sentry(w, name,

proc_stat(se).s_level

EFFECTS_OF delete_sdirectory(get_scapl(w, name,
proc_stat(se).s_level

proc_stat(se).s_level);

OFUN get__scap_e(idir ; name; isc)[se];
$(allows a user to retrieve a scapability from a
sdirectory and place it in location isc of the current
environment)

DEFINITIONS
smachine_word w

IS current__environment (se, idir, proc_stat (se) .s_level) ?
EXCEPTIONS

no_process(se) ;
EXCEPTIONSJDF current_environment(se, idir,

proc^stat(se).s_level);
EXCEPTIONS_OF current_environment(se, Tsc,

proc_stat(se) ,s__level) ;
EXCEPTIONS OF get_scapl(w, name, proc_stat(se).s_level);

EFFECTS
EFFECTS_OF write_environment(se, isc,

get_scapl(w, name,
proc_stat(se).s_level

) ,
proc_stat(se) .s_level) ;

OFUN delete__sentry_e(idir; name)[se]; $(allows a process to
delete an entry from a
sdirectory)

DEFINITIONS
smachine_word w

IS current_environment(se, idir, proc_stat(se).s_level);
EXCEPTIONS

no_process(se) ;
EXCEPTIONSJDF current_environment(se, idir,

proc_stat(se).s_level);
EXCEPTIONSJDF delete_sentry(w, name, proc_stat(se).s_level);

EFFECTS
EFFECTSJDF delete_sentry(w, name, proc_stat(se).s_level);

OFUN move_distinguished_sentry_e(idir; idirl; name)[se];
$(allows a process to move a distinguished sentry from
an sdirectory to another)

DEFINITIONS
smachine_word w

IS current_environment (se, idir, proc_stat (se) .s_JLevel) ;
smachine_word wl

IS current_environment(se, idirl, proc_stat(se).s_level);
EXCEPTIONS

no_process(se) ;
EXCEPTIONSJDF current_environment(se, id ir ,

proc_stat (se) . s_ leve l) ;
EXCEPTIONSJDF current_environment(se, i d i r l ,

proc_stat (se) . s_ leve l) ;
EXCEPTIONSJDF remove_distinguished__sentry(w, name,

proc_stat (se) .
s_ level) ;

EXCEPTIONSJDF add_distinguished_sentry(wl, name,
get__scapl (w, name,

proc_stat(
se) .s_level) ,N

proc_stat(se) .s_level

APPENDIX D SECURE EXTERNAL FUNCTIONS Page D.42 APPENDIX D SECURE EXTERNAL FUNCTIONS

EFFECTS
EFFECTS_OF remove_distinguished_sentry(w, name,

proc_stat(se),s_level

EFFECTS_OF add_distinguished_sentry(wl, name,
get_scapl(w, name,

proc_stat(se).
s_level),

proc_stat(se).s_level);

OFUN copy(idoc; i; jdoc; j)[se]; $(allows a process to copy a
word in one document to a
position in another document)

DEFINITIONS
sroachine_word w

IS current_environment(se, idoc, proc_stat(se).s_level);
smachine_word wl

IS current_environment(se, jdoc, proc_stat(se).s_level);
EXCEPTIONS

no_process(se) ;
EXCEPTIONS_OF current_environment(se, idoc,

proc_stat(se).s_level);
EXCEPTIONS_OF current_environment(se, jdoc,

proc_stat(se),s_level);
EXCEPTIONS_0F document_readl(w, i, proc_stat(se),s_level);
EXCEPTIONS_OF document_write(wl, j,

document_readl(w, i,
proc stat(se).

s_level),
proc_stat(se).s_level);

EFFECTS
EFFECTS_OF document__wr ite (wl, j,

documenthread!(w, i,
proc_stat(se).

s level) ,
proc_sta t (se) . s_level) ;

OFUN write(idoc; i; wl)[se]; $(allows a process to write a word
wl into a document)

DEFINITIONS
smachine_word w

IS current^environment (se, idoc, proc__sta;t (se) .s_level) ;
EXCEPTIONS

no_process(se);
EXCEPTIONS_OF current_environment(se , idoc,

proc_stat(se).s_level)?
EXCEPTIONS_OF document__write (w, i, wl,

proc_stat(se).s_level);
EFFECTS

EFFECTSJDF document_write(w, i, wl, proc_stat(se).s_level);

OFUN store_environment(i; jdoc; j)[se];
$(allows a process to store a word from an environment
position into a document)

DEFINITIONS
smachine word w

IS current_environment(se, i, proc_stat(se).s_le'
smachine_word wl

IS current_environment(se, jdoc, proc_stat(se).s
EXCEPTIONS

n o _process (se) ;
EXCEPTIONS_OF cur,rent_environment (s e , i ,

proc_stat (se) ,s_l<
EXCEPTIONS_OF current^environment(se, jdoc,

proc_stat(se).s_l<
EXCEPTIQNS_OF document_write(wl, j, w,

proc_stat(se).s_level);
EFFECTS

EFFECTS_OF document_write(wl, j, w, proc_stat(se).s_

END MODULE

APPENDIX E

SPECIFICATIONS FOR THE
CONFINED SUBSYSTEMS MANAGER

MODULE confined_objects_manager

TYPES

access_string:
{ VECTOR_OF BOOLEAN as I LENGTH(as) = access_string_length };
machine_word: ONE_OF(capabilityf INTEGER, BOOLEAN, CHAR);
slave_capability:
{ capability u I EXISTS capability c: get_slave(c) = u };
permit_string:
{ VECTOR_OF BOOLEAN ps I LENGTH(ps) = n_store_permissions };

DECLARATIONS

machine_word w;
BOOLEAN b;
capability t, tl, c, cl, s;
slave_capability ut, us, uo;
INTEGER i, j, k;
VECTOR_OF slave_capability uv;
VECTOR_OF capability cv, cvl;
permit_string ps;

PARAMETERS

INTEGER confined^delete;
SET_OF slave_capability system_capabilities;

$(capabilities for calling system functions; these are
known apriori to be confined)

DEFINITIONS

BOOLEAN no_ability(capability c; INTEGER i)
IS get_access(c)[i] *= TRUE;

BOOLEAN impl_objects_present(slave_capability u)
IS EXISTS i:

h_is_confined_object(h_impl_cap(u)[i])
OR h_is_confined_segment(h_impl_cap(u) [i]) ;

BOOLEAN good_vector_of_segment_capability(uv)
IS FORALL i I 1 <= i AND i <= LENGTH(uv):

FORALL j I is_capability(h_read(uv[i] , j)):
(EXISTS k | 1 <= k AND k <= LENGTH (uv) AND k ""= i:

get_slave(h_read(uv[i], j)) = uv[k])
$(this disjunct is TRUE if a capability within a
presented segment is for another presented segment)
OR((get_slave(h_read(uv[i], j))

INSET confined_slave_capabilities)
AND(get_access(h_read(uv[i], j))[confined_delete]

= FALSE));
$(this disjunct is TRUE if a capability within a

APPENDIX E CONFINED SUBSYSTEMS MANAGER Page E

presented segment is for an object known to be confined
and does not contain the confined_delete access right)

BOOLEAN bad_capability_in_segments(uv)
IS " good_vector_of_segment_capability(uv);

BOOLEAN is_capability(w)
IS(TYPECASE w OF

capability: TRUE;
ONEJDF(INTEGER, BOOLEAN, CHAR): FALSE;

END) ;
SETJDF slave_capability confined_slave_capabilities

IS { slave_capability u I h_is_confined_segment(u)
OR h_is_confined_object(u)

OR h_is_confined_type(u)
OR u INSET system__capabilities };

access_string no_write_or_delete_as
IS VECTOR(FOR i FROM 1 TO access_string_length

: IF i = write OR i = delete THEN FALSE ELSE TRUE);
access_string no_confined_delete_as

IS VECTOR(FOR i FROM 1 TO access_string_length
: IF i = confined_delete THEN FALSE ELSE TRUE);

BOOLEAN confined_objects(cv)
IS FORALL i I 1 <= i AND i <« LENGTH(cv):

(h_is_confined_segment(get_slave(cv[i]))
AND get_access(cv[i])[confined_delete] = FALSE)

OR(h_is_confined_object(cv[i])
AND get_access(cv[i])[confined_delete] = FALSE);

access_string no__delete_or_change_rep_as
IS VECTOR(FOR i FROM 1 TO access_string_length

: IF i = add_rep OR i = delete_rep
THEN FALSE
ELSE TRUE);

BOOLEAN not_conf ined_objects(cv) IS "* conf ined__objects(cv) ;

EXTERNALREFS

FROM capabilities:
capability: DESIGNATOR;
INTEGER access_string_length;
INTEGER n_store_permissions;
VFUN get_access(capability c) -> access_string as;
VFUN restrict_access(capability c; access_string as)

-> capability cl;
VFUN get_slave(capability c) -> slave_capability u;

FROM segments:
VFUN h_seg_exists(slave_capability u) -> b;
VFUN h_read(slave_capability u; INTEGER i) -> w;
VFUN h_store_permits(slave_capability u) -> permit_string ps;
VFUN seg_size(capability c) -> i;
OVFUN segment_create(INTEGER i; permit_string ps) -> capability c;
INTEGER delete, write;

FROM extended_types:
OVFUN create_type(capability t; INTEGER i) -> capability c;
OVFUN object_create(capability t; permit_string ps) -> c;
VFUN h_impl_cap(slave_capability u) -> VECTOR_OF capability cv;
VFUN h_impl_length(slave_capability ut) -> INTEGER i;

APPENDIX E CONFINED SUBSYSTEMS MANAGER Page E.3 APPENDIX E CONFINED SUBSYSTEMS MANAGER Page E.4

VFUN h_original(slave_capability u) -> VECTOR_OF BOOLEAN bv;
VFUN h_is_type(slave_capability u; slave_capability ut) -> b;
INTEGER manage, add__rep, delete_rep, interrogate;

FUNCTIONS

VFUN h_is_confined_type(ut) -> b; $(TRUE if ut is a confined type
manager)

HIDDEN;
INITIALLY

b = FALSE;

VFUN is_confined_typer(t) -> b; $(visible version of
h_is_confined_typer)

EXCEPTIONS
no_ability(t, interrogate); A

DERIVATION
h_is_conf ined_type(get__slave(t)) ;

VFUN h__is_conf ined_segment(us) -> b; $(TRUE if us is a confined
segment)

HIDDEN;
INITIALLY

b « FALSE;

VFUN is_confined_segment(s) -> b; $(visible version of
h_is_confined_segment)

DERIVATION
h_is_confined_segment(get_slave(s));

VFUN h_is_confined_object(uo) -> b; $(TRUE if uo is a confined
extended object)

HIDDEN;
INITIALLY

b = FALSE;

VFUN is_confined_object(c) -> b; $(visible version of
h_is_conf ined__object)

DERIVATION
h_is_confined_object(get_slave(c));

OVFUN create_confined_type(t; i) -> tl; $(creates a confined type
whose objects will
contain i impl_objects)

EXCEPTIONS
EXCEPTIONS_OF create_type(t, i) ;

EFFECTS
tl = EFFECTSJ3F create_type(t, i);
•h_is_confined_type(get_slave(tl)) - TRUE;

OVFUN make segments_confined(cv) -> cvl;
~§(enables confined version of a tuple of segments to be
established and returned to the caller. Any capability
in the presented segments must be for segments within
cv, or for segments, objects, or types previously
certified, without the "confined_delete" access right,
to be confined. The returned capabilities contain no

access rights for calling the write or delete functions
of the segment module, but do contain a right to delete
via the CSM. In the newly established versions of the
segments any embedded capabilities for other confined
objects will not have the confined_delete access right.)

DEFINITIONS
VECTOR_OF slave__capability uv

IS VECTOR(FOR i FROM 1 TO LENGTH(cv)
: get_slave(cv[i]));

VECTOR_OF slave_capability uvl
IS VECTOR(FOR i FROM 1 TO LENGTH(cvl)

: get_slave(cvl[ij));
VECTORJDF INTEGER lv

IS VECTOR(FOR i FROM 1 TO LENGTH(cv)
: seg_size(cv[i]));

VECTOR__OF permit_str ing psv
IS VECTOR(FOR i FROM 1 TO LENGTH(uv)

: h_store_permits(uv[i]));
EXCEPTIONS

EXISTS i I 1 <= i AND i <= LENGTH(uv):
h_seg_exists(uv[i]) = FALSE;

bad_capability_in_segments(uv);
EFFECTS

cvl
= VECTOR(FOR i FROM 1 TO LENGTH(uv)

: restrict access(EFFECTS OF segment create(lv [i] ,
psvfi])

no__write_or_delete_as)) ;
FORALL i I 1 <* i AND i <= LENGTH(uv):

FORALL j I 0 <= j AND j < lv[i]:
LET w I w « h_read(uv[i], j)
IN 'h_read(uvl[i], j)
=(TYPECASE w OF

capability:
IF(EXISTS k I 1 <= k AND k <= LENGTH(uv):

get_slave(w) - get_slave(cv[k]))
THEN restrict_access(w,

no_confined_delete_as
)

ELSE w;
ONE_OF(INTEGER, BOOLEAN, CHAR): w;

END) ;
FORALL i I 1 <= i AND i <= LENGTH(uv):

'h_is_confined_segment(uvl[i]) = TRUE;

OVFUN make_objects_confined(tl; ps; cv) -> cl;
$(enables a confined version of an extended object to be
established and returned to the caller. The returned
capability cl will not contain access rights for
changing the representation of the confined version, tl
must be a confined type manager, cv is the vector of
capabilities without the confined_delete access right
for implementation objects for cl, each of which must be
for a confined object or segment.)

DEFINITIONS
VECTOR_OF slave_capability uv

IS VECTOR(FOP i FROM 1 TC LENGTH(cv)
: get_slave(cv[i]));

slave_capability ul IS get_slave(cl);
slave_capability ut IS get_slave(tl);

EXCEPTIONS
"* h__is_conf ined_type (get_slave(tl)) ;
no_ability(tl, manage);
LENGTH(uv) ~ = h_impl_length(ut);
not_confined_objects(cv);
RESOURCE_ERROR;

EFFECTS
Cl
= restrict_access(EFFECTS_OF object_create(tl, ps),

no_delete_or_change_rep_as);
'h__is_conf ined_object (get_slave(cl)) = TRUE;
'h_impl_cap(ul)

= VECTOR(FOR i FROM 1 TO LENGTH(cv)
: restrict_access(cv[i] , no_confined_delete_as));

'h_original(ul)
= VECTOR(FOR i FROM 1 TO LENGTH(cv): TRUE);
'h_is_type(ul, get_slave(tl)) = TRUE;

OFUN delete_confined_segment(c); $(deletes the confined segment c)
DEFINITIONS

slave_capability u IS get_slave(c);
EXCEPTIONS

h_is_confined_segment(u) = FALSE;
no_ability(c, conf ined__delete) ;

EFFECTS
•h__is_conf ined_segment (u) = FALSE;
•h_seg_exists(u) = FALSE;
FORALL i: 'h_read(u, i) = ?;

OFUN delete_confined_object(c; t);
$(enables the deletion of the extended confined object
c, provided its representation objects have been
previously deleted.)

DEFINITIONS
slave_capability u IS get_slave(c);
slave_capability ut IS get_slave(t);

EXCEPTIONS
no_ability(t, manage);
notability(t, confined__delete) ;
impl_objects_present(u);

EFFECTS
'h_is__confined_object(u) = FALSE;
•h__impl_cap(u) = ?;
*h_original(u) = ?;
•h__is_type(u, ut) = FALSE;

END MODULE

APPENDIX F Relations Page F.2

APPENDIX F
SPECIFICATIONS FOR THE RELATIONS MODULE

AND FOR THE VIEWS MODULE

TABLE F.I. Specifications for the module RELATIONS

**
Relational data bases — definitions

DOMAIN d: variable of a particular type whose range is a set of
possible values

SCHEMA s: vector of domains

RELATION r for a schema s: subspace of the schema, representable as
a set t_set of tuples (see below), plus authorization information.

TUPLE t of a relation r for a schema s: vector tw of values tw[i]
(one per domain d_list[ij in s)

RELATIONAL DATA BASE rdb for a set of domains: set of relations for
schemas on subsets of those domains,

ft***

MODULE relations

TYPES

domain : DESIGNATOR ;
schema : DESIGNATOR ;
tuple : DESIGNATOR ;
relation : DESIGNATOR ;
data_base : DESIGNATOR ;
character_string : VECTOR_OF CHAR ;

DECLARATIONS

INTEGER i, j;
domain d;
schema s;
tuple t;
relation r;
datajbase rdb;
character_string w $(domain value);
SET_OF character_string range $(range of value);
SET_OF domain d_set $(domains defined for a data base);
VECTORJDF domain d_list $(schema definition);
VECTOR_OF character string tw, twl $(tuple values);
SETJDF tuple t_set ?(set of tuples in a relation);
SETJDF relation r_set $(set of relations in data base);
SET_OF data_base rdb_set;
VECTOR OF BOOLEAN bv;

PARAMETERS

INTEGER access_length $(length of access vector = 7);
INTEGER grant, revoke, insert, delete, update, destroy, read

$(access codes for relations, distinct integers assu
among 1, 2, ..., access_length•);

DEFINITIONS

BOOLEAN no_data_base(data_base rdb) IS
NOT rdb INSET get_data_bases();

BOOLEAN no_relation(datajbase rdb; relation r) IS
NOT r INSET get_relations(rdb);

BOOLEAN no_domain(data_base rdb; domain d) IS
NOT d INSET get_data_domains(rdb);

BOOLEAN no_schema(data_base rdb; schema s) IS
get_domains(rdb,s) = ?;

BOOLEAN repeated_domains(data_base rdb;
VECTOR_OF domain dJList) IS

EXISTS i : EXISTS j : i ~= j
AND d list[i] = d listfj];

BOOLEAN out_of_range(data_base rdb; domain d;
character string w) IS

NOT w INSET get_range("rdb, d) ;

BOOLEAN some_out_of_range(data_base rdb; schema s;
VECTORJDF character_string tw) IS

EXISTS i : NOT tw[i] INSET get_range(rdb,
get_domains(rdb,s)[i]);

BOOLEAN domain_not_in_schema(data_base rdb; schema s; domain d
FORALL i : d ~= get_domains(rdb, s)fi];

BOOLEAN no_tuple(data_base rdb; relation r; tuple t) IS
NOT t INSET get_tuples(rdb, r);

BOOLEAN notability(data_base rdb; relation r; INTEGER i) IS
get_access(rdb, r)[i] = FALSE;

FUNCTIONS

VFUN get_data_bases() -> rdb_set;
$(collection of relational data bases)

INITIALLY
rdb^set = {};

VFUN get_data__domains(rdb) -> d_set;
$(set of domains for the data base)

APPENDIX F Relations Page F.3 APPENDIX F Relations Page F.4

INITIALLY
d_set * ?;

VFUN get_relations(rdb) -> r_set;
$(relations in relational data base rdb)

INITIALLY
r_set * ?;

VFUN get_schema(rdb; r) -> s;
$(the schema used for relation r)

INITIALLY
s « ?;

VFUN get domains(rdb; s) -> d_list;
$(Tist of domains in schema s)

INITIALLY
d_list « ?;

VFUN get_range(rdb; d) -> range;
$(range of the domain variable)

INITIALLY
range - ?;

VFUN get_tuples(rdb; r) -> t_set;
$(tuples in relation r)

INITIALLY
t_set = ?;

VFUN get_value(rdb; r; t; d) -> w;
$(value for domain d in tuple t)

EXCEPTIONS
no_data_base(rdb);
no_relation(rdb, r);
no_tuple(rdb, r, t);
no_domain(rdb, d);
notability(rdb, r, read);

INITIALLY
w - ?;

VFUN get_values(rdb; r; t) -> tw;
$(list of values for tuple t)

DEFINITIONS
VECTOR_OF domain d_list IS get_doinains(rdb, s) ;
schema s IS get_schema(rdb, r);

EXCEPTIONS
no__data_base(rdb) ;
no_relation(rdb, r) ;
no__tuple(rdb, r, t) ;
no_ability(rdb, r, read);

DERIVATION
FORALL i : tw[i]

= get value(rdb, r, t, d list[i]);

VFUN get_access(rdb; r) -> bv;
$(the access authorization for relation r)

INITIALLY
bv = ?f

OVFUN create_data_base() -> rdb;
$(creates a new data base)

EXCEPTIONS
no_data_base(rdb);

EFFECTS
rdb » NEW(data_base);
•get_data_bases()

= get_data_bases() UNION {rdb};

OVFUN create_domain(rdb; range) -> d;
$(creates a new domain for the data base)

EFFECTS
d = NEW(domain>;
•get_j:anqe(rdb, d) = range;

OVFUN create_schemaCrdb; d_list) -
$(

_ _ s;
creates a new schema with d_list as its domains. Identical]
composed but differently desiqnated domains may be included,
while the identically designated domain may not appear twic<
EXCEPTIONS
no__data base (rdb);
repeateor_domains(rdb,d_list) ;

EFFECTS
s * NEW(schema);
'get_domains(rdb, s) * d_list;

OVFUN create_relation(rdb; s) -> r;
$(creates a new relation for the given schema)

EXCEPTIONS
no__data_base(rdb) ;
no_schema(rdb,s);

EFFECTS
r = NEW(relation);
1get_relations(rdb)

= get_relations(rdb) UNION {r};
'get schema(rdb, r) = s;
FORAlL i I 1 <= i AND i <= access_length :

[i] = TRUE;

OVFUN create_tuple(rdb; r) -> t;
$(creates a new tuple t in relation r
(with undefined values) in implementation, t is probably an
integer, or else, identified by a domain value as a key.)

EXCEPTIONS
no_data_base(rdb);
no_relation(rdb,r);
no_ability(rdb, r, insert);

EFFECTS

APPENDIX F Relation? Page F.5 APPENDIX F Relations Page F.6

t - NEW(tuple);
•get_tuples(rdb, r)

= get_tuples(rdb, r) UNION {t};

OFUN delete_tuple(rdb; r; t) ;
$(deletes tuple t from relation r).

DEFINITIONS
VECTOR_OF domain d list IS get domains(rdbf s)
schema s IS get__schema (rdb, r) ;

EXCEPTIONS
no_data_base(rdb);
no__relation(rdb,r) ;
notability(rdb, r, delete);
no_tuple(rdb,r,t);

EFFECTS
fget__tuples(rdb, r)

- get_tuples(rdb, r) DIFF {t};
FORALL i : 'get_value(rdb, r, t, d_list[i])

?

DEFINITIONS
SET_OF tuple t_set IS get tuples(rdb, r);
VECTOR_OF domain d_list IS get_domains(rdb, s);
schema s IS get_schema(rdb, r);

EXCEPTIONS
no_data_base(rdb);
no_relation(rdb,r);
no_ability(rdb, r, destroy);

EFFECTS
fget_relations(rdb)

= get_relations(rdb) DIFF {r};
•get_tuples(rdb, r) = ?;
FORALL t I t INSET t_set :

FORALL i : 'get_value(rdb, r, t, d_list[i])

END MODULE

OFUN update_tuple_value(rdb; r; t; d; w);
$(in tuple t of relation r, updates the value for domain d
to w.)

DEFINITIONS
schema s IS get schema(rdb,r);

EXCEPTIONS
no_data_base(rdb);
no_relation(rdb,r);
notability(rdb, r, update);
no_tuple(rdb,r,t);
domain_not_in_schema(rdb,s,d);
out_of_range(rdb,d,w);

EFFECTS
•get_value(rdb, r, t, d) = w;

OFUN update_tuple(rdb; r; t; twl) ;
$(replaces the entire tuple)

DEFINITIONS
schema s IS get_schema(rdb,r);
VECTOR_OF domain d_list IS get_domains(rdb,s);
$(VECTOR_OF character_string tw IS get_values(rdb, r, t))

EXCEPTIONS
no_data_base(rdb);
no_relation(rdb,r);
notability(rdb, r, update);
no_tuple(rdb,r,t);
some_out_of_range(rdb,s,twl);

EFFECTS
FORALL i : 'get_value (rdb, r , t , d__list[i])

t l [i]

OFUN destroy_relation(rdb; r);
$(destroys relation r from data base rdb)

APPENDIX F Primitive Views Page F.7 APPENDIX F Primitive Views Page

TABLE F.2. Specifications for the module PRIMITIVE-VIEWS

**
PRIMITIVE VIEW v for a relation r: a vector vw of values vw[i] (one
per domain d_list[i] in the schema of the relation), plus
authorization. Each vwfi] is either a value w,
or the universal value "*", or the null value "%".

NONPRIMITIVE VIEW: a set of two or more primitive views
for the same schema.

VIEW view for a schema: any set of primitive views.

VIEW_DIR view_dir for a data base: the set of primitive views
maintained by the VIEWS module.

MODULE primitive_views

TYPES

primitive_view : DESIGNATOR ;
char acter__str ing : VECTOR_OF CHAR ;
view_vector : VECTOR_OF character_string ;

DECLARATIONS

BOOLEAN b;
INTEGER i, j ;
domain d;
tuple t, tl;
relation r;
data_base rdb;
character_string w, wl, w2;
SET_OF character_string range;
primitive_view v, v2, v j ;
view_vector vw, vwl;
SET_OF primitive_view view_set;
SET_OF tuple tl_set $(extracted relation);
VECTOR_OF BOOLEAN bv, bvl;
SETJ3F data_base rdb_set;
SET_OF relation r__set;
SET_OF domain d_set;
SET_OF tuple t_set;

VECTOR_OF character_string tw;

PARAMETERS

INTEGER grant, revoke, insert, delete, update, destroy, read;

DEFINITIONS

BOOLEAN no_view(data_base rdb; primitive_view v) IS
NOT v INSET get_views(rdb, get_view_relation(rdb

BOOLEAN is_revocable(data_base rdb; primitive_view v) IS
revocable(rdb, v) = TRUE;

BOOLEAN no_data_base(data_base rdb) IS
NOT rdb INSET get_data_bases();

BOOLEAN no_relation(data_base rdb; relation r) IS
NOT r INSET get_relations(rdb);

BOOLEAN no_domain(data_base rdb; domain d) IS
NOT d INSET get_data_domains(rdb);

BOOLEAN out_of_range(data_base rdb; domain d;
character_string w) IS

NOT w INSET get_range(rdb, d);

BOOLEAN notability(data_base rdb; relation r; INTEGER i)
get_access(rdb,r)[i] = FALSE;

BOOLEAN no_view_ability(data_base rdb; primitive_view v;
get_view_access(rdb, v)[i] = FALSE;

EXTERNALREFS

FROM relations :
DESIGNATOR domain, schema, tuple, relation, data_base
VFUN get_data_bases() -> rdb_set;
VFUN get_relations(rdb) -> r_set;
VFUN get_data_domains(rdb) -> d_set;
VFUN get_range (rdb; d) -> range;
VFUN get__tuples(rdb; r) -> t_set;
VFUN get_values(rdb; r; t) -> tw;
VFUN get access(rdb; r) -> bv;
OVFUN create_tuple(rdb;r) -> t;
OFUN update_tuple_value(rdb;r;t;d;w);
OFUN update__tuple(rdb;t;tw) ;
OFUN delete_tuple(rdb;r;t);

FUNCTIONS

VFUN get_views(rdb; r) -> view_set;
$(views for the relation)

EXCEPTIONS
nodata base(rdb);

INITIALLY ~
view_set - {};

VFUN get_view_relation(rdb; v) -> r;
$(Rrhpma for t-hf* UIPW^

APPENDIX F Primitive Views Page F.9 APPENDIX F Primitive Views Page F.10

no_data__base (rdb) ;
no__view(rdb, v) ;

INITIALLY
r = ?:

VFUN get view_vector(rdb; v) -> vw;
$("the tuple of %, *, and values defining the view.)

EXCEPTIONS
no_data_base(rdb);
no_view(rdb, v);

INITIALLY
vw s ?;

VFUN get_view_access(rdb; v) -> bv;
$(the access code for the view)

EXCEPTIONS
no_data_base(rdb);
no_view(rdb, v);

INITIALLY
bv = ?;

VFUN extractable(w; wl) -> b;
$(TRUE IF value w can be extracted by the selector value wl.
Note that the specification handler requires "%%n, not "%".)
HIDDEN;
DERIVATION

IF wl » "*" OR wl = "%" OR wl = w
THEN TRUE
ELSE FALSE;

VFUN selects(rdb; t; v) -> b;
$(TRUE IF tuple t conforms to the primitive view v)

HIDDEN;
DEFINITIONS

relation r IS get_view_relation(rdb,v);
view vector vw IS get_view_vector (rdb, v);
VECT<5R_OF character_string tw IS get_values (rdb, r, t);

DERIVATION
IF (FORALL i : extractable(tw[i], vw[i]) = TRUE)

THEN TRUE ELSE FALSE;

VFUN extract(rdb; v) -> tljset?
$(extracts those tuples conforming to the view, filtered by %;

see Table 4.3.2.)
DEFINITIONS

relation r IS get_view_relation(rdb, v);
SET_OF tuple t set IS get_tuples(rdb, r);
view vector vw TS get_view_vector(rdb, v);

EXCEPTIONS
no_data_base(rdb);
no_view ability(rdb, v, read);
no_yiewTrdb, v) ;
no relation(rdb, r);

DERIVATION
tl_set = { tl I (FORALL t I t INSET t_set:

(IF selects(rdb, t, v) = TRUE
THEN (FORALL i : IF vw[i] = "*"

THEN get_values(rdb,r,t)[i] = get_values(rdb,
ELSE get_values(rdb,r,t)[i] = vw[i])

ELSE TRUE)) };

VFUN and_views(w; wl) -> w2;
$(ANDs two views together)
HIDDEN;
DERIVATION

w2 = (IF wl = "%"
THEN "%"•
ELSE (IF wl = "*"

THEN w
ELSE (IF w = wl OR w = "*"

THEN w
ELSE w%")));

VFUN revocable (rdb; v) -> b;
$(TRUE if v revocable)
HIDDEN;
INITIALLY b - ?;

VFUN get revocable_views (rdb; v) -> view_set;
$(tFe set of revocable views for the given view)
HIDDEN;
INITIALLY view_set = {};

OVFUN create_view(rdb; r; bv) -> v;
$(creates a primitive view for a relation)

DEFINITIONS
view_vector vw IS get_view_vector(rdb, v);

EXCEPTIONS
no_data base(rdb);
no_abilTty(rdb, r, grant);

EFFECTS
v = NEW(primitive_view);

•get_views(rdb, r)
= get_views(rdb, r) UNION {v};
'get_view_relation(rdb, v) = r;
'get_view_access(rdb, v) = bv;
revocable(rdb, v) * FALSE;
FORALL i : vw[i] = H*";

OVFUN create restricted_view(rdb; v; vwl; bvl) -> v2;
$(creates a revocable view, with desired authorizatior

DEFINITIONS
view_vector vw2 IS get_view_vector(rdb, v2);
view_vector vw IS get_view_vector(rdb, v);
VECTOR_OF BOOLEAN bv IS get_view_access(rdb, v);
VECTOR OF BOOLEAN bv2 IS 'get_view_access(rdb, v2);

APPENDIX F Primitive Views Page F.ll APPENDIX F Primitive Views Page F.12

EXCEPTIONS
no_data_base(rdb);
no~viewjrdb, v);
no~view_ability(rdb, v, grant);
is revocable(rdb , v) ;

EFFECTS
v2 = NEW(primitive_view);
'get_revocable_views(rdb, v)

= get_revocable_views(rdb, v) UNION {v2};
revocable(rdb, v2) = TRUE ;
FORALL i : vw2[i]
FORALL j : bv2[j] = (bvfj] AND bvl[j]);

OFUN destroy view(rdb; v);
$(destroys view)

DEFINITIONS
view_vector vw IS get_view_vector(rdb, v);

EXCEPTIONS
no_data_base(rdb);
no_view(rdb, v);
n o _ v i e w _ a b i l i t y (r d b , v f d e s t r o y) ;

EFFECTS
•get_view_relation(rdb, v) = ?;
FORALL i : vw[i] = ?;
'get_view_access(rdb, v) = ?;

OFUN revoke_restr icted__views (rdb; v) ;
$(revokes all views created by create_restricted view
(rdb,v,vwj,bv). Note this is a strong revocation, rather than a
selective revocation — which could be achieved with
slightly more mechanism.)

EXCEPTIONS
no_data_base(rdb);
no_view(rdb, v);
no_view_ability(rdb, v, revoke);

EFFECTS
get_revocable_views(rdb, v) = {};
FORALL vj I ~vj INSET get_revocable_views(rdb, v) :

1get_view_relation(rdb, vj) = ?
AND~'get~view__access (rdb, vj) = ?
AND 'revocable(rdb,vj) = ?
AND (FORALL i : get_view_vector(rdb, vj)[i] = ?) ;

OFUN v_update(rdb;v;d;w);
$(updates the values of a relation through a view —

for all tuples selected by the view.)
DEFINITIONS

relation r IS get view relation(rdb,v);
EXCEPTIONS
no view ability(rdb,v,update)
$(EXCEPTIONS_OF update tuple(rdb,r) redundant:

no abil ity (rdb, r ,upcfate) OK by construction.);
no datfa base (rdb) ;

no_view(rdb,v);
no_re l a t ion (rdb , r) ;
no_domain(rdb,d);
out_of_range(rdb,d,w);

EFFECTS
FORALL t I (s e l e c t s (r d b , t , v) - TRUE):

EFFECTSJ3F update_ tuple_value(rdb , r , t ,d ,w) ;

OFUN v_insert(rdb;v;tw);
$(inserts a new tuple into the relation referred to by

the given view v: view (%, %, ...) with insert access code
is sufficient.)

DEFINITIONS
relation r IS get_view_relation(rdb,v);

EXCEPTIONS
no_view_ability(rdb,v,insert);
no__view_ability(rdb,v,update) ;

EFFECTS
LET t I EFFECTS_CF create_tuple(rdb,r) = t IN
EFFECTS_OF update_tuple(rdb,t,tw);

OFUN v_delete(rdb;v);
$(deletes all tuples selected by the view:

reouires delete access)
DEFINITIONS

relation r IS get view relation(rdb,v);
EXCEPTIONS ~
no_view_ability(rdb,v,delete); $(notability(rdb,r,delete)

redundant)
EFFECTS
FORALL t I selects(rdb,t,v) = TRUE:

EFFECTS_OF delete_tuple(rdb,r ,t);

END MODULE

APPENDIX G

The foundations of a provably secure operating system
(PSOS)

by RICHARD J. FEIERTAG and PETER G. NEUMANN
SRI International
Menlo Park. California

INTRODUCTION

PSOS has been designed according to a set of formal tech-
niques embodying the SRI Hierarchical Development Meth-
odology (HDM). HDM has been described elsewhere,1"3

and thus is only summarized here. The influence of HDM
on the security of PSOS is also discussed elsewhere.4 In
addition, Linden5 gives a general discussion of the impact
of structured design techniques on the security of operating
systems (including capability systems).

HDM employs formally stated requirements, formal spec-
ifications defining the design of each module in a hierarchical
collection of modules, and formal statements of the module
interconnections. In the case of PSQS, there is a formal
model describing the requirements of the basic protection
mechanism, and additional formal models of the require-
ments of various applications (e.g., Reference 6). HDM pro-
vides the formalism and the structure, that make the formal
verification of the system design and implementation pos-
sible and conceptually straightforward. This formal verifi-
cation consists of formal proofs that specifications satisfy
the desired requirements,6 and subsequently that the actual
programs for the system and its applications are consistent
with those specifications.2

The design of PSOS has been formally specified using a
SPECIfication and Assertion Language called SPECIAL.7

These specifications1 define PSOS as a collection of about
20 hierarchically-organized modules. Each module typically
is responsible for objects of a particular type defined by that
module. From the user point of view, the most important
modules are those for capabilities, for virtual memory seg-
ments, directories, user processes, and for creating user
defined abstract objects. Some modules are to be imple-
mented in software, some in firmware, and some in hard-
ware—as dictated by the efficiency required.

Capabilities provide the protection mechanism for all such
objects in PSOS, and are discussed in the next section. The
subsequent sections of this paper summarize the develop-
ment methodology used in PSOS, present the protection
mechanism provided by PSOS capabilities, exhibit its prop-
erties, show its applicability in developing data and proce-
dure abstractions,<and contrast the PSOS approach with the
kernel approach to achieving secure systems. There are

many important issues relating to the use of capabilities in
PSOS (and other computer systems) that are not presented
in this paper. Many of these issues are discussed in the
references cited here.

PSOS CAPABILITIES

The concept of the capability has appeared in several
other operating systems (e.g. References 8-13). Although
capabilities are a fundamental part of the design of each of
these systems, they all differ in the way they use and inter-
pret capabilities. PSOS differs from its predecessors in its
uniform use of capabilities throughout the system and in the
simplicity and primitive nature of the basic capability mech-
anism.

Each object in PSOS can be accessed only upon presen-
tation of an appropriate capability to a module responsible
for that object. Capabilities can be neither forged nor al-
tered. As a consequence, capabilities provide a controllable
basis for implementing the operating system and its appli-
cations, as there is no other way of accessing an object other
than by presenting an appropriate capability designating that
object.

Each PSOS capability consists of two parts, a unique
identifier (uid) and a set of access rights (represented as a
boolean array). By definition neither part is modifiable, once
a capability is created.

• Unique Identifiers—PSOS generates only one original
capability for each uid. Any number of copies can be
made of a given capability, but making a copy requires
presenting an existing capability for which a copy is to
be made. Therefore, a procedure or task that creates
a new capability with some uid knows that the only
capabilities that can have that uid must have been cop-
ied either directly or indirectly from the original. In
other words, the creator of a capability with a given uid
is able to retain control over the distribution of capa-
bilities with that uid.

• Access Rights—The set of access rights in a capability
for an object is interpreted by the module responsible
for that object to define what operations may be per-

329

APPENDIX G

330 National Computer Conference, 1979

formed by using that capability. The interpretation of
the access rights is constrained by a monotonicity rule,
namely that the presence of a right is always more
powerful than its absence. The interpretation of the
access rights may differ for different objects, but the
monotonicity rule must always apply.

The access rights for a segment capability (as interpreted
by the segment manager) indicate whether that capability
may be used to write information into the designated seg-
ment, to read that information, to call that segment as a
procedure, and to delete that segment. In PSOS, a directory
contains entries, each of which is a mapping from a symbolic
object name to a capability. Each directory is accessed via
a capability for that directory. For directories, the interpre-
tation of access rights is done by the directory manager. The
access rights for a directory capability indicate whether that
capability may be used to add entries to the designated
directory, to remove entries, and to use the capability con-
tained in that entry.

A copy of a capability may be made, but the resulting
capability cannot have any access rights that the original
capability did not—as is seen from the following list of
possible operations upon capabilities. (There are other ac-
cess rights, meaningful to capabilities of all types, to be
discussed under storage permissions.)

THE PSOS PROTECTION MECHANISM

Capabilities provide the basis for a flexible protection
mechanism, as follows:

Tagging of capabilities

In PSOS, capabilities can be distinguished from other data
because they are tagged throughout the system (i.e., in the
processor, and in both primary and secondary memory) by
means of a tag bit inaccessible to programs. Consequently,
the hardware can enforce the nonforgeability and unaltera-
bility of capabilities.

Operations upon capabilities

There are only two basic operations that involve actions
upon capabilities (as opposed to actions based on capabili-
ties, which is the normal mode of accessing objects), as
follows.

c = create capability creates a new capability (i.e., with a
previously unused uid) having all access rights.

cl = restrict access(c, mask) creates a capability with the
same uid as the given capability c and with access
rights that are the intersection of those of the
given capability c and the given maximum
(mask); i.e., it creates a possibly restricted copy.

Store permissions

The second capability operation described above appears
to permit unrestricted copying of capabilities. For certain
types of security policies this unrestricted copying is too
liberal. For example, one may wish to give the ability to
access some object to a particular user but not permit that
user to pass that ability on to other users. Because simplicity
of the basic capability mechanism is extremely important to
achieve the goals of PSOS, any means for restricting the
propagation of capabilities should not add complexity to the
capability /nechanism.

A few access rights (only one is currently used by PSOS
itself) are reserved as store permissions. This is the only
burden placed on the capability mechanism. The interpre-
tation of the store permissions is performed by the basic
storage object manager of PSOS, namely the segment man-
ager. Each segment in the system is designated as to whether
or not it is capability store limited for each store permission.
If a segment is capability store limited for a particular store
permission, then it can contain only capabilities that have
that store permission. This restriction can be enforced by a
simple check on all segment-modifying operations.

By properly choosing the segments that are capability
store limited, some very useful restrictions on the propa-
gation of capabilities can be achieved. The restriction used
in PSOS is not allowing a process to pass certain capabilities
to other processes or to place these capabilities in storage
locations (e.g., a directory or interprocess communication
channel) accessible to other processes. (Other restrictions
are also possible using store permissions, such as restricting
a capability to a subsystem or a particular invocation of a
subsystem. For example, see Reference 1, page 11-25.) More
general means for restricting propagation of capabilities and
for revoking the privilege granted by a capability can be
implemented as subsystems of PSOS. The store permission
mechanism has been selected as primitive in the system
because it achieves the desired result with negligible addi-
tional complexity or cost.

DATA AND PROCEDURE ABSTRACTIONS

PSOS consists of a collection of data and procedure ab-
stractions constructed in a hierarchical fashion as shown in
Table I. Each level in the hierarchy represents a collection
of abstractions introduced at that level. Abstractions at
higher (numbered) levels are implemented using abstract
objects introduced at lower levels in the design. It is unim-
portant whether an abstraction is implemented in hardware,
firmware, or software. It is reasonable that abstractions
introduced at lower levels be implemented largely in hard-
ware or firmware and that abstractions introduced at higher
levels be implemented largely in software. However the
demarcation between hardware and software is not estab-
lished by the design, and it is quite possible that abstractions
occurring throughout the system be implemented as hybrids,
i.e., partially in hardware and partially in software.

APPENDIX G
The Foundations of a Provably Secure Operating System 331

TABLE I—PSOS Abstraction Hierarchy.

Level

16
15
14
13
12
11
10
9
8
7
6
5
4
3
->
1
0

Abstractions

user request interpretation
user environments and name spaces
user input-output
procedure records
user processes and visible input-output
creation and deletion of user objects
directories
abstract object manager
segments and windows
pages
system processes and system input-output
primitive input-output
arithmetic and other basic procedures
clocks
interrupts
registers and other storage
capabilities

It is convenient to group the levels of Table I into generic
categories as shown in Table II. The generic categories
collect abstractions satisfying similar goals. At the base of
the hierarchy is the capability mechanism, from which all
other abstractions in the system are constructed. Above the
basic capability mechanisms are all the physical resources
of the system, e.g., primary and secondary storage, proces-
sors and input/output devices. From the physical resources
are constructed the virtual resources. These virtual re-
sources present a more convenient interface to the program-
mer than the physical resources, permit multiplexing of the
physical resources in a manner largely invisible to the user,
and allow the system to allocate the physical resources so
as to maximize their efficient use. Next in the PSOS hier-
archy comes the abstract object manager, providing the
mechanism by which higher-level abstractions may be cre-
ated. As will be discussed in detail, it is possible to construct
higher-level abstractions based solely on the capability
mechanism; however, the abstract object manager provides
services that make construction of such abstractions easier.
The top two categories in the generic hierarchy include
community abstractions and user-created abstractions. The
community abstractions are intended to be used by a large
group of users, e.g., by all the users at a particular site.
Such abstractions may be simple utility routines such as a
compiler, or may actually create and control access to new
virtual resources such as directories. The user abstractions
are those intended for use by a limited group of individuals.

Of the properties stated previously, there are two impor-

TABLE II—PSOS Generic Hierarchy.

Level

F
E
D
C
B
A

Abstractions

user abstractions
community abstractions
abstract object manager
virtual resources
physical resources
capabilities

PSOS Levels

14-16
10-13
9
6-8
1-5
0

tant ones that make the PSOS capability particularly useful
in the construction of abstract objects.

1. The capability serves as a unique name for an abstract
object.

2. The capability is unforgeable.

This means that a capability can be used as a name (guar-
anteed to be unique) by which an abstract object can be
referenced, and access to the object can be controlled by
limiting the distribution of the capability.

In addition, there are several important pragmatic reasons
why PSOS capabilities are useful as a naming and protection
mechanism for supporting abstract objects.

1. The capability mechanism has a very simple imple-
mentation. This allows capabilities to be built into the
system at the lowest level of abstraction, thus making
capabilities available for the most primitive objects.

2. Capabilities are uniform in size, making them easy to
manage.

3. The inclusion of access rights in capabilities permits
efficient fine-grained control of access to objects.

4. Capabilities can be written into storage (including sec-
ondary storage) and retrieved from storage in the same
manner as other data, and therefore have many of the
properties of other data.

Capabilities serve as names or tokens for all objects of
PSOS. It is because the basic capability mechanism is so
simple in concept and in implementation that construction
of the most primitive objects (e.g., input/output channels,
processors, and primary memory) as well as the most com-
plex system objects (e.g., directories and user processes)
and user application objects (e.g., a data management sys-
tem) is possible using capabilities. This promotes a high
degree of uniformity throughout the system and eliminates
the need for many special-purpose facilities.

Objects that have many properties and operations in com-
mon and are managed by a single program are said to have
a common type; that program is called a type manager. The
type manager implements operations on an abstract object
in terms of operations on the more primitive objects used to
represent the abstract object. The type manager must be
able to determine which objects are part of the representa-
tion used to implement an abstract object denoted by a given
capability. In other words, a type manager must be able to
map the unique identifier of a given capability into capabil-
ities for its representation objects. The capability mechanism
of PSOS does not predispose a type manager to any partic-
ular implementation of this mapping. Different type man-
agers will require diverse mapping algorithms, depending
upon the number of abstract objects and representation ob-
jects they must manage, the desired efficiency of operations
on the abstract object, the desired simplicity of the mapping
algorithm, and numerous other factors. For example, the
segment type manager uses a mapping algorithm that is in
almost all cases extremely fast; however, the algorithm is

APPENDIX G

332 National Computer Conference, 1979

quite complex, requiring implementation in both hardware
and software. Extreme speed is essential to the operations
of the segment type manager because the segment opera-
tions are used very frequently (at least once on every in-
struction). The directory type manager uses a less speedy
algorithm because fast access is not essential.

Although the capability mechanism of PSOS does not
prescribe a particular mapping algorithm, the system does
provide some assistance in managing abstract objects. The
abstract object manager provides a set of operations by
which type managers can associate capabilities for abstract
objects with the capabilities for their representation objects.
The type manager can then retrieve the representation ca-
pabilities by presenting to the abstract object manager the
abstract object capability. This is done in such a way that
only the type manager program itself can obtain the repre-
sentation capabilities, and then only upon presentation of
the abstract object capability. The abstract object manager
performs the mapping from abstract object capabilities to
representation object capabilities, some of the bookkeeping
functions necessary to implement abstract objects, and some
storage allocation. Although the abstract object manager is
intended to be useful and appropriate for a wide variety of
type managers and does make the programming of a type
manager much easier, it is only a service and is not essential
to the construction of type managers.

The capability mechanism itself could have been con-
structed with many of the facilities of the abstract object
manager included. This would have resulted in a capability
mechanism that would be more elaborate and—for some
applications—more efficient and easier to use. This is the
approach taken by other capability systems cited above. On
the other hand, such a capability mechanism would have
required a more complex implementation. More signifi-
cantly, the capability mechanism could then not have been
placed at the lowest level of abstraction in the system design,
and some of the physical and virtual resources of the system
could not have been implemented using capabilities—re-
quiring a different means for reference. Although having
several different naming schemes is possible (and common
in most systems), it destroys the uniformity, conceptual
simplicity, elegance, ease of use, and possibly the efficiency
of the system. It is for this reason that PSOS has a very
simple, but fully general, capability mechanism, and that
programs enhancing the use of the capability mechanism
can be introduced as extensions at higher levels of the de-
sign.

As noted above, there is no clearly-delineated system
boundary in PSOS. One would normally draw the system
boundary at the interface to the community abstractions.
However, all the programs that implement the community
abstractions (such as directories or user processes) could be
provided by users as user programs. The community pro-
grams have no special privilege other than claiming re-
sources at initialization by taking possession of certain ca-
pabilities. For example, the user-process type manager takes
possession of the capabilities for certain system processes
which it then multiplexes to create many user processes. If
the system's user-process type manager did not claim all the

available system processes, then it would be possible for a
user to provide a different user-process type manager with
the same or different facilities. Similarly, the abstract object
manager has no special privilege at all. A user might program
his own abstract object manager if he so desired.

The abstractions at or below any level in the design of
Table I form a consistent and useful system. Clearly, the
lower the level chosen as the "top level" of the system, the
more primitive that system will be. If ail of the physical
resources (levels 1 through 5) are present, then the full PSOS
could be reconstructed on the restricted system, but more
likely, one would construct a somewhat different system.
Thus, the PSOS design represents a family of systems. One
can choose the level that provides the best set of resources
to fulfill the needs of the desired system without having to
include unnecessary facilities. Then one can augment this
level with new type managers to create abstract objects
appropriate to the desired applications. Writing such "sys-
tem" type managers requires no additional skill or privilege
other than that required to write ordinary user programs.
The distinction between a "system" program and a "user"
program is thus indeed blurred.

PSOS RELATIONSHIP TO KERNELS

Several recent operating systems have been constructed
using a "kernel" architecture. Such systems include the
Kernelized Secure Operating System (KSOS)14i:> and two
precursor systems developed at MITRE1617 and UCLA.18

The term kernel is used loosely in the literature, but for the
purpose of this discussion a kernel is that part of the oper-
ating system that is both necessary and sufficient to satisfy
certain requirements of the system. For example, if the
essential requirement of a system is that it enforce a certain
security policy, then that part of the system that enforces
the security policy constitutes the kernel. By this definition,
a kernel is meaningful only with respect to some requirement
or some set of requirements. The kernel must contain all
those parts of the system that pertain to meeting the require-
ments, i.e., there is no part of the system outside the kernel
that can cause the system not to meet its requirements.
Also, the kernel can contain only those parts of the system
that are necessary to meet the requirements, i.e., the kernel
should not contain anything that does not pertain to the
meeting of the requirements. The reasoning behind kernel-
based architectures is that since a kernel contains only that
part of the system essential to meeting requirements, it can
be small, compared to the system as a whole, and therefore
has a better chance of being correct.

One of the main advantages of the kernel approach is the
clear statement of purpose of the system. Since a kernel is
meaningful only with respect to some explicit requirements,
these requirements serve as the statement of purpose of the
system. The other main advantage is the enhanced proba-
bility of correct operation. Since the programs that are crit-
ical to the correct operation of the system are isolated in the
kernel, a great deal of attention can be paid to getting this
code right, and less attention can be paid to other system

APPENDIX G

The Foundations of a Provably Secure Operating System 333

code that may be important but is not critical. The relatively
small size of the kernel significantly improves the chances
of applying formal verification techniques to the programs
in the kernel in a cost-effective manner, where applying
these techniques to the entire system would be unwieldy.

There are, as one might expect, some disadvantages to
the use of kernels. Kernels cannot be casually modified
because, by definition, all the code in the kernel is essential
to meeting the requirements of the system, and any modi-
fication is likely to cause the system to deviate from that
which is required. One must take extreme care to be sure
that a change in the kernel will not compromise its correct
operation.

In order to be able to construct a small kernel, the re-
quirements must be fairly narrow and highly specific. Such
requirements limit the applications for which the kernel is
useful. For example, if the requirement of a kernel is to
enforce a particular security policy, then only applications
requiring that policy can be reasonably implemented using
that kernel. It is not possible to implement another security
policy that is inconsistent w.ith the given security policy.

Yet another of the major problems with the kernel ap-
proach is the difficulty of designing a system in such a way
that those programs essential to meeting the requirements
are isolated from the nonessential programs. Finally, expe-
rience with the systems mentioned above indicates that ker-
nels are still quite large. Clearly the size of a kernel depends
upon the requirements it is supposed to meet, but reasonable
requirements tend to require a large part of the system to be
part of the kernel. Large kernels do not enhance one's con-
fidence in the correct operation of the system.

Consider, for example, the kernels of KSOS and of the
MITRE system. The requirement of these kernels is that
they enforce a multilevel security policy. Upon close ex-
amination of these systems, it is seen that what is labeled
the "kerner is not really the kernel at all, but is only a part
of the kernel. These systems have so-called trusted pro-
cesses, namely programs that are internally able to vjolate
the requirements, but whose external interface is consistent
with the requirements. These trusted processes include pro-
grams for file system backup and retrieval, I/O spooling,
and network interfaces. These programs are not labeled as
part of the kernel because their function is in some sense
peripheral to the main task of the system. However, their
correct operation is as essential to meeting the requirements
as any kernel program. If the system is to be proven correct,
the programs that are used by the trusted processes must be
formally verified. Inclusion of the code for the trusted pro-
cesses into the kernel makes the (resulting kernel much
larger. This illustrates a difficulty in designing a small kernel.

It is a matter of judgment as to whether the advantages of
the kernel approach outweigh the disadvantages. For the
situation in which one has clearly defined, specific overrid-
ing requirements for which a small kernel can be con-
structed, then the kernel approach is ideal.

PSOS is well suited to situations in which one wants to
support many applications with different or conflicting re-
quirements. Because PSOS is highly extensible and easily
supports different type managers with strong control over

access to objects and type managers, it makes possible the
support of many different sets of requirements on one PSOS
implementation. For example, several subsystems have
been designed for PSOS that enforce different security con-
straints. A particular task could be constrained to have ac-
cess to only one of these subsystems, but several tasks may
be executing different subsystems simultaneously. In a
sense, each of these subsystems can be viewed as a "ker-
nel ' for the tasks having access to them, but PSOS can
support any number of such subsystems. Of course, one still
has the problem of assuring the correctness of these sub-
systems and those parts of PSOS which the subsystems use.
However, assuring the correctness of these subsystems on
PSOS should be significantly easier than assuring the cor-
rectness of a stand-alone kernel, because each subsystem
will be much smaller and simpler than it would be if it had
to be implemented as a stand-alone system.

The UCLA system18 is an interesting case in that its re-
quirements for security are very broad and general. The
UCLA kernel Attempts to be like PSOS in its ability to
support a wide range of security policies simultaneously.
However, the resulting requirement does not permit as wide
a range of policies to be implemented, and the system design
is not as uniform or elegant as the PSOS design.

SUMMARY

The capabilities of PSOS provide a flexible naming and
protection mechanism that can be used to implement arbi-
trarily complex subsystems efficiently fulfilling a wide va-
riety of requirements. The properties of PSOS that make
this possible are summarized as follows.

1. The capability mechanism is extremely simple, with
only two operations involving the creation of capabil-
ities and none permitting the alteration of capabilities.
There is no policy embedded in the mechanism.

2. The operations on capabilities can be completely con-
trolled at the most primitive conceptual level of the
system design and implemented in hardware. Capabil-
ities are tagged and nonforgeable, and the protection
they provide is not bypassable.

3. Capabilities and other PSOS facilities encourage strong
modularity via the creation of data and procedure ab-
stractions. Such abstractions are the basis of the design
of the PSOS system itself and can be used equally well
in application programming.

4. The capability mechanism can be used equally well for
user programs, application subsystems, and system
programs. There are no special protection mechanisms
necessary to protect system programs.

5. The capability mechanism is fully general and can si-
multaneously support subsystems that implement ar-
bitrary policies. Mechanisms for initialization, backup
and recovery, and auditing for both PSOS and its sub-
systems can be constructed without subverting the pro-
tection mechanism.

6. The operations that can be performed on an object of

334 National Computer Conference, 1979

a particular type are precisely those defined by the
type manager for that object. The operations permitted
upon the particular object designated by a given ca-
pability are limited by the access rights of the given
capability.

7. If a user is in possession of only one capability for an
object, and he wishes to confer some or all of the
access rights to another user (or to another program),
he may create and pass a new capability whose access
rights are a subset of those of the original capability.
There is no way in which an additional access right can
be introduced. (Note, however, that type managers
must consistently enforce the monotonicity of access
rights. That is, the presence of the right must be more
powerful than the absence of that right. This is guar-
anteed for system-defined object types, and must be
assured by the type managers for other types.)

8. Propagation of capabilities can be restricted by use of
capability store permissions. The passage of a capabil-
ity to other users can be prevented by not including
process store permission in that capability's access
rights.

Although no single commercially available computer has
the facilities necessary to implement PSOS efficiently, each
of the required facilities does exist on some computer.
Therefore, the proper hardware support for PSOS can be
implemented using established techniques. The formal tech-
niques used to design PSOS make implementation straight-
forward19 and make formal verification of correct operation
possible. All of the advantages summarized here can make
PSOS and subsystems implemented on PSOS far more se-
cure and reliable than contemporary operating systems.

ACKNOWLEDGMENTS

The design of PSOS was accomplished by the close co-
operation of several people. Outstanding among these are
Larry Robinson who is primarily responsible for the devel-
opment of HDM and who played a major role in the early
design of the system, Karl Levitt who designed security
related subsystems, and Bob Boyer who is responsible for
the formal mathematical theory.

REFERENCES

1. Neumann, P. G., R. S. Boyer, R. J. Feiertag. K. N. Levitt and L.
Robinson, "A Provably Secure Operating System: the System, its Ap-
plications, and Proofs," SRI International, Menlo Park. California, Feb-
ruary 1977.

2. Robinson, L., and K. N. Levitt, 'Proof Techniques for Hierarchically
Structured Programs," Communications of the ACM, Vol. 20, No. 4,
April 1977.

3. Robinson. L., K. N. Levitt, P. G. Neumann and A. R. Saxena, "A
Formal Methodology for the Design of Operating System Software," in
Current Trends in Programming Methodology, R. T. Yeh ed.. Vol. 1,
Prentice-Hall, Englewood Cliffs, New Jersey, April 1977.

4. Neumann, P. G., "Computer System Security Evaluation," AFIPS Conf.
Proc, NCC 1978, Anaheim, California, January 1978, pp. 1087-1095.

5. Linden, T. A., "Operating System Structures to Support Security and
Reliable Software." Computing Surveys, Vol. 8, No. 4, December 1976,
pp. 409-445.

6. Feiertag, R. J.. K. N. Levitt and L. Robinson, 'Proving Multilevel
Security of a System Design," Proc. ACM Sixth Symposium on Opera-
ting Systems Principles, November 1977, pp. 57-65.

7. Roubine, O., and L. Robinson, SPECIAL Reference Manual, SRI Inter-
national, Menlo Park, California, January 1977.

8. Lampson, B. W., and H. E. Sturgis, "Reflections on an Operating System
Design," Communications of the ACM, Vol. 19, No. 5, May 1976, pp.
251-266.

9. Lampson, B. W., "Dynamic Protection Structures," Proc. 1969 AFIPS
Fall Joint Computer Conference, Vol. 35, AFIPS Press, Montvale, New
Jersey, 1969, pp. 27-38.

10. Sevcik, K. C, "Project SUE as a Learning Experience," Proc. AFIPS
1972 Fall Joint Computer Conference, Vol. 40, AFIPS Press, Montvale,
New Jersey, 1972, pp. 571-578.

11. Wulf, W. A.,et .al . , "HYDRA: the Kernel of a Multiprocessor Operating
System," Communications of the ACM, Vol. 17, No. 6, June 1974, pp.
337-345.

12. Needham, R., "Protection Systems and Protection Implementations,"
Proc. 1972 AFIPS Fall Joint Computer Conference, Vol. 41 , A F I P S

Press, Montvale, New Jersey, 1972, pp. 571-578.
13. England, D. M., "Capability Concept Mechanism and Structure in Sys-

tem 250," Proc. IRIA International Workshop on Protection in Operating
Systems, Institut de Recherche d'Informatique et de Automatique,
France, 1974, pp. 63-82.

14. McCauley, E. J., and P. Drongowski, "KSOS: Design of a Secure Op-
erating System," NCC '79, New York, New York, June 1979.

15. Berson, T., and J. Barksdale, "KSOS: Development Methodology for a
Secure Operating System," NCC 79, New York, New York, June 1979.

16. Millen, J. K., "Security Kernel Validation in Practice," Communications
of the ACM, Vol. 19, No. 5, May 1976, pp. 243-250.

17. Schiller, W. L., "The Design and Specification of a Security Kernel for
the PDP-l 1/45," ESD-TR-75-69, The MITRE Corporation, Bedford, Mas-
sachusetts, March 1975.

18. Popek, G. J., and D. A. Farber, "A Model for Verification of Data
Security in Operating Systems," Communications of the ACM, Vol. 21,
No. 9, September 1978, pp. 737-749.

19. DeLashmutt, L. F., Jr., "Steps Toward a Provably Secure Operating
System," Spring '79 COMPCOM, Digest of Papers, February-March
1979, pp. 40-43.

PENDIX H

Computer system security evaluation

by PETER G. NEUMANN
SRI International
Menlo Park, California

INTRODUCTION

This paper considers the problem of attaining computer sys-
tems and applications programs that are both highly secure
and highly reliable. It contrasts two current alternative ap-
proaches, one remedial, the other preventive. A remedial
approach is outlined based on a classification of software
security violations suggested by Bisbey, Carlstedt, and Hol-
lingworth at ISI. This remedial analysis is then related to a
preventive approach, illustrated here by the formal SRI Hi-
erarchical Development Methodology. Evaluation of system
security is then considered by combining concepts from the
preventive and remedial approaches. This combination of
techniques seems to have significant potential in the attain-
ment and evaluation of computer system security. Illustra-
tions are given for three types of systems, the first two being
systems explicitly designed with security in mind, and the
first of those being designed according to a formal method-
ology. The first system is the SRI design for a Provably
Secure Operating System (PSOS), the second is Multics,
and the third is UNIX. (The reader familiar with security
may wish to skim the next two sections.)

BACKGROUND

Computer systems and applications are increasingly being
called on to provide reliable security, although most existing
commercial computer systems are incapable of supporting
various security-critical applications. Until recently, the task
of obtaining highly secure systems has typically been con-
sidered to be very difficult, and avoided on the grounds that
good solutions would be very expensive. There has been
little deep understanding of either how to develop secure
systems and applications, or how to assess security; how-
ever, there have been efforts to detect insecurity. The in-
teractions between security on the one hand and reliability
and survivability on the other have also been largely ignored,
as have the interactions with dynamic auditing of security.
The term "system defensiveness" is used here to imply
security, reliability, survivability, and the auditability of any
events that might compromise these aspects of computer
behavior.

Recently, the situation has been improving (e.g., see the
survey in Shankar1). Two approaches to attaining better
security are considered here, one basically remedial, the

other basically preventive. The first approach involves as-
sessing the security of computer systems (particularly ex-
isting ones) and attempting to patch around any security
flaws thereby uncovered. A variety of techniques have been
used to detect flaws that reduce security. These include
searching code for certain patterns of program statements
corresponding to classes of would-be security flaws (e.g.,
Bisbey2), as well as more traditional experimental penetra-
tion attempts (e.g., McPhee3). The second approach in-
volves designing new systems that are intrinsically secure
and whose security can in some way be convincingly estab-
lished. This approach might rely on a suitable design meth-
odology (e.g., Robinson et al.4), combining formal specifi-
cations (e.g., Parnas,5 Robinson et al.4), suitable design
structures, the use of suitable programming languages (e.g.,
see Lohr6), and supporting tools. Examples of such ap-
proaches that also support formal verification are found in
Robinson et al.4 and Good.7

With respect to the remedial approach, experience in at-
tempting to penetrate allegedly secure systems leads to sev-
eral observations. First, penetrators do not generally have
to work very hard to find major security flaws in traditionally
developed systems. Second, patches that attempt to remove
such flaws are themselves often flawed. Third, this approach,
is intrinsically limited because attempts to characterize the
still undetected security flaws are speculative, at best. In
general, attempting to retrofit security into a basically in-
secure system is of limited effectiveness, and inevitably
leaves much in doubt.

In the long run, use of the preventive approach is likely
to be significantly more productive. This approach should
proceed with security as a fundamental design goal from the
outset. It may include explicit statements of requirements
and formal specifications of the design. It should make use
of a modern programming language, and might employ for-
mal proofs of significant properties regarding system behav-
ior, such as security (e.g., see Neumann et al.8). On the
basis of recent research, it is now possible to assess the
security of a precisely specified design, prior to implemen-
tation, and then subsequently to assess the security provided
by the implementation.

The conclusions of Glaseman et al.9 are extremely pessi-
mistic, at least for the near future, with respect to obtaining
quantitative assessments of the cost (risk) associated with
various security violations. Similar conclusions are drawn

1087

APPENDIX H

1088 National Computer Conference, 1978

in the present writing, with regard to attaining meaningful
measures of security in conventionally designed systems.
However, there are some hopes for attaining secure sys-
tems. First, it is helpful to assess insecurity—although it is
not very reassuring to know just that another security flaw
has been found. Second, it is possible to consider relative
measures of insecurity for different classes of would-be vi-
olators such as skilled system programmers, data processing
supervisors, system operators, skilled users, and casual
users. Some security flaws may provide threats only from
users in certain of these classes. Knowledge of the would-
be violators and the degree to which they are trusted is thus
fundamental to any evaluation of risk. Third, there is some
short-term hope in a combination of the remedial and pre-
ventive approaches in redesigning an existing system so that
its security-relevant portions can be isolated into a small
and cleanly defined collection of system programs (a "se-
curity kernel" plus a few trusted processes, jointly respon-
sible for the security of the system). However, the effec-
tiveness of this combination can be reduced by restrictions
imposed on the required redesign, such as the need to main-
tain compatibility with the original (insecure) system inter-
face. It also may confuse policy (e.g., security strategies)
with mechanism (e.g., the protection mechanisms upon
which the policy is implemented), potentially embedding
high-level policy issues inflexibly into low-level mecha-
nisms. In any case, it is felt that the preventive approach
must be involved whenever new systems are to provide
substantially more security than existing systems. In partic-
ular, the use of a formal development methodology for de-
sign and implementation can provide a powerful basis for
intrinsic and quantitatively assessable security.

SYSTEM DEFENSES

Defensiveness is considered here as a generalized notion
of security, and implies the nonexistence of inappropriate
behavior—insofar as possible. For present purposes, defen-
siveness consists of related and partially overlapping com-
ponents, namely security, reliability, availability (including
recoverability), and auditability.

(1) Security as used here involves the protection of the
system, its applications, and the shared resources
from misuse. The context considered is purposely a
broad one. It includes the notions of preventing un-
authorized acquisition and unauthorized modification
of information, that is, assuring "confidentiality" and
"integrity," respectively. It is intended to cover both
system security and user data security. [In usage by
MITRE, viz., Biba10 "(data) integrity" is a precise
formal dual of multilevel "(data) security" (i.e., con-
fidentiality), the former referring to the writing of data,
the latter to the reading of data.] In usage here, se-
curity also includes the prevention of denial of service
(maintaining the integrity of resources) and the pre-
vention (where possible, or otherwise the limitation)
of information leakage through clandestine channels

(such as signalling through shared resources or
through shared timing channels). (See Lampson,11

Lipner,12 Neumann et al.8) In certain applications the
notion of security may refer to or include multilevel
(e.g., military) security with levels such as TOP SE-
CRET, SECRET, etc. (See Bell and LaPadula,13

Feiertag et al.14)
(2) Reliability, Availability, and Recovery involve (re-

spectively) the correctness of system security (includ-
ing data integrity) and other system functions; the
maintenance of a secure running system; and the res-
toration of a secure running system following any
error, accident, willful damage, or disaster that caused
a loss of service or security.

(3) Auditability involves the monitoring of the continued
existence of system security and reliability, including
the detection of anomalous or potentially threatening
behavior.

Continuous maintenance of security depends on appropriate
system hardware and software, including concepts of fault-
tolerant architecture and reliable software. It also depends
on an appropriate operational environment. It requires
global planning and management. The implications of an
unreliable system on security are particularly insidious, and
thus must be considered along with the more typical consid-
erations of security.

It is a difficult task to assure dynamically the continuous
absence of all would-be security violations, e.g., to audit
misuse of an intrinsically insecure system. It seems much
more fruitful to work on the design of better systems, and
then to develop auditing procedures as an integral part of
the design. (For example, auditing should obey security
policies wherever possible.) However, once a breach of
system defenses is discovered, it should be fixed as rapidly
as possible. In the sense that the effects of a security vio-
lation may already have leaked out, it may not be possible
to provide dynamic recovery in the strict sense. Thus au-
diting is important to help limit the propagation. Good design
should anticipate the needs of both auditing and recovery,
with auditing that strongly limits the propagation effects of
detected violations and that simplifies recovery therefrom.

Given an existing system not designed to be secure, the
elimination of potential threats becomes more and more
difficult after the first few threats are removed. The process
is time-consuming, frustrating, unpredictable, and ultimately
limited by the knowledge that although fewer threats are
being discovered, many more may still remain undiscovered.
It is particularly perverse that the changes necessary to
remove discovered threats may themselves lead to new vi-
olations, particularly in conventional systems.

Given an arbitrary system, it would be useful to have
some assessment of the penetrability of the system. How-
ever, even the most innocent-looking flaw may in fact be a
hole in the dike that leads to total inundation. In general,
the risks from system violations can best be avoided by a
combination of good design, good implementation, good op-
erations, and good management, all done with defensiveness
in mind. A combination of testing and penetration studies,

APPENDIX H
Computer System Security Evaluation 1089

and possibly some formal verification is recommended,
commensurate with the desired system requirements, the
expected difficulty of penetration, and the cost of having
violations. Formal verification for the most security-critical
portions of the design and its implementation is expected to
be cost-effective in the near future. Recent techniques for
verifying design properties, independent of any implemen-
tations, are particularly promising.

The remainder of this paper is organized as follows. First,
a categorization of various typical system violations is given,
based on the work of Bisbey, Carlstedt, and Hollingworth
at ISI. This provides the framework for a remedial analysis
of any particular system. A collection of preventive criteria
is then given whose presence in the design, implementation,
evolution, and operation of new computer systems may re-
sult in systems that are far more defensive than the conven-
tional systems available today.

It is felt that these categories of violations and criteria for
defensiveness should be very useful for evaluating the de-
velopment of new systems and applications, as well as ex-
isting ones. They are used here first for a consideration of
the design of PSOS (a Provably Secure Operating System),
intended to be demonstrably secure. Multics and UNIX are
then considered as two (extreme) examples of existing sys-
tems. It is seen that a system developed according to the
preventive criteria intrinsically avoids many of the flaws
indicated by the remedial approach.

VIOLATIONS OF SYSTEM DEFENSES

Nielsen et al.15 have analyzed over 300 cases of computer
misuse (from the files of Donn Parker) and have identified
seven types of violations to system defenses, including cases
of disaster, accidents, hoaxes, threats and extortions. (De-
fensiveness is therein called ''integrity.") However, system
violations are involved in the preponderance of cases (e.g.,
undesired acquisition, modification, insertion, or destruction
of data, along with various other forms of system penetra-
tion). Some of the cases involve undesired denial of service.
The sophistication of leakage through clandestine channels
was apparently unnecessary, given the ease of penetration
by simpler means. Nevertheless, in deference to Murphy's
Law ("If it can happen, it will"), all plausible violations
should be anticipated, and covered by various safeguards
whenever the threats are deemed significant.

Classes of system penetrations

Bisbey, Carlstedt, and Hollingworth at the USC Infor-
mation Sciences Institute (ISI) have studied techniques for
identifying potentially vulnerable sections of code, including
some techniques that could be carried out automatically. In
so doing, they identified 10 categories of system flaws, each
capable of producing security violations.2 These categories
have evolved over the last few years, with each violation
observed at ISI fitting into at least one of these categories.
However, there is no pretense that these categories are

either canonical or complete. (Although they were con-
ceived primarily to be applicable to software, most of them
are in fact also applicable to hardware.)

Two of the 10 ISI categories are closely related and have
been lumped together here. For present purposes, the re-
sulting nine topical categories are grouped into four generic
groups of flaws. Each has both design and implementation
aspects.

(A) improper protection (initialization and enforcement);
(B) improper validation;
(C) improper synchronization;
(D) improper choice of operation or operand.

The nine topical categories can be associated with these
groups as follows.

PROTECTION (initialization and enforcement):
(1) improper choice of initial protection domain;
(2) improper isolation of implementation detail;
(3) improper change (e.g., a value or condition changing

between its time of validation and its time of use);
(4) improper naming;
(5) improper (incomplete) deallocation or deletion;
VALIDATION:
(6) improper validation;
SEQUENCING:
(7) improper indivisibility;
(8) improper sequencing;
OPERATION CHOICE:
(9) improper operation or operand selection.

These categories are illustrated in Table I. They cover many
different security violations, including undesired reading,
writing, and deleting, undesired denial of service, and to
some extent undesired leakage through clandestine infor-
mation channels. For example, visibility of implementation
detail (category 2) often leads to potential leakage channels.
However, leakage channels also exist in systems that are
otherwise secure, because of the natural visibility of elapsed
time.

It is not claimed that the four generic categories are or-
thogonal. Nevertheless, they provide very useful typical
cases. Within the first generic category ("improper protec-
tion"), the five topical categories exhibit considerable
overlap. (Category 1 deals with initialization, while categories
2-5 provide paradigms of improper enforcement.) In fact,
there exists a sequence of flaws that exhibits an ordering of
(1)4>(2)=>(3)=>(4)=X5), as follows. An incorrect choice of
protection partition (1) can result in the inability to isolate
the implementation of an abstraction from the use of that
abstraction (2). Such inability can result in a value presented
at the time of call (and expected subsequently to remain
constant) being changed during execution (3). Such a flaw
can result in a naming problem (4), in which two different
paths to the (apparently) same data can give different results.
Finally, a naming problem may create a residue problem (5),
e.g., if a local symbolic name is not unbound when the
object is deleted with reference to its global name—or vice
versa. (Since each category may reappear at different levels

APPENDIX H

1090 National Computer Conference, 1978

TABLE I.—Categories of Protection Flaws (and examples) (Based on
Bisbey, Carlstedt, Hollingworth at ISI)

1. Incorrect choice of protection domain or security partition
(a security-critical function manipulating critical data directly accessible
to the user; incorrect initial assignment of security or integrity level at
system generation, configuration, or initialization)

2. Exposed representations or implementation detail
(bypassing an abstraction, e.g., direct manipulation of a hidden data struc-
ture such as unmediated user modification of a directory entry, user use
of an absolute I-O address; note that the visibility of timing information
provides a generic leakage channel, e.g., drawing inferences from page
fault activity)

3. Inconsistency of data over time
(noninvariance of parameters, e.g., change in value of a parameter in a
call by reference; change in a file accessible to different processes, e.g.,
in an improperly protected, shared process directory)

4. Naming problems
(aliasing, e.g., two distinct names for the same object not being treated
identically; ambiguity resulting from use of the same local name for two
distinct objects [which may also involve a residue problem, e.g., if name
persists in some system table])

5. Residues in allocation and deallocation
(incomplete deletion, revocation, or deallocation, e.g., such that an ap-
parently deleted value is still accessible—in core, disk, archive store, etc.;
incomplete cleanup on abort; ignoring terminal hangup).

6. Nonvalidation of critical conditions and operands
(invalid or unconstrained parameters such as an out-of-bounds virtual
address or absolute I-O address; lack of strong type checking, e.g., a
pointer to a structure of the wrong type; absence of quota limit stops such
as bounds on queue sizes or number of processes, with overflows resulting
in possible system or user crashes)

7. Indivisibility problems (in multiprogramming)
(interrupted atomic operations, e.g., incomplete interrupt handling [quit
during login resulting in partial success, or in perpetual lockup of inter-
locked data]; faulty read-alter-rewrite in hardware)

8. Serialization problems (in multiprogramming, multiprocessing)
(incorrect sequencing [e.g., wrong order], improper isolation of atomic
operations from one another [e.g., reading during writing, or concurrency
among different directory commands on the same directory]; critical race
conditions in implementation; deadlocks and deadly embraces)

9. Incorrect choice of operation or operand
(use of the wrong function, producing incorrect results; use of an unfair
scheduling algorithm, producing correct results for each scheduled proc-
ess, but denying service completely to certain users)

in a hierarchical design, other such orderings may also
exist.) Thus the most primitive descriptor of these protection
flaws is something like "improper domain selection and
enforcement."

There is some overlap between the two topical categories
of sequencing flaws. The indivisibility and serialization cat-
egories, (7) and (8), respectively, are related when consid-
ered at different levels of abstraction, since (logically)
atomic operations appearing at one level may in fact be
implemented out of (logically) atomic operations at a lower
level, with appropriate interlocks. That is, a serialization
problem at one level may apparently manifest itself as an
indivisibility problem at the next higher level.

Validation problems usually involve the omission of a
check on argument validity or on quota limits. The incon-
sistency of data over time (category 3 above) might con-
ceivably be viewed as a validation problem. (This is the
time-of-check-to-time-of-use flaw, or "TOCTTOU," con-
sidered by McPhee, Weissman, and others.) However, this
view is somewhat like locking the barn door after the horse
has escaped: the primitive flaw is not a lack of validation,

but rather the lack of either protection or interlocks that
permitted the value to change in the first place.

Categories 3, 5, and 6 above have been the subject of
experimental study at ISI, including the development of
computer tools that search given programs for specific types
of violations—notably interprocedure data dependencies,
potential inconsistencies of data values over time, and po-
tential residues. (See Bisbey et a!.,16'17 Carlstedt et al.,18

Carlstedt,19 and Hollingworth and Bisbey.20) However, the
analysis of most categories is not generally amenable to
systematic investigation.

It is useful here to identify some of the symptoms that
may underly flaws of each particular category. Such an
identification is attempted in Table II, in which are listed
various conditions that can (but not always do) cause flaws
in security.

DEFENSIVE SYSTEMS

In general, good design of the hardware and software and
good implementation are highly important. In existing sys-

TABLE II.—Symptoms of Potential Protection Flaws, by Category

1. Domain choice. All programs or human actions relating to the initialization
or interpretation of protection information are suspect, e.g., any setting or
changing of a security level, particularly any action that lessens security
(e.g., downgrading).

2. Exposed representations. Any direct visibility or use of implementation
detail is suspect. Any use of absolute addresses for memory or input-
output. Nonvirtual resources. Direct access to a data structure that is
normally used as an abstract data object. Serial dependence within logi-
cally combinational functions.

3. Data inconsistency. A called procedure fetches the value of a parameter
more than once, or fetches a value it just stored. A parameter is passed
by name or by reference. (The value may change between call and
return.) An output value is overlaid on top of an input value. Reference
is made to a value that is self-modifying upon being accessed. (See Bisbey
et al.,16 Carlstedt et al.18)

4. Naming. Any object for which two different names can exist is suspect.
Use of a local name in one context, a global name in another, e.g., a
virtual and a nonvirtual name. Any use of a table index where protection
is expected.

5. Residues. Physical deletion of contents is suspect whenever deferred be-
yond logical deletion, e.g., deferred until reuse of media space. Readable
free pools. Accessible backup storage. Reuse of an index or slot number
after deletion of entry. (See Hollingworth and Bisbey,20 which enables
isolation of all allocations and deallocations, and searches for potential
residues.)

6. Nonvalidation. The absence of any checks on protection information upon
access to sharabie data is usually indicative of a flaw. The absence of any
checks on an input variable or parameter, on its type or value range, or
even on the existence of data is suspect. Lack of quotas on real resources
or on different virtual partitions of resource usage can provide a leakage
channel across partitions. Validation of status at the time of a request for
which status may change, without revalidation on completion. (See Carl-
stedt,19 Bisbey et al.17.)

7. Indivisibility. Any allegedly noninterruptible or indivisible operation is
suspect, as is the mechanism for achieving indivisibility.

S. Serialization. Any overlapping of operations using the same data is sus-
pect, either with different uses of the same operation, or simultaneous
uses of different operations on the same data base.

9. Choice of operation or operand. This category is very hard to formalize.
Potentially any operation can be improperly chosen. Operations and data
types that do not correspond are suspect, as is the use of mismatched type
declarations.

APPENDIX H
Computer System Security Evaluation 1091

terns, it is usually bad design and bad implementation that
lead to violations of system defenses. Thus, good design and
good implementation should themselves be considered as
(meta-)safeguards relating to software. The a priori use of
good design practices and good implementation practices is
in general enormously more effective than the a posteriori
retrofitting of patches that attempt to strengthen the defen-
ses.

Factors influencing development of defensive systems

The factors summarized in Table III are relevant to im-
proving the defensiveness of a design and its implementa-
tion. Many of these factors have profound effects throughout
the development process, involving requirements specifi-
cations, design, implementation, system maintenance, long-
term evolution, and operation.

Use of a formal development methodology for secure
system development

As an indication of how systems can fare with respect to
the presence or absence of potential security flaws, a system
is considered here that has been conceived under rather
unusual—and hopefully optimal—conditions. This system is
PSOS, a Provably Secure Operating System.8 PSOS has
been designed from the outset to be able to support ad-
vanced security requirements beyond those of existing sys-
tems, and has taken advantage of essentially all of the above
factors influencing good design and implementation. In par-
ticular, it has been designed according to formally stated
requirements, has been formally specified, and has been
subjected to formal proofs of its critical design properties.
It is designed according to the SRI Hierarchical Design
Methodology (HDM), described in Robinson et al.,4 Neu-
mann et al.,8 and Robinson and Levitt.21 The design is rep-
resented in a formal language, SPECIAL (A SPECIfication
and Assertion Language, Roubine and Robinson.22). The
system has not yet been implemented, but the nature of
would-be implementations has been characterized. The de-
sign has been oriented toward provability of the design and
of subsequent implementations. (HDM is also being used in
the design and implementation of the SIFT computer system
for an ultrareliable commercial aircraft application [for
which proofs of elementary fault-tolerance properties have
5een undertaken], the design of a real-time operating sys-
em, the design of a family of related message processing
iystems, and the development of provable security kernels.)

PSOS is a capability-based system in which each capabil-
ty acts as a protected name or token for an object. A
:apability for an object is protected, in that its creation and
ts transfer to other users or processes can be controlled,
md once created, it can never be altered. It protects the
)bject to which it refers, in that its presentation is required
or that object to be accessed, including access rights ap-
>ropriate to the operation being performed. (Certain PSOS
ipplications take advantage of store-limited capabilities,
vhich cannot be transferred out of the containing process.)

TABLE 111.—Factors Influencing Defensiveness in Systems and
Applications

Well-defined and well-understood requirements, established clearly and
agreed upon in advance

Good design (e.g., modularly structured, especially hierarchically, with strict
isolation of application programs and system programs, strongly typed
operations, unified treatment of storage, input-output [e.g., mapped virtual
access])

Suitable implementation languages (e.g., strong typing, avoidance of aliasing,
constrained argument passing [such as use of call by value where data
inconsistency may be a problem], hiding of implementation detail and
device dependence wherever possible, clean control structures, encapsu-
lation of data types)

Well-defined and understandable specifications for the system hardware and
software

Structured implementation, reflecting the modularity of the design wherever
appropriate, and structured initialization (e.g., hierarchical)

Systematic handling of exception conditions and quota limits
Auditing and recovery integrated into system design, e.g., hierarchical
Careful debugging, testing, verification
Good management of system development (e.g., respecting these factors)
Lessening the need for management as a result of simplifications resulting

from use of these factors
Good management of system operation (e.g., rigid adherence to system gen-

eration and evolution protocols)
Nonreliance on secrecy of design and implementation
Awareness of the user community (e.g., enforcing the use of random pro-

nounceable passwords rather than guessable ones)

If formal verification of the design or its implementation is
desired, then the following also contribute, both separately
and collectively:

Formally stated requirements
Formally specified design, including specifications of modules and their in-

terrelationships (e.g., data representations)
Formal proofs of correspondence between design specifications and require-

ments
Formal axiomatization of the programming language
Formal proofs of consistency of programs with design specifications
Formal axiomatization of the hardware/microcode
Formal proofs of consistency of hardware/microcode with hardware specifi-

cations

An entity analogous to a capability exists in SPECIAL,
called a designator. A designator serves as a protected name
of an object. Its uniqueness in SPECIAL is part of the
specification language. In the implementation of PSOS, this
uniqueness can be easily guaranteed by the use of capabil-
ities. (Other solutions exist in other systems, such as de-
scriptors.)

Table IV gives an indication of how the use of the meth-
odology together with the use of a suitable programming
language can overcome each of the nine categories of flaws
summarized in Table II. It is seen that the use of SPECIAL
has a very significant impact on the avoidance of these flaws
in design. Most of the comments on the design specification
in the table are generally applicable to any system specified
in SPECIAL. Similarly, the use of the hierarchical design
methodology has significant impact on the avoidance of
these flaws in implementation.

The use of a suitable modern programming language can
also contribute considerably. A language such as Euclid,23

' Modula,24 Texas' Gypsy,7 or SRI's HDM-compatible ILPL

APPENDIX H

1092 National Computer Conference, 1978

TABLE IV.—The Influence of the SRI Methodology and Programming Languages (PL) on Avoiding Characteristic Flaws, both in General and in PSOS (P:)

Category of Flaw Design (in SPECIAL) Implementation

1. Domain choice

2. Exposed representations

3. Data inconsistency

4. Naming

5. Residues

6. Argument and critical condition
nonvalidation

7. Indivisibility

8. Serialization
9. Operation choice

Design proofs.
Hidden by hierarchical levels of abstraction.
P: Extended types further aid hiding.
None. No overwrite. Conceptual call by value only.

Unique designators, nonbypassable, only means of nam-
ing.
P: Capabilities unique.
None in specifications. Deallocated values become UN-
DEFINED, are thereafter unnamable.
P: Residues protected.
Avoidable.
Strong type checking, explicit subtypes, explicit exception
and error conditions.
Specifications for each function are logically indivisible.

Sequencing invisible in specifications.
Faulty specifications detected by spec proofs. Type
checking also helps.

Program proofs.
PL encapsulation; proofs.
P: Extended type mechanism.
PL call by value; proofs.
P: Argument values on stack unalterable.
PL no aliasing; proofs.
P: Uniqueness and nonbypassability of capabilities aided
by tagging. ^ ^
PL dynamic object deletion and creation; proofs.
P: nonreusable identifiers; contents zeroed if desirable on
deallocation.
PL strong typing; compile or run-time checking.
P: Extended types; I-O addresses mapped (via capabili-
ties).
PL synch primitives; proofs. Completion or no-effect ex-
ception provable.
Benignness of overlap provable.
Program proofs.

Many of the characteristic flaws can be avoided in design by the use of a methodology such as the SRI methodology, and in implementation by the use of a
suitable programming language.
Note: "PL" refers to language features found in such languages as Euclid, ILPL, and the emerging DoD/1 languages. *'P:" refers to PSOS. (See text.)

(due to Larry Robinson, and documented in Neumann et
al.8) would be particularly helpful, as might the languages
emerging from the DoD/1 effort. (ILPL is an extremely basic
intermediate-level programming language that gains its sim-
plicity from the power of the supporting methodology,
whose formal specifications provide [for example] its data
structures as a by-product of the hierarchical levels of ab-
straction.) Some of the major contributions that such lan-
guages can make are indicated generically by the "PL"
entries in Table IV. In most cases these contributions result
from intrinsic properties of the language. In other cases they
may result from simply enforceable language restrictions.
Note that not all of the above languages have all of the
desired facilities. (At present, Euclid and ILPL [the latter
taken together with HDM] are probably the most complete
in this respect. Modula and Gypsy are currently being ex-
tended, and support for Gypsy and ILPL is currently being
developed.)

Finally, for many of these flaws, relatively simple proofs
are possible to demonstrate that the particular flaw is absent
in various explicit forms. The design aspects result from
properties of the specifications, e.g., they follow from proofs
of consistency between the specifications and formal re-
quirements, or are intrinsic to the methodology and the
specification language. The implementation aspects result
from proofs of program correctness, or are intrinsic to the
use of the programming language. With this methodology,
it is sufficient to show consistency between the programs
and their specifications.21 However, many proofs are pos-
sible without having to prove program correctness in gen-
eral. Nevertheless, program proofs are becoming feasible as
tools to support them continue to be developed.

The comments in Table IV are generically applicable to
systems designed and implemented according to the meth-
odology. In addition, those prefixed with a k4P:" are parti-

cularized to the design and the would-be implementation of
PSOS (e.g., in one of the above-mentioned languages). It is
seen that a system designed according to a formal method-
ology like HDM is likely to avoid the characteristic flaws
without much additional effort. In particular, PSOS has none
of these flaws intrinsic to its design, and it is believed that
an implementation essentially free of these flaws can be
developed—and if desired, proved.

Above and beyond merely avoiding the nine characteristic
problems, the use of HDM has a significant impact on the
integrity of PSOS in other ways. These include the explicit
statement of formal requirements for security, formal spec-
ifications for the design and its hierarchical structure, a
unified design, a systematic approach to the handling of
exception conditions and quota limits, and a structured im-
plementation capable of taking advantage of the hierarchical
design without losing much in efficiency. These factors con-
tribute to the suitability of the design and implementation,
and to the possibility of carrying out formal proofs, if de-
sired. This additional impact is summarized in Table V.

Application of this evaluative approach to other systems

The evaluation of PSOS with respect to security flaws is
clearly favorable. Thij is not surprising, in that PSOS was
designed with security in mind from the outset, using the
formal SRI methodology (which itself evolved simultane-
ously as a result of its application to PSOS). However, it is
instructive to consider two other types of systems: the first
MAich designed with security in mind, but without a formal
methodology; the second designed with security only su-
perficially in mind for its implementation. The examples
taken are Multics and UNIX. (Conventional commercial
operating systems are ignored here, as they are for the most

Computer System Security Evaluation 1093

TABLE V.—Additional Influences of the SRI Methodology on the Integrity
of PSOS

Formal requirements of security: basic principles concerning acquisition and
modification of information, and a formal model for multilevel (military)
security. These provide simple intuitively understandable design objec-
tives.

Formal specifications of the design. These provide precise specifications for
the system. Their consistency with the formal requirements can be formally
proved. They provide the basis for implementation, as well as the basis for
proofs of consistency of the implementation and the design. Proven spec-
ifications also provide a strong basis for compatible alternate implementa-
tions on the same or different hardware.

Hierarchical structure of the design. This encourages separation of policy
and mechanism, and simplifies the initial implementation significantly. Re-
covery is done hierarchically, as is initialization. Recovery is therefore
predictable and controllable. This increases the persistence of security
during failure (partial or total).

Unified design. Auditing functions conform to the security requirements.
Recovery functions are also integrated into the design and use standard
functions. Hardware design is also integrated with software design. This
increases the ability of the hardware to provide an appropriate basis for
the software. [Use of a pronounceable password generator might be en-
forced to avoid guessable passwords.]

Systematic handling of exception conditions and quota limits. This increases
the predictability of system behavior, and permits proofs of completion.
Most information channels resulting from missing exception conditions in
specifications can be detected and eliminated.

Implementation. To simplify the maintenance of security during system ev-
olution, a highly compartmentalized implementation is very helpful. The
hierarchical structure of the design can be retained in implementation wher-
ever it is efficient to do so, and can otherwise be simplified without com-
promising the security of the system. The choice of implementation lan-
guage would be constrained to support data abstraction, strong typing,
exception conditions, etc. See Table IV.

Verifiability. Having followed the design methodology of using formal spec-
ifications for the user-visible functions, it is relatively simple to prove
properties of the PSOS design or of an application environment, e.g.,
supporting multilevel security. Similarly, with the hierarchical design and
formal specs for internal functions, program proving seems feasible, assum-
ing an appropriate choice of programming language. The language features
noted above all tend to improve verifiability.

part intrinsically insecure.) In essence, Multics is a large-
scale general-purpose system with security superior to other
commercial systems, with some emphasis on its being able
to recover from outage, and some emphasis on audit. UNIX,
on the other hand, makes little pretense of being secure,
except for its attempts to provide access control and its
encryption of the password file. It is fundamentally insecure.

Multics,25 like PSOS, is a system that was innovatively
designed (albeit in 1965) to take advantage of what was then
known about advanced design and implementation tech-
niques. UNIX26 is a system that was developed at Bell Labs
to take advantage of then recent operating system experi-
ence (e.g., Multics), on a much smaller scale—with judicious
choice of simplifications intended to give high efficiency.
However, UNIX was designed to be a system operating in
a cooperative user environment, and was not conceived as
a system providing any rugged sense of security. Neverthe-
less, it is a widely used and highly useful system. The dis-
cussion here is not intended in any way as a condemnation
of UNIX as an insecure system, but rather as a simple
illustration of how insecure a system can be in the absence
of a pervasive concern for security from the outset.

Table VI presents a summary of how Multics and UNIX
fare with respect to the nine characteristic problems. It is
clear from the table that Multics is relatively secure. It is
equally clear that UNIX is not. Table VII presents a com-
parison in terms of the methodological concepts of Table V.

After considerable improvement upon the implementation
of a basically sound design, Multics has reached a level of
significant security, and has become difficult to penetrate.
Although it was subjected to various penetration efforts on
its earlier hardware, and was indeed penetrated, the current
hardware and software have long since removed the flaws
permitting those penetrations.

UNIX has thus far apparently been used only in benign

TABLE VI.—Evaluation of Multics and UNIX with Respect to Characteristic Flaws

Category of Flaw Multics UNIX

1. Domain choice

2. Exposed representation

3. Data inconsistency

4. Naming

5. Residues

6. Nonvalidation

7. Indivisibility

8. Serialization

9. Op choice

Good. System, users in multiple rings. Ring 0 capture
omnipotent, but unlikely. Outward migration of less crit-
ical functions. Provable layered security kernel designed
by Honeywell, but not implemented.
Access within a ring all or nothing. Considerable hiding
via ring mechanism.

Argument pointer is copied onto stack by call. Arguments
are copied within the system code to avoid this flaw in-
ternally.
Collisions of local names: Trojan horse!

Core zeroed only before reallocation, but is not virtually
addressable after deallocation. Disk never zeroed, just
overwritten. Residues after crash.
Hardware checking at ring and segment levels. All kernel
args validated. Compile-time data-type checking.
Locking makes kernel ops atomic. Exception handlers
force no-effect noncompletion.
Locks prevent overlap. Lock hierarchy used to avoid
deadlocks.
Possible problems?

Poor. Nonstratified. Capture of the entire system easy
through superuser infiltration. Security kernel implemen-
tations exist (UCLA, MITRE), improving on original de-
composition.
Superuser easy to capture, defaults open. Trojan horses
galore. Process temporaries readable and writable, main
memory readable.
Argument itself is copied, but only by convention. Proc-
ess-temporary files are alterable in midcomputation by
user or other users.
Default on directory entries: unprotected. Memory aliases
(k7dev/mem"). Trojan horses abound.
Core zeroed only before reallocation, and is until then still
readable. Disk never zeroed, just overwritten. Residues
after crash.
Very few checks on resource or I-O bounds, interuser
ops. Easy to crash.
Exception handling bad.

OK? System functions logically synchronous (until I PC
installed).
Possible problems?

APPENDIX H

1094 National Computer Conference, 1978

TABLE VII.—Evaluation of Multics and UNIX with Respect to
Methodological Considerations

Influence Multics UNIX

Requirements
Specifications
Design structure
Design
Exceptions,quotas
Implementation
Programming

language
Verifiability

Informal
Implementation laden
Implicit hierarchy
Fairly unified
Fairly systematic
Segmentation useful
PL/1 somewhat more

helpful than C
Difficult because of size,

PU1, no specs

Informal
Implementation laden
Procedural structure
Fairly clean
Poor
Device independence OK
C poor on abstraction,

strong typing
Pointless because of

insecurity, C, no specs

environments, and is at present simple to penetrate. It ap-
pears that major renovation would be required to substan-
tially improve its security (although a planned new release
of UNIX is expected to eliminate a few of the problems).

From the methodological considerations of Table VII,
Multics again appears to be better off than UNIX. However,
from this vantage point, UNIX does not seem to be irrepar-
ably insecure. For example, a reimplementation with the
imposition of constraints on C (or modifications to the lan-
guage) and better handling of exceptions would be benefi-
cial.

It is interesting to note that each of these three systems
has been considered as a basis for supporting multilevel
security. The PSOS design is augmented with a multilevel
security policy manager that can be efficiently implemented
on top of PSOS (or within it, if that is to be the only policy).14

Multics and UNIX both have experimental redesigns ret-
rofitting a kernel responsible for system security into the
existing design. MIT, Honeywell, and the Air Force have
undertaken the restructuring of the existing Multics system
to improve (among other things) its security. As a compo-
nent of that work, Honeywell has designed a Multics secu-
rity kernel, for which formal requirements and formal spec-
ifications exist (using the SRI methodology). However, the
funding for that project (Guardian) has expired before the
kernel could be implemented. UCLA27 and MITRE have
independently designed and implemented prototype se-
curity kernels to be retrofitted into UNIX. These prototypes
have provided the impetus for a competitive design effort
between two groups (FORD-Aerospace and SRI as one
group, TRW as the other), expected to result in a demonstra-
bly secure kernel upon which is built a secure version of
UNIX.

CONCLUSIONS

This document attempts to take a broad view of the devel-
opment of secure systems, combining a remedial approach
with a preventive approach. In particular, it characterizes
various common flaws that can lead to security violations.
It then uses this characterization to evaluate a constructive
methodological approach to computer system development,
and shows how such a methodology can intrinsically tend
to avoid the characteristic flaws. This combination is

thought to be useful for analyzing existing systems and for
developing new systems.

Given a computer system whose design did not originally
have security as a major goal, and which consequently may
be flawed, it is in general extremely difficult to converge on
a secure system by successively patching flaws as they are
recognized. Nevertheless, the search for such flaws is de-
sirable. In general, given a system that has evolved after
extensive penetrate-and-patch efforts, or given a computer
system that has been expressly designed to be secure, it is
still a difficult matter to assess how secure the system really
is. The evaluative approach presented here is felt to be
useful. However, compatibly with this approach, recent ad-
vances in formal proof seem increasingly applicable. Such
advances indicate the feasibility of proofs of the security of
a design, given a suitable formal representation of the design
and formal statements of security requirements. These proofs
may be carried out prior to and independent of any particular
implementation of that design. In addition, proofs of selected
critical properties are feasible. Furthermore, the technology
for handling proofs of consistency between design specifi-
cations and programs implementing those specifications is
progressing well. Various semiautomatic computer tools for
carrying out such proofs now exist and are being integrated.
However, the approach outlined here is aimed at improving
the resulting system dramatically, even if no program proofs
are ever carried through.

A goal that emerges here is to be able to gain increasing
confidence in the design and implementation throughout a
system development, and to minimize reimplementation late
in the development process by avoiding fundamental design
flaws early in the process. The combination of approaches
discussed here is seen to be relevant. A highly secure system
can be attained, with a well-conceived design, careful im-
plementation, selected formal proofs (particularly proofs of
design properties), and the use of penetration efforts. How-
ever, it should be emphasized that a completely secure sys-
tem is unlikely in any case, partly because of t\\e intrinsic
problems presented by leakage through timing channels.

PSOS is an example of a new system design whose stated
goals from the beginning included support for advanced se-
curity requirements and provability. The experience gained
in that and related efforts is used here to establish criteria
that appear to be useful in helping to evaluate other efforts.
For example, the ISI criteria and the methodological con-
siderations clearly show some of the strengths of PSOS and
Multics. It is hoped that this paper will lead to further re-
finements in security evaluation, and that it will be useful in
evaluating other systems. It is also hoped that it will influ-
ence the subsequent development of secure computer sys-
tems.

ACKNOWLEDGMENTS

The writing of this paper has been supported by National
Science Foundation Grant No. DCR 74-23774. The author
is grateful to Richard Bisbey, Jim Carlstedt, and Dennis
Hollingworth for sharing some of their experience, and to

AFFENDIX H
Computer System Security Evaluation 1095

Norman R. Nielsen and Brian Ruder for their helpful com-
ments. The central person responsible for the SRI method-
ology (HDM) discussed here is Larry Robinson. He, as well
as Rich Feiertag, Karl Levitt and Bob Boyer have made
major contributions to the design of PSOS and to proofs of
security. The author is indebted to the reader who has
worked his way through the varied levels of discourse of
this paper, from introductory verbosity to tabular terseness,
recognizing that this paper may not have succeeded in trying
to be meaningful to a wide range of readers.

REFERENCES

1. Shankar, K. S., "The Total Computer Security Problem: An Overview,"
IEEE Computer, Vol. 10, No. 6, June 1977, pp. 56-62, 71-73.

2. Private communication. See also other references below under Bisbey,
Carlstedt, and Hollingworth.

3. McPhee, W. S., "Operating System Integrity in OS/VS2," IBM Systems
Journal, Vol. 13, No. 3, 1974, pp. 230-252.

4. Robinson, L., K. N. Levitt, P. G. Neumann, and A. K. Saxena, "A
Formal Methodology for the Design of Operating System Software," in
R. T. Yeh (ed.), Current Trends in Programming Methodology, Vol. I:
Software Specification and Design, Prentice-Hall, EngJewood Cliffs, NJ,
1977, pp. 61-110.

5. Parnas, D. L., "A Technique for Software Module Specification with
Examples," CACM, Vol. 15, No. 5, May 1972, pp. 330-336.

6. Lohr, K.-P., "Beyond Concurrent Pascal," Proc. Sixth Symposium on
Operating Systems Principles, ACM SIGOPS Operating System Review,
Vol. 11, No. 5, November 1977, pp. 173-180.

7. Good, D. I., "Constructing Verified and Reliable Communications Proc-
essing Systems," ACM SIGSOFT Software Engineering Notes, Vol. 2,
No. 5, October 1977, pp. 8-15. Excerpted from D. I. Good, ed., Final
Report of the Certifiable Minicomputer Project, University of Texas,
1977.

8. Neumann, P. G., R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L.
Robinson, A Provably Secure Operating System: The System, Its Appli-
cations, and Proofs, Final Report, Project 4332, SRI International, Menlo
Park CA, 94025, II February 1977.

9. Glaseman, S., R. Turn, and R. S. Games, "Problem Areas in Computer
Security Assessment," Proc. National Computer Conference, 1977, pp.
105-112.

10. Biba, K. J., Integrity Considerations for Secure Computer Systems,
MTR-3153, MITRE Corp., Bedford, MA, June 1975.

11. Lampson, B. W., "A Note on the Confinement Problem," CACM, Vol.
16, October 1973, pp. 613-14.

12. Lipner, S. B., "A Comment on the Confinement Problem," Proc. Fifth

Symposium on Operating Systems Principles, ACM SIGOPS Review,
Vol. 9, No. 5, 19-21 November 1975, pp. 192-1%.

13. Bell, D. E. and L. J. LaPadula, Secure Computer Systems: Mathematical
Foundations and Model, Vols. I, II, III, MITRE Corp., Bedford MA,
November 1973-June 1974.

14. Feiertag, R. J., K. N. Levitt, and L. Robinson, "Proving Multilevel
Security of a System Design," Proc. Sixth Symposium on Operating
Systems Principles, ACM SIGOPS Operating System Review, Vol. 11,
No. 5, 16-18 November 1977, pp. 57-65.

15. Nielsen, N. R., et al., Computer System Integrity Safeguards: System
Integrity Maintenance, SRI International, Menlo Park CA 94025, October
1976. See also N. R. Nielsen and B. Ruder, "Computer System Integrity
Safeguards," IF IP 77, North-Holland Publ., 1977, pp. 337-342.

16. Bisbey, R., II, G. Popek, J. Carlstedt, Protection Errors in Operating
Systems: Inconsistency of a Single Data Value Over Time, ISl/SR-75-4,
December 1975.

17. Bisbey, R., II, J. Carlstedt, and D. Chase, Data Dependency Analysis,
ISI/RR-76-45, February 1976.

18. Carlstedt, J., R. Bisbey II, and G. Popek, Pattern-Directed Protection
Evaluation, ISI/SR-75-3I, June 1975.

19. Carlstedt, J., Protection Errors in Operating Systems: Validation of Crit-
ical Conditions, IS1/SR-76-5, May 1976.

20. Hollingworth, D. and R. Bisbey II, Protection Errors in Operating Sys-
tems: Allocation/Deallocation Residuals, June 1976.

21. Robinson, L. and K. N. Levitt, Proof Techniques for Hierarchically
Structured Programs, SRI Report, January 1975, CACM, Vol. 20, No.
4, April 1977. Also in R. T. Yeh (ed.), Current Trends in Programming
Methodology: Vol. 2, Program Validation, Prentice Hall, Englewood
Cliffs NJ, 1977, pp. 173-196.

22. Roubine, O. and L. Robinson, SPECIAL (SPEClfication and Assertion
Language): Reference Manual, SRI Technical Report CSG-45, Third
Edition, SRI International, Menlo Park CA 94025, January 1977.

23. Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and G. L.
Popek, "Report on the Language Euclid," ACM SIGPLAN Notices,
Vol. 12, No. 2, February 1977, pp. iii+1-79.

24. Wirth, N., "Modula: A Language for Modular Multiprogramming," Soft-
ware Practice and Experience, Vol. 7, 1977, pp. 3-35.

25. Schroeder, M. D.f D. D. Clark, and J. H. Saltzer, "The Multics Kernel
Design Project," Proc. Sixth Symposium on Operating Systems Princi-
ples, ACM SIGOPS Operating System Review, Vol. 11, No. 5, 16-18
November 1977, pp. 43-56.

26. Thompson, K. and D. M. Ritchie, UNIX Programmer's Manual, Bell
Telephone Laboratories, Inc., Sixth Edition, May 1975.

27. Kampe, M., C. Kline, G. Popek, and E. Walton, The UCLA Data Secure
UNIX Operating System, Technical Report, UCLA Dept. of Computer
Science, Los Angeles CA, July 1977.

28. Neumann, P. G., "Toward a Methodology for Designing Large Systems
and Verifying Their Properties," 4. Jahrestagung, Gesetlschaft fur Infor-
matik, Berlin, October 9-12, 1974, in Lecture Notes in Computer Science,
Vol. 26, Springer Veilag, Berlin, 1974, pp. 52-67.

