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Abn tract

A mechanism is described for achieving a desired force/motion relationship. The

mechanism employs two hinged arms with pulleys and springs. In comparison to active

force-control methods, the device is compact, energy saving, and robust. The device is

ideally suited to miniature devices and, in a recent application, has been used in a mobile

robot for inspecting pipes.

The relationship between the motion of the mechanism and its output force is analyzed

using both analytical and approximate techniques to determine the optimum

configuration and the dimensions of the various components. In the final design,

experimental results demonstrate the superiority of non-circular eccentric pulleys over

conventional pulleys for producing a specified force/motion curve.



 



1. Introduction

Coil springs arc commonly used in force generating mechanisms when it is necessary to

obtain a force that increases with the amount of extension or stretch. However, when the

desired force is not directly proportional to the amount of extension, the force-generating

mechanism must be modified [1]. Active servomechanisms may be used to control the

spring extension, resulting in a constant force over a considerable distance. However, such

methods make the force generating mechanism complex and costly. To avoid these

difficulties, the concept of "force generation by using pulleys and springs" (FGPS) has

been considered [2].

The original application for the mechanism described in this paper was a mobile robot

for inspecting the inside of pipes. The robot presses against the pipe walls for traction

and, ideally, the pressure should be independent of pipe diameter. Since the inspection

robot must be quite small (small enough to fit in a pipe of 65mm inside diameter), it is

important to find a constant-force mechanism that avoids the complexity of a servo

system. Figure 4 illustrates the basic mechanism described in this paper. It consists of

two arms hinged at one en4 to form a symmetric, collapsable structure. As the arms move

apart, they drive two pulleys through intermediate gears. An extension spring is

connected to cables that n^n between the two pulleys and resists the separating motion of

the arms. Both circular and non-circular pulleys were considered for the device. The

shape of the non-circular pulleys is adapted from a conical fusee as shown in Figure 8. The

non-circular pulleys are designed so that the pulley radius can be expressed as a linear

function of angular displacement. Analytical and approximate methods are discussed for

deriving the desired relationship between the angle and pulley radius. Circular and non-

circular pulleys have also fabricated and compared in experiments.

2. Description of Mechanism for Force Generation

Nomenclature:

A vertex of mechanism
B tip of left arm
C tip of right arm
D mechanism for pulling the arms together
F force against rails mi and m2
H height of mechanism



h length of arm, AB or AC, of mechanism
ml,m2 rails supporting device
0 angle between arms

Figure 1 shows a simplified, two-dimensional schematic of the device riding between two

rails, ml and m2. A wheel is mounted at the lower tip of each arm and at the vertex, A, of

the device. The goal is to construct a mechanism, D, that will pull the arms together,

generating a force, F9 that remains constant over a wide range of heights, H.

For the solution of this problem, six types of mechanisms, as shown in Figure 2, have

been investigated. Dots in the figure show pivot joints which rotate freely. All of the

mechanisms are symmetric with respect to the line bisecting the angle 0. For calculating

the relation between the angle 0 and force F, let us suppose that two ends of each spring

connect directly to free joints. Also, let k stand for the elasticity of a spring and L,* for the

length of the spring in a no-load condition. Note that the mechanism is in equilibrium

when the sum of the moments about any point in the system is zero. The relation between

the angle, 9, and force, F, of each mechanism is obtained as shown in Appendix A, using

the partial length rQ of the two arms and the lengths a, 6, and c of subsidiary links in

Figure 2.

Figure 3 shows the calculated results of the relation between the distance

H — h cos(9/2) and force, F} of the linkage types in Figure 1 when the springs are all the

same in elasticity. It is observed from the figure that for most structures the force, F,

increases as the distance H decreases. However, in the curves (a), (c), and (e) the force

tends to decrease as the distance becomes small. A large change of the value of F is

observed in the curves (a), (d), and (f). The incompleteness of the curves (d) and (f) is due

to motional limitations of the linkages. We can see that none of the six curves is linear.

The curve (e) is the most linear of the six, and thus, the mechanism in Figure 2(e) is

considered to be the most appropriate to produce a constant force for a range of angles 9.

However, the mechanism is too complex for actual use. In general we observe that the

spring stretches too much to keep the force inconstant. This is caused by the fact that the

ends of the spring are connected directly to points on the linkages. For better results, the

ends of the spring could be connected to a body with an adjustable position or length,



instead of a fixed body. Therefore, we will consider the modified mechanisms in the

following section.

3. Force Genera t ion by Using Pulleys and Spring

Based on the considerations in Section 2, we have devised a linkage for the constant force

device. In the following section, I will explain how it works, and then analyze the force

members of the mechanism to find out relation of the angle between the two arms and the

stretch force. The shape of the pulleys is circular in this section.

3.1. Link Mechanism

Figure 4 shows the proposed link mechanism for force generation. Two arms AB and AC

connect the ends of two subsidiary links at points D. and D2 at a distance r~ from the

point A. The other ends of the links are put together to make a joint J. The partial links

AD., AD2, and subsidiary links JD«, JD« are connected with each other using pivot joints

with rotatinal axes perpendicular to the plane in which the two arms rotate. Therefore,

the links compose a four-bar linkage mechanism A-D«-J-D2. Since the four links are of

equal length, the four points A, D,, J, and D2 make a rhombus. The gear G« located at the

point D, is fixed to the link JD,, but rotates with respect to link AB. Similarly, the gear

G2 located at the point D2 is fixed to the link JD2, but rotates with respect to link AC.

Therefore, two gears G, and G2 rotate about their axes at points D, and D2, with the links

JDX and JD2, respectively. The gears G^ and G2 drive the pulleys P1 and P2 through the

gears G~ and G .̂ An extension spring, S, joins the two ropes. The other ends of the ropes

are wound around the pulleys P. and P2. The rotational motions of the pulleys adjust to

the length of the spring for an optimum tensile force.

If it is required to attach the pulleys P1 and P2 on the links JD^ and JD2, the gears G^

and G2 would be fixed to the links AD ̂  and AD2, respectively. Depending on the desired

relation between the distance H and Force F, we can omit the gears G« and G. and replace

the gears Gj and G2 by the pulleys P^ and.P2, respectively. That is, the centers of the

pulleys are attached to the points D^ and D2. We will call such an arrangement a "simple

mechanism", while the arrangement in Figure 4 becomes a "complex mechanism". The

major difference between the mechanism in Figure 4 and the one in Figure 2 is that the



ends of the spring are wound round the pulleys, using flexible ropes. Two of the links of

the four-bar linkage arc actually sections of the two arms. No other links arc required for

the mechanism in Figure 4.

3.2. Analyses of Motion and Force Members of the Mechanism

The mechanism in Figure 4 is valid only if the spring extends as the angle 0 increases. It

must now be determined whether the spring actually extends when the two arms open.

Therefore, we develop the relation between the angle 0 and the length of the spring as

follows. Let the radii of the gears G. and G2 be r., and those of gears G« and G, be r2.

Also, let the radii of the pulleys P. and P2 be r«. Now let M be the minimum length of the

rope connecting the pulley with the end of the spring, aned W be the length of the rope

around a pulley. The length Wdepends on the number of turns around the pulley. Hence,

the total length between the two points where the ends of the ropes meet the pulleys is

2M+L, where L is the variable length of the spring. We subtract the length,

2(r -\-r.+r^\sin{9/2)j between the centers of the two pulleys from the total length, 2M+L,

to calculate the length of the rope which is wound round the pulleys P. and P2.

2M+L=2(ro+r1+r2)sm(0/2)+ —
z

We then differentiate L in equation (1) by 9 to yield

(1)

dL rj_
6.9 0 l 2 3 r2 '

(2)

The equation implies that the value of L becomes large as the angle 9 increases when the

value of dL/d9 is positive. In most cases, the value is positive since the values of r\, r2, and

r3 are smaller than that of r~. The spring must extend to give a large force when the two

arms open.

We analyze the relation between the angle 9 and force F in Figure 4, illustrating the

force. The force components are exerted on each link of the mechanism. LetT denote the

output force of the spring S, then the gear G, is driven by the force TL



r:\

(3)

The compression force, (7, exertd on the link JD^ is obtained by setting the moment about

the point D. to zero.

r^sinO*

Expressing the moment about the point A for arm AB gives

(4)

hF
{(r0+ri+r2)cos(e /2)-r3}T=-pin(0/2)+rQUsin6.

(5)

Equations (3), (4), and (5) are combined to give

2r{(r0+r1+r2)COS(fl/2)-r3(l+2r1/r2)}

h-sin(8/2)
(6)

Jp ..

Figure 5 shows a geometrical illustration of the mechanism for two different values of 9.

The symbol 0 . denotes the minimum value of 9. When the angle between the links is 9,

the link JD1 is inclined by an amount 7=0—0 . , and the pulley rotates by

8=(9—9 . )/2. When the links are separated by the angle, 9 . , the pulley P. is rotated

by <f> with respect to the initial configuration; i.e., the total angular shifts of the pulley is

given by

(7)



Suppose L . expresses the length of the spring when #—0 . , then we have* * mm i o nun

(8)

where

(9)

(10)

(11)

£ is the length of the rope connecting the spring and two pulleys when 0=0 . . rj. and rj0
in in L /u

are the lengths of the ropes which unwind from the pulleys P« and P2, respectively. When

two arms intersect with the angle 0min, we can express the length £ • by ^QL^ where e is

a constant greater than 1. The force Tis written as

T=k(L-LQ);

(12)

We obtain the final form by inserting equation (12) into equation (6)

X [ ( r 0 + r l + r 2 ) ( / ) 3 ( ^ ) ] ^(0/2)

(13)

In the case that the pulleys are attached on the subsidiary links or arms of the scissors

structure, Equation (13) should be modified by replacing (ro+r1+r2)with(r()—7\— r j .



JJ.3. Relationship Between Force and Deformat/ion of the Mechanism

By using the equation(l3), we obtain the relation between the distance II and force./'1,

since the value of c can be used to make the force F equal to the ideal force Q when 0 is

0 . . First, we consider the "simple mechanism" which uses only the pulleys. In this case,
mm ' r

r. and r(> are zero. Therefore, Equation (13) is simplified as

h-sin(0/2) '
(14)

where

(15)

Equation (14) is also valid for the simple mechanism having no subsidiary links; that is,

when pulleys are fixed on the two arms.

Figure 6 shows the calculated results of the relation between H and F depending on

radius of the pulleys in a complex mechanism combining pulleys and gears as shown in

Figure 4. For instance, the curve c3 is obtained when T*3=6 mm. Figure 7 shows the

results of the relation between H and F in a simple mechanism having no gears. In this

case, equation (13) applies/with r . = r 2 = 0 . The curve c~ shows the result for a pulley of 15

mm radius. It is evident that the curve c changes the force F remarkably. Since no
o

pulleys are considered, the curve corresponds to that in Figure 3 (a).

By comparing the results of the relation between H and F for the complex mechanism

with those of the simple mechanism, it is evident that the value of r~ is smaller than that

of the simple mechanism for the same amount of force. Also, the shape of the curves is

smoother than that of the simple mechanism. Based on these facts, a combination of

pulleys and gears is desirable. The curves in Figure 6 and Figure 7 imply that it is difficult

to make the force F constant over a wide range of the distance H, However, we can see

intuitively that there is an appropriate curve between the curves c» and c, that will

produce a force roughly equal to the ideal force Q. We discuss optimization methods in



the following section to determine dimensions for the pulleys that will result in an

appropriate curve.

4. Opt imizat ion of Force Genera t ion Mechanism

The force generation mechanism, or more specifically the dimensions of the pulleys,

should be exactly determined to adjust the length of the spring for generating the force we

wish. We consider two types of puHeys: One is a circular pulley which is commonly used.

The other is an eccentric non-circular pulley. In the "complex mechanism," the

parameters r. and r2 also affect the characteristics of the force generation. However, these

are out of the scope of this paper. In determining the dimensions of the pulleys, we

propose analytical and approximate methods. Optimization of the spring elasticity is also

discussed, once the parameters of the pulleys are given.

4.1. Analytical Method

The force Fis calculated from equation (13). At this point, we express the radius r^ by

the term r(p) defining the relation between the radius of the pulley and its angular shift p.

The force Fis given by

X [(rQ+rl+r2)cos(0/2)-r(p)(l+2^)} J—

(16)

where G stands for the term expressing the circumference of the pulley which rotates as 9

increases from 9 . . In this paper, we consider a pulley for which the relation between the
mill . r xr i r J

pulley radius r and angular shift p is linearly expressed as

r [p)=
(17)

The parameters, a and 6, are adjusted to determine the shape of the pulley. Evidently, the

value of b is positive and that of a is zero when the pulley is circular. In such a case if the



to

pulley radius is expressed by equation (17), we have the following relations for Q}

(18)

and

r{p)—2acj>+b,

(19)

where <j> is determined frofn equation (7). Therefore, equation (16) is written by the

expression

^)X [(r0+rl+r2)cos(e/2)-(2acf>+b)(l+2^)} h.s^{Q/2y

(20)

^

Now we look for a function giving the ideal value, Q for Fsuch that

(21)

Then, we define the error function E9 by the relation

EQ={F9-Q0}2.
(22)

The values of a and b are determined by making the value of EO minimum in the range of

6. That is, to minimize the value calculated by



11

EOdO.

(23)

Since the expression of EO is decomposed into the terms Opsinm0cosn0 (p, m, n are

positive integers), the integration in equation (23) can be performed and expressed in

terms of a and b (see Appendix B for detailed calculation). By differentiating the function

Z with respect to a and 6 and equating them to zero, we have two equations with unkaown

parameters a and 6. It is not easy to solve such simultaneous equations in general.

However, we notice that we can assign the value of the parameter 6. Also, the parameter

e should be given by considering the initial condition 9 = 9. (/?=O,0=O), where the

value of Fis Q Q = / (^mjn)- Therefore, from equation (20)

€0-2kLQ{(r0+rl+r2)cos(emj2)-b(l+2rl/r2)}
+L

Then, we can determine the value of a by solving a cubic equation.

(24)

When the shape of the pulley is circular, the calculation process is simple, since the value

of a is zero and we can determine the value of h by solving the equation obtained by

differentiating the function Z in equation (23) with respect to b. The knowledge of 6 is

useful in the calculation of a. We can recommend that the optimum radius of the circular
0

pulley be found first, so that the parameter a for the non-circular pulley can be calculated

by using the value of 6.

4.2* Approximate Method

We can determine the optimum dimension of the pulley also by using the Least Square

Method (LSM), as long as the change of the radius of the pulley as a function of angular

displacement is smooth. Let Q . denote the ideal value of F when 0 = 9 ., then we have the

following expression from equation (20) since the equations (19) and (24) are valid:
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^X l(ro+r, +r2)co«(tfy2)-(2a^+6)( 1 +2~)]

(25)

where / is the term of LJe —1) which is written as

hQ^sinU) .
^ 0 v mir=2fc{(r0+r1+r2)cOS(<?mj.n/2)-6(l+2r1/r2)}

(26)

and

(27)

Subtracting Ffrom the id^al valise Q . and squaring the result given the absolute error Z.

3 (28)

Several sets of data are used to make the force as close to the ideal force as possible.

After summing the terms obtained by using these actual data, we differentiate the

summation, Z, with the parameters a and b. Since the procedures are similar to those

described in Section 4.1, we can determine the values of a and 6, by setting the results of

the differentiation zero, to make the error minimum. When the pulley is circular, the

value of a is zero and we can solve for the unknown parameter b
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(29)

The terms £ / , - . . . U* are shown in Appendix O.

When the pulley is eccentric and non-circular, we can assign a value for 6. It is

recommended to use the solution of a circular pulley for the assignment so that the value

of a can be obtained by solving a cubic equation.

(30)

The terms S* . . . . S* are shown in Appendix D.

As long as the shape of the pulley is smooth, the spring retracts or extends as the rope

winds in a spiral around the pulley. If the effective angular range exceeds 2?r(rad), the rope

can turn many times around the pulley by extending the pulley groove to form a fusee as

shown in Figure 8. The shift of the groove along the axis of the fusee will be negligible

when the effective angular range is less than 2?r(rad). In this case, we can make flat pulleys

of non-circular-shape by interpolating radii along the pulley so that the groove makes a

single smooth loop.

Figure 9 shows the rope connecting two non-circular pulleys Pj and P 2 . The thick curve

is the effective groove radius and the broken curve is for the extension of the curve for a

fusee. For a fusee, the rope detaches from points u, and u2 since the groove is not in one

plane. For flat pulleys, the rope detaches from points v. and v2. The length between the

points v, and v2 is not equal to the length between the two rotational centers (i.e., E. and

E2) of the fusee, regardless of the sign of the parameter a. Since the equation (25) is no

longer applicable we consider a formula for the dimensions of the flat pulleys below.

Let X denote the angle between the line connecting points E. and u. and the line

connecting points E, and v,. Also, let u denote positional displacement as shown in Figure

9. Figure 10 reveals a method for calculating the distance r~ and the displacement UJ. The
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profile of the groove is written in the coordinate system (X,Y) as

X2+Y2={2a<t>+b-2alan " '(Y/X)}2 .

(31)

If the value of a is small enough we can approximate that

(32)

Inserting equation (32) into equation (31), and letting the value of the differential dY/dX

approach infinity, we have

(33)

(34)

Given an initial condition, such as <f> = 0, it is evident that /•„ is equal to b when a is less

than or equal to zero. Equation (34) is valid when a is positive. Then, we define r3Q for the

value of r3 in the initial condition.

( b, a < 0

V4o2+62, a > 0
(35)

It follows that

(36)

The values of X and u are positive when a is positive, and vice versa. Following the

procedure of equation (25), we obtain the following expression for the force
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2*[2(r o +r ,+r 2 ){«^

X [(ro+r |+r)

(37)

where

hQ()sin{emj2)

2A;{(r0+r|+r2)COS(<?m.n/2)-r;J0(l+2r1/r2)}-
(38)

By assigning an appropriate value to b, the value of r^() is given by equation (35). Then

assuming a small value for a, we can obtain the force F. from equation (37) and determine

the error Z by evaluating equation (28). The form of Z is too complicated to differentiate

with respect to a and 6. As a result, it is difficult to find a unique value of unknown

parameters a and b. To find out the most appropriate value of a for making the value of Z

minimum, we can check the value of Z by adding or subtracting a little to zero. Although

this process is tedious, we can obtain the optimum value.

If the dimensions of the pulleys are given, we can optimize the force generation

mechanism by selecting an appropriate elasticity for the spring. It is easy to extract the

form to determine the elasticity since equations (25) and (37) expressing the force F include

only the term k . That is, we subtract equation (25) or (37) from the ideal value Q. and

square the result to determine the absolute error Z in equation (28). Several sets of data

are used to make the force as close to the ideal force as possible. After summing up the

terms which are obtained using actual data, the summation is differentiated with respect

to k . Equating the results of the differentiation to zero, so that the error becomes

minimum, we can determine the elasticity, k , of the spring.
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5. Design of Pulleys and Exper imenta l Results

The dimensions of the pulleys are calculated using either the analytical or the

approximate method. After determining optimum shapes for circular pulleys, and

eccentric non-circular pulleys, in the simple and complex mechanisms under the conditions

that Q is constant and equations (17) and (24) are valid, the results of the optimization are

compared to find out which is most accurate. Experimental results are given for the

relation between the distance, H, and force, F, to verify the validity of the optimization.

5.1. Circular Pulley

We take the condition in equation (24) into consideration and use equation (25). When

the shape of the pulley has a circular form, the value of a is zero and the radius 6 is

obtained by solving a cubic equation. Figure 11 shows the results of the relation between

the distance H and Force Fwhen Q = 0.5 Kg. Results for the circular pulleys in simple

and complex mechanisms are shown by curves (a) and (b). The force from the complex

mechanism comes closer to the ideal force, Q, than that from the simple mechanism.

5.2- Fusee

Circular pulleys can be used to produce a force, F} which is nearly equal to the indicated

force Q. However, the curve expressing the relation between the distance H and Force Fis

not similar to the curve indicated by the function in equation(21). In fact, the curves (a)

and (b) in Figure 11 are not satisfactory to determine a constant force over wide ranges of

$. Therefore, we have to consider pulleys of non-circular-shape. The dimensions of the

fusees are determined by finding the parameters a and 6 which make the value of Z in

equation (28) minimum. We suppose that the displacement of the groove along the axis of

the pulley is small enough to be neglected. Figure 11 (c) shows the result of the relation

between the distance H and Force Fof the pulley for the simple mechanism and Figure 11

(d) shows the result for the complex mechanism. It is evident that not only the force but

also the shape of the curve becomes similar to that of the curve given by the function Q.

The curve (d) is almost parallel to the horizontal axis.
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5,,'$. Flat Pulleys of Nori-Circular-Shape

We designed flat pulleys having eccentric non-circular shapes by using the iterative

method which was discussed in the latter half of Section 4.2. The curve in Kigure 11 (e)

shows the results of the relationship between the distance // and force F for the simple

mechanism. Figure II (f) shows the result for the complex mechanism. The shapes of

these curves are found to be similar to those of the fusees.

5.4. Experimental Results

In the actual design, the size of the pulley is an important factor. Since the size of the

pulley in the simple mechanism tends to become large, the complex mechanism is

recommended to keep the force generation mechanism compact. In addition, a mechanism

that has a large value of r\ + r« and a smaller value of rjro is recommended for obtaining

a large force F. However, smallness of r./r^ makes r,. large and prevents fabrication of

compact device for the force generation. Therefore, a complex mechanism was adopted for

the equipment shown in Figure 12. The physical dimensions of the mechanism are

fc=0.14Kg/mm, /i=95mm, rQ=35mm, r^T.Smm, r2=5mm, Q =0.5Kg, 40°^^.100°.

For these dimensions, circular pulleys and flat pulleys of non-circular-shape were made.

The circular pulleys have a diameter of 6=6.9mm. The curve (a) in Figure 13 shows the

calcuated relation between H and F, and dots show the experimental data for the circular

pulley used with the complex system. The optimized parameters of the flat pulley of non-

circular-shape are a=-0.66 and 6=8.5mm. These values are obtained by considering the

position where the rope detaches from the groove of the flat pulley. The curve (b) in

Figure 13 shows the calculated result and the cross marks show the measured result. The

curves (a) and (b) in Figure 13 correspond to those of (b) and (f) in Figure 11, respectively.

The relationship between H and Fioi the simple mechanism are shown in Figure 14. The

curves (a) and (b) in Figure 14 correspond to those of (a) and (e) in Figure 11, respectively.

The fact that the calculated and measured results are close indicates that the analysis for

calculating the force Fare valid. We can confirm that the eccentric non-circular shape in

the flat pulley makes it possible to generate a force closer to the designated force Q, than

the pulley of circular shape can achieve.

Figure 15 illustrates a profile of the groove and the characteristics of the p versus G of
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the flat pulley. The pulley is effective only in the range i)0<jl><il2i)0 for which case

4O°<L0<LIOO<\ The radii of the unused area of the pulley are interpolated so that the shape

of the pulley becomes smooth* The profile of the groove and the characteristics of p versus

G for the fusfces are almost tjie same as those of the flat pulleys.

The result of the approximate method is almost the same as that of the analytical

method when the curve expressing the function f (0) is smooth. Thus, in a case where the

value of Q is constant, the approximate method is shown to be effective for practical use in

reducing the amount of computation.

6. Conclusion

The design and optimization of a force generating mechanism have been discussed. The

mechanism has been applied to a mobile robot for inspecting pipes that vary between 90

mm and 120 mm in diameter [3]. A major advantage to the mechanism is that it makes

servo control unecessary. The mechanism uses an extension spring and a pair of specially

designed pulleys to achieve a desired force/motion trajectory. As the mechanism opens

and closes, (adapting to the inside diameter of the pipe) a linkage drives a pair of gears

which rotate a pair of pulleys. The pulleys are designed with a non-circukr shape. As

they rotate, they stretch an extension spring. The rate of extension is determined so that

the mechanism exerts a nearly constant force against the inner walls of the pipe. Exact

and approximate methods are considered for determining the optimum relationship

between pulley radius and angle of rotation. The approximate methods can be used

effectively as long as the desired force/motion relationship is a smoothly varying function.

In the final design, the pulleys are driven by intermediate gears which permit the use of

smaller pulley diameters.
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Appendix A

Relations between I*1 and 0 are as follows:

(a)

FJ~;(L-LQ)cot (f) where L=2rQsin (0/2).

~(L-LQ), where L={r \-2ar,cos

(c)

FJ&L-LJCO.&, where L={r V ^ - a ) ^ 2(*/2)}1/2.

P = (2ar0)

(e)
krQ

F=-£-{L-LQ)cot(0/2), where L={rQ-2a)sin{6/2).

(f)

ir=-^-r^{—cos(e/2)-rQ+——}, tafcere p =1
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Appendix

Denote / jf'sinm0cosn0d0 by J[m,n,p].

When m > 1 and n > 1,

—mpI[rn—l,n—l,p—l)—p(p—l)I[m,n,p—2]}/(m+n)

When m > 1 and n=0,

I [mfi,p\={Qp~l sinm~{0[psinG-mQcos9]

+m(m-l)I[m-2,0,p\-p(p-l)I[m,0,p-2}}/m2.
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A p p e n d i x C

Let the symbols g(, g^, g.{, g/{, g^, and gft express the following terms.

g2=hQQ/(2k)sin(0m.j2)

g6=2k/h/sin{e/2)

Then, we have

where
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Appendix D

Let the symbols g^} gt}} g.^ g^y g^} and g» have the similar expressions as shown in

Appendix C. Then, we have

where
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Figure 1 : Basic mechanism for obtaining the stretch force

Figure 2: Various kinds of mechanisms for generating Ihe force
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64

Figure 3: Calculated results of the relation between H and F under such
conditions that h = rQ = 100mm, k = 0.1 Kg/mm and 30° <"0

< 100°. The value of a in (b), (c), (d), (e) and (f) are
3/5r0, 2/5rQ, 3/4rQ, 1 /6rQ and 2/3rQ, respectively.

Parameters b and c are 1 /3rQ and 3/4rQ.

Figure 4: Proposed mechanism for the forco generation
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Figure 5: Geometrical illustration for analyzing equilibrium
of the mechanism in force

F(kg)

4 . 5 -

3.0-

1.5 -

Figure 6: Calculated relation between H and F when circular pulleys are used
in the complex mechanism under such conditions that h = 95mm, rQ = 35mm,

Q

r1 = 7.5mm, r2 = 5mmt LQ= 19.05mm, k = 0.14Kg/mm, Q * 0.5!<g and 40°
< 0 < 100°. The curve cQ is obtained under

xn - 0. The curves c. to c. increase r^ with the increment 2mm
in this order.
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Figure 7: Calculated relation between H and F when circular pulleys are used
in the simple mechanism under the same conditions to those used in the
complex mechanism. The curve cQ is obtained under r3 = 0. The curves

C to c. increase r, with the increment 5mm in this order.
1 4 3

Groove

Figure 8: Fusee
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Figu re 9: Connection of a couple of non-circular pulleys by ropes
through a spring

Figu re 10: Profile of the groove in the coordinate system (X,Y)
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H(mm)

60 70 80 90

Figure 1 1 : Optimized relation between H and F. The curves (a) and (b) are the
results of circular pulleys for the simple and complex mechanisms. The

values of b are 18mm and 6.9mm, respectively. The curves (c) and (cl) are the
results of fusees of non circular shape for the simple and complex mechanisms.

The values (a,b) are (-0.69, 18.0) and (-0.60, 8.5), respectively. The
curves (e) and (f) are the results of flat pulleys of non-circuiar shape for

the simple and complex mechanisms. The values (a,b) are (-0.60,17.25) and
(-0.66, 8.5), respectively.

Figure 12: Overview of force measurement by the fabricated mechanism
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Figure 13: Relationships between F versus H of the complex mechanism. Curves a
and b are the calculated results relating to the circular and non-circular

pulleys. Dot and cross marks are the experimental results relating to those
pulleys, respectively.
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Figu re 14: Relationships between F versus H of the simple meciio.nism. Curves a
and b are the calculated results relating to the circular and non-circular

pulleys. Dot and cross marks are.the experimental results relating to those
pulleys, respectively.
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Figu re 15: Fabricated pulleys which are used to obtain the curve b in Fig. 13;
(a) profile of the groove, (b) characteristics of the p versus G.
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