
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Optimal Algorithms
for Finding the Symmetries

of a Planar Point Set

P. T. Highnam

CMU-RI-TR-85-13

Department of Computer Science
The Robotics Institute

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

August 1985

Clnnvriaht (cS 198S Carn^oie-MeUnn University



13

-3



Table of Contents
1. Introduction
2. Algorithm
3. Details
4. Complexity
5. Rotational and point symmetries
6. Acknowledgments
References



 



Abstract

We present an asymptotically optimal algorithm to locate all the axes of mirror symmetry of a planar i

t The algorithm was derived by reducing the 2-D symmetry problem to linear pattern-matching. Opt

gorithms for finding rotational symmetries and deciding whether a point symmetry exists are also presei



 



Introduction
^ set of points P in the plane has an axis of mirror symmetry A when for every point p of P not lying 01

re is another point p1 in P s.t. A is the perpendicular bisector of the line ppf. P has a rotational symm<

a when rotating P about its centroid C by a is an identity operation on P. P has a point symmetry (wh

st be at C) precisely when P has a rotational symmetry of m .

Tiis note presents an optimal O(n log n) algorithm for discovering all the mirror symmetries of an n p<

P in detail and describes the changes needed to detect the rotational symmetries (and hence the existe

a point symmetry). Lower bounds are shown for each problem. Mirror symmetries are the objects

srest until section 5.

Tie 2-D mirror symmetry problem is reduced to a 1-D pattern-matching problem for which fast soluti

well-known. Any A must pass through the centroid C of P, so the points are first translated so that (I

responds to C. After expressing the points in polar coordinates, sort them increasing-distance-witf

reasing angle from a reference direction. For each unique angle (at most n), replace the set of po

iding at that angle (i.e., > 1 point) by a tuple which is simply a list of their distance components. Let

Tiber of unique angles be m (< n). Consider the result as a length 2m string F, the symbols of which

srnately tuples and the angles between adjacent tuples. The mirror symmetries of P correspond exactl]

length 2m subsequences of FF which are palindromes.

Tie palindromes can be discovered by a fast one-dimensional string matching algorithm, looking

urrences of the reversal of F in FF. One such algorithm is that of Knuth, Morris and Pratt [1] ("KM

ich permits the detection of all occurrences of a pattern within a text in time proportional to the sum of

gths of the text and pattern.

lection 2 of this report contains the algorithm, and section 3 contains proof of why the algorithm works,

tion 4 we demonstrate that it is impossible to improve the asymptotic time bound. In section 5 we pres

ariant of the basic algorithm which detects the rotational symmetries and point symmetry, and a proof I

se are also optimal.



2. Algorithm
Input: n point planar point set P, (p. for / =0(l)n-l).

Output: 'lTie ccntroid of P and the orientations of each of its axes of mirror symmetry.

1. Find the centroid C of P. Translate the point set so that the origin coincides with C.

2. Select an arbitrary reference direction (for convenience we choose the direction of p0). F
the points in polar coordinates with the angle component as measured anticlockwise
reference direction, denote point p . as (r. ,0.).

3. Sort the points by incrcasing-distance-within-increasing-angle. Delete any points that \
distance (r. = 0). Let the number of different angles be m < n .

4. For each of the m different angles, represent its set of points in a single tuple, which sim
the set of distances at that angle. Beginning at the reference direction, proceed through \
tuples in order of increasing angle, generating the length 2m string F: at the current
append the tuple to the string; move to the next tuple, appending the angle traversed to tl
Finish when returning to the reference direction. The first element of this string is a tup!
and tuples alternate within it Create the length 2m string R and the length 4m-2 stri
shown below:

r ~ r0 r l *" r2m-l

~ r0 r2m-l r2m-2'" r l

5. Employ a string-matching algorithm such as KMP to locate all of the matches of R in F'
the definition of F the only matches are possible beginning at even indices (since fQ is
Denote the size t (0 < t < m) list of indices of F ; at which a match can begin by I. (j =0(

6. Compute for each match index I. the orientation of an axis of mirror symmetry A.. Let k
j J J

k{ is even = > A. passes through tuple f , .
J J * y

ifc.isodd => A. bisects angle f. .
j J *s

3. Details



Because the tuples do not necessarily have a unique distance associated with them, we can consider the

tuples {f2r for / = 0 to m-1 \ as laid out on the perimeter of a circle (diameter unimportant, centre at

mroid of the point set), with tuples f2/and f2 /+2 separated by the angle f2/ + -j. Tuples f ^ ^ ^ d *o

jaratcd by angle f ^ . The axes of this representation are precisely the axes of the original point set

Fhe notation used is that of the algorithm of section 2 . F = fQ f}... f^^ , where m is the number of tup

d an element f. is either an angle (/is odd), or a tuple (/is even). R = ^ f ^ . ] fw2 '"*i* z

ss fQ fj... f^ml fQ fx... f^^ . We say that R matches F ; at index / when the length 2m substring of

. fjjn-i *o## 0-1 m a t c^ e s *̂ ^o r a'̂  such matches /must be even because fQ is a tuple and the tuples

pear with even index in F.

MMA For any * (0 < k < m): F is a k -palindrome iff R matches F ; at index 2k.

Define substrings,

a l = f* +1 - f2* -l (Length k -1)

h s f 2 ^ + l - W l (Length2m-2*-1)

aj^fo-f^i (Length*)

bi = f*-l~ fl (Length it-1)

b2 = f2m-l - f2* +1 (Length 2m-2* -1)

b3 = f2* - f Jt+ l (Length*)

When F is a k -palindrome and K m w e know that f̂  + 1 .. f̂ ^ is a palindrome. More specifica

hk h. ̂  = b i *b b2 b 3 ' Theref°re f-ft = ô • a i = b i yH = b 2 r ^ ^ a3 ̂  b3 us*n% * e su^string leng
fen above.
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IJIMMA For any k (0 < k < m): F is a k -palindrome ijf-k is even and there is an
through tuple f̂ , or k is odd and there is an axis A bisecting the angle f̂ .

There are two cases to consider,

• k is odd. Let k = 2/ + 1 . That F is a (2/ -f l)-palindrome is precisely the condition broug
by A bisecting angle f2/ + 1 .

• k is even. Let k = 2/ . That F is a 2/-palindrome is precisely the condition brought abc
passing through tuple f̂ ..

We have shown by the two lemmas that for any k (0 < k < m), there is an axis A passing throi

is even), or an axis A bisecting angle f̂  (k is odd) precisely when there is a match for R in Ff ai

remains to point out that this is sufficient to capture all axes because an axis A must cut the circk

m apart and in having k range from 0 to m-1 we have covered a complete semi-circle.

4« Complexity
In this section we show that the complexity of the algorithm presented in Section 2 match

problem and so is optimal, i.e., the algorithm is O(n log n) and the problem is shown to be $2

show the latter we use a reduction of the set equivalence problem to that of deciding whether th

an axis of mirror symmetry in a planar point set This also shows that it is no harder to find <

mirror symmetry than it is to find whether there are any at all.

From the description of the algorithm in section 2 we can see that it is O(n log n), and this de:

sorting operation of Step 3. Steps 1,2,4 and 6 are clearly O(n) while Step 5 can be done in O(n

string matching algorithm such as KMP. The worst-case complexity of the KMP algorithm is n

alohabet size.



from B using LB.

3. Manufacture the 2D point set P defined as {(a, a): a € A'} U {(b, -b): b € B;}.

4. Find the axes of mirror symmetry of the set P. If P has an axis of mirror symmetry then A and B
are the same, else they are not.

[Tie set P defined above will have at most one axis of mirror symmetry and this if present will corrcspon<

s 'x-axis' of the 2D system created.

Rotational and point symmetries
n this section we present a version of the algorithm of section 2 which will find all the rotatic

nmetries of point set P. Hence, as noted in the introduction, we will also have discovered whether the

> a point-symmetry because that is identical to a rotational symmetry of m .

K rotational symmetry is an angle a s.L rotation of P by a about its centroid is an identity operation or

rthermore, if aQ is the smallest such angle then the set of angles of rotational symmetry is precisely the

integer multiples of aQ. Hence, it is only necessary to find aQ.

jiven the string representation F of P, proceed by matching F against F' starting with the first elemen

it f2 and moving to the right This avoids a meaningless match of F with itself as prefix of F ; and beca

gle aQ corresponds to the lowest index at which F will match F ; . Stop when the first match is found (c

lure occurred at the end of F ' , implying no rotations). Let the index of the match in F' be /, which ir

even as before. The corresponding a0 is the sum of the angles in F ; lying to the left of the mai

fhe complexity of this algorithm is the same as that of the mirror symmetry algorithm, O(n log

ecking whether aQ is an integer divisor of TT is constant time work and so O(n log n) applies to the pc

nmetry decision too.



3. Manufacture the 2-D point set P defined as {( a, a): a € A'} U {(-b , -b): b € I);}.

4. Decide whether P is point-symmetric, if it is then A and B are the same, else they are not.
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