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ABSTRACT

This paper presents a method for automatic planning of robot grasping mo-
tions that are guaranteed to succeed, despite bounded variations in the ob-
ject's location. The method capitalizes on the physics of friction to generate
the space of all guaranteed grasp plans that utilize either a squeeze-grasp,
offset-grasp, or push-grasp motion. All plans that axe found are guaranteed
to succeed, even if the worst-case error occurs. From this space of guaran-
teed plans, a plan can be chosen and executed without sensing or feedback.
Executing the motion removes two degrees of uncertainty from the object's
position. For simplicity, planar motion of the object during grasping is as-
sumed.



I. Introduction

Uncertainty presents a key problem in manipulation. Two major sources of uncertainty
affect manipulator operations: world uncertainty and manipulator uncertainty. World
uncertainty is the uncertainty in the position and orientation of objects in the world, while
manipulator uncertainty is the uncertainty in the position and velocity of the manipulator.

Most present approaches to robotic manipulation attempt to eliminate the problems
associated with uncertainly by eliminating uncertainty itself. World uncertainty is often
reduced by confining the robot to a carefully controlled environment, where objects arc
constrained to precisely-known locations, or by employing sophisticated sensors that pre-
cisely measure the location of objects in the world. Both methods are expensive, and may
fail if the precision of the controlled environment becomes corrupted. Manipulator uncer-
tainty can be reduced by building stiffer, more precise mechanisms and control systems for
manipulators. However, increasing the precision of a manipulator increases its cost.

In contrast, the underlying philosophy of our research is to develop manipulation oper-
ations that work well despite significant uncertainty. We would like to develop algorithms
to plan actions that will be guaranteed to succeed, given that the world and manipulator
uncertainty are within known bounds. Such actions would operate effectively in a more
natural environment. Instead of trying to eliminate uncertainty, we seek methods that will
succeed despite uncertainty.

This paper applies this philosophy to the problem of grasp planning. For simplicity,
we assume that objects to be grasped axe polygonal prisms lying on a table, constrained to
planar motion during the grasping move. In addition, we assume coulomb friction exists
at all contacts, and that speeds are slow enough that frictional forces dominate inertial
forces. No assumption is made about the distribution of support forces between the object
and the supporting plane.

Within this domain, we present an automatic method for producing grasping plans
that are guaranteed to succeed even though significant uncertainty is present. No sensing
is required, and the plans produced by the method also remove some of the uncertainty in
the planar object's orientation and position. The planner described in this paper has been
implemented and demonstrated using a Puma 560 manipulator.
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Figure 1. An example grasp plan. Due to position and orientation uncertainty, the triangle
might be in either of the configurations illustrated in (a) or (c). Both of these configura-
tions axe subjected to the same squeeze-grasp motion, resulting in the final states (b) and
(d). In both cases, two degrees of uncertainty (orientation and y-axis position) have been
successfully removed; only uncertainty in the x-axis position remains.

Example

An example plan is shown in Figures 1 and 2.

The object to be grasped is a triangular block, lying flat on a tabletop. The exact
position and orientation of the triangular block are unknown; however, the block is known
to lie within certain limits. There is a continuum of possible block positions within the
known limits; two such positions are shown in parts (a) and (c) of Figure L The blocks are
subjected to identical sqneeie-grasp motions, and in both cases the end result is the same:
each block has rotated slightly, causing it to be held flat between the gripper fingers.
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Figure 2. The squeeze-grasp diagram for the triangle. The shaded regions indicate those
squeezing moves that are guaranteed to succeed in acliieving the final configurations shown
on the right.

A pair of x-y coordinate axes have been added to the gripper to help clarify this
explanation. Notice that after the plan is executed, the location of the block is partially
determined; while its position in the x-direction is still uncertain, the block's orientation
and position in the ^-direction are fully constrained to coincide with the gripper fingers.
Thus, after the plan is executed, two degrees of uncertainty in the block's position have
been removed; again, note that no feedback or sensing was required.

Our method planned this grasp by using the geometric description of the triangle to
produce the squeeze-grasp diagram shown in Figure 2. In this diagram, the orientation
of the squeezing fingers varies along the vertical axis, and the finger motion direction
varies along the horizontal axis. These axes combine to define the space of all possible
squeese-grasp motions. Within this diagram* the shaded regions indicate those squeeze-
grasp moves that are guaranteed to succeed. The heavy dashed lines correspond to the
final grasp configuration for each region; these final configurations are illustrated at the
right of the diagram.
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Figure 3. Tlic squeeze-grasp diagram for the triangle, after shrinking for uncertainty in the
world and in the manipulator. Hie shaded regions remaining in this diagram indicate those
moves dial are guaranteed to succeed, even if the worst-case combination of uncertainties
occurs. In this case, the shrinking process assumed that the uncertainty in the polygon's
orientation is lem tkan ±50c, the uncertainty in the manipulator's execution of moves is less
tlian ±SC, and the coefficent of friction p i» within the interval (0.15,0.35). This diagram
was used to plan the squeezing move in Figure I; the move that was chosen is indicated by
the point A.

The diagram shown in Figure 2 does not take uncertainty into account. We can
compensate for uncertainty by shrinking the regions in the squeeze-grasp diagram by the
amount of uncertainty that is present; the remaining regions represent the space of all
squeeie-grasp moves that are guaranteed to succeed, even if the worst-case uncertainty is
encountered. The result of shrinking the regions in Figure 2 to account for various sources
of uncertainty is shown in Figure 3.

The plan shown in Figure 1 represents an example of a squeeze-grasp motion; our
method finds guaranteed grasp plans that utilise squeeze-grasp, offset-grasp, and push-
grasp motions, which will be explained in detail later. A guaranteed grasp plan uses one
of the motions mentioned above, assumes only that the initial location of the object is
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contained within certain limits, and guarantees that after the plan is executed, the object
will he successfully grasped with the uncertainty in the object's location removed.

Within the domain of our assumptions, the method we present finds the space of all
guaranteed grasp plans that are possible for any given grasping task. This solution space
is computed exactly, without using any simplifying approximations. After the method
has computed all possible guaranteed plans, a plan can then be chosen from this space
according to other considerations (e.g., obstacle avoidance, untouchable object faces, etc.).

Previous Work

An analysis of the mechanics of friction during grasping operations is fundamental
to this paper. Several previous papers have also investigated the effect of friction on the
motion of a manipulated object.

Mason's Ph.D. thesis provides the basis for this work, by proving the pushing results
described later in Section II. In addition, Mason developed a procedure that found a
guaranteed push-grasp operation for a polygon, given the description of the polygon and
a range of possible polygon orientations. Mason's procedure returns a specification of
a grasping operation that includes a pushing plane orientation, pushing direction, and
minimum pushing distance required for the operation to succeed. Mason's procedure
returns plans that have guaranteed results, but only addresses a restricted class of polygon
grasping problems [Mason 1982; Mason 1984].

While this paper investigates grasping operations using two planar fingers, Fearing
investigated grasping operations that used two point fingers. Fearing included the effect
of friction in his analysis, and succeeded in predicting the motion of an object under two-
point squeezing, and the effect of disturbing forces on an object being held in a two-point
grasp [Fearing 1983; Fearing 1984].

Mani and Wilson independently derived a diagram similar to the push-stability dia-
gram of this paper, and used their result to design a device that orients parts being fed to
a manufacturing process. Mani and Wilson's method uses the diagram to produce a tree
of orienting pushes, and then searches the tree to find a series of pushing moves that will
reduce the number of possible polygon orientations to one [Mani and Wilson 1985].

A key feature of the method presented in this paper is that it finds grasp plans that
axe guaranteed to succeed in the presence of bounded uncertainty. In this respect, this
research fits nicely into a series of planning systems previously developed which attempt
to plan robot actions despite the presence of uncertainty.

Loiano-Perez outlined a planning system that created an assembly plan and then
used a feedback planner to check the plan for errors arising from the task geometry or



uncertainty. The feedback planner would then modify the original plan to correct the
errors [Lozano-Perez 1976].

Brooks described a planning system that kept track of uncertainty bounds at various
stages of a plan's execution, and then checked the resulting plan to determine whether or
not the uncertainty at any stage in the plan was too large. If so, then Brooks' system
determined whether the addition of sensing or other plan constraints could reduce the
uncertainty sufficiently to allow the plan to succeed [Brooks 1982].

Lozano Perez, Mason, and Taylor described a method of planning fine motions that
axe guaranteed to succeed in achieving a final goal. Their Fine-Motion Planner (FMP)
acliicves a higher-level goal by determining a cliain of subgoal regions that can be reached
despite the presence of uncertainty in the world and in the robot's execution of motions
[Lozano-Perez, Mason, and Taylor 1984]. Mason showed that this planner is both correct
and complete [Mason 1983].

Erdmann showed that Mason's complete planner was not computable in the gen-
eral case, but demonstrated an implementation of a weaker planner that worked in a
similar fashion using backprojections. Erdmann also investigated the mapping of three-
dimensional friction cones into configuration-space, and the effect of multiple frictional
point contacts on the forces applied to an object [Erdmann 1984].

This paper determines all of the stable grasp configurations for a polygon being held
by a parallel-plane gripper. Several other papers have also addressed the problem of finding
stable grasp configurations.

In Ms thesis, Paul planned grasp configurations by applying heuristics that preferred
grasping the object by opposing parallel faces along an axis that contained the center of
mass [Paul 1972]. Later, Bolles and Paul incorporated simple tactile feedback to sense the
location of an object when its location was uncertain [Bolles and Paul 1973].

Brou uses a volume representation comprised of blocks and cylinders to model objects
to be grasped, and then develops a method of finding collision-free grasp positions and grasp
approach angles for picking up a modelled object [Brou 1981]. Peshkin and Sanderson used
a convex-rope algorithm to determine the finger orientations that can be used to approach
a given edge or vertex of a non-convex polygon without causing a collision [PeslJcin and
Sanderson 1985].

Wolter, Volz, and Woo addressed the problem of automatically generating strong grip
positions and characterized grip strength in terms of resistance to slipping and twisting
under the application of an external force [Wolter, Volz, and Woo 1984], Holtzmann and
McCarthy formulated the static equilibrium equations for an object being grasped by three
point fingers. From these equations^ they were able to calculate the applied forces required



to maintain stable grasping, and determine whether a given grasp configuration would slip
or remain stable due to friction [tloltzmann and McCarthy 1985).

Hanafusa and Asada investigated the conditions required for stable prehension of an
object, and the resulting implications for force control of a dextrous robot hand [Hanafxisa
and Asada 1977]. Salisbury investigated the kinematic and force control requirements
for optimum design of a dextrous hand for grasping objects in a variety of configurations
[Salisbury 1982; Salisbury 1983].

Cutkosky examined how various finger surfaces and gripping configurations affect
grasp stability during the execution of typical manufacturing operations. From this analy-
sis, Cutkosky was able to derive some useful rules for the design of robot hands and wrists,
and for choosing optimal grasps [Cutkosky 1985].

Baker, Fortune, and Grosse discovered that a live degree of freedom, three-lingered
hand can stably grasp any convex or non-convex polygon by touching the maximally-
inscribed circle fit within the polygon [Baker, Fortune, and Grosse 1985].

Asada and By investigated stable prehension of objects in the context of workpart
fixturing. By placing fixtures and clamps in an appropriate configuration, they were able
to fully constrain the position of a workpart. Their fixtures are analagous to fingers of a
multi-finger robot hand; both axe used to achieve a stable grasp of an object [Asada and
By 1985].

Overview

This paper will proceed by developing the method that is described above. Section II
describes our notation and the physics that the method relies upon. Section III explores
the motion of a polygon being pushed by a single finger; Section IV characterizes the
motion of a polygon when squeezed by two opposing fingers. Section V describes some
of the circumstances where a simple squeeze-grasp fails, and defines alternative grasping
strategies that succeed in these situations. Section VI discusses how the presence of uncer-
tainty can be incorporated into the planning analysis. Finally, Section VII concludes the
analysis, describes a working implementation of the system, and offers some suggestions
for further research.
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Figure 5. Rotation under pushing. The throe rays Rj, R p . and Rr vote relative to the
<uid Rp both lie tocenter of friction (OOF) to determine the rotation direction. Since

the left of the COF, they win the vote, and the rectangle rotates clockwise. Whether there is
sliding or sticking contact between the corner and the pushing plane remains undetermined.
Ri and Rr are the left and right rays of the friction cone, respectively, and Rp is the ray of
pushing.

friction cone. If the contact is sliding, then the applied force lies on the edge of the friction
cone opposite the sliding direction (Figure 4(b)).

Pushing

Next we must consider the motion of an object being pushed. One common problem in
grasping operations is: If one object is pushing another along a flat surface, what direction
will the pushed object rotate? Under certain assumptions, Mason [Mason 1982; Mason
1984] fonnd a simple answer to this question by isolating three rays (Figure 5):

Rp — ray of pushing (i.e., the direction the pusher is moving)

Rt — left ray of the friction cone

r •— right ray of the friction cone
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Those three rays determine the rotation direction by voting relative to the center
of friction (COF). The center of friction of an object lies at the ccntroid of the object's
supporting pressure distribution; for the purposes of this paper, the center of friction can
be thought of as the object's center of gravity.

If two or more of the three rays lie to the left of the COF, then the pushed object
will rotate clockwise (as shown in Figure 5). If two out of three rays lie to the right of the
COF, then the pushed object will rotate counter-clockwise. If one of the three rays points
directly at the COF and the other two rays are on opposite sides of the COF, then the
pushed object will translate without rotating. This rule applies regardless of the pressure
distribution supporting the object; if a flat-bottomed object and an object supported by an
arbitrary tripod of points were subjected to the same pushing operation, they would both
rotate the same way. Note that this rule docs not determine the rate of rotation, but only
the direction: the rate of rotation can vary with different pressure distributions. Whether
or not the contact is sticking or sliding contact is also indeterminate, but the voting rule
holds in either case. Hence, as long as we adhere to Mason's assumptions (outlined below),
we can utilize this simple method to determine the rotation direction of a pushed polygon.

Assumptions

In order to assure that the above physical models are valid and simplify the problem
of finding reliable grasp plans, we will make a few assumptions:

• Coulomb's law is assumed. This includes the friction between the robot's gripper
finger(s) and the object, as well as the friction between the object and its supporting
surface. We do not assume that the coefficient of friction /x is the same for these two
sources of friction.

• Rrktional forces dominate kertial forces. This assumption is valid for sufficiently slow
motions.

• Objects to be grasped are lying on a level planar surface.

• No assumption is made about the distribution of contact forces between the object
and the supporting plane.

# Objects axe essentially ^Im^x.19 This implies two restrictions on acceptable objects:
First, when the object is pushed, torques that tend to roll the object off of its support
face are small compared to the lateral sKding resistance offered. Second, the faces of
the object that will be in contact with the pushing plane must be perpendicular to
the support face (e«g., a truncated pyramid would not be acceptable because its side
faces axe slanted).
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Subject to those assumptions, grasping motions reduce to planar problems. We will
adopt these assumptions for the rest of the paper; our results will be guaranteed in the
real world as long as they arc maintained.

For convenience, we will make one further simplifying assumption:

• The grippcr fingers of the manipulator will be assumed to be of infinite extent.

This assumption allows the manipulator fingers to be modelled as infinite half-planes in
the two-dimensional grasping abstraction, which is helpful in the following ways:

(1) All polygons are essentially convex, since non-convex polygons are equivalent to their
convex hulls when pushed or squeezed by an infinite half-plane. Thus concavities in
an object do not offer a complication.

(2) Contact with a corner of a finger does not have to be considered.

This infinite half-plane assumption can be met by using the extent of the object to
calculate the minimum finger width required to make a finite finger effectively seem like
an infinite half-plane. If the manipulator gripper finger meets or exceeds this minimum
finger width, then the pushing move may be executed in the real world with guaranteed
results.

Once these assumptions are met, the complex physical problem of real-world grasping
can be abstracted into the simpler problem of understanding the motion of a polygon
sliding along a plane under the influence of a few well-defined rules. This abstracted
problem can then be pursued with a purely geometric analysis.
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Notation

The notation that will be used throughout this paper to describe polygonal objects is
illustrated in Figure 6.

The edges of the polygon are numbered ei, €2, 63, ... etc., from some chosen starting
edge, increasing counter-clockwise around the polygon. The vertices are numbered in a
similar fashion, so that for every edge et-, vertex V,* is on the clockwise end of the edge,
and vertex Vt-+| is on the counter-clockwise end of the'edge (see Figure 6). By convention,
we will always choose e| to be the longest edge of the polygon.

Sometimes it is useful to think of an edge et- as a vector VJVJ+J ; when this is the
case, we will denote the edge e^. Each edge ê  has an edge-angle &, which is the angle
measured clockwise from e^ to "cf (See Figure 6).

The triangle illustrated in Figure 6 will be used in subsequent examples throughout
this paper. Notice that the COF of the triangle has been intentionally chosen in an
unusual position. This unusual choice was made for two reasons: (1) The examples are
more interesting with the COF in an unusual position, and (2) this choice demonstrates
that the method does not assume that objects are of uniform density.
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Figure 7. Pushing notation.

III. Pushing with One Plane

In all of the grasping operations considered in this paper, pushing plays an important
role. For example, if tlue part is displaced slightly from its assumed location, then the
robot's gripper fingers will not make simultaneous contact with the object. As a result,
there will be some period of time when .the object is pushed by one finger before the
second finger makes contact. Also, one might envision grasping operations where the
robot deliberately pushes" the object to align it before attempting a grasp. Therefore,
it is worthwhile to understand how an object behaves while it is being pushed, and our
polygon/infinite half-plane abstraction lends itself well to this problem. The purpose of
this section is to develop an understanding of pushing, and to characterize the outcome of
various pushing operations on any given polygon.

To investigate polygon pushing, we will divide our analysis into two parts, which are
characterized by the following questions:

• Where on the polygon will the pushing plane make first contact?

• How will the polygon rotate while it is being pushed?

To rigorously approach these two questions, it is necessary to formalize our notion of
pushing. We will begin by defining a single pushing move as follows: A half-plane finger
starts with some orientation at some start point and moves in a constant direction for
some pre-defined distance. The orientation of the finger plane and the direction of pushing
are held constant throughout the move.
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Figure 8. Pushing space. The rectangle defined by the 8-<j> «oces contains all possible push-
ing moves: the dashwl line down the center of the pushing space corresponds to "natural*
pushing moves j where 6 = 90.

The angle <f> is the finger orientation, measured relative to edge ê  of the polygon (See
Figure 7). The angle 6 is the direction of pushing, measured relative to the finger plane.
4> is the angle measured clockwise from T\ to the open face of the pushing plane, while 6
is measured counter-clockwise from the pushing plane to Rp? the ray of. pushing.

Note that <f> is measured relative to the polygon's coordinate system; this coordinate
system is not fixed. Therefore, since the polygon may rotate while being pushed, <£ can vary
during the pushing move even though the orientation of the plane constant throughout the
move.

Howevers since the pushing direction 6 is measured relative to the pushing plane
instead of the polygon's coordinate system, 6 stays constant throughout the pushing move*
even if the polygon rotates. Thus angle 8 is invariant throughout the pushing move. This
fact that 6 remains invariant during a pushing move will become significant later on.

The set of all possible pushing operations forms a well-defined pushing space. This
pushing space can be represented as a rectangular coordinate system with 6 as the hor-
izontal axis aed ^ as the vertical axis (Figure 8). 8 ranges from 0 to 180 degrees, while
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Figure 9. Edgo-flat orientations. Tin1 pushing plains illustrate the three plane orientations
that will make first contact flat against an edge of the triangle* Since each edge-flat plane
orientation <j> is exactly equal to its corresponding edge-angle £,% the £t- edge-angles can be
directly used to determine the edge-flat lines in the pushing apace.

4> ranges from 0 to 360 degrees; all pushing operations correspond to a point somewhere
within this rectangle (<5 values greater than 180 degrees do not correspond to valid pushing
operations, since the ray of pushing would point into the pushing plane). The dashed line
down the center of the rectangle is the 6 = 90 line, which corresponds to those "natural"
pushing operations where the ray of pushing is perpendicular to the pushing plane. Note
that start position and pushing distance axe not included in the pushing space; determining
the value for these parameters will be addressed in a later paper.

Where Will the Plane Touch First?

The point where the plane first contacts the polygon depends entirely on the orienta-
tion of the plane, and not the direction of pushing. Thus first-contact regions axe delimited
only by values of <p in the pushing space, independent of <5, and we may proceed by only
considering the effect of changing the value of ^ in a pushing operation.

Figure 9 shows a triangle surrounded by three infinite half-planes; each plane is ori-
ented so that it will make flat contact with one of the triangle's edges as the plane ap-
proaches the triangle. These special orientations are called the edge-flat orientations of the
polygon, which correspond to edge-Eat Enes of constant <f> in the pushing space. Because of
the way we chose our notation* the orientation $ of each edge-flat plane is exactly the same
as the corresponding edge-angle £f-; in other words, the polygon's edge £t- values determine
all of the edge-flat lines in the pushing space.

This gives us the lines in the pushing space where first contact is made with the plane
Eat against an edge of the polygon. For pushing operations where the value of 4 is between
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Figure 10. First-contact regions. The edge-flat lines partition the pushing space into bands
of vertex first contact.

£t-_X and £,-, first contact is made with the vertex V,-. Thus for all values of <j> in between
the edge-flat lines, contact is made with the polygon vertices, giving us bands of vertex
first contact (Figure 10). These bands, combined with the edge-flat lines, completely fin
the pushing space; therefore we know tie point of first contact for all possible pushing
operations.

How Will the Polygon Eotate?

Now that we ha¥e isolated regions of first contact in the pushing space, we can analyse
the motion of the polygon within any particular contact region. We will first consider the
effect of the the friction cone rays R, and &r,'and then consider the effect of the ray of
pushing Up.
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Figure 11. The critical pushing finger orientation 4>c. The angle <j>c is the plane orientation
where the pushing plane normal points directly at the COF. In this case. <f>c is for vertex

For any particular vertex contact region, we will define the critical pushing orienta-
tion <f>c. <j)c is the plane orientation where the plane normal points directly at the COF
(Figure 11).

Consider the case of pushing contact illustrated in Figure 12(a); the corresponding
first-contact region in the pushing space is shown in Figure 12(b). Recall that the three rays
vote to determine the rotation direction. Our strategy is to consider each ray individually
and determine how its vote is distributed throughout the contact region; once we have
considered all three rays, we can tally the votes to determine the overall rotation direction
as it varies within the contact region.

First, consider the left friction cone ray ftt, which lies an angle a away from the
pushing plane surface normal. R| sweeps back and forth as <f> vaiies; notice that when the
value of <f> exceeds 4>c + <*? ̂ i crosses the dotted line between Vi and the COFt aad Rt's
vote changes from clockwise to counter-clockwise. Thus, $€ + a is the decision value for &|<
We can use this decision value to split the contact region into two subregioEs: one where It|
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Pushing configuration
shown in (a)

(a)

90

(b)

180

Figure 12. (a) An example case of pushing contact, axul (b) The corresponding first-contact
region for (a) in the pushing space.

Figure 13. The* decision value for BL|Vs rotation vote, corresponding to a horizontal line in
the pushing spare ckawn at $r + a. T/ indicates that Ri votes counter-clockwise above the
line, while || indicates that Rf votes clockwise below the decision line.

votes clockwise, and one where E* votes counter-clockwise.^ The decision value for ft* and
the resultant splitting of the contact region is shown in Figure 13. Note that a clockwise
polygon rotation corresponds to a vertically downward movement in the pushing space, m
we will denote fi/s clockwise decision by | | . Similarly, a counter-clockwise decision by E§
will be denoted by ff*

Now consider the right friction cone ray E r . By reasoning similar to the previous

1 Note that iii some cfwe», the decision value may Be outside the contact region, in which case the mj
votes uniformly throughout the ref km.
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Figure 14. The* decision value for R,r, again corresponding to a horizontal Line in the
pushing space, but this time drawn at <j>c — a. R r votes ctmntcr-clockwise above the line,
and clockwise below it.

Figure 15. The critical pushing direction /8C. The angle f3e is the angle measured clockwise
from ei to R p when Rp points directly at the OOF. In this case, fte is for vertex V$.

analysis of B*, we can see that as <f> is reduced below 4>c ~~ a> B*r crosses tlie dotted line and
changes its vote from counter-clockwise to clockwise. This implies that the decision value
for RP is $c —a. Again, this decision value splits the contact region into two subregions of
differing vote, as shown in Figure M.

Finally, consider the ray of pushing Rp . As with Rs and R r , as Hp crosses the dotted
line between V | and the COF, its rotation vote changes. However, since TLP does not
vary directly with ^, Rp

?s decision value does not neatly correspond to a horizontal line of
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Figure 16. The derision line for Rp ' s rotation vote. Since R p docs not vary directly with
4>. Rp's decision line is a line that slopes up at a 45 degree angle in the pushing space. Rp

votes counter-clockwise to the left of the line, and clockwise to the. right of it.
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Figure 17. Tallying the votes of each subregion. The three decision lines divide the contact
region into six subregions (a). In each subregion, the votes arc tallied to yield an overall
rotation direction for each subregion (b).

constant $ in the pushing space.

Rather^ Rp 's direction depends on both <<f> and 8. Let us define /?c to be the angle
measured clockwise from ei to Rp wlien Rp points directly at the COF (Figure 15).

We can tell by inspection of Figure .15 that Rp points directly at the COF whenever
^ — 6 = fic* As Rp crosses this critical vatne, Its rotation vote changes.

Thus, the decision line for Rp is easy to derive; Since <f> — 6 = 0C all along the
it follows that ^ = 6 + fic. Since fic depends only on the geometric configuration of the
object^ |?c is constant, and the previous equation becomes a line with slope 1 and iafcercept
fic in the pushing space. This decision line splits the contact region into two subregknis,
as shown in Figure 16.
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180
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Figure 18. Merging subregions with the same rotation direction, (a) Shows two adjacent
first-contact regions, with the results of tallying shown for each subregion. (b) Shows the
contact regions after merging those adjacent subregions that, have the same overall rotation
direction. Remaining are boundaries between regions of opposite rotation direction. Bound-
aries with rotation directions that move* away from the boundary are considered divergent
and are drawn with a single line: boundaries with rotation directions that move* toward the
boundary are considered convergent and are drawn with a double line.

At this point, each ray lias delineated its own subregions of clockwise and counter-
lockwise rotation; these regions can now be overlaid, and the votes of each subregion
an be tallied to yield the overall rotation direction of each subregion. This process is
llustrated in Figure 17.

Now that we have the rotation direction of each subregion, we can merge subregions
hat have the same overall rotation direction, since the boundary between them is nieaning-
ess. This merging process is shown for two adjacent sample contact regions in Figure 18.
figure 18(a) shows the subregions after their votes have been tallied, and Figure 18(b)
hows the boundaries that remain after merging.

After the merging process is complete, two types of boundaries remain: divergent,
vherc the polygon rotates away from the boundary, and convergent^ where the polygon
-otates toward the boundary. We will differentiate between divergent and convergent
>oundaries by drawing a single bold line for divergent boundaries, and a double bold line
or convergent boundaries, as shown in Figure 18.
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Figure 19. Tliree sample pushing operations. In pushing operation #1 . the triangle rotates
counter-clockwise onto e^ and remains stable on e3. In #2. the triangle rotates clockwise
onto C2 and remains stable on e2. Pushing operation #3 starts out with the same orientation
$„ but a different pushiu^ directioii $; n» a result, the triangle rotates clockwise onto ej,
keeps rotating to ej, and then remains stable 011 e^.

The boundaries generated thus fax have implicit stability information embedded within
them. The divergent boundaries correspond to unstable pushing operations that might
rotate in either direction if perturbed, while the convergent boundaries correspond to stable
edge-Hat pushing configurations where the polygon stays flat as the pushing operation
continues. The convergent boundaries are stable because any perturbing influences to
either side of the boundary are compensated by the tendency of the polygon to rotate
back to the edge-flat configuration.

Thus we can analyse the first-contact region for each polygon vertex and generate
rotation/stability information for all pushing operations for the polygon.
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Figure 20. Pushing operation # i . Contact begins in the initial configuration shown in (a),
whereupon tin* triangle rotates couuftT-clorkwise until edge C3 lies Hat against the pushing
plane (b). Because vertices V3 and Vi tend to rotate the triangle in opposite directions,
edge c3 remains stable against the pushing plane, and the pushing operation terminates* in
the configuration shown in (c).

Figure 21. Pushing operation #2 . Contact begins in the initial configuration shown in (a),
whereupon the triangle rotates clockwise* until edge 02 lies flat against the pushing plane (b).
Edge e2 remains stable against the pushing plane because vertices Vo and V3 both oppose
rotation away from c^, and the pushing operation terminates in the configuration shown
in (c).

The result of carrying out this process on the triangle seen earlier is shown in Figure 19.
Notice that the edge-flat line for <to l$ onty convergent for some values of «5; this is due to
the fact that €2 only remains fiat against the pushing plane when Rp lies to the right of the
COF. This is best understood by carefully examining the three sample pushing operations
illustrated in Figures 19-22.

As the three example operations demonstrate, pushing operations that begin above
the convergent portion of e2*s edge-flat line terminate with $2 fla* against the pushing
plane, and pushing operations that begin above the non-convergent portion of e2*s edge-
flat line aroll past" e2 and terminate with s% flat against the pushing plane. To differentiate
between these two results, we cam extend a boundary along a vertical line of constant 8 from
the end of the convergent portion of ©2ls edge-flat line until the next rotation boundary is
encountered.
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Figure 22. Pushing operation jfo. Contact, lupins* in iho initial configuration shown in (a).
This iniriaJ configuration is identical to tJi<> initial configuration ibr pusljing operation $2,
except that the value of; 6 is different, implying that the ray of pushing points in a slightly
different direction. After initial contact is made, the triaugle again rotates clockwise until
edge eo lies flat against the pushing plane (1>). This thin*, however, vertex V3 does not oppose
rotation away from e2. and the triangle eouthmes to rotate clockwise onto e$, leading to
the final configuration shown in (c).

Note that this boundary is different from the boundaries drawn previously because it
arises from our convention that 6 is held constant throughout a pushing move, rather than
from a physical difference in the motion of the polygon. One might imagine pushing moves
where 6 is allowed to vary, in which case these vertical boundaries become meaningless.
Since these vertical boundaries are not as "strong" os the boundaries between rotation
directions, we will draw them dashed, ar indicated in Figure 23.

Once any required vertical boundaries are added, the pushing space is divided.into
closed edge-stahilily regions, as shown in Figure 23. These regions correspond to all
pushing moves that will terminate with a particular edge flat against the pushing plane;
each region is labelled with its appropriate edge in Figure 23.

This diagram is the push-stability diagram for the triangle; any pushing operation
chosen within the edge-stability region for a given edge % is guaranteed to terminate with
et- flat against the pushing plane.

Note that edge-stability regions dos't always fin the entire pushing space. For example,
consider a regular octagon with a very high coefficient of friction; if such an octagon is
pushed at an angle (i.e,t 6 not close to 90), it will continue to roll forever, since no edge is
stable. This 13 Indicated by the push-stability diagram for the octagon, shown in Figure 24*
If a pushing move starts outside the edge-stability region for one edge (S not close fco 90}, It
can never enter the edge-stability region for any other edge* and so the octagon continues
to' roflL

This provides the answer to our question "How Will the Polygon Rotate?19 We can w
the Itst-contact regions derived in the previous section to generate edge-stability regions.
Pushing moves within an edge-stability region for m edge et- are guaranteed to terminate
with tf l a t aad stable against the pushing plane*
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Figure 23. The pnsli-stahility diagram for the triangle. Any pushing operation that begins
within the edge-stability region for a given edge e^ is guaranteed to terminate with et* flat
and stable against the pushing plane.

Summary — One-Plane Pushing

This completes the analysis of one-plane polygon pushing; now we can fully charac-
terize the motion of any convex polygon under pushing by applying the following analysis:

1. To determine where the pushing plane will first contact the polygon, the pushing
space is divided into bands of vertex first-contact by edge-lat lines; these edge-flat
lines correspond exactly to the polygon's £t- edge-angles.

2. To determine how the polygon will rotate during contact, each contact region is split
by each ray according to the ray's rotation vote within the contact region. In the
resulting subregions, all three votes are tallied to find the overail rotation direction
for each subregion.
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Figure 24. An example of an object tliat lias infinitely unstable ptishing moves. Pushing
moves tliat originate outside the shaded area will cause the octagon to continually "roll"
along the pusMng plane.

3- Next, all adjacent subreglons with the same rotation direction are merged, defining
boundaries of opposite rotation direction. Boundaries where the polygon rotates to-
ward the boundary are taken to be convergent boundaries where the polygon will
remain stable during pushing, while boundaries that the polygon rotates away from
are taken to be divergent, unstable boundaries,

4. Finally, since 6 is held constant during a pushing move, vertical boundaries are estab-
lished appropriately for any edge-Eat limes that are partially convergent.

The resulting push-stability diagram shows, for any edge of the polygon, the space of all
possible pushing moves that are guaranteed to result in a stable edge-flat configuration.
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Figure 25 . An example of a successful squeezing operation.
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Figure 26» An example of an unsuccessful squeezing operation.

IV. Squeezing with Two Planes

Consider the example squeezing operation shown in Figure 25. The two planes are
parallel, and squeeze together on either side of the triangle. As the squeezing planes make
contact, the triangle is forced to rotate until edge e| is pressed flat against the lower plane.
Once this edge is flat against the plane, the fingers can exert a continuous squeezing force
to firmly grasp the triangle-

Note that in this configuration, the applied squeezing force can be arbitrarily increased
and the triangle will not move. We will refer to this condition as wedging. By definition,
a polygon is wedged between a pair of squeezing pkines if the squeezing force applied by
the planes can be increased arbitrarily without causing the polygon to rotate. When a
polygon is grasped in such a wedging condition, the grasp can be made arbitrarily strong
by appropriately increasing the squeezing force.

The wedging condition illustrated in Figure 25 corresponds to a grasping configuration
we would like to achieve; the triangle's orientation is constrained (since edge «i is flat
against the lower plane), and the triangle is held firmly between the gripper fingers (since
the triangle is wedged).

However, not all wedging conditions correspond to desirable grasps. Consider the
second example squeezing operation depicted in Figure 26. In this squeezing operation the
triangle is also wedgeds because the squeezing force can be increased arbitrarily without
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Figure 27. The squeeze-grasp diagram for the triangle.

causing a rotation of the triangle. However, in this configuration the triangle's orientation
is not fully constrained, because the presence of friction allows this type of wedging to
occur over a small range of orientations (this will be explained in more detail later).
Therefore, since we have not constrained the triangle's orientation, we have not eliminated
the uncertainty in the triangle's position, and this grasping configuration is undesirable.
Further, it will become apparent later that this grasp cannot be achieved as reliably as the
first.

These two examples prompt us to define two conditions required for a stable grmp:

(1) At least one edge of the polygon is fiat against a squeezing plane.

(2) The polygon is wedged between the squeezing planes.

Condition (I) assures that the uncertainty in the polygon's orientation is removed,
while condition (2) assures that we have a firm grasp of the object.

With our notion of a stable grasp thus defined, we would like to know what sqneeiiag
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motions will achieve a stable grasp without getting stuck in one of the undesirable wedging
configurations demonstrated in the second example. This query is answered by the squeeze-
grasp diagram, shown in Figure 27. The squeeze-grasp diagram represents the space of
all squeezing moves, and the shaded regions indicate those moves that arc guaranteed to
succeed in achieving a stable grasp.

The remainder of this section will explain how this squeeze-grasp diagram is generated.
We will begin by formalizing our notion of squeezing to allow us to describe squeezing
operations in a way similar to the way pushing operations were described previously.
Next we will develop a simple algorithm for finding all the pairs of polygon features that
can make simultaneous contact with both squeezing planes. After we have found all of
these contact pairs, we will then determine which contact pairs provide a stable grasp
by meeting our criteria listed above; those pairs that do meet our criteria will be listed
as desirable grasp configurations that we seek. In addition, we will look among all of
the contact pairs to determine where undesirable wedging configurations occur, and thus
delineate those squeezing configurations that should be avoided. Finally, we will describe
how pushing phenomena affect a squeezing move, and combine our analysis of squeezing
with the pushing analysis of the previous section to produce the complete squeeze-grasp
diagram of Figure 27.

Squeezing Notation and the Squeezing Space

At this tiine we will formalize our notion of squeezing in order to provide a context
for the subsequent analysis of squeezing operations. First we will define a single squeezing
move. As an initial condition, the parallel squeezing planes start with some orientation,
starting position, and separation. The planes then squeeze together along their common
normal, keeping their orientation constant. Meanwhile, the two planes can also move
laterally in unison. The speeds of plane squeezing and lateral movement are held constant
throughout the squeezing move; by choosing different combinations of squeezing and lateral
movement speeds, various 6 values can be achieved. This motion continues until the planes
can't squeeze together any more (i.e., when an opposing force is met that exceeds some
pre-set threshold). Note that since guaranteed grasp plans imply that the gripper will have
a stable grasp of the object when the planes are finished squeezing, it is not important to
assure that the lateral movement stops when the termination condition is met.

The notation used to describe squeezing moves is essentially identical to the pushing
notation presented above, but must be modified to account for the presence of two half-
planes instead of one. First, the planes are arbitrarily labelled plane # 1 and plane # 2 .
The parameters for each plane are <j> and S as before, but are now d>i and Si for plane # 1 ,
and <£o and 2̂ f° r pl&**e #2 (see Figure 28)* Since the two planes are always parallel, these
parameters are related as follows:
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Figure 28. Squeezing notation.

^2 = <f>i + 180

&2 = 180 - Si

As with pushing operations, the set of all possible squeezing operations forms a well-
defined squeezing space. This squeezing space can be represented by the same rectangular
coordinate system used for the pushing space, where the 6 and <j> axes in the pushing space
are replaced with Si and <pi axes, respectively (Figure 29).

The parameters <$2 and ^2 c a i 1 ^ e included in the squeezing space diagram by by
drawing the «%> axis along the top of the diagram and drawing the <f>2 axis along the right
side. Note that the ^ axis is reversed and the <f>2 ^^s is shifted 180 degrees because of the
relationship between the parameters for plane # 1 and plane #2 .

Where Can the Squeezing Planes Contact the Polygon?

In order to understand the behavior of a polygon under squeezing, we must first be
able to predict where the polygon can be touched by the squeezing planes.

To represent the points of contact between the squeezing planes and the polygca
during a squeezing operation, we wfll introduce the concept of a contact pair. Two features
on a polygon are a contact pair if, for some orientation of the opposed squeezing half-planes,
the two features axe the first points of contact. We will denote a specific contact pair as
aa ordered pair of polygon features^ where the first feature listed is taken to be in contact
with plane # L For example, fVis V2) t («j, V3}, etc.
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Figure 29. Squeezing space. Squeezing space is similar to pushing space, except for the
addition of the new parameters fa and 82 along the right side and top edges.
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Figure SO. Examples of polygon contact pairs.
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Figure 31 . A (V-V) contact pair that cannot wedge.

Contact pairs are connected by dotted lines called contact pair lines. Some examples
of contact pairs <are shown in Figure 30. Contact pair lines can occur between two vertices,
an edge and a vertex, or two edges; for brevity, these cases will be referred to as (V-V),
(E-V), and (E-E) contact pairs, respectively (Figure 30).

Contact pairs are defined to exist for all pairs of contact points, regardless of whether
or not the squeezing contact has the potential for wedging. Note that not all contact
pairs can wedge, and it may not be possible to orient the squeezing planes normal to
the contact pair line (Figure 31). Therefore, it is incorrect to directly associate contact
pairs with wedging; squeezing contact with a contact pair is a necessary but not sufficient
condition for wedging. We will discuss the conditions required for wedging later; for now,
our strategy is to find all of the polygon's contact pairs, and then determine which contact
pairs can wedge.

To find all of a polygon's contact pairs, we can capitalize on the results of our previous
investigation of pushing. Recall that a polygon's £t* values directly correspond to edge-fiat
lines in the pushing space, which partition the pushing space into bands of vertex first
contact. A similar result applies in the squeezing space as well. The bands of vertex
first-contact for plane # 1 axe identical to the first-contact bands derived previously for
pushing. Plane #2*s first-contact bands are also identical, except that they are shifted 180
degrees in the squeezing space (Figure 32)- As we shall see, these two sets of first-contact
regions immediately define all of the polygon's contact pairs.

In Figure 32S consider plane # l ' s first-contact band for vertex V3 (shaded region).
Note that this region overlaps with plane #2*s first-contact band for vertex V^ ex edge-fiat
line, and V2 vertex first-contact band. This implies that for orientations where plane # 1
touches V3 firstT plane # 2 can touch either V|, ei, or Vj firsts as demonstrated in Figure 33.
Thus, by projecting plane # l ' s first-contact region for V3 onto- the corresponding first-
contact regions for plane #2 ? three of the polygon's contact pairs were found: (V^Vi) ,
(V3 t«1) ,ai id(V,1V2) .

By carrying out this process for all of plane #! '» vertex finite-contact bands aad edge-
fiat lines and tabulating the results, all of the polygon*s contact pairs can be found. The
table in Figure 32 shows the results of applying this procedure to oar now<»familiax triangle;
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Figure 32, Detection of contact pairs. The first-contact regions for plane #1 arc projected
onto the first-contact regions for plane #2, yielding the table of contact pairs shown at right.

Figure SS. Dlustration of the three contact pairs founid from the shaded region in Figure '32.

note that all of the polygon's contact pairs (ia both directions) were returned by the
procedure.



Figure 34. The «uij(lcs A find p for an edge-vertex (E-V) contact pair.

Which Contact Pairs Provide a Stable Grasp?

Now that we have a list of all of the polygon's contact pairs, we can determine which
contact pairs provide a stable grasp of the polygon. Recall the requirements for a stable
grasp that were put forth earlier:

(1) At least one edge of the polygon is flat against a squeezing plane.

(2) The polygon is wedged between the squeezing planes.

When the above conditions are satisfied, the object is guaranteed to be held in a stable
grasp, with two degrees of uncertainty removed from the object's position.

Determining what squeezing orientations achieve these conditions is not difficult. Con-
dition (1) is met in all cases of {E- V) or (E-E) contact pairs; all instances of these contact
pairs have already been detected by the algorithm described in the previous section. There-
fore, all stable grasps can be found by sioiply determining which instances of (E-V) and
(E-E) contact pairs wedge, thus satisfying condition (2).

First we will consider (E-V) contact pairs. We can determine whether or not any given
(ei> Vy) contact pair will wedge by examining the angles A and />, shown in Figure 34- These
angles axe the interior angles formed between the ends of the edge et- and the opposite vertex
Vy; A is the angle fcmed at the left vertex, while p is the aagle formed a the right vertex.

These angles indicate whether the contact pair (e,-, Vy) will wedge when squeezed, km
[E-V) contact pair wedges when both p and A are less than (90 + a ) . To see this, con*id*r
the three cases of (E-V) sqtieei ing contact shown in Figure 35:

• In case (a), p is less than (30 + a), but X h not* Notice the contact pair line labelled
*. This line lies outside the contact friction cooes — this implies that there is mot
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Figure 35. Throe (E-V) ^quco/jiig-contnrt cases. In case (a), tltr polygon rotates counter-
clockwise, since A > (90 -I- a). In case (b). the polygon is wedged and does not rotate,
since both A ami p are less than (90 -f a). In case* (c), the polygon rotates clockwise, since
p> (00 + a ) .

enough friction to make vertices V,- and Vy stick, and the polygon slips, rotating
counter-clockwise.

• In case (b), A and p are both less than (90 + a), and the polygon is wedged between
the squeezing planes. This is true despite the fact that both (V-V) contact pair lines
lie outside their friction cones. The contact between Vt- and Vy cannot slip, because it
would result in a clockwise rotation that would cause et* to enter plane # 1 . Likewise,
the contact between V t^| and V-* cannot slip, because the counter-clockwise rotation
that would result is also obstructed by e2-. Note that if cither or both of the dotted
lines were within the friction cone, the polygon would still be wedged, since no slipping
could occur.

• In case (c), A is less than (90 + a), but p is not. By reasoning similar to case (a)
above, the polygon slips as it is squeezed, this time rotating clockwise.

This analysis provides us with a simple way to determine whether or not any given (E-V)
contact pair will wedge. If A and p are both less than (90 + a), then the contact pair will
wedge; otherwise, the polygon will rotate when squeezed.

After developing the wedging conditions for (E-V) contact pairs, the wedging analysis
for (ErE) contact pairs is trivial. Basically, the same conditions apply: (E-E) wedging
occurs only when both A and p are less than (90 + a). The only change to the previous
(E-V) analysis is that the definitions of p and A axe different for an (E-E) contact pabr;
these definitions are illustrated in Figure 36.

Thus* each (E-V) or (E-E) contact pair can be quickly checked for wedging; if both A
and p are less than (90 + a), then the contact pair will wedge, said is considered a stable
grasp that we seek. Those contact pairs that provide a stable grasp correspond to seei
lines in the squeezing space. The seek lines for the triangle are shown in Figure 37; these
seek lines show all of the stable grasp configurations that are possible for the triangle.
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Figure 36. Tlir aiigl<*s A oiid p for an edge-edge (E-E) contact pair.

So, to determine which contact pairs provide a stable grasp, we can take all of the
(E-V) and (E-E) contact pairs found by the procedure described in the previous section,
and calculate their X and p angles. If both A and p are less than (90 + a ) , then the contact
pair provides a stable grasp, and the contact pair's seek line is added to the list of seek
lines for the polygon.

What Polygon Orientations Wedge in an Undesirable Configuration?

As shown in the second jcxample presented in the beginning of this section, there
are some (V-V) squeezing configurations that wedge, but are undesirable because the
uncertainty in the polygon's orientation is not removed (Figure 38). It is precisely these (V-
V) wedging configurations that we wish to avoid; therefore, we will proceed by examining
each (V-V) contact pair in turn, determining what squeezing orientations (if any) result
in wedging. We will then avoid these undesirable orientations-

Wedging occurs for a (V-V) contact pair when the contact pair line lies within the
friction cone at each vertex (Figure 38). If the contact pair line lies outside the friction
cones, then the vertices slip, causing the polygon to rotate.

To determine what squeezing plane orientations cause a given contact pair to wedge,
consider the special-case squeezing operation illustrated in Figure 39. In this configura-
tion, the squeezing planes are perpendicular to the contact pair line* We will denote the
orientation of plane # 1 in this special ease as fa.

Since both squeezing planes are perpendicular to the contact pair line, the contact
line lies within both friction cones, and the polygon is wedged* Now imagine rotating the
parallel squeezing planes sightly k either direction; as long as the pl&aes arc rotated km
than a away from fay the contact pair lae remains within the friction cones, and wedging
continues. However, as s^on as the planes are rotated further than OE away from faf the
contact pair line lies outside both friction cones, and the polygon sip$ and rotates as tht

f:

if
t
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Figure 37. Seek lines in the squeezing space. These seek lines indicate all of the triangle's
stable grasp configurations. The grasp configurations corresponding to each seek line are
shown on the right.
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Figure S8» A (V-V) rontact pair that is wedged. Ho matter how hard the polygon h
, it wil not rotate.



Figure 39. Special squeezing case. The contact pair line is perpendicular to both squeezing
planes.
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Figure 40. The region of possible contact with a contact pair* For the contort pair (V,*,
contact witli tiotli sffiieexiiig pkiies can occur in the uitcrvaJ ($mim

planes squeeze together. Thus, undesirable (V-V) wedging occurs for plane orientations
with ^ | vajues in the range {̂ » — a, ^ + a) .

Howevert not all rallies of #i within ($9 - a7 4$ + <*) ®x® realizable for some contact
pairs, since the edges adjacent to the contact vertices may prevent the squeezing planet
from reaching the wedging orientations (recall Figure 31, where wedging was impossible).
Therefore, it is necessary to determine what 4i interval corresponds to possible contact
configurations with agivea contact pair,, and then compare this interval with the fa interval
that causes wedging.
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Consider the representation of a contact pair (V2-, Vy) in squeezing space (Figure 40).
As before, the region of V2- first contact with plane -//-I is shown on the left, while the
region of Vy first contact with plane //2 is shown on the right. Recall that the contact
pair-finding procedure discovered this contact pair by detecting the overlap between the
Vt Qrst-contact region and the Vy first-contact region (shaded area); this overlap also
conveniently corresponds to the realizable plane orientations for the contact pair. Thus,
we can infer from the diagram that the interval (</>mm> ^mnx) °f realizable plane orientations
for any given (V;, Vy) contact pair can be easily calculated as follows (recall that £,- is the
value of e.;'s edge-flat line):

cj>min = max{& {tj - 180)]

(j>rnax = "Wn[&-1, ( f / - l ~ 180)]

Note that </>7mn is always less than <f>maxi °r C^c this contact pair wouldn't have been
detected in the first place.

At this point in the analysis, we know that:

• Contact occurs for values of <f>i in the non-empty interval (<f>7riin,<f>mnx)>

• Wedging occurs for values of 4>i in the non-empty interval (<f>3 — a, <£.$ + a) .

The intersection of these two intervals corresponds to the range of plane orientations that
wedge. Thus we can intersect these intervals to yield a, wedging avoidance region A in
squeezing space:

A = (<£mtm 4>max) H [<f>s - OL, <f>9 + a)

The interval of possible contact and interval of wedging axe completely unrelated; they
may coincide or partially overlap, one can be contained within another, or they may be
completely disjoint. Thus, nil avoidance regions axe possible.

Computing the wedging avoidance region A is simple:

Amin = max{4>min, (<f>& - a)]

Amax = min[4>max, ($8 + a)]

(If Amin > Amax, then A = nil)

This calculation can be carried out for all of the polygon's (V-V) contact pairs, thus
finding all of the wedging avoidante regions for the polygon (Figure 41}. If we choose
a squeezing operation that stays out of these regions, then we are guaranteed that the
polygon will not get stuck in an undesirable (V-V) wedging configuration.

So to determine what polygon orientations wedge in undesirable configurations, we
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Figure 41. Wedging avoidance regions. Squeezing operations that occur within the shaded
regions encounter (V-V) wedging.

can calculate the wedging avoidance region A for each (V-V) contact pair that was found
by the contact pair-finding procedure. All squeezing operations that stay out of the result-
ing avoidance regions are guaranteed not to get stuck in any undesirable (V-V) wedging
configurations.

Combining Seek Lines and Avoidance Regions

After we have found all of the seek lines and avoidance regions for a polygon* we can
combine these seek lines and avoidance regions to form a seek/avoidance diagram^ which
fully describes the behavior of the polygon under squeezing (Figure 42).

At this point, it is worthwhile to investigate the motion of the polygon when subjected
to squeezing operations that lie in the *white space1* between avoidance regions and seek



42

270 -

90 -

90

\ \ \ \ \ \ \

\ \ \ \ \

\ \ \ \ \ \ \

\ \ \ \

\ \ \ \

\ \ \ \ \ \

\ \ \ V \ \ \

\ \ \ \ \ \ \

Figure 42. Wedging seek/avoidance diagram. Squeezing operations that take place within
the shaded avoidance regions result hi undesirable (V-V) wedging. The dashed lines are
$evk linos that ccirrcvpoiid to (E-V) or (E-E) contact pairs that wedge when squeezed, thus
providing a stable grasp.

lines.

Consider the example shown in Figure 43(a). The rectangle is being squeezed along
its (Vx,V3) contact pair and is not wedged; as the planes squeeze together, the rectangle
rotates clockwise until €| lies flat against plane # 1 , and stable grasping is achieved. The
corresponding segment of the rectangle?s seek/avoidance diagram is shown in Figure 43(b);
the rectangle starts at the heavy dot near the avoidance region, and moves vertically down
to the ti seek line (as with pushing, we require that S is constant).

Notice that the rectangle's rotation direction is constrained by the squeezing planes;
the rectangle can only rotate clockwise, since counter-clockwise rotation would cause the
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Figure 43. The rotation of a. rortangle UJK!(T squeezing, (a) As tlio planes squeeze together,
the rectangle rotates clockwise, (b) The stqueoxing move of (a), illustrated in the squeezing
space. The rectangle starts slightly below the (V^V*) wedging avoidance region, and
travels moves down to the ei stable grasp seek line,

vertices Vj and V3 to enter the squeezing planes. Hence an analysis of rotation direction
can be avoided completely; polygons under squeezing always rotate away from avoidance

regions toward seek lines. Therefore, we know that any squeezing operation that begins
between two avoidance regions will always rotate directly to the seek line between the
avoidance regions, without wedging along the way.

Thus, the resulting seek/avoidance diagram indicates the space of all successful grasp-
ing motions; any squeezing operation that begins outside of an avoidance region in the
diagram is guaranteed to terminate in a stable grasp at the nearest seek line.

How Can We Include Pushing Information?

At this point, we have developed the seek/avoidance diagram, which characterizes
the outcome of all possible squeezing operations. However, this result is not directly
applicable to real-world squeezing operations because, in the real world, two-plane contact
does not exist throughout all phases of a squeezing move. Because the location of the
object is not precisely known, it is unlikely that both squeezing planes will touch the
object simultaneously; rather, the squeezing move will consist of a "pushing phase* when
only one plane touches the polygon* followed by a ^squeezing phase*1

 s when both planes
are in contact with the polygon* Further^ it is not known a priori which plane will contact
the polygon first. Thus, we need to devise a method of integrating the previous pushing

2It turns out that there » a single m*t*k fine brtween every pair of avoidance regions. However»it is wot
true that tlierc » *wbite PfMtce* to cither ttidc of every peck line. Some neck lixic* are adjacent to, or buried
within, avoidance regions. Titus, not every mwk line that provides stable prehension "m reachable through
itqiseeauug. Aa rxwmpfc of th» wifl be prevented in a later aection, ^Wlten Simple Squeezing Paila."*
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analysis with our new knowledge about squeezing.

Our strategy for integrating the pushing and squeezing analyses will be as follows:

A. We will iirst assume that plane # 1 touches first; this implies that there is a pushing
phase of unknown duration where plane # 1 pushes the polygon, followed by a squeez-
ing phase where both planes squeeze the polygon. Using this assumption, we will
combine the push-stability diagram for plane # 1 and the squeezing seek/avoidance
diagram to produce the offset-grasp diagram, which is the space of squeezing moves
that are guaranteed to succeed, given that plane #1 touches the polygon first.

B. We will pursue the same sort of strategy for plane #2, to produce the space of squeez-
ing moves that are guaranteed to succeed, given that plane #2 touches first.

C. Finally, we will intersect these two diagrams to produce the space of squeezing moves
that are guaranteed to succeed, regardless of which plane touches first. This diagram
is the squeeze-grasp diagram, and is the primary result of this paper.

Objective A
Let us proceed with point A above. Assume that plane # 1 touches the polygon first,

and that plane # 1 pushes the polygon for some time of unknown duration before plane #2
comes in contact with the polygon. Between the time that plane # 1 touches the polygon
and the time that plane # 2 touches, the motion of the polygon is described by its push-
stability diagram (recall Section III). However, plane jf-2 may come in contact with the
polygon at any time, immediately switching the motion to that described by the squeezing
seek/avoidance diagram.

Since we cannot predict when this contact will occur, we must choose operations
that can have pushing phases of any duration, without ever placing the polygon in any of
the avoidance regions of the seek/avoidance diagram. We can find the space of all such
moves by superimposing the push-stability and seek/avoidance diagrams and rejecting
those moves which might get caught in an avoidance region.

This rejection process is illustrated in Figure 44. Figure 44(a) illustrates the push-
stability diagram for the triangle, superimposed with the triangle's seek/avoidance dia-
gram. We wish to reject all pushing operations that can lead to wedging if plane #2 touches
the triangle at an inconvenient time; what regions of the diagram should be deleted?

Obviously* pushing moves that begin in one of the avoidance regions art rejected i>e*
cause an immediate contact with plane #2 would cause the sqaeese-grusp to fail Further,
all pushing moves that start outside an avoidance region but pass through aa avoidance
region at some t ime during the move should be rejected, since plane # 2 might contact tht
triangle while it is within the avoidance region. Point A in Figure 44(a) Indicates a mmt
of this type.
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Figure 40. The $quc;exe-grasp diagram for tlie triangle. Tlie squeeze-grasp diagram shows
the space of all squeezing moves that arc guaranteed to succeed, regardless of wliicJh plane
touches first. Tlik iHagrain Is the result of intersecting the diagrams of Figure 44(b) and
Figure 45(b).

This can be accomplished by applying a transform to plane #2*s offset-grasp diagram.
A short bit of algebra reveals that the transform is quite simple; To generate the offset-
grasp diagram for plane #2 in terms of plane # l ' s coordinates, the normal offset-grasp
diagram for plane # 2 is vertically phase-shifted 180 degrees, and relected about the & =
90 line* The result of applying this transform to the triangle's offset-grasp diagram is
shown in Figure 45(b). This transform arises from the algebraic relationships between the
parameters for plane # 1 ancf plane #2 (see squeesing introduction above).

The resulting diagram displays the space of push-squeeiing moves that are gnaraii*-
teed to succeed, assuming plane #2 touches first, expressed in plaae # F s coordinates
(Figure 45(b)}. This complete* objective B of the aJbwe strategy.

Objtctlvt C

Objective C wraps-up the sqiieeiing analysis. Tlie diagrams produced in objectives
A and B delineate the space of guaranteed posii-sqaeeiing iiiOYeŝ  assuming respectively
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that plane //I or plane //-2 touches the polygon Qrst. The areas that arc common to
both diagrams represent those squeezing moves that are guaranteed to succeed if plane # 1
touches first, or if plane jf=2 touches first. So, by intersecting the diagrams, we will generate
the space of all squeezing moves that are guaranteed to succeed, regardless of which plane
touches first. This final result is the squeeze-grasp diagram for the polygon.

The squeeze-grasp diagram for the example triangle is shown in Figure 46; this diagram
is the result of intersecting the shaded regions of the diagrams in Figures 44(b) and 45(b).
Any squeezing move that begins within a shaded area of the squeeze-grasp diagram is
guaranteed to succeed and provide a stable grasp of the triangle in the configuration
shown.

So to include pushing information into our squeezing analysis, we simply execute the
following steps:

1. Superimpose the squeezing seek/avoidance diagram over the push-stability diagram
to yield the offset-grasp, diagram, which is the space of squeezing moves that are
guaranteed to succeed, assuming plane # 1 touches first.

2. Transform the offset-grasp diagram for plane # 2 into plane # l 5 s coordinates by verti-
cally phase-shifting the diagram 180 degrees, and reflecting about the 6 = 90 line. The
result is the space of all squeezing moves that are guaranteed to succeed, assuming
that plane #2 touches first.

3, Intersect the results of Steps 1 and 2 to yield the squeeze-grasp diagram, which de-
lineates the space of squeezing moves that are guaranteed to succeed, regardless of
which plane touches first.

Summary — Two-Plane Squeezing

This completes our investigation of two-plane squeezing; a short summary of the entire
squeezing analysis follows.

The pairs of polygon features that can make simultaneous contact with both squeezing
planes can be found by projecting the first-contact regions for plane # 1 onto the first-
contact regions for plane ^ 2 , yielding a table of all of the polygon 5s contact pairs.

The polygon orientations that provide a stable grasp can be found by calculating the
angles A and p for each (E-V) or (E-E) contact pair. If both angles are less than (90 + a ) ,
then the contact pair wedges when squeezed* thus providing a stable grasp. Each contact
pair that provides a stable grasp corresponds to a seek line in the squeezing space; the
resulting seek lines show all of the stable grasp configurations that sure possible for the
polygon.
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The polygon orientations that should be avoided because they cause undesirable (V-V)
wedging arc found by calculating the wedging avoidance region A for each (V- V) contact
pair. The avoidance region A is found by intersecting the intervals (<f># — a, <f>mH + a) and
{^min^max)) where (</>* — a, <t>s+a) is the range of plane orientations where the particular
(V-V) contact pair wedges, and {4>mini4>max) is the range of realizable plane orientations
for the contact pair.

The resulting seek lines and wedging avoidance regions are then combined to form a
single squeezing seek/avoidance diagram, which fully describes the behavior of the polygon
under squeezing.

Finally, this squeezing information can be integrated with previously-derived pushing
information by superimposing the squeezing seek/avoidance diagram on the push-stability
diagrams for plane # 1 and plane #2, and then intersecting the resulting spaces. This
process produces the squeeze-grasp diagram for the polygon, which shows the space of all
squeezing moves that are guaranteed to succeed in grasping the object, while simultane-
ously removing two degrees of uncertainty from the object's position.
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Figure 47. The "roly-pointy1* objtxt.

Pigtir® 48* Puffh-stabiBty diagram &x the zoly-pdoity.

V. When Simple SquMsing Fails

Consider the object shown in Figure 47, which we will refer to as a "roly-pokity.1*
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Figure 49. Eoly-pointy seek/avoidance diagram.

This object is interesting because of its squeeze-grasp diagram, which is developed in
Figures 48-57. Figure 48 shows the push-stability diagram for the roly-pointy, produced
by the method presented in Section II. The wedging seek-avoidance diagram for the roly-
poiniy is shown in Figure 49; notice the many avoidance regions, and that several seek
lines are adjacent to or contained within avoidance regions.

With this objectt the move rejection process is very severe* After the seek-avoidance
diagram is superimposed over the push-stability diagram and the moves that can wedge
are removed, only a few smal regions remain. Figure 50(a) shows the space of push-
squeeze moves that are guaranteed to succeed, assuming that plane # 1 touches firsts while
Figure 50(b} shows the same regions, assuming that plane # 2 touches first. However, notice
that the intersection of these diagrams is all! Therefore, there 19 BO possible sqitecit-grasp
that is guaranteed to succeed, even in the presence of very small anccrtaiaty*

How can this be so? No squcexliig move is possible for this object because there is
no (E-V) contact pair which caa be reached by a squcciing move whtre cither plane may
touch first*
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Figure 50. Roly-pointy diagrams after rejection of moves that may (V-V) wedge, (a)
Assuming plane # i touches first, (b) Assuming plane #2 touches first. Notice that the
intersection of (a) and (b) is nil.

For example, consider the squeezing move labelled A in Figure 50. Since this move is
in a shaded region of Figure 50(a), A represents a squeezing move that is guaranteed to
succeed if plane $=1 touches first.

To see why this is the case, we will examine the result of applying the squeezing
move A to the roly-pointy, first assuming that plane # 1 touches first, and then assuming
that plane #2 touches first.

Fi'gures 51 and 52 show move Afs result, -assuming that plane # 1 touches first. Here we
assume that plane #1 makes contact before plane #2, and pushes the roly-pointy for some
time of unknown duration before plane #2 makes contact. If plane #2 touches right away,
then the roly-pointy slips as it is squeezed until edge es is fiat against the plane (Figure 51).
If plane ^2 doesn't make contact for a long time, then the roly-pointy rotates clockwise
under pushing until 65 is fiat against the pushing plane* and then 65 remains flat against
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Figure 51. Tlie result of applying the squeezing move A of Figure 50. assuming that
plane #1 touches first, and plane #2 makes contact immediately. When the move is finished,
edge C5 of the roly-pointy is flat against plane #1.
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Figure 52. The result of applying the squeezing move A of Figure 50, assuming that
plane #1 touches first, and there is a long delay before plane #2 makes contact. As in
Figure 51, edge e$ is Bat against plane #1 when the more is finished.

the pushing plane until plane #2 eventually makes contact, completing the squeezing move
(Figure 52). Notice that the roly-pointy ends up in the same final configuration in either
case. This is why move A is in a shaded region of Figure 50(a); it is guaranteed to succeed
as long as plane #1 touches first.

However, our results are not as good if we apply move A to the roly-pointy and
plane #2 touches first (Figure 53). If plane #1 touches right away* then the polygon
slips as it is squeezed until €5 is fiat against plane —1. and the grasp succeeds as before
(Figure 53). However, if plane #1 doesn't make contact for a long time, then the roly*
pointy rotates clockwise under pushing by plane # 2 , and will continue rotating until ®$
is fiat and stable against against plane #2* Thus, if a long delay occurs before plane —1
makes contact, then the resulting final configuration k entirety different than if plane #1
made immediate contact (Figure 54). Therefore we can make no guarantee about the
result of move A if plane #2 touches first; this explains why A is not in a shaded region
of Figure 5G(b).
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Figure 53. Tlio rrsult of applying the squeezing move A of Figure 50, assuming that
plciiK* #2 touches first, and plane //=! makes contact immediately. When the move is finished,
edge es flat against plane # 1 , as in Figures 51 and 52.
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Figure 54. The result of applying the squeezing move A of Figure 50, assuming that
plane #2 touches first, and there is a long dc l̂ay before plane # 1 makes contact. In this
case, the roly-pointy rotates clockwise until e$ is Bat against plane #2 , winding up in a final
configuration that is completely different than in Figures 51-53.

And so it is unhappily true: our diagrams are not lying to us? and there is no squeeze-
grasp that can pick up the roly-pointy with guaranteed results. However, there is a way
to successfully pick up the roly-pointy. Recall that move A was guaranteed to succeed
in plane #1 touched first; if we can insure that plane # 1 touches the roly-pointy before
plane #2, then we can use move A with guaranteed results.

The Offset-Grasp

To meet this end, we will define the offset-grasp (Figure 55). The offset-grasp is
executed by offsetting the gripper's initial position to one side so that it is always true
that plane # 1 touches before plane # 2 , If we employ this grasping motion^ then we
can plan offset-grasps by simply using the offset-grasp diagram generated in the preyious
section. Figure 44{b) shows the offset-grasp diagram for the triangle; Figure 50(a) shows
the offset-grasp diagram for the roiy-pointy. This offset-grasp diagram is the space of all
squeezing moves that are guaranteed to succeed, as long as we offset the gripper sufficiently
to assure that plane # 1 touches before plane
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Figure 55. The offset-grasp. The grippcr fingers are offset to one side to insure that
plane # i touches before plane #2.
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Figure f>6. Demonstration of why the roly-pointy cannot be squeeze-grasped along its
(e3iV|) contact pair, (a) The desired stable grasp configuration. This configuration cannot
be achieved by a squeeze-grasp because orientations (b) and (c), which are very close to the
desired grasp, are caught in undesirable (V-V) wedging conditions and do not slip to flat
when squeezed.

The additioB of the offset-grasp considerably increases the number of grasping motions
available for picking up the rofy-pointy. However, there are still some grasp configurations
that we might Hie to achieve, but remain unavailable to as.

For example, suppose that for some reason we wanted to pick up the roly-poinfy fey
its (e3sVi) contact pair; i.e., whore eg is l a t against plane #1?, and plane #2 sqatmm
Vj, At present, this grasp is tmawlable to ms? since the squeeie-grasp^ 'diagram for tbe
roly-pointy is- nilf .and there is no shaded region for «3 in the offset-grasp diagram far the
roiy-pomty. Figure 56 shows why this ,gra^p is impossible to achieve through squeezing*
Since the vertical an either side erf «j both wedge, orientations that are rotated only slightly
clockwise or counter^clO'C^Wise from the edge-flat configuration lew! to (V-V) wedging, and
do not slip to flat when sqneesed. Thus no scpeeiing motion can guarantee that #3 ends
up flat against plane
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Figure 57. Tho push-grasp, (a) First the object is pushed with our plane until (b) the
dosiml edge lies flat against the plane. ;uici then (o) the second phuio squeeze in to pick up
the object.

The Push-Grasp

Again, there is a solution to this problem which will allow us to achieve the desired
configuration: the push-grasp (Figure 57). A push-grasp motion consists of a pushing
phase, where the object is pushed until it is in alignment with plane # 1 , followed by a
squeezing phase, where plane #2 squeezes in to firmly grasp the object.

A push-grasp will succeed for any edge that is stable when pushed, regardless of
whether or not the edge remains stable when squeezed. To see this, consider the polygon's
configuration at the end of the pushing phase of the push grasp; in the squeezing space,
this configuration falls either on a seek line, within an avoidance region, or in the "white
space51 between avoidance regions. We can see by the following that in all three of these
cases, the grasp is guaranteed to succeed:

(1) If the configuration is on a stable-grasp seek line, then it is obvious that the grasp will
succeed when the second plane squeezes the polygon.

(2) If the configuration is within an avoidance region, then we know that the polygon will
wedge when squeezed, simply because the configuration is within a wedging avoidance
region. However, we also know that some polygon edge is flat against the pushing
plane, because we just finished our pushing operation. Therefore, since an edge is
fiat against the plane and the polygon will wedge when squeezed, we know polygon is
actually on an (E-V) or (E-E) seek Hue, and the grasp will succeed by the analysis in
(1), above.

{3} If the configuration is in the white space between avoidance regions, then we know
that when the polygon is squeezed, it will immediately rotate to the adjacent (E-V)
or (E-E) seek line without encountering any avoidance regions along the way? thus
providing a successful grasp.
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Figure 58. Pitsli-grasp diagrams, (a) The push-grasp diagram for the triangle, (b) The
push-grasp diagram for tlic roly-pointy.

Therefore, all points within edge-stability regions in a polygon's push-stability diagram
correspond to successful push-grasps. Combining the pushing and squeezing analysis to
produce a push-grasp diagram is then done as follows:

Each edge-stability region is examined in turn; if the corresponding edge is stable
under squeezing, then the region is converted to a push-grasp region. If the corresponding
edge is not stable under squeezing, then the region is converted to a push-grasp region
for the seek line that the polygon will rotate to when squeezed (this can be looked up in
the seek/avoidance diagram). Finally, any adjacent regions that correspond to the same
final squeezing configuration are merged, yielding the complete push-grasp diagram for the
polygon.

Notice that this diagram does not indicate how far the polygon has to be pushed in
order to assure that the desired edge is la t against the plane; this topic, while important,
will be deferred to a later paper.
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The resulting push-grasp diagram represents the space of all push-grasp moves that
are guaranteed to succeed in grasping the object in the final squeezing configuration shown.
The push-grasp diagrams for the triangle and roly-pointy are shown in Figure 58.

In this section, we have seen an example situation where an ordinary squeeze-grasp
motion will fail. In addition, we have defined two additional grasping motions: the olfset-
grasp and the push-grasp. These additional grasping motions extend the capabilities of
our grasp-planning method in two important ways:

(a) Objects that were otherwise impossible to grasp through squeeze-grasp motions can
now be successfully grasped, and

(b) More uncertainty in the object's location can be tolerated, since previous moves that
were rejected because they passed through avoidance regions are now acceptable.

We now have three grasping motions: the squeeze grasp, offset-grasp, and push-grasp.
The next section will discuss a method for incorporating the presence of uncertainty into
our analysis.



G3

\ \ \ \ \ \ \ \ \ \ \ \

Figure 63. The efFect of Up on stable edges. If shrinking regions to compensate for
causes a divergent rotation boundary to cross a convergent boundary, then it is no longer
clear whether or not that edge is stable for those values of 8 where the boundaries crossed.
Thus that portion of the convergent boundary must he assumed to have indeterminate
stability, and all operations that finished on that portion of the convergent boundary must
be avoided.

its uncertainty interval J7a, then the polygon will "rollover" to ec; if a is near the low end
of Ua7 then e$ will remain stable as before. Therefore we can't be sure whether or not ê
will remain stable or rollover to ec, and so the uncertainty in fi has caused the stability of
€£ to become indeterminate for those values of 6 that are included in the crossover of the
rotation boundaries. As a result of this indeterminacy, all pushing moves that rotate into
this indeterminate region must be avoided.

Thus, shrinking the stability regions of Figure 63(a) to account for U^ is slightly
more difficult than simply expanding the horizontal segments of the divergent rotation
boundaries; the stability region for % must also have all pushing moves with indeterminate
results removed. This can be accomplished by 'establishing a new vertical boundary from
the intersection of the divergent and convergent boundaries^ as shown in Figure 63{b); this
new boundary removes exactly those moves that lead to indeterminate results.

For squeesmg diagrams, the compensations for U^ axe simpler. Uncertainly in fi
widens existing (V-V) avoidance regions to the worst-case a value, with the wider friction
cone perhaps creating some new avoidance regions as. well. This can be handled by assum-
ing the worst-case (widest) friction cone when generating the seek/avoidance diagram.

The (E-V) and (E-E) seek lines axe also affected. Since worst-case a values may yield
conflicting decisions on whether or not a given (E-V) or (E~E) contact pair will wedge when
squee«eds some cdge-Iat contact pairs may have kcie terminate squeese-stability once Up i»
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Figure G4. Squeeze-grasp and piisli-grasp diagrams, after shrinking regions for uncertainty
in the coefficient of friction Z7M. (a) Remaining regions in the triangle's squeeze-grasp di-
agram, where /x €E (0.15.0.35). implying that a € (8°. 19°). (b) Remaining regions In the
roly-pointy's push-grasp diagram, where p € (0.2,0.5), implying that a € (lic,27°).

considered. Thus some contact pairs previously thought to slip and rotate when squeezed
might actually wedge, and some seek lines expected to wedge might actually slip and
rotate; these indeterminate cases should be avoided. This effect of Up on edge-flat contact
pairs can be handled by checking each (E-V) and (E-E) contact pair individually to see if
the high and low values in Ua yield a conflicting squeeze-stability conclusions; if so, then
that contact pair should be avoided by adding the appropriate avoidance region to the
seek/avoidance diagram.

Since uncertainty in /x can affect the stability information embedded in push-grasp
and squeeze-grasp diagrams, region-shrinking for Up is best accomplished before shrinking
for Ufa Ĉ orii o r Uh* Figure 64 shows the result of shrinking regions to account for Up} given
the triangle squeeze-grasp diagram of Figure 46 and the roly-pointy push-grasp diagram
of Figure 48. In the diagram for the roly-pointy? note that the uncertainty in fi caused eg
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Figure 65. Result of shrinking regions* including aH types of uncertainty, (a) Remaining
regions for the triangle's sqnee&c*-grasp diagram, (b} Remaining repons for the roly-pointy's
push-grasp diagram. Uncertainty Tallies for these digrams were as follows: Uncertainty hi
fi: p € (0.15,0.35) for (a), ft € (0.2,0.5) for (b); uncertainty m $ = ±5°; uncertainty in
polygon orientation = ±20u; uncertainty i& £ = ±5°.

to have indeterminate stability for values of 6 not close to 00 degrees.

After the diagram has been modified to account for the uncertainty in /*, we can
shrink the regions to account for the other sources of uncertainty, as described earlier.
Figure 65 shows the result of shrinking the regions of Figure 64 to account for U$t

and U$% in addition to Up. Notice that the regions for the roly-pointy edges *2 ^^ e4
disappeared; this implies that there is too much uncertainty for these grasps to succeed.

for uncertainty can be accomplished after the pmsh-grasp and sqneeie~
grasp diagrams have beea generated, and we have explained uncertainty handling in thii
way* However, it is computationally easier to compensate for uncertainty as the diagrams
are being generated- This should be possible is most cate$ because U^ Us, and Up will
all be known for a particular rob#t Dace the polygon has been defined, U^ might also
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be available, if it depends on the angular resolution of a sensor that is determining the
polygon's position. Generating these diagrams while simultaneously compensating for
uncertainty is not dillicult, and will not be explained in detail here.

After all uncertainties have been accounted for (whether they were built-in at the
time of diagram generation or added later by shrinking regions), the regions that remain
constitute the space of all guaranteed grasp plans. This is the space of all grasping moves
that are guaranteed to succeed, even in the face of worst-case uncertainty. This guarantee
holds as long as we have established an upper bound on the uncertainties present in the
problem, and the previously-stated assumptions are met.
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VII. Conclusion

Making the Final Decision

In this paper, we have defined a class of three types of grasping operations: squeeze-
grasp, offset-grasp, and push-grasp. For each of these operations, we have described a
method for computing the space of all grasping moves that are guaranteed to succeed,
even if the worst-case error occurs. Choosing an operation from among these guaranteed
grasps can then be accomplished by taking into account other, higher-level considerations:

• optimal pushing distance

• avoiding nearby obstacles

• avoiding untouchable surfaces (e.g., wet glue on an edge that will be pressed against
another object)

• optimal grasp balance

• maximum grasp firmness

The priorities associated with these factors will vary from situation to situation; the final
grasping decision will be deferred to a higher level of processing which takes into account
these and other inputs.

Implementation and Experimental Results

The grasp-planning method described in this paper has been implemented in LISP on
a Symbolics 3600 Lisp Machine and physically tested using a Puma 560 manipulator. The
program takes as input the shape of a polygon and the location of its COF, as well as the
lower and upper bounds in \x and the uncertainty bounds U$, Uor£, and US. Given these
inputs, the program can generate any of the diagrams described in this paper.

The program generates push-stability and offset-grasp diagrams very quickly, even
though no serious effort was made to optimize the code. Push-grasp and offset-grasp
diagrams are calculated almost instantaneously, while squeeze-grasp diagrams take one or
two seconds to compute. The squeeze-grasp diagram takes extra time because the code
that intersects the plane #1 and plane #2 diagrams runs in O(n2) time, while the push-
grasp and offset-grasp diagrams are generated in O(n) time (where n is the number o{
polygon edges).

The implementation described above was used to informally test the validity of the
planning method. A variety of planar objects were measured and their shapes were input
into the grasp-planning system. Pushing and squeezing operations were tested by gen-
erating the push-stability or squcese-grasp diagram for an object^ selecting a particular
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operation from the diagram, and then performing the selected operation with the Puma to
verify that the expected result was actually achieved. Moves were selected from through-
out the diagram, both well within regions and near region boundaries. Applying various
pushing and squeezing operations consistently resulted in achieving the correct final con-
figuration, even for extreme operations whose predicted results seemed counter-intuitive.

Future Research

While this research adequately solves a restricted class of grasping problems, it is lim-
ited in several ways. Extending this grasp-planner to overcome these limitations provides
several areas for future research. Some likely extensions to the current grasp-planning
method are:

• Remove the infinite half-plane assumption to directly account for fingers of finite
length. This would allow the planner to capitalize on concavities in the polygon, and
pick up large objects that extend past the ends of the gripper fingers.

• Presently the method assumes perfect knowledge of the shape of the object and the
location of its COF. In many situations, however, this information will only be known
approximately. Therefore, incorporating the uncertainties Us^apc and UcoF m *he
analysis would be useful.

• While many grasping tasks meet our two-dimensional planar motion abstraction> a full
three-dimensional extension of this analysis would make the planning method outlined
in this paper applicable to a broader range of tasks.

Research investigating these areas is currently in progress at the CMU Manipulation Lab.
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