NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

‘Experiences with SRL:
An Analysis of a Frame-based
Knowledge Representation

Mark S. Fox, J. Mark Wright, and David Adam

CMU-RI-TR-85-10

Intelligent Systems Laboratory
The Robaotics Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

July 1985

Copyright © 1985 Carnegie-Mellon University

This research was sponsored in part by Digital Equipment Corporation, and the CMU Robotics
Institute.

EXPERIENCES WITH SRL

Table of Contents
1. Introduction
2. What is SRL
2.1. Language Overview
2.2. Extensions to the Language
2.3. Applications
3. Experiences
3.1. User-Defined Relations
3.2. Demons
3.3. Restrictions
3.4. Paths for Transitivity
3.5. Paths for Search
-~ 3.6. Meta-information
3.7. Contexts
3.8. Database Interaction
3.9. Efficiency
4. Conclusion
5. References

OCOOONANOGO DG = = -

—_ e el A e
N-<00O0

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 3-2:
Figure 3-3:

EXPERIENCES WITH SRL

List of Figures
h1-spec Schema
h1-spec Schema
Previous-Activity Schema
Demon Schema
Search Paths

i

O NN =

Abstract

The goal of this paper is to examine a single representation language, SRL, and its applications to
determine utility of its ideas. Post mortems have been performed before but have the appearance of a
massive "weéding" due to the plethora of ideas included in the initial version of the language. What
distinguishes SRL is its evolution from a research engine to a "production level” language. Its

evolution has been hastened by its application to "real™ problems, and its transition to industrial use.

EXPERIENCES WITH SRL

1. Introduction

During the latter half of the 70's the field of Al experienced a proliferation of semantic network and
frame-based knowledge representation languages: Concepts (Lenat 1976), FRL (Roberts & Goldstein
1977), KLONE (Brachman 1977), NETL (Fahlman 1977), Scripts (Schank & Abelson 1977), Units
(Stefik 1979), and SRL (Fox 1979). With the advent of Al techniques as marketable products, we are
beginning to see a similar surge of vendor supported knowledge representation languages in the
market place: KEE (Intelligenetics 1984), LOOPS (Bobrow & Stefik 1983), ART (Williams 1983). -

One would think that before an idea is "productized," a clear understanding of it and its use would
have.emerged. Yet the majority of the applications of knowledge representation languages have
been experimental, and have yet to move into production use. A survey of systems in field test or
production use are either rule-based, e.g., R1 (McDermott 1980), ACE (Stolfo 1982), XSEL
(McDermott 1983), and CATS-1 (GE 1983), or utilize an ad hoc representation. In the case of
knowledge representation languages, though the size of the intersection of frame-based languages
has grown larger, no clear suhset has yet to emerge; and the field continues to evolve as new ideas
are explored, e.g., RLL-1 (Greiner 1980), and MRS (Genesereth 1980).

In this paper, the SRL system and its applications are described, followed by a description of our
experiences and what may be concluded from them. < i

2. What is SRL ~ ~

¥
2.1. Language Overview "

SRL is a frame-based language with the "schema" as its primitive. A schema is a symbolic
representation of a concept Its definition is the summation of its slots and values. Slots are used to
represent attributive, structural and relational information about a concept. A schema is composed of
a schema name (printed in the bold font), a set of slots (printed in small caps) and the slot's values
(Lisp printing conventions are observed). Values can be any Lisp expression and reference schemata
when they are strings. When printed, a schema is always enclosed by double braces with the schema
name appearing at the top. The hl-spec schema (figure 2-1) contains six slots, each of which
contains a value.

{{h1-spec
IS-A: "engineering-activity*
SuB-ACTivnrY-OF:"develop-board-h1"
INITIAL-ACTIVITY-OF:"'develop-board-h1"
ENABLED-BY: "TRUEY
cAUsE: Vhi-spec-complete”
DESCRIPTION: "Develop specifications for thecpu board" }}

Figure 2-1: hi-spec Schema

Many of the Ideas found in other representation systems have been incorporated into SRL, These

SERNS R OE Si e N SEELL

EXPERIENCES WITH SRL

include meta-information, demons, restrictions on legal slot value and a context facility.

Meta-information may be associated with schemata, their slots, and values in the slots. It is
represented by another schema, called a meta-schema, that is attached to the schema, slot, or value.
Representing meta-information as schemata provides a uniform approach to representation. The
user is provided with access functions for retrieving meta-schemata. Once retrieved, they are
manipulated just as any other schema. The meta-information is printed in italics beneath schema, slot
or value to which it is attached.

{{ h1 -spec“
Creator: "mark fox" s
To-Create:: schemac

IS-A: "engineering-activity”
SUB-ACTIVITY-OF: "develop-board-h1"
range: (type "instance" "activity")
INITIAL-ACTIVITY-OF: "develop-board-h1"
ENABLED-BY: "TRUE"
CAUSE: "h1- -spec-complete”
DESCRIPTION: "Develop specifications for the cpu board" }}

Figure 2-2: h1-spec Schema .

Any slot may have facets asscciated with it. Four facets are defined in SRL: DEMON, DOMAIN, RANGE,
and caArDINAUITY. The DemMoON facet allows Lisp procedures to be associated with a slot. The
execution of demons is keyed to particular SRL access functions, such as filling or retrieving the
vaiue of a slot. RANGE and DoMAIN facets are used to restrict the values that may fill a slot and the
schemata in which a slot may be placed, respectively. The CARDINALITY is used to restrict the number
of values that a slot may contain. Values for each facet may be inherited from slots in other schemata.

As in other representation languages, a standard set of relations are provided to the user to form

taxonomic and part hierarchies. Slots and values may be inherited automatically between schemata

along these relations. One of the novel representational ideas introduced by SRL is user-defined
inheritance relations (Fox 1979). In most other knowledge representation systems, several relations
for inheriting slots and values are defined as part of the representation (e.g., AKO, is-a, virtual-copy).
In contrast, SRLdtasafacRﬁwahmhusemcmdeﬂmﬁwﬁrtheﬁt&merelabms,a%mng
only slots and values of the user's choice to be inherited. In addition, slot ictures can be
Wmmwmmwmmmmwmmwmmmm
need demands. Inheritance relations are represented by additional slots in a schema. A dependency
mechanism is integrated into the inheritance facility that notes as meta-information the source of
inherited slots and values. Here again, the user can define the dependency relations that are put into
place.

Another novel feature provided by SRL is a means of controlling the search performed by the
‘ ce process. Any query of the model may optionally use a path to restrict which relations may

EXPERIENCES WITH SRL

be traversed while searching for a suitable value to inherit. Paths may also be used to specify the
transitivity properties of relations. For example, a PART-OF hierarchy for describing a car might
represent the battery as PART-OF the electrical system, and the electrical system is PART-OF the
car. The implicit notion that the battery is PART-OF the car (i.e., that PART-OF is transitive with itself)
is represented using paths.

Contexts in SRL act as virtual copies of databases in which schemata are stored. In the copy,
schemata can be created, modified and destroyed without altering the original context. Contexts are
structured as trees where each context may inherit the schemata present in its parent context.

Henqe, only schemata that are used in a context need be explicitly represented there. This avoids -

copying schemata that will never be used in the context. The context provides for version
management and alternate worlds reasoning with SRL models.

Error handling is also schema based. An instance of the error schema is created to describe each
error encountered by the system. error-spec schemata may be defined that specify how to recover
from each kind of error.

In order to support large applications, a database system is integrated into SRL. Schemata are
stored in a database until they are accessaed, at which time they are brought into Lisp. A cache of the
most recently accessed schemata are kept in Lisp for quick access. When the cache becomes too
large, schemata are swapped back to the database using a recency algorithm.

2.2.Extensions to the Language

SRL serves as the core of a knowledge engineering environment called Islisp (ISL 1984). It offers a
number of inference tools that operate on schemata: HSRL, PSRL, OSKL, ESRL, and KBS. HSRL
(Allen & Wright 1983) takes HCPRVR(Chester 1980), a logic prograrn interpreter, and alters it to use
SARL models as its axioms. The system combines the modus ponens inference of logic programming
systems with the representation power of SRL. In addition, the inheritance mechanism provides
default reasoning, not available in logic programming environments.

Similarly, PSRL is a production rule interpreter that operates on SRL models (Rychener 1985).
Production rules and their parts are represented by schemata. A subset of PSRL provides the form
and execution pattern of OPS5 rules (Forgy 81). OSRL provides a schema-based object
programming facility similar to Flavors (Weinreb & Moon 1981). ESRL (ISL 1984) provides an event
mechanism which enables the user to schedule events to occur either in a simulated or normal
operating mode. KBS, a knowledge-based- simulation system (Reddy & Fox 1982) uses ESRL to
perform discrete simulatioris of systems modeled in SRL. Simulation objects are represented as
schemata. An object’s associated events and behaviors are represented as slots and values in the
schema. An object’s event behavior may be inherited along relations which link it to other schemata.

In addition to inference tools, system building tools are provided. RETINAS (Greenberg 1983) is a
schema based window system. Schemata for windows; displays, and canvases are instantiated to
build an interface. Default specifications for windows, etc., may be inherited from the prototype
schemata. KBCI (ISL 1984) is a schema based command system. Again, the command schema is
instantiated to create commands. A command interface is defined by a collection of command

EXPERIENCES WITH SRL

schemata organized in a SUB-COMMAND-OF hierarchy. CPAK (ISL 1984) is a 2-D graphics package
based on the CORE definition. A business graphics facility is provided on top of CPAK.

2.3. Applications

Each of the following applications are supported by one or more corporations with the goal of
transferring the technology for internal use. Each system uses SRL as its modeling language and
makes extensive use of the RETINAS, KBCI, and graphics package for user interfacing.

e Callisto: A project management system which focuses on the semantic representation of
activities and product configurations (Sathi et al. 1985a; 1985b). Callisto makes
extensive use of the SRL's meta-information, search specifications, user-defined
relations, and context. In addition, it uses PSRL for representing managerial project
management heuristics, and ESRL for project scheduling. Portions of Callisto are in field
test.

o INET!™: A corporate distribution analysis system which models and simulates a
corporation’s manufuacturing, distribution, and sales organization (Reddy & Fox 1983).
INET uses SRL's meta-information and context mechanism. OSRL is the simulation
vehicle, and PSRL is used to represent post-analysis heuristics. INET is now being
transterred to the spaonsor.

o 1S1S: A production management system which models, schedules, aind monitors activities
(Fox 1983; Fox & Smith 1884). ISIS uses all of SRL’s facilities, with the majority of the
search algorithm implemented in Lisp. ISIS is now being transferred to the spansor.

e PDS: A rule-based architecture for the sensor-based diagnosis of physical processes
(Fox et al. 1983). PDS uses the basic schema representation only. PDS is in production
use.

e Rome: A quantitative reasoning system for long range planning (Kosy et al. 1983; Kosy &
Wise 1984). Rome uses SRL’s meta-information, context mechanism, and user-defined
relations. HSRL is a primary inference mechanism.

What are some of the characteristics of the applicatiéns to which SRL has been applied?

o Size: The number of schemata in a system are large enough to exceed their practical
storage directly in memaory.

o Complexity: The complexity of decision making required by an application requires the
inCorporation of many of the types of semantic primitives that have evolved in the field,
including time, causality, states, actions, etc., and corresponding inference techniques.

e Efficiency: The efficiency of the language is important. Response must be provided in a
reasonable amount of time, whether for realtime control or interactive support.

EXPERIENCES WiTH SRL

3. Experiences

This section discusses the experiences we have had building knowledge based systems in SRL.
Our results have been mixed. Some facilities have proven surprisingly useful, while others remain
almost entirely unused. The discussion is organized by facility.

3.1. User-Defined Relations

Definition. User defined relations allow the user to tailor the inheritance definition of their relatlons
to the needs of their application. Each relation is represented by a schema. The inheritance
semantics of a relation are specified using inheritance specs. There are five kinds of inheritance
specs that allow the user to finely tailor the inheritance of their relations.

inclusion Specifies slots and values that should be inherited unchanged.

exclusion Specifies slots and values that are specifically excluded.

elaboration Specifies a one to many mapping of slots. Values may not be inherited along an
elaboration.

map i Specifies one-to-oné mappings of sliots and values

introduction Specifies slots and values that are introduced when the relation is created.

Relations may also specify their inverse, which is used to perform automatic inversz linking.

The previous-activity relation embodies scme of this functionality.

EXPERIENCES WITH SRL

{{ previous-activity
1S-A: "relation"
DOMAIN: (type "is-a" "activity")
RANGE: (type "is-a" "activity")
MAP: "previous-activity-map"
INCLUSION: "previous-activity-inclusion"
INVERSE: "next-activity" .
TRANSITIVITY: (repeat (step "previous-activity” all) 1inf) }}

{{ previous-activity-map

comment: "the finish-time slot in the range schema of the relation is
mapped onto the start-time slot of the domain schema.
Hence, the finish time of the preceding activity
becomes the start time of the following activity."

IS-A: "map-spec”

DOMAIN: "start-time"

RANGE: "finish-time" }}

{{ previous-activity-inclusion
1IS-A: "inclusion-spec”
SLOT: "sub-activity-of")
comment: “the slot which may be inherited from the ranga
of the relation to the domain™
VALUE: all }}
N Figure 3-1: Previous-Activity Schema

The previous-activii{y relation allows two kinds of inheritance. First, it maps thé-previous activity’s
finish time to the next-activity’s start time. Second, it allows the inheritance of the SUB-ACTIVITY-OF
slot and its values along the relation.

Reflections. User defined relations have proven to be one of the most extensively used features of
SRL. They have been exploited by most of the applications yet built using the language. We have
several theories as to their usefulness. First, their use has enabled more inference to take place
automatically in the systems. In many applications, relations peculiar to a domain (e.g., next-activity,
child-of, etc.) will be used often. Inheritance along these relations could not be supported by other
languages since only a few relations (e.g., is-a, instance, part-of) would be provided. To overcome
this deficiency, the user would have to provide code in their inference engine to deduce what
information could have been inherited. But in SRL, the user may define their own relatioris and their
inheritance semantics, and use them where needed.

Second, they allow the terminology of the models to resemble more closely that of the model
builder. Separate relations might be constructed for SUB-CLASS, 1S-A and KIND-OF which have the
same inheritance properties to make models more understandable.

EXPERIEMCES WITH SRL

A third point is perspicuity. A relation incapsulates all the information required to use it, including
restrictions on its domain and range of use, its inheritance semantics, and its transitivity. Even local
overides to its general definition are defined in the schema (e.g., a platypus is-a mammal but does not
lay eggs).

Making the user defined relations work with reasonable speed took a number of iterations. In the
first implementation, inheritance specs could be inherited along the relation type hierarchy (i.e.,
relations could form type hierarchies of arbitrary depth). This was far too slow. The second
implementation restricted the definition of relations to avoid excessive searching. That is, a new
relation had to be related directly to the "relation" schema via an "is-a" relation. Speed was
obtained, but the restriction on the definition of the facility was too great. The third implementation
introduced a compiler for relations. This allowed a return to the more general definition of relations.
Compiling relations combines the best of both worlds. It has the speed of the limited representation,
and the power of the general representation. The only sacrifice-is that relations cannot be altered
dynamically. This compromise yields a powerful and useable system.

3.2. Demons

Definition. Demons provide a facility for reactive processing within SRL. They may be placed in
any slot's meta-schema and are executed based on the SRL function used to access the slot.
Demons may be inherited from other schemata in a manner similar to that of values. Each demon
specifies what slot access functions causes it to fire. Each demon has an action slot that contains
any number of Lisp functions. They are exacuted either before or after the slot access is performed.
There are three kinds of demons. First, the "side-effect" demon has no direct effect on the slot
access. Second, the “alter-value” demon alters the values that the access function is using. Third

“the "block" demon stops the slot access function from executing. They are only valid before the

function is performed. The ACCESSOR, ACCESS-VALUE, and CURRENT-VALUE hold information about
the call for use by the ACTION functions. The demon schema is defined as follows. .

{{ demon -

ACCEss: <access>* -

range: (type "is-a" "SRL-access-fn")
ACCESSOR:
ACCESS-VALUE: -
CURRENT-VALUE:
WHEN: 4 .
= range: (or before after) -
ACTION:

range: <Must be a function definition>

~ EFFECT:
range: (or alter-value block side-effect) }}
Figure 3-2: Demon Schema
>

A

Reflections. Demons have fallen into disuse because they are very expensive. When the facility is
enabled, SRL must attempt to inherit demons on every slot access. This slows the system down by an

esmani AR,

i1

EXPERIENCES WITH SRL

order of magnitude, as often many slot access functions are performed internally, for each call to
SRL.

All attempts to use demons have used them sparsely. The user found a way to avoid demons
eventually, to speed up their program. There are two reasonable approaches to using demons within
SRL. The first is to limit their functionality. This would entail restricting inheritance of demons, or the
SRL functions that check for demons. If only a subset of the slot access functions of SRL checked for
demons, then the system might run at a reasonable speed. The second approach is to use demons
extensively. For instance, if most slots had demons for most slot access functions, then the user
would not be paying for a facility they were not using.

3.3. Restrictions

Definition. SRL provides a mechanism, for restricting the domain and range of a siot. Itis possible
to restrict the domain of the slot, the range of the slot, and the number of values in the range.
Domain, range and cardinality restrictions are placed in the meta-schema associated with a slot. Also
like demons, the values of the various restrictions may be inherited along a meta-schema'’s relational
network.

Reflections. Automatic restriction checking is not used for the same reasons that demons are not
used. On ev'ery attempt to alter the contents of a slot, SRL must attempt to inherit each facet used for
restriction. Restrictions do not merit the associated cost. Restriction checking slows the sysiem
down by an crder of magnitude.

A facility for manually checking restrictions is used, particularly to check user input. Manual
restriction checking gives users the benefit of restriction checking when they need it, but avoids the
excessive overhead. Full restriction testing is usually turned on during the debugging phase of a
system only, much like array bound checking is provided in a compiler. »

3.4. Paths for Transitivity
Definition. Transitivities are an important part of SRL, as they allow the user to test if two schemata
are related by a particular relation. For example, the transitivity for the instance relation is:

(list (step "instance™ all) (repeat (step "is-a" alf) 0 inf}) .
This path specifies to step one INSTANCE relation, and any number of is-A relations. Using this path,

it is possible to determine if one schema is an instance of another. It is also possible to find all the
schemata which are related to a particular schema by a relation.

EXPERIENCES WITH SRL

3.5. Paths for Search

Definition. Paths are of the same form as transitivity paths, and are used as an added parameter to
slot-value access functions in SRL. A path specification can be used to restrict the relations along
which inheritance is to be performed for the particular slot access.

. Reflections. Search paths have been gradually introduced to most projects. There are two

.. reasons for restricting the search. The first is selective inheritance. For instance if one path for
* inheritance is correct at the current state of the user’'s program, this may be specified by a path

argument. Consider the situation where a "dog" schema is related to both "pet" and "guard" via an
"is-a" relation.

{{ dog
1S-A: "pet" "guard" }}

{{ pet
DISPOSITION: docile }}

{{ guard
~DISPOSITION: mean B

Figure 3-3: Search Paths

Depending on what role the dog is playing, the value of its DISPOSITION slot diifers. Search paths
enable the user to specify along which relations inheritance is to be performed.

ason for focusing the search is to avoid searching branches which the user knows

are“nmeﬂevmﬁ. This lsused to improve performance by avoiding an exhaustive search. The user
wni paths first as a method for i improving efficiency, and second as a tool for selective
mheﬂmoe Oww one pmgem has ever used search paths for selective mhentance. while most

all applications, some more extensively than others.
j ies: restrictions, documentation, and dependencies. Meta-schemata
m&ched to slots pmvide Mfmmaﬁon neshwhng the domain and range of the slot (see section 3.3).
Meta-schemata also document who created the schema, slot or value, when and why. Meta-
schemata attached to values usually provide dependency information, which describes how the value

o,

A

W s e g Wk et -

EXPERIENCES WITH SRL

was derived. The BRUTUS facility (Adam et‘al. 1984), which was just implemented, uses
dependencies to provide both truth (Doyle 1979) and belief (van Melle 1980) maintenance at the
meta-level. ’

There have been divided opinions on the efficiency of meta-information. Using it adds a fixed cost
to some kinds of inheritance, but it adds a great deal of power to SRL. The result is that automatic
generation of meta-information has been separated from maintaining dependencies. This means that
users can now use meta-information without increasing the cost of inheritance. This compromise will
make meta-information cheap to use, as there is no overhead unless a user wants to maintain
dependencies for inherited information.

3.7. Contexts
Definition. SRL has a context facility, that allows the user'to have different data spaces for

schemata. Contexts are defined in 2.1

Reflections. The primary use of contexts has been to support version management of knowledge
bases, and "what-if" reasoning. In the former, new contexts are sprouted, in a hierarchical fashion,
as alternative or successive versions of the knowledge base are created. This has been quite useful
during model building and testing in INET and KBS, in general. Other systems such as ROME use itto
support reasoning about alternative scenarios. In this role, the use of contexts is limited, since there
does not exist the ability to relate schemata in two different contexts.

3.8- Database Interaction "

Definition. SRL uses a database in order to deal with very large knowledge bases. This allows
models which are larger than the memory available to LISP. It also provides a convenient facility for
saving knowledge bases. SRL uses a cache for fast access of the most recently used schemata. The
database system greatly extends the upper limit on the size of a knowledge base.

Reflections. There are two performance problems with using a database. First, schemata must be
copied in and out of the database. This is a reasonably expensive operation. In addition to copying
schemata, there is added expense to determine that a schema is not in the knowledge base, as the
database must be checked. This was a problem when determining whether a slot was a relation
involved looking at the possibly nonexistent schema which represents the slot. Second? users can’ -
not have pointers to schemata, because not all schemata are resident in memory. This means that a =
user's reference to a schema must be converted into a schema every time the user calls SRL. Never-
theless, without the database, the large applications to which SRL has been applied would not be
"doable." . : o

3*9, Efficiency
Definition. Efficiency! as defined by the speed with which information may be created and
accessed, has become increasingly important as the complexity of the models in SRL increased.)

Reflections. As soon as people started writing real programs in SRL, speed became a constant -
issue. Some projects push SRL to be as fast as possible. Many design decisions balance efficiency

10

EXPERIENCES WITH SRL

versus functionality. To increase the speed of SRL, the decision was made to compile relations, and
make many of SRL’s features selectable via user switches. For example, value caching, restriction
checking, demon execution, meta-information creation, dependency maintenance and other facilities
are user selectable. This has provided a good balance between those who require speed and those
who require power.

4. Conclusion

A number of features have proven useful in most of our applications. In particular, user-defined
relations for adapting the representation to the user's domain, meta-knowledgé such as
dependencies and facets, relational path specifications for both transitivity checking and search
restrictions, contexts for knowledge-base version control, and the caching system for managing large
schema bases. .

Efficiency has been the overriding concern governing the acceptability of a particular feature in
SRL. Both demons and restriction checking have fallen into disuse (except the latter for debugging)
because they "overload" schema access functions. While such concerns may be ignored in lieu of
taster machines, the inherent complexity of relational search (when information is non-local) in large
knowledge ‘bases invalidates such approaches. Two solutions present themselves. The first is an
interim solution. Current technology enables the creation of an "SRL machine." It would be a
micro-programmed, multi-processor database machine which performs schema accesses and
search. The longer term solution lies in the work of connection machines as proposed by Fahiman et
al. (1983) and Hillis (1981).

b

11

5 References

Adam, D., B. Allen, M. Fox, and P. Spirtes. 1984. "Brutus: A System for Dependency and Belief
Maintenance." Technical report, Robotics Institute, Carnegie-Mellon University.

In preparation.

Allen, B. P., and J. M. Wright. 1983. “Integrating Logic Programs and Schemata." Proceedings of
the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, West

Germany.

o~

Bartlett, F. C. 1932. Remembering. Cambridge: Cambridge University Press.
Bobrow, D. B., and M. Stefik. 1983. "The LOOPS Manual." Xerox PARC, Palo Alto, California.

Bobrow, D., and T.Winograd. 1977. "KRL: Knowledge Representation Lahguage."- Cognitive
Science 1, no. 1.

Bobrow, D., and T.Winograd. 1977. "Experience with KRL-0, One Cycle of a Knowledge
Representation Language." Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, 213-222. Cambridge, Mass.

Br:achman, R. J. 1977. "A Structural Paradigm for Representing Knowledge." Ph.D. thesis, Harvard
University.

Chester, D. 1980. "HCPRVR: An Interpreter for Logic Programs." Proceedings of the National
Conference on Artificial Intelligence. .

Fahlman, S. E. 1977. "A System for Répresenting and Using Real-World Knowledge." Ph.D. thesis,
Artificial Intelligence Laboratory, MIT, Al-TR-4560.

Fahiman, S.E., G. E. Hinton, and T.J. Sejnowski. 1983. "Massively Parallel Architectures for Al:
NETL, Thistle, and Boltzmann Machines." Proceedings of AAAI-83 109-113.

Forgy, C.L. 1981. "OPS5 User's Manual." Department of Computer Science, Carnegie-Mellon
University.

Fox, M.S. 1979. "On Inheritance in Knowledge Representation.” Proceedings of the Sixth
International Joint Conference on Artificial Intelligence 282-284. Tokyo, Japan.

Fox, M. S. 1983. "Constraint-Directed Search: A Case Study of Job-Shop Scheduling.” (PH.D.
thesis.) Technical report, Robotics Institute, Carnegie-Mellon University.

Fox, M.S., S.Lowenfeld, and P.Kleinosky. 1983. "Techniques for Sensor-Based Diagnosis."
Proceedings of the International Joint Conference on Artificial Intelligence.

Karisruhe, West Germany.

Fox, M., and S.Smith. 1984. "ISIS: A Knowledge-Based System for Factory Scheduling.”
International Journal of Expert Systems 1, no. 1.

12

|
¥
|

v

o

General Electric. 1983. "Delta/CATS-1." Artificial Intelligence Report.

Genesereth, M. R,, R. Greiner, and D. Smith. 1980. "MRS Manual." Computer Science Department,
Stanford University.

Greenberg, M. 1983. "RETINAS User’s Manual." Internal report. Robotics Institute, Carnegie-Mellon
University. .

Greiner, R. 1980. "RLL-1: A Representation Language Language." HPP-80-0, Computer Science
Department, Stanford University. .

Hillis, W. D. 1981. "The Connection Machine." Technical report 646, MIT Al Lab., Cambridge, Mass.

-

IntelliGenetics. 1984. "KEE'™ User's Manual.” Third edition. Palo Alto, Cal.: IntelliGenetics, Inc.

ISL. 1984. "Intelligent Systems Laboratory Software Systems Manual.” Internal report, Robotics
Institute, Carnegie-Mellon University.

Kosy, D., and V.S. Dhar. .1983. "Knowledge-Based Support System for Long Range Planning."”
Technical report, Robotics Institute, Carnegie-Mellon University.

Kosy, D., and B. Wise. 1984. "Self-Explanatory Financial Planning Models." Proceedings of the
American Association for Artificial Intelligence. Austin, Texas.

Lenat, D. 1976. "AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic
Search.” Ph.D. thesis, Computer Science Department, Stanford University.

McDermott, J. 1980. "R1: An Expert in the Computer Systems Domain." Proceedings of the First
Annual -National Conference on Artificial Intelligence 269-271. Stanford

Minsky, M. 1975. "A Framework for Representing Knowledge." Psychology of Computer Vision,
P. Winston (Ed.). New York: McGraw-Hill.

Reddy, Y. V., and M. S. Fox. 1882. "KBS: An Artificial Intelligence Approach to Flexible Simulation."
CMU-RI-TR-82-1, Robotics Institute, Carnegie-Mellon University.

Reddy, Y. V., and M. S. Fox. 1983. "INET: A Knowledge-Based Simulation Approach to Distribution
Analysis."” Proceedings of the IEEE Computer Society Trends and Applications.
National Bureau of Standards, Washington, D.C.

Roberts, R.B., and I. P. Goldstein. 1977. "The FRL Manual.” MIT Al Lab. Memo 409, MIT,
Cambridge.

Rychener, M. 1984. "PSRL User's Manual.” Technical report, Robotics Institute, Carnegie-Melion
University. Internal report.

Sathi, A., M. Fox, M. Greenberg, and T. Morton. 1885a. "Callisto: An Intelligent Project Management
System.” Technical report, Robotics Institute, Carnegie-Melion University.

13

Sathi, A.,, M.Fox, and M Greenberg. 1985b. "The Application of Knowledge Representation
Techniques to Project Management." Transactions on Pattern Analysis and
Machine Intelligence. :

Schank, R., and R. Abelson. 1977. Scripts, Plans and Understanding. Hillsdéle, NJ: Lawrence
Erlbam Assoc., Inc.

Stefik, M. 1979. "An Examination of a Frame-Structured Representation System." Proceedings of
the Sixth International Joint Conference on Artificial Intelligence.

Stolfo, A. 1982. "ACE: An Expert System Supporting Analysis and Management Decision Making."
Technical report, Computer Science Dept., Columbia University.

van Melle, W.1980. "A Domain Independent System that Aids in Constructing Knowledge-based
Consultation Programs.” Ph.D. thesis, STAN-CS-80-820, Computer Science
Dept., Stanford University.

Weinreb, D., and D. Moon. 1981. "Lisp Machine Manual." Fourth edition. Cambridge: Symbolics,
Inc.

William, C. 1983. "Advanced Reasoning Tool: Conceptual Overview.” Inference Corp., Los Angeles,
Cal. "

Wright, J. M., M. S. Fox, and D. Adam. '1984. "SRL/1.5 Users Manual." Technical report, -Robotics
Institute, Carnegie-Mellon University.

14

