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1 Introduction 

Conventional simulators verify the correct functionality of a logic design only for the particular data 

simulated. The user is left with the difficult task of choosing data that will detect every design error 

and deciding when a sufficient set of tests have been applied. In practice, a large fraction of the 

errors in a design are successfully detected using simulators, either because the user has some 

intuition about what data patterns are most likely to cause difficulty, because the error causes 

improper behavior for many different patterns, or because the user simulated large numbers of 

patterns. In some cases, however, errors remain undetected until well into the design process or 

even after the circuit has been manufactured, at which time the cost of correcting an error can be 

extremely high. 

To verify the correctness of a digital design in a more rigorous fashion, we propose that they be 

simulated symbolically. Our concept of a symbolic simulator resembles a conventional logic 

simulator whereby a description of the circuit is loaded into memory, the user specifies a sequence of 

patterns to be applied to the inputs of the circuit, and the program models how the circuit would 

behave for these patterns. However, unlike a conventional simulator in which the patterns consist of 

only the constants 0 and 1 and the program models only how the circuit would behave for these 

specific data, a symbolic simulator can accept patterns consisting of Boolean variables (as well as the 

constants 0 and 1), and the program computes the Boolean functions describing the behavior of the 

circuit for the set of all possible data represented by these variables. By setting some inputs to 

constants and some to to variables, a symbolic simulator can perform conventional simulation (all 

inputs set to constants), symbolic analysis (all inputs set to variables), or a hybrid of the two. 

Furthermore, a symbolic simulator can represent the behavior of a sequential circuit by computing the 

sequence of Boolean functions that would appear at each output as a function of the sequences of 

variables that have been applied to each input. Thus a symbolic simulator has considerably greater 

power than a conventional simulator. 

We believe that a circuit verification program styled as a simulator provides an attractive method for 

validating a logic design. A simulator provides an interactive environment familiar to most logic 

designers. The user can try different types of input patterns, and probe points in the network at 

various points in the simulation to ensure that the circuit functions as expected, or if not, to pinpoint 

the source of the error. With a simulator, the user can conveniently specify information about a 

circuit that is not contained in the schematic, such as how the clocks are operated in a sequential 

circuit. Furthermore, given that a symbolic simulator is able to solve NP-hard problems (e.g. Boolean 

satisfiability, tautology, and equivalence) we must anticipate that its time complexity will in the worst 

case be exponential in the number of symbolic variables, barring a major breakthrough in computer 

science. [12] Hence it may be impractical to verify a circuit with all inputs set to variables, but the user 

can adopt a hybrid approach in which some inputs are set to constants and some are set to variables. 

In fact a hybrid approach in which data inputs are assigned symbolic values and control inputs are 

assigned constant values provides the most natural method to verify many circuits. 
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For circuits described in terms of logic gate networks, the implementation of a symbolic simulator is 

conceptually (although not computationally) straightforward, since the function computed by a 

network is given by the composition of the functions computed by the gates. Our interest, however, is 

in verifying MOS circuits represented at the switch level as networks of charge storage nodes 

connected by resistive transistor switches. Several different logic simulators based on the switch-

level model have been developed, [6,23] but until now only limited success has been achieved in 

deriving the function computed by a switch-level network symbolically. What results have been 

published suffer from some combination of three shortcomings: a weak logic model, a poor algebraic 

specification, or an inherently inefficient algorithm. Furthermore, except for Barrow [3], these results 

are either purely theoretical [9] or are directed at a task less ambitious than ours, [11,14, 23] namely 

to extract a functional description of a transistor subcircuit for use in a more conventional simulator. 

In terms of models, that used by Barrow [13] is extremely weak, able to represent only a limited class 

of MOS circuits. The models used by Ditlow, et al [11] and Terman [23] while better, are somewhat 

weak in their ability to model ratioed circuits and charge sharing. In terms of algebraic specification, 

the methods of Barrow, Ditlow, and Terman contain flaws, especially in characterizing the effect of 

unknown states. The methods of Chen [9] and Hajj [14], on the other hand, derive correct results, but 

require translations between several different algebras fo get them. While these translations are valid 

mathematically, they are difficult to implement computationally, because it is hard to remove the 

artifacts of the intermediate algebras from the final result. In particular, these mixed algebras make it 

difficult to implement functional composition, in which the inputs to a logic block are the functions 

produced as output by other blocks. Such a capability is vital to true symbolic simulation. Finally, the 

methods implemented by Ditlow, Hajj, and Terman are inherently inefficient, since they analyze a 

subcircuit by analyzing all possible simple paths formed by the transistors. For many pass transistor 

networks (e.g. the Tally circuit of Mead and Conway [20]), the number of such paths grows 

exponentially with the number of transistors. Thus these methods are not even polynomial in the 

number of algebraic operations. 

In this paper we describe an algorithm for a symbolic, switch-level simulator and present 

experimental results obtained from an implementation by the program MOSSYM. Our logic model is 

the same as presented in a previous paper [6] and implemented in software by the simulator MOSSIM 

II [4] and in hardware by the MOSSIM Simulation Engine. [10] This model can represent the most 

general class of MOS circuits for which a symbolic analysis has been attempted^ T h e behavior 

computed for a circuit is identical to what would be obtained by exhaustively simulating the circuit 

with MOSSIM II for all combinations of data represented by the input variables, even when unknown 

states are present. All equations are specified in a Boolean algebra, having the advantage that the 

input, intermediate results, and output are all elements of the "natural" algebra for symbolic 

simulation. We accomplish this by encoding the three logic states 0, 1, and X as pairs of Boolean 

values, and by accounting for the different signal strengths in a circuit in the structure of the 

equations to be solved rather than in the elements of the algebra. We then solve the equations by a 

transitive closure algorithm where the algebraic operations are implemented by a heuristically-
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efficient set of Boolean function manipulation routines [7]. Our experimental results to date indicate 

that our approach provides reasonable performance even for circuits of significant complexity. 

2 Symbolic Simulation 

Carry 

—* 
—> 

1 
P h i l Phi2 Vdd Gnd 

Figure 1. Block Diagram of Serial Adder 

Let us further explain our concept of symbolic simulation by means of an example. Figure 1 shows 

the block diagram for a serial adder with data inputs A and B, clock inputs P h i l and Ph i 2, and power 

and ground connections Vdd and Gnd. Figure 2 shows a stylized symbolic simulation session to verify 

that this circuit correctly adds two 8-bit numbers an aQ and bf ... ,bQ with a carry input tin. We say 

"stylized" because our current simulator cannot print the output functions in the form shown. In fact, 

this form of printout becomes unreadable for functions of significant complexity. Instead, the user 

should exploit the symbolic manipulation capabilities of the program by having it test the output 

functions for equivalence with functions generated from the Boolean equations for addition. As a 

future enhancement of the simulator, we plan to include an interpreter for a simple Boolean 

expression language. Given a sufficiently powerful language, the user would never need to print 

Boolean formulas. In the figure, lines prefixed with ">" indicate commands typed by the user, while 

lines with prefixes of the form "A2.4|" are printed by the simulator giving the functions on the specified 

nodes after the 4 t h phase of the nih clock cycle. 

In this session, the power and ground connections are set to constants 1 and 0, respectively, and a 

series of clock cycles are simulated, where each cycle consists of 4 settings of the clock inputs 

corresponding to a two-phase, nonoverlapping clock discipline. On the first cycle, both data inputs 

are set to the carry input tin to force this value into the feedback loop of the circuit. The Sum output 

still equals X, reflecting the initially indeterminate system state, but the user can observe the value on 

node Car ry and confirm that it now equals cin. Then the successive bits of the data words are 

applied to the circuit inputs, and finally both data inputs are set to 0 so that the final carry output will 

appear on the circuit output. 
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>read s e r i a l . n t k 
> s e t v d d : l gnd:0 
>c1ock p h i l : 1 0 0 0 p h i 2 : 0 0 1 0 
>watch Sum 
>bool ean cin,aQtb tax,blt... ,afbn 

> s e t A: cm, B:an 
> c y c l e 
1 . 4 | Sum:X 
>get Car ry 
1 . 4 | Car ry :cm 
> s e t k:a , B:b o o 
>cyc1e 
2.41 Sum:aQ@b0@ cin 
> s e t A : ^ , B : ^ 
> c y c l e 
3 . 4 | S u m ^ e ^ e C f l ^ + ^ + ^ c w ) 

> s e t A : j ? t B : i ? 

> c y c l e 
9 . 4 | Sum :a 7 e6 7 e(fl 6 -6 6 + (fl6 + 6 6H . . . )) 
> s e t A : 0 , B:0 
> c y c l e 
1 0 . 4 | Sum:+ (a7 +b7)<at>b6 +(a6 +b6)< ...)) 

Figure 2. Example Symbolic Simulation Session 

This example further demonstrates why we advocate a simulation framework for symbolic circuit 

verification. First, the user can describe a clocking methodology by simply specifying the values to be 

applied to the clock inputs during the clock cycle. Such a capability is vital for verifying MOS circuits, 

given the wide variety of clocking methodologies used and the'vital role of the clocks in determining 

the behavior of circuits containing such structures as precharged logic and dynamic registers. 

Second, the user can specify how the circuit is initialized by simulating the normal reset sequence/ 

such as in our example by setting both inputs to the carry input value. Most significantly, a symbolic 

simulator transforms the concept of symbolic verification from a static analysis into a dynamic 

computation of the circuit's behavior over time. 

Our example also illustrates a weakness of circuit verification by symbolic simulation. While this 

session would verify that the circuit correctly adds two 8-bit numbers, it does not establish the 

correctness for other word sizes. To do so, we would require a program capable of theorem-proving 

techniques such as proof by induction. This, of course, would move us from the realm of problems 

that are merely NP-hard to those that are uncomputable, but it may be useful to implement some form 

of inductive reasoning. 
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3 Algorithm 

Our algorithm for switch-level simulation can be derived by a three step process. First, we specify 

the behavior of a switch-level network in terms of Boolean equations. This specification follows 

directly from our method of describing the function of a switch-level network in terms of the signal 

paths in a switch graph. Next, we abstract these equations to the Boolean algebra with domain 

consisting of the set of all Boolean functions over the symbolic variables. Finally, we implement the 

equations with Boolean transitive closure algorithms and routines for manipulating Boolean functions 

symbolically. Of these steps, the first requires the greatest effort, but when done properly the 

remaining two steps follow directly. 

We advocate the use of Boolean algebra for symbolic analysis, rather than an algebra combining 

the notions of logic value and signal strength in the style of Hayes [15], or the mixed integer-logic 

algebra used by Hajj. Boolean algebra is the natural algebra for verifying a logic circuit. In general, a 

designer thinks about a circuit in terms of the Boolean values it produces as a function of the Boolean 

values applied to the inputs. Information about signal strengths is important only when determining 

the behavior of the circuit, and hence we incorporate this information into the structure of the 

equations to be solved rather than in the domain of the algebra. Moreover, a Boolean algebra obeys 

properties that permit powerful techniques for simplification, reduction to canonical form, and testing 

for-equivalence. We can draw from a well-developed body of knowledge on how to represent and 

manipulate Boolean functions. Finally, with Boolean algebra we can apply functional abstraction in 

which we extend a result from the domain {0,1} to the algebra with domain equal to the set of all 

Boolean functions over a set of Boolean variables. This abstraction technique allows us to transform 

a conventional switch-level simulation algorithm into a symbolic algorithm. 

3.1 The Switch-Level Model 

Our approach to switch-level modeling has been described in detail elsewhere. [6] In this paper we 

will only summarize the key ideas. A switch-level network consists of a set of nodes and a set of 

transistors. Nodes of type input are connected to power sources external to the chip acting much like 

voltage sources in an electrical network. All other nodes are of type storage that, like capacitors in an 

electrical network, retain their states in the absence of applied inputs and can share charge with other 

storage nodes. Each storage node is assigned an integer size from the set { 1 , 2 , . . . ,k} indicating (in a 

highly simplified way), its capacitance relative to nodes with which it may share charge. That is, when 

a set of storage nodes share charge (due to connections by conducting transistors), the state(s) of 

the largest node(s) determine the outcome. Input nodes are indicated by size w> k. The voltage on 

node n is represented by its state state(n) € {0,1,X}, with 0 and 1 corresponding to low and high 

voltage levels, respectively, and X corresponding to an indeterminate voltage between low and high 

indicating an uninitialized network state or an error condition caused by a short circuit or charge 

sharing. 
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Node sizes and transistor strengths are shown in parentheses. 
Figure 3. An nMOS Exclusive-Nor Circuit 

As an example, Figure 3 shows the switch-level representation of an nMOS exclusive-nor circuit. 

This network has input nodes Vdd, A, and B, while the output C is a storage node of size 1. The two 

pulldown transistors are type n and have strength 3, while the pullup transistor is type d with strength 

2, indicating that a path to A or B through one of the pulldowns will override the path to Vdd through 

the pullup. 

The behavior of a switch-level network is specified by its steady state response function. Intuitively, 

this function can be explained as follows. Given the states of the input nodes, the initial states of the 

storage nodes, and the states of the transistors, the transistors in the 1 and X states create 

A transistor is a device with terminals labeled, "gate", "source", and "drain" that acts as a resistive 

switch connecting the source and drain nodes controlled by the state of the gate node. All transistors 

are viewed as bidirectional elements with no predetermined direction of information or current flow. 

A transistor has a type indicating the conditions under which it will become conducting and a strength 

indicating (in a highly simplified way) its conductance relative to other transistors in a ratioed circuit. 

Transistor type d denotes a depletion mode device that always conducts. Transistor type n denotes 

an n-channel device that conducts when its gate is in state 1, while transistor type p denotes a 

p-channel device that conducts when its gate is in state 0. When the gate node of an n or p transistor 

is in state X, the transistor is modeled as having arbitrary conductance between fully conducting and 

open circuited. Transistor conductances are modeled by assigning each transistor an integer 

strength from the set {k+ l,k+2 In a ratioed circuit consisting of paths of conducting 

transistors from several input nodes to a storage node, the state of the node is determined by the 

state(s) of the input node(s) connected by maximum strength paths, where the strength of a path 

equals the minimum transistor strength in the path. Transistor conduction levels are represented by 

states 0 (nonconducting), 1 (fully conducting), and X (between nonconducting and conducting). 

Vdd 
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conducting paths from input nodes to storage nodes and between pairs of storage nodes, causing the 

storage nodes to attain new voltage levels. The steady state response for a node equals the state ( 0 / 

1, or X) this node would attain if the transistors were held fixed long enough for the nodes to stabilize. 

When transistors or nodes in the X state are present, we define the steady state response on a node 

as 0 or 1 if and only if it would attain this unique state regardless of the voltages of the nodes and the 

conductances of the transistors in the X state, and as X otherwise. 

For reasons of efficiency and to implement different timing models, a switch-level network can be 

divided into dynamic components, and the steady state response of each component can be 

computed independently. More formally, for a given set of transistor states, a component consists of 

a set of storage nodes connected by transistors in the 1 or X state, along with any connected input 

nodes as well as the connecting transistors. Note that a given input node can be in more than one 

component, and that the partitioning changes dynamically due to changing transistor states. Let us 

define the updating of a component as the process of setting the component transistors according to 

the states of their gate nodes, computing the steady state responses of the component nodes, and 

setting these nodes to their steady state values. 

Given a method for computing the steady_state response of a component, a switch-level simulator 

(either conventional or symbolic) can utilize several different schemes for ordering the component 

computations, effectively giving different models of circuit delay. The choice of an appropriate delay 

model involves a compromise between the goals of generality (i.e. what class of circuits can be 

simulated), accuracy with respect to the actual circuit delays, and computational efficiency. In the 

simple unit delay method of MOSSIM II, the effect of a change in input values is simulated by 

performing repeated iterations each of which involves updating the components containing 

transistors with gate nodes that changed state in the previous iteration. This approach has the 

advantage of reasonable generality and efficiency, although it is unsuitable for predicting the actual 

circuit delays. In the rank-order delay model developed by Naher[17] generalizing a method by 

Lipton, Sedgewick, and Valdes [18], the simulator dynamically orders the components of the circuit 

such that each component need be updated only once each time the input nodes are changed. This 

technique applies only to a restricted class of circuits in which for any valid setting of the clocks, the 

circuit must contain no static feedback paths and must be race-free. By using an efficient set-union 

algorithm [22] the partitioning and ordering of components can be performed in nearly linear (in the 

number of transistors) time. This approach gives better efficiency than the unit delay model at a cost 

of less generality. Finally, in a computed delay model, the simulator approximates the actual circuit 

timing by computing the time required for a node to reach its steady state response using a simplified 

model of the electrical circuit. [23] This approach provides greater accuracy, but at a cost of greater 

computational effort. 

For symbolic simulation, the factors influencing the selection of a timing model carry different 

weight than with conventional simulation. First, a computed delay model in which the delays can be 
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data-dependent (e.g. different rising and falling delays) would be impractical given that the values 

propagated by the simulator represent sets of possible data values. Second, the cost of computing a 

component's steady state response is significantly higher with symbolic simulation, and hence we 

wish to minimize these computations. For this reason, we have selected the rank order model in the 

current implementation of MOSSYM. As future work, we would like to extend this method to circuits 

containing positive static feedback. To verify the correctness of the timing behavior of a circuit, we 

advocate the use of ternary simulation [5 ,8 ,17] to prove freedom from races and hazards in 

conjunction with static timing analysis [16, 21] to verify adequate performance. 

The steady state response for a component in a switch-level network can be expressed 

mathematically in terms of the the paths between nodes formed by the conducting transistors. This 

approach provides a uniform representation for the variety of different ways logic states are formed in 

MOS circuits, including stored charge, charge sharing, and both ratioed and complementary logic. 

For a given set of transistor states, a switch graph is constructed by associating a vertex with each 

node and an undirected edge with each transistor in the 1 or X state between the vertices 

corresponding to the source and drain nodes. A rooted path p is a directed path in a switch graph 

originating at vertex Root{p\ terminating at vertex Desttnation{p) and consisting of a (possibly empty) 

set of edges Edgesip). The strength of path /?, denoted \p] is defined as 

| p | = min [Size(Root(p)), min {Strength(e) \ e € Edges(p)}] 

where for vertex v, Sizeir) equals the size of the corresponding node and for edge e, Strength(e) equals 

the strength of the corresponding transistor. A rooted path represents a source of charge from its 

root to its destination with driving power indicated by its strength. Rooted paths can be classified into 

three types according to their strength. A path with strength 1 < | p \ < k represents a source of stored 

charge from a storage node with an approximate capacitance determined by the size of this node. 

Note that for every storage node there is a path representing the stored charge already on the node 

having root and destination equal to the corresponding vertex and containing no edges. A path with 

strength k<\p\<w represents a source of current from an input node with an approximate 

conductance determined by the strength of the weakest transistor in the path. Finally a path with 

strength \p\ = w must have root and destination corresponding to an input node and contain no 

edges. Such a path represents the external current supplied to the input node. 

In general, the steady state response of a node depends on only a subset of.paths to the 

corresponding vertex in the switch graph, namely those which are not blocked. A definite path is 

defined as a rooted path p such that no edge in Edges(p) corresponds to a transistor in the X state. A 

path p is said to be blocked if for some initial segment p* of p (i.e. Root{pr) = Root(p) and 

Edges(p')(ZEdges(p)) and for some definite path q, Destination') = Destinalion(q) and |/>'|<|<?|. 

Intuitively, a path is blocked if the source of charge it represents would be overridden at some 

intermediate node in the path. Define the path relation 9 as m^n if there is an unblocked path p in the 

switch graph with Root(p) corresponding to node m and with Destination(p) corresponding to node n. 

Then the steady state response on node // is given by the equation 
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steady{n) = \.u.b.{state(m) \ mVn}, 

where l.u.b. represents the least upper bound over the ordering 0<X and 1<X. In other words, if all 

unblocked sources of charge to a node drive it to 0 (or to 1), then the steady state response equals 0 

(or 1). Otherwise, if the node is driven by conflicting sources or by sources of unknown value, the 

steady state response equals X. It can be shown that this characterization of the steady state 

response provides an accurate modeling of the effects of unknown states as well as several important 

mathematical properties. 

3 .2 Equation Specif icat ion 

To specify the steady state response for a circuit in terms of operations in a Boolean algebra, we 

must devise a means of dealing with the three possible state values and the effects of different signal 

strengths. We do this by encoding the three state values as pairs of Boolean values, and by 

incorporating the strength effects into the structure of the equations to be solved. In the ensuing 

discussion, we use the symbol + to indicate Boolean Or, • to indicate Boolean And, and -i to indicate 

Complement. Furthermore, we will indicate the Or of a set of values A as ^ e J a , where if the set is 

empty, the sum equals 0. 

First, a state value y € {0,1,X}, is represented by two Boolearrvalues yl,yQ € {0,1} by the encoding 

shown below. 

y yi y0 
1 1 0 
o o 1 
x 1 1 

With this encoding, for a set F consisting of elements v€ {0,1,X}, if j>=l.u.b.(F), then 

yl = £ v l 

>>0 = ] T > 
V€ V 

Thus we will specify the state of a node n by Boolean values statel(n) and stateQ(ri) and develop 

methods to compute the steady state response values steady\{n) and steady0(n). For a transistor / we 

can define Boolean functions def(t) and pot(t) indicating the conditions when the transistor is 

definitely conducting (in state 1) or potentially conducting (in state 1 or X) depending on the state of 

the gate node n and the transistor type as follows: 
type def{t) pot(t) 

n -istate0(ri) statel(n) 
p ^statel(n) stateQ(n) 
d 1 1 

Suppose we wish to compute the steady state values for a component containing nodes {nv ... ,n } 

and transistors collected into sets of the form T(ij') consisting of those transistors of strength greater 
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than or equal to s having source and drain nodes n. and n.. To account for the different strength 

levels, we solve 3 Boolean equations at each node n for each strength s: steady! Jn) (respectively 

steadyOpi)) indicating the conditions under which the node is driven to 1 (respectively 0) by a path of 

strength greater than or equal to s with no blocking path of strength greater than s, and block (ri) 

indicating the conditions under which the node will be the destination of a definite path of strength 

greater than or equal to s. From these values we can compute the steady state values as 

steadyl(n) = ^ steady! Jri) 
5 = 1 

W 

steadyO(ri) = ^ steadyOJin) 
5 = 1 

These equations can be expressed in in terms of Boolean matrix operations. To compute the values 

of block (ri), construct a qx q matrix D with entries d. equal to 
5 IJ 

and compute 

B = / + / > + / > • / > + - • • . + D r \ 

i.e. the reflexive transitive closure of D. From this we obtain 

block {n) = J2 b.. 
5 V R . ij 

\<j<qtSize{nj)ts 

To compute the values of steady!s(ri) and steady'0 (n), construct a qx q matrix Ewith entries 

e = ^block^in.)- J ] /><?/(/) 
/€r(/,,) 

for / 7^ and with diagonal entries 

en = ^block^n.l 

where by definition, blockw+x(n). = 0. That is, ^.specifies the conditions under which the switch graph 

could have an edge of strength greater than or equal to s from node n.to node n. but no blocking path 

to node ^.of strength greater than 5, while e..specifies the conditions under which a node could have 

a path to itself that is not blocked by a path of strength greater than 5. Now let 

P = E+ EE+ + E r \ -

i.e. the irreflexive transitive closure of E. From this we can obtain: 

steady! s(n.) = .]T p..: stat&inj) 
l<j<q,Size(nj)>s 

steadyOJin.) = J ] p.y siateOin.) 
l£j<q,Size(nj)>s 

Thus, by solving a total of 3w equations in a Boolean algebra (some of which can be simplified or 

eliminated), we achieve the same effect as the simulator MOSSIM II does by solving 3 equations in an 

algebra of path strengths. 
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3 .3 Abstract ion 

To implement a symbolic simulator, we simply extend the results of the previous section by solving 

the equations in the Boolean algebra having as domain the set of all Boolean functions over the 

symbolic variables. The simplicity of this step masks the importance of the result, a tribute to the 

power of Boolean algebra. 

Consider a set of v Boolean variables. These variables are introduced by the user during the course 

of a symbolic simulation, such as we showed in the example simulation session by the command 

>boolean cin,a 9bQtaltblt... ,a7,67 

Let Z ) ' denote the set of all Boolean functions over the symbolic variables, i.e. 

D = { / : { 0 , l } v - > {0,1}}. The algebra Bv = <Z>v, + ,-,- i ,0,f>, consisting of these functions, the 

operations of Or, And, and Complement on these functions, and the constant functions 0 and 1 that 

always yield the values 0 and 1, respectively satisfies the properties of a Boolean algebra. 

Suppose we let the "Boolean values" of the previous section range over the members of Dy 

including the node states, matrix entries, and so on, where for each instance of 0 and 1 in these 

equations, we substitute the functions 0 and 1. Furthermore, we extend the definition of a dynamic 

component as a set of nodes connected by transistors / for which pot(t) 7̂  O. To set anJnput-node n 

to a Boolean variable a, we assign a to statel(n) and to siateO(n), To set an input node to the 

constant 1, we assign 1 to statel(n) and O to statetyn), and similarly to set the node to the constants 0 

or X. By solving the equations of the previous section in the algebra By we simulate the circuit 

symbolically, with the node states being functions of the symbolic variables. If for some node n% the 

simulator computes functions statel(n) = / , and staieO(n) = -»/, then the behavior of the circuit at this 

node is to compute the function / . On the other hand, if the two state functions are not 

complementary, then for some sets of input data the circuit will produce an X on this node, indicating 

either an uninitialized state variable or an error due to a short circuit or charge sharing. 

In fact, our technique is more general than we have described, because we can simulate a circuit 

with the two state functions of each input node set to arbitrary elements of D . For example, we could 

apply some function / to node n by assigning / to state\(n) and -» / to stateO(n). This can be useful 

when evaluating part of a system that receives inputs from another part rather than from the system 

inputs. As another example, if we wish to evaluate the ternary behavior of a circuit, i.e. its behavior 

when some inputs equal X, we can introduce two Boolean variables for each node n, a\ and a0, and 

assign these variables to state\(n) and stateO(n). As a final example, by interpreting the X state as 

indicating a transition from 0 to 1 or from 1 to 0, the method of ternary simulation [5 ,8 ,17 ] can be 

used detect potential circuit timing errors. With ternary simulation, the effect of an input node n 

changing from state y to z is simulated by first simulating the circuit with n set to l.u.b.(y,z) and then 

with n set to z. We can apply this technique with symbolic simulation with y and z equal to Boolean 

functions by first simulating the circuit with state\{n) set to y + z and stateO(n) set to - y + -»z, and then 

with statel(n) set to z and stateO(n) set to - iz . Ternary symbolic simulation provides a very strong form 
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of verification: that the circuit will function correctly under all possible input and timing conditions. 

Thus, by applying the technique of functional abstraction, we obtain a simulator with a rich set of 

capabilities. 

To illustrate our technique with an example, consider the switch-level representation of the 

exclusive-nor circuit shown in Figure 3. To analyze the circuit for Vdd set to 1, A and B set to Boolean 

variables a and b, respectively, and C initially in state X we would compute for node C: 

steadylA = 

steady!^ = 

steady! = 

0 

a-b 

0 

steady! 

steady! = -*(a + b) + a-b = © b) 

steadyO = a-^b + b—*a = a © b 

Hence, the circuit behaves as advertised. 

steady04 = 0 

steady 0^ = a- -> b + b- -^a 

steady02 = 0 

steadyOl = 0 

block = 0 
4 

block^ = a + b 

block2 = 1 

bloc\ = 1 

3 .4 Implementat ion 

To implement a symbolic simulator, we require a method of solving the equations for the steady 

state response, as well as a method of representing and manipulating Boolean functions symbolically. 

Suppose a component contains n nodes, / transistors, and is being evaluated symbolically in the 

Boolean algebra of v variables. We will describe possible methods to compute the steady state 

response and measure their time complexity in terms of the total number of algebraic operations. We 

must solve matrix equations of the general form y = A*b, where A is an nxn Boolean matrix with no 

more than / nonzero entries. We could use WarshalPs algorithm [1] to compute A*, This method can 

require 0(r?) operations, even if the component is relatively sparse (i.e. / < n2). For sparse networks 

we obtain better performance by the Jacobi relaxation method, performing iterations of the form: 

y* =/-1 + AyHl 

until convergence (a maximum of n iterations). Better yet, by applying Gauss-Seidel relaxation, and 

by exploiting the sparseness of the matrix, we can solve the equation with 0(t • min (n, 2 V ) ) operations. 

Assuming the number of strengths w is constant, the total complexity of computing the steady state 

response will therefore be 0 ( / - min ( H , 2 v ) ) algebraic operations. For the case where v = 0, i.e. we are 

performing conventional switch-level simulation, each algebraic operation requires constant time and 

hence the time complexity is O(z). In practice, however, a method that solves for the steady state 

response in an algebra of path strengths [6] achieves somewhat better performance. 
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Finally, we require a method of representing Boolean functions, to perform the operations of And, 

Or, and Complement, and to test for equivalence. A variety of different methods have been described * 

for this task, all of which have time complexity Q(2V) for functions of v variables. In fact, many 

researchers believe that no polynomial-time algorithm for this task exists. In practice, however, 

reasonable success has been achieved for representing and manipulating the Boolean functions 

arising in applications related to logic design. For our implementation we chose an approach in 

which Boolean functions are represented by directed acyclic graphs [7] in a manner similar to the 

notation presented by Akers[2]. This representation has the advantage that many common 

functions, such as the functions corresponding to the sum and carry bits of addition, parity functions, 

and majority functions require graphs that grow linearly or quadratically in v. Two functions 

represented by graphs can be tested for equivalence in time proportional to the sum of the two graph 

sizes and can be And'ed or Or'ed in at most time proportional to the product. Furthermore, a function 

can be complemented in time proportional to its graph size. As a result, a symbolic simulator can 

operate much faster than one might expect. 

4 Experimental Results 

To evaluate the feasibility of symbolic simulation, we used MOSSYM to verify different sizes of the 

ALU circuit shown in Mead and Conway [20] with the control lines set to perform addition, and with 

both input data words as well as the carry input set to symbolic values. We then comparecHhe 

functions computed for the sum and carry outputs with functions generated from the Boolean 

equations for addition. This circuit utilizes a precharged Manchester carry chain and pass transistor 

multiplexors. The fact that it works relies on rather subtle aspects of MOS circuit design, and hence a 

switch-level verification is quite useful. The time required for this verification is given in Table . For 

comparison we show the time required to perform the same analysis with MOSSIM II by exhaustively 

simulating the circuit for all possible input combinations. For eadh set of inputs, we reset all node 

states to X, simulated one clock cycle, and compared the outputs to the binary representation of the 

sum of the two data words and the carry input. Both programs are written in Mainsail [19] and 

executed on a Digital Equipment Corp. VAX 11/780. Thus our comparison is fairly realistic, except 

that far more time and effort has been spent optimizing the performance of MOSSIM II than with 

MOSSYM. 

Word Size Transistors Symbolic 
(CPU time) 

Exhaustive 
(CPU time) 

1 
2 
4 
8 
16 

43 
86 
172 
344 
688 

20 s. 
40 s. 
82 s. 
196 s. 
566 s. 

3.6 s. 
19 s. 

454 s.^ 
49 hrs.* 
648 yrs.* 

* - estimated 

For this class of circuits, the time required for symbolic verification grows quadratically with the size, 
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although a linear term dominates for small word sizes. This growth can be justified on the grounds 

that the sizes of the function representations (and consequently the time required for the algebraic 

operations) grows linearly with the word size, as does the total number of algebraic operations. The 

performance is far better than one would predict by a worst case analysis. Consequently the 

exponential time required for exhaustive simulation eclipses the time required for symbolic 

verification for sufficiently large word .sizes. The cross over occurs at somewhere between a 2 and 3 

(e?) bit word size. Considering that the exhaustive verification of the 3-bit ALU requires only 128 

clock cycles, it is somewhat surprising that the more complex method of MOSSYM can outperform 

conventional simulation for this case. 

The performance of MOSSYM depends primarily on the data structure sizes for the Boolean 

functions being manipulated and secondarily on how the circuit implements these functions. For a 

large class of circuits, we believe that symbolic simulation will prove practical. 

5 Future Research 
Our program MOSSYM represents only a prototype of a true symbolic simulator. A variety of 

improvements could be made in its performance and its capabilities. Perhaps the most obvious 

method to improve performance would be to compile switch-level subcircuits into Boolean 

expressions, so that we could compute the steady state response of a component by symbolically 

evaluating logic expressions rather than by solving the steady state response equations for the 

component each time. As an extreme example, MOSSYM requires 200 times longer to compute the 

output of an nMOS or CMOS inverter for a function applied to the input than it does to simply 

complement the function, in part because our manipulation routines can complement a function very 

quickly. Our program already has the basic capabilities required to compile switch-level subcircuits, 

but we have not yet implemented this feature. * 

The availability of a symbolic simulator raises a difficult set of issues regarding how one should go 

about verifying a complex digital system. The desired behavior of a system must be specified in a 

more rigorous fashion than most circuit designers currently use. For arithmetic circuits it is relatively 

easy to describe the behavior in terms of algebraic expressions, and the verification program can 

easily translate these into Boolean functions. For a complex sequential system, however, it is less 

clear how to devise a verification procedure that will rigorously establish correctness. For example, 

consider a random access memory. One might attempt to verify it by simply writing a symbolic value 

into a symbolic address and then reading the contents at a second symbolic address. However, this 

procedure would not detect an error in the address decoding logic that causes two addresses to map 

into the same location. For a circuit such as a microprocessor, the problems of specifying the desired 

behavior and devising a verification procedure become even more difficult. Finding solutions to these 

problems could contribute to the more general goal of designing digital systems in a more reliable 

manner. 
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