
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 5 - 1 2 8

PIE-
A Programming and Instrumentation Environment

for Parallel Processing
Zary Segal l and Larry Rudolph

Department of Computer Sc ience

Carnegie-Mel lon University

26 April 1985

Abstract
The issues of the efficient development of performance efficient parallel programs is explored. T h e
Programming and Instrumentation Environment for Parallel Processing (PIE) system's concepts ,
designs, and preliminary implementation results are presented. T h e key goal in PIE is semiautomatic
generation of performance efficient parallel programs. In PIE, a system intensive rather than
programmer intensive programming environment is promoted for supporting users with different
experience in parallel programming. Th ree levels of such support are provided, namely the Modular
Programming Metalanguage, the Program Constructor , and the Implementation Assistant. In order to
facilitate the task of parallel programming, each component employs a set of new concepts and
approaches to integrate functionality with performance concerns . Some of them are: programming
for observability, semantic monitoring, relational parallel program representation, constraint driven
abstract data types (frames), frame unfolding, programming with templates, and parallel
implementation assistant. Th is paper presents the results of PIE 1, the first of a three phase project.

This research has been supported in part by the Ballistic Missile Defense Advanced Technological

Center under contract DASG-60-80-C-0057. The views and conclusions contained in this paper are

those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of BMDATC, Carnegie Mellon University or the U.S. Government.

26 April 1985 at 11:21

Table of Contents
1. Introduction
2. Background and Related Research

2.1. Sequential Programming Environments
2.2. Parallel Programming Envi ronments

3. T h e Modular Programming Metalanguage
3.1. T h e Composi t ion of an M P Program
3.2. Processes
3.3. Frames
3.4. Tasks
3.5. Sensors
3.6. Naming in MP
3.7. Synchronizat ion and Coord inat ion
3.8. MP Summary

4. T h e Program Const ructor
4.1. MP Or iented Editor - M P O E
4.2. T h e Status and Performance Monitor
4.3. T h e Relational Representation System

4.3.1. Roadmap
4.3.2. Process Execut ion Times
4.3.3. Invocation T r e e V i e w
4.3.4. Frame U s a g e V iew

5. A Simple Example
6. T h e Implementation Assistant
7. Status and Conc lus ions
8. Acknowledgment

26 April 1985 at 11:21 1

1. Introduction
A recurrent problem plaguing computer sc ience is the underestimation of the software effort. Even

from the earliest days, the hardware component of a major computer project has been viewed as

requiring the most research and creative energy; only once the hardware is completed does the

enormity of the software effort become apparent. T h e recent emergence of parallel processing is no

exception. For example, an overwhelming number of research efforts have been directed toward

describing various aspects of designing and implementing parallel processors, while there is a

paucity of research addressing how one will actually program these machines.

Parallel processing is a radical departure from the traditional sequential processing. It promises

machines that can execute extraordinarily large numbers of instructions per second. T h e main

challenge now is not whether these machines can be built but whether they can be programmed in

such a way as to make effective use of the increased computing power. It is not the raw computing

power that is important, it is the effective computing power. Exper ience indicates that the future

programmer of parallel processors will require assistance in order to make effective use of the

machine and to efficiently produce efficient parallel programs. This paper describes one such

environment, called the Programming and Instrumentation Environment (PIE).

Historically, the programmer of a parallel processor has been a rather knowledgable scientist or

engineer who was burdened with the task of creating parallel applications using rudimentary

environments. Detailed multiprocessor architecture and operating system knowledge as well as

intricate ability to manually map parallel algorithms into a parallel virtual architecture and an

"extended" sequential languages, are just some of the hurdles such users had to overcome. A

correct parallel program is not even the end of the task. Often, the only reason for developing a

parallel program is for the real time performance. T h e difficult task of performance debugging and the

interpretation of the feedback in the context of a rudimentary program environment requires an even

more specialized and highly knowledgable programmer.

T h e criteria of success for a parallel programming environment should be evaluated against two

metrics. First, the user interaction with the system should put the burden on the system rather than on

the programmer. That means, realizing a system intensive programming environment rather than a

programmer intensive programming environment. Second , as noted above, efficiency in terms of the

real speed obtained by parallelization of the problem, mapping it into and executing it onto a parallel

p rocessor is the reason for applying a parallel solution to a computational problem. Accordingly , a

programming environment oriented toward high performance parallel programs is of essential

importance.

26 April 1985 at 11:21
2

T h e first problem is not unique to parallel processing. T h e same goal is laudable in the context of

sequential processing. Exper ience shows, however, that the increased number of dimensions

present in a parallel program makes the need for system support urgent. Amplification and

adaptation of current techniques from sequential programming environments to the parallel

programming environment could be the first step in the way of satisfying this need.

T h e second problem is particular to parallel programming, and therefore, new techniques are

required to fulfill the critical goal of efficient parallel programming. The PIE system attempts to

address the above two problems and their related issues.

In P IE , we concentrate on those aspects relevant to parallel processing. It is worthwhile noting the

distinction between parallel and distributed or concurrent processing. In concurrent processing,

there is a set of processes whose executions are interleaved. T h e processes may share memory or

may communicate via a message-passing mechanism. T h e emphasis is on correctness and only

some slight improvement in execution speed is achieved due to overlapping I/O with computation. In

distributed computing, there is a set of processes executing on distinct machines. Often the

programming goal is to coordinate the activities that occur at physical lydisjoint locations and these

activities usually involve data-base applications. Occasional ly , the goal of distributed processing is

an increase in execution speed, however, s ince the communication overhead between processes is

high, only a coarse grain parallelism can be supported. Communication is usually performed through

a highly structured interprocess communication mechanism (IPC) . In parallel processing there is a set

of processes executing on a tightly coupled set of processors that either all share access to some

shared memory or employ a very fast and efficient communication mechanism. T h e primary goal of

parallel processing is a performance increase proportional to the number of processors. A n

orthogonal goal is reliability. In PIE , w e concentrate our effort toward programming for performance

efficient parallel programs.

T h e PIE project is organized in three phases. The first one, PIE 1 , is geared toward concept

formation and feasibility study. It has been implemented using a number of V A X 11 /780 computers

and professional workstations. P IE 4, to be executed in a multiprocessor V A X 11/784 and Mic roVAX

workstations, is under advanced design and implementation. P IE 100, the third project phase, is

geared toward the Supercomputer Workbench (a large multiprocessor system under development at

C M U) . Currently, P IE 1 is essentially complete and hence most of the material in this paper relates to

the P IE 1 phase.

T h e paper is organized as follows. Programming environments and, in particular, parallel

26 April 1985 at 11:21 3

programming environment are first reviewed. The next three sections are concerned with the three

components of the PIE system: the modular programming metalanguage, the program constructor,

and the implementation assistant. The components are organized according to their level of

abstraction and user support with the highest level providing expert system support for parallel

program development. T h e concepts described in these sections are illustrated by a sample

application presented in section 5. Finally, section 7 presents the conclusion and current status of

the PIE project.

2. Background and Related Research
This section serves as a general introduction to programming environments. We review both

sequential and parallel programming environments.

2.1. S e q u e n t i a l P r o g r a m m i n g E n v i r o n m e n t s

At the foundation of a programming environment there are, in general, three types of components.

First, a set of one or more programming languages is required . T h e programming languages may be

of general purpose flavor or may support specific types of applications. Second , a program

constructor facility provides an integrated interface between the programming languages, the user

and the system utilities. Aside from supporting the individual user, the program constructor may

facilitate multiple programmers' project support. Recently, there are notable efforts to enrich the

program constructor's functionality with task specific information. Examples of program constructors

are syntax-oriented editors and some recent efforts on semantic-oriented editors. Thi rd , run-time

debuggers of different flavors are essential for following and correcting a program's run-time

behavior.

Currently, there are a few efforts aimed at building sequential programming environments.

Although the emphasis is somewhat different in each of these systems, interactive system support for

program development seems to be a common goal.

The Cornel l Program Synthesizer [20] has a program constructor based on a syntax-oriented editor.

Using attribute grammars to describe the program constructor generator output, this system could be

used for a number of programming languages. T h e C O P E [2] system, also from Cornel l , uses an

editor coupled with an error correcting parser to automatically correct users' program constructs, as

they are entered. Undo, redo, editing and execution features provide a minimal connection and

feedback mechanism between program development-time and run-time.

A major effort at C M U on programming-in-the-small and programming-in-the- large has produced

26 April 1985 at 11:21 4

the G A N D A L F programming environment [8]. T h e program constructor is again a syntax or language

oriented editor - A L O E . T h e internal structure of programs in an A L O E is a parse tree, and the editor

produced is template-oriented.

At Xerox P A R C a number of programming environment prototypes have been explored. Notable is

the Smalltalk environment [13,5] . Smalltalk is object and message oriented and makes use of

graphics to facilitate the manipulation of objects. T h e Smalltalk environment is language dependent

and makes heavy use of the capability of interactive graphics display.

Another programming environment based on Smalltalk is C E D A R [12]. This system supports an

algebraic, compiled language with interactive graphics-oriented programming interface using

multiple windows.

Recently at Brown University, a graphic-oriented programming environment effort, P E C A N [16], has

been started. In P E C A N , the emphasis is. on programming for observability, multiple views, and

exploration of graphical programming.

2 . 2 . Pa ra l l e l P r o g r a m m i n g E n v i r o n m e n t s

As previously stated, at the foundation of a programming environment is a class of programming

languages. Almost all programming languages currently supporting concurrent processing (e.g. Ada ,

Modula2, C S P , O C C A M , Edison, Concurrent Pascal , etc.) provide constructs for sequential

programming, as well as constructs for supporting concurrency control , communication and

synchronization. When moving the domain of application into parallel processing, additional features

are needed for achieving efficient mapping of parallel machines. This include constructs for:

• parallel entities manipulation

• virtual machine mapping

• efficient use of shared memory (when relevant)

• programming for observability

• performance/correctness debugging

Such support could be integrated in the programming language itself by extended the semantics, or

could be provided as a set of procedures callable from the programming language itself. Given the

fact that this support will most likely be language independent, an alternative is to provide the parallel

language support in language independent manner. This support could be in a form of a

26 April 1985 at 11:21 5

metalanguage. The metalanguage is then the medium in which to express and manipulate all the

parallel constructs. The sequential constructs stay in an existing programming language. When the

programming language is not a concurrent programming language (ex. Fortran), the metalanguage

covers synchronization and communication primitives as well.

Currently, there are a number of research efforts in the area of parallel programming environments.

A distinct class is related to the vectorization of existing languages. Most notable is the Paraphrase

[11] automatic vectorizing compiler research at the University of Illinois. Although well-suited for

taking advantage of vector programs, the Paraphrase compiler does not provide support for creating

new superior parallel software for a general class of computer structures.

Another interesting research effort is P O K E R at Washington University [19]. P O K E R provides a

program constructor and is specialized to mapping a virtual application architecture into a

configurable VLS I parallel architecture.

A set of relevant, programming environment efforts come from the area of distributed programming.

A D L / A D S [6] developed by T R W is a language with an interactive graphic user interface, targeted

toward mapping a distributed application into a distributed system. The language has constructs

enabling the user to describe both virtual and physical system structure and to map a distributed

program over the described structure. Significantly, an instrumentation system provides run-time

information of the system behavior. Matchmaker [10], at Carnegie-Mellon University, is a program

providing for distributed program construction by hiding some of the more cumbersome details of

interprocessor communication from the user.

3 . The Modular Programming Metalanguage
This section describes the modular programming metalanguage, which is the first of the three

components of the PIE system. T h e other two components, the program constructor and the

implementation assistant, are descr ibed in subsequent sections. T h e goal of the modular

programming (i.e. MP) metalanguage is to provide support for the efficient manipulation of parallel

modules, fast parallel access to shared data constructs, and programming for observability in a

language independent fashion. The MP metalanguage allows the programmer to specify most of the

code in his or her favorite programming language. Moreover, MP assumes a run-time environment

that supports its abstractions and its monitoring directives. In this section, we describe the MP

metalanguage that has been implemented in PIE 1.

26 April 1985 at 11:21 6

3 .1 . T h e C o m p o s i t i o n of a n MP P r o g r a m

In MP, the programmer v iews the computation as a sequence of serial and parallel operations. E a c h

parallel operation may consist of another set of computations that are executed in parallel. S ince

each computation itself can be composed of a sequence of serial and parallel operations, the

programmer may not know how many processes are executed in parallel. T o realize the goal of a

clean separation of concerns , the programmer must be able to c o d e or specify parts of the program

without a detailed knowledge of the whole computation. T o this end, a set of logical entities have

been developed so that the programmer can concentrate on the correct functioning of each module;

the system automatically converts the logical entities and their specifications into an executable

parallel program. It is envisioned that additional optimization, both compile-time and run-time, of

concurrency control conditions will minimize the synchronization overhead.

MP provides the ability to observe or monitor the execution of a program. Th is is accomplished

through the sensor module. A sequence of serial operations is referred to as a process and a parallel

operation is referred to as a task. A set of tasks that share the same protection envelope is referred to

as a task group. Access and management of shared memory is specified in a frame.

3 . 2 . P r o c e s s e s

A process is a sequential program written, at least in theory, in any sequential programming

language. The process construct includes the set of local declarations, local data, the process body,

and instrumentation. Sequential languages are extended by the MP environment to give support for

synchronization, initiation of parallel operations, access to shared data, and monitoring directives

associated with process functions. T h e motivation for these extensions is to allow the programmer to

concentrate on the limited set of concerns at hand. For example, Figure 3-1 shows sample process

code for a tree insertion routine. Note that the code is written without specifying locks or

synchronization. These issues are relegated to the frame constraint code.

W e have found it useful to code using frame operations that modify shared data structures based on

the results of some test of shared data structures. In this way, concur rency constraints can be easily

satisfied and the process c o d e need not be concerned with the details of the shared data structures.

For example, in the Insert process of Figure 3-1, a frame operation is used that adds an item to the

tree only if the process is at a leaf node of the tree. T h e frame operation also indicates whether this

occurred.

26 April 1985 at 11:21 7

P r o c e s s I n s e r t (x : i t e m) =
B e g i n

S M o v e T o R o o t ;
R e p e a t

S w i t c h S C o m p a r e (x) B e g i n
C a s e - 1 : S M o v e T o R i g h t C h i l d ;
C a s e +1 : S M o v e T o L e f t C h i l d ;
C a s e 0 : E x i t ;

E n d ;
U n t i l S A d d l f l e a f (x) ;

E n d

F i g u re 3 - 1 : Process code for insertion in a binary tree. Note that the code is
written without knowledge of other parallel activity. T h e frame operations,

identified by the symbol M $ M , provide access to shared data structures.

3 . 3 . F r a m e s

Communication between processes on a tightly-coupled multiprocessor is often more efficient

when shared memory is manipulated directly by the processes than when they exchange information

solely through message passing, interprocess communication mechanisms (IPC) . Exper ience has

shown, however, that indiscriminate use of shared memory promotes 'hard to find 1 bugs. MP

attempts to alleviate this problem by providing facilities for controlled access to shared memory.

Separation of concerns is achieved through shared data encapsulation and shared abstract data

types. MP thus introduces the notion of a frame. Logically, a frame consists of declarations of shared

data, a set of operations on shared data, constraints on the execution of these operations, and

monitoring directives associated with the shared data and its access. An interprocess communication

mechanism (IPC), which is supported in many operating systems, is an example of frame operations.

The IPC mechanism is usually implemented as a queue in which a send is a queue insert and a

receive is a queue delete with the queue hidden from the caller and with a strictly enforced

synchronization protocol. Although a frame is logically a single entity, in reality its operations are

'unfolded' automatically into the process code with appropriate coordination c o d e where necessary.

Moreover, frames give a clean extension to serial programming languages. From the user's point of

view, access to shared data is accomplished through procedure calls that appear to the programmer

as monitors [9, 3]. It is important to note that frames are not monitors; monitors provide strict mutually

exclusive access to shared data whereas frames allow potentially unrestricted accesses to occur in

parallel.

Frames consist of abstract shared data types, shared data encapsulation, and constraints.

Associated with the data types are a set of operations, some of which are visible to the process code.

The frame code for these operations may refer to any of the encapsulated data as well as to any of the

26 April 1985 at 11:21
8

internal manifest variables (explained later in this section in detail) such as the caller's process name

or index described below. Frame operations may also refer to other frame operations. Figure 3-2

shows sample frame specifications for the tree insertion process presented in Figure 3-1. A local

variable is declared for the use by each process . Visible functions and procedures can be used in

process and other frame code .

Coordination and synchronization required for correct parallel access to shared memory is

specified by constraints on the parallel execut ion of these operations. T h e constraints can be

regarded as a generalized form of path expressions [7,4] or path predicates [1] on the frame

operations. These expressions specify both what sequences are required and what parallel actions

are forbidden. Anything left unspecified is assumed to be unrestricted and may occur in any order or

in parallel. T h e constraints can control access finer than just frame operations. For example, parallel

access to different elements of an array may be allowed provided that there is no parallel access to

any particular element and that no element can b e referenced until it has been initialized.

Figure 3-3 shows sample constraint specifications for these operations. T h e operation names are

listed with free or bound variables as parameters. The symbol " . " indicates that the parameter value

plays no role. T h e parameters following the operation name and placed between the brackets (" ["

and "] ") indicates which variables, of type either local or other, are required to match in order for the

constraint to hold. In the example, each different TreeNode value has a separate constraint. T h e

system can realize these constraints, for example, by automatically allocating a lock with each

occurrence of a TreeNode and inserting the proper lock protocols.

Figure 3-4 shows the frame code unfolded into the process code . This is performed mechanically,

and since the AddlfLeaf operation is exclusive on each node in the tree, the system automatically

assigns a lock to each node. Moreover, from the specification, it is derived that the other operations

can occur in parallel with each other but not with AddlfLeaf and hence readers/writers coordination

is automatically inserted.

Divide and conquer , a common algorithmic paradigm, is supported by the MP environment. Here, a

part of shared data is often subdivided with each subpart processed independently and in parallel. A

frame partition operation and the notion of a hollow frame support decomposit ion into subproblems

and allow the process code to be written without knowing whether it is solving a problem or a

subproblem. T h e partition operation records h o w a shared array is to be divided. A hollow frame

maps a part of a shared data array into an entire virtual shared data array. A particular instance of

divide and conquer is when the subproblems are solved recursively. Th is style is supported by MP

26 April 1985 at 11:21 9

F r a m e T r e e M a n i p u l a t i o n

T y p e T r e e N o d e = R e c o r d B e g i n
I t e m : i n t ;
L e f t , R i g h t : " T r e e N o d e ;

E n d ; •

L o c a l P : " T r e e N o d e ;

{ Allocation of Shared Memory Data Structure }
S h a r e d Root : " T r e e N o d e ;

R o o t L e a f : T r e e N o d e ;

In i t i a l i za t ion :
B e g i n

R o o t ;= R o o t L e a f ;
R o o t . I t e m : = N i l ;
R o o t . L e f t := N i l ;
R o o t . R i g h t : s N i l ;

E n d ;

V i s i b l e F u n c t i o n $ C o m p a r e (x : i n t) : B o o l e a n
B e g i n

If x < P. I t e m T h e n SCompare : a -1
E lse If x = P. I t e m T h e n SCompare* : s 0
E lse SCompare : - 1;

E n d

{ Some operations are omitted }

V i s i b l e S M o v e T o L e f t C h i l d
B e g i n

P : « P . L e f t ;
E n d ;

{ The following operation modifies the tree, inserts the item, if we
are currently pointing at a leaf node. The results of this test are returned. }
V i s i b l e $ A d d I f L e a f (x : i n t) : B o o l e a n
B e g i n

If P. I t e m != Nil T h e n R e t u r n (F a l s e)
E l se B e g i n

P . I t e m := x ;
P. L e f t := N e w (T r e e N o d e) ;
P . R i g h t : s N e w (T r e e N o d e) ;
R e t u r n (T r u e)

E n d
E n d ;

F i g u r e 3 - 2 : Sample frame specifications for the tree insertion
process presented in Figure 3-1.

26 April 1985 at 11:21
10

C o n s t r a i n t
F o r b i d d e n : (F o r A l l t in { T r e e N o d e })

S A d d l f L e a f (.) [T r e e N o d e : f]
w i t h { $ C o m p a r e (.) [T r e e N o d e : f] U

$ M o v e T o R o o t [T r e e N o d e : f] U
S M o v e T o L e f t [T r e e N o d e : f] U
$ M o v e T o R i g h t [T r e e N o d e : f] U
S A d d l f L e a f (.) [T r e e N o d e : f] }

E n d C o n s t r a i n t

F i g u re 3 - 3 : Sample constraint specifications,

and the run-time system maintains a hierarchical, dynamic, naming scheme for MP entities.

3 . 4 . T a s k s

A task contains all the necessary specifications for a parallel operation. A process wishing to

initiate a parallel activity just invokes a task. A parallel operation consists of a set of processes that

cooperate in some fashion, often through shared memory. A task therefore consists of a set of

processes, a set of frames, and control information. In addition, tasks specify monitoring directives

for the whole task as well as resource allocation. Resource allocation is usually dependent on the

resources supplied by the target machine and often includes specifications as to how processes are

to be mapped onto processors, what scheduling policies should be used, and how shared memory is

to be mapped onto physical memory.

T h e MP metalanguage enforces scoping in a manner similar to that found in block-structured

sequential programming languages. Part of the specification of a task includes process definitions,

frame definitions (abstract shared data type declarations), and task definitions. Each logical entity

can reference other logical entities that are within its scope. That is, entities that are defined in the

same task or in an outer task can be referenced. (See, for example, Figure 5-1.) A library of

predefined abstract shared data types and some standard tasks and processes are visible throughout

the program and are arranged in system libraries in much the same way as are I/O packages.

3 .5 . S e n s o r s

In addition to specifying the actions and constraints of a parallel program, MP also provides the

ability to observe or monitor the execution of a program. This is accomplished by instrumenting a

program by inserting sensors into the program. T h e implementation of the sensors is automatic and

may be in hardware or software, depending on the system. MP supports four types of sensors: time

consumed by a task or process, time required to execute a block of code , the value of a variable, and

user defined. T h e first type is always inserted automatically by MP. Figure 3-5 shows the monitoring

of a block of process code as well as the monitoring of the value of the parameter. T h e PIE system

26 April 1985 at 11:21

P r o g r a m I n s e r t =

{ The frame's data structure declarations are unfolded into each process
and for each frame that it references. Note the lock allocation that has
been inserted with each TreeNode. }
T y p e T r e e N o d e = R e c o r d B e g i n

SSemaphoreOOl : L o c k ;
I t e m : i n t ;
L e f t , R i g h t : " T r e e N o d e ;

E n d ;

{ Access to shared memory is achieved in Pascal by allocating a pointer to a
record that specifies the shared memory structure. }

SharedMemory = R e c o r d B e g i n
Root : " T r e e N o d e ;
R o o t L e a f : T r e e N o d e ;
E n d ;

v a r P : " T r e e n o d e ;
S h a r e d M e m o r y P t r O O l : " S h a r e d M e m o r y ;
x : i n t ;

{ The frame operations are unfolded into the Pascal code for the process
along with the inclusion of synchronization code realizing the constraints.}

F u n c t i o n $ A d d I f L e a f (x : i n t)
B e g i n

S B e g i n W r i t e r s (P . S S e m a p h o r e O O l) :
If P. I t e m != Nil T h e n R e t u r n (F a l s e)
E l s e B e g i n

P . I t e m := x ;
P . L e f t : s N e w (T r e e N o d e) ;
P . R i g h t := N e w (T r e e N o d e) ;
R e t u r n (T r u e)

E n d ;
S E n d W r i t e r s (P . S S e m a p h o r e O O l) ;

E n d

(Note that in the following body code that the frame operation has been
unfolded as well as the inclusion of synchronization code. }

S w i t c h S C o m p a r e (x) B e g i n

C a s e + 1 : B e g i n
$ B e g i n R e a d e r s (P . S S e m a p h o r e O O l)

P := P . L e f t ;
$ E n d R e a d e r s (P . S S e m a p h o r e O O l) ;
E n d

E n d ;

F i g u r e 3 - 4 : Frame and synchronization code are unfolded into the process code.

26 April 1985 at 11:21
12

integrates the job of monitoring and does all the associated bookkeeping. MP and the run-time

system generate and maintain unique identifiers for each of the sensors as well as associating the

point in the program specification where the sensors have been inserted by the programmer. Thus ,

when viewing the results of a particular sensor, the programmer can also see surrounding the c o d e

and specifications. In Figure 3-5, the block sensor requires the insertion of two sensors each with the

same identifier.

P r o c e s s I n s e r t (x : i t e r n) *
B e g i n
~ B e g i n _ P r o c e s s _ S e n s o r (1 7) ;

~ V a r i a b l e _ S e n s o r (1 2 , x , " i t e m ") ;
S M o v e T o R o o t ;
~ B e g i n _ 8 1 o c k _ S e n s o r (7) ;
R e p e a t

S w i t c h S C o m p a r e (x) B e g i n
C a s e - 1
C a s e +1
C a s e 0

E n d ;
U n t i l S A d d l f L e a f (x) ;
~ E n d _ B l o c k _ S e n s o r (7) ;

~ E n d _ P r o c e s s _ S e n s o r (1 7) ;
E n d

S M o v e T o R i g h t C h i l d ;
S M o v e T o L e f t C h i l d ;
E x i t ;

F i g u r e 3 - 5 : Process code of Figure 3-1 with sensors inserted.
The B e g i n / E n d _ P r o c e s s _ S e n s o r s are always inserted and the 17 is associated with

this process. T h e Block sensors were inserted at the direction of the programmer
with the identifier 7 generated by MP and associated with this block.

3 .6 . N a m i n g in M P

T h e ability to recursively invoke tasks and to create distinct instantiations of the various entities

requires particular care be given to the naming issue. Each entity of type task, process, or frame, has

three names: local, static, and dynamic. T h e local name is the one assigned by the programmer and

is a single alphanumeric identifier. (For example, in Figure 3-1, the local process name is " Insert" .)

T h e static name is based on the static scoping of MP. It consists of a list of local task names

separated by the delimiter " / " and terminated by the entities local name (For example,

"Outer/Master/Slaves") . S ince there can be multiple copies of a process, the dynamic local process

name is the local name of the process followed by the delimiter " . " and the index of the process

instantiated (for example "siave.4") . T h e dynamic naming structure is similarly structured in a

hierarchical fashion but reflects the sequence of task invocations leading to its instantiation. T h e

dynamic name is a list of alternating task and process dynamic local names again separated by the

delimiter " / " and terminated by the dynamic local name (for example, if " O u t e r " and "Master" are

task names, and "Init" and "S lave" are local process names then

26 April 1985 at 11:21 13

"Outer/lnit3/Master/Slave.5/Master/Slave.4" could be adynamic process name).

3 . 7 . S y n c h r o n i z a t i o n a n d C o o r d i n a t i o n

T h e problem of synchronization and coordination is a major cause of concern in parallel

processing. In MP, the problem is mitigated in three ways: Tasks, Frames, and Events. Frames deal

with synchronization and coordination details related to access to shared memory. Tasks deal with

the initiation and termination of sets of processes. Although these two mechanisms are sufficient to

handle all synchronization problems, a third kind of support is often useful. Specif ic execution points

within a process are labeled and marked as events. Within the task specification, the user can specify

constraints using these events in order to synchronize the processes within a task. These expressions

or predicates are used to control processes as well as frame operations.

T h e constraints require the use of certain run-time status values. These manifest variables may or

may not be actually maintained during run-time; their main use is to allow the programmer to form

constraints in terms of these variables; the system may be able to realize the constraints in a simpler

fashion. The manifest variables are similar to the shadow auxiliary variables introduced by Owicki and

Gr ies [14,15] . Some examples include: the P r o c e s s _ D y n a m i c _ N a m e which is unique for each

instantiation of a process and the associated P r o c e s s e d is a unique integer. T h e P r o c e s s _ I n d e x

can be derived from the P rocess_Dynamic_Name and indicates the unique instantiation of process

when multiple copies have been initiated. T h e P r o c e s s _ D e p t h is an integer that identifies how many

times a process has been recursively invoked. This value is derived by counting the number of times

the process name occurs within the P r o c e s s _ D y n a m i c _ N a m e . Finally, an event or execution count,

• . C o u n t where * is an event or frame operation identifier, is available that records the number of

times the event or frame operation has been executed for each unique process instantiation

Associated with each of these manifest variables is a set containing the universe of values for these

variables.

3 . 8 . MP S u m m a r y

Figure 3-6 reviews the basic "modules" of a task in MP. It describes the various specifications of a

task as well as the other modules comprising a task. Note the distinction between definitions and

references. A process may be defined in one task but only included in tasks that are defined within

the task.

26 April 1985 at 11:21
14

• Task

o Definitions. (Statically scoped) .

• Process Definitions. A complete program in an extended serial programming
language. Monitoring directives concerning aspects of the process state.
Points in the program marked as events with associated names.

• Abstract Shared Data T y p e Definitions. Descr ibes the shared data
declarations, the hidden and the visible operations, and the access control of
these operations. A data initialization specification can also be supplied.
Monitoring directives concerning the values of the shared constructs as well
as monitoring the time spent waiting for synchronization.

• Task Definitions. This definition provides static scoping of the logical

entities.

o Body

• Processes. The set of processes that are to be executed in parallel when the
task is invoked along with a repetition count indicating that there are to be
multiple copies of the process.

• Frames. Binds names to instances of the shared data types. Th is represents
the data that is common to all processes and frames in this scope .

o Control

• Process Control . General ized path expressions specifying initiation and
termination conditions for the processes and for the task. Constraints are
specified in terms of instances of the entities, global variables, and events.

• Resource Allocation. Mapping process instantiation to processors: for each
instance of a process either a specific processor is suggested, any one in a
class of processors are suggested, or the system is free to allocate as it
pleases. Where shared memory is to be allocated and whether or not the
pages can be swapped is specified.

• Monitoring Directives. Specifications as to whether any particular
configuration of the processes should be noted. T h e system, by default,
monitors the initiation and termination of each instance of a task.

F i g u r e 3 - 6 : A summary of the modules and their meaning for the
specification of a parallel program in the MP environment.

26 April 1985 at 11:21 15

4. The Program Constructor
The Program Constructor (PCT) is the second component of the PIE system. It provides a higher

level of abstraction and support for the generation of efficient parallel programs. The P C T builds

upon the concepts introduced by MP and frees the user from much of the detailed specification of an

instrumented parallel program.

T h e P C T is unique in that it provides mechanisms and policies for combining and transforming both

the development time (static) and the run-time (dynamic) information into meaningful program

representations. T h e static information is combined with status and performance information to

provide semantically meaningful performance feedback which, in our view, is the key for generating

performance efficient parallel programs.

T h e PIE P C T can be decomposed into three main components:

• An MP oriented editor - M P O E

• A status and performance monitor

• A relational representation system

The transformation and integration of dynamic and static information is based on using the

relational model approach. T h e M P O E internal representation is in the form of both a parse tree and

relational model, with the former required for the syntax directed editor and c o d e generation part of

M P O E and the latter to convey static program information to the two other components of P C T .

T h e Status and Performance Monitor is also based on the use of the relational model [18,17] to

select, filter, and collect run-time status and performance information. Accordingly , the relational

model will contain static and dynamic information along with the semantic and temporal relations

between them. The Relational Representation System then extracts and selects the views relevant to

a specific performance or status goal.

T h e rest of this section describes each of these components in detail.

4 .1 . M P O r i e n t e d E d i t o r - M P O E

T h e user (or programmer) of the MP environment, specifies and codes the parallel program through

a syntax directed editor. While the study of structured editors is still a very active area of research,

the PIE system requires only a few salient features that are common to most of them. The editor is the

interactive interface between the user specifying a solution to an application problem, the extended

26 ApriM985 at 11:21 16

programming language, the system utilities, and the rest of the PIE system. O u r current

implementation employs a GANDALF - t y pe of syntax-directed editor [8] refered to as M P O E . T h e user

is presented with a partially constructed parse tree consisting of nonterminal and terminal nodes. As

the user enters program information, the nonterminals are expanded, the parse tree is refined, and

some semantic action affecting the contents of the relational model may occur . For example, when

positioned at the nonterminal node for the identifier of a process module, the name entered by the

user causes the parse tree to be further refined, the screen updated, and an addition to the relational

model indicating the existence of this process along with other information such as where in the

parse tree the specification occurred.

T h e M P O E consists of two parts or grammars, one for describing and specifying most of the

modules of MP and one for each of the programming languages in which the process code can be

specified. T h e root of the parse tree is a task and the chi ldren are (i) the process and frame

definitions, (ii) the process and frames instantiations that are the run-time composit ion of the task, (iii)

the control specifications, (iv) the task monitoring directives, and (v) the tasks that are within the

scope of this task.

In MP, separation of concerns is achieved through the use of many modules. Although this allows

the programmer to concentrate on only a narrow range of program aspects, a typical program may

contain a large number of instances of these modules whose maintainance and organization may

become a problem. T h e static scoping rules of the definitions helps to isolate disjoint parts of the

program; entities not within the outer scope can not be referenced. T h e M P O E enforces this

restriction in an interactive fashion. T h e M P O E , however, does not just tell the programmer when he

can not reference an entity; it also helps the programmer to see what entities are available at each

point in the specification. A roadmap of the program that dynamically displays the scoping structure

of the modules is part of the graphical user interface.

As each module is specif ied, the M P O E notifies the rest of the PIE system. Th is causes an update to

the PIE central relational model and may also update some of the graphical v iews of the program

specification. A link is created between the user's source code or specif ication, the internal objects

of the PIE system, and the final executable code. This is useful, for example, when the user queries

the result of a monitoring sensor. At the same time as the value is related to the user, the PIE system

can also present the user's specification of the sensor and its surrounding context in MP.

The M P O E also provides a mechanism of selective viewing. It is often the case that event

specification within the process code or the monitoring directives are intrusive and clutter the users

26 April 1985 at 11:21 17

view of the program specifications. Too many events or monitoring directives make the control flow

of the program hard to follow and often make the display of a simple procedure span multiple

screens. Similarly for frame operations that have long static names and make the display of

statements span multiple lines. The user can request that event and monitoring specifications not be

displayed and that frame operation names be shortened.

Finally, syntax-directed editors have much knowledge about the program as it is being specified.

This knowledge can be used with another component of the PIE system in order to give advice to the

user about the specification. For example, in a Master/Slave implementation, the knowledge of the

entities of the partially specified program enable the Implementation Assistant, described in the next

section, to advise the user about where to place the code to handle fatal exceptions raised by a slave

process.

4 . 2 . T h e S t a t u s a n d P e r f o r m a n c e M o n i t o r

T h e development of a correct and efficient parallel program is accomplished through a series of

phases such as source editing and specification, compilation, correctness and performance

debugging, and optimization." In PIE, the role of monitoring is to observe the later phases of the

program development and to provide significant information to the user or to the system. T h e

monitoring environment is composed of sensors, monitoring directives, and presentations of sensor

recordings. Sensors are currently implemented mainly in software although research is underway to

build hardware sensors. There are two types of sensors, system and user defined. The user specifies

monitoring directives throughout the MP specifications indicating which of the system sensors are to

be enabled and the composition of the user defined sensors. After the parallel program is executed,

the results of the sensors can be seen through various graphical views that are under the user's

control .

T h e monitoring "phi losophy" in PIE is based on the insertion of special objects, named sensors,

into the user code during program development. It has the following main characteristics:

• It detects a precisely defined event, which may be the execution of a statement, a
procedure call, an access to a variable, or a more complex, user defined function of the
computational status of the program.

• It causes a transfer of information from the program to an external environment in an
automatic and controlled way.

• It is transparent to the correctness of the program and makes every attempt to be
transparent to the performance of the program.

26 April 1985 at 11:21
18

• It can be enabled or disabled under the control of a standard, external mechanism. Th is
allows a standard and possibly automatic instrumentation of a program at development
time and a customization of monitoring requirements at run-time.

Sensors are inserted into the application code in a controlled way, using the M P O E which is also

responsible for storing all the information about their names, type, and location in a central relational

database. T h e run-time environment also records the information gathered into the relational model.

T h e user views the information from the relational model in a graphical and interactive fashion.

Logically, a sensor is composed of three parts: Detection, isolation, and notification. There are four

types of sensors: Start/stop object, start/stop block, variable monitoring, and user defined. T h e first

two record the spatial and temporal status of the starting or stopping of a task, process, frame, or

block of code within a process or frame operation. T h e variable monitoring sensors record the

contents of variables at run-time. Different sub-types are provided for each basic data type of the

language. T h e user-defined sensors allow for greater flexibility and filtering. T h e user provides a set

of routines that are executed whenever a sensor is enabled and invoked. There is a standard format

for transferring information to the relational model.

T h e ability to instantiate multiple copies of a task or process and, in particular, the ability to

recursively instantiate tasks makes the enabling/disabling of sensors difficult. Sensor names are

based on their location (i.e. the name of the logical entity within which they were specified) and have

static and dynamic names. Sensors can be dynamically or statically enabled. A sensor enable table

(SET) is maintained which is checked each time a sensor is encountered. T h e table contains both

dynamic and static names as well as a specification of a class of names based on a wildcard

specification. Dynamic enabling of a task is accomplished by inserting appropriate commands in the

user's application code. T h e static enabling of sensors is most easily performed by first executing the

application with all system supplied sensors enabled and then pointing to parts of the views of the

computation to enable or disable sensors nested deep within the computation.

Based on previous exper ience with parallel processors, the monitoring system is the conceptual

backbone in providing the compound event observability, a critical issue in the process of efficient

parallel programming. T h e PIE system is angling towards a prototype parallel processor that will

dedicate a substantial part of the multiprocessor hardware specifically to instrumentation. Main

expected advantages of hardware instrumentation are non-intrusiveness (minimal cost or zero cost

associated with detection, isolation, composit ion and notification of an event), wide range (from low

grain hardware events to large grain events), and adaptability through programmability. These

26 April 1985 at 11:21 19

aspects provide the incentives for intensive use of instrumentation not only in performance

evaluation, but also in operating systems design and programming environment. Such a parallel

processor (i.e. the Supercomputer Workbench) is under development at C M U .

4 . 3 . T h e Re la t iona l R e p r e s e n t a t i o n S y s t e m

W e wish to give the parallel program developer all the help possible. T h e MP metalanguage

provides support for specifying the program. In order for the developer to produce a correct and

efficient program, the PIE system supports the notion of programming for observability. Multiple

representations of the syntactic and semantic information are made available at both development-

time and at run-time and are supported in an integrated fashion.

T h e syntactic MP information is maintained in the M P O E parse tree. T h e modules defined in MP,

such as Process, Frame and Task, are directly visible and can be manipulated through M P O E . T h e

M P O E parse tree contains the relevant development-time instrumentation information, such as sensor

location, code, and associated data structures. In order to integrate the specification with the rest of

the PIE system, a relational model (from data base domain) is used. Information from MP as well as

information accumulated during run-time is maintained in the database. When relational operations

are applied to the relationally structured information, multiple views of the same information are

obtained. These views all help the programmer to understand the subtle interactions and bottlenecks

of the program.

A representation is a form of expressing a parallel program and/or its behavior. Examples of

representations are:

• Communication graph and communication tree

• Process graph and process tree

• Process-resource graph and process-resource tree

• Dependency graph and dependency tree

T h e graph presentations are the development-time representation, whereas the tree refers to the

same representation at run-time. For example, the specification view of a recursive, div ide-and-

conquer application will be a graph with self- loops indicating recursive invocations whereas, the

dynamic run-time view will be a tree with each node representing a particular instantiation of a

module. A representation integrates the graphical screen presentation control together with the

behavior and observability information (e.g. selective monitoring of relevant events).

26 April 1985 at 11:21
20

In PIE, the M P O E parse tree is dynamically restructured into an INGRES- l ike relational model as the

user performs the M P O E program development actions. At run-time, a relational monitor will p roduce

relationally organized monitor information, stored in the same relational data structure. T h e relational

data structure integrates the development-time information and the run-time information. By using

the view feature of the relational model, along with presentation control information specific for each

representation, a number of different representations can be displayed.

T h e integration of development-time and run-time information in one representation provides the

basis for the performance/correctness debugging process. Th is is accomplished by providing:

• Selective representation. T h e user can selectively observe compound events by
specifying a representation definition relevant to a performance or correctness goal .

• Integration between development-time and run-time information. T h e user is getting
usable feedback which is directly applicable to the process of program development and
performance tuning.

• High-level and automated performance debugging. T h e user descr ibes the parallel
program and the required representation at high levels of abstraction. T h e system is
generating ail low level interactions.

T h e PIE system currently provides four views: roadmap, process execution times, invocation tree

and frame usage tree. T h e complete filtering envisioned has not yet been incorporated into the

system. It is expected that the user will be able to interact with the graphical views and indicate the

objects that are not to be displayed. A major problem in the graphical presentation of the actions of a

parallel program is the large amount of information that must be sifted through until the appropriate

information is found. The relation model approach should make this job easier.

4 . 3 . 1 . R o a d m a p

This is a view of the specification of the program. As the user specifies a task, process, or frame

with the M P O E , a corresponding object is displayed on the screen. The view also communicates with

the M P O E so that a user can point to an object in the roadmap view and the M P O E will position the

user to that part of the code . In this way, the user can get the "big picture" of the whole prgram

structure while concentrating on only a small part of the specifications.

4 . 3 . 2 . P r o c e s s E x e c u t i o n T i m e s

This view displays the execution times of processes in the form of a bar graph with a separate

indicator for each instance of a process. T h e graph is dynamically drawn with the total execution time

of the experiment divided into a number of "s lots" . For each slot during which a process is active the

bar is blackened. T h e analysis of the database proceeds chronologically through the execution of the

26 April 1985 at 11:21
21

experiment giving the global effect of a visual tracing of the execution of all the processes in "slow

motion". T h e bar graph gives an immediate global view of the parallelism of the application as a

function of time. A useful feature is the ability to zoom into part of the view in order to see a finer

grain of interaction.

4 . 3 . 3 . I n v o c a t i o n T r e e V i e w

This view represents the dynamic invocation sequence of tasks, processes, and frames of the

experiment. This view can be either static or dynamic. In the static case, each object remains in view

once it is created and in the dynamic case, the objects vanish from the screen o n c e they terminate. As

an object is created, it is displayed on the screen and a line is drawn indicating the parent/child

relationship. O n c e again, the view is displayed in "slow motion" thus presenting a motion picture as

the computation unwinds. At any point, the user can select an object and in another window see the

M P O E specifications of the object.

4 . 3 . 4 . F r a m e U s a g e V i e w

This view displays the dynamic reference to shared memory by processes or other frames. T h e

actual implementation is part static and part dynamic. Frames and processes are displayed statically.

O n c e again, the view proceeds chronological ly through the database and as each reference to a

frame is performed a line is drawn connecting the two entities. This view helps discover bottlenecks

due to contention to shared objects.

5. A Simple Example
In this section we demonstrate various features of the PIE system by describing an example

application. A naive parallelization of quicksort is the chosen application due to its familiarity and

simple recursive structure. Quicksort starts with a set of numbers, divides the set into two subsets,

and then recursively sorts them. T h e subsets are formed by choosing a candidate median value and

placing ail elements smaller than this value into set SMALL , those equal to or greater than into set

B IG . The naive parallelization recursively applies quicksort to the subsets S M A L L and BIG in parallel.

There are a few MP modules that are specif ied: a process either sorts the array if it contains only a

few elements or divides the array into subsets and recursively applies quicksort to each subset. The

process code can be written in such a way as to not know if it is executing in parallel with another

process. Each process accesses the array through frame operations. A hollow frame is specified that

makes part of the array (either the set S M A L L or the set B IG that was created by the parent task)

appear to be the whole array. After the process rearranges the array into S M A L L and BIG sets, it

partitions the array and invokes the task Q T . Task Q T contains the hollow frame and two copies of

26 April 1985 at 11:21 22

the process. O n e copy of the process is mapped onto the set S M A L L and the other is mapped onto

the set B IG . The hollow frame makes this distinction based on the index of the processes and access

the data through the outer levels frame operations. Figure 5-1 s h o w s the outermost part of the MP

specification of the quicksort program. T h e r e is a master process that reads the items to be sorted

and places them into the shared array through the operations provided by Frame global. No

constraints were supplied so that the master process will not wait for the parallel task it invokes to

complete. Also for simplicity, no extra task sensors have been inserted, however , the system will

supply a set of default sensors for the tasks.

TASK q u i c k

PROCESS m D U P L I C A T I O N 1
>Body<

FRAME g l o b a l
>Body<

TASK QT
> b o d y <

F i g u r e 5 -1 : Part of the MP Specification of a naive parallel quicksort .
T h e definition and reference to the processes and frames are combined.

In Figure 5-2 the inner task specification is presented. There are to be two copies of the process q

instantiated whenever task O T is invoked.

TASK QT

PROCESS q D U P L I C A T I O N 2
>Body<

FRAME s h a r e d
>Body<

F i g u r e 5 - 2 : Part of the MP Specification of a naive parallel quicksort .
Th is is the recursive quicksort task definition.

In Figure 5-3 some of the frame definitions are shown. T h e variables Low, H i , NewLow, and NewHi

are used to keep track of the remapping of the array. T h e first two record how the array was

partitioned by the invoking process and the latter two are used to record the information of the

partition operation that may be executed by the processes. T h e ReadArray and WriteArray

operations are used if a process decides to directly sort the array and the other operations are used

for division of the elements of the array into two groups. T h e initialization c o d e makes use of one of

the manifest variables recording the current level of the recursive task invocation. If this is the first

26 April 1985 at 11:21 23

level the the partitioning information is not needed.

FRAME shared

{ No Comment }

TYPE
P a r t i t i o n l n f o = ARRAY[NProcesses] OF A r r a y l n d e x ;
N e w P a r t i t i o n l n f o - ARRAY[NProcess, 1 . . 2] OF A r r a y l n d e x ;

VAR
Low. Hi : P a r t i t i o n l n f o ;
NewLow, NewHi, N e w P a r t i t i o n l n f o : N e w P a r t i t i o n l n f o ;
s i z e : INTEGER;

V IS IBLE FUNCTION $ReadArray (i : INTEGER) : INTEGER;
{>Oocumentation<}

>Body<
V IS IBLE FRAME PROCEDURE S W r i t e A r r a y (i : INTEGER);
{>Documentation<}

>Body<
V IS IBLE FRAME PROCEDURE S P a r t i t i o n (M i d P o i n t : INTEGER);
{>Documentation<}

>Body<
V IS IBLE FUNCTION $CompareAndSwap(i , j : INTEGER) : INTEGER;
{>Documentation<}

>Body<

*** I n i t i a l i z a t i o n of Data ***

BEGIN
IF SFrameJDepth <> 1 THEN

G e t P a r e n t P a r t i t i o n (L o w , H i , S i z e)
END.

F i g u r e 5 - 3 : Part of the MP Specification of a naive parallel quicksort.
This is the Frame definition part of the recursive part of quicksort.

The Read and Write operations are for the Bubble Sort Part.

Figure 5-4 shows the roadmap view of the program. This is the definition scoping view of MP. As

each module is specified in the M P O E , the roadmap view is updated. The user can point to a part of

the roadmap with the mouse and M P O E will automatically position the cursor at the corresponding

point in the parse tree.

Figures 5-5, 5-6, and 5-7 show the dynamic invocation tree indicating the processes invoking the

tasks. Note the dynamic names of the MP entities as opposed to the static names in the roadmap

view. In the first figure, a frame module has been highlighted indicating that it has been selected. As

a result, another part of the display will show the specifications associated with the selected frame.

26 April 1985 at 01:16
24

Time » 136397

m QK i

shared

F i g u r e 5 - 4 : T h e Road Map View of Quicksort

Figure 5-8 shows a view of the frame usage graph. This view shows that at time 29733, one of the

processes is accessing the frame. As time progresses, the view is updated and other processes and

frames will be added. Frames are always placed on the left and processes on the right. T H e view does

not indicate frames referencing other frames.

Figure 5-9 is the process execution time bar graph. Since the application has been implemented on

a Vax 780 using a message-passing scheme to simulate shared memory, the results are somewhat

surprising. T h e times of no system activity are d u e to the operating system overhead initiating the

processes and frames. T h e first recursive invocation of the task require a extraordinarily long time

due to contention to the array. As the execution continues, the data is almost all sorted and there are

not as many references to it.

6. The Implementation Assistant
T h e Implementation Assistant is the third P IE component. T h e goals of the Implementation

Assistant are to provide semantic support in the parallel program development cyc le . Specifically, the

goals are:
• Parallel program performance prediction before extensive implementation investments.

P| n.e

P I g l o b a l

next
prev i ous
q u i t
r e f r e s h
zoo*
se lec t

F i g u r e 5 - 5 : T h e Dynamic Invocation T r e e • A n Early V iew

Tiee * 8487S
next
prev ious
qu i t
r e f r e s h
zooe

i l c c t

F i g u r e 5 - 8 : T h e Dynamic Invocation T ree • A Latter V iew

Tiee » 136397

JFI OK.9

H Q

J ? | ac.e

>

r.
> > > >

next
previous
qu i t
r e f r e s h
zoon
s e l e c t

>\ OK.9

H shared

F i g u r e 5 - 7 : T h e Dynamic Invocation T ree • A View Near Termination

26 April 1985 at 01:16 26

T im« = 23733

OFJ q / 9 l o b a l

t7| g / n J

[P|q/H.e/qs/QK.e

fj jg/rl .e/qs/sharad

[Pjq/H.e/q»/QK.l

Pigu re 5 - 8 : A Frame Usage View

q/n.0
q/n.e/gs/OK.e
q/t1 .9/q»/QK. l

q/0.9/qs/QK.8/qs/Q>g-e
q/H.e/qs/QK.9/qs/QK. l
q/f1.e/q»/QK.l/qs/QIC.9

q / 0 . 9 / q s / Q K . l / q « / Q K . l

140009

Q yH. f l/g«/QK.9/qs/QtC.9/q«/QIC.0

q/t1. 9/qs/QK. 9/qs/QK. 8/qs/<*. 1

F i g u r e 5 - 9 : T h e Bar G r a p h View of Quicksort

26 April 1985 at 11:21
27

• Assist the user in choosing between implementations.

• Semiautomatic parallel program generation by supporting a set of well-defined
implementations.

• Support for semiautomatic semantic instrumentation.

• Support for a set of predefined representations related to the provided implementations.

An implementation, in the context of a parallel program, is a specific way to decompose the parallel

computation processes and data, as well as the way they are controlled. Examples of parallel

implementations are:

• Master-Slave

• Recursive Master-Slave

• Heap organized problem

• Pipe-line

• Systolic multi-dimensional pipe-line

T h e high level of abstraction of the implementation concept, allows one to characterize classes of

problems by their relative performance/implementation measure. T h e performance/implementation

ratio refers to the parallel application performance, when implemented using two or more relevant

implementations. For example, a parallel program for a molecular dynamic problem could be

implemented as a Master-Slave or as a systolic pipe-line. When applying a parallel solution to the

problem, the user is interested in finding out what is the most suitable way to partition the problem

data and decompose the computation in parallel processes, in the context of the architecture and

operating systems of a specific parallel machine.

Encapsulating the knowledge pertinent to a set of frequently used implementations in the

Implementation Assistant is, in our view, a first step toward fulfilling the above desiderata. The

separation of concerns between implementation and algorithm allows, aside from programming in the

context of predefined implementation semantic knowledge, performance prediction before full

program development. In this case, the performance debugging process is supported by providing

specific representation per each implementation.

T h e implementation performance prediction step is supported in PIE by the iteration model [21, 22].

An application is descr ibed in terms of its computation intensive and communication intensive

26 April 1985 at 11:21 28

behavior. T h e model allows the user to specify the process decomposit ion, the data partition and

virtual parallel architecture characteristics. Currently, the model is limited to classes of application

which are not heavily data dependent. A performance/implementation measure could be predicted

per each relevant implementation. T h e user, assisted by an Implementation Discriminator, could then

choose a suitable implementation.

As an implementation is chosen, the preceded structure (in terms of control , communication,

synchronization, process decomposit ion and data partition) is made available to the user in the form

of a modifiable template. Under the assistance of a specific Template Assistant, the user can fill in the

template or alter i t From previous exper ience, we infer that in most cases, the user will wish to

employ one of the provided implementations.

For illustrating this concept , consider an application to be implemented as a Unidirectional Pipeline

(UPL) template. Such an environment will start by presenting the user with the UPL.Master template

(see Figure 6-1)

U P L . M a s t e r <name>

I n p u t

P i p e l i n e <repeat>

Output

Terminate < t e r m i n a t i n g . a g e n t >

E n d U P L . M a s t e r

F igu re 6 -1 : T h e UPL.Master Implementation template

The components of the UPL.Master template are the pipeline processing nodes (Input, Pipeline,

Output) and the termination condition agent. T h e terminating agent will indicate the processing node

in charge of the termination condition (with the default agent being the User Interface).

T h e UPL.Master template is controlled through a U P L oriented editor (U P L O E) . T h e Pipeline

processing node could be split into multiple Pipeline processing nodes, each one specifying different

code and a different replication count.

Under U P L O E control any one of the processing nodes template could be displayed. For example,

Figure 6-2 shows the template obtained by selecting a Pipeline processing node.

26 April 1985 at 11:21 29

P i p e l i n e <name>

>body<

r e c e i v e . w e s t <west .buf fer ,name>

>body<

send .east <eas t .bu f fe r .name>

>body<

send . te rminate < te rminate .bu f fe r .name>

>body<

E n d P i p e l i n e

F i g u r e 6 - 2 : Pipeline Processing Node template

The Pipeline template provides send/receive operations to the process' adjacent neighbors and a

send terminate communication with the terminate node. T h e user has to provide only the sequential

application code . O n c e all the nodes have been defined, the system wiJI automatically generate all

the process management, memory management, synchronization, communication, instrumentation,

and resource allocation required for the UPL implementation. Moreover, the implementation being

semantically instrumented, specific representations relevant to the performance debugging of U P L

are available at the user interface level.

In summary, by programming in the context of a preprogrammed template, the user expertise could

be limited to its own application. T h e system is automatically generating most of the support required

for parallelization of the application. O n e result in this context is the availability of the

preprogrammed semantic instrumentation support. Implementation specific representations are

made available at both development-time and run-time. T h e task of parallel programming and

performance debugging is greatly simplified and facilitated.

7. Status and Conclusions
T h e issues of performance efficient parallel programs and system support for parallel programming

are the main focus of the PIE system. T h e research method is pragmatic and is oriented toward

practical results. Currently, the PIE 1 phase is mostly done and feasibility studies of the main

components are completed. T h e MP Metalanguage has been defined. The prototype MP

Metalanguage System is currently supporting Pascal . Other languages are under consideration. T h e

Program Constructor components, namely the M P O E , the Status and Performance Monitor, and the

26 April 1985 at 11:21 30

Relational Representation System are in the prototype form and are experimentally operational.

Sample examples have been run through the P C T . and some of the results are presented in this

paper. Observations from the running system show the performance bottlenecks, of the PIE1 system,

to be located in the relational model and in the software monitoring. Accordingly , instead of using an

available relational data base system (I N G R E S as used in PIE1), we are exploring the use of the

relational model in ways specifically suited to PCT . O n e of the approaches under consideration is a

memory resident relational model with optimization for often executed P C T relational operations.

Related to the alleviation of the software monitoring performance bottleneck is the definition and the

design of a "programmable general purpose multiprocessor architecture." This multiprocessor, the

Supercomputer Workbench dedicates a large amount of hardware to the task of non-intrusive

monitoring providing direct support for P C T and programming for observability.

T h e Implementation Assistant is currently in the feasibility study state. T h e performance predictor is

operational. T h e model covers applications which are not heavily data dependent. Sample

implementation templates are under construction and and a set of templates with application to

real-time processing have been evaluated. T h e c o n c e p t looks promising, however more flexibility in

terms of conveying performance requirements to the system is required. Work employing production

systems techniques to solve this problem has been started. Most of this work is the object of the

second research phase, i.e. PIE 4.

In terms of the open and unsolved research issues in PIE, one of the main open problem is the use

of formal specifications in the process of parallel program development. A desideratum will be to

integrate formal specification for both functionality and performance requirements into the

programming environment. The current state of art in this domain does not provide enough of a

practical approach to enable us to consider the integration of such techniques in PIE 1. A second

open question is how to provide support in P IE for different styles of programming languages such as

LISP and Prolog. This problem has not been explored in detail in P IE 1, and is being postponed to the

PIE 4 design cycle. In PIE 1, the issue of what is the most suitable graphic interface has not been

considered as the the main goal. It our belief that a lot more experimentation and user feedback is

necessary in order to make a determination in this domain. Initial PIE 1 results, however, show that

associating graphic presentations with the relational representations is attractive.

In summary, this paper presents a snapshot of a relatively large research project on the move. An

overall programming environment structure reflecting the goals and the characteristics of parallel

programs has been designed and implemented. A set of concepts have been introduced and

26 April 1985 at 11:21 31

evaluated, including programming for observability, semantic monitoring, relational parallel program

representation, constraint driven abstract data types (frames), automatic frame unfolding,

programming with templates, and parallel implementation assistant. Our initial results and feasibility

studies are very encouraging.

8. Acknowledgment
A research project having the goals and size of the PIE can succeed only by the cross-poll ination of

a group of talented researchers. The authors wish to acknowledge the contribution of the following

researchers. Dalibor Vrsalovic has been responsible for the performance prediction model part of the

Implementation Assistant, and the design of the User Interface; Robert Whiteside has been

instrumental in providing the first version of the Relational Representation System; Francesco

Gregoretti has provided the first version of the Status and Performance Monitor; Beth Bottos has been

responsible for the MP.Frames design; Eddie Caplan provided the implementation of the graphical

User Interface. As part of her doctorial dissertation research, Beth Bottos will cont inue exploring the

power of the constraint specifications as well as the automatic insertion of coordination code to

realize these constraints. Apart from these specific contributions, we wish to acknowledge their

general contributions during numerous general designs PIE Project meetings. Dan Siewiorek

deserves special acknowledgment for his continuous encouragement and wise suggestions.

26 April 1985 at 11:21

References

[1] Andler, S .
Predicate Path Expressions.
In Principles of Programming Languages. 1979.

[2] Archer , J . , and Conway , R.
COPE: A Cooperative Programming Environment.
Technical Report TR81-459, Cornell University, June , 1981.

[3] Br inch-Hansen, P.
Distributed Processes: A Concurrent Programming Concept .
Commun. ACM 21(11):934-941, November, 1978.

[4] Campbell , R. H.
Path Expressions: A Technique for Specifying Process Synchronization.
Technical Report, University of Newcastle, August , 1976.

[5] Deutsch, L. P. and Taft, E. A.
Requirements for an Experimental Programming Environment
CSL-80-10 edition, Xerox , 1980.

[6] Ellis, J . , Hooper, J . and J o h n s o n , T .
An Architecture Description Language, A D L for Describing and Prototyping Distributed

Systems.
In System Science Conference. January, 1984.

[7] Habermann, A. N.
Path Expressions.
Technical Report, Carnegie-Mel lon University, June , 1975.

[8] Habermann, A. N.
The Gandalf Research Project.
Computer Sc ience Research Review, Carnegie-Mellon University, 1979.

[9] Hoare, C. A . R.
Monitors: An Operating System Structuring Concept .
Communications of the ACM 17(10):549-557, October, 1974.

[10] Jones , Michael B., Richard F. Rashid, ary R. Thompson.
Matchmaker: An Interface Specification Language for Distributed Processing.
In Principles of Programming Languages, pages 225-235. A C M , January , 1985.

[11] Kuck, D. J . , R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence Graphs and Compiler Optimizations.
In Proc. of the 8th ACM Symp. on Principles of Programming Languages, pages 207-218.

A C M , A C M , January, 1981.

[12] Kuck, D. J . , R. H. Kuhn, B. Leasure, and M. Wolfe.
T h e Structure of an Advanced Retargetable Vectorizer.
Tutorial on Supercomputers: Design and Applications :168-178,1984.

8 July 1983 at 06:57

[13] Mitchell. J . G . , Maybury, W. and Sweet, R.
Mesa Language Manual
CSL-79-3 edit ion, Xerox , 1979.

[14] Owicki , S . S . and Gr ies, D.
An Axiomatic Proof Techn ique for Parallel Programs.
Acta Inform. :319-340,1976.

[15] Owicki , S . S . and Gries, D.
Verifying Properties of Parallel Programs: An Axiomatic Approach .
Commun. ACM 19(5):279-285, May, 1976.

[16] Reiss, S . P.
P E C A N : Program Development Systems That Support Multiple V iews.
In Proceedings of the Seventh International Conference on Software Engineering. March,

1984.

[17] Segall , Z. , S ingh , A., Snodgrass , R. T . , J o nes , A. K. and Siewiorek, D.
An Integrated Instrumentation Environment for Multiprocessors.
In IEEE: Transactions on Computers. January , 1983.

[18] Snodgrass , R.
Monitoring Distributed Systems: A Relational Approach.
Technical Report , Carnegie-Mel lon University, December, 1982.

[19] Snyder , L
Introduction to the Poker Programming Environment.
In Proceedings of the 1983 International Conference on Parallel Processing, pages 289-92.

Purdue University, August , 1983.

[20] Teitelbaum, T . and Reps, T .
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment.
Technical Report T R 80-421, Cornel l University, May, 1980.

[21] Vrsalovic, D., Siewiorek, D., Segall , Z . and Gehr inger , E.
Performance Prediction and Calibration for a Class of Multiprocessor Systems.
Technical Report , Carnegie-Mel lon University, June , 1984.

[22] Vrsalovic, D., Gehr inger , E. F., Segal l , Z . Z. and Siewiorek, D. P.
T h e Inf luence of Parallel Decomposit ion Strategies on the Performance of Multiprocessor

Systems.
In The 12th Annual Symposium on Computer Architecture. J u n e , 1985.

