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Abstract 
The issues of the efficient development of performance efficient parallel programs is explored. T h e 
Programming and Instrumentation Environment for Parallel Processing (PIE) system's concepts , 
designs, and preliminary implementation results are presented. T h e key goal in PIE is semiautomatic 
generation of performance efficient parallel programs. In PIE, a system intensive rather than 
programmer intensive programming environment is promoted for supporting users with different 
experience in parallel programming. Th ree levels of such support are provided, namely the Modular 
Programming Metalanguage, the Program Constructor , and the Implementation Assistant. In order to 
facilitate the task of parallel programming, each component employs a set of new concepts and 
approaches to integrate functionality with performance concerns . Some of them are: programming 
for observability, semantic monitoring, relational parallel program representation, constraint driven 
abstract data types (frames), frame unfolding, programming with templates, and parallel 
implementation assistant. Th is paper presents the results of PIE 1, the first of a three phase project. 

This research has been supported in part by the Ballistic Missile Defense Advanced Technological 

Center under contract DASG-60-80-C-0057. The views and conclusions contained in this paper are 

those of the authors and should not be interpreted as representing the official policies, either 

expressed or implied, of BMDATC, Carnegie Mellon University or the U.S. Government. 
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1. Introduction 
A recurrent problem plaguing computer sc ience is the underestimation of the software effort. Even 

from the earliest days, the hardware component of a major computer project has been viewed as 

requiring the most research and creative energy; only once the hardware is completed does the 

enormity of the software effort become apparent. T h e recent emergence of parallel processing is no 

exception. For example, an overwhelming number of research efforts have been directed toward 

describing various aspects of designing and implementing parallel processors, while there is a 

paucity of research addressing how one will actually program these machines. 

Parallel processing is a radical departure from the traditional sequential processing. It promises 

machines that can execute extraordinarily large numbers of instructions per second. T h e main 

challenge now is not whether these machines can be built but whether they can be programmed in 

such a way as to make effective use of the increased computing power. It is not the raw computing 

power that is important, it is the effective computing power. Exper ience indicates that the future 

programmer of parallel processors will require assistance in order to make effective use of the 

machine and to efficiently produce efficient parallel programs. This paper describes one such 

environment, called the Programming and Instrumentation Environment (PIE). 

Historically, the programmer of a parallel processor has been a rather knowledgable scientist or 

engineer who was burdened with the task of creating parallel applications using rudimentary 

environments. Detailed multiprocessor architecture and operating system knowledge as well as 

intricate ability to manually map parallel algorithms into a parallel virtual architecture and an 

"extended" sequential languages, are just some of the hurdles such users had to overcome. A 

correct parallel program is not even the end of the task. Often, the only reason for developing a 

parallel program is for the real time performance. T h e difficult task of performance debugging and the 

interpretation of the feedback in the context of a rudimentary program environment requires an even 

more specialized and highly knowledgable programmer. 

T h e criteria of success for a parallel programming environment should be evaluated against two 

metrics. First, the user interaction with the system should put the burden on the system rather than on 

the programmer. That means, realizing a system intensive programming environment rather than a 

programmer intensive programming environment. Second , as noted above, efficiency in terms of the 

real speed obtained by parallelization of the problem, mapping it into and executing it onto a parallel 

p rocessor is the reason for applying a parallel solution to a computational problem. Accordingly , a 

programming environment oriented toward high performance parallel programs is of essential 

importance. 
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T h e first problem is not unique to parallel processing. T h e same goal is laudable in the context of 

sequential processing. Exper ience shows, however, that the increased number of dimensions 

present in a parallel program makes the need for system support urgent. Amplification and 

adaptation of current techniques from sequential programming environments to the parallel 

programming environment could be the first step in the way of satisfying this need. 

T h e second problem is particular to parallel programming, and therefore, new techniques are 

required to fulfill the critical goal of efficient parallel programming. The PIE system attempts to 

address the above two problems and their related issues. 

In P IE , we concentrate on those aspects relevant to parallel processing. It is worthwhile noting the 

distinction between parallel and distributed or concurrent processing. In concurrent processing, 

there is a set of processes whose executions are interleaved. T h e processes may share memory or 

may communicate via a message-passing mechanism. T h e emphasis is on correctness and only 

some slight improvement in execution speed is achieved due to overlapping I/O with computation. In 

distributed computing, there is a set of processes executing on distinct machines. Often the 

programming goal is to coordinate the activities that occur at physical lydisjoint locations and these 

activities usually involve data-base applications. Occasional ly , the goal of distributed processing is 

an increase in execution speed, however, s ince the communication overhead between processes is 

high, only a coarse grain parallelism can be supported. Communication is usually performed through 

a highly structured interprocess communication mechanism ( IPC) . In parallel processing there is a set 

of processes executing on a tightly coupled set of processors that either all share access to some 

shared memory or employ a very fast and efficient communication mechanism. T h e primary goal of 

parallel processing is a performance increase proportional to the number of processors. A n 

orthogonal goal is reliability. In PIE , w e concentrate our effort toward programming for performance 

efficient parallel programs. 

T h e PIE project is organized in three phases. The first one, PIE 1 , is geared toward concept 

formation and feasibility study. It has been implemented using a number of V A X 11 /780 computers 

and professional workstations. P IE 4, to be executed in a multiprocessor V A X 11/784 and Mic roVAX 

workstations, is under advanced design and implementation. P IE 100, the third project phase, is 

geared toward the Supercomputer Workbench (a large multiprocessor system under development at 

C M U ) . Currently, P IE 1 is essentially complete and hence most of the material in this paper relates to 

the P IE 1 phase. 

T h e paper is organized as follows. Programming environments and, in particular, parallel 



26 April 1985 at 11:21 3 

programming environment are first reviewed. The next three sections are concerned with the three 

components of the PIE system: the modular programming metalanguage, the program constructor, 

and the implementation assistant. The components are organized according to their level of 

abstraction and user support with the highest level providing expert system support for parallel 

program development. T h e concepts described in these sections are illustrated by a sample 

application presented in section 5. Finally, section 7 presents the conclusion and current status of 

the PIE project. 

2. Background and Related Research 
This section serves as a general introduction to programming environments. We review both 

sequential and parallel programming environments. 

2.1. S e q u e n t i a l P r o g r a m m i n g E n v i r o n m e n t s 

At the foundation of a programming environment there are, in general, three types of components. 

First, a set of one or more programming languages is required . T h e programming languages may be 

of general purpose flavor or may support specific types of applications. Second , a program 

constructor facility provides an integrated interface between the programming languages, the user 

and the system utilities. Aside from supporting the individual user, the program constructor may 

facilitate multiple programmers' project support. Recently, there are notable efforts to enrich the 

program constructor's functionality with task specific information. Examples of program constructors 

are syntax-oriented editors and some recent efforts on semantic-oriented editors. Thi rd , run-time 

debuggers of different flavors are essential for following and correcting a program's run-time 

behavior. 

Currently, there are a few efforts aimed at building sequential programming environments. 

Although the emphasis is somewhat different in each of these systems, interactive system support for 

program development seems to be a common goal. 

The Cornel l Program Synthesizer [20] has a program constructor based on a syntax-oriented editor. 

Using attribute grammars to describe the program constructor generator output, this system could be 

used for a number of programming languages. T h e C O P E [2] system, also from Cornel l , uses an 

editor coupled with an error correcting parser to automatically correct users' program constructs, as 

they are entered. Undo, redo, editing and execution features provide a minimal connection and 

feedback mechanism between program development-time and run-time. 

A major effort at C M U on programming-in-the-small and programming-in-the- large has produced 
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the G A N D A L F programming environment [8]. T h e program constructor is again a syntax or language 

oriented editor - A L O E . T h e internal structure of programs in an A L O E is a parse tree, and the editor 

produced is template-oriented. 

At Xerox P A R C a number of programming environment prototypes have been explored. Notable is 

the Smalltalk environment [13,5] . Smalltalk is object and message oriented and makes use of 

graphics to facilitate the manipulation of objects. T h e Smalltalk environment is language dependent 

and makes heavy use of the capability of interactive graphics display. 

Another programming environment based on Smalltalk is C E D A R [12]. This system supports an 

algebraic, compiled language with interactive graphics-oriented programming interface using 

multiple windows. 

Recently at Brown University, a graphic-oriented programming environment effort, P E C A N [16], has 

been started. In P E C A N , the emphasis is. on programming for observability, multiple views, and 

exploration of graphical programming. 

2 . 2 . Pa ra l l e l P r o g r a m m i n g E n v i r o n m e n t s 

As previously stated, at the foundation of a programming environment is a class of programming 

languages. Almost all programming languages currently supporting concurrent processing (e.g. Ada , 

Modula2, C S P , O C C A M , Edison, Concurrent Pascal , etc.) provide constructs for sequential 

programming, as well as constructs for supporting concurrency control , communication and 

synchronization. When moving the domain of application into parallel processing, additional features 

are needed for achieving efficient mapping of parallel machines. This include constructs for: 

• parallel entities manipulation 

• virtual machine mapping 

• efficient use of shared memory (when relevant) 

• programming for observability 

• performance/correctness debugging 

Such support could be integrated in the programming language itself by extended the semantics, or 

could be provided as a set of procedures callable from the programming language itself. Given the 

fact that this support will most likely be language independent, an alternative is to provide the parallel 

language support in language independent manner. This support could be in a form of a 
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metalanguage. The metalanguage is then the medium in which to express and manipulate all the 

parallel constructs. The sequential constructs stay in an existing programming language. When the 

programming language is not a concurrent programming language (ex. Fortran), the metalanguage 

covers synchronization and communication primitives as well. 

Currently, there are a number of research efforts in the area of parallel programming environments. 

A distinct class is related to the vectorization of existing languages. Most notable is the Paraphrase 

[11] automatic vectorizing compiler research at the University of Illinois. Although well-suited for 

taking advantage of vector programs, the Paraphrase compiler does not provide support for creating 

new superior parallel software for a general class of computer structures. 

Another interesting research effort is P O K E R at Washington University [19]. P O K E R provides a 

program constructor and is specialized to mapping a virtual application architecture into a 

configurable VLS I parallel architecture. 

A set of relevant, programming environment efforts come from the area of distributed programming. 

A D L / A D S [6] developed by T R W is a language with an interactive graphic user interface, targeted 

toward mapping a distributed application into a distributed system. The language has constructs 

enabling the user to describe both virtual and physical system structure and to map a distributed 

program over the described structure. Significantly, an instrumentation system provides run-time 

information of the system behavior. Matchmaker [10], at Carnegie-Mellon University, is a program 

providing for distributed program construction by hiding some of the more cumbersome details of 

interprocessor communication from the user. 

3 . The Modular Programming Metalanguage 
This section describes the modular programming metalanguage, which is the first of the three 

components of the PIE system. T h e other two components, the program constructor and the 

implementation assistant, are descr ibed in subsequent sections. T h e goal of the modular 

programming (i.e. MP) metalanguage is to provide support for the efficient manipulation of parallel 

modules, fast parallel access to shared data constructs, and programming for observability in a 

language independent fashion. The MP metalanguage allows the programmer to specify most of the 

code in his or her favorite programming language. Moreover, MP assumes a run-time environment 

that supports its abstractions and its monitoring directives. In this section, we describe the MP 

metalanguage that has been implemented in PIE 1. 
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3 .1 . T h e C o m p o s i t i o n of a n MP P r o g r a m 

In MP, the programmer v iews the computation as a sequence of serial and parallel operations. E a c h 

parallel operation may consist of another set of computations that are executed in parallel. S ince 

each computation itself can be composed of a sequence of serial and parallel operations, the 

programmer may not know how many processes are executed in parallel. T o realize the goal of a 

clean separation of concerns , the programmer must be able to c o d e or specify parts of the program 

without a detailed knowledge of the whole computation. T o this end, a set of logical entities have 

been developed so that the programmer can concentrate on the correct functioning of each module; 

the system automatically converts the logical entities and their specifications into an executable 

parallel program. It is envisioned that additional optimization, both compile-time and run-time, of 

concurrency control conditions will minimize the synchronization overhead. 

MP provides the ability to observe or monitor the execution of a program. Th is is accomplished 

through the sensor module. A sequence of serial operations is referred to as a process and a parallel 

operation is referred to as a task. A set of tasks that share the same protection envelope is referred to 

as a task group. Access and management of shared memory is specified in a frame. 

3 . 2 . P r o c e s s e s 

A process is a sequential program written, at least in theory, in any sequential programming 

language. The process construct includes the set of local declarations, local data, the process body, 

and instrumentation. Sequential languages are extended by the MP environment to give support for 

synchronization, initiation of parallel operations, access to shared data, and monitoring directives 

associated with process functions. T h e motivation for these extensions is to allow the programmer to 

concentrate on the limited set of concerns at hand. For example, Figure 3-1 shows sample process 

code for a tree insertion routine. Note that the code is written without specifying locks or 

synchronization. These issues are relegated to the frame constraint code. 

W e have found it useful to code using frame operations that modify shared data structures based on 

the results of some test of shared data structures. In this way, concur rency constraints can be easily 

satisfied and the process c o d e need not be concerned with the details of the shared data structures. 

For example, in the Insert process of Figure 3-1, a frame operation is used that adds an item to the 

tree only if the process is at a leaf node of the tree. T h e frame operation also indicates whether this 

occurred. 



26 April 1985 at 11:21 7 

P r o c e s s I n s e r t ( x : i t e m ) = 
B e g i n 

S M o v e T o R o o t ; 
R e p e a t 

S w i t c h S C o m p a r e ( x ) B e g i n 
C a s e - 1 : S M o v e T o R i g h t C h i l d ; 
C a s e +1 : S M o v e T o L e f t C h i l d ; 
C a s e 0 : E x i t ; 

E n d ; 
U n t i l S A d d l f l e a f ( x ) ; 

E n d 

F i g u re 3 - 1 : Process code for insertion in a binary tree. Note that the code is 
written without knowledge of other parallel activity. T h e frame operations, 

identified by the symbol M $ M , provide access to shared data structures. 

3 . 3 . F r a m e s 

Communication between processes on a tightly-coupled multiprocessor is often more efficient 

when shared memory is manipulated directly by the processes than when they exchange information 

solely through message passing, interprocess communication mechanisms ( IPC) . Exper ience has 

shown, however, that indiscriminate use of shared memory promotes 'hard to find 1 bugs. MP 

attempts to alleviate this problem by providing facilities for controlled access to shared memory. 

Separation of concerns is achieved through shared data encapsulation and shared abstract data 

types. MP thus introduces the notion of a frame. Logically, a frame consists of declarations of shared 

data, a set of operations on shared data, constraints on the execution of these operations, and 

monitoring directives associated with the shared data and its access. An interprocess communication 

mechanism (IPC), which is supported in many operating systems, is an example of frame operations. 

The IPC mechanism is usually implemented as a queue in which a send is a queue insert and a 

receive is a queue delete with the queue hidden from the caller and with a strictly enforced 

synchronization protocol. Although a frame is logically a single entity, in reality its operations are 

'unfolded' automatically into the process code with appropriate coordination c o d e where necessary. 

Moreover, frames give a clean extension to serial programming languages. From the user's point of 

view, access to shared data is accomplished through procedure calls that appear to the programmer 

as monitors [9, 3]. It is important to note that frames are not monitors; monitors provide strict mutually 

exclusive access to shared data whereas frames allow potentially unrestricted accesses to occur in 

parallel. 

Frames consist of abstract shared data types, shared data encapsulation, and constraints. 

Associated with the data types are a set of operations, some of which are visible to the process code. 

The frame code for these operations may refer to any of the encapsulated data as well as to any of the 
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internal manifest variables (explained later in this section in detail) such as the caller's process name 

or index described below. Frame operations may also refer to other frame operations. Figure 3-2 

shows sample frame specifications for the tree insertion process presented in Figure 3-1. A local 

variable is declared for the use by each process . Visible functions and procedures can be used in 

process and other frame code . 

Coordination and synchronization required for correct parallel access to shared memory is 

specified by constraints on the parallel execut ion of these operations. T h e constraints can be 

regarded as a generalized form of path expressions [7,4] or path predicates [1] on the frame 

operations. These expressions specify both what sequences are required and what parallel actions 

are forbidden. Anything left unspecified is assumed to be unrestricted and may occur in any order or 

in parallel. T h e constraints can control access finer than just frame operations. For example, parallel 

access to different elements of an array may be allowed provided that there is no parallel access to 

any particular element and that no element can b e referenced until it has been initialized. 

Figure 3-3 shows sample constraint specifications for these operations. T h e operation names are 

listed with free or bound variables as parameters. The symbol " . " indicates that the parameter value 

plays no role. T h e parameters following the operation name and placed between the brackets ( " [ " 

and " ] " ) indicates which variables, of type either local or other, are required to match in order for the 

constraint to hold. In the example, each different TreeNode value has a separate constraint. T h e 

system can realize these constraints, for example, by automatically allocating a lock with each 

occurrence of a TreeNode and inserting the proper lock protocols. 

Figure 3-4 shows the frame code unfolded into the process code . This is performed mechanically, 

and since the AddlfLeaf operation is exclusive on each node in the tree, the system automatically 

assigns a lock to each node. Moreover, from the specification, it is derived that the other operations 

can occur in parallel with each other but not with AddlfLeaf and hence readers/writers coordination 

is automatically inserted. 

Divide and conquer , a common algorithmic paradigm, is supported by the MP environment. Here, a 

part of shared data is often subdivided with each subpart processed independently and in parallel. A 

frame partition operation and the notion of a hollow frame support decomposit ion into subproblems 

and allow the process code to be written without knowing whether it is solving a problem or a 

subproblem. T h e partition operation records h o w a shared array is to be divided. A hollow frame 

maps a part of a shared data array into an entire virtual shared data array. A particular instance of 

divide and conquer is when the subproblems are solved recursively. Th is style is supported by MP 
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F r a m e T r e e M a n i p u l a t i o n 

T y p e T r e e N o d e = R e c o r d B e g i n 
I t e m : i n t ; 
L e f t , R i g h t : " T r e e N o d e ; 

E n d ; • 

L o c a l P : " T r e e N o d e ; 

{ Allocation of Shared Memory Data Structure } 
S h a r e d Root : " T r e e N o d e ; 

R o o t L e a f : T r e e N o d e ; 

In i t i a l i za t ion : 
B e g i n 

R o o t ;= R o o t L e a f ; 
R o o t . I t e m : = N i l ; 
R o o t . L e f t := N i l ; 
R o o t . R i g h t : s N i l ; 

E n d ; 

V i s i b l e F u n c t i o n $ C o m p a r e ( x : i n t ) : B o o l e a n 
B e g i n 

If x < P. I t e m T h e n SCompare : a -1 
E lse If x = P. I t e m T h e n SCompare* : s 0 
E lse SCompare : - 1; 

E n d 

{ Some operations are omitted } 

V i s i b l e S M o v e T o L e f t C h i l d 
B e g i n 

P : « P . L e f t ; 
E n d ; 

{ The following operation modifies the tree, inserts the item, if we 
are currently pointing at a leaf node. The results of this test are returned. } 
V i s i b l e $ A d d I f L e a f ( x : i n t ) : B o o l e a n 
B e g i n 

If P. I t e m != Nil T h e n R e t u r n ( F a l s e ) 
E l se B e g i n 

P . I t e m := x ; 
P. L e f t := N e w ( T r e e N o d e ) ; 
P . R i g h t : s N e w ( T r e e N o d e ) ; 
R e t u r n ( T r u e ) 

E n d 
E n d ; 

F i g u r e 3 - 2 : Sample frame specifications for the tree insertion 
process presented in Figure 3-1. 
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C o n s t r a i n t 
F o r b i d d e n : ( F o r A l l t in { T r e e N o d e } ) 

S A d d l f L e a f ( . ) [ T r e e N o d e : f ] 
w i t h { $ C o m p a r e ( . ) [ T r e e N o d e : f ] U 

$ M o v e T o R o o t [ T r e e N o d e : f ] U 
S M o v e T o L e f t [ T r e e N o d e : f ] U 
$ M o v e T o R i g h t [ T r e e N o d e : f ] U 
S A d d l f L e a f ( . ) [ T r e e N o d e : f ] } 

E n d C o n s t r a i n t 

F i g u re 3 - 3 : Sample constraint specifications, 

and the run-time system maintains a hierarchical, dynamic, naming scheme for MP entities. 

3 . 4 . T a s k s 

A task contains all the necessary specifications for a parallel operation. A process wishing to 

initiate a parallel activity just invokes a task. A parallel operation consists of a set of processes that 

cooperate in some fashion, often through shared memory. A task therefore consists of a set of 

processes, a set of frames, and control information. In addition, tasks specify monitoring directives 

for the whole task as well as resource allocation. Resource allocation is usually dependent on the 

resources supplied by the target machine and often includes specifications as to how processes are 

to be mapped onto processors, what scheduling policies should be used, and how shared memory is 

to be mapped onto physical memory. 

T h e MP metalanguage enforces scoping in a manner similar to that found in block-structured 

sequential programming languages. Part of the specification of a task includes process definitions, 

frame definitions (abstract shared data type declarations), and task definitions. Each logical entity 

can reference other logical entities that are within its scope. That is, entities that are defined in the 

same task or in an outer task can be referenced. (See, for example, Figure 5-1.) A library of 

predefined abstract shared data types and some standard tasks and processes are visible throughout 

the program and are arranged in system libraries in much the same way as are I/O packages. 

3 .5 . S e n s o r s 

In addition to specifying the actions and constraints of a parallel program, MP also provides the 

ability to observe or monitor the execution of a program. This is accomplished by instrumenting a 

program by inserting sensors into the program. T h e implementation of the sensors is automatic and 

may be in hardware or software, depending on the system. MP supports four types of sensors: time 

consumed by a task or process, time required to execute a block of code , the value of a variable, and 

user defined. T h e first type is always inserted automatically by MP. Figure 3-5 shows the monitoring 

of a block of process code as well as the monitoring of the value of the parameter. T h e PIE system 
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P r o g r a m I n s e r t = 

{ The frame's data structure declarations are unfolded into each process 
and for each frame that it references. Note the lock allocation that has 
been inserted with each TreeNode. } 
T y p e T r e e N o d e = R e c o r d B e g i n 

SSemaphoreOOl : L o c k ; 
I t e m : i n t ; 
L e f t , R i g h t : " T r e e N o d e ; 

E n d ; 

{ Access to shared memory is achieved in Pascal by allocating a pointer to a 
record that specifies the shared memory structure. } 

SharedMemory = R e c o r d B e g i n 
Root : " T r e e N o d e ; 
R o o t L e a f : T r e e N o d e ; 
E n d ; 

v a r P : " T r e e n o d e ; 
S h a r e d M e m o r y P t r O O l : " S h a r e d M e m o r y ; 
x : i n t ; 

{ The frame operations are unfolded into the Pascal code for the process 
along with the inclusion of synchronization code realizing the constraints.} 

F u n c t i o n $ A d d I f L e a f ( x : i n t ) 
B e g i n 

S B e g i n W r i t e r s ( P . S S e m a p h o r e O O l ) : 
If P. I t e m != Nil T h e n R e t u r n ( F a l s e ) 
E l s e B e g i n 

P . I t e m := x ; 
P . L e f t : s N e w ( T r e e N o d e ) ; 
P . R i g h t := N e w ( T r e e N o d e ) ; 
R e t u r n ( T r u e ) 

E n d ; 
S E n d W r i t e r s ( P . S S e m a p h o r e O O l ) ; 

E n d 

( Note that in the following body code that the frame operation has been 
unfolded as well as the inclusion of synchronization code. } 

S w i t c h S C o m p a r e ( x ) B e g i n 

C a s e + 1 : B e g i n 
$ B e g i n R e a d e r s ( P . S S e m a p h o r e O O l ) 

P := P . L e f t ; 
$ E n d R e a d e r s ( P . S S e m a p h o r e O O l ) ; 
E n d 

E n d ; 

F i g u r e 3 - 4 : Frame and synchronization code are unfolded into the process code. 
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integrates the job of monitoring and does all the associated bookkeeping. MP and the run-time 

system generate and maintain unique identifiers for each of the sensors as well as associating the 

point in the program specification where the sensors have been inserted by the programmer. Thus , 

when viewing the results of a particular sensor, the programmer can also see surrounding the c o d e 

and specifications. In Figure 3-5, the block sensor requires the insertion of two sensors each with the 

same identifier. 

P r o c e s s I n s e r t ( x : i t e r n ) * 
B e g i n 
~ B e g i n _ P r o c e s s _ S e n s o r ( 1 7 ) ; 

~ V a r i a b l e _ S e n s o r ( 1 2 , x , " i t e m " ) ; 
S M o v e T o R o o t ; 
~ B e g i n _ 8 1 o c k _ S e n s o r ( 7 ) ; 
R e p e a t 

S w i t c h S C o m p a r e ( x ) B e g i n 
C a s e - 1 
C a s e +1 
C a s e 0 

E n d ; 
U n t i l S A d d l f L e a f ( x ) ; 
~ E n d _ B l o c k _ S e n s o r ( 7 ) ; 

~ E n d _ P r o c e s s _ S e n s o r ( 1 7 ) ; 
E n d 

S M o v e T o R i g h t C h i l d ; 
S M o v e T o L e f t C h i l d ; 
E x i t ; 

F i g u r e 3 - 5 : Process code of Figure 3-1 with sensors inserted. 
The B e g i n / E n d _ P r o c e s s _ S e n s o r s are always inserted and the 17 is associated with 

this process. T h e Block sensors were inserted at the direction of the programmer 
with the identifier 7 generated by MP and associated with this block. 

3 .6 . N a m i n g in M P 

T h e ability to recursively invoke tasks and to create distinct instantiations of the various entities 

requires particular care be given to the naming issue. Each entity of type task, process, or frame, has 

three names: local, static, and dynamic. T h e local name is the one assigned by the programmer and 

is a single alphanumeric identifier. (For example, in Figure 3-1, the local process name is " Insert" . ) 

T h e static name is based on the static scoping of MP. It consists of a list of local task names 

separated by the delimiter " / " and terminated by the entities local name (For example, 

"Outer/Master/Slaves") . S ince there can be multiple copies of a process, the dynamic local process 

name is the local name of the process followed by the delimiter " . " and the index of the process 

instantiated (for example "siave.4") . T h e dynamic naming structure is similarly structured in a 

hierarchical fashion but reflects the sequence of task invocations leading to its instantiation. T h e 

dynamic name is a list of alternating task and process dynamic local names again separated by the 

delimiter " / " and terminated by the dynamic local name (for example, if " O u t e r " and "Master" are 

task names, and "Init" and "S lave" are local process names then 
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"Outer/lnit3/Master/Slave.5/Master/Slave.4" could be adynamic process name). 

3 . 7 . S y n c h r o n i z a t i o n a n d C o o r d i n a t i o n 

T h e problem of synchronization and coordination is a major cause of concern in parallel 

processing. In MP, the problem is mitigated in three ways: Tasks, Frames, and Events. Frames deal 

with synchronization and coordination details related to access to shared memory. Tasks deal with 

the initiation and termination of sets of processes. Although these two mechanisms are sufficient to 

handle all synchronization problems, a third kind of support is often useful. Specif ic execution points 

within a process are labeled and marked as events. Within the task specification, the user can specify 

constraints using these events in order to synchronize the processes within a task. These expressions 

or predicates are used to control processes as well as frame operations. 

T h e constraints require the use of certain run-time status values. These manifest variables may or 

may not be actually maintained during run-time; their main use is to allow the programmer to form 

constraints in terms of these variables; the system may be able to realize the constraints in a simpler 

fashion. The manifest variables are similar to the shadow auxiliary variables introduced by Owicki and 

Gr ies [14,15] . Some examples include: the P r o c e s s _ D y n a m i c _ N a m e which is unique for each 

instantiation of a process and the associated P r o c e s s e d is a unique integer. T h e P r o c e s s _ I n d e x 

can be derived from the P rocess_Dynamic_Name and indicates the unique instantiation of process 

when multiple copies have been initiated. T h e P r o c e s s _ D e p t h is an integer that identifies how many 

times a process has been recursively invoked. This value is derived by counting the number of times 

the process name occurs within the P r o c e s s _ D y n a m i c _ N a m e . Finally, an event or execution count, 

• . C o u n t where * is an event or frame operation identifier, is available that records the number of 

times the event or frame operation has been executed for each unique process instantiation 

Associated with each of these manifest variables is a set containing the universe of values for these 

variables. 

3 . 8 . MP S u m m a r y 

Figure 3-6 reviews the basic "modules" of a task in MP. It describes the various specifications of a 

task as well as the other modules comprising a task. Note the distinction between definitions and 

references. A process may be defined in one task but only included in tasks that are defined within 

the task. 
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• Task 

o Definitions. (Statically scoped) . 

• Process Definitions. A complete program in an extended serial programming 
language. Monitoring directives concerning aspects of the process state. 
Points in the program marked as events with associated names. 

• Abstract Shared Data T y p e Definitions. Descr ibes the shared data 
declarations, the hidden and the visible operations, and the access control of 
these operations. A data initialization specification can also be supplied. 
Monitoring directives concerning the values of the shared constructs as well 
as monitoring the time spent waiting for synchronization. 

• Task Definitions. This definition provides static scoping of the logical 

entities. 

o Body 

• Processes. The set of processes that are to be executed in parallel when the 
task is invoked along with a repetition count indicating that there are to be 
multiple copies of the process. 

• Frames. Binds names to instances of the shared data types. Th is represents 
the data that is common to all processes and frames in this scope . 

o Control 

• Process Control . General ized path expressions specifying initiation and 
termination conditions for the processes and for the task. Constraints are 
specified in terms of instances of the entities, global variables, and events. 

• Resource Allocation. Mapping process instantiation to processors: for each 
instance of a process either a specific processor is suggested, any one in a 
class of processors are suggested, or the system is free to allocate as it 
pleases. Where shared memory is to be allocated and whether or not the 
pages can be swapped is specified. 

• Monitoring Directives. Specifications as to whether any particular 
configuration of the processes should be noted. T h e system, by default, 
monitors the initiation and termination of each instance of a task. 

F i g u r e 3 - 6 : A summary of the modules and their meaning for the 
specification of a parallel program in the MP environment. 
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4. The Program Constructor 
The Program Constructor (PCT ) is the second component of the PIE system. It provides a higher 

level of abstraction and support for the generation of efficient parallel programs. The P C T builds 

upon the concepts introduced by MP and frees the user from much of the detailed specification of an 

instrumented parallel program. 

T h e P C T is unique in that it provides mechanisms and policies for combining and transforming both 

the development time (static) and the run-time (dynamic) information into meaningful program 

representations. T h e static information is combined with status and performance information to 

provide semantically meaningful performance feedback which, in our view, is the key for generating 

performance efficient parallel programs. 

T h e PIE P C T can be decomposed into three main components: 

• An MP oriented editor - M P O E 

• A status and performance monitor 

• A relational representation system 

The transformation and integration of dynamic and static information is based on using the 

relational model approach. T h e M P O E internal representation is in the form of both a parse tree and 

relational model, with the former required for the syntax directed editor and c o d e generation part of 

M P O E and the latter to convey static program information to the two other components of P C T . 

T h e Status and Performance Monitor is also based on the use of the relational model [18,17] to 

select, filter, and collect run-time status and performance information. Accordingly , the relational 

model will contain static and dynamic information along with the semantic and temporal relations 

between them. The Relational Representation System then extracts and selects the views relevant to 

a specific performance or status goal. 

T h e rest of this section describes each of these components in detail. 

4 .1 . M P O r i e n t e d E d i t o r - M P O E 

T h e user (or programmer) of the MP environment, specifies and codes the parallel program through 

a syntax directed editor. While the study of structured editors is still a very active area of research, 

the PIE system requires only a few salient features that are common to most of them. The editor is the 

interactive interface between the user specifying a solution to an application problem, the extended 
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programming language, the system utilities, and the rest of the PIE system. O u r current 

implementation employs a GANDALF - t y pe of syntax-directed editor [8] refered to as M P O E . T h e user 

is presented with a partially constructed parse tree consisting of nonterminal and terminal nodes. As 

the user enters program information, the nonterminals are expanded, the parse tree is refined, and 

some semantic action affecting the contents of the relational model may occur . For example, when 

positioned at the nonterminal node for the identifier of a process module, the name entered by the 

user causes the parse tree to be further refined, the screen updated, and an addition to the relational 

model indicating the existence of this process along with other information such as where in the 

parse tree the specification occurred. 

T h e M P O E consists of two parts or grammars, one for describing and specifying most of the 

modules of MP and one for each of the programming languages in which the process code can be 

specified. T h e root of the parse tree is a task and the chi ldren are (i) the process and frame 

definitions, (ii) the process and frames instantiations that are the run-time composit ion of the task, (iii) 

the control specifications, (iv) the task monitoring directives, and (v) the tasks that are within the 

scope of this task. 

In MP, separation of concerns is achieved through the use of many modules. Although this allows 

the programmer to concentrate on only a narrow range of program aspects, a typical program may 

contain a large number of instances of these modules whose maintainance and organization may 

become a problem. T h e static scoping rules of the definitions helps to isolate disjoint parts of the 

program; entities not within the outer scope can not be referenced. T h e M P O E enforces this 

restriction in an interactive fashion. T h e M P O E , however, does not just tell the programmer when he 

can not reference an entity; it also helps the programmer to see what entities are available at each 

point in the specification. A roadmap of the program that dynamically displays the scoping structure 

of the modules is part of the graphical user interface. 

As each module is specif ied, the M P O E notifies the rest of the PIE system. Th is causes an update to 

the PIE central relational model and may also update some of the graphical v iews of the program 

specification. A link is created between the user's source code or specif ication, the internal objects 

of the PIE system, and the final executable code. This is useful, for example, when the user queries 

the result of a monitoring sensor. At the same time as the value is related to the user, the PIE system 

can also present the user's specification of the sensor and its surrounding context in MP. 

The M P O E also provides a mechanism of selective viewing. It is often the case that event 

specification within the process code or the monitoring directives are intrusive and clutter the users 
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view of the program specifications. Too many events or monitoring directives make the control flow 

of the program hard to follow and often make the display of a simple procedure span multiple 

screens. Similarly for frame operations that have long static names and make the display of 

statements span multiple lines. The user can request that event and monitoring specifications not be 

displayed and that frame operation names be shortened. 

Finally, syntax-directed editors have much knowledge about the program as it is being specified. 

This knowledge can be used with another component of the PIE system in order to give advice to the 

user about the specification. For example, in a Master/Slave implementation, the knowledge of the 

entities of the partially specified program enable the Implementation Assistant, described in the next 

section, to advise the user about where to place the code to handle fatal exceptions raised by a slave 

process. 

4 . 2 . T h e S t a t u s a n d P e r f o r m a n c e M o n i t o r 

T h e development of a correct and efficient parallel program is accomplished through a series of 

phases such as source editing and specification, compilation, correctness and performance 

debugging, and optimization." In PIE, the role of monitoring is to observe the later phases of the 

program development and to provide significant information to the user or to the system. T h e 

monitoring environment is composed of sensors, monitoring directives, and presentations of sensor 

recordings. Sensors are currently implemented mainly in software although research is underway to 

build hardware sensors. There are two types of sensors, system and user defined. The user specifies 

monitoring directives throughout the MP specifications indicating which of the system sensors are to 

be enabled and the composition of the user defined sensors. After the parallel program is executed, 

the results of the sensors can be seen through various graphical views that are under the user's 

control . 

T h e monitoring "phi losophy" in PIE is based on the insertion of special objects, named sensors, 

into the user code during program development. It has the following main characteristics: 

• It detects a precisely defined event, which may be the execution of a statement, a 
procedure call, an access to a variable, or a more complex, user defined function of the 
computational status of the program. 

• It causes a transfer of information from the program to an external environment in an 
automatic and controlled way. 

• It is transparent to the correctness of the program and makes every attempt to be 
transparent to the performance of the program. 
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• It can be enabled or disabled under the control of a standard, external mechanism. Th is 
allows a standard and possibly automatic instrumentation of a program at development 
time and a customization of monitoring requirements at run-time. 

Sensors are inserted into the application code in a controlled way, using the M P O E which is also 

responsible for storing all the information about their names, type, and location in a central relational 

database. T h e run-time environment also records the information gathered into the relational model. 

T h e user views the information from the relational model in a graphical and interactive fashion. 

Logically, a sensor is composed of three parts: Detection, isolation, and notification. There are four 

types of sensors: Start/stop object, start/stop block, variable monitoring, and user defined. T h e first 

two record the spatial and temporal status of the starting or stopping of a task, process, frame, or 

block of code within a process or frame operation. T h e variable monitoring sensors record the 

contents of variables at run-time. Different sub-types are provided for each basic data type of the 

language. T h e user-defined sensors allow for greater flexibility and filtering. T h e user provides a set 

of routines that are executed whenever a sensor is enabled and invoked. There is a standard format 

for transferring information to the relational model. 

T h e ability to instantiate multiple copies of a task or process and, in particular, the ability to 

recursively instantiate tasks makes the enabling/disabling of sensors difficult. Sensor names are 

based on their location (i.e. the name of the logical entity within which they were specified) and have 

static and dynamic names. Sensors can be dynamically or statically enabled. A sensor enable table 

(SET ) is maintained which is checked each time a sensor is encountered. T h e table contains both 

dynamic and static names as well as a specification of a class of names based on a wildcard 

specification. Dynamic enabling of a task is accomplished by inserting appropriate commands in the 

user's application code. T h e static enabling of sensors is most easily performed by first executing the 

application with all system supplied sensors enabled and then pointing to parts of the views of the 

computation to enable or disable sensors nested deep within the computation. 

Based on previous exper ience with parallel processors, the monitoring system is the conceptual 

backbone in providing the compound event observability, a critical issue in the process of efficient 

parallel programming. T h e PIE system is angling towards a prototype parallel processor that will 

dedicate a substantial part of the multiprocessor hardware specifically to instrumentation. Main 

expected advantages of hardware instrumentation are non-intrusiveness (minimal cost or zero cost 

associated with detection, isolation, composit ion and notification of an event), wide range (from low 

grain hardware events to large grain events), and adaptability through programmability. These 
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aspects provide the incentives for intensive use of instrumentation not only in performance 

evaluation, but also in operating systems design and programming environment. Such a parallel 

processor (i.e. the Supercomputer Workbench) is under development at C M U . 

4 . 3 . T h e Re la t iona l R e p r e s e n t a t i o n S y s t e m 

W e wish to give the parallel program developer all the help possible. T h e MP metalanguage 

provides support for specifying the program. In order for the developer to produce a correct and 

efficient program, the PIE system supports the notion of programming for observability. Multiple 

representations of the syntactic and semantic information are made available at both development-

time and at run-time and are supported in an integrated fashion. 

T h e syntactic MP information is maintained in the M P O E parse tree. T h e modules defined in MP, 

such as Process, Frame and Task, are directly visible and can be manipulated through M P O E . T h e 

M P O E parse tree contains the relevant development-time instrumentation information, such as sensor 

location, code, and associated data structures. In order to integrate the specification with the rest of 

the PIE system, a relational model (from data base domain) is used. Information from MP as well as 

information accumulated during run-time is maintained in the database. When relational operations 

are applied to the relationally structured information, multiple views of the same information are 

obtained. These views all help the programmer to understand the subtle interactions and bottlenecks 

of the program. 

A representation is a form of expressing a parallel program and/or its behavior. Examples of 

representations are: 

• Communication graph and communication tree 

• Process graph and process tree 

• Process-resource graph and process-resource tree 

• Dependency graph and dependency tree 

T h e graph presentations are the development-time representation, whereas the tree refers to the 

same representation at run-time. For example, the specification view of a recursive, div ide-and-

conquer application will be a graph with self- loops indicating recursive invocations whereas, the 

dynamic run-time view will be a tree with each node representing a particular instantiation of a 

module. A representation integrates the graphical screen presentation control together with the 

behavior and observability information (e.g. selective monitoring of relevant events). 
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In PIE, the M P O E parse tree is dynamically restructured into an INGRES- l ike relational model as the 

user performs the M P O E program development actions. At run-time, a relational monitor will p roduce 

relationally organized monitor information, stored in the same relational data structure. T h e relational 

data structure integrates the development-time information and the run-time information. By using 

the view feature of the relational model, along with presentation control information specific for each 

representation, a number of different representations can be displayed. 

T h e integration of development-time and run-time information in one representation provides the 

basis for the performance/correctness debugging process. Th is is accomplished by providing: 

• Selective representation. T h e user can selectively observe compound events by 
specifying a representation definition relevant to a performance or correctness goal . 

• Integration between development-time and run-time information. T h e user is getting 
usable feedback which is directly applicable to the process of program development and 
performance tuning. 

• High-level and automated performance debugging. T h e user descr ibes the parallel 
program and the required representation at high levels of abstraction. T h e system is 
generating ail low level interactions. 

T h e PIE system currently provides four views: roadmap, process execution times, invocation tree 

and frame usage tree. T h e complete filtering envisioned has not yet been incorporated into the 

system. It is expected that the user will be able to interact with the graphical views and indicate the 

objects that are not to be displayed. A major problem in the graphical presentation of the actions of a 

parallel program is the large amount of information that must be sifted through until the appropriate 

information is found. The relation model approach should make this job easier. 

4 . 3 . 1 . R o a d m a p 

This is a view of the specification of the program. As the user specifies a task, process, or frame 

with the M P O E , a corresponding object is displayed on the screen. The view also communicates with 

the M P O E so that a user can point to an object in the roadmap view and the M P O E will position the 

user to that part of the code . In this way, the user can get the "big picture" of the whole prgram 

structure while concentrating on only a small part of the specifications. 

4 . 3 . 2 . P r o c e s s E x e c u t i o n T i m e s 

This view displays the execution times of processes in the form of a bar graph with a separate 

indicator for each instance of a process. T h e graph is dynamically drawn with the total execution time 

of the experiment divided into a number of "s lots" . For each slot during which a process is active the 

bar is blackened. T h e analysis of the database proceeds chronologically through the execution of the 
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experiment giving the global effect of a visual tracing of the execution of all the processes in "slow 

motion". T h e bar graph gives an immediate global view of the parallelism of the application as a 

function of time. A useful feature is the ability to zoom into part of the view in order to see a finer 

grain of interaction. 

4 . 3 . 3 . I n v o c a t i o n T r e e V i e w 

This view represents the dynamic invocation sequence of tasks, processes, and frames of the 

experiment. This view can be either static or dynamic. In the static case, each object remains in view 

once it is created and in the dynamic case, the objects vanish from the screen o n c e they terminate. As 

an object is created, it is displayed on the screen and a line is drawn indicating the parent/child 

relationship. O n c e again, the view is displayed in "slow motion" thus presenting a motion picture as 

the computation unwinds. At any point, the user can select an object and in another window see the 

M P O E specifications of the object. 

4 . 3 . 4 . F r a m e U s a g e V i e w 

This view displays the dynamic reference to shared memory by processes or other frames. T h e 

actual implementation is part static and part dynamic. Frames and processes are displayed statically. 

O n c e again, the view proceeds chronological ly through the database and as each reference to a 

frame is performed a line is drawn connecting the two entities. This view helps discover bottlenecks 

due to contention to shared objects. 

5. A Simple Example 
In this section we demonstrate various features of the PIE system by describing an example 

application. A naive parallelization of quicksort is the chosen application due to its familiarity and 

simple recursive structure. Quicksort starts with a set of numbers, divides the set into two subsets, 

and then recursively sorts them. T h e subsets are formed by choosing a candidate median value and 

placing ail elements smaller than this value into set SMALL , those equal to or greater than into set 

B IG . The naive parallelization recursively applies quicksort to the subsets S M A L L and BIG in parallel. 

There are a few MP modules that are specif ied: a process either sorts the array if it contains only a 

few elements or divides the array into subsets and recursively applies quicksort to each subset. The 

process code can be written in such a way as to not know if it is executing in parallel with another 

process. Each process accesses the array through frame operations. A hollow frame is specified that 

makes part of the array (either the set S M A L L or the set B IG that was created by the parent task) 

appear to be the whole array. After the process rearranges the array into S M A L L and BIG sets, it 

partitions the array and invokes the task Q T . Task Q T contains the hollow frame and two copies of 
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the process. O n e copy of the process is mapped onto the set S M A L L and the other is mapped onto 

the set B IG . The hollow frame makes this distinction based on the index of the processes and access 

the data through the outer levels frame operations. Figure 5-1 s h o w s the outermost part of the MP 

specification of the quicksort program. T h e r e is a master process that reads the items to be sorted 

and places them into the shared array through the operations provided by Frame global. No 

constraints were supplied so that the master process will not wait for the parallel task it invokes to 

complete. Also for simplicity, no extra task sensors have been inserted, however , the system will 

supply a set of default sensors for the tasks. 

TASK q u i c k 

PROCESS m D U P L I C A T I O N 1 
>Body< 

FRAME g l o b a l 
>Body< 

TASK QT 
> b o d y < 

F i g u r e 5 -1 : Part of the MP Specification of a naive parallel quicksort . 
T h e definition and reference to the processes and frames are combined. 

In Figure 5-2 the inner task specification is presented. There are to be two copies of the process q 

instantiated whenever task O T is invoked. 

TASK QT 

PROCESS q D U P L I C A T I O N 2 
>Body< 

FRAME s h a r e d 
>Body< 

F i g u r e 5 - 2 : Part of the MP Specification of a naive parallel quicksort . 
Th is is the recursive quicksort task definition. 

In Figure 5-3 some of the frame definitions are shown. T h e variables Low, H i , NewLow, and NewHi 

are used to keep track of the remapping of the array. T h e first two record how the array was 

partitioned by the invoking process and the latter two are used to record the information of the 

partition operation that may be executed by the processes. T h e ReadArray and WriteArray 

operations are used if a process decides to directly sort the array and the other operations are used 

for division of the elements of the array into two groups. T h e initialization c o d e makes use of one of 

the manifest variables recording the current level of the recursive task invocation. If this is the first 
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level the the partitioning information is not needed. 

FRAME shared 

{ No Comment } 

TYPE 
P a r t i t i o n l n f o = ARRAY[NProcesses] OF A r r a y l n d e x ; 
N e w P a r t i t i o n l n f o - ARRAY[NProcess, 1 . . 2] OF A r r a y l n d e x ; 

VAR 
Low. Hi : P a r t i t i o n l n f o ; 
NewLow, NewHi, N e w P a r t i t i o n l n f o : N e w P a r t i t i o n l n f o ; 
s i z e : INTEGER; 

V IS IBLE FUNCTION $ReadArray ( i : INTEGER) : INTEGER; 
{>Oocumentation<} 

>Body< 
V IS IBLE FRAME PROCEDURE S W r i t e A r r a y ( i : INTEGER); 
{>Documentation<} 

>Body< 
V IS IBLE FRAME PROCEDURE S P a r t i t i o n ( M i d P o i n t : INTEGER); 
{>Documentation<} 

>Body< 
V IS IBLE FUNCTION $CompareAndSwap( i , j : INTEGER) : INTEGER; 
{>Documentation<} 

>Body< 

*** I n i t i a l i z a t i o n of Data *** 

BEGIN 
IF SFrameJDepth <> 1 THEN 

G e t P a r e n t P a r t i t i o n ( L o w , H i , S i z e ) 
END. 

F i g u r e 5 - 3 : Part of the MP Specification of a naive parallel quicksort. 
This is the Frame definition part of the recursive part of quicksort. 

The Read and Write operations are for the Bubble Sort Part. 

Figure 5-4 shows the roadmap view of the program. This is the definition scoping view of MP. As 

each module is specified in the M P O E , the roadmap view is updated. The user can point to a part of 

the roadmap with the mouse and M P O E will automatically position the cursor at the corresponding 

point in the parse tree. 

Figures 5-5, 5-6, and 5-7 show the dynamic invocation tree indicating the processes invoking the 

tasks. Note the dynamic names of the MP entities as opposed to the static names in the roadmap 

view. In the first figure, a frame module has been highlighted indicating that it has been selected. As 

a result, another part of the display will show the specifications associated with the selected frame. 
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Time » 136397 

m QK i 

shared 

F i g u r e 5 - 4 : T h e Road Map View of Quicksort 

Figure 5-8 shows a view of the frame usage graph. This view shows that at time 29733, one of the 

processes is accessing the frame. As time progresses, the view is updated and other processes and 

frames will be added. Frames are always placed on the left and processes on the right. T H e view does 

not indicate frames referencing other frames. 

Figure 5-9 is the process execution time bar graph. Since the application has been implemented on 

a Vax 780 using a message-passing scheme to simulate shared memory, the results are somewhat 

surprising. T h e times of no system activity are d u e to the operating system overhead initiating the 

processes and frames. T h e first recursive invocation of the task require a extraordinarily long time 

due to contention to the array. As the execution continues, the data is almost all sorted and there are 

not as many references to it. 

6. The Implementation Assistant 
T h e Implementation Assistant is the third P IE component. T h e goals of the Implementation 

Assistant are to provide semantic support in the parallel program development cyc le . Specifically, the 

goals are: 
• Parallel program performance prediction before extensive implementation investments. 
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26 April 1985 at 01:16 26 

T im« = 23733 

OFJ q / 9 l o b a l 

t7| g / n J 

[P|q/H.e/qs/QK.e 

fj jg/rl .e/qs/sharad 

[Pjq/H.e/q»/QK.l 

Pigu re 5 - 8 : A Frame Usage View 

q/n.0 
q/n.e/gs/OK.e 
q/t1 .9/q»/QK. l 

q/0.9/qs/QK.8/qs/Q>g-e 
q/H.e/qs/QK.9/qs/QK. l 
q/f1.e/q»/QK.l/qs/QIC.9 

q / 0 . 9 / q s / Q K . l / q « / Q K . l 

140009 

Q yH. f l/g«/QK.9/qs/QtC.9/q«/QIC.0 

q/t1. 9/qs/QK. 9/qs/QK. 8/qs/<*. 1 

F i g u r e 5 - 9 : T h e Bar G r a p h View of Quicksort 



26 April 1985 at 11:21 
27 

• Assist the user in choosing between implementations. 

• Semiautomatic parallel program generation by supporting a set of well-defined 
implementations. 

• Support for semiautomatic semantic instrumentation. 

• Support for a set of predefined representations related to the provided implementations. 

An implementation, in the context of a parallel program, is a specific way to decompose the parallel 

computation processes and data, as well as the way they are controlled. Examples of parallel 

implementations are: 

• Master-Slave 

• Recursive Master-Slave 

• Heap organized problem 

• Pipe-line 

• Systolic multi-dimensional pipe-line 

T h e high level of abstraction of the implementation concept, allows one to characterize classes of 

problems by their relative performance/implementation measure. T h e performance/implementation 

ratio refers to the parallel application performance, when implemented using two or more relevant 

implementations. For example, a parallel program for a molecular dynamic problem could be 

implemented as a Master-Slave or as a systolic pipe-line. When applying a parallel solution to the 

problem, the user is interested in finding out what is the most suitable way to partition the problem 

data and decompose the computation in parallel processes, in the context of the architecture and 

operating systems of a specific parallel machine. 

Encapsulating the knowledge pertinent to a set of frequently used implementations in the 

Implementation Assistant is, in our view, a first step toward fulfilling the above desiderata. The 

separation of concerns between implementation and algorithm allows, aside from programming in the 

context of predefined implementation semantic knowledge, performance prediction before full 

program development. In this case, the performance debugging process is supported by providing 

specific representation per each implementation. 

T h e implementation performance prediction step is supported in PIE by the iteration model [21, 22]. 

An application is descr ibed in terms of its computation intensive and communication intensive 
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behavior. T h e model allows the user to specify the process decomposit ion, the data partition and 

virtual parallel architecture characteristics. Currently, the model is limited to classes of application 

which are not heavily data dependent. A performance/implementation measure could be predicted 

per each relevant implementation. T h e user, assisted by an Implementation Discriminator, could then 

choose a suitable implementation. 

As an implementation is chosen, the preceded structure (in terms of control , communication, 

synchronization, process decomposit ion and data partition) is made available to the user in the form 

of a modifiable template. Under the assistance of a specific Template Assistant, the user can fill in the 

template or alter i t From previous exper ience, we infer that in most cases, the user will wish to 

employ one of the provided implementations. 

For illustrating this concept , consider an application to be implemented as a Unidirectional Pipeline 

(UPL) template. Such an environment will start by presenting the user with the UPL.Master template 

(see Figure 6-1) 

U P L . M a s t e r <name> 

I n p u t 

P i p e l i n e <repeat> 

Output 

Terminate < t e r m i n a t i n g . a g e n t > 

E n d U P L . M a s t e r 

F igu re 6 -1 : T h e UPL.Master Implementation template 

The components of the UPL.Master template are the pipeline processing nodes (Input, Pipeline, 

Output) and the termination condition agent. T h e terminating agent will indicate the processing node 

in charge of the termination condition (with the default agent being the User Interface). 

T h e UPL.Master template is controlled through a U P L oriented editor ( U P L O E ) . T h e Pipeline 

processing node could be split into multiple Pipeline processing nodes, each one specifying different 

code and a different replication count. 

Under U P L O E control any one of the processing nodes template could be displayed. For example, 

Figure 6-2 shows the template obtained by selecting a Pipeline processing node. 
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P i p e l i n e <name> 

>body< 

r e c e i v e . w e s t <west .buf fer ,name> 

>body< 

send .east <eas t .bu f fe r .name> 

>body< 

send . te rminate < te rminate .bu f fe r .name> 

>body< 

E n d P i p e l i n e 

F i g u r e 6 - 2 : Pipeline Processing Node template 

The Pipeline template provides send/receive operations to the process' adjacent neighbors and a 

send terminate communication with the terminate node. T h e user has to provide only the sequential 

application code . O n c e all the nodes have been defined, the system wiJI automatically generate all 

the process management, memory management, synchronization, communication, instrumentation, 

and resource allocation required for the UPL implementation. Moreover, the implementation being 

semantically instrumented, specific representations relevant to the performance debugging of U P L 

are available at the user interface level. 

In summary, by programming in the context of a preprogrammed template, the user expertise could 

be limited to its own application. T h e system is automatically generating most of the support required 

for parallelization of the application. O n e result in this context is the availability of the 

preprogrammed semantic instrumentation support. Implementation specific representations are 

made available at both development-time and run-time. T h e task of parallel programming and 

performance debugging is greatly simplified and facilitated. 

7. Status and Conclusions 
T h e issues of performance efficient parallel programs and system support for parallel programming 

are the main focus of the PIE system. T h e research method is pragmatic and is oriented toward 

practical results. Currently, the PIE 1 phase is mostly done and feasibility studies of the main 

components are completed. T h e MP Metalanguage has been defined. The prototype MP 

Metalanguage System is currently supporting Pascal . Other languages are under consideration. T h e 

Program Constructor components, namely the M P O E , the Status and Performance Monitor, and the 
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Relational Representation System are in the prototype form and are experimentally operational. 

Sample examples have been run through the P C T . and some of the results are presented in this 

paper. Observations from the running system show the performance bottlenecks, of the PIE1 system, 

to be located in the relational model and in the software monitoring. Accordingly , instead of using an 

available relational data base system ( I N G R E S as used in PIE1), we are exploring the use of the 

relational model in ways specifically suited to PCT . O n e of the approaches under consideration is a 

memory resident relational model with optimization for often executed P C T relational operations. 

Related to the alleviation of the software monitoring performance bottleneck is the definition and the 

design of a "programmable general purpose multiprocessor architecture." This multiprocessor, the 

Supercomputer Workbench dedicates a large amount of hardware to the task of non-intrusive 

monitoring providing direct support for P C T and programming for observability. 

T h e Implementation Assistant is currently in the feasibility study state. T h e performance predictor is 

operational. T h e model covers applications which are not heavily data dependent. Sample 

implementation templates are under construction and and a set of templates with application to 

real-time processing have been evaluated. T h e c o n c e p t looks promising, however more flexibility in 

terms of conveying performance requirements to the system is required. Work employing production 

systems techniques to solve this problem has been started. Most of this work is the object of the 

second research phase, i.e. PIE 4. 

In terms of the open and unsolved research issues in PIE, one of the main open problem is the use 

of formal specifications in the process of parallel program development. A desideratum will be to 

integrate formal specification for both functionality and performance requirements into the 

programming environment. The current state of art in this domain does not provide enough of a 

practical approach to enable us to consider the integration of such techniques in PIE 1. A second 

open question is how to provide support in P IE for different styles of programming languages such as 

LISP and Prolog. This problem has not been explored in detail in P IE 1, and is being postponed to the 

PIE 4 design cycle. In PIE 1, the issue of what is the most suitable graphic interface has not been 

considered as the the main goal. It our belief that a lot more experimentation and user feedback is 

necessary in order to make a determination in this domain. Initial PIE 1 results, however, show that 

associating graphic presentations with the relational representations is attractive. 

In summary, this paper presents a snapshot of a relatively large research project on the move. An 

overall programming environment structure reflecting the goals and the characteristics of parallel 

programs has been designed and implemented. A set of concepts have been introduced and 
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evaluated, including programming for observability, semantic monitoring, relational parallel program 

representation, constraint driven abstract data types (frames), automatic frame unfolding, 

programming with templates, and parallel implementation assistant. Our initial results and feasibility 

studies are very encouraging. 
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