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A b s t r a c t 

In this paper, a processing clement (PE) is characterized by its computation 

bandwidth, I /O bandwidth, and the size of its local memory. In carrying out a 

computation, a PE is said to be balanced if the computing time equals the I /O time. 

Consider a balanced PE for some computation. Suppose that the computation 

bandwidth of the PE is increased by a factor of a relative to its I /O bandwidth. 

Then when carrying out the same computation the PE will be unbalanced, i.e., it will 

have to wait for I /O. A standard method to avoid this I /O bottleneck is to reduce 

the overall I /O requirement of the PE by increasing the size of its local memory. 

This paper addresses the question of by how much the PE's local memory must be 

enlarged in order to restore balance. 

The following results are shown: For matrix computations such as matrix mul­

tiplication and Gaussian elimination, the size of the local memory must be increased 

by a factor of a 2 . For computations such as relaxation on a ^-dimensional grid, the 

local memory must be enlarged by a factor of ak. For some other computations 

such as the F F T and sorting, the increase is exponential, i.e., the size of the new 

memory must be the size of the original memory to the a-th power. All these results 

indicate that to design a balanced PE, the size of its local memory must be increased 

much more rapidly than its computation bandwidth. This phenomenon seems to be 

common for many computations where an output may depend on a large subset of 

the inputs. 

Implications of these results for some parallel computer architectures are dis­

cussed. One particular result is that to balance an array of p linearly connected PEs 

for performing matrix computations such as matrix multiplication and matrix tri-

angularization, the size of each PE's local memory must grow linearly with p. Thus, 

the larger the array is, the larger each PE's local memory must be. 



I N T R O D U C T I O N 

1. INTRODUCTION 

With today's technology, the challenge in designing a high-performance computer is 

usually not in providing processing elements with the required high computation 

bandwidths, but in making sure that information can flow to and from these ele­

ments with sufficient speed. For example, very fast processing elements can be built 

using off-the-shelf 16 MHz, 32-bit microprocessors [5] and/or floating-point chips 

capable of delivering 10 million operations per second [2]. The computation 

bandwidth of such a processing element can be further increased by incorporating 

multiple copies of these chips and operating them in parallel. However, the I /O 

bandwidth with the rest of the system (e.g., system memory and interconnections) 

cannot be increased as easily, and as a result it often becomes a bottleneck for the 

performance of the entire system. 

A standard approach to alleviating this I /O problem is to provide a local 

memory at a processing element This local memory can "cache" frequently used 

data and instructions, so that the required I /O bandwidth with the outside world is 

reduced. It is well-known that the size of the local memory must be large if the 

computation bandwidth of the processing element is large, as represented by the 

"Amdahl's rule" [8]. But exactly how large should this local memory be? This paper 

answers the question for several important computational tasks. 

To help study the problem formally, an information model is introduced in 

Section 2 to characterize a processing element Section 3 derives results on how the 

local memory of a processing element must be increased as the computation 

bandwidth increases. Section 4 discusses implications of these results for some 

parallel computer architectures. Concluding remarks are provided in Section 5. 
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I N F O R M A H O N M O O U . 

2. THK INFORMATION MODEL 

As illustrated in Figure 1, we characterize a processing element (PE) by: 

1. C: the computation bandwidth, which is the number of operations that 
the PE can deliver per second, 

2 . 1 0 : the I/O bandwidth, which is the number of words that the PE can 
communicate with the outside world per second, and 

3. M: the size of the PE's local memory, in terms of number of words. 

Figure 1. Processing element characterized by its computation bandwidth (C), 
I/O bandwidth (IO)9 and size of local memory (M). 

In carrying out a computation such as the fast Fourier transform (FFT) or matrix 

multiplication, a PE is said to be balanced'if the I /O time equals the computing time. 

When a PE is balanced for a given computation, we know that its computation, I /O 

and memory subsystems are not over- or under-designed for that computation. A 

challenge for computer architects is to keep a PE balanced, while taking advantage 

of technological opportunities such as large increases in computation bandwidth. 

Since it is usually difficult or expensive to increase the I /O bandwidth, we ask the 

following question: 

Assume that a PE is balanced for a given computation. Now C/IO is 
increased by a factor of a. To re-balance the PE for the same computa­
tion (without increasing IO\ by how much must M be increased? 

The following symbols and equalities are useful in deriving answers to the ques­

tion. For carrying out a given computation on a PE, let CComp ("cost for 

computation") and C[0 ("cost for I /O") denote the total number of operations 

needed for the computation and for the I /O, respectively. We assume that one I /O 

operation can transfer a word to or from the PE. Then the computing and I /O times 
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I N F O R M A T I O N M O D F L 

arc CcomJCmd Ci0/H\ respectively. Therefore, the PE is balanced if and only if 

Now suppose that C/IO is increased by a factor of a . ITien by (1) the PE is 

re-balanced if and only if the ratio CComp^io is increased by a factor of a . This 

provides a method that we can use in re-balancing a PE. For many computations, 

this can be accomplished by increasing the size of the PE's local memory. 

To be precise, let MM be the size of the original local memory, and M the 

minimum size of the new memory necessary to re-balance the PE. In the rest of the 

paper, we study by how much (expressed in terms of a) A / ^ must be larger than 

To' 
or 

C _ CComp 

lb ~ Ci0 

(1) 

M old' 
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RI SUI I S I O R SOMF. C O M P U T A T I O N S 

3. RESULTS FOR S O M E COMPUTATIONS 

Consider a PE that is balanced for a given computation. Now suppose that CI 10 is 

increased by a factor of a . This section drives answers to the question proposed in 

the preceding section for several computations. The following is a summary of the 

results: 

• Matrix computation such as matrix multiplication and triangularization: 
M = a2M . • new old 

• Grid computation: 

o 2-dimensional: M = a2M * new old 

o d-dimensional: M = adM .• new old 

• Sorting: M w = (M 

• I /O bounded computations such as matrix-vector multiplication and 
solution of triangular linear systems: Impossible, i.e„ PE cannot be 
re-balanced by merely enlarging its local memory, without increasing its 
10 bandwidth. 

Throughout this section, we will assume that for all the computations the 

problem size N is arbitrarily large, and that N is much larger than the size of the PE's 

local memory A/. 

3.1. Matrix Multiplication 

Consider the problem of multiplying two Afx# matrices, assuming a local memory 

of size A/. In the following, we use a decomposition scheme that minizes the I /O 

requirement of the PE. 

The product matrix is computed in (N/VW Y steps, each being the computa­

tion of a VW *VW submatrix of the product matrix. Every step is a multiplica­

tion of a VAT x N submatrix of the first input matrix with an N x VW submatrix 

of the second. This can be carried out in C c o m p = Q(NM) arithmetic 
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RI-SUI IS FOR SOY11 COMIH T A T I O N S 

operations*, and Cj0 = Q(N'VW ) I /O operations. Thus, 

= 0(VAT ). (2) 

Assume that for this computation, the PE is balanced. Now suppose that the 

computation bandwidth is increased by a factor of a relative to the I/O bandwidth. 

Then by (1), for re-balancing the PE, we must increase Ccomp/C\0 by a factor of a. 

From (2), we see that this can be done only if M is increased by a factor of a 2 . That 

is, for this matrix multiplication computation, we have 

The decomposition scheme we use here for matrix multiplication is just one of 

many possible ones. It has been shown [6] that for matrix multiplication, any 

decomposition scheme yields: 

where the function h (A/) cannot exceed VTkT in order of magnitude. This implies 

that the result of (3) is the best possible among all decomposition schemes, as far as 

minimizing M is concerned. 

3.2. Matrix Triangularization 

Given an NxN matrix A, the triangularization problem is to determine an NxN 

"multiplier matrix" Q and an upper triangular matrix U such that 

By triangularization, many problems in matrix computation can be reduced to that 

of solving triangular linear systems. For example, this is the major step in all direct 

methods for solving linear systems. When M is restricted to be an orthogonal 

matrix, it is also the key step in computing least squares solutions and in the QR 

algorithm for computing eigenvalues. Gaussian elimination and Givens rotation are 

standard algorithms for triangularization. 

The triangularization problem can be solved in N/\fW steps, where each step 

*J{N) = Q(g(N)) means f{N) = c-g(N) + lower order terms in N, where c is 
some positive constant 

M = a2M new t old' (3) 

QA = U. 
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R E S U L T S I OR SOMI C O M P U T A T I O N S 

annihilates portions of VW consecutive columns which arc in the lower triangular 

part, and updates the rest of the matrix to prepare it for the next step. It is easy to 

check that the first step can be carried out in CComp = Q(N2VW ) arithmetic 

operations, and Ci0 = Q(N2) I /O operations, assuming a local memory of size M. 

Thus, 

%^ = ecvir). 
The same ratio is maintained for all the steps. Therefore, as in the case of matrix 
multiplication, we have 

M = a 2 M u . new old 

3.3. Grid Computation 

Consider a 2-dimensional grid computation. Given an NxN grid, the task is to 

perform a large number of iterations on the grid, where each iteration involves 

updating every grid point by some weighted average of points in a surrounding 

window of fixed size. For some applications, on the order of N iterations may be 

performed. In scientific computation and image processing, this computation is 

usually called relaxation. 

Assume that the computation is performed by an array of PEs. Each PE is 

responsible for the storing and updating of all the grid points in a VW x>VW 
subgrid. For every iteration, each PE performs CComp = 0(VW *VW ) arith­

metic operations, and C[0 = Q(VM ) I /O operations. Thus, for the 2-

dimensional grid computation, we have 

M =a2M... new old 
It is straightforward to show that for a J-dimensional grid computation, we have 

A/ = a ^ M . . . 
new. old 

3.4. Fast Fourier Transform 

Consider the problem of computing an N-point discrete Fourier transform by the 

fast Fourier transform (FFT) algorithm, assuming a local memory of size M. 

Decomposition for the F F T is not as straightforward as that for matrix mul­

tiplication and other computations considered above. Figure 2 depicts an Appoint 

F F T computation and a decomposition scheme for Af=16 and A / = 4 . Results of 
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RHSUl.TS FOR SOMF COMPUTATIONS 

subcomputation blocks arc shuffled before they arc used as inputs of other subcom-

putation blocks. Note that each subcomputation block is sufficiently small so that it 

can be entirely carried out inside a PE with M words of local memory. 

W = 16 _ r 

Figure 2 (a) 16-point FFT; (b) decomposing the FFT. 

Each subcomputation performs C c o m p = 0 ( M l o g 2 A / ) arithmetic operations, and 

do = 0(A/) I /O operations. Thus, 

^22 = eoog2A/). 
w o 

(4) 

This implies that to increase the ratio Ccomp/C\o by a factor of a, we must increase 

M to M". Therefore for the FFT, we have 

M = (A/,.)". 
new v old7 

It has been shown [6] that for the FFT, any decomposition scheme yields: 

Ccomp = *(A/), 
' / a 

where the function k(M) cannot exceed log 2 M in order of magnitude. This implies 

that the result of (4) is the best possible among all decomposition schemes, as far as 

minimizing Mnew is concerned. 

3.5. Sorting 

Consider the problem of sorting Af keys by comparisons only. We will perform the 

sorting in two phases. Phase 1 sorts the N/M subsets of M keys each to produce 

N/M sorted lists. Phase 2 merges the sorted lists using an A/-way merge algorithm. 

In phase 1, for each subset we perform Ccomp = Q(M-\og2M) comparisons, and 
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O0 = 0( A/) I/O operations, and this can be carried out in a local memory of size 

A/. In phase 2, for each A/-way merge we maintain a heap of A/ elements which are 

the first elements of the current A/ sorted lists. The heap can be implemented in a 

memory of size A/, and for each I /O operation to the heap there are 0( log 2 A/) 

comparisons to be performed. rrherefore for both phases, we have 

% ^ = e ( . o g 2 A / ) . 
w o 

Like the FFT case, this implies that for sorting, 

M = ( A / , . ) a . (5) new v old7 y 7 

Using an information-theoretic argument, it is easy to show [9] that the result of 

(5) is the best possible among all sorting methods, as far as minimizing M is 

concerned. 

3.6. I /O Bounded Computations 

All the computations considered so far have been computation bounded, in the 

sense that computation takes more operations than I /O in order of magnitude. 

Computationr1 that are not computation bounded are called I/O bounded. Matrix-

vector multiplication and solution of triangular linear systems are examples of I /O 

bounded computations. For I /O bounded computations, after an increase of C/IO 

for a PE, there is no way to re-balance the PE by merely enlarging its local memory 

without increasing 10. The reason is that for these computations, inputs and inter­

mediate results are not used more than a constant number of times on the average, 

so having a local memory to buffer data will not reduce the overall I /O requirement 

of the PE after the size of the memory exceeds certain constant. 
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4. IMPLICATIONS FOR S O M E PARALLEL COMPUTER ARCHITECTURES 

The summary of results in the beginning of Section 3 suggests a classification of 

computations in term of their memory requirements in achieving balanced architec­

tures. Consider, for instance, scientific computations. They involve matrix tri­

angularization, matrix multiplication, grid computations of various dimensionalities, 

and also sparse matrix operations that have relatively high I /O requirements. 

Therefore in view of the results of Section 3, for scientific computations it is reason­

able to assume the following: 

M >a2M . . . (6) new old v 7 

That is, if the computation bandwidth of a PE is increased by a factor of a relative to 

its I /O bandwidth, then the size of the PE's local memory must be increased by a 

factor of at least a 2 . For the rest of this section, we consider designing mesh-

connected parallel computers for computations for which (6) holds. 

On a parallel computer, a computation that is usually performed by one PE in a 

conventional serial machine is carried out by a collection of, say, p PEs. We can 

view this collection of p PEs as a new processing element that has p times as much 

computation bandwidth as the old PE. With this viewpoint, parallel processing is 

just a particular method of increasing the computation bandwidth of a PE. There­

fore our methodology of re-balancing a PE by increasing its local memory applies 

directly to parallel architectures, as shown in the following subsections. 

4.1. 1-Dimensional Processor Array 

We want to use p linearly connected PEs to perform computations that were 

formerly done by a single PE, as depicted in Figure 3 below: 

Before: 1 PE Now: p PEs 
Figure 3. Using p PEs to perform computation formerly done by one PE. 

The collection of p PEs can be viewed as a "new processing element" that has p 

times as much computation bandwidth as the original PE. The I /O bandwidth of 
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I M P L I C A T I O N S LOR S O M L P A R A L L E L C O M P U T E R A R C I III HCTURHS 

this "new processing element" is the same as that of the original PE, as only the two 

boundary PEs in the PE collection can communicate with the outside world. There-

fore with respect to the "new processing element", the C/IO is increased by a factor 

of a=p. This implies from (6) that the "new processing element" should have a 

total of at least p2 times as much local memory as the original PE. That is, in the 

parallel arrangement, each PE should have at least p times as much local memory as 

the original PE. This translates to the following result: 

When using an array of linearly connected PEs for computations for 
which (6) holds, the size of each PE's local memory should grow at least 
linearly with the number of PEs in the array, to keep the array balanced. 

4.2. 2-Dimensional Processor Array 

We want to use pxp 2-dimensionally connected PEs to perform computations that 

were formerly done by a single PE, as illustrated in Figure 4 below: 

Before: 1 PE Now: p x p PEs 
Figure 4. Using pxp PEs to perform computation formerly done by one PE. 

By arguments similar to those used for the case of 1-dimensional processor array 

above, the computation and I /O bandwidths of this 2-dimensional array of PEs are 

p2 and p times larger than those of the original PE, respectively. Therefore, C/IO is 

increased by a factor of a=/>. For computations such as matrix multiplication 

where (6) holds with equality, the parallel arrangement should have a total of p 2 

times as much local memory as the original PE. This is automatically satisfied, since 

there are p2 PEs in the parallel setup. Therefore, we have the following result: 
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When using a square array of mesh-connected PEs for computations 
for which (6) holds, it is possible to make the size of each PE's local 
memory to be independent of the number of PEs in the array, while 
keeping the array balanced. That is, the processor array is automatically 
balanced as more PEs with local memories of the same size are added to 
the array. 

The possibility referred above depends on whether or not the computation can 

actually be decomposed for the parallel execution on the processor array. This is 

possible for example for matrix multiplication and triangularization, as 

demonstrated by various 2-dimensional systolic arrays for these computations [3,7]. 

However, for computations (such as the ^-dimensional grid computation with 

d>2) where (6) holds with a strict inequality, an automatically re-balanced, square 

processor array is never possible. For these computations, the size of each PE's local 

memory must be increased as the size of the array increases. 
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5. CONCLUDING REMARKS 

For most of the computations considered in this paper, to re-balance a PE, the size 

of its local memory must be increased much more rapidly than its computation 

bandwidth, if the I/O bandwidth is kept constant. For some computations such as 

the F F T and sorting, the local memory size must be increased exponentially as 

computation bandwidth increases. In this case, the size of the local memory may 

become unrealistically large, and the size of the application may also have to become 

unrealistically large in order to utilize all the memory. Therefore, for these com­

putations one should not expect any substantial speedup without a significant in­

crease in the PE's I /O bandwidth. Since increasing I /O bandwidth is difficult in 

practice, this partially explains why the performance of computer systems in general 

has not kept up with the rapid improvement in the computation bandwidth of 

processing elements. 

For parallel architectures, we have shown configurations where each PE's 

memory should grow at least linearly with the number of PEs in the parallel system. 

The C M U Warp machine [1,4] consists of a 1-dimensional systolic array, which 

is an array of linearly connected, programmable PEs < With a local memory of up to 

16K words, each PE can perform 10 million 32-bit floating-point operations per 

second, and transfer 20 million 32-bit words per second to and from its neighboring 

PEs. Having a rather large I / O bandwidth and a relatively large local memory for 

each PE of the Warp machine reflects the results of this paper. 

The methodology and analysis techniques of this paper can be used for many 

other computations and architectures in addition to those considered here. Further 

work in characterizing other computations, in terms of their memory requirements 

for achieving balanced architectures, and in analyzing the impact of these results to 

various architectures, will certainly provide additional insights to the design of high-

performance computers. 
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