
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-138

Time-Driven Orphan Elimination
Martin S. McKendry

Maurice Heriihy
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

1 July 1985

Abstract
An orphan in a transaction system is an activity executing on behalf of an aborted transaction. This
paper proposes a new method for managing orphans created by crashes and by aborts. The method
prevents orphans from observing inconsistent states, and ensures that orphans are detected and
eliminated in a timely manner. A major advantage of this method is simplicity: it is easy to
understand, to implement, and to prove correct. The method is based on timeouts using clocks local
to each site. The method is failsafe: although it performs best when clocks are closely synchronized
and message delays are predictable, unsynchronized clocks and lost messages cannot produce
inconsistencies or protect orphans from eventual elimination.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-
K-1539, and in part by the USAF Rome Air Development Center under contract number F30602-84-
C-0063 and the U.S. Naval Ocean Systems Center under contract number N66001-83-C-0305.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, RADC, NOSC, or the US Government.

1

1. Introduction
A distributed system consists of multiple computers (called sites) that communicate through a

network. A distributed program is one whose components reside and execute at multiple sites in a

distributed system. The physical components of a distributed system can fail independently: sites

can crash, and communication links can be interrupted. Nonetheless, the data managed by a

distributed program may be subject to consistency constraints that must be preserved in the

presence of failures and concurrency. Such constraints can apply not only to individual pieces of

data, but also to distributed sets of data. For example, a distributed banking system might be subject

to the constraint that the books balance: money is neither created nor destroyed, only transferred

from one ledger to another. A widely-accepted approach to ensuring consistency is to make the

activities that manage the data atomic. Atomicity encompasses two properties: indivisibility and

recoverability. Indivisibility means that the execution of one activity never appears to overlap (or

contain) the execution of another, while recoverability means that the overall effect of an activity is

all-or-nothing: it either succeeds completely, or it has no effect. An unsatisfactory way to ensure

indivisibility is to constrain activities to execute one at a time. It is more desirable to permit activities

to execute concurrently as long as they remain serializable: i.e., their overall effect is as if they had

executed in a serial order. Atomic activities are called transactions.

Several research projects are studying transactions as the foundation for general distributed

programs (e.g., [8], [5], [11], [17]). In these systems, the basic containers for data are called objects.

Each object has a type, which defines a set of possible states and a set of primitive operations that

provide the (only) means to create and manipulate objects of that type. A transaction is a distributed

computation that visits objects residing at multiple sites.

Well-known techniques such as two-phase locking [2,13] and commit protocols [4,16] can ensure'

the serializability of transactions that commit. Nevertheless, these techniques do not prevent

transactions that eventually abort from observing inconsistent data. For example, in a system based

on two-phase locking, a site crash and recovery may release a transaction's locks before that

transaction has finished acquiring locks at other sites, an inadvertent violation of the two-phase

locking discipline. Although any such transaction will never be permitted to commit, it may observe

inconsistent data while it executes. In a nested transaction system [15,13], similar inconsistencies

can arise when a transaction unilaterally aborts a nested subtransaction.

An activity executing on behalf of an aborted transaction is called an orphan. Although orphans

eventually abort, potential inconsistencies may complicate programs that have non-atomic

"benevolent site-effects." Examples of such programs include implementations of highly concurrent

2

atomic objects that use non-atomic data at a lower level [20], and programs being debugged. Finally,

orphans waste system resources.

Outside the transaction domain, the orphan elimination problem was first identified by Nelson [14],

and a solution based on timeouts has been proposed by Lampson [7]. More recently, Walker [18] has

proposed a transaction-based orphan elimination scheme that dynamically tracks dependencies

among transactions. Walker's scheme includes optimizations based on timeouts to reduce the

amount of information sent in messages. Goree [3] has given a comprehensive proof of part of

Walker's algorithm. Walker has shown that a similar orphan elimination scheme proposed by Allchin

[1] contains subtle errors.

This paper proposes a new method that uses timeouts to detect and eliminate orphans. The method

prevents orphans created by crashes and by aborts from observing inconsistent data, and ensures

that orphans are detected and eliminated in a timely manner. These features are particularly

attractive for real-time systems, such as the Alpha kernel [12] being constructed by the Archons

project. A major advantage of the method is simplicity: it is easy to understand, to implement, and to

prove correct. The method is based on timeouts using clocks local to each site. The method is

failsafe: although it performs best when clocks are closely synchronized and message delays are

predictable, unsynchronized clocks and lost messages cannot produce inconsistencies or protect

orphans from eventual elimination. Although our method is simpler than Walker's method, it does

place additional constraints on concurrency, and it may occasionally force additional aborts.

This paper is organized as follows. Section 2 describes the basic method. Section 2.4 extends the

method to nested transactions, and Section 3 discusses implementation techniques. Section 4

presents correctness arguments, and Section 5 summarizes our results.

2. Basic Algorithm
This section describes the basic orphan elimination method. We first discuss single-level transaction

systems, addressing nested transactions in Section 2.4. Our informal discussion assumes that

synchronization is accomplished by some form of two-phase locking, although Section 4 shows the

method is applicable to any synchronization mechanism that preserves atomicity.

3

2.1. Overview

Transactions operate on objects through a sequence of operation executions, each consisting of a

paired invocation and response. Each transaction originates at a unique home site. A site emitting

an invocation on behalf of a transaction is known as a calling site; the recipient site is a called site. An

object issuing an invocation is a calling object, and an object referenced by an invocation is a called

object. A transaction is said to have visited called and calling objects and sites. When a calling

object issues an invocation, execution suspends within that object and passes to the called object.

Execution resumes at the calling object when the response is issued by the called object. Thus, a

transaction is active at only one object at a time.

Each site has a clock, whose value advances monotonically. The clocks can be approximately

synchronized real-time clocks with bounded drift [10], or logical clocks may be used [6]. We

anticipate that practical implementations of this method will employ real-time clocks. When a

message is sent from one site to another, the proof of the algorithm requires that the time at which the

message is received be later than the time at which the message is sent. This property is readily

achieved by including the sender's current time with each message.

When a transaction acquires a lock at a site, it is assigned a quiesce time and a later release time.

When the site's local clock indicates that the transaction's quiesce time has passed, that transaction

may no longer execute operations at that site, although it may still commit or abort. The transaction's

locks at that site cannot be released, however, until its release time has passed. If the transaction's

status is unknown when its release time arrives, then it can be aborted unilaterally at that site, and all

information about the transaction may be discarded.

Let Quiesce(x.A) and Release(xtA) denote the quiesce and release times for transaction A at object x.
A transaction's quiesce and release times are subject to the following termination invariant. For all
objects x and y visited by A:

Quiesce(x,A) < Release(y,A)

The transaction's quiesce time at any object is less than its release time at any object. This invariant

eliminates potential inconsistencies by ensuring that all transactions, even orphans, satisfy the two-

phase locking discipline: no transaction will acquire a lock after it has released a lock.

The invariant is preserved in the presence of arbitrary message delays simply by including each
transaction's local quiesce and release times with each operation invocation it sends to another site.
The recipient ignores any message from a transaction whose quiesce time precedes the site's local
time.

4

One way to preserve the termination invariant in the presence of crashes is to have each site record

each transaction's locks and release time on stable storage. Upon recovery, active transactions are

aborted by resetting their quiesce times to the present. An alternative approach is to set a system-

wide maximum value for the quiesce interval, the duration between a site's current clock value and

the quiesce time for any transaction (see Figure 2-1). When a site recovers, it reinitializes its clock,

and refuses all operation invocations until the maximum quiesce interval has elapsed at every site in

the system, ensuring that any transactions active at the time of the crash have quiesced. This method

assumes the rate of clock drift can be bounded. Recovery can be speeded up if sites periodically

checkpoint their clock values to stable storage.

2.2. The Refresh Protocol

A transaction that is not an orphan will be aborted unnecessarily if its quiesce time arrives at a site

before its activity there completes. To avoid this difficulty, a refresh protocol is periodically

undertaken to advance each transaction's quiesce and release times. The interval between a site's

current time and the quiesce time for any transaction is the quiesce interval, and the interval between

the quiesce and release times is the release interval. The interval between refresh protocols is the

refresh interval. These terms are illustrated in Figure 2-1. Unnecessary aborts will be unlikely if

clocks are closely synchronized and if the refresh interval is significantly less than half the quiesce

interval.
| 1 1 >time I n t i i e s c e release

gin
transaction

K a f l 4 n beqin quiesce
b e g 1 n - refresh time time

quiesce interval ><- release
H interval

refresh
interval

Figure 2-1: Quiesce, Release, and Refresh Intervals

The refresh protocol is a two-phase protocol similar to the two-phase commit protocol [4]. In the first

phase, the home site attempts to advance the transaction's release time at all sites it has visited. If the

first phase is successful, the home site attempts to advance the transaction's quiesce time at all sites

visited. The two phases are necessary to ensure that the times are adjusted without violating the

termination invariant. The remainder of this section describes the bookkeeping necessary to

ascertain whether the first phase has succeeded.

Each site maintains two sets on behalf of each transaction. When a transaction executing at a site

makes a call to an object, that object is entered in the action's outgoing set. When a transaction

makes a call to an object residing at that site, that object is entered in the action's incoming set.1 A

transaction's home site is in charge of refreshing its quiesce and release times. The home site first

sends a phase 1 refresh message containing the new release time to sites visited by the transaction.

Each site updates the transaction's local release time, and responds to the home site with a phase 1

response message containing the local incoming and outgoing sets. The home site builds complete

incoming and outgoing sets by merging all received incoming and all outgoing sets respectively.

Phase 1 is successful if the union of all sites' incoming sets equals the union of all sites' outgoing

sets. This set is called the transaction's visit list closure.

If phase 1 completes successfully, the transaction's release time has been advanced at all sites. In

phase 2, the quiesce time is advanced. The home site transmits a phase 2 refresh message advising

visited sites of the new quiesce time. The termination invariant is preserved at each point during the

protocol. Although responses to the phase 2 messages are not needed for correctness, they can

reduce the likelihood of aborts caused by lost messages.

What if there are invocations in progress during the refresh protocol? There are two cases to

consider. First, if an invocation occurs immediately before the transmission of a phase one refresh,

the called object might appear at the calling site's outgoing set, but not (yet) in the called site's

incoming set. In this situation, the home site can simply retry phase 1. Retransmission intervals

should be chosen to minimize the risk of starvation in this case. Second, a site issuing a invocation

after phase 1 but before phase 2 will use the old quiesce time but the new release time. The called

site may retain the old quiesce time, which, although it does not violate the termination invariant, may

cause the transaction to abort unnecessarily. This difficulty can be addressed by choosing a refresh

interval substantially less than half of the quiesce interval, ensuring that any such site will be

refreshed again before its quiesce time. In practice, the refresh and quiesce intervals may have to be

tuned to incorporate such factors as lost refresh messages and the retransmission rate.

2.3. The Termination Protocol

When a transaction commits or aborts, its locks cannot be released until its release time has passed.

To avoid waiting for a transaction's release time to arrive, a termination protocol can be used to

adjust the release time without violating the termination invariant. The termination protocol is similar

to the refresh protocol. The first phase attempts to move the the quiesce time back to the present. If

1 An execution within a single site is regarded as both outgoing and incoming, but optimizations
discussed below eliminate the need to maintain this data.

6

the visit list closure is successfully formed, indicating that all visited sites have moved the quiesce

time, the second phase can move the release time back to the present. When a transaction commits,

the termination protocol can be integrated with the commit protocol. When a transaction aborts, an

explicit abort protocol can be used to release its locks, or if the quiesce interval is acceptably small,

its locks will gradually be released as its release times elapse.

2.4. Nested Transactions
This section extends the method to nested transactions [13,15]. We use standard tree terminology

(parent, child, ancestor, descendant) when discussing nested transactions. A transaction is
i

considered its own ancestor or descendant. A nested transaction can abort without aborting its

parent, and the commit of a nested transaction is conditional on the commit of its parent.
The termination invariant is extended to nested transactions as follows. If A is an ancestor of 6, and x

and y are objects:
Quiesce(x,B) < Release(y,A)

Each transaction's release times exceed its descendents' quiesce times. The invariant can be

maintained by controlling descendants' refreshes from the parent's home site. Each transaction

carries a descendant count as part of its state on all invocations and responses. This, in combination

with the transaction's identity, is used to generate names for sub-transactions. Since a transaction is

active at only one site at a time, such names are unique. Initially, a nested transaction is given the

same quiesce and release times as its parent, thus observing the termination invariant. During

subsequent refresh protocols, the parent includes notification of the descendant's existence, along

with the parent's incoming and outgoing sets. In the absence of aborts, and until it commits, the

descendant is included in refreshes of its parent's quiesce and release times.

The termination invariant requires that a transaction cannot release its locks (i.e., its release time

cannot be moved to the present) until all descendants are known to have terminated. If some

descendant cannot be contacted to perform an explicit commit or abort (i.e., move the descendant's

quiesce and release time to the present) the parent must wait to commit or abort until the

descendant's release time has passed.

3. Implementation Techniques
In this section, we discuss some simple implementation techniques and optimizations. One

immediate optimization is to employ a robust lower-level protocol to ensure that lost messages do not

cause unnecessary aborts. More significant optimizations can be obtained in the refresh protocol,

reducing the number and sizes of messages.

7

In the first optimization, each site maintains its own list mapping transactions to objects visited at that

site. Incoming and outgoing sets are extended to include both object and site names. When an

invocation is issued, the calling site enters the object referenced in its outgoing set. When the

invocation is received, the called site enters the name of the called object In its incoming set, then

includes its site name in the response to the invocation or in an earlier lower-level protocol message.

Once this is received, the calling site replaces the name of the object referenced in its outgoing set

with the name of the site visited. If a lower-level protocol uses positive acknowledgement to the final

response, receipt of this message can permit the called site to remove the object called from the

incoming set. Thus, the size of incoming and outgoing sets is less, particularly if the number of sites

visited by a transaction is small.

A second optimization also reduces the size of messages. In response to refresh messages, the sites
transmit only changes to incoming and outgoing since the last refresh. During refreshes, the home
site accumulates a list of visited sites. This list is then used, together with the incoming and outgoing
sets received and information retained at visited sites, to ensure that the visit list closure is
successfully formed.

The last optimization exploits broadcasting. A home site batches all refreshes for all transactions for

which it is home. The refresh messages implicitly refer to ail such transactions, except those

explicitly excluded. Refresh messages are broadcast to all sites, which must determine whether they

have been visited by any applicable transactions. The visited sites respond to a phase 1 refresh with

the incoming and outgoing sets for all applicable transactions. The home site also broadcasts the

phase 2 refresh message, specifying only those transactions for which the visit list closure was not

formed successfully. This optimization is particularly effective if the number of aborts is low, and

transactions visit few sites.

4. Correctness Arguments
This section presents formal correctness arguments for the orphan elimination method. The

correctness arguments are valid for arbitrary data types (not just files), for arbitrary concurrency

control methods (not just two-phase locking). We make no assumptions about clock synchronization.

Our model for nested transactions is based on work of Lynch [9]. Unlike our model, Lynch's model

associates with each primitive operation execution a label indicating the object's state as observed by

the transaction. A limitation of the label formalism is that it assumes that each object can be assigned

a well-defined value at each step, and therefore it cannot model concurrency control mechanisms in

which responses to invocations may be chosen on the basis of partial knowledge about state

8

information. (For example, the response to a queue's Deq operation may be well-defined even if the

response to the Size operation must await the outcome of concurrent transactions.) Our model

remedies this limitation using a formalism based on work of Weihl [19], in which computations are

modeled as sequences of events that may be reordered by serialization. Our correctness condition

for orphan elimination is a special case of a more general condition proposed by Goree [3].

4.1. Serial Computations

Let O B J E C T be a universal set of objects. Each object has a set of primitive operations that provide the

(only) means to create and manipulate objects of that type. For example, a Queue object might

provide Enq and Deq operations. An operation execution is a paired invocation and response, e.g.

Enq(x);Ok(), Deq();Ok(x), and Deq();Empty().

A serial history models a computation in the absence of failures and concurrency. A serial history is a

sequence of object-operation execution pairs. For example:
q1 Enq(x);Ok()
q1 Enq(y);Ok()
q2 Enq(z);Ok()
q1 Deq();Ok(x)
q2Deq();Ok(z)

is a serial history for two queue objects, q 1 and q2.

Each object has a serial specification, which is the set of serial histories for that object that

characterizes the object's behavior in the absence of failures and concurrency. For example, the

serial specification for a queue includes all and only histories in which items are enqueued and

dequeued in FIFO order. A serial history for a single object is legal if it is included in that object's

serial specification. A serial history for multiple objects is legal if the subhistory associated with each

individual object is legal. For example, the serial history shown above is legal because the

subhistories associated with q1 and q2 are each legal.

4.2. Action Trees
Let T R A N S be a universal set of atomic transactions. Transactions have an a priori tree structure, with

a distinguished transaction U as the root. For transactions A distinct from U, let parent(A) denote A's

unique parent, anc(A) and desc(A) denote A's ancestors and descendants (which include A itself),

and lca(A,B) denote the least common ancestor of A and 8. Let siblings denote the set {(A,B) €

T R A N S 2 | parent(A) = parent(B)}. Let seq C siblings be the partial order representing sequential

dependency; If (A,8) € seq, then A is constrained to run before 8.

9

A behavioral history is a sequence of object-event-action triples, where an event is an operation

execution, begin, commit, or abort. The ordering of operation executions in a behavioral history

reflects the order in which responses are returned, not necessarily the order in which invocations are

issued. A behavioral history is well-formed if it satisfies the following constraints,

• A transaction may begin only once.

• A transaction must begin before it can execute any other events.

• A transaction may begin only after its parent has begun.

• If (A,S) € seq then A must commit at some object before S may begin.

• A transaction cannot begin after its parent has committed at any object.

• A transaction may commit only once at an object.

• A transaction may not execute any operations after it has committed at any object.

• A transaction may not commit until all of its children have committed or aborted at some
object.

• A transaction may not commit at any object after it has aborted at any object.

Note that well-formedness places no constraints on operation executions of aborted transactions.

A partial order : » C siblings is linearizing if it is compatible with seq and it totally orders all siblings in
T R A N S . A linearizing partial order induces a total order (also denoted by » on the elements of a
behavioral history. A behavioral history is serializable if a legal serial history results from reordering
elements in the order > , discarding all begin, commit, and abort events, as well as all transaction
identifiers.

Let co mm it (h) denote the set of transactions that have committed in h$ and let proper-desc(A) denote
de$c(A)-{A}. A transaction 8 has committed to A in h if anc(A) D proper-desc(lca(A,B)) C
Committed(h). Let AQ = Ut Ak = A, and A / f = Parent(A.)t for / in*0,...,k. Let View(h,A) denote the
subhistory of h containing the following events:

• All events of Af that precede Begin Au 1

• All events of transactions committed with respect to A.

Let Perm(h) be View(h,U), the subhistory of transactions committed to the top level.

A behavioral specification S for a set of objects is the set of well-formed behavioral histories that

characterizes computations in the presence of failures and concurrency. S is on-line atomic if every

10

h in S satisfies the following properties:
d)

Perm(h) is serializable.

If h • [x commit A] is well-formed, it is in S.
The first condition is the standard definition of atomicity, and the second condition permits an active

transaction to commit at any time.
Lemma 1: If h € S and h contains no abort events for an ancestor of A, then View(h,A) is
serializable.
Proof: Construct h' by committing A's ancestors in leaf-to-root order. View(h'.A) •
Perm(h') is serializable, hence so is View(h,A).

Informally, a behavioral history h is internally serializable if each transaction has a serializable view

immediately after executing an event. More precisely,

1. A is internally serializable.

2. h • [x e A] is internally serializable if h is internally serializable and View(h,A) • [x e A] is
serializable.

In the next section we model our orphan elimination scheme as an automaton that accepts only

internally serializable histories of S.

4.3. An Automaton
An automaton is a tuple <Q, qQt S, 5>, where Q is a set of states, qQ is the initial state, S is a set of input

symbols, and S C Q X S X Q i s a transition relation. The transition relation can be extended to sets

of states:
5 (0 , 5^ = 0

(^o> " Uq€x*< q' so>
and to sequence of input symbols:

5(X, A) = X

SfX.s -s^ = 5(8(X,s),s 0)
Here A denotes the empty string. A string s is accepted by an automaton if S(qQ, s) * 0 .

Let T I M E S T A M P be a totally ordered domain of timestamps. Consider an automaton having the

following components:

• log: E V E N T *

• ClOCk: T I M E S T A M P

• Quiesce: O B J E C T X T R A N S T I M E S T A M P

11

• Release: O B J E C T X T R A N S - > T I M E S T A M P

The log component records the sequence of events already accepted by the automaton, clock

models a system of clocks, and Quiesce and Release model each object's quiesce and release times

for each transaction.

Quiesce and Release are subject to the termination invariant:
If A € anc(B) and xty € O B J E C T then Ouiesce(x,B) < Release(y,A) (2)

Each transaction's release times exceed its descendents' quiesce times.

In the automaton's initial state, the log component is empty, the clock has an arbitrary initial value,
and Quiesce and Release have initial values satisfying Property 2.

We define a function Filter that suppresses Commit and Abort events for transactions whose release
times have not arrived. If e is an event,

Filter(e) = if (e = [x Commit A] or e » [x Abort A]) and Release(x,A) < clock then A
elsee

Filter is extended to histories in the obvious way (deleting occurrences of A). The automaton has the

following preconditions for accepting an event [x e A],

l.log*[xeA]€S

2. Filter(log) • (xeA]€S

3. If e is an operation execution then Quiesce(xtA) > Clock.

The first condition ensures that behavioral histories are well-formed. Under two-phase locking, the

second condition implies that a transaction's locks cannot be released until its release time has

passed, and that a parent must remain blocked until its children's release times have passed. The

third condition implies that a transaction cannot access data once its quiesce time has passed.

Let S' denote the histories accepted by the automaton. S' is clearly a subset of S. It remains to show
that:

Theorem 2: All behavioral histories in S'are internally serializable.
Proof: Clearly, the property holds for A. Suppose h € & \s internally serializable, and h' a
h • [x e A] € S\ The result is immediate if e is begin, commit, or abort. If e is an operation
execution, no Abort events for ancestors of A appear in Filter(h'fA) because clock <
Quiesce(x,A) < Release(ytB) for any object y and any ancestor B of A. By Lemma 1,
View(Filter(h'),A) is serializable, but any serialization of View(Filter(hf)tA) is a serialization
of View(h',A) = View(h,A) • [x e A].

12

5. Conclusions
This paper has proposed a new method for managing orphans in a distributed transaction system.

This method ensures that orphans cannot observe inconsistent data, and that orphans are eventually

eliminated. The method is based on timeouts of clocks local to each site. Timeouts at different sites

are related by a global invariant, and they may be adjusted by simple two-phase protocols. The

principal advantage of this method is simplicity: it is easy to understand, to implement, and it can be

proved correct. Although the method is informally described in terms of two-phase locking, the

formal argument shows it is applicable to any concurrency control method that preserves atomicity.

Acknowledgement
Lui Sha participated in early discussions of this approach.

13

References
Allchin, J .
An Architecture for Reliable Decentralized Systems.
Technical Report GIT-ICS-83/23, Georgia Institute of Technology, 1983.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L
The Notion of Consistency and Predicate Locks in a Database System.
Communications ACM 19(11):624-633, November, 1976.

Goree, J . Jr.
Internal Consistency of a distributed transaction system with orphan detection.
Technical Report TR-286, Massachusetts Institute of Technology Laboratory for Computer

Science, January, 1983.

Gray, J .
Notes on Database Operating Systems.
Lecture Notes in Computer Science 60.
Springer-Verlag, Berlin, 1978, pages 393-481.

Jensen, E. D., and Pleszkoch, N.
Arch OS: a physically dispersed operating system.
IEEE Tech. Com. Distributed Processing Newsletter 2(6), June, 1984.

Lamport. L.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7):558-565, July, 1978.

Lampson, B.
Remote Procedure Calls.
Lecture Notes in Computer Science 105.
Springer-Verlag, Berlin, 1981, pages 365-370.

Liskov, B., and Scheifler, R.
Guardians and actions: linguistic support for robust, distributed programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

Lynch, N. A.
Concurrency control for resilient nested transactions.
In Proc. 2nd ACM Symposium on Principles of Database Systems. March, 1983.

Marzullo, K.
Loosely-Coupled Distributed Services: A Distributed Time Service.
PhD thesis, Stanford University, 1983.

McKendry, M. S.
Clouds: A Fault-Tolerant Distributed Operating System.
IEEE Tech. Com. Distributed Processing Newsletter 2(6), June, 1984.

McKendry, M. S., and Northcutt, J . D.
The Alpha Kernel.
Technical Report CSL-85-7??, CMU, 1985.
In Preparation.

14

[13] Moss, J . E . B .
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, Massachusetts Institute of Technology Laboratory for

Computer Science, April, 1981.

[14] Nelson, B.
Remote Procedure Call.
Technical Report CSL-79-3, Xerox Palo Alto Research Center, 1981.

[15] Reed,D.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

[16] Skeen.M.D.
Crash Recovery in a Distributed Database System.
PhD thesis, University of California, Berkeley, May, 1982.

[17] Spector, A. Z M Butcher, J . , Daniels, D. S., Duchamp, D. J . , Eppinger, J . L., Fineman, C. E.,
Heddaya, A., Schwarz, P. M.
Support for Distributed Transactions in the TABS prototype.
IEEE Transactions on Software Engineering 11(6):520-530, June, 1985.

[18] Walker, E. F.
Orphan Detection in the Argus System.
Technical Report TR-326, Massachusetts Institute of Technology Laboratory for Computer

Science, June, 1984.

[19] Weihl,W.
Specification and implementation of atomic data types.
Technical Report TR-314, Massachusetts Institute of Technology Laboratory for Computer

Science, March, 1984.

[20] Weihl, W. E., and Liskov, B.
Implementation of resilient, atomic data types.
ACM Transactions on Programming Languages and Systems 7(2):244-270, April, 1985.

