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Abstract 
An orphan in a transaction system is an activity executing on behalf of an aborted transaction. This 
paper proposes a new method for managing orphans created by crashes and by aborts. The method 
prevents orphans from observing inconsistent states, and ensures that orphans are detected and 
eliminated in a timely manner. A major advantage of this method is simplicity: it is easy to 
understand, to implement, and to prove correct. The method is based on timeouts using clocks local 
to each site. The method is failsafe: although it performs best when clocks are closely synchronized 
and message delays are predictable, unsynchronized clocks and lost messages cannot produce 
inconsistencies or protect orphans from eventual elimination. 
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1. Introduction 
A distributed system consists of multiple computers (called sites) that communicate through a 

network. A distributed program is one whose components reside and execute at multiple sites in a 

distributed system. The physical components of a distributed system can fail independently: sites 

can crash, and communication links can be interrupted. Nonetheless, the data managed by a 

distributed program may be subject to consistency constraints that must be preserved in the 

presence of failures and concurrency. Such constraints can apply not only to individual pieces of 

data, but also to distributed sets of data. For example, a distributed banking system might be subject 

to the constraint that the books balance: money is neither created nor destroyed, only transferred 

from one ledger to another. A widely-accepted approach to ensuring consistency is to make the 

activities that manage the data atomic. Atomicity encompasses two properties: indivisibility and 

recoverability. Indivisibility means that the execution of one activity never appears to overlap (or 

contain) the execution of another, while recoverability means that the overall effect of an activity is 

all-or-nothing: it either succeeds completely, or it has no effect. An unsatisfactory way to ensure 

indivisibility is to constrain activities to execute one at a time. It is more desirable to permit activities 

to execute concurrently as long as they remain serializable: i.e., their overall effect is as if they had 

executed in a serial order. Atomic activities are called transactions. 

Several research projects are studying transactions as the foundation for general distributed 

programs (e.g., [8], [5], [11], [17]). In these systems, the basic containers for data are called objects. 

Each object has a type, which defines a set of possible states and a set of primitive operations that 

provide the (only) means to create and manipulate objects of that type. A transaction is a distributed 

computation that visits objects residing at multiple sites. 

Well-known techniques such as two-phase locking [2,13] and commit protocols [4,16] can ensure' 

the serializability of transactions that commit. Nevertheless, these techniques do not prevent 

transactions that eventually abort from observing inconsistent data. For example, in a system based 

on two-phase locking, a site crash and recovery may release a transaction's locks before that 

transaction has finished acquiring locks at other sites, an inadvertent violation of the two-phase 

locking discipline. Although any such transaction will never be permitted to commit, it may observe 

inconsistent data while it executes. In a nested transaction system [15,13], similar inconsistencies 

can arise when a transaction unilaterally aborts a nested subtransaction. 

An activity executing on behalf of an aborted transaction is called an orphan. Although orphans 

eventually abort, potential inconsistencies may complicate programs that have non-atomic 

"benevolent site-effects." Examples of such programs include implementations of highly concurrent 
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atomic objects that use non-atomic data at a lower level [20], and programs being debugged. Finally, 

orphans waste system resources. 

Outside the transaction domain, the orphan elimination problem was first identified by Nelson [14], 

and a solution based on timeouts has been proposed by Lampson [7]. More recently, Walker [18] has 

proposed a transaction-based orphan elimination scheme that dynamically tracks dependencies 

among transactions. Walker's scheme includes optimizations based on timeouts to reduce the 

amount of information sent in messages. Goree [3] has given a comprehensive proof of part of 

Walker's algorithm. Walker has shown that a similar orphan elimination scheme proposed by Allchin 

[1] contains subtle errors. 

This paper proposes a new method that uses timeouts to detect and eliminate orphans. The method 

prevents orphans created by crashes and by aborts from observing inconsistent data, and ensures 

that orphans are detected and eliminated in a timely manner. These features are particularly 

attractive for real-time systems, such as the Alpha kernel [12] being constructed by the Archons 

project. A major advantage of the method is simplicity: it is easy to understand, to implement, and to 

prove correct. The method is based on timeouts using clocks local to each site. The method is 

failsafe: although it performs best when clocks are closely synchronized and message delays are 

predictable, unsynchronized clocks and lost messages cannot produce inconsistencies or protect 

orphans from eventual elimination. Although our method is simpler than Walker's method, it does 

place additional constraints on concurrency, and it may occasionally force additional aborts. 

This paper is organized as follows. Section 2 describes the basic method. Section 2.4 extends the 

method to nested transactions, and Section 3 discusses implementation techniques. Section 4 

presents correctness arguments, and Section 5 summarizes our results. 

2. Basic Algorithm 
This section describes the basic orphan elimination method. We first discuss single-level transaction 

systems, addressing nested transactions in Section 2.4. Our informal discussion assumes that 

synchronization is accomplished by some form of two-phase locking, although Section 4 shows the 

method is applicable to any synchronization mechanism that preserves atomicity. 
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2.1. Overview 

Transactions operate on objects through a sequence of operation executions, each consisting of a 

paired invocation and response. Each transaction originates at a unique home site. A site emitting 

an invocation on behalf of a transaction is known as a calling site; the recipient site is a called site. An 

object issuing an invocation is a calling object, and an object referenced by an invocation is a called 

object. A transaction is said to have visited called and calling objects and sites. When a calling 

object issues an invocation, execution suspends within that object and passes to the called object. 

Execution resumes at the calling object when the response is issued by the called object. Thus, a 

transaction is active at only one object at a time. 

Each site has a clock, whose value advances monotonically. The clocks can be approximately 

synchronized real-time clocks with bounded drift [10], or logical clocks may be used [6]. We 

anticipate that practical implementations of this method will employ real-time clocks. When a 

message is sent from one site to another, the proof of the algorithm requires that the time at which the 

message is received be later than the time at which the message is sent. This property is readily 

achieved by including the sender's current time with each message. 

When a transaction acquires a lock at a site, it is assigned a quiesce time and a later release time. 

When the site's local clock indicates that the transaction's quiesce time has passed, that transaction 

may no longer execute operations at that site, although it may still commit or abort. The transaction's 

locks at that site cannot be released, however, until its release time has passed. If the transaction's 

status is unknown when its release time arrives, then it can be aborted unilaterally at that site, and all 

information about the transaction may be discarded. 

Let Quiesce(x.A) and Release(xtA) denote the quiesce and release times for transaction A at object x. 
A transaction's quiesce and release times are subject to the following termination invariant. For all 
objects x and y visited by A: 

Quiesce(x,A) < Release(y,A) 

The transaction's quiesce time at any object is less than its release time at any object. This invariant 

eliminates potential inconsistencies by ensuring that all transactions, even orphans, satisfy the two-

phase locking discipline: no transaction will acquire a lock after it has released a lock. 

The invariant is preserved in the presence of arbitrary message delays simply by including each 
transaction's local quiesce and release times with each operation invocation it sends to another site. 
The recipient ignores any message from a transaction whose quiesce time precedes the site's local 
time. 
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One way to preserve the termination invariant in the presence of crashes is to have each site record 

each transaction's locks and release time on stable storage. Upon recovery, active transactions are 

aborted by resetting their quiesce times to the present. An alternative approach is to set a system-

wide maximum value for the quiesce interval, the duration between a site's current clock value and 

the quiesce time for any transaction (see Figure 2-1). When a site recovers, it reinitializes its clock, 

and refuses all operation invocations until the maximum quiesce interval has elapsed at every site in 

the system, ensuring that any transactions active at the time of the crash have quiesced. This method 

assumes the rate of clock drift can be bounded. Recovery can be speeded up if sites periodically 

checkpoint their clock values to stable storage. 

2.2. The Refresh Protocol 

A transaction that is not an orphan will be aborted unnecessarily if its quiesce time arrives at a site 

before its activity there completes. To avoid this difficulty, a refresh protocol is periodically 

undertaken to advance each transaction's quiesce and release times. The interval between a site's 

current time and the quiesce time for any transaction is the quiesce interval, and the interval between 

the quiesce and release times is the release interval. The interval between refresh protocols is the 

refresh interval. These terms are illustrated in Figure 2-1. Unnecessary aborts will be unlikely if 

clocks are closely synchronized and if the refresh interval is significantly less than half the quiesce 

interval. 
| 1 1 >time I n t i i e s c e release 

gin 
transaction 

K a f l 4 n beqin quiesce 
b e g 1 n - refresh time time 

quiesce interval ><- release 
H interval 

refresh 
interval 

Figure 2-1: Quiesce, Release, and Refresh Intervals 

The refresh protocol is a two-phase protocol similar to the two-phase commit protocol [4]. In the first 

phase, the home site attempts to advance the transaction's release time at all sites it has visited. If the 

first phase is successful, the home site attempts to advance the transaction's quiesce time at all sites 

visited. The two phases are necessary to ensure that the times are adjusted without violating the 

termination invariant. The remainder of this section describes the bookkeeping necessary to 

ascertain whether the first phase has succeeded. 

Each site maintains two sets on behalf of each transaction. When a transaction executing at a site 



makes a call to an object, that object is entered in the action's outgoing set. When a transaction 

makes a call to an object residing at that site, that object is entered in the action's incoming set.1 A 

transaction's home site is in charge of refreshing its quiesce and release times. The home site first 

sends a phase 1 refresh message containing the new release time to sites visited by the transaction. 

Each site updates the transaction's local release time, and responds to the home site with a phase 1 

response message containing the local incoming and outgoing sets. The home site builds complete 

incoming and outgoing sets by merging all received incoming and all outgoing sets respectively. 

Phase 1 is successful if the union of all sites' incoming sets equals the union of all sites' outgoing 

sets. This set is called the transaction's visit list closure. 

If phase 1 completes successfully, the transaction's release time has been advanced at all sites. In 

phase 2, the quiesce time is advanced. The home site transmits a phase 2 refresh message advising 

visited sites of the new quiesce time. The termination invariant is preserved at each point during the 

protocol. Although responses to the phase 2 messages are not needed for correctness, they can 

reduce the likelihood of aborts caused by lost messages. 

What if there are invocations in progress during the refresh protocol? There are two cases to 

consider. First, if an invocation occurs immediately before the transmission of a phase one refresh, 

the called object might appear at the calling site's outgoing set, but not (yet) in the called site's 

incoming set. In this situation, the home site can simply retry phase 1. Retransmission intervals 

should be chosen to minimize the risk of starvation in this case. Second, a site issuing a invocation 

after phase 1 but before phase 2 will use the old quiesce time but the new release time. The called 

site may retain the old quiesce time, which, although it does not violate the termination invariant, may 

cause the transaction to abort unnecessarily. This difficulty can be addressed by choosing a refresh 

interval substantially less than half of the quiesce interval, ensuring that any such site will be 

refreshed again before its quiesce time. In practice, the refresh and quiesce intervals may have to be 

tuned to incorporate such factors as lost refresh messages and the retransmission rate. 

2.3. The Termination Protocol 

When a transaction commits or aborts, its locks cannot be released until its release time has passed. 

To avoid waiting for a transaction's release time to arrive, a termination protocol can be used to 

adjust the release time without violating the termination invariant. The termination protocol is similar 

to the refresh protocol. The first phase attempts to move the the quiesce time back to the present. If 

1 An execution within a single site is regarded as both outgoing and incoming, but optimizations 
discussed below eliminate the need to maintain this data. 
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the visit list closure is successfully formed, indicating that all visited sites have moved the quiesce 

time, the second phase can move the release time back to the present. When a transaction commits, 

the termination protocol can be integrated with the commit protocol. When a transaction aborts, an 

explicit abort protocol can be used to release its locks, or if the quiesce interval is acceptably small, 

its locks will gradually be released as its release times elapse. 

2.4. Nested Transactions 
This section extends the method to nested transactions [13,15]. We use standard tree terminology 

(parent, child, ancestor, descendant) when discussing nested transactions. A transaction is 
i 

considered its own ancestor or descendant. A nested transaction can abort without aborting its 

parent, and the commit of a nested transaction is conditional on the commit of its parent. 
The termination invariant is extended to nested transactions as follows. If A is an ancestor of 6, and x 

and y are objects: 
Quiesce(x,B) < Release(y,A) 

Each transaction's release times exceed its descendents' quiesce times. The invariant can be 

maintained by controlling descendants' refreshes from the parent's home site. Each transaction 

carries a descendant count as part of its state on all invocations and responses. This, in combination 

with the transaction's identity, is used to generate names for sub-transactions. Since a transaction is 

active at only one site at a time, such names are unique. Initially, a nested transaction is given the 

same quiesce and release times as its parent, thus observing the termination invariant. During 

subsequent refresh protocols, the parent includes notification of the descendant's existence, along 

with the parent's incoming and outgoing sets. In the absence of aborts, and until it commits, the 

descendant is included in refreshes of its parent's quiesce and release times. 

The termination invariant requires that a transaction cannot release its locks (i.e., its release time 

cannot be moved to the present) until all descendants are known to have terminated. If some 

descendant cannot be contacted to perform an explicit commit or abort (i.e., move the descendant's 

quiesce and release time to the present) the parent must wait to commit or abort until the 

descendant's release time has passed. 

3. Implementation Techniques 
In this section, we discuss some simple implementation techniques and optimizations. One 

immediate optimization is to employ a robust lower-level protocol to ensure that lost messages do not 

cause unnecessary aborts. More significant optimizations can be obtained in the refresh protocol, 

reducing the number and sizes of messages. 
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In the first optimization, each site maintains its own list mapping transactions to objects visited at that 

site. Incoming and outgoing sets are extended to include both object and site names. When an 

invocation is issued, the calling site enters the object referenced in its outgoing set. When the 

invocation is received, the called site enters the name of the called object In its incoming set, then 

includes its site name in the response to the invocation or in an earlier lower-level protocol message. 

Once this is received, the calling site replaces the name of the object referenced in its outgoing set 

with the name of the site visited. If a lower-level protocol uses positive acknowledgement to the final 

response, receipt of this message can permit the called site to remove the object called from the 

incoming set. Thus, the size of incoming and outgoing sets is less, particularly if the number of sites 

visited by a transaction is small. 

A second optimization also reduces the size of messages. In response to refresh messages, the sites 
transmit only changes to incoming and outgoing since the last refresh. During refreshes, the home 
site accumulates a list of visited sites. This list is then used, together with the incoming and outgoing 
sets received and information retained at visited sites, to ensure that the visit list closure is 
successfully formed. 

The last optimization exploits broadcasting. A home site batches all refreshes for all transactions for 

which it is home. The refresh messages implicitly refer to ail such transactions, except those 

explicitly excluded. Refresh messages are broadcast to all sites, which must determine whether they 

have been visited by any applicable transactions. The visited sites respond to a phase 1 refresh with 

the incoming and outgoing sets for all applicable transactions. The home site also broadcasts the 

phase 2 refresh message, specifying only those transactions for which the visit list closure was not 

formed successfully. This optimization is particularly effective if the number of aborts is low, and 

transactions visit few sites. 

4. Correctness Arguments 
This section presents formal correctness arguments for the orphan elimination method. The 

correctness arguments are valid for arbitrary data types (not just files), for arbitrary concurrency 

control methods (not just two-phase locking). We make no assumptions about clock synchronization. 

Our model for nested transactions is based on work of Lynch [9]. Unlike our model, Lynch's model 

associates with each primitive operation execution a label indicating the object's state as observed by 

the transaction. A limitation of the label formalism is that it assumes that each object can be assigned 

a well-defined value at each step, and therefore it cannot model concurrency control mechanisms in 

which responses to invocations may be chosen on the basis of partial knowledge about state 
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information. (For example, the response to a queue's Deq operation may be well-defined even if the 

response to the Size operation must await the outcome of concurrent transactions.) Our model 

remedies this limitation using a formalism based on work of Weihl [19], in which computations are 

modeled as sequences of events that may be reordered by serialization. Our correctness condition 

for orphan elimination is a special case of a more general condition proposed by Goree [3]. 

4.1. Serial Computations 

Let O B J E C T be a universal set of objects. Each object has a set of primitive operations that provide the 

(only) means to create and manipulate objects of that type. For example, a Queue object might 

provide Enq and Deq operations. An operation execution is a paired invocation and response, e.g. 

Enq(x);Ok(), Deq();Ok(x), and Deq();Empty(). 

A serial history models a computation in the absence of failures and concurrency. A serial history is a 

sequence of object-operation execution pairs. For example: 
q1 Enq(x);Ok() 
q1 Enq(y);Ok() 
q2 Enq(z);Ok() 
q1 Deq();Ok(x) 
q2Deq();Ok(z) 

is a serial history for two queue objects, q 1 and q2. 

Each object has a serial specification, which is the set of serial histories for that object that 

characterizes the object's behavior in the absence of failures and concurrency. For example, the 

serial specification for a queue includes all and only histories in which items are enqueued and 

dequeued in FIFO order. A serial history for a single object is legal if it is included in that object's 

serial specification. A serial history for multiple objects is legal if the subhistory associated with each 

individual object is legal. For example, the serial history shown above is legal because the 

subhistories associated with q1 and q2 are each legal. 

4.2. Action Trees 
Let T R A N S be a universal set of atomic transactions. Transactions have an a priori tree structure, with 

a distinguished transaction U as the root. For transactions A distinct from U, let parent(A) denote A's 

unique parent, anc(A) and desc(A) denote A's ancestors and descendants (which include A itself), 

and lca(A,B) denote the least common ancestor of A and 8. Let siblings denote the set {(A,B) € 

T R A N S 2 | parent(A) = parent(B)}. Let seq C siblings be the partial order representing sequential 

dependency; If (A,8) € seq, then A is constrained to run before 8. 
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A behavioral history is a sequence of object-event-action triples, where an event is an operation 

execution, begin, commit, or abort. The ordering of operation executions in a behavioral history 

reflects the order in which responses are returned, not necessarily the order in which invocations are 

issued. A behavioral history is well-formed if it satisfies the following constraints, 

• A transaction may begin only once. 

• A transaction must begin before it can execute any other events. 

• A transaction may begin only after its parent has begun. 

• If (A,S) € seq then A must commit at some object before S may begin. 

• A transaction cannot begin after its parent has committed at any object. 

• A transaction may commit only once at an object. 

• A transaction may not execute any operations after it has committed at any object. 

• A transaction may not commit until all of its children have committed or aborted at some 
object. 

• A transaction may not commit at any object after it has aborted at any object. 

Note that well-formedness places no constraints on operation executions of aborted transactions. 

A partial order : » C siblings is linearizing if it is compatible with seq and it totally orders all siblings in 
T R A N S . A linearizing partial order induces a total order (also denoted by » on the elements of a 
behavioral history. A behavioral history is serializable if a legal serial history results from reordering 
elements in the order > , discarding all begin, commit, and abort events, as well as all transaction 
identifiers. 

Let co mm it (h) denote the set of transactions that have committed in h$ and let proper-desc(A) denote 
de$c(A)-{A}. A transaction 8 has committed to A in h if anc(A) D proper-desc(lca(A,B)) C 
Committed(h). Let AQ = Ut Ak = A, and A / f = Parent(A.)t for / in*0,...,k. Let View(h,A) denote the 
subhistory of h containing the following events: 

• All events of Af that precede Begin Au 1 

• All events of transactions committed with respect to A. 

Let Perm(h) be View(h,U), the subhistory of transactions committed to the top level. 

A behavioral specification S for a set of objects is the set of well-formed behavioral histories that 

characterizes computations in the presence of failures and concurrency. S is on-line atomic if every 
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h in S satisfies the following properties: 
d) 

Perm(h) is serializable. 

If h • [x commit A] is well-formed, it is in S. 
The first condition is the standard definition of atomicity, and the second condition permits an active 

transaction to commit at any time. 
Lemma 1: If h € S and h contains no abort events for an ancestor of A, then View(h,A) is 
serializable. 
Proof: Construct h' by committing A's ancestors in leaf-to-root order. View(h'.A) • 
Perm(h') is serializable, hence so is View(h,A). 

Informally, a behavioral history h is internally serializable if each transaction has a serializable view 

immediately after executing an event. More precisely, 

1. A is internally serializable. 

2. h • [x e A] is internally serializable if h is internally serializable and View(h,A) • [x e A] is 
serializable. 

In the next section we model our orphan elimination scheme as an automaton that accepts only 

internally serializable histories of S. 

4.3. An Automaton 
An automaton is a tuple <Q, qQt S, 5>, where Q is a set of states, qQ is the initial state, S is a set of input 

symbols, and S C Q X S X Q i s a transition relation. The transition relation can be extended to sets 

of states: 
5 ( 0 , 5^ = 0 

*(*^o> " Uq€x*< q' so> 
and to sequence of input symbols: 

5(X, A) = X 

SfX.s -s^ = 5(8(X,s),s 0) 
Here A denotes the empty string. A string s is accepted by an automaton if S(qQ, s) * 0 . 

Let T I M E S T A M P be a totally ordered domain of timestamps. Consider an automaton having the 

following components: 

• log: E V E N T * 

• ClOCk: T I M E S T A M P 

• Quiesce: O B J E C T X T R A N S T I M E S T A M P 
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• Release: O B J E C T X T R A N S - > T I M E S T A M P 

The log component records the sequence of events already accepted by the automaton, clock 

models a system of clocks, and Quiesce and Release model each object's quiesce and release times 

for each transaction. 

Quiesce and Release are subject to the termination invariant: 
If A € anc(B) and xty € O B J E C T then Ouiesce(x,B) < Release(y,A) (2) 

Each transaction's release times exceed its descendents' quiesce times. 

In the automaton's initial state, the log component is empty, the clock has an arbitrary initial value, 
and Quiesce and Release have initial values satisfying Property 2. 

We define a function Filter that suppresses Commit and Abort events for transactions whose release 
times have not arrived. If e is an event, 

Filter(e) = if (e = [x Commit A] or e » [x Abort A]) and Release(x,A) < clock then A 
elsee 

Filter is extended to histories in the obvious way (deleting occurrences of A). The automaton has the 

following preconditions for accepting an event [x e A], 

l.log*[xeA]€S 

2. Filter(log) • (xeA]€S 

3. If e is an operation execution then Quiesce(xtA) > Clock. 

The first condition ensures that behavioral histories are well-formed. Under two-phase locking, the 

second condition implies that a transaction's locks cannot be released until its release time has 

passed, and that a parent must remain blocked until its children's release times have passed. The 

third condition implies that a transaction cannot access data once its quiesce time has passed. 

Let S' denote the histories accepted by the automaton. S' is clearly a subset of S. It remains to show 
that: 

Theorem 2: All behavioral histories in S'are internally serializable. 
Proof: Clearly, the property holds for A. Suppose h € & \s internally serializable, and h' a 
h • [x e A] € S\ The result is immediate if e is begin, commit, or abort. If e is an operation 
execution, no Abort events for ancestors of A appear in Filter(h'fA) because clock < 
Quiesce(x,A) < Release(ytB) for any object y and any ancestor B of A. By Lemma 1, 
View(Filter(h'),A) is serializable, but any serialization of View(Filter(hf)tA) is a serialization 
of View(h',A) = View(h,A) • [x e A]. 
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5. Conclusions 
This paper has proposed a new method for managing orphans in a distributed transaction system. 

This method ensures that orphans cannot observe inconsistent data, and that orphans are eventually 

eliminated. The method is based on timeouts of clocks local to each site. Timeouts at different sites 

are related by a global invariant, and they may be adjusted by simple two-phase protocols. The 

principal advantage of this method is simplicity: it is easy to understand, to implement, and it can be 

proved correct. Although the method is informally described in terms of two-phase locking, the 

formal argument shows it is applicable to any concurrency control method that preserves atomicity. 
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