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A b s t r a c t . Wo introduce a category of what we call profinite domains. This category of 
domains differs from most of the familiar ones in having a categorical coproduct as well 
as being cartesian closed. Study of these domains is carried out through the use of an 
equivalent category of pre-orders in a manner similar to the information systems approach 
advocated by Dana Scott and others. A class of universal profinite domains is defined and 
used to derive sufficient conditions for the profinite solution of domain equations involving 
continuous operators. Necessary conditions for the existence of such solutions are also given 
and used to derive results about solutions of some important equations. A new universal 
bounded complete domain is also demonstrated using an operator which has bounded 
complete domains as its fixed points. 

1. I N T R O D U C T I O N . 

For our purposes a domain equation has the form X = F(X) where F is an operator on 
a class of semantic domains (typically, F is an endofunctor on a category C). The solution of 
such equations is a major component of the Scott-Strachey approach to programming language 
semantics. The reader is refered to [23] or any other reference on denotational semantics for an 
explanation of how such equations arise. Techniques for solving them have been worked out for 
specific categories (see any of the references by Scott or Plotkin) and in rather general category-
theoretic settings as well [22]. Computability considerations have been incorporated into many 
of these treatments with considerable success ([24], [5], [6]). All of these approaches use one of 
three techniques. The most general is the inverse limit construction used by Scott [14] to solve the 
domain equation D = [D D] (where [D —» D] is the function space of £>). The second uses the 
Tarski Fixed Point Theorem, which says: if D is a poset with least upper bounds for o;-chains and a 
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least element then any function / : D D which preserves such lub's has a least fixed point. The 

third—which is introduced in [9]—uses the Banach Fixed Point Theorem, which says: a uniformly 

contractive function / : X —• X on a non-empty complete metric space X has a unique fixed point. 

These last two approaches employ what is frequently called a "universal" domain to associate with 

the operator F a lub preserving or contractive map. 

In this paper we examine the problems involved in obtaining solutions to equations over the 
category of profinite domains which will be defined below. This is a rather natural, and in a sense 
inevitable, category which contains S F P (see [11]) as a full subcategory. It has the unusual prop­
erty of being bicartesian closed, i.e. it is cartesian closed and has a coproduct. Such categories 
have a rich type structure and form models of the typed A-calculus [8]. Obtaining profinite so­
lutions for domain equations involving the coproduct can be problematic, however. For example, 
the equation D = 1 + [D —> D] where 1 is the one point domain has no profinite solution. We 
provide a necessary condition which, in effect, reduces the problem of solving such an equation 
over the profinite domains to one of getting a finite poset which solves a related equation. This 
condition is proved sufficient by a variant of the second method described above. Since no single 
(projection) universal domain for the profinites exists we derive an infinite class of domains which 
are "sufficiently universal" to apply the method. As a secondary theme we show how to extend the 
neighborhood or information system approach to one which applies to categories (such as S F P ) 
which are larger than the one considered in [16] and [18]. We also illustrate a method of solving 
domain equations up to equality similar to the one demonstrated in [18] and [24] by using such a 
technique to solve a domain equation involving the convex powerdomain. 

Section two gives some of the basic definitions and explains the equivalence defined by the 
ideal completion functor. In section three the category of Plot kin orders is introduced and shown 
to be bicartesian closed. Section four discusses normal substructures and defines the category of 
profinite domains. We also state a result which shows that this category is "maximal" with respect 
to the conditions of w-algebraicity and cartesian closure. Section five derives universal domains. In 
section six an interesting operator which we call the join completion is discussed. In section seven 
the universal domains are used to show existence of solutions for a significant class of equations. 
Section seven also contains discussion of several specific domain equations and their solutions. 

2. P R E - O R D E R S A N D A L G E B R A I C D C P O ' S . 

A pre-order is a pair (A, h^) where is a binary relation which is reflexive and transitive. It 
is intended that the "larger" element is the one on the left side of the turnstile. Note that A = 0 is 
allowed. To conserve notation we write A = (A, \~A) and when A is clear from context the subscript 
is dropped. A set S C A is bounded if there is an X 6 A such that X h Y for every Y £ 5 . Such 
an X is called a bound for S and we write X h S. Trivially, any X € A is a bound for the empty 
set. A subset M C A of a pre-order A is directed if every finite subset of M has a bound in M. 
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Note, in particular, that every directed set is non-empty. The following definition appears in [12] 

and [19]. 

Def ini t ion: An approximate relation f : A —• D is a subset of A X D which satisfies the following 

axioms for any G A and Y, Y1 G B: 

1. for every X G A there is a Y E A such that X f Y\ 

2. if X f Y and X f Y' then there is a Z e D such that X f Z and Z h B y , Y'] 

3. if XV-AX1 f Y' Y-B Y then XfY.U 

Let g : A B and / : B —> C be approximable relations. We define a binary relation fog 
on A x C as follows. For each X E A and Z E C, X (f o g) Z if and only if there is a Y G B 
such that X g Y and Y f Z. Also, for each pre-order A define id^ = ^A- It is easy to verify that 
fog and id^ are approximable relations. With this composition and identity relation the class of 
pre-orders and approximable relations form a category which we call P O . We let PO(A, B) be the 
set of approximable relations on Ax B. The approximable relations are partially ordered by set 
theoretic inclusion. 

For pre-orders A and B define the product pre-order to have the coordinatewise ordering, 

(X, Y) \~AxB [X\ Y') if and only if X h A X1 and Y h B Y\ 

In fact, x is a categorical product for P O . If we take 1 to be the single element pre-order, then 
for each pre-order A there is a unique approximable relation 1A : A —• 1. Thus the pre-orders and 
approximable relations form a cartesian category with terminal object 1. Moreover, the empty poset 
0, is initial in this category, i.e. for any object A there is a unique arrow 0^ : 0 —• A. This 0^ is the 
"empty relation" and it is trivially approximable. For pre-orders A and Z?, the coproduct pre-order 
(A + B, \~A+B) is defined by letting A + B = {A x {0}) U {B x {1}) and defining (X, n) t-A+B [Y, m) 
if and only if either 

1. n = m = 0 and X \~A Y, or 

2. n = m = 1 and X h ^ 7 . 

This, unlike the + operators discussed in many references on domain theory such as [23], [2], or 
[18] is the categorical coproduct in P O . This shows that P O is bicartesian, i.e. it has coproduct 
and initial object as well as product and terminal object. 

A poset (D, C) (or partially ordered set) is a pre-order that is anti-symmetric, i.e. if x C y and 
y C x then x = y. Using the established convention we write the "larger" element on the right side 
of the C symbol. If x C y then it is sometimes convenient to write y • x. If x C. y and x ^ y then 
we write x C y\ we define • by a similar convention. It is frequently desirable to transfer a property 
of pre-orders to a property of posets and conversely. This is usually possible because pre-orders 
and posets are closely connected. First of all, every pre-order is isomorphic (in the category with 
approximable relations as arrows) to a poset. To see this, let (A, h) be a pre-order. Define an 
equivalence relation ~ on A by letting X ~ Y if and only if X h Y and Y h X. For each X , let 
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X = {Y G A | X ~ Y} and set A = {X \ X G A} . If we define a binary relation C on A by letting 
F C X if and only if X h y , then it is easy to check that (A, C) is a poset and the approximable 
relation / : A —• A given by X / y if and only if X h y is an isomorphism. In addition, posets are 
isomorphic in the category with approximable relations as arrows if and only if they are isomorphic 
in the more familiar category with monotone maps as arrows. We can therefore write A = B for 
pre-orders A and B without fear of ambiguity. 

A poset {!?, C) is said to be a directed complete if every directed subset M C D has a least 
upper bound [}M E D. A monotone function / : D —> E between depo's D and E is continuous 
if for every directed set M C D, U/(<W) = /(U-W)- The depo's and continuous functions form a 
category; with a slight over-loading of notation we let id# : D —• D denote the identity function. 
Let [D E] be the set of continuous functions from D to E. We order [D —• E] by setting f Q g 
if for every x G Z?, / ( x ) C *?(x). It is easy to check that [D —> 2?] is itself a depo. This definition 
of depo's differs from most other definitions in the literature. We do not require that a depo have 
a least element; indeed, we do not require a depo to be non-empty. Much of the usual theory of 
depo's goes through for these "bottomless" cases but there are some non-trivial differences. For 
example, a continuous function / : D —> D on a depo need not have a fixed point. (However, if for 
some x G x C f(x) then there is a least y • x such that f(y) = y.) 

Let D be a depo. An element x G D is finite (or compact) if whenever x C | J M for a 
directed set M , there is a y G M such that x C y. Let B[D] denote the set of finite elements of 
a depo D. We say that D is algebraic if for every x G Z>, the set M = { x q G B[JD] | x o E= x} is 
directed and [J M = x. In other words, in an algebraic depo every element is the limit of its finite 
approximations. Let A L G be the category of algebraic depo's and continuous functions. We now 
establish an equivalence between A L G and P O . Suppose (A, h) be a pre-order. An ideal over A 
is a directed subset x C A such that if X h Y and X G x then Y G x. The tdea/ completion of A 
is the partial ordering, (|A|, C), of the ideals of A by set-theoretic inclusion. If X G A then the 
principal ideal generated by Xis the set |X = {Y G A | X h Y}. Note that {|X | X e A} £ A. We 
also have the following: 

T h e o r e m 1: 7/ A is a pre-order, then \A\ is an algebraic depo with B[|Aj] = {[X \ X G A}. 
Moreover, every algebraic depo D is representable in this way because D = |B[I?]|. 

Proof. Note that if M C \A\ is directed then [jM is the least upper bound of M. Hence |A| is a 
depo. If X G A and |X C \J M then X G y for some y G M so [X C y. Hence is finite (as an 
element of |A|). But for any ideal x, the set M = {IX | X G x} is directed (because x is directed) 
and x = U-^. Hence |A| is an algebraic depo and B[|A|] = {|X | X G A} is isomorphic to A. 
On the other hand, if (D, Q) is an algebraic depo then it is easy to verify that / : D —> |B[2?]| by 
/ ( x ) = {xo | xo Q x} is an isomorphism. • 

Intuitively, the passage A \-+ \A\ expands A by adding limits for ascending chains. To see 
this in a specific example, let < w 2 be the set of functions / : n —> 2 where n < w, If / : n —• 2 
and g : m —* 2 then say f Q g ii and only if n < m and /(fc) = g(fc) for each fc < n. the ideal 
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completion \<u)2\ of this poset is isomorphic to the union <UJ2 UUJ2 where w 2 is the set of functions 
from u> into 2, 

• < w 2 retains the ordering just mentioned and 

• if / : n —• 2 and g : u —• 2 then / C # if and only if f(k) = <7(fc) for each A; < n. 

The infinite elements of | < w 2 | correspond to those in w 2 while the finite elements of \<UJ2\ correspond 
to those in < w 2 . If a poset A has no infinite chains then surely no new elements are added by the 
ideal completion. We make this intuition precise as follows. 

Def in i t ion: A poset (A, C) is said to have the ascending chain condition (acc) if for every chain 
Xo C X\ C X2 Q • • • of elements of A there is an n G u such that for every m > n, -X"m = X n . A 
pre-order (A, h) is said to have the acc if A does. • 

P r o p o s i t i o n 2: If (A, h) has the acc then A= \A\. 

Proof. We show below that \A\ = |JB| if A = S . Since A = A we can therefore assume that A is 
a poset. We show that each x £ |A| is principal. Assume x G |A| is no* principal. Then for each 
X £ x there is an X1 G x such that X C -X"'. But this means there is a chain XQ C -X"i C • • • of 
elements of x. This contradicts the assumption that A has the acc. Hence \ A\ = {IX \ X G A} = A. 

A rather obvious corollary of the Proposition is that all finite posets are algebraic depo's. Now, 
if D is a poset with the acc and M C D is directed then U M = x for some x G M. Hence, if 
/ : D —> E is monotone then / (U^) = /(^) = U/(-W)« We conclude that when D has the acc 
then [D —• JS] is just the set of monotone functions from D into E. 

There is a sense in which |A| is freely generated by A. Formally, we have the following: 

T h e o r e m 3: Let A be a pre-order and suppose <j> : A |A| by <f); X [X. Then for every depo D 
and monotone function f there is a unique continuous function f such that the following diagram 
commutes. 

a 

A 

Moreover, the correspondence f H-» / is monotone. 

Proof. Let / and D be given as in the theorem. Define / by 

f(*) = U{f(x)\xex}. 



This makes sense because / is monotone, x is directed and D is complete. To see that / is 
continuous, suppose M is a directed subset of \A\. Then 

/(UM) = U{/(X) \xeUM} 
= U{f{X) I X € x for some x € M} 

= LKLK/(X) \xex}\x€M} 

= U/(M). 
To see that / is unique, suppose g : \A\ —• Z? is continuous and for every X € A, g{iX) = / (J f ) . 

Then 

<7(x) = | _ | { < 7 ( i * ) | * e x } 

= U{f(x)\xex} 
= /(*). 

That the function / «—• / is monotone is easy to check given the above definition of / . • 

Def in i t ion: If A and B are pre-orders and / : A —• B is an approximable relation then define a 

function | / | : |A| — | B | by \f\(x) = {Y \ X f Y for some Xex}.D 

Note that the conditions set down in the definition of an approximable relation insure that the 

set on the right actually is in \B\. 

T h e o r e m 4: Let A and B be pre-orders. Iff:A—>B is approximable then \f\ : \A\ -+ |B | is 

continuous. Moreover, the correspondence f »—• |/| is an isomorphism between the posets P O ( A , B) 

and [\A\ -» 

Proof. To see that | / | is continuous, suppose M C \A\ is directed. Then 

U|/|(A/) = U { | / | ( * ) | z G A f } 

= U{{^ \ X fY for some X € x} | x e M} 

= {Y | X f Y for some X € \JM} 

= l/KUM). 
Now, suppose / : \A\ —* \B\ is continuous. Define a relation {/) C A x B by letting X (f) Y if and 

only if Y 6 f{iX). For any x 6 \A\ we have 

|(/)|(a:) = {Y \X{f)Y for some X 6 i } 

= {Y | r G /(iJT) for some XGx} 

= U{/(i*) \xex) 
= /(*) 

since / is continuous. On the other hand, if / C A x B is approximable then X ( | / | ) Y if and only 

if Y G 1/KJX) if and only MX fY. Hence ( | / | ) = / . Now, if / C g for approximable relations / 

and g then 

| / | ( x ) = {Y | X f Y for some X € x } 

C { y | X 3 y for some X € x } . 
= WW 
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On the other hand, suppose / . g : \B\ -> \A\ arc? continuous. If / L g and X (f) Y then Y G 

f([X) C </(jX) so X (r/) Y. Hence ( / ) C (</). We concliide that PO{A,B) = [\A\ -> \B\]. • 

Suppose that g \ A —> B and / : B -> (7 an* approximate relations. Then for any x G 

one can show that ( | / | o \g\)(x) - \f o </|(x). Since |id^|(x) = x for any pre-order A and x G |A| we 

may conclude that the passage A f - > | A | , / ^ | / | i s a functor. In category theoretic terminology, 

Theorem 1 says that this functor is dense and Theorem 4 says that it is full and faithful. We have 

therefore proved the following: 

T h e o r e m 5: The category of pre-orders and approximate relations is equivalent (in the category 

theoretic sense) to the category of algebraic depo's. • 

This equivalence extends to several interesting subcategories as well. If K is a class of pre-orders 

then let Id^ be the category which has as objects algebraic depo's D such that B[D] is isomorphic 

to a pre-order in K and has as arrows continuous functions. If K is the class of upper semi-lattices 

then Id< is the category of algebraic lattices. Let us say that a pre-order A is coherent if whenever 

a finite u C A is pair-wise bounded then it has a least upper bound. If K is the class of coherent 

pre-orders then it is possible to show that Id^ is the category of coherent algebraic depo's. A 

(non-empty) pre-order is bounded complete if each of its finite bounded subsets has a least upper 

bound. Again, if K is the class of bounded complete pre-orders then it is possible to show that 

Id< is the category of bounded complete depo's. Each of these three categories is cartesian closed 

but none of them has a categorical coproduct. Note also that there is an equivalence between the 

category of countable pre-orders and the category of countably based algebraic depo's. 

3 . P L O T K I N O R D E R S . 

In this section we introduce the category of Plotkin orders which will be our primary technical 

tool for studying the profinite domains? Plotkin orders are less abstract than profinite domains 

and in many ways they are easier to work with. For example, Smyth [21] proves many facts about 

strongly algebraic domains by taking a detailed look at the particular class of Plotkin orders which 

"correspond" to such domains. Their use makes some arguments more algebraic and simplifies the 

definitions of some of the operators such as the powerdomains which we discuss later. 

Def init ion: Suppose A is a pre-order and S C A. We say that S is normal in A and write S < A 

if for every X G A the set 5 fl [X is directed. • 

Note, incidently, that if S < A and X G A then X h 0 and 0 C 5, so there is an X1 G S such 

that X h X\ Let u be a subset of A. A set u1 of upper bounds of u is said to be complete if 

whenever X h u, there is an X1 G u1 such that X h X1. We summarize some more of the properties 

of the < relation in the following 

L e m m a 6: Let A, B, C be pre-orders. 

1. Suppose A C B. Then A< B if and only if for every u C A there is a set u1 C A of upper 
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Figure 1: Posets that are not Plotkin orders. 

bounds for u which is complete for u in B. 

2. If A<B<C then A<C. 

3. If AC B C C and A<C then A<B. • 

Defini t ion: A pre-order A is a Plotkin order if for every finite u C A, there is a finite B 3 u such 
that B<A. The category of Plotkin orders with approximable relations will be denoted by P L T . • 

Intuitively, if S < A then S offers a directed approximation to every element of A. Thus one 
might think of S as itself an approximation to A. A pre-order A is a Plotkin order just in case 
it can be built up as a union of finite approximations. Obviously any finite pre-order is a Plotkin 
order. There are a couple of similar conditions on pre-orders which are frequently useful. An upper 
bound X h u of u is minimal if for each F , X h Y h u implies X ~ Y. If every finite subset of 
A has a complete set of minimal upper bounds then we say that A has the (weak) minimal upper 
bounds property (or "property m"). If every finite subset of A has a finite complete set of minimal 
upper bounds then we say that A has the strong minimal upper bounds property (or "property 
M"). Any pre-order which has property M and no ascending chains is a Plotkin order. A proof of 
this uses Konig's lemma and can be found in [21]. Let A be a poset and suppose u C A is finite. 
If a complete set u' of upper bounds of u is finite then it contains a complete set of minimal upper 
bounds. If A is a Plotkin order then there is a finite B < A with u C B. Hence, by Lemma 6, 
u has a finite set of minimal upper bounds in A. It follows, therefore, that a Plotkin order has 
property M. It is not true, however, that every pre-order having property M is a Plotkin order. A 
counter-example is illustrated in Figure la. Figures l b and lc illustrate two other ways in which 
a poset can fail to be a Plotkin order (by failing to have property M). 

It is often easier to work with Plotkin orders which are posets. Little is lost by this restriction, 
since every pre-order is isomorphic (in the category with approximable relations as arrows) to a 
poset A and it is possible to show that A is a Plotkin order if and only if A is a Plotkin poset. 
We might have taken the Plotkin posets as our fundamental notion but this would complicate the 
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definitions of some operators, and in any event would narrow the scope of discussion unnecessarily. 

We will, however, sometimes restrict attention to posets in order to simplify the discussion. 

Suppose A is a pre-order. For each u C A, let 

MUBa(^) = {X G A | X is a minimal upper bound of u}. 

For each S C A, we define subsets C A, n G w, as follows: 

i / ^ + 1 ( 5 ) = { X | X E MVBA{u) for some finite u C U%{S)}, 

U*A(S) = (J "a(S). 

As usual, when A is understood from context we drop the subscripts. 

L e m m a 7: If A is a poset with property m and S C A, £/ien 

= f l { 5 | S C D<A}<A. 

Thus, A is a Plotkin poset if and only if A has property m and for every finite u C A, Zi*(tt) w 

/mtte. 

Proo/. Suppose 5 C B < A . Then clearly 5 = U°{S) C B. So suppose & n (S) C 2? and X G MUB(ti) 

for some finite u C £/ n (S) . Since B < A, there is a y G B such that X • Y and 7 • u. But this 

means Y = X so X e B. Hence & n + 1 ( S ) C B and we conclude that U*(S) C B. To see that 

£T(S)<A, let uCU*(S)be finite. Then u C Un{S) for some n. So, if X • n then X • 7 for some 

7 G MUB(ti) C i / n + 1 ( X ) C U*{S). • 

Def ini t ion: Let A and B be pre-orders. We define the exponential pre-order (BA, \~BA) a s follows: 

1. p G BA if and only if p is a finite non-empty subset of A x B such that for every Z G A, 
the set {(X, y ) G p | 2T X } has a maximum with respect to the ordering on A x B. 

2. p hBA g if and only if for every (X, Y) € q there is a pair {X\ Y') G p such that X \~A X1 

and y h B y . • 

The intuition behind the exponential i3 that each p G BA is a finite piece of an approximable 

relation. The complexity of 1 is due to the fact that p must be "complete" enough to fully specify 

what is happening at the minimal upper bounds of finite subsets of its domain. Note that if p G BA 

then {X | (X, Y) G p} < A. Perhaps it is more intuitive to understand the elements of BA in terms 

of the familiar concept of a step function. If p G BA, define s tep p : A —> B by 

s t e p p ( i ) = m a x { y | Z h X and (X, Y) G p} . 

Then s tep p is a monotone function and for each p, q G B A , s tep p • step g if and only if p hBA q. 

If we "order" the posets with the relation < then we come quite close to getting a depo. The 
relation < is reflexive (on posets), anti-symmetric and transitive. Moreover, if M is a collection 
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of posets which is directed with respect to < then \JM is the least upper bound of M. The only 

reason that the posets with < fail to be a depo is that the posets form a proper class—not a set. 

When we think about P O as ordered by < then we lose anti-symmetry. But this is a small matter, 

the following definitions of monotone and continuous operators still seem quite natural. 

Def ini t ion: Suppose C C P O . Let us say that an operator F : C —• C is monotone if for every 

pair of pre-orders A < jB, we have F(A) < F(B). A monotone operator is continuous if for every 

pre-order A and directed set S of normal substructures of A such that A = (J 5 , we have F(A) = 
\J{F{B) | B e 9 } . • 

It is possible to link continuity in the sense of the above definition to continuity in the categorical 
sense by thinking of the pre-orders as a category with the relations < as arrows. Then the monotone 
operators are functors and the continuous operators are functors which preserve direct limits. Later 
we show how to find fixed points for continuous operators in a manner analogous to that used for 
finding fixed points of continuous functions. But there is another use of the continuity condition 
on operators given by the following 

T h e o r e m 8: If F : P O —• P O is a continuous operator and F(A) is finite whenever A is finite 
then F cuts down to an operator on P L T , i.e. F(A) is a Plotkin order whenever A is a Plotkin 
order. 

Proof. Suppose A is a Plotkin order and u C F(A) is finite. Let 9 = {B< A \ B is finite}. Since A 

is a Plotkin order, this set is directed and I J 9 = A. Hence, by the continuity of F , F(A) = \JM 
where M = {F(B) | B € 9 } . Since u is finite and M is directed, there is a B < A such that 

u C F(B). But F(B) is finite since B is and F(B) < F(A) since F is monotone. Hence F(A) is a 

Plotkin order. • 

The definition and theorem can be extended in a straight-forward way to include multiary op­

erators. If F : P O n —> P O then say that F is monotone (continuous) if it is monotone (continuous) 

in each of its n coordinates. If F : P O n -> P O m by 

F(Ai,...,An) = ( G i ( A i , . . . , A n ) , . . . , G m ( A i , . . . , A n ) ) 

then say that it is monotone (continuous) if G t is monotone (continuous) for each % = 1 , . . . ,rn. It 

is easy to check that composition of operators preserves monotonicity and continuity. 

T h e o r e m 9: The product and coproduct operators are continuous and send finite pre-orders to 
finite pre-orders. Hence they cut down to operators on P L T . • 

The proof of the Theorem is not difficult. Unfortunately, Theorem 8 is not quite general enough 
to apply to the exponential operator. So we treat the exponential separately below. The following 
lemma is technically useful and helps pin down the intuition behind the definition of BA. 

L e m m a 10: If f : A —• B is approximable and M < A, N < B are finite then f fl (M x N) is an 

element of BA. 
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Proof. Let X G A. Since M < A there is an X0 G M such that X h A X 0 H-A M n IX. If 

v = { F G i V | X o / F } then because / is approximable, there is a 7 G 5 such that Y \~B V and 

XQ f Y. Since N < B there is a Yb £ such that Y \~B YQ \~B N N IY But / is approximable so 

X 0 / Y0. • 

T h e o r e m 11: Le£ A and D be pre-orders. Then 

1. If M<A and N <B are finite then NM < BA. 

2. If A and B are Plotkin orders, then DA is a Plotkin order. 

Proof. 1. Let p G DA and set q = {(X, Y) G M X N \ X fp Y} where 

We check the three conditions for approximablility of fp. First, if X G A then there is an (X', y ' ) G p 
such that X X'. Hence X / p y ' For the second condition, suppose X / p YQ and X fPY\. Let 
(X^,y 0 ') 5 ( X i , y / ) G p be such that X h A X £ , X ; and yQ' h B y 0 and y / h B y x . Since p G BA there 
is a pair (X', Y') G p such that X h A X' and X' h A X^, X( and Y1 h B y0', y / . Hence X / p y ' and 
7 ' h B yo ,yi - To get the third condition, note that if X h A X' and X' fp Y' and y ' h B Y then 
X fPY follows immediately from the definition of / p . Since fp is approximable, q G BA by Lemma 
10. It follows directly from the definition of q that p \~BA q- If p t ~ B A r and r G i V M then r C g s o 
q h B A r. Hence NM < BA. 

2. Suppose u is a finite subset of BA. Since A and B are Plotkin orders, there are finite subsets 

M < A and JV < B such that 

{ X | (X, Y)EU for some F E B } C M , and 

{ y | (X, Y)EU for some X G A } C iV. 

By 1., NM < BA. Since -a C NM and i V M is finite the result follows. • 

We now arrive at the central fact about the exponential and product on PLT. 

Def in i t ion: A bicartesian category C is closed if there is a (specified) binary operation BA such 

that for any triple A, 2?, C of C-objects there is an arrow apply : CD X B - > C such that for every 

/ : A x B —> C there is a unique arrow curry(/) : A —• CB which makes the following diagram 

commute. 

fp = {(X', Y') e Ax B \ X'Y-AX and YhBY' for some (X, Y) G p} . 

AX B C 

CBXB 

• 
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T h e o r e m 12: The category PLT is bicartesian closed. 

Proof. We have already shown that P O is bicartesian. By Theorem 9 the product and coproduct 

are endofunctors on PLT. Since 0 and 1 are finite they are Plotkin orders so PLT must be bicarte­

sian. Theorem 11 says that the exponential is defined on PLT. To complete the proof we must 

demonstrate the maps curry and apply. For pre-orders B and C, define apply C (CB X B) X C by 

(p, X) apply Y iff 3(X', Y1) G p. X h A X' and Y1 hjg Y. 

Suppose X G A and p G CB. If / : A x B C, define curry ( / ) by 

X curry(/) p iff V(y, Z) G p. (X, 7 ) / Z. 

One can show that curry and apply are approximate. To see that applyo(curry(/) x id^) = / , take 
(X, Y) G A x B and Z G C such that (X, Y) f Z. Using the fact that C and B are Plotkin orders 
one can show that there is a p G CB with (Y, Z) G p C / . Thus X curry(/) p and (p, Y) apply 
so 

(X, 7 ) apply o (curry(/) x id*) Z. (*) 

On the other hand, suppose equation (*) holds. Then there is a p G CB such that X curry(/) p 
and (p, y ) apply iT. By the definition of apply, there is a pair (Y9,Z9) G p such that F Y\ 
Z* h c ^ and ( X , y ' ) / Z'. Now, X curry(/) p implies ( X , y ' ) / Z1. Hence ( X , y ) / Z. We leave 
the proof that curry(/) is unique to the reader. • 

Corol lary 13: If A and B are Plotkin orders, then \BA\ = [\A\ \B\). 

Proof. By Theorem 4, [|A| -> |B|J = P O ( A , B ) . It is also clear that P O ( A , B ) = P O ( l x A,B) 
and P O ( l , B A ) ^ By Theorem 12, curry : P O ( l x A,B) P O ( l , B A ) is a bijection with 
inverse g apply o (^ x id). The fact that curry and its inverse are monotone follows immediately 
from their definitions so we have the desired isomorphism. • 

The assumption in the corollary that A and B are Plotkin orders is important. The result does 

not hold for all pre-orders. In fact, we mention later a partial converse to the corollary. 

4. P R O F I N I T E D O M A I N S . 

Categorically speaking, a depo is profinite if it is isomorphic to an inverse limit of finite posets 
in the category of depo's with projections as arrows. We explain shortly what a projection is 
but we hope to circumvent the use of this categorical definition in favor of notions which are 
more elementary and intrinsic. Profinite domains with a countable basis and bottom element 
are called strongly algebraic domains. With continuous functions as arrows they form a cartesian 
closed category called S F P which was introduced by Gordon Plotkin [11]. Plotkin needed a class of 
semantic domains closed under the powerdomain operation which he used to provide a denotational 
semantics for a particular multiprocessing language. To the reader familiar with strongly algebraic 
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domains, a countably based profinite domain is a poset which is isomorphic to a Scott compact 

open subset of a strongly algebraic domain. In other words, a poset D is u;-profinite if and only if 

there is a strougly algebraic poset E and a finite set u C R[E] such that E = {x G D | x • y for 

some y G u). Thus, if D is u;-profinitc then the lift 3 D± of D is strongly algebraic. However, it is 

not true, in general, that if D± is strongly algebraic then D is u;-profinitc. 

Before we give a proper definition of what a profinite domain is, we mention tin? notion of a 

projection. Let D and E be depo's. A projection-embedding pair is a pair (p, q) of continuous maps 

p : E —* D and q : D -+ E such that p o q == IDJR> and g o p C id#. The function p is the projection 

and q is the embedding. We abbreviate by writing (p, q) : £ -J—+ D. In this section we look at 

the relationship between normal substructures of pre-orders and pe-pairs from the point of view 

of approximable relations. We thereby generalize the theory exposited in [17] to the category of 

algebraic depo's. These results will be used to derive a universal domain technique for the Plotkin 

orders. Let A and B be pre-orders. Write A 2 B if there is an A1 < B such that A = A'. 

T h e o r e m 14: Let A and B be pre-orders. 

1. Suppose A< B and H is the order relation on B x B. If p = (B x A) FL H and q — (A x 

B) FL h then p, G are approximable relations, p o G = id A and q o p C i d B . In o£/ier words 

( | p | , | g | > : | B | 

£. Conversely, if (|p|, |G|) : |J5| — • |A| for approximable relations p and q then A ? B. In par­
ticular, A = {YeB\Y (qop)Y}<B. 

Proof. The proof of 1 is a straight-forward verification. To prove 2, we begin by showing that 

A' < B. Suppose u C A1 is finite and Z \- u. For each X G u, there is an X' G A such that 

X P X ' G L . Let u = {X1 | X G ti}. Then Z p X1 for each X' G v so there is a Y G A such that 

Z pY \- v. Now, F p o q Y so there is a Z1 £ B such that Y q Z' p Y. But then Z1 pY q Z1 so 

Z1 G A'. I f l G t i then Y h JT so Y G X. Since Z ' P K we get Z ' G O P X and therefore Z' h X. 

Moreover, Z p Y q Z' so Z h Z'. 

Let p' = p N (A' x A) and G' = G D (A x A'). That p' is approximable follows immediately from 

the approximability of p. If X G A and X q' Y, Y' for Y, 7 ' G A' then X q Z for some Z € B such 

that Z H Y, Y'. Since A' < 5 , there is a Z' G A' such that Z H Z' H Y, Y'. Hence X G' Z'. The 

other conditions are easy to check. Now, suppose X G A. Then X p o g X s o X g Y p X f o r some 

Y € B. But then Y G A' so X p' o G' X . Since p' og' C i d A , we conclude that p' oqf = i d A . Suppose 

on the other hand, that Y G A'. Then, by definition, Y G o p Y. Since G' o p' C id^/ we must have 

G; op' = id^/. This proves the desired isomorphism. • 

T h e o r e m 15: Suppose A is a pre-order and f:A-+Aisan approximable relation such that f of = 
/ Q id A- Then the following are equivalent: 

1. tm(|/|) %$ algebraic. 

3 The lift of D is obtained by attaching a new element ± to D which is taken to lie below each of the elements of D. 
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2. For each X, Z E A, if X f Z then X h Y f Y h Z for some Y E A. 

Proof. (1) => (2). Suppose X f Z. Then Z G | / | ( | X ) and since im(\f\) is algebraic there is a finite 

x G im{\f\) such that Z G x C \f\{tX). But x is finite in |A| so x = | F for some F . This F has 

the property in the conclusion of (2). 

(2) => (1). Certainly, if (2) holds then | / | is a deflation. To see that it has an algebraic image, 

note that if X f X then IX = so IX is a finite element of im(\f\). If x G \A\ then 

| / | (x ) = {Z | X f Z some X ex} 

= {Z\X\-YfYhZ some X G x and some Y} 

= \J{IY I Y G x and Y f Y}. 

To see that this set is directed, suppose X f X and Y f Y. If Z f X, Y then Z f Z' h X, Y for 

some Z1. Hence Z h W f W h h X, V for some W. We conclude that tm( | / | ) is algebraic. • 

Def in i t ion: If A is a poset then we denote by N{A) the set of normal substructures of A, ordered 

by set inclusion. • 

P r o p o s i t i o n 16: Let A be a poset. Then N(A) is a dcpo. If A has property m then N(A) has a 

least element called the root of A. It is given by the equation rt(A) = f){B I B <A}. 

Proof. Suppose M C N(A) is directed and X € A. If u C [X F\\JM \s finite then u C B for some 

B e M. Since B < A there is an X1 G B such that X h X1 h u. Hence \JM E N{A). Obviously, 

\JM is the least upper bound of M. Now suppose A has property m. Note that if u C rt(A) is 

finite then the complete set u1 of minimal upper bounds of u is in B for each B<A. Hence vt{A)<A. 

Tt(A) is evidently the least member of N(A). • 

Actually, if A has property m then N(A) is an algebraic lattice. And if A is a Plotkin poset 

then N(A) is a locally finite algebraic lattice; that is, {XQ G B[iV(yl)] | XQ C X) is finite for each 

x G B[N{A)]. 

L e m m a 17: If i : A < B then N{i) : N(A) — N{B) given by iV(i)(A') = {i{X) \ X G A1} is 

continuous. • 

A profinite domain may be defined in the following way. 

Def in i t ion: Let D be a dcpo and let M be the set of continuous functions p : D —• D such that 

p = p o p C i d a n d t'm(p) is finite. Then D is profinite if M is directed and |J M = id^. • 

T h e o r e m 18: A dcpo is profinite if and only if D is algebraic and B[D] is a Plotkin order. 

So the cateogry of profinite domains and continuous functions is equivalent to P L T . Similarly, 

the category of countably based profinite domains is equivalent to the category u;PLT of countable 

Plotkin orders. • 

The proof uses Theorem 14. Smyth [21] shows that an u;-algebraic dcpo D with a least 

element is strongly algebraic if and only if [D -» D] is oalgebraic. This shows that S F P is the 

largest cartesian closed (full) subcategory of the o;-algebraic depo's with bottoms. A proof similar 

to Smyth's can be used to show the following. 
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Figure 2: The truth value dcpo. 

T h e o r e m 19: If D is oj-algebraic and [D —• D] is oj-algebraic then D and [D -+ D] are w-
profinite. • 

A rather obvious consequence of the theorem is that the largest cartesian closed category of 
(bottomless) u;-algebraic depo's has coproducts—a property which S F P does not have. In fact 
there are a great many interesting bicartesian closed proper subcategories of the profinite domains. 
Scott has observed that a cartesian closed category C of depo's with bottom elements induces a 
bicartesian closed category C as follows. The arrows of C' are continuous functions and a dcpo 
D is an object of C if D = D± + • • • + Dn for some n and objects Du •.., Dn of C. That C is 
bicartesian closed is proved by using the natural isomorphisms invloving + , x , —*> which hold for 
depo's and noting that the equation (E + F)D = ED + FD holds when D is a dcpo with a least 
element. The profinite domains do not arise in this way though; it is not hard to see that a sum of 
strongly algebraic domains is just an u>-profinite domain with a basis having a discrete root. 

5. U N I V E R S A L D O M A I N S . 

We now investigate the mathematical problem of the existence of a profinite universal domain. 
In the literature there are three primary examples of universal domains. The simplest is the 
so-called graph model POJ which is the algebraic lattice of subsets of OJ ordered by set inclusion. 
It receives a detailed study in [15] where it is proved that any countably based algebraic lattice 
is a retract of POJ.4 Some domain theorists felt, however, that for applications in denotational 
semantics of programming languages it would be easier to use a class which did not require the 
existence of a largest (top) element. Plotkin [13] showed that the poset T w of functions from OJ 
into the truth value dcpo T (see figure 2) is universal in the sense that every coherent cu-algebraic 
dcpo is a retract of T w . Since is itself algebraic and coherent this provided a universal domain 
for a class of algebraic depo's that included the algebraic lattices but contained also certain desired 
depo's without tops. In [16], [18], and [17] yet a third universal domain U is discussed. Although 
U is harder to understand than POJ or T w it has the advantage of having every bounded complete 
o;-algebraic dcpo as a projection (not just as a retract). There axe instances in which a "retraction 

4 A continuous function r : E —• D is said to be a retraction if there is a continuous function r' : D -+ E (called a 

section) such that r o r' = idi>. If there is a retraction r : E —• D then D is said to be a retract of E. 
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universal" domain docs not have all of the desired properties so that a "projection universal" 

domain is needed. For example Mulmuley [10] requires a projection universal domain to prove 

some of his results on the existence of inclusive predicates (for showing equivalence of semantics). 

Table 1 lists some of the known results on universal domains. Posets in the left column are assumed 

to be countable; their ideal completions are countably based. 

Elementary proofs of the universality of U appear in [16] and in [1]. A less elementary proof 
which uses results from the previous section can be carried out as follows. Let B be the countable 
atomless boolean algebra and suppose A is a countable bounded complete poset. Now, A can be 
embedded into a countable boolean algebra in a way that preserves existing joins in A and such 
that the join of the image of an unbounded subset of A is the top element. But any countable 
boolean algebra is isomorphic to a subalgebra of B. Thus A 2 B~ where £ ~ is B minus its top 
element. We conclude that if A is countable and bounded complete then there is a continuous 
projection p : \B~\ —> |A|. Thus U = \B~ \ is universal for the bounded complete algebraic depo's. 

In what follows we use a technique similar to the one for U to get universal domains for certain 
classes of u>-profinite domains. If A is a poset with property m then we remarked in Lemma 16 
that rt(A) is the least element in N(A). Now, if A and B are Plotkin posets and A 2 B then 
rt(A) = rt(J3) so by Theorem 14 no profinite domain can be a continuous projection of a profinite 
domain that has a different root. Hence there cannot be a projection universal u;-profinite domain. 
We prove the next best thing: for each finite poset A = rt(A) there is a countable Plotkin poset 
VA such that if B is a countable Plotkin poset with rt(£?) = A then B 5 VA. A fairly detailed 
outline of one technique of construction is offered here and we mention a second (closely related)" 
technique. Kamimura and Tang [4] use a different approach to get a retraction universal model 
for the w-profinite domains having bottoms. Their model, like Pto and T", is locally finite but 
is somewhat less natural than either of those models. In the opinion of the author, however, the 
construction described below does the most to reveal the fundamental idea that gives the existence 
result and yields the most detailed description of the model being built. (We are even able to draw 
a partial picture of it!) We begin by stating an interesting structure theorem for Plotkin posets. 

P r o p o s i t i o n 20: If A and B are finite posets such that A < B but A ^ B then there are posets 

A o , . . . , A n such that 

A = AQ < Ai < • • • < A n _ i < A n = B 

and for each k < n, Ak+i A* is a singleton. 

Proof If B - A is a singleton then we are done. Assume that the result holds for any pair A1 < B9 

such that B1 — A' has fewer that n elements. Suppose there are n elements in B — A and let X be 

a maximal clement of B - A, i.e. if Y G B such that XcY then Y G A. Set A' = A U {X}. We 

show that A' < B. Let Z G B and suppose 

u = {Y G A! | Y C Z}. 

We must demonstrate that u has a largest element. If u C A then this follows from the fact that 
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POSETS 
IDEAL 

COMPLETIONS 

UNIVERSAL 

DOMAIN 

Upper Semi- Algebraic 
POJ 

lattices Lattices 
POJ 

Coherent Pre-orders 
Coherent 

Algebraic Depo's 

Bounded Complete Bounded Complete 
U 

Pre-orders Algebraic Depo's 
U 

Plotkin Orders Profinite Depo's ? 

Table 1: Universal domains. 

A < B. if X 6 u then X Q Z so X = Z or Z € A. In either case, Z is the largest element of u. 
Hence A! < B. Since A < B we have A < A1 < B. But B - A1 has n — 1 elements, so by the induction 
hypothesis, there are posets A i , . . . , An such that A < A1 = A\ < • • • < An = B. • 

T h e o r e m 21: (Enumeration) If A is a countable Plotkin poset and B = rt(A), then there is an 
enumeration XQ. X\,... of A such that for each n, B U {Xt- | i < n) < A. 

Proof. Suppose rt(A) = AQ < Ai < • • • is a chain of finite normal substructures of A such that 
A = Un€w -̂ n- Let Z?o < Bi < • • • be a new chain that results from deleting A n + i for each n if it 
equals A n . Using Lemma 20 we may refine this chain to a chain CQ < C\ < • • • such that Co = rt(A) 
and for each n, Cn+1 — Cn is a singleton Z n . Now, let Xq, . . . , Xk-i be an enumeration of Co and 
for each n, let Xn+k = Zn. This enumeration has the desired property. • 

Def in i t ion: Let (A, C) be a poset. For each X 6 A, let X be a constant symbol naming X. Let 

•< be a binary relation symbol which is interpreted by C. A diagram type over A is a set T of 

inequalities and negations of inequalities between constant symbols and a variable v, i.e. formulas 

of the form 

v ^ X , V2<X, X ^ v , X ^ v 

where X 6 A. If A C B and Z G B then the diagram type of Z over A is the set of all such 
equations (using constant symbols for elements of A) that hold when v is given the value Z and •< 
is interpreted as the order relation on B. A diagram type T over A is said to be realized in B by 
Z if T is a subset of the diagram type of Z over A. A diagram type T over a poset A is said to be 
normal if there is a poset B with A< B such that T is realized in B. • 

L e m m a 22: 7/T w a normal type over a finite poset B and B<A then there is a finite poset A\ 
such that A < Ai and V is realized by some Z G A\ such that B U {Z} < A\. 
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Proof. Let E be the partial ordering on A. Since D < A, D inherits this ordering. Suppose B < AQ 
and Z G Ao such that Z realizes T. Let Co be the partial ordering on Ao- Note that the restriction 
of Eo to B is the same as the restriction of E to B. Let Ai = A U {Z} and define a binary relation 
• i on Ai as follows: 

• Z E i z, 
• if X, F G A then X Ei Y iff X E 7 , 

• if X G A then I ^ Z iff there is an X' G 2? such that X E X' Eo 

• if X G A then Z El X iff there is an X' G 2? such that Z Eo X' C X. 

To see that (Ai, E l ) is a poset, note that El is just the transitive closure of (E U Eo) D ( A i X Ai) . 
That Ei is reflexive is immediate from its definition. To see that it is anti-symmetric, suppose 
X El Z El X for some X G A. Then there are X o , X i G B such that X E Xo Eo Z and 
Z Eo Xi E X. But then X E X 0 E Xx E X so X 0 = Xx = X and therefore X G J3. Hence 
X Eo Z Eo X" implies X = Z by the anti-symmetry of Eo- Of course, if X , Y G A and X El Y E l X 
then X = Y since X E ^ E X . 

Now, the fact that A is a subposet of Ai is built into the definition of El- To see that A < Ai, 
suppose u C A is finite and u El Z. By the definition of Ei> for each X G tx there is an X' G J3 
such that X E X' El ^ . So let u' = {X' | X G u}. Then u' E Z. Since i? < A 0 , there is a Z' G B 
such that w' Eo Z' Eo But this implies that u El Z' El Z so we may infer that A < Ai. We 
must show that B U { Z } < Ai . Suppose u C B U {Z} is finite and u E l X for some X G Ai . We 
must find a Y G i? U { Z } such that ^ E i ^ E i X . I f X = Z then the result is immediate—just let 
Y = X . So suppose X G A. If Z tz then we can get the desired Y by using the fact that B < A. 
If Z Eu then there is an X' G B such that Z C0 X1 Q X . Thus 

v = (ti - {Z}) U ( X ' } E X. 

Since B < A and v C J3, there is some Y G J5 such that v C y C X . Since Z Eo != ^ we may 
conclude that Z QXY. Thus ii El Y and we are done. 

Finally, suppose v < X is in T for some X G B. Then Z Eo -X" since Z realizes r in AQ. Hence, 
by definition, Z El X . Suppose v ^ X is in T but Z E l X. Then Z Eo X. But this contradicts 
the assumption that Z realizes T in AQ. S O apparently Z g i X . Similarly, the other formulas in T 
must be realized by Z in Ai . • 

L e m m a 23: Let A be a finite poset. Then there is a finite poset A + such that A < A + and for 
every subspace B < A and normal type T over B, there is a Z G A f such that Z realizes T and 
BU{Z}<A+. 

Proof Let Ti9... , T n be all of the normal types over normal subspaces of A. Set A = Ao and 
suppose A< Afc. Suppose rjfc+i is normal over B<A. Then B< Ajt so by Lemma 22 there is a finite 
poset Ajfc+i such that A^Afc+i and Bu{Z}<Ak+i for some Z that realizes I V n . Set A4" = A n + i . 
If Z realizes Tk+i in A^+i then it realizes it also in A + . Moreover, B U { Z } < Ajfe+i < A + . • 
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T h e o r e m 24: LET V BE A COIMTABLE PLOTKIN POSET. SUPPOSE THAT FOR EVERY FINITE A<V AND NORMAL 

TYPE T OVER A, THERE IS A REALIZATION Z FOR T SUCH THAT AU {Z} <V. IF B IS A COUNTABLE PLOTKIN 

ORDER SUCH THAT rt(J3) ~ VT{V) THEN B * V. 

PROOF. Suppose B is a countable Plotkin order such that rt(Z?) = VT(V). We may assume that B 

is a poset. By the Enumeration Theorem, there is an enumeration . . . of 2? such that for 

each n G w , 

Since Bo = rt(Z?), there is an isomorphism /o : By =• VQ where VQ — rt(V). We construct an 

a;-sequence of isomorphisms fn : An ^ Vn where Vn < V, fn C / n + 1 and Vn C Vn±\. 

Suppose that fn and Vn are given. Now, Bn < Bn<i so the diagram type T of Xn over Bn 

must be normal. Let E be the corresponding type over V n , i.e. E is obtained from T by replacing 

any occurrence of a constant symbol for an X £ An by a constant symbol for fn(X). Then E is a 

normal type over Vn so by the hypothesis on V, there is a realization Yn £ V of E such that 

then fn C / n + 1 and / n + 1 is an isomorphism. If / = \JnEu fn and V = [jnecj Vn then f : B = V1. 

Moreover, since Vn < V for each n, V9 < V. Hence B 2 V. • 

Corol lary 25: Let A be a finite poset such that A = rt(A). There is a Plotkin poset A* such that 

whenever B is a countable Plotkin order with rt(2?) = A, then B H A*. 

Proof. Let A = AQ and for each n, define A n + i = A^. Let A* = Unew ^n- Suppose C <A* is finite. 

Then C <An for some n. If T is a normal type over C then T is realized b y a Z G A^ = A n + i such 

that C U {Z} < A n + 1 . Since A n + i < A*, the hypotheses of Theorem 24 are satisfied and the desired 

conclusion therefore follows. • 

It is possible to get the A + in Lemma 23 by explicit construction. One way to do this is to 

pre-order the set Atp = {T \ T is normal over some finite B < A} by letting T H E just in case there 

are X,Y E A such that v < X is in T, Y < v is in E, and X C Y. If we let A + = Atp then there is 

a normal substructure A' < A + with A = A' such that for every normal type T over a substructure 

B < A9, there is a Z € A + such that B U {Z} < A"1" and Z realizes T. To get a universal domain one 

solves the domain equation A = A+. Although it is somewhat tedious to check all of the details 

of the construction, this more order-theoretic way of doing things helps in picturing the universal 

domain as the limit of the posets A 2 A+ 5 A++ < • • Figure 3 illustrates the first three stages in 

the construction of the universal domain with a trivial root. 

Bn = rt(B) U {X{ \ i <n}<B. 

Vn+i = VNU{Yn}<V. 

If we define fn+1 : A n + i -+ Vn+i by 
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1++ 

Figure 3: Construction of 1*. 

20 



6. J O I N C O M P L E T I O N . 

In this section we present the join completion operator J. For a pre-order A, J {A) = {u C A \ 
u is finite and bounded} and if v G J(A) then 

* I" J ( A ) v iff VX G A. X h A u => X h A v. 

The following proposition lists some of the properties of J. 

T h e o r e m 26: Let A and B be pre-orders. Then 

1. (J(A), *5 bounded complete; 

2. if A is bounded complete then J[A) = A; 

3. J is continuous; 

4. J{AxB)^J{A)xJ{B). 

Proof. (1) Suppose u, v G J(A) and w ^J(A) U I V - Then u U v is bounded in A by anything that 
bounds w.> Hence u U v is in J(A) and w ^j(A) U U V. But any bound for u U v in A is a bound for 
u and a bound for u, so u U v u » v - Thus J{A) has bounded joins. 

(2) Suppose A is bounded complete and define / C A x J(A) by X / u if and only if X h A u. 
To see that / is approximable, just note that X f u if and only if X Y where Y is a least 
upper bound for u. Hence, if X f u, v then X \~A Y where Y is the least upper bpund of u U v so 
X f u\Jv \~j(A) uiv* The other conditions for approximability of / are obviously satisfied. Define 
g C J (A) x A by u g X if and only if u ^j(A) {X} If u g X and u g Y then u g Z where Z is a 
least upper bound for The remaining condition for approximability of g is obviously satisfied. 
Now suppose X f u and u g Z for some X, Z G A and w G *7(A). If Y is a least upper bound 
for u then X 7 Z so X Z. Therefore g o f C i d A . If, on the other hand, X VA Z 
then X / { X } g Z so g o f D i d A . Hence g o / = i d A . Now, suppose u g X and X w for some 
u, ttf G J(A) and X G A. Then u l-jr(x) {-X} X h A Y where 7 is a least upper bound of w. 
Hence { X } ^J(A) {Y} ^~J(A) W S O U )RJ(A) W- Therefore / o g C i d j ^ ) . If, on the other hand, 
U ^J(A) w then u \~J(A) { Y } for a least upper bound Y of w so u g Y and Yfw so fogD id J(A)> 
Hence / o = idjr ( A). 

(3) We must first show that if A < B then J (A) < J{B). Suppose A < B. If u i3 bounded in A 
then it is bounded in B so any element of J {A) is also an element of J{B). Suppose u, v G J'(A) 
and ii ^ J ( A ) v - We claim that u f - j ( B ) v- Suppose X G B and X \~B tt. Since A < B , there is an 
X' G A such that X X' u. But u ]TJ{A) V means X ' h A v. Hence X hjg v and the claim is 
established. Obviously, u ^J(B) V implies u ^J(A) y - Thus (w/T(A), ^J(A)) Q (^(B), ^ J ( B J ) . T O see 
that J{A) < J (B) , suppose u, v G J(A) and tw I ~ " , / ( B ) W >

 v f ° r some it; G J{B). If X h^, it; for some 
X G B then X h ^ u U v s o w U v i s bounded and there is an X' G A such that X' U v. Hence 
uUv G J(A) and we conclude that J{A) is closed under existing joins in J{B). Thus J(A)<J(B). To 
see that J is continuous, suppose B = |J 9 where S is a directed collection of normal substructures 
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of B. If u e J{B) then |J u C A for some A e I so u e J(A). Hence J{B) C LUea AA)- T H E 

opposite inclusion is obvious. 

(4) Left for the reader. • 

By Corollary 25, there is a Plotkin order V = 1* such that whenever A is a Plotkin order with 

a least element, we have A < V. We may extract from Theorem 26 the following 

Corol lary 27: If A is a bounded complete pre-order then A 2 J{V). 

Proof. Since A has a least element we know that A = A' for some A* < J(V). But A1 is bounded 

complete so A1 £ J(A'). Hence A = A < J{V). • 

Now, suppose U and v are finite bounded subsets of V such that tt, v ^ {-J-}- Consider the 

diagram type 
T(v) = { ± # v } U {v C X | X G tt U v}. 

This type is normal over Uy{vr\Jv) so it has a realization Z in V. But u ^j{y) {^}> v ^J{V) {%} a n d 

{ Z } / { ± } . This shows that no pair tt, t; ^ { ± } of bounded subsets of J{V) can be complementary 

to one another. Hence J{V) cannot be isomorphic to the countable atomless boolean algebra with 

its top element removed. We conclude that although | J[V)\ is projection universal for bounded 

complete algebraic depo's, it is not isomorphic to Scott's universal domain U. 

A variant on the join completion operator has been studied independently in [3] for a different 

purpose. The Frink completion ||A|| of a pre-order A is defined there. This operation is related to 

the join completion by the isomorphism ||A|| = | J ( A ) T | were ( - ) T is the operation that adds a new 

greatest element T. 

7. F I X E D P O I N T S O F C O N T I N U O U S O P E R A T O R S . 

In this last section we prove a theorem which gives the conditions under which a domain 

equation involving continuous operators has a profinite solution. Solutions to such equations over 

the profinite domains are more problematic than is the case for strongly algebriac domains or 

bounded complete algebraic domains. In these latter categories, every such equation has a solution. 

This is not true for the profinites because there is no initial object for the category of profinite 

domains and embeddings. That is, there is no profinite D such that for every profinite E, there is 

a (p, q) : E D. The single element poset 1 will not suffice, because it cannot be embedded in 

1-fl for example. The following theorem provides a reasonably simple existence condition. 

T h e o r e m 28: Suppose F : wPLT —• wPLT is continuous. Then F has a fixed point in wPLT 

with root isomorphic to a poset A if and only if A = rt(F(A)). 

Proof. To prove necessity (=>), suppose F{B) = B for a Plotkin order B. Then r t (£ ) ~ rt(F(Z?)). 

But rt(B) < B so F(rt{B)) < F{B) by monotonicity of F. Hence r t (F(r t (£) ) ) = rt{F{B)) and 

therefore rt(JB) £ rt(,F(rt(2?))). If A = rt(Z?) then A £ rt(F(A)) . To prove sufficiency (<=), 

suppose A = it(F(A)). Then by Theorem 25 there is a pre-order A* and a map f : F(A) < A*. 
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Consider the function N(i) o F : N(A*) —• N(A*). By Lemma 17 this function is continuous so by 

the Tarski Fixed Point Theorem it has a least fixed point D. So D = N(i)[F{D)) = F{B). • 

Let P o , P i , . . . be any enumerated collection of profinite domains such that r t (P n ) can be 
uniformly effectively computed from n. Consider the set 9J of expressions built up from the constants 
Pn and a variable X using the operators + , x , — F o r example, the following expressions are 
in 5R: 

[ X - X ] , [X-*Pn], Pn + [X->X]9 X + {PnXPm). 

Let the expressions in di be Godel numbered in some effective manner. We claim that the (Godel 
numbers of) expressions E(X) in 9J such that the equation X = E(X) has a profinite solution is 
recursively enumerable. To see this, let an expression E{X) € 3? be given. Then vt(E(P)) may be 
effectively computed for any finite poset P. If there is a finite P such that P = rt(E(P)) then, 
by Theorem 28 there is a profinite solution for X = E(X). Since P = rt(E(P)) is effectively 
decidable for finite posets P , the claim follows. We now discuss the application of the theorem to 
some specific equations in 5R. 

It is possible to show that for any pair of pre-orders A and B having property m, rt(A X B) = 
rt(A) X rt(£?). In light of Theorem 28 this is noteworty in the following regard. Since the product 
is continuous, the operator F(A) = A x A is continuous. Since F(A) is finite whenever A is, F 
cuts down to a continuous operator on uPLT. Suppose A = F(A) is a Plotkin order and let 
B = rt(A). Now, B is finite so suppose it has m elements. Then rt(F[A)) = rt(A X A) = B X B 
has m 2 elements. Since ft (A) = vt(F(A)) we must have m ~ m2 so apparently m = 1 or m = 0. 
In other words, a non-empty fixed point in c j P L T of the equation A = F(A) must have a least 
element. This result carries over to the u;-profinite domains, because an u;-profinite solution of the 
equation D = D x D gives rise to the solution B[Z?] = B[D] x T$[D] in o ; P L T . A similar situation 
occurs with the diagonal of the coproduct. One can show that if A and B have property m then 
rt(A + B) = vt(A) + rt(i?). Hence the only w-profinite solution to the equation D = D + D is the 
initial object 0. 

The diagonal of the function space operator, F(A) = AA is more problematic, however, because 
it is not true in general that rt(BA) = vt(B)T^A\ Consider, for example, the opposite T0? of 
the truth value dcpo. The monotone functions from T0* into T0? form a poset whose root is not 
isomorphic to the poset [rt(T°P) -> rt(r^)] = [T°P ~> T^]. Hasse diagrams for T°P and [T°P -> T°P] 

appear in Figure 4. The root of [T^ -> T0*] is drawn in black there. 

Suppose A is a non-empty finite poset and A = r t ( A A ) . We claim that A is isomorphic to the 

trivial one element poset. To see this, suppose A is not isomorphic to 0 or 1. We may assume 

that A is a poset; since A is finite, AA is isomorphic to the poset [A A] of monotone functions 

from A into A. Now, A has a set of n minimal elements where n > 1. A constant function 

mapping all of A to a minimal element of A is minimal in [A —• A] so rt([A —• A]) has a least n 

minimal elements. Let / : A —• A be monotone and suppose / is below the identity function on 

A. Suppose X G A and f(Y) = Y for every Y C X. Using the fact that A has no proper normal 
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Figure 4: Root of a function space. 

substructure, one can show that there is a set u C A such that X is a minimal upper bound of u. 
But then u = f(u) C / ( X ) C X so / ( X ) = X. Hence / is the identity function and consequently 
the identity function is minimal in [A —• A], Since none of the constant functions is equal to the 
identity function, this means rt([A —• A]) has at least n + 1 minimal elements. Hence, we cannot 
have A = rt([A —• A]). This shows that a non-empty fixed point of the operator F in u>PLT must 
have a least element. Again, this can be used to show that if D = [D —» D] is w-profinite and 
non-empty then D has a least element. Using Theorem 19 we get the following. 

P r o p o s i t i o n 29: If D = [D —• D] is uj-algebraic (where the possibility that D has no bottom 
element is allowed) then it is strongly algebraic. 

We conclude v/ith a short note on powerdomains. The convex powerdomain was introduced 

by Plotkin [11]. Smyth [20] introduced the upper powerdomain and gave a detailed description of 

Plotkin's powerdomain and his using the finite elements of the domains. The definition below, which 

appears in Scott [19] describes these operators and the lower powerdomain through their action on 

pre-orders. The names for the operators are derived from mathematical considerations [21]. 

Def in i t ion: Let A be a pre-order and suppose M is the set of finite subsets of A. The upper 
powerdomain Q{A) of A is the set M together with a pre-ordering ^Q(A) given by 

u h f l ( A ) v if (VX G u){3Y e v). X \-A Y. 

Dually, the lower powerdomain Z{A) of A is M with the pre-ordering ^z(A) given by 

u hje(A) v if (VY e v){3X e u). x hA Y. 

The convex powerdomain S (A) of A is the intersection of the upper and lower powerdomain pre-

orderings on M , i.e. 

u ^S(A) v if u h f l (x) v and u h^ ( A ) v. 
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If / : A —• D is approximable then the action of <2, £, S on / is given by 

t* <2(/) v if (VX G T I ) ( 3 Y G v). X F Y 

. ti £ ( A ) v if (VY G v)(3X EU). X JY 

u S{A) v if u £ ( / ) v and u £ ( / ) v. • 

It is straight-forward to show that the operators A i—• 5 ( A ) etc. are all continuous. Since each 
of them obviously sends finite posets to finite posets, Theorem 8 shows that they are closed on 
PLT. It is well-known that the convex powerdomain does not preserve the existence of least upper 
bounds (—look in [11] for a counterexample). It is not closed over any of the first three classes 
listed in Table 1. In fact, it is rather difficult to find a cartesian closed subcategory of P O which 
is closed under 5. PLTand some slight variants (such as the Plotkin orders having bottoms) are 
the only known examples. 

The precise relationship between the bounded complete algebraic depo's and the profinites is 

not well understood. Although the join completion operator does provide some connection, it does 

not seem to be useful in resolving some of the open questions. For example, it is not known (at least 

to the author) whether A 2 S(B~) for every countable Plotkin order A with a _L. By Theorem 14, 

this is just asking whether |S|(Zi) is projection universal for the strongly algebraic domains (where 

|5|(jD) = |S (B[D]) | for algebraic depo's D). As an aside: it is possible to show that A 2 S(A) for 

every bounded complete A, but the proof does not carry through for arbitrary Plotkin orders. It 

is also unknown whether | S | ( r w ) is retraction universal for the strongly algebraic domains. 

In [18] and [24] information systems are used to show how to solve recursive domain equations. 
Information systems are so representational that in some cases it is possible to get a solution 
up to equality (rather than just isomorphism). Since the convex powerdomain is not defined on 
information systems, the method does not apply to the solution of equations involving it. However, 
there are some cases in which the category P L T can be used in this way. A short illustration can 
be given as follows. Suppose P is a pre-order none of whose members are pairs and assume J. is an 
element which is not a pair and does not appear in P. We define a pre-order (A, h) which satisfies 
the equation A = (P + S(A))± as follows: 

1. ± G A, 
2. if XEP then (X,0)GA, 

3. if u C A is finite then (u, 1) G A, 

4. if X h ± for every X G A, 

5. (X,0) h (y ,0) if X h p Y, 

6. (u, 1) h (v, 1) if u 1-5(4) v. 
It is easy to show that the poset A defined in this way is a Plotkin order if P is. 
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