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Abstract. We introduce a category of what we call profinite domains. This category of
domains differs from most of the familiar ones in having a categorical coproduct as well
as being cartesian closed. Study of these domains is carried out through the use of an
equivalent category of pre-orders in a manner similar to the informnation systems approach
advocated by Dana Scott and others. A class of universal profinite domains is defined and
used to derive sufficient conditions for the profinite solution of domain cquations involving
continuous operators. Necessary conditions for the existence of such solutions are also given
and used to derive results about solutions of some important equations. A new universal
bounded complete domain is also demonstrated using an operator which has bounded

comnplete domains as its fixed pointa,

1. INTRODUCTION.

For our purposes a domain equation has the form X 2 F(X) where F is an operator on
a class of semantic domains {typically, F is an endofunctor on a category C). The solution of
such equations is a major component of the Scott-Sfrachey approach to programming language
semantics. The reader is refered to [23] or any other reference on denotational semantics for an
explanation of how such equations arise. Techniques for solving them have been worked out for
specific categories (see any of the references by Scoli or Plotkin) and in rather general category-
theoretic settings as well [22]. Computability considerations have been incorporated into many
of these trecatments with considerable success ([24], [5], [6]). All of these approaches use one of
three techniques. The most general is the inverse limnit construction used by Scott [14] to solve the
domain equation D 2 [D — Dj (where [D — D] is the function space of D). The second uses the

Tarski Fixed Point Theorem, which says: if D is a poset with least upper bounds for w-chains and a
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least clement then any function f D-’—v D which preserves such lub’s has a least fixed point. The
third—which is introduced in [9]—uses the Banach Fixed Point Theorem, whick says: a uniformly
contractive function f : X — X on a non-emnpty complete metric space X has a unique fixed point.
These last two approaches employ what is frequently called a *universal” domain to associate with

the operator F' a lub preserving or contractive map.

In this paper we examine the problems involved in obtaining solutions to equations over the
category of profinite domains which will be defined below. This is a rather natural, and in a sense
inevitable, category which contains SFP (see {11} as a full subcategory. It has the unusual prop-
erty of being bicartesian closed, i.e. it is cartesian closed and has a coproduct. Such categories
have a rich type structure and form models of the typed A-calculus [8]. Obtaining profinite so-
- hations for domain equations involving the coproduct can be problematic, however. For example,
the equation D = 1+ [D — D] where 1 is the one point domain has no profinite solution. We
provide a necessary condition which, in effect, reduces the problem of solving such an equation
over the profinite domains to one of getting a finite poset which solves a related equation. This
condition is proved sufficient by a variant of the second method described above. Since no single
(projection) universal domain for the profinites exists we derive an infinite class of domains which
are “sufficiently universal® to apply the method. As a secondary theme we show how to extend the
neighborhood or information systemn approach to one which applies to categories {such as SFP)
which are larger than the one considered in [16] and [18]. We also illustrate a method of solving
domain equations up to equality similar to the one demonstrated in [18] and [24] by using such a

technique to solve a domain equation involving the convex powerdomain.

Section two gives some of the basic definitions and explains the equivalence defined by the
ideal completion functor. In section three the category of Plotkin orders is introduced and shown
to be bicartesian closed. Section four discusses normal substructures and defines the category of
profinite domains. We also state a result which shows that this category is “maximal® with respect
to the conditions of w-algebraicity and cartesian closure. Section five derives universal domains. In
section six an interesting operator which we call the join'completion is discussed. In section seven
the universal domains arc uscd to show cxistence of solutions for 2 significant class of equations.

Section seven also contains discussion of several specific domain equations and their solutions.

2. PRE-ORDERS AND ALGEBRAIC DCPO’S.

A pre-order is a pair {A, -4} where 4 is a binary relation which is reflexive and transitive. It
is intended that the “larger” element is the one on the left side of the turnstile. Note that A = @ is
allowed. To conserve notation we write A = (A, F4) and when A is clear from context the subscript
is dropped. A set S C A is bounded if there is an X € A such that X - Y for every ¥ € §. Such
an X is called a bound for § and we write X + §. Trivially, any X € A is a bound for the empty
set. A subset M C A of a pre-order A is directed if every finite subset of M has a bound in M.
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Note, in particular, that every directed set is non-empty. The following definition appears in [12]
and [19]. 7
Definition: An approzimable relation f: A — B is a subset of A x I which satisfies the following
axioms for any X, X' € Aand Y,Y' € B:

1. for every X € A thereisa Y € Asuch that X fY;

2.ff X fY and X f Y’ then thereisa Z € Bsuchthat X f Z and Z+5Y,Y";

S HXF X' fY'rpgY then X fY. 0O

Let g: A— B and f: B — C be approximable relations. We define a binary relation fo g
on A x C as follows. For each X € Aand Z € C, X (feg) Z if and only if thereisa ¥ € B
such that X g Y and Y f Z. Also, for cach pre-order A define idgq = 4. It is casy to verify that
fog and id4 are approximable relations. With this composition and identity relation the class of
pre-orders and approximable relations form a category which we call PO. We let PO(A, B) be the

set of approximable relations on A x B. The approximable relations are partially ordered by set

theoretic inclusion.

Tor pre-orders A and B define the product pre-order to have the coordinatewise ordering,
(X,Y) Faxp (X', Y") ifand only if X 4 X' and ¥ 5 Y'.

In fact, X is a categorical product for PO. If we take 1 to be the single clement pre-order, then
for each pre-order A there is a unique approximable relation 14 : A — 1. Thus the pre-orders and
approximable relations form a cartesian category with terminal object 1. Morcover, the empty poset
0, is initial in this categoi‘y, t.e. for any object A there is a unique arrow 04 : 0 — A, This 04 is the
“emipty relation” and it is trivially approximable. For pre-orders A and B, the coproduct pre-order
(A+ B, Fa.p) is defined by letting A+ B = (A x {0})U (B x {1}) and defining (X, n) F4.5 (¥, m)
if and only if either :

lLn=m=0and XF4Y,or

2n=m=land XtgVY.

This, unlike the + operators discussed in many references on domain theory such as [23], [2], or
[18} is the categorical coproduct in PO. This shows that PO is bicartesian, 1.e. it has coproduct

and initial object as well as product and terminal object.

A poset (D, C) (or partially ordered set) is a pre-order that is anti-symmetric, i.e. if z C y and
¥ € z then z = y. Using the established convention we write the “larger” element on the right side
of the C symbol. If z C y then it is sometimes convenient to write y Jz. If z C y and z 3 y then
we write z C y; we define J by a similar convention. It is frequently desirable to transfer a property
of pre-orders to a property of posets and conversely. This is usually possible because pre-orders
and posets are closely connected. First of all, every pre-order is isomorphic (in the category with
approximable relations as arrows) to a poset. To see this, let {A, ) be a pre-order. Define an

equivalence relation ~ on A by letting X ~ Y if and only if X Y and ¥ + X. For each X, let
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X={YeA|X~Y}andsct A= {X|X € A}. If we define a binary relation C on A by letting
Y T X if and only if X F Y, then it is easy to check that (A, C) is a poset and the approximable
relation [ : A—A given by X f Y if and only if X F Y is an isomorphism. In addition, posets are
isomorphic in the category with approximnable relations as arrows if and only if they are isomorphic
in the more familiar category with monotone maps as arrows. We can therefore write A = B for

pre-orders A and DB without fear of ambiguity.

A poset (D, T) is said to be a directed complete if every directed subset M C D has a least
upper bound | JM € D. A monotone function f: D — E between dcpo’s D and F is continuous
if for every-directed set M C D, | f(M) = f(YUM). The dcpo’s and continuous functions form a
category; with a slight over-loading of notation we let idp : D — D denote the identity function.
Let [D — E] be the set of continuous functions from D to E. We order [D — E] by setting f S ¢
if for every z € D, f(z) C g(z). It is easy to check that [D — E] is itself a dcpo. This definition
of dcpo’s differs from most other definitions in the literature. We do not require that a depo have
a least element; indeed, we do not re('quire a depo to be non-empty. Much of the usual theory of
dcpo’s goes through for these “bottomless” cases but there are some non-trivial differences. For
example, a continuous function f: D — D on a dcpo need not have a fixed point. (However, if for
some z € D, z C f(z) then there is a least y 2 z such that f(y) = y.)

Let D be a depo. An element z € D is finite (or compact) if whenever z C | [{M for a
directed set M, there is a y € M such that z C y. Let B[D] denote the set of finite elements of
a depo D. We say that D is algebraie if for every z € D, the set M = {20 € B{D| | 9 C z} is
directed and || M = z. In other words, in an algebraic dcpo every element is the limit of its finite
approximations. Let ALG be the category of algebraic depo’s and continuous functions. We now
establish an equivalence between ALG and PO. Suppose (A, F) be a pre-order. An ideal over A
is a directed subset £ € A such that if X - Y and X € z then Y € z. The ideal completion of A
is the partial ordering, {|A|, C), of the ideals of A by set-theoretic inclusion. If X € A then the
principal ideal generated by Xis theset | X = {Y € A| X F Y}. Note that {{X| X € A} = A. We

also have the following:

Theorem 1: If A is a pre-order, then |Al {3 an algebraic depo with BilAll = {{X | X € A}
Moreover, every algebraic depo D is representable in this way because D = |B[D]|.

Proof. Note that if M C |A| is directed then |J M is the least upper bound of M. Hence |A] is a
depo. ¥ X € Aand | X CUM then X € y for some y € M so | X C y. Hence | X is finite (as an
element of |A|). But for any ideal z, the set M = {|X | X € z} is dirccted (because z is directed)
and z = |JM. Hence |A| is an algebraic dcpo and B[[A|] = {{X | X € A} is isomorphic to A.
On the other hand, if (D, C) is an algebraic dcpo then it is easy to verify that f: D — |B[D]| by
f(z) = {zo | z¢ C =} is an isomorphism. D

Intuitively, the passage A — |A| expands A by adding limits for ascending chains. To see
this in a specific example, let <“2 be the set of functions f:n — 2 where n < w. If fin —2
and g:m — 2 then say f C ¢ if and only if n < m and f(k) = g(k) for each k < n. the ideal
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completion [<“2| of this poset is isomorphic to the union <“2 U“2 where “2 is the set of functions

from w into 2,
e <“2 retains the ordering just mentioned and
eif fin—2and g:w — 2 then f T gif and only if f(k) = g(k) for each k < n.

The infinite elements of |<“2{ correspond to those in “2 while the finite elements of | <“2| correspond
to those in <*“2. If a poset A has no infinite chains then surely no new elements are added by the

ideal completion. We make this intuition precise as follows.

Definition: A poset (A, C) is said to have the ascending chain condition (acc) if for every chain
XoE X1 C Xy L .- of clements of A there is an n € w such that for every m > n, X,, = X,,. A
pre-order (A, F) is said to have the ace if A does. O

Proposition 2: If (A, ) has the acc then A = |A|.

Proof. We show below that |A] = [B| if A = B. Since A = A we can therefore assume that A is
a poset. We show that each z € |A| is principal. Assume z € |A| is not principal. Then for each
X € z there is an X' € z such that X C X’. But this means there is a chain Xg o X; C --- of
elements of z. This contradicts the assumption that A has the acc. Hence [4| = {| X | X € A} = A.
a

A rather obvious corollary of the Proposition is that all finite posets are algebraic depo’s. Now,
if D is a poset with the acc and M C D is directed then | JM = z for some £ € M. Hence, if

f: D — E is monotone then f({{M) = f(z) = Y f(M). We conclude that when D has the ace
then [D — E] is just the set of monotone functions from D into E.

There is a sense in which |A| is freely generated by A. Formally, we have the following:

Theorem 3: Let A be a pre-order and suppose p : A — |A| by ¢ : X — | X. Then for every depo D

and monotone function f there is a unique continuous function f such that the Jollowing diagram

commutes.

f

|4

. Moreover, the correspondence f v [ is monotone.

Proof. Let f and D be given as in the theorem. Define f by

flz)=L{/(X) | X € 2},
5



This makes scnse because f is monotone, x is directed and D is complete. To sce that f is

continuous, suppose M is a dirccted subset of |A|. Then
JUM) = U{/(X) | X e UM}
={/(X) | X € z for some z € M}
={U{/(X)| X ez} |z e M}
= Uf(M).
To sce that f is unique, suppose g: |A| — D is continuous and for every X € A, g(1X) = f(X).

Then
g(z) = U{g(lX) | X € z}

=W{/(X) | X ez}
= f(z).
That the function f — f is monotone is easy to check given the above definition of f.o

Definition: If A and B are pre-orders and f: A — B is an approximable relation then define a
function |f]: |A] — |B| by |fl(z) = {¥ | X f Y for some X € z}. O
Note that the conditions set down in the definition of an approximable relation insure that the

set on the right actually ¢s in |BY. .
Theorem 4: Let A and B be pre-orders. If f: A — B s approzimable then |f|:|A| — |B] s

continuous. Moreover, the correspondence f +— |f| is an isomorphism between the posets PO(A, B)
and [|A] - |B]].
Proof. To see that |f| is continuous, suppose M C {A| is directed. Then
UISI(M) = U{|fl(=) | = € M}
=U{{Y | X fY for some X €z} | z € M}
={Y | X fY for some X € UM}
= |7I(UM).
Now, suppose f : |A| — |B| is continuous. Define a relation {f) C A x B by letting X (f} Y if and
only if Y € f{|X). For any z € |A| we have
HHz) ={Y | X {f) Y for some X € z}
={Y | Y € f({X) for some X € z}
= U{/(1X) | X €2}
- /()
since f is contimious. On the other hand, if f C A x B is approximable then X {{|fI} Y if and only

if Y € |f|(1X) if and only if X f Y. Hence {}f]) = f. Now, if f G g for approximable relations f

and ¢ then :
I/1(z) ={Y | X fY for some X € z}

C{Y | X gY for some X € z} .

= |gl(=)
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On the other Land, suppose f.g:|B| - |A] are continnous. If f T g and X (f) ¥ then ¥V €
SUX) Cg(lX) so X {9) Y. Henee (f) C {g}). We ronclude that PO(A. ) = Al — |Bl]. O
Suppose that ¢ : A — B and f: B'— ¢ are approximable relations. Then for any = € [A].
one can show that ([f] e |g])(z) = |f o g|(z). Siuce jid4|(z) = x for any pre-order A and z € |A| we
may couclude that the passage A — |A], f — {[] is a functor. In category theoretic terminology,
Theoremn 1 says that this functor is dense and Theorem 4 says that it is full and faithful. We have

therefore proved the following:

Theorem 5: The cateqory of pre-orders and approzimable relations is equivalent (in the category

theoretic sense) to the category of algebraie depo’s. O

This equivalence extends to several interesting subcategories as well. If K is a class of pre-orders
then lot Idg be the category which has as objects algebraic depo’s D such that B[D] is isomorphic
to a pre-order in K and has as arrows continuous functions. If K is the class of upper semi-lattices
then Idy is the category of algebraic lattices., Let us say that a pre-order A is coherent if whenever
a finite u C A is pair-wise bounded then it has a least upper bound. If K is the class of coherent
pre-orders then it is possible to show that Idx is the category of coherent algebraic dcpo’s. A
{non-empty)} pre-order is bounded complete if each of its finite bounded subsets has a least upper
bound. Again, if K is the class of bounded complete pre-orders then it is possible to show that
Id is the category of bounded complete depo’s. Each of these three categories is cartesian closed
but none of them has a categorical coproduct. Note also that there is an equivalence between the

category of countable pre-orders and the category of countably based algebraic depo’s.

3. PLOTKIN ORDERS.

In this section we introduce the category of Plotkin orders which will be our primary technical
tool for studying the profinite domains. Plotkin orders are less abstract than profinite domains
and in many ways they are easier to work with. For example, Smyth [21] proves many facts about
strongly algebraic domains by taking a detailed look at the particular class of Plotkin orders which
“correspond” to such doemains. Their use makes some arguments more algebraic and simplifies the

definitions of some of the operators such as the powerdomains which we discuss later.

Definition: Suppose A is a pre-order and § C A. We say that 5 is normalin A and write S 9 A
if for every X € A the set §N | X is directed. O

Note, incidently, that if $< A and X € A then X + @ and @ C S, so there is an X' € § such
that X - X' Let u be a subset of A. A set u' of upper bounds of u is said to be complete if
whenever X F u, there is an X' € ' such that X - X'. We summarize some more of the properties

of the < relation in the following
Lemma 6: Let A, B, C be pre-orders.
1. Suppose A C B. Then A< B if and only if for every u C A there 1s a set w' C A of upper
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Figure 1: Posets that are not Plotkin orders.

bounds for u which is complete for u in B.
2 IfAdBaC then A«C.
3. IfACBCC and AaC then A<B. O

Definition: A pre-order A is a Plotkin order if for every finite w C A, there is a finite B 2 » such
that B<aA. The category of Plotkin orders with approximable relations will be denoted by PLT. [J

Intuitively, if S < A then 5 offers a directed approximation to every element of A. Thus one
might think of § as itself an approximation to A. A pre-order A is a Plotkin order just in case
it can be built up as a union of finite approximations. Obviously any finite pre-order is a Plotkin
order. There are a couple of similar conditions on pre-orders which are frequently useful. An upper
bound X F u of u is minimal if for each ¥, X - Y + u implies X ~ Y. If every finite subset of
A has a complete set of minimal upper bounds then we say that A has the {weak) minimal upper
bounds property (or “property m”). If every finite subset of A has a finite complete set of minimal
upper bounds then we say that A has the strong minimal upper bounds property (or “property
M”). Any pre-order which has property M and no ascending chains is a Plotkin order. A proof of
this uses Konig’s lemma and can be found in [21]. Let A be a poset and suppose z C A is finite.
If & complete set %' of upper bounds of u is finite then it contains a complete set of minimal upper
bounds. If 4 iz a Plotkin order then there is a finite B 4 A with u C B. Hence, by Lemma 6,
u has a finite set of minimal upper bounds in A. It follows, therefore, that a Plotkin order has
property M. It is not true, however, that every pre-order having property M is a Plotkin order. A
counter-example is illustrated in Figure la. Figures 1b and lc illustrate two other ways in which
a poset can fail to be a Plotkin order (by failing to have property M).

1t is often easier to work with Plotkin orders which are posets. Little is lost by this restriction,
since every pre-order is isomorphic (in the category with approximable relations as arrows) to a
poset A and it is possible to show that A is a Plotkin order if and only if A is a Plotkin poset.

We might have taken the Plotkin posets as our fundamental notion but this would complicate the
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definitions of some operators, and in any event would narrow the scope of discussion unnecessarily.

We will, however, sometimes restrict attention to posets in order to simplify the discussion.

Suppose A is a pre-order. For each u C A, let
MUB4(u) = {X € A | X is a minimal upper bound of u}.

For each § C A, we define subsets U%(S) € A4, n € w, as follows:

uy(sy=s,
UT‘l(S) = {X | X € MUB4(u) for some finite © C U}(5)},
ua(s) = U ui(s).

ncw
As usual, when A is understood from context we drop the subscripts.

Lemma T: If A ts a poset with property m and § C A, then
U(S)={B|SC B<A}< A

Thus, A is e Plotkin poset if and only tf A has property m and for every finite v C A, U™(u) s
[finite.

Proof. Suppose § € B<A. Then clearly § = U%(S) € B. So suppose U™{S) C B and X € MUB(u)
for some finite v C U"(S). Since B< A, therc isa ¥V € B such that X JY and ¥ 3 u. But this
means ¥ = X so X € B. Hence U***(§) C B and we conciude that §*(§) € B. To sce that
U*(S) <A, let w C U*(S) be finite. Then u C UY™(S) for some n. So, if X J u then X J Y for some
Y e MUB(u) C U H{X) Cu*(S). 0

Definition: Let A and B be pre-orders. We define the ezponential pre-order (B4, - ga) as follows:

1. p € B4 if and only if p is a finite non-empty subset of A x B such that for every Z € A,
the set {(X,Y) €p|Z 4 X} has a maximum with respect to the ordering on 4 x B,

2. p Fpa g if and only if for every (X,Y) € g there is a pair (X', Y’) € p such that X 4 X'
and ¥' kg Y. O -

The intuition behind the exponential is that each p € B4 is a finite piece of an approximable
relation. The complexity of 1 is due to the fact that p must be “complete” enough tu fully specify
what is happening at the minimal upper bounds of finite subsets of its domain. Note that if p € B4
then {X | {X,Y) € p} < A. Perhaps it is more intuitive to understand the elements of B4 in terms
of the familiar concept of a step function. If p € B4, define step,, : A—B by

stepp(Z) =max{Y | Z+ X and (X,Y) € p}.

Then step,, is a monotone function and for each p,q € B4, step, J step, if and only if pFpa ¢.

If we “order” the posets with the relation < then we come quite close to getting a depo. The

relation < is reflexive (on posets), anti-symmetric and transitive. Morcover, if M is a collection
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of poscts which is directed with respect to < then {J M is the least upper bound of M. The only
reason that the posets with < fail to be a dcpo is that the posets formn a proper class—not a set.
When we think about PO as ordered by < then we lose anti-symmetry. But this is a small matter,

the following definitions of monotone and continuous operators still seem quite natural.

Definition: Suppose C C PO. Let us say that an operator F : C — C is monotone if for every
pair of pre-orders A < 3, we have F(A) <« F(B). A monotone operator is continuous if for every
pre-order A and dirccted set & of normal substructures of A such that A = |J S, we have F(A) =
U{F(B)|Beg}. D

It is possible to link continuity in the sense of the above definition to continuity in the categorical
sense by thinking of the pre-orders as a category with the relations 4 as arrows. Then the monotone
operators are functors and the continuous operators are functors which preserve direct limits. Later
we show how to find fixed points for continuous operators in a manner analogous to that used for
finding fixed points of continuous functions. But there is another use of the continuity condition

on operators given by the following

Theorem 8: If F: PO — PO is a continuous operator and F(A) is finite whenever A is finite
then F cuts down to an operator on PLT, i.e. F(A) is a Plotkin order whenever A is a Plotkin

order.

Proof. Suppose Aisa Plotkin order and © C F(A) is finite. Let 3 = {B <A | B is finite}. Since 4
is a Plotkin order, this set is directed and [J 2 = A. Hence, by the continuity of F, FF(A) = UM
where M = {F(B) | B € 9}. Since u is finite and M is directed, there is a B 9 4 such that
v C F(B). But F(B) is finite since B is and F(B) <« F(A) since F is monotone. Hence F(A4) is a
Plotkin order. O

The definition and theorem can be extended in a straight-forward way to include multiary op-
erators. If F : PO" — PO then say that F is monotone (continuous) if it is monotone (continuous)
in each of its n coordinates. If F : PO™ — PO™ by

F(A1,...,A) = (Gi(A1, .-, An)s -1 Gra(AL, ..., Ap))

then say that it is monotone {continuous) if G; is monotone (continuous) for each i = 1,...,m. It

is casy to check that composition of operators preserves monotonicity and continuity.

Theorem 9: The product and coproduct operators are continuous and send finite pre-orders lo
finite pre-orders. Hence they cut down to operators on PLT. O

The proof of the Theorem is not difficult. Unfortunately, Theorem 8 is not quite general enough
to apply to the exponential operator. So we treat the exponential separately below. The following
lemma is technically useful and helps pin down the intuition behind the definition of B4.

Lemma 10: If f: A — B is approzimable and M 9« A, N < B ‘are finite then f N {M X N) is an
element of BA.
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Proof. Let X € A. Since M < A there is an Xg € M such that X F4 Xo b4 M N [ X. If
v={Y € N| Xp fY} then because f is approximable, there is a ¥ € B such that ¥ Fp v and
XofY. Since NaD thereisa ¥Yp € N such that Y Fp Yy Fp NN |Y DBut f is approximable so
XofY O :

Theorem 11: Let A und B be pre-orders. Then
1. If M 4 A and N < B are finite then NM q BA,
2. If A and B are Plotkin orders, then B* is a Plotkin order.

Proof. 1. Let p€ BA andset g={(X,Y) € M x N | X f, Y} where
L={(XYYeAXxB| X' Fs X and Y g Y' for some (X,Y) € p}.

We check the three conditions for approximablility of fp. First, if X € A then there is an (X', Y)ep
such that X -4 X'. Hence X f, Y’ For the second condition, suppose X f, ¥g and X f, ¥1. Let
(X4, Y3), (X}, Y!) € p be such that X 4 X}, X! and YJ Fp Yy and Y{ g ¥1. Since p € B4 there
is a pair (X', Y') € p such that X F4 X' and X' b4 X}, X| and Y' -p ¥{,Y{. Hence X f, Y' and
Y' kg Y5,Y1. To get the third condition, note that if X k4 X' and X' f, Y/ and Y' k5 ¥ then
X fp Y follows immediately from the definition of f,. Since f; is approximable, g € B4 by Lemma
10. It follows directly from the definition of ¢ that plya ¢. f ppa 7 and r € N then r € ¢ s0
q Fga r. Hence NM o B4,

2. Suppose v is a finite subset of B4, Since A and B are Plotkin orders, there are finite subsets
M < A and N < B such that

{X | (X,Y) € ufor some Y € B} C M, and
{Y | (X,Y) € ufor some X € A} C N.

By 1., NM o BA. Since u € NM and NM is finite the result follows. O
We now arrive at the central fact about the exponential and product on PLT.

Definition: A bicartesian category C is closed if there is a (specified) binary operation B4 such
that for any triple 4, B, C of C-objects there is an arrow apply : CB x B -» C such that for every
f 1 Ax B — C there is a unique arrow curry(f) : A — CP which makes the following diagram

commute.
Ax B C
curry(f) x idg
apply
CEBx B
8}
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Theorem 12: The category PLT is bicartesian closed.

Proof. We have alrcady shown that PO is bicartesian. By Theorem 9 the product and coproduct
are endofunctors on PLT. Since 0 and 1 are finite they are Plotkin orders so PLT must be bicarte-
sian. Theorem 11 says that the exponential is defined on PLT. To complete the proof we must

demonstrate the maps curry and apply. For pre-orders B and C, define apply C (C? x B) x C by
(p,X)apply Y if 3(X",Y')€p. X Fa X' and V' 5 V.
Suppose X € Aand pe CB. If f: A x B — C, define curry(f) by
Xecurry(f) pifV(Y,Z2) €p. (X,Y) f Z.

One can show that curry and apply are approximable. To see that applyc(curry(f) xidg) = f, take
(X,Y}€ Ax B and Z € C such that (X,Y) f Z. Using the fact that C and B are Plotkin orders
one can show that thereis a p € C® with (Y, 2) €p C f. Thus X curry(f) p and (p,Y) apply Z,
80

(X,Y) apply o (curry(f) x idg) 2. {*)

On the other hand, suppose equation (*) holds. Then there is a p € C? such that X curry(f) p
and (p,Y) apply Z. By the definition of apply, there is a pair (Y', Z') € p such that ¥ Fp Y/,
Z' ko Z and (X, Y') f Z'. Now, X curry(f) p implies (X,Y") f Z'. Hence (X,Y) f Z. We leave
the proof that curry(f) is unique to the reader. O

Corollary 13: If A and B are Plotkin orders, then |B4| 2 [|A] — |BI].

Proof. By Theorem 4, [|A| — |B|] = PO(A, B). It is also clear that PO(4, B) = PO(1 x A, B)
and PO(1, BA) = |B4|. By Theorem 12, curry : PO(l x A, B) — PO(1, B4) is a bijection with
inverse g — apply o (g x id). The fact that curry and its inverse are monotone follows immediétely

from their definitions so we have the desired isomorphism. O

The assumption in the corollary that A and B are Plotkin orders is important. The result does

not hold for all pre-orders. In fact, we mention later a partial converse to the corollary.

4. PROFINITE DOMAINS.

Categorically speaking, a dcpo is profinite if it is isomorphic to an inverse limit of finite posets
in the category of dcpo’s with projections as arrows. We explain shortly what a projection is
but we hope to circumvent the use of this categorical definition in favor of notions which are
more elementary and intrinsic. Profinite domains with a countable basis and bottom element
are called strongly elgebraic domains. With continuous functions as arrows they form a cartesian
closed category called SFP which was introduced by Gordon Plotkin [11]. Plotkin needed a class of
semantic domains closcd under the powerdomain operation which he used to provide a denotational

semantics for a particular multiprocessing language. To the reader familiar with strongly algebraic
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domains. a conntably based profinite domain is a poset which is isomorphic to a Seott compact
open subset of a strongly algebraie domain. In other words, a poset D is w-profinite if and only if
there is a strongly algebraic poset E and a finite set w € B[E] such that E = {x € D |z Jy for
some ¥ € vy, Thus, if D is w-profinite then the Lift? D, of D is strongly algebraic. However. it is

not true, in general, that if D) is strongly algebraic then D is w-profinite.

Before we give a proper definition of what a profinite domain is, we mention the notion of a
projection. Let D and E be depo’s. A projection-embedding pair is a pair (p, ¢) of continuous maps
p:E — Dand g: D~ Esuch that pog =idp and gop C idg. The function p is the projection
and q is the embedding. We abbreviate by writing (p,q) : E 2L D. In this section we look at
the relationship between normal substructures of pre-orders and pe-pairs from the point of view
of approximable relations. We thereby gencralize the theory exposited in [17] to the category of
algebraic depo’s. These results will be used to derive a universal domain technique for the Plotkin
orders. Let A and B be pre-orders. Write A ¢ B if there is an A’ @ B such that A = A",

Theorem 14: Let A and B be pre-orders.

1. Suppose A4 B and &~ is the order relation on Bx B. If p = (Bx A)NF and ¢ = (A x
B} NI~ then p,q are approzimable relations, po g = idy and gop C idg. In other words

{el. lql) | B} = |A].
2. Conversely, if (pl,(q|) : |B| £ |A| for approxzimable relations p and g then A S B. In par-
ticular, A= {Y € B|Y (gop) Y}« B.

Proof. The proof of 1 is a straight-forward verification. To prove 2, we begin by showing that
A' 9« B. Suppose u C A’ is finite and Z + u. For each X € u, there is an X' € A such that
XpX' qgX. Letv={X'|Xecu}. Then Z p X' for each X' € v so there is a ¥ € A such that
ZpY v Now,Y pogV sothereisaZ' € Bsuchthat Y ¢ Z'pY. But then Z' pY ¢ 2’ so
Z’eA fXcuthenYFX's0Y gX. Since Z/ pY we get Z' gop X and therefore Z' - X.
Moreover, ZpY q 2Z's0 Z+ Z'.

Let p' = pn (A’ x A} and ¢’ = ¢N (A x A'). That p' is approximable follows immediately from
the approximability of p. H X € Aand X ¢’ Y,Y' for Y, ¥' € A’ then X q Z for some Z € B such
that Z - Y,Y’. Since A'a B, thereis a Z' € A' such that Z + Z' - Y,Y'. Hence X ¢ Z'. The
other conditions are easy to check. Now, suppose X € A. Then X pog X so X q Y p X for some
Y €B. ButthenY € A's0 X p' o ¢’ X. Since p'o¢’ Cidy4, we conclude that p'c¢' = id4. Suppose
on the other hand, that ¥ € A". Then, by definition, Y gop Y. Since ¢’ o p’ C id 4 we must have
q' o p' = id 4. This proves the desired isomorphism. O

Theorem 15: Suppose A is a pre-order and f : A — A is an approzimable relation such that fof =
f €idy4. Then the following are equivalent:

1. sm(|f]) is algebraic.

3The kft of D is obtained by attaching a new element | to D which is taken to lie below each of the eleents of D.
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2 Foreach X, ZcA X [Zthen XY fYHFZ for someY € A,

Proof. (1) = (2). Suppose X f Z. Then Z € |f]|(1X) and since #m(|f|) is algebraic there is a finite
z € im(|f]) such that Z € = C |f{(1X). But z is finite in |A| so z = Y for some Y. This ¥ has
the property in the conclusion of (2).

(2) = (1). Certainly, if (2) holds then |f] is a deflation. To see that it has an algebraic image,
note that if X f X then (X =|f1(1X) so |X is a finite element of #m(|f|). If z € |A| then

Ifl(z) ={Z | X [ Z some X € z}
={Z|X+Y fY+ Zsome X €z and someY}
=U{lY|Ye€zand?Y fY}

To see that this set is directed, suppose X f X and Y fY. If Z f X,Y then Z f Z'+ X, Y for
some Z'. Hence ZVW fW I Z' - X,Y for some W. We conclude that im(]|f|) is algebraic. O

Definition: If A is a poset then we denote by IV(A) the set of normal substructures of A, ordered
by set inclusion. O

Proposition 16: Let A be a poset. Then N(A) is a depo. If A has property m then N(A) has a
least element called the toot of A. It is given by the equation ri(A) = N{B| B < A}.

Proof. Suppose M C N(A) is directed and X € A, If v C [ X NUM is finite then u € B for some
B e M. Since B 9 A there is an X' € B such that X - X' - . Hence UM € N(A). Obviously,
U M is the least upper bound of M. Now suppose A has property m. Note that if u C rt(A) is
finite then the complete set %' of minimal upper bounds of u is in B for each B<A. Hence rt{A)<A.
rt(4) is evidently the least member of N(4). B

Actually, if A has property m then N(A) is an algebraic lattice. And if A is a Plotkin poset
then N(A) is a locally finite algebraic lattice; that is, {zo € B[N (A4)] {20 C z} is finite for each
z € B[N(A)]. -
Lemma 17: If i : A ¢ B then N{i) : N(A) — N{(B) given by N(G)(4) = {{(X) | X € A’} is
continuous. 0 :

A profinite domain may be defined in the following way.

Definition: Let D be a depo and let M be the set of continuous functions p: D — D such that
p=popLidp and #m(p) is finite. Then D is profinite if M is directed and | {M =idp. O

Theorem 18: A dcpo D is profinite if and only if D is algebraic and B([D] is a Plotkin order.
So the cateogry of profinite domains and continuous functions is equivalent to PLT. Simalarly,

the category of countably based profinite domains is equivalent to the category wPLT of countable
Plotkin orders. [

The proof uses Theorem 14. Smyth [21] shows that an w-algebraic dcpo D with a least
element is strongly algebraic if and only if [D — D} is w-algebraic. This shows that SFP is the
largest cartesian closed (full) subcategory of the w-algebraic depo’s with bottoms. A proof similar

to Smyth’s can be used to show the following.
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Figure 2: The truth value depo.

Theorem 19: If D is w-algebraic and [D — D] is w-algebraic then D and [D — D] are w-
profinite. O

A rather obvious consequence of the thecorem is that the largest cartesian closed category of
(bottomless) w-algebraic dcpo’s has coproducts—a property which SFP does not have. In fact
there are a great many interesting bicartesian closed proper subcategories of the profinite domains.
Scott has observed that a cartesian closed category C of dcpo’s with bottom elements induces a
bicartesian closed category C' as follows. The arrows of C' arc continuous functions and a depo
D is an object of C' if D = D) + -+ + D, for some n and objects Dy,..., D, of C. That C' is
bicartesian closed is proved by using the natural isomorphisms invloving +, X, — which hold for
dcpo’s and noting that the equation (E + F)P = EP + FP holds when D is a dcpo with a least
element. The profinite domains do not arise in this way though; it is not hard to see that a sum of

strongly algcbraic domains is just an w-profinite domain with a basis having a discrete root.

5. UNIVERSAL DOMAINS.

We now investigate the mathematical problem of the existence of a profinite universal domain.
In the literature there are three primary examples of universal domains. The simplest is the
so-called graph model Pw which is the algebraic lattice of subsets of w ordered by set inclusion.
It receives a detailed study in [15] where it is proved that any countably based algebraic lattice
is a retract of Pw.* Some domain theorists felt, however, that for applications in denotational
semantics of programming languages it would be easier to use a class which did not require the
existence of a largest (top) clement. Plotkin [13] showed that the poset T% of functions from w
into the truth value dcpo T' (see figure 2) is universal in the sense that every coherent w-algebraic
dcpo is a retract of T%. Since T is itself algebraic and coherent this provided a universal domain
for a class of algebraic depo’s that included the algebraic lattices but contained also certain desired
dcpo’s without tops. In [16}, (18], and [17] yet a third universal domain Y is discussed. Although
U is harder to understand than Pw or T% it has the advantage of having every bounded complete

w-algebraic dcpo as a projection (not just as a retract). There are instances in which a “retraction

*A continuous function r: E — D is said to be a retraction if there is a continuous function v’ : D — E {called a

3ection) such that ror’ = idp. If there is a retraction r : E — D then D is said to be a retract of E.
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universal” domain does not have all of the desired properties so that a “projcction universal”
domain is needed. For example Mulmuley [10] requires a projection universal domain to prove
some of his results on the existence of inclusive predicates (for showing cquivalence of semantics).
Table 1 lists some of the known results on universal domains. Poscts in the left column are assumed

to be countable; their ideal completions are countably based.

Elementary proofs of the universality of U appear in [16] and in [1]. A less elementary proof
which uses results from the previous section can be carried out as follows. Let B be the countable
atomless boolean algebra and suppose A is a countable bounded comblete poset. Now, A can be
embedded into a countable boolean algebra in a way that preserves existing joins in A and such
that the join of the image of an unbounded subset of A is the top element. But any countable
boolean algebra is isomorphic to a subalgebra of B. Thus A ¢ B~ where B~ is B minus its top
element. We conclude that if A is countable and bounded complete then there is a continuous
projection p : |B~| — |A|. Thus § = |B~| is universal for the bounded complete algebraic dcpo’s.

In what follows we use a technique similar to the one for U to get universal domains for certain
classes of w-profinite domains. If A is a poset with property m then we remarked in Lemma 16
that rt(A) is the least element in N{A). Now, if A and B are Plotkin posets and A ¢ B then
rt(A) = rt(B) so by Theorem 14 no profinite domain can be a continuous projection of a profinite
domain that has a different root. Hence there cannot be a projection universal w-profinite domain.
We prove the next best thing: for each finite poset A = rt{A) there is a countable Plotkin poset
V4 such that if B is a countable Plotkin poset with rt(B) = A then B 2 V4. A fairly detailed
outline of one technique of construction is offered here and we mention a second (closely related)
technique. Kamimura and Tang [4] use a different approach to get a retraction universal model
for the w-profinite domains having bottoms. Their model, like Pw and T*, is locally finite but
is somewhat less natural than either of those models. In the opinion of the author, however, the
construction described below does the most to reveal the fundamental idea that gives the existence
result and yields the most detailed description of the model being built. {We are even able to draw
a partial picture of it!) We begin by stating an interesting structure theorem for Plotkin posets.

Proposition 20: If A and B are finite posets such that A< B but A # B then there are posets
Ag,..., Ay such that .
A= ApaA14---9A, 19A, =B

and for each k < n, Ag.1 ~ Ax 18 a singleton.

Proof. If B — A is a singleton then we are done. Assume that the result holds for any pair A'a B
such that B' — A' has fewer that n elements. Suppose there are n elements in B — A4 and let X be
a maximal clement of B — A, f.e. if Y € B such that XCY then Y € A. Set A' = AU {X}. We
show that A' « B. Let Z € B and suppose

u={Yed|YC2Z}L
We must demonstrate that « has a largest element. If v C A then this follows from the fact that
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POSETS IDEAL UNIVERSAL
COMPLETIONS DOMAIN
Upper Semi- ‘ Algebraic P
lattices Lattices
Coh (P 4 Coherent o
cherent Pre-orders Algebraic Depo’s .
Bounded Complete Bounded Complete y
Pre-orders Algebraic Depo's
Plotkin Orders Profinite Dcpo’s ?

Table 1: Universal domains.

A<B if X €uthen X C Zso X = 2Z or Z € A. In either case, Z is the largest element of u.
Hence A’ < B. Since A< B we have A<A' o B. But B — A' has n — 1 elements, so by the induction
hypothesis, there are posets A),..., A, such that AdA'= A, <.+ <A, = B. 0O

Theorem 21: {Enumeration) If A is a countable Plotkin poset and B = rt(A), then there is an
enumeration Xo, X1,... of A such that for eachn, BU{X;|{ <n}<A.

Proof. Suppose rt{A) = Ap < Ay <--- is a chain of finite normal substructures of A such that
A = Upco An. Let By < By <--- be a new chain that results from deleting An..; for each n if it
equals A,. Using Lemma 20 we may refine this chain to a chain Cy<Cy<--- such that Cy = rt(A4)
and for each n, Cpy — Cy is a singleton Z,. Now, let Xj,..., X% .1 be an enumeration of Cy and

for each n, let X, .« = Z,. This enumeration has the desired property. O

Definition: Let (A, C) be a poset. For each X € A, let X be a constant symbol naming X. Let
= be a binary relation symbol which is interpreted by T. A diagram type over A iz a set T' of
inequalities and negations of inequalities between constant symbols and a variable v, i.e. formulas
of the form

v=X, v £ X, X <v, XZAv

where X € A, f A C B and Z € B then the diagram type of Z over A is the set of all such
equations (using constant symbols for elements of A) that hold when v is given the value Z and <
is interpreted as the order relation on B. A diagram type I' over A is said to be realized in B by
Z if T is a subset of the diagram type of Z over A. A diagram type T over a poset A is said to be
normal if there is a poset B with A < B such that T is realized in B. O

Lemma 22: IfT' is a normal type over a finite poset B and B 4 A then there is a finite poset Ay
such that A< Ay and T is realized by some Z € Ay such that BU {Z} < A;.
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_ Proof. Let . be the partial ordering on A. Since B 9 A, B inhcrits this ordering. Suppose B < 4
and Z € Ap such that Z realizes I'. Let Ty be the partial ordering on Ag. Note that the restriction
of Cg to B is the same as the restriction of C to B. Let A; = AU{Z} and define a binary relation
E1 on A; as follows:

o 2L, 2,

eif X,Y € Athen XC,Yif XC Y,

o if X € A then X C; Z iff there is an X' € I such that X C X' Ty Z,
o if X & Athen ZC; X iff thereisan X' € Bsuch that ZCo X' C X.

To see that (A, C;) is a poset, note that T, is just the transitive closure of (C UCg) N (4 x A;).
That C; is reflexive is immediate from its definition. To see that it is anti-symmetric, suppose
X 1 Z Ty X for some X € A, Then there are X3, X; € B such that X € Xy Cg Z and
ZCop X1 C X Butthen XCE X3 C X; C X so Xg = X; = X and therefore X € B. Hence
X Cp 2 Co X implies X = Z by the anti-symmetry of Cy. Of course, if X, Y € Aand X C; Y C; X
then X =Y since XCYC X.

Now, the fact that A is a subposet of A; is built into the definition of C;. To see that A< A4,
suppose u C A is finite and u C; Z. By the definition of Cy, for each X € u there is an X' € B
such that X C X' Cy Z. Solet u' = {X' | X € u}. Then v' C Z. Since B<a Ag, thereisa Z' € B
such that v’ Cg 2’ Cy Z. But this implies that v« C; Z' T Z so we may infer that A 1 4;. We
must show that B U {Z} 9 A;. Suppose u C BU{Z} is finite and u C; X for some X € A;. We
must indaY € BU{Z}suchthat u C; ¥ T; X. If X = Z then the result is immediate—just let
Y = X. So suppose X € A. If Z & u then we can get the desired Y by using the fact that B< A,
If Z € u theo there is an X' € B such that Z Cg X' C X. Thus

. v=(u—-{Z})U{X}CX.

Since B9 A and v € B, there is some Y € B such that v C Y C X. Since Z Cg X' C Y we may
conclude that Z C; ¥. Thus v C; ¥ and we are done.

Finally, suppose v < X isin T for some X € B. Then Z Cg X since Z realizes T' in Ag. Hence,
by definition, Z ©; X. Suppose v A X isin I' but 2 C; X. Then Z Cg X. But this contradicts
the assurnption that Z realizes I' in Ag. So apparently Z £y X. Similarly, the other formulas in T'
must be realized by Z in Ay. O

Lemma 23: Let A be a finite poset. Then there 13 a finite poset A* such that A1 AT and for
every subspace B < A and normal type T over B, there is ¢ Z € A' such that Z realizes T and
Bu{Z}<A™t.

Proof. Let T'y,...,Ty, be all of the normal types over normal subspaces of A. Set A = Ay and
suppose A< A;. Suppose I';. is normal over B<A. Then B 4 A; so by Lemma 22 there is a finite
poset Ay, 1 such that Ap <A, and BU{Z} <9 A, for some Z that realizes ['x, 1. Set At = A .
If Z realizes T'xyy in Ay, then it realizes it also in A*. Moreover, BU {Z} 2 Apy1 <A™, D
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Theorem 24: Let V he a counteble Plotkin poset. Suppose that for every finite AaV and normal
type [ over A, there is a realization Z for T such that AU{Z}aV. If B is a countable Plotkin
order such that rt(B) = rt (V) then B2V,

Proof. Suppose B is a countable Plotkin order such that rt{B) = rt(V). We may assume that B
is a posot. By the Enumeration Theoremn, there is an cmuneration Xy, X, ... of B such that for
cach n € w,

B, =rt(B)U{X;|i <n}<aB.

Since By = rt(B), there is an isomorphisin fy : By = Vo where ¥y = rt(V). We construct an
w-sequence of isomorphisms f,, : 4, =V, where V, <V, f, C fropand V,, © Vi,

Suppose that f, and V,; are given. Now, B, < B,,:| so the diagram type T of X, over B,
must be normal. Let £ be the corresponding type over Vi, i.e. I is obtained from T' by replacing
any occurrence of a constant symbol for an X € A, by a constant symbol for f,(X). Then I is a

normal type over V,, so by the hypothesis on V, there is a realization ¥, € V' of I such that
Vari = Va U {Ya}aV.

If we define fr,1: Api1 — Vayg by

Sfalz) if X € A,

n X)=
f+1( ) {Yn le=Xru

then f, € fnv1 and fnyg is an isomorphism. If f = U,y fa and V' = {J, o, Vo then f: B2 V'

Moreover, since V, <V for each n, V' aV. Hence B2V. 0O

Corollary 25: Let A be a finite poset such that A = rt(A). There is a Plotkin poset A* such that
whenever B is a countable Plotkin order with rt(B) = A, then B 3 A*,

Proof. Let A = Ay and for each n, define An;) = A). Let A™ = |, o, An. Suppose C < A* is finite.
Then C < A, for some n. If I" is a normal type over C then T is realized by a Z € A} = An.; such
that C U {Z} < Ap11. Since Anyq 9 A™, the hypotheses of Theorem 24 are satisfied and the desired

conclusion therefore follows. O

It is possible to get the A* in Lemma 23 by explicit construction. One way to do this is to
pre-order the set Ay = {T'| T’ is normal over some finite B 4 A} by letting I' - T just in case there
are X, Y € Asuchthat v<XisinI, Y<visinZ, and XCVY. fwelet A" = z“igp then there is
a normal substructure A'< A" with A = A’ such that for every normal type T over a substructure
BaA' thereisa Z € A" such that BU {2} < A% and Z realizes T'. To get a universal domain one
solves the domain equation A = A*. Although it is somewhat tedious to check all of the details
of the construction, this more order-theoretic way of doing things helps in picturing the universal
domain as the limit of the posets A $ AT ¢ A% 2.... Figure 3 illustrates the first three stages in

the construction of the universal domain with a trivial root.

19



1+

1++ : 1t+++

Figure 3: Construction of 1*.
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6. JOIN COMPLETION.

In this section we present the join completion operator J. For a pre-order A, J(A) = {u C A}
 is finite and bounded} and if u,v € J(A) then

ubyyvifVX €A Xgu= X, v

The following proposition lists some of the properties of J.
Theorem 26: Let A and B be pre-orders. Then

1. {J(A), - s4)) is bounded complete;

2. if A is bounded complete then J(A) = A;

8. J is continuous;

4. J(A x B) = J(A) x J{B).

Proof. (1} Suppose u,v € J{A) and w ts4) #,v. Then u U v is bounded in A by anything that
bounds w.. Hence w Uv is in J(A) and w 4y U v. But any bound for u Uv in A is a bound for
u and a bound for v,so uUv t(4) %,v. Thus J(A) has bounded joins.

(2) Suppose A is bounded complete and define f C A x J(A) by X f u if and only if X k4 u.
To see that f is approximable, just note that X f u if and only if X k4 ¥ where Y is a least
upper Lound for «. Hence, if X f u,» then X 4 Y where Y is the least upper bound of uUwv so
X fuUwv bk w,v. The other conditions for approximability of f are obviously satisfied. Define
g C J'(A)x:lbyngifa.ndonlyifu}-J(A) {X}Ufug Xandugy then u g Z where Z is a
least upper bound for u. The remaining condition for approximability of g is obviously satisfied.
Now suppose X f u and u g Z for some X,Z € A and u € J{A). If Y is a least upper bound
foruthen X F4 Y 4 Z 0 X 4 2. Therefore'go f € ida. If, on the other hand, X +4 Z
then X f {X} g Zsogof 2idy. Hence go f = ids. Now, suppose u g X and X w for some
u,w € J(A4) and X € A. Then u b4 {X} and X +, Y where Y is a least upper bound of w.
Hence {X} b4y {Y'} b4y w s0 u 4y w. Therefore fog C id s(4)- If, on the other hand,
ut 4y w then u b4y {Y} for a least upper bound ¥ of wsougY and¥ fwso fog 2D id s ).
Hence fo g =id;4).

(3) We must first show that if A < B then J{A) <« J(B). Suppose A< B. If u is bounded in A
then it is bounded in B so any element of J{4) is also an element of J(B). Suppose u,v € J(A)
and u Fi(a) v- We claim that u b(B) v- Suppose X € B and X Fp u. Since A < B, there is an
X' € Asuchthat X Fg X' 4 u. But u s(a) v means X' -4 v. Hence X Fg v and the claim is
established. Obviously, u &gy v implies u F;(4) v. Thus (J(A), Freay) € (V(B), Fyp))- To see
that J(A) « J(B), suppose u,v € J(A) and w Fy(p) u,v for some w € J(B). If X k-4 w for some
X € B then X +4 uUwv so uUv is bounded and there is an X' € A such that X' -4 v Uv. Hence
uUv € J(A) and we conclude that J(A) is closed under existing joins in J{B). Thus J(A}<J(B). To

see that J is continuous, suppose B = |} S where Q is a directed collection of normal substructures
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of B. f u € J{B) then [Ju C A for some A € [ so u € J(A). Hence J(B) C Uygcq J(A). The

opposite inclusion is obvious.
(4) Left for the reader. O
By Corollary 25, there is a Plotkin order ¥V = 1* such that whenever A is a Plotkin order with

a least element, we have A $V. We may extract from Theorem 26 the following
Corollary 27: If A is a bounded complete pre-order then A ¢ J(V).

Proof. Since A has a least element we know that A = A' for some A’ 9 J(V). But A’ is bounded
complete so A' = J(A'). Hence A= A< J(V). O
Now, suppose u and v are finite bounded subsets of V such that u,v # {1}. Consider the
diagram type
Tivl={L#vIU{vECX|X€uUv}

This type is normal over U3, (vUv) so it has a realization Z in V. But u & ;) {Z}, v F 5y {Z} and
{Z} # {L}. This shows that no pair u,v # {.L} of bounded subsets of J(V) can be complementary
to one another. Hence J(V') cannot be isomorphic to the countable atomless boolean algebra with
its top element removed. We conclude that although |J(V)| is projection universal for bounded

complete algebraic dcpo’s, it is not isomorphic to Scott’s universal domain U.

A variant on the join completion operator has been studied independently in (3] for a different
purpose. The Frink completion ||Al| of a pre-order A is defined there. This operation is related to
the join completion by the isomorphism || A|| 2 |J{A)T] were (-)7 is the operation  that adds a new

greatest element T.

7. FIXED POINTS OF CONTINUOUS OPERATORS.

In this last section we prove a theorem which gives the conditions under which 2 domain
equation involving continuous operators has a profinite solution. Solutions to such equations over
the profinite domains are more problematic than is the case for strongly algebriac domains or
bounded complete algebraic domains. In these latter categories, every such equation has a solution.
This is not true for the profinites because there is no initial object for the category of profinite
domains and embeddings. That is, there is no profinite D such that for every profinite E, there is
a{pgq): E 2%, D. The single element poset 1 will not suffice, because it cannot be embedded in

1+1 for example. The following theorem provides a reasonably simple existence condition.

Theorem 28: Suppose F : wPLT — wPLT is continuous. Then F has a fized poinf in wPLT
with root isomorphic to a poset A if and only if A =rt(F(A)).

Proof. To prove necessity (=), suppose F(B) = B for a Plotkin order B. Then rt(B) = rt(F(B)). .
But rt(B) < B so F(rt(B)) < F(B) by monotonicity of F. Hence rt(F(rt(B))) = rt(F(B)) and
therefore rt(B) = rt(F(rt(B))). If A = rt(DB) then A = 1t(F(A)). To prove sufficiency (<),
suppose A = rt(F(A)). Then by Theorem 25 there is a pre-order A* and a map 1 : F(A) ¢ A*,
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Consider the function N{z) o F': N(A*) — N(A*). By Lemnma 17 this function is continuous so by
the Tarski Fixed Point Theorem it has a least fixed point B. So B = N{(i){(F(B)}) = F(B). O

Let Py, Pi,... be any enumerated collection of profinite domains such that rt(P,) can be
uniformly effectively computed from n. Consider the set R of expressions built up from the constants
P, and a variable X using the operators -+, x, —, (-}, . For example, the following expressions are
in R:

X —-X], X—PB), P+ X X}, X+ (PaxPp).

Let the expressions in R be Gédel numbered in soimne cffective manner. We claim that the (Godel
mumbers of) expressions E(X) in R such that the equation X = F(X) has a profinite solution is
recursively enumerable. To see this, let an expression E(X) € R be given. Then rt(E(P)) may be
effectively computed for any finite poset P. If there is a finite P such that P = rt(E(P)) then,
by Theorem 28 there is a profinite solution for X = E(X). Since P = rt(E(P)) is effectively
decidable for finite posets P, the claim follows. We now discuss the application of the theorem to

some specific equations in R.

It is possible to show that for any pair of pre-orders A and B having property m, rt(Ax D) =
rt{A) x rt(B). In light of Theorem 28 this is noteworty in the following regard. Since the product
is continuous, the operator F{A) = A x A is continuous. Since F(A) is finite whenever A is, F
cuts down to a continuous operator on wPLT. Suppose A = F(A) is a Plotkin order and let
B = rt(A). Now, B is finite so snppose it has m elements. Then rt(F(A)) = rtf{AxXx A)y=Bx B
has m? clements. Since rt{A) = rt(F(A)) we must have m = m? so apparently m = 1 or m = 0.
In other words, a non-empty fixed point in wPLT of the equation 4 = F(4) must have a least
clement. This result carries over to the w-profinite domains, because an w-profinite solution of the
equation D = D x D gives rise to the solution B{D] 2! B[D] x B[D] in wPLT. A similar situation
occurs with the diagonal of the coproduct. One can show that if 4 and B have property m then
rt{A + B) = rt{A) + rt(B). Hence the only w-profinite solution to the equation D = D + D is the
initial object 0. '

The diagonal of the function space operator, F(A) = A4 is more problematic, however, because
it is not true in general that rt(B4) = rt(B)TA). Consider, for example, the opposite T of
the truth value depo. The monotone functions from T into T form a poset whose root is not
isomorphic to the poset [rt(TP) — rt(T%)] = [T — T?]. Hasse diagrams for T and (TP — TP
appear in Figure 4. The root of [T% — TP] is drawn in black there.

Suppose A is a non-empty finite poset and A 2 rt(A4). We claim that A is isomorphic to the
trivial one clement poset. To see this, suppose A is not isomorphic to 0 or 1. We may assume
that A is a poset; since A is finite, A4 is isomorphic to the poset [A — A] of monotone functions
from A into A. Now, A has a set of n minimal elements where n > 1. A constant function
mapping all of 4 to a minimal clement of A is minimal in [4 — A] so rt{{4 — A]) has a least n
minimal elements. Let f: A — A be monotone and suppose f is below the identity function on
A. Suppose X € A and f(Y) =Y for every Y C X. Using the fact that A has no proper normal
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Figure 4: Root of a function space.

substructure, one can show that there is a set ¥ C A such that X is a minimal upper bound of u.
But then u = f(u) C f(X) C X so f(X) = X. Hence [ is the identity function and consequently
the identity function is minimal in [A — A]. Since none of the constant functions is equal to the
identity function, this means rt([A — A]) has at least n + 1 minimal elements. Hence, we cannot
have A 2 rt([A — A]). This shows that a non-empty fixed point of the operator F in wPLT must
have a least element. Again, this can be used to show that if D = [D — DJ is w-profinite and
non-empty then D has a least element. Using Theorem 19 we get the following. .

Proposition 29: If D = [D — D] is w-algebraic (where the possibility that D has no bottom

element is allowed) then it is strongly algebraic.

We conclude with a short note on powerdomains. The convex powerdomain was introduced
by Plotkin [11]. Smyth [20] introduced the upper powerdomain and gave a dctailed description of
Plotkin’s powerdomain and his using the finite elements of the domains. The definition below, which
appears in Scott [19] describes these operators and the lower powerdomain through their action on

pre-orders. The names for the operators are derived from mathematical considerations [21].

Definition: Let A be a pre-order and suppose M is the set of finite subsets of A. The upper
powerdomain Q{A) of A is the set M together with a pre-ordering Fg(4) given by

/) }'Q(A) vif (VX € w)(AY € U). XEkaY.
Dually, the lower powerdomain R(A) of A is M with. the pre-ordering Fg(4) given by '
uhpea vif (VY €v)(3X €u). X Fa Y.

The conver powerdomain S(A) of A is the intersection of the upper and lower powerdomain pre-
orderings on M, i.e. '

ubgayvifubga v and u Fg(q) v.

24




If f: A— B is approximable then the action of Q, R, § on f is given by

v Qf}vif (VX eu)(TY €v). X fY
wR(A)vif (VY €v)(3X €u). X f Y
uS{A)vifu Q(f)vand u R(f)v. O

1t is straight-forward to show that the operators A — Q(A) etc. are all continuous. Since each
of them obviously sends finite posets to finite posets, Theorem 8 shows that they are closed on
PLT. It is well-known that the convex powerdomain does not preserve the existence of least upper
bounds (-—look in [11] for a counterexample). It is not closed over any of the first three classes
listed in Table 1. In fact, it is rather difficult to find a cartesian closed subcategory of PO which
is closed under §. PLTand some slight variants (such as the Plotkin orders having bottoms) are

the only known examples.

The precise relationship between the bounded complete algebraic dcpo’s and the profinites is
not well understood. Although the join completion operator does provide some connection, it does
not seem to be useful in resolving some of the open questions. For example, it is not known (at least
to the author) whether A ¢ §(B ) for every countable Plotkin order A with a L. By Theorem 14,
this is just asking whether |§}(U) is projection universal for the strongly algebraic domains (where
|$1(D) = |$(B[D])| for algebraic dcpo’s D). As an aside: it is possible to show that A ¢ §(A) for
every bounded complete A4, but the proof does not carry through for arbitrary Plotkin orders. It

is also unknown whether |§|(T*) is retraction universal for the strongly algebraic domains.

In [18] and [24] information systems are used to show how to solve recursive domain equations.
Information systems are so represcntational that in some cases it is possible to get a solution
up to equality (rather than just isomorphism). Since the convex powerdomain is not defined on
information systems, the method does not apply to the solution of equations involving it. However,
there are some cases in which the category PLT can be used in this way. A short illustration can
be given as follows. Suppose P is a pre-order none of whose members are pairs and assume 1 is an
element which is not a pair and does not appear in P. We define a pre-order (A, F} which satisfies
the equation A = (P -+ §(A)) L as follows:

1. L€ A,

2. if X € P then (X,0) € 4,

3. if u € A is finite then (u,1) € A,
4. if X L for every X € A,

5. (X,0)F (Y,0) if X Fp Y,
(1) F (v,1) if ubgg v

f=2]

It is easy to show that the poset A defined in this way is a Plotkin order if P is.
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