
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-145

Validation of a
Fault-Tolerant Multiprocessor:

Baseline Experiments and
Workload Implementation

F r a n k F e a t h e r , D a n i e l S i e w i o r e k , Z a r y Sega l l

2 2 J u l y 1 9 8 5

Depar tmen t of Electrical and Compute r Engineering

and Depa r tmen t of Compute r Science

Carnegie-Mellon Universi ty

Schenley P a r k

P i t t sbu rgh , P A 15213

This Research was sponsored by the Nat ional Aeronaut ics and Space Adminis t ra t ion , Langley Research
Center under cont rac t NAG-1-190. The views and conclusions contained in this document are those of
the au thors and should no t be interpreted as representing the official policies, either expressed or implied,
of NASA, the Uni ted Sta tes Government or Carnegie-Mellon Universi ty.

i

Table of Contents
Abs t rac t
1. In t roduct ion
2. Background

2 .1 . Guidelines to Exper iments
2.2. Proposed Methodology
2.3. Definition of Performance
2.4. T h e F T M P and Exper imenta t ion Env i ronment
2.5. Previews of Exper iments

3. In te r rup t s
3 .1 . Mechanisms
3.2. In te r rup ts , System Validat ion, and Performance
3.3. In te r rup t s on F T M P
3.4. Exper imenta l Resul ts

4. Work load
4 .1 . Definition
4.2. Advan tages of A Synthet ic Work load
4 .3 . Mot iva t ions
4.4. A Real t ime Work load Model
4.5. Implementa t ion of the Synthet ic Work load on F T M P

4.5 .1 . User Interfaces
4.5.2. Implementa t ion: F T M P Tasks and Work load Considerat ions
4.5.3. Cal ibra t ion

5. F u t u r e W o r k
6. Conclusion
I. Tes t of Select R D / W R T Pr imi t ives
II. Example of Work load Use

11

List of Figures
F i g u r e 2 - 1 : Performance Evalua t ion Mat r ix 5
F i g u r e 2 -2 : Software Appearance of F T M P (vir tual machine) 7

F i g u r e 2 -3 : Task Control Block St ruc ture 9
F i g u r e 2-4: F r a m e St ruc ture 10
F i g u r e 2-5: F T M P Suppor t Env i ronment 11
F i g u r e 2-6: Steps to Creat ing a P r o g r a m 12
F i g u r e 3 -1 ; S u m m a r y of F T M P ' s In te r rup ts 18
F i g u r e 4-1J General scheme of performance comparisons among n systems [Ferrari 78] 21
F i g u r e 4-2: , Representa t ion of a Synthet ic Work load Task 23

F i g u r e 4-3 , i Work load Model [Clune 84] 25
F i g u r e 4 -4 s F T M P Synthet ic Work load Env i ronment 27
F i g u r e 4-5 i Task Switching Overhead 30
F i g u r e 4-6 i Task S t a r t u p Overhead 30
F i g u r e 4-7 : Baseline Exper iment : Task Switching Overhead 31
F i g u r e 4-8 : Work load Exper iment : Task Switching Overhead 31
F i g u r e 4-9 : Baseline Exper iment : Task S t a r t up T ime 32
F i g u r e 4 - 1 0 : Work load Exper iment : Task S t a r t up T ime 33
F i g u r e 4 - 1 1 : Baseline Exper iment Task (AED) 34
F i g u r e 4 - 1 2 : Synthet ic Work load Task (AED) 35
F i g u r e I I - l : I l lustrat ion of Work load Tasks 40
F i g u r e II-2: Runn ing the F T M P Work load 41

1

Abstract

In the future, aircraft mus t employ highly reliable multiprocessors in order to achieve flight safety.

Such computers mus t be experimentally val idated before they are deployed. This project outlines a

methodology for val idat ing reliable multiprocessors. The methodology begins wi th baseline experiments,

which test single phenomenon. As experiments progress, tools for performance test ing are developed.

This methodology is used, in pa r t , on the Fau l t -To le ran t Multiprocessor (F T M P) a t NASA-Langley's

AIRLAB facility. Exper iments were designed to evaluate the fault-free performance of the system.

This repor t presents the results of in te r rup t baseline experiments performed on F T M P . In te r rupt

causing exception conditions were tested, and several were found to have unimplemented in te r rupt

handl ing software while one had an unimplemented in te r rup t vector. A synthet ic workload model for

real t ime multiprocessors is then developed as an application level performance analysis tool. Details of

the workload implementa t ion and cal ibrat ion are presented.

Bo th the experimental methodology and the synthet ic workload model are general enough to be
applicable to reliable multiprocessors beside F T M P .

2

1. Introduction
In the 1990*8 aircraft will employ computers t h a t mus t run correctly and continuously for the aircraft to

fly. NASA, in i ts Aircraft Energy Efficiency (ACEE) p rogram requires t h a t the probabi l i ty of failure in

these computers be less t h a n 1 0 ' 1 0 per hour . Meeting such requirements can not be achieved wi th

s t anda rd real t ime computers ; instead faul t - tolerant computers have been developed to meet these

requirements . Two such systems are S IFT (Software Implemented Faul t -Tolerance) [Wensley

78] conceived by SRI In ternat ional and fabricated by Bendix Corpora t ion; and F T M P (Faul t -Tolerant

Multiprocessor) [Hopkins 78], conceived by M I T ' s Charles S ta rk Draper Labora to ry , Inc. and fabricated

by Collins.

These complex systems, which mus t meet s t r ingent performance requirements , have to be val idated (i.e.

proven functionally correct) . However, since a probabi l i ty of failure of 1 0 " 1 0 per hour t rans la tes to one

failure per million years of operat ion, a val idat ion method mus t be developed to discover flaws in the

design and implementa t ion before such a system is placed in to service. P rov ing a system correct can take

place a t m a n y stages from mathemat ica l models and theorem proving, also called verification, to

experimental test ing, called validation. Mathemat ica l models of the system are based on simplifying

assumpt ions and can be used in conjunction with , b u t no t as a subs t i tu te for, ac tual experimentat ion.

Indeed, many of the errors in a system surface dur ing the exper imentat ion and use of the system. Bell

Telephone [Toy 78] divided the causes of system outages for their fault to le ran t electronic switching

systems into several categories. The percentages given for each category represents fraction of to ta l down

t ime measured in the field a t t r ibu ted to each cause:

• Hardware Reliabil i ty: Actual component failures — 2 0 %

• Software Deficiencies: Software design errors — 1 5 %

• Recovery Deficiencies: Inabil i ty to detect, isolate, and correctly recover from faults — 3 5 %

• Procedura l E r ro r s : H u m a n error on the p a r t of main tenance personnel or office
admin is t ra to rs — 3 0 %

Fau l t -To le ran t techniques directly impact the first category. The la ter three categories are all forms of

design errors . These errors can be reduced by effective system design and val idat ion.

T h e goal of this research is t o develop a methodology for the val idat ion of the fault free performance of

faul t - tolerant avionic multiprocessors. Initially this methodology will be applied to F T M P , a l though the

approach should be general enough to migra te to o ther faul t - tolerant systems like S I F T .

3

2. Background

2 . 1 . G u i d e l i n e s t o E x p e r i m e n t s

Over the last decade, Carnegie-Mellon University has devoted over 100 man-years to the design

c o n s t r u c t s , and val idat ion of multiprocessor systems. Some of the guidelines developed over the last

decade include:

• T h e experimental val idat ion methodology is successively refined as experiments uncover new
information a n d / o r the methodology is applied to new multiprocessor systems.

• Design experiments t o val idated behavior t h a t is documented as well as uncover behavior t h a t
is no t documented.

• Per form experiments in a systematic manner . Since the search is for the unexpected there is
no shor tcu t to thorough test ing.

• Exper iments should be repeatable .

• T h e feasibility of performing various experiments is tempered by w h a t is available in the
experimental environment . More sophist icated experiments may have to be postponed unti l
the experimental environment is provided wi th more tools.

• A building block approach should be used wherein one var iable is changed a t a t ime so t h a t
causes of unexpected behavior are easy to isolate.

• Tes t ing should t ake advantage of the abs t rac t levels used in the design of the system.

Using these guidelines, we will develop a generalized methodology for test ing mult iprocessor systems.

2 . 2 . P r o p o s e d M e t h o d o l o g y

Showing t h a t a comput ing system, as designed, will meet i ts dependabil i ty goals is called validation

[NASA 79a]. In 1979, NASA held several workshops to determine system val idat ion procedures. One in

par t icu lar [NASA 79b], produced a detailed list of val idat ion categories t o evaluate the system in an

orderly manner . A building block approach was chosen so t h a t confidence in the system would be buil t

up in an incremental manner s ta r t ing wi th the unders tanding and measurement of pr imi t ive hardware

and opera t ing system activities. After pr imit ive activities are characterized, more complex experiments

are devised t o define interact ions between pr imit ive activities. This orderly progression insures uniform

coverage and makes i t easier to locate the cause of an unexpected phenomenon. Steps in the proposed

methodology included:

1. Init ial Checkout and Diagnostics
2. P r o g r a m m e r ' s Manua l Val idat ion
3. Executive Rout ine Val idat ion
4. Mult iprocessor Interconnect Val idat ion
5. Mult iprocessor Executive Rout ine Val idat ion
6. Appl icat ion P r o g r a m Val idat ion and Performance Baseline

4

7. Simulat ion of Inaccessible Physical Fai lures
8. Single Processor F a u l t Insertion
9. Multiprocessor F a u l t Insertion

10. Single Processor Executive Fai lure Response Character iza t ion
11 . Multiprocessor System Executive F a u l t Handl ing Capabil i t ies
12. Applicat ion P r o g r a m Val idat ion on Multiprocessor

13. Mult ip le Applicat ion P r o g r a m Val idat ion on Multiprocessor

T h e first six tasks va l ida te the fault free functionality of the system while the next seven val idate fault

handl ing capabili t ies. Step 1, initial checkout and diagnostics, is usually done before system delivery,

while Step 2, manua l val idat ion, is ongoing th roughout the test ing process. P a r t of this project involved

upda t ing and clarifying information in F T M P ' s manuals [Draper 83a, Draper 83b] wi th a user 's guide

[Feather 84]. Of the o ther fault free val idat ion steps, Step 4 is considered ha rdware val idat ion, Steps 3

and 5 are operat ing system level val idat ion, and Step 6 is applicat ion level val idat ion. This project deals

wi th fault free performance (Steps 2 th rough 5), and develops an applicat ion level tool called the

synthetic workload t o address Step 6.

Ideally, ha rdware and opera t ing system val idat ion should t ake place in the development stage of the

respective levels. F o r example, as the operat ing system is wr i t ten , a set of val idat ion tests is produced.

Each s tep of the methodology, like the whole methodology, follows a bui lding block approach. F i rs t ,

baseline experiments are conducted. Baseline experiments measure a single phenomenon while all other

interact ions are held constant . These experiments are designed to va l ida te the basic assumptions used in

the mathemat ica l models as well as val idate the assumptions made by the applicat ion p rogrammers .

Once individual phenomenon have been characterized, more advanced experiments can be conducted

which explore the in teract ion between basic phenomena.

As s ta ted in the experiment guidelines, the val idat ion procedure is tempered by the available

experimental envi ronment . This implies t h a t a t any one s tep, more sophist icated experiments may have

to be postponed while the experimenter moves on t o the next s tep t o conduct baseline experiments unti l

the advent of more sophist icated experimental tools. Exper iments can proceed in parallel if tools are

available a t a higher yet disjoint s tep. F o r example, a t AIRLAB, fault insert ion experiments occur in

parallel wi th fault-free val idat ion and performance experiments .

2 . 3 . D e f i n i t i o n o f P e r f o r m a n c e

Val idat ion experiments tes t system behavior and establish whether the system works correctly. T h a t is,

val idat ion experiments tes t functional correctness. In addi t ion to establishing behavior, performance can

also be measured. Performance refers t o how well a system, assumed to be functionally correct, works .

Val idat ion and performance are no t always dichotomous; in some systems, if performance cri ter ia are no t

met the system is considered t o be incorrect. Therefore, val idat ion experiments are usually accompanied

5

by performance analysis. Fo r example, test ing basic instruct ion t imes, besides test ing functional

correctness of ha rdware instruct ions, also can be used to est imate to ta l system th roughpu t in terms of

operat ions per second.

Per formance measurements can be conducted a t many levels, s t a r t ing wi th the inst ruct ion set, working

up to the opera t ing system and then the applicat ion level. Three pa ramete r s which can be measured a t

each level are Throughpu t , Util ization, and Delay. Initially, the baseline experiments took measurements

from the instruct ion set and operat ing system level. However, these experiments quickly progressed to the

applicat ion level wi th construction of the synthet ic workload. There are several advantages t o val idat ion

a t t he applicat ion level:

1. This is the level t h a t real p rograms (i.e. na tu ra l workloads) run . Any meaningful s t a tements
abou t computer performance to the application p rogrammer mus t be based on measurements
made a t this level.

2. Exper iments are much easier to design a t the application level. The person val idat ing the
system a t th is level does no t need hardware a n d / o r opera t ing system expertise.

Application | Display, |
Flight Control |

Subtask
Execution
Times |

Idle |
Time |

Write,
Read Delay
ft Variation

Executive |
Software |

Scheduler, |
Message |
System |

OS |
Primitives |
Times |

OS Primitives |
Freq. of |
Use |

Primitive
Variation,
Contention

Instruction I
Set |

Instruction, |
Exceptions |

Instr. ft |
Resource |
Times |

Resource |
Freq. of |
Use |

Resource
Variation,
Contention

Behavior Throughput Utilization Delay

F i g u r e 2 - 1 : Performance Evalua t ion Mat r ix

F igure 2-1 i l lustrates the system levels and the types of performance experiments t h a t can t ake place a t

each level. In more detail , the performance measurements are:

• Th roughpu t :

o Instruct ion Set: Measure the t ime to access l imited
execute instruct ions

o Opera t ing System: Measure the execution t imes of the opera t ing system
tasics

resources (e.g. memory, clock) and

primit ives and

o Appl icat ion Software: Measure the execution t imes of the different subsections of each
applicat ion task

Util ization:

o Instruct ion Set: Frequency and percentage of ha rdware resource used

6

o Opera t ing System: Frequency of OS primit ives use
o Applicat ion Software: Measure idle t ime between tasks

Delay (and Var ia t ion) :

o Inst ruct ion Set: Var ia t ion in the access t ime of resources; a m o u n t of content ion for
resources

o Opera t ing System: Var ia t ion in execution of pr imit ives due to resource content ion
o Applicat ion Software: Delay (and var ia t ion) between a d a t a wr i te and a d a t a read of

common d a t a

In general, baseline experiments are conducted a t the instruct ion set and opera t ing system levels while

more complex measurements occur a t the applicat ion level.

Initially, this project deals wi th instruct ion set /execut ive level baseline experiments (interrupts) .

However, realizing t h a t the most meaningful performance s ta tements come from the applicat ion level, an

applicat ion level performance tool called the synthet ic workload was developed. Baseline experiments and

workload implementa t ion were done on the Fau l t -To le ran t Mult iprocessor (F T M P) . T h e next section

discusses t h a t computer .

2 . 4 . T h e F T M P a n d E x p e r i m e n t a t i o n E n v i r o n m e n t

T h e Fau l t -To le ran t Multiprocessor (F T M P) has been discussed in several papers and manua ls [Draper

83b, Hopkins 78]. Th is section is a software overview of F T M P from the appl icat ion p rogrammer ' s

perspective. T h e reader is referred to the references mentioned above for more detai ls .

F igure 2-2 i l lustrates the F T M P system. Each processor is th is figure actual ly consists of three

processors in a faul t - tolerant configuration executing in lockstep. Th i s t r io of processors is sometimes

referred to as a processor triad or a virtual processor because the appl icat ion p rog rammer sees i t as a

single processor. Likewise, memory is in a t r iad configuration. T h e F T M P can consist of one, two or

three processor t r iads . Each t r iad has a local memory which is divided in to P R O M and R A M . The

P R O M contains frequently used executive code and is identical in all processors. Each processor 's R A M

holds local variables and stack, plus applicat ion software paged in from global memory . A bus connects

the t r iads t o global memory , I / O devices, a real- t ime clock and several latches needed for fault handl ing.

T h e t r i ads execute independent ly of each other when accessing global memory . If a p rogram running on a

processor t r i ad uses a global variable , the p rogram mus t first move the var iable from global to local

memory wi th a bus service rout ine . Similarly, the var iable is wr i t t en back to global memory wi th

another bus service rout ine .

W o r k on F T M P is performed by tasks . A task is a single th read of execution t h a t runs by itself. Each

task has a t ime l imit associated wi th i t . If a task does no t complete by i ts al lot ted t ime i t is abor ted and

7

Processor
1

8K 8K
PROM RAM

Error
Latches

Processor
2

8K 8K
PROM RAM

Processor
3

8K 8K
PROM RAM

GLOBAL
MEMORY

32K

Real Time
Clock

SYSTEM BUS

I/O
Port
11

I/O
Port
10

- I/O Port 1

- I/O Port 2

• I/O Port 3

I/O Port 4

I/O Port 5

I/O Port 6

I/O Port 7

I/O Port 8

I/O Port 9

F i g u r e 2 -2 : Software Appearance of F T M P (virtual machine)

8

another task is s ta r ted . A task can execute on any processor t r i a d 1 .

In a real t ime system a task is run a t regular interval which defines the t ask ' s iteration rate. No t all

tasks need to run a t the same i terat ion ra te . Fo r example, the task t h a t upda tes the display terminal

does no t have to be executed nearly as often as the task t h a t moni tors and adjusts the plane 's airspeed.

Tasks are grouped by common i terat ion ra te , called ra te groups, and are run wi th in frames. A frame

defines the execution interval length and is essentially one over the i tera t ion r a t e . In the t ime allot ted by

the frame, the working t r iads mus t execute all t he tasks defined for the frame's i tera t ion ra te . Task

control blocks, which contain all the information necessary to run a task , are in a l inked list resident in

global memory . Individual t r iads access this global list t o select a task to run . When F T M P is in a

mult iple t r i ad configuration, some tasks will execute in parallel . W h e n there a re no more tasks left in a

par t icu lar i tera t ion r a t e group to execute, a t r iad will either become idle or s t a r t executing tasks from a

lower i tera t ion ra te group. F igure 2-3 is an example of a task control block s t ruc tu re a r ranged by r a t e

groups (defined below). The control blocks in this figure are those of the synthet ic workload (Section 4).

The F T M P has three i tera t ion ra tes which define three different frame sizes. The re are separa te task

control block lists — one for each ra te group. T h e frame sizes are:

• R 4 , the basic frame size
• R 3 , equivalent t o 2 R4 frames

• R l , equivalent to 4 R 3 frames; also called the major frame

Figure 2-4 i l lustrates the different frames and their execution frequencies.

F T M P handles the mult iple r a te groups as follows. A t the beginning of an R 4 frame, one of the t r iads ,

called the responsible triad, s t a r t s the R4 frame for t h a t t r i ad and signals another t r i ad t o s t a r t its

f rame. Th is second t r i ad in t u r n signals the th i rd t r iad , if i t exists, to s t a r t i ts R 4 frame. Each R 4 frame

does no t necessarily have the same responsible t r iad . Every second R 4 frame signals the s t a r t of an R 3

frame and every eight R 4 frames s t a r t s an R l frame. Once a t r iad runs ou t of R 4 tasks t o execute, the

t r i ad will begin t ak ing tasks from the R 3 task list to execute. Likewise, when a t r i ad runs ou t of R 3 tasks

i t t akes tasks from the R l task list. Execution of a lower task frame group can be suspended in a t r iad

by the s t a r t of a higher numbered frame group. Suspended tasks are continued once the the t r iad runs

ou t of tasks from the higher i tera t ion ra te . F o r example, the beginning of an R 4 frame suspends

execution of R 3 and R l tasks unt i l all tasks in the R4 frame finish. T h e processor t r i ad t h a t finishes the

last R 4 task in the R 4 frame becomes the responsible t r i ad t h a t s t a r t s the next R 4 frame.

Several computer systems are involved in creat ing and running experiments on F T M P as i l lustrated in

*The only exception is a rate 1 task called " S C C , the system configuration control task; this task is systematically run on
different processor triads so it can execute self-tests on each triad. There is a bit in SCO's Task Control Block, set by SCC, that
specifies on which triad the dispatcher should run SCC.

R4.C0NTR0L R3 CONTROL

Workload R41

Workload.R42

Worklood.R43

R44 Special
Initial

(Starts Workload)

TIMER

Workload.R31

Workload.R32

Workload.R33

(SCC's posit ion in task:
l i s t may change during
execution)

RlCONTROL

DISPLAY

SCC

READALL

Workload RI I

Workload Rl2

Workload Rl 3

IDLE 1

IDLE 2

IDLE 3

F i g u r e 2 -3 : Task Control Block Structure

10

Major Frames

25 Hz

R4 Frame
Frame Marks

12.5 Hz

R3 Frame

6.25 Hz Rl Frame

F i g u r e 2 -4 : Frame Structure

Figure 2-5. The steps to creating an experiment and the systems involve include:

• Create and compile a program task written in a language called Automated Engineering
Design (AED) system which runs on an IBM 4341.

• The user must map out where the code goes in memory along with the location of stack, local,
and system variables.

• The user then modifies OS task tables to include the task in FTMP's task structure,
reassembling task tables when finished.

• The experimental task is linked with the rest of the operating system code to create an
absolute load module.

• The load module is downline loaded from the IBM 4341 to a VAX-11/750.

• The load module is downline loaded from the VAX-11/750 to FTMP.

• The F T M P test adapter (CTA) is used to debug the experimental program.

• Once the experimental program is correct, the test adapter is used to dump a memory image
into a file for later analysis.

Figure 2-6 illustrates the process of creating a program. The experimental loop may take up to two hours

from the time of compiling a program on the IBM 4341 until it is executed on FTMP. The experimenter

must have knowledge of several systems including the IBM 4341, the V A X - l i / 7 5 0 , and FTMP. The

experimenter also must be intimately familiar with FTMP's hardware, operating system, and task

structure.

11

IBM 4341

VAX 1 1/750

POP
Emulation

PROM Programmer

| UNIBUS

Test Adaptor

FTMP
Display &|
Monitor

RS232
Seven
1553

Interfaces

1553

F T M

Q
_

F i g u r e . 2 - 5 : F T M P Support Environment

In order to shorten this experimental loop and improve experimental efficiency, a synthetic workload

model for real time avionic systems was proposed [Clune 84]. With an easy to envision model, an

experimenter can be working with the workload after merely a few hours of reading over the model,

getting an overview of F T M P and learning VAX/VMS commands; the IBM 4341 is eliminated from the

experimental loop.

1 2

AEO
Program

Task

CAPS-6
Assembly

RelocatabI
Object

Modules

Task Tables

F i g u r e .2-6: Steps to Creating a Program

2 . 5 . P r e v i e w s o f E x p e r i m e n t s

To date, baseline experiments up to the application level have been performed. Various experiments,

classified by the level of abstraction presented in Figure 2-1, are shown below. Experiments marked by

an asterisk (*) have already been performed [Clune 84],

1. Instruction Set Level:

• Verify the clock as an accurate fundamental measuring device. With the clock
calibrated, future performance experiments can be performed with confidence. (*)

• Timings of Assembly and High-level language instructions. (*)

13

• Observe and document the existence and the direct effects of in te r rup ts .

2. Executive Software Level:

• Executive pr imit ive and overhead t imes (*)
• In te r rup t procedure t imes
• Memory Access t ime
• Bus access and contention delays
• Fau l t - to le ran t overheads

3. System and Applicat ion Level:

• F r a m e uti l izat ion characterist ics (*)
• Length of the frame of all task i terat ion ra te groups
• Fau l t - to le ran t overhead to the application p rogrammer

4. Development of an applicat ion level tool for measuring performance.

This repor t covers two experiments on F T M P . Fi rs t , an experiment was run to test the existence and

document effects of in te r rup t s on F T M P . The second p a r t of this repor t discusses the development and

implementa t ion of the application level tool called the synthet ic workload. A n experiment to cal ibrate

the synthet ic workload is also discussed. Once installed, the synthet ic workload can be used to run

applicat ion level experiments as well as certain executive level baseline experiments .

14

3. Interrupts
In te r rup t s can be viewed as a signal of unusual events in a processor. These signals can be of simple

events like ar i thmet ic overflow or of more complex events like a device is ready for inpu t . In te r rup t s can

be used for communicat ion between a user process and the supervisor, in which case they are called traps.

A user process invokes a t r a p to request service (I / O , resource request, etc.) t h a t the user process could

no t fulfill directly. In te r rup t s are also a mechanism for enforcing v i r tua l memory and protect ion schemes.

In te r rup t s notify the processor t h a t a memory reference was to a page not in memory (page fault) and the

page needs to be b rough t in, or can hal t a p rogram t h a t tries to access memory outside its memory space.

Final ly, in te r rup t s are a mechanism for software reliabili ty. Whereas , faul t - to lerant systems, th rough

redundancy, can catch ha rdware errors and mask or record them for la ter reconfiguration, in te r rup ts are

the mechanism for detect ing and recovering from software faults. There are four categories of in te r rupts :
Intraprocessor asynchronous events t h a t happen wi thin the processor dur ing the execution of a

machine instruct ion. Examples of these events include: zero divide, ar i thmet ic
overflow, memory access violation, privileged inst ruct ion execution, and page fault .

In t rasys tem in te r rup t s caused by a peripheral such as a disk, t imer or te rmina l . Examples of these
in te r rup t s include t imer reached zero, input received, and o u t p u t device ready.

Executive caused by the current executing p rogram. Executive in te r rup t s are used to make
requests of the executive (operat ing system) p rogram. Examples of such requests are
s t a r t ing new tasks , allocating ha rdware resources, communica t ion to o ther tasks , etc.
These in te r rup ts are sometimes referred to as t r aps , supervisor calls (SVC), or
privileged mode calls.

Interprocessor in te r rup t s between two intelligent processors. Th is type of in te r rup t can be used to
implement an interprocess communicat ion (IPC) mechanism between processors.

This section describes mechanisms used in implement ing in te r rup ts , followed by a discussion of in te r rup ts

on F T M P CAPS-6 processor. Final ly, results of experiments t o tes t in te r rup t s mechanism on F T M P are

presented.

3 . 1 . M e c h a n i s m s

Generally, in te r rup ts are vectored, t h a t is, the address of the in te r rup t handl ing rout ine is in a special

memory location. W h e n an in te r rup t occurs, control is t ransferred to a rout ine pointed to by this vector.

Several devices can be associated wi th a single in te r rup t vector, in which case the processor mus t poll the

devices t o see which caused the in te r rup t .

W h e n there are several in te r rup t vectors, a system will sometimes have in te r rup t priority nesting.

Nest ing allows higher pr ior i ty in terrupt^ (e.g. power failure) to in t e r rup t the processing of low priori ty

in te r rup t rout ine (e.g. overflow).

15

T o provide opera t ing system suppor t for protect ion mechanisms, most computers have, a t the very

min imum, user and supervisor s ta tes . Which protect ion violations are repor ted are a function of machine

s ta te . Obviously, in te r rup t s like privileged instruct ion violation should no t occur in supervisor s ta te ,

hence there is an archi tec tura l decision of which in te r rup ts are ignored in supervisor s ta te .

Final ly, there is the issue of disabling and masking in te r rup ts . Disabling an in te r rup t prevents a device

from sending an in te r rup t . T h u s the in te r rup t signal is actually tu rned off. In contras t , masking does

no t prevent the in te r rup t from occurring, b u t instead ignores the in t e r rup t unt i l the mask is changed.

Using this definition, in a pr ior i ty in te r rup t scheme, low pr ior i ty in te r rup t s are masked by a higher

pr ior i ty in te r rup t . Processors generally have a ha rdware mask field which tells which in te r rupts to

ignore. In general, most in te r rup ts (overflow, I / O , etc.) are supervisor maskable , bu t only in t rasystem

and inter processor in te r rup t s can be disabled.

Some system responses to in te r rup t include:

• Do nothing. T h e results are equivalent to masking the in te r rup t except t h a t the in te r rup t is
cleared since i t was acknowledged. F o r example, some applicat ions might wish to be notified
of an overflow condition yet continue execution.

• A b o r t the cur ren t job (e.g. divide by 0, memory access violation, etc.).

• Res t a r t the job or s t a r t a job wi th new software (e.g. N-version p rogramming) . This is a
consideration in a software reliable system.

• Per forms service (e.g. privilege mode call, page fault) .

• Reac t to an event (e.g. t imer in te r rupt , i / o in te r rup t , I P C in te r rup t) .

3 . 2 . I n t e r r u p t s , S y s t e m V a l i d a t i o n , a n d P e r f o r m a n c e

T h e steps t o evaluat ing in te r rup t s are similar to the steps taken when evaluat ing any pa r t of the

system. F i rs t , the existence of the in te r rup t is tested, t hus val idat ing the p rogrammer ' s manua l . Baseline

experiments follow which test functional correctness of the in te r rup t mechanisms (i.e. do in te r rupt

masking mechanisms work correctly, are supervisor /user effects of in te r rup t s correct, etc.). In te r rup t

evaluat ion encompasses bo th the ha rdware and the operat ing system. In te r rup ts are invoked in hardware ,

b u t the in t e r rup t handlers are in the operat ing system.

In te r rup t s do effect performance. A n add instruct ion t h a t overflows (thus invoking an in te r rupt) is

slower t h a n the equivalent instruct ion t h a t does no t overflow. Likewise, page faults impac t performance.

Therefore, the performance mat r ix of F igure 2-1 was used:

• T h r o u g h p u t — How long does i t t ake to process the in ter rupt? This delay is a function of the
length of the in t e r rup t handler , the system load, whether the handler is in memory (i.e. does it
need to be paged in), etc.

16

• Uti l ization — How often are in te r rup ts invoked. Al though uti l izat ion of processor exception
in te r rup ts (overflow, privileged mode violation, etc) is of less interest due to ra r i ty , ut i l ization
of I P C and page fault in te r rup ts are more frequent.

• Delay — Var ia t ion of in te r rup t delay between processors. Also, does the effect of in te r rup ts
cross processor boundaries?

The following is an example of experimental s teps for evaluat ing in te r rup ts :

1. Tes t the existence of in te r rup ts (manual val idat ion) .

2. Tes t in te r rup t masking mechanisms. Also test which in te r rup t s occur in user versus
supervisor mode.

3. Tes t how long it takes t o process each intraprocessor in te r rup ts (overflow, page fault, etc.).
Compare this t o interrupt-free execution.

4. W h a t is the overhead of processing in t rasys tem in te r rup t s (t imer, t e rmina l , etc.) . How often
to these in te r rup t s occur?

5. F o r executive in te r rup t s (t raps) , evaluate how long it takes to service the t r a p . Likewise, how
long does a processor t ake to respond to an I P C in ter rupt?

6. W h a t is the in t e r rup t r a t e of page fault and I P C interrupts? F o r typical instruct ion
execution, how often to page faults occur?

7. Per form the above tests in bo th uniprocessor and multiprocessor configurations.

3 . 3 . I n t e r r u p t s o n F T M P

T h e processor elements in F T M P are Collins Avionics CAPS-6 processors modified for fault tolerance.

T h e CAPS-6 processor has 18 in te r rup t vectors, s tored in the first 18 words of P R O M . Vectors 0-7 are

unavai lable in the F T M P implementa t ion of the CAPS-6 processor. According to documenta t ion [Draper

83a], in te r rup t s can only occur in user mode; in te r rup ts in supervisor mode are au tomat ic ly masked.

Actua l implementa t ion reveals t h a t interprocess communicat ion (IPC), interval t imer , and page fault

in te r rup t s can occur in supervisor mode. Otherwise, for example, the processor would no t be able t o page

executive code. In te r rup t s 8 - F 1 6 are maskable . T h e CAPS-6 has a b i t mapped in t e r rup t mask which is

s tored in the Process S ta tus Descriptor (PSD) of each task . This mask is loaded in to the ha rdware

in t e r rup t mask when the task is s ta r ted . There are no in te r rup t pr ior i ty levels in the CAPS-6 processor.

F igure 3-1 summarizes F T M P ' s in te r rupts . This table also presents the results of experiments to test

the effect and existence of these in te r rup ts .

17

3*4* E x p e r i m e n t a l R e s u l t s

M a n y of the in te r rup t s do no t have an in te r rup t handler . These are:

• Ar i thmet ic Overflow
• W r i t e Pro tec t ion Violat ion
• Illegal Opcode
• Stack Overflow
• Non-local Search F a u l t
• Privileged Instruct ion Violat ion
• Privileged Mode Call F a u l t

Instead, a generic rout ine called " N O . INT .HANDLER" handles all the above in ter rupts .

" N O . I N T .HANDLER" is an infinite w h i l e loop t h a t will, of course, hang the system when entered. An

al ternat ive implementa t ion of " N O . I N T .HANDLER" is t o ignore the in te r rup t , immediate ly re turning

control to the executing task . T h e reason for looping forever is for debugging; when the system entered

this rout ine you could examine the system s ta te to find where the error occurred. Since there is this

potent ia l of hanging the system if one of the above exceptions occurs, all tasks , including application

tasks , r un in privileged mode where exceptions are ignored.

In addi t ion, there is no in te r rup t vector for divide exception. A divide by zero in user or privileged

mode will stall the system. Admit ted ly , the above hazards are a characterist ic of the present,

experimental system. T h e original design called for U S E R / P R I V I L E G E D mode implementa t ion and

in t e r rup t handlers .

Runn ing tasks in privileged mode, while prevent ing system failure from an unimplemented in ter rupt ,

does compromise software reliabili ty. In par t icular , wri te protect ion is ignored in privileged mode, so a

software error can be potent ial ly disastrous (i.e. a R 4 task wri t ing in to a R 3 t ask ' s s tack area) . Likewise,

an overflow or illegal ins t ruct ion signals software error and the need to s top the task (for task res ta r t or

n-version p rogramming) . These signals are missed in privileged mode execution.

Even if in te r rup t s were implemented as the original design called for, one m a y be re luc tant to execute

tasks in USER mode because i ts of l imited power. In par t icular :

1. A user task cannot use system bus service routines, t h a t is, the user cannot access system
memory . User tasks a t t empt ing to access system memory stal l the system (the original design
calls for a wri te protect ion violation in te r rupt) . Hence, all variables mus t be in local memory.
Since a task might run on any processor t r iad from one task execution to another , local
memory variables are no t guaranteed to re ta in values between task i tera t ions .

2. A user t ask can save values th rough use of a task data block. Variables in a task d a t a block
are copied from system memory into local memory by the dispatcher before the task s ta r t s ,
and moved back to system memory when the task ends. Thus , these variables re ta in their
value between task i tera t ions . However, changes to d a t a block variables are no t reflected in
system memory unt i l the task finishes, which l imits the potent ia l for inter- task communicat ion
to task completion boundaries .

18

Interrupt
Number Maskable

8
9
A

B
C
D

E
F
10

11

12

13

14

15

16
17

yes
yes
yes

yes
yes
yes

yes
yes
no

no

no

no

no

no

no
no

Assignment/
Function

unassigned
unassigned
Arithmetic

Overf low[l]
IPC interrupt
Interval timer
Write Protection

Violation [1]

Page Fault[4]
Test Adapter[4]
Halt Instruction
Execution[1]
Illegal Opcode [1]

Stack Overflow[1]

Non-local Search
Fault[1,2,4]

Privileged instr
Fault[1,2]

pmcall fault[1,3]

unassigned
unassigned

Mode/
Effect

USER/Stalls system
PRIV/No effect

USER/Stalls system
PRIV/Write protection

ignore

USER/stalls system
PRIV/ignored
USER/stalls system
PRIV/ignored

USER/stall system

USER/No Privileged
mode routines

* no Divide exception[5] USER or PRIV/Stalls
system.

[1] — No interrupt handler written. If this interrupt occurs, a routine
called "NO.INT.HANDLER" is entered which executes a DO-FOREVER loop.

[2] — Non-local Search Fault occurs when a routine attempts to access a
variable in its caller's local environment that does not exist. None
of FTMP's software demands non-local searches; instead, the software
uses static local variables to communicate to nested procedures.

[3] — Pmcall, Privileged mode call, is an instruction that a user process
can use to call supervisor routines. There are no privileged mode
routines on the current version of FTMP.

[4] -- Not tested.
[5] — There is no interrupt vector for Divide Exception.

F i g u r e 3 - 1 : S u m m a r y of F T M P ' s In te r rup t s

19

3. Synchronizat ion between user tasks is very l imited (if no t impossible) since user tasks cannot
access system bus rout ines. T h e original design of F T M P does provide const ra in t bi ts in the
task tables for task ordering (i.e. do no t s t a r t a task unt i l specified tasks are finished), bu t
these bi ts are no t implemented on the current version of F T M P .

The re l iabi l i ty /sys tem capabil i ty trade-offs of running a task in USER or P R I V I L E G E D mode is a

d i lemma to the F T M P programmer . However, wi th minor modifications to the original design, some of

the power only available in the privilege mode can be made available to a user applicat ion task. As an

example, mak ing some of the system bus rout ines available as t r aps (see in t e r rup t number hex[15] —

pmcal l fault) would give the user controlled access to system memory wi thou t compromising the software

reliability of user mode execution.

Since many in te r rup ts are no t implemented on F T M P , no performance analysis was performed. The

rest of the repor t instead concentrates on a tool for applicat ion level experiments: the synthet ic workload.

20

4. Workload

4.1* D e f i n i t i o n

T h e workload of a computer is defined as the set of all inputs (programs, da t a , commands) the system

receives from its envi ronment . A workload can be classify as natural or synthetic. N a t u r a l workloads

accomplish useful work while a synthet ic workload models a na tu ra l workload.

There are many types of na tu ra l workloads. If the computer is a t imeshar ing system the workload

would be a user typing commands t o the te rminal . T h e workload would also include overhead of loading

user p rograms, input ing da ta , and executing user p rograms . F o r control computers the workload is of a

different flavor; the inpu t is in the form of sensor readings t h a t mus t be processed before they are

overwri t ten . T h e p rog ram task t h a t processes the sensor d a t a is also considered p a r t of the control

computer workload. These tasks are executed a t regular intervals .

The above two s i tuat ions are examples of na tu ra l system workloads. Eva lua t ing t he performance of a

na tu ra l workload involves pu t t ing measurement code into an existing system and collecting workload

performance d a t a over a period of t ime. W i t h the second example, a control system, evaluat ion would

involve tak ing measurements on existing control software to evaluate i ts performance. Sensor inpu t to

the control p rog ram could be real inpu t from the actual environment (i.e. the computer would be flying

an airplane) or s imula ted sensor input . In either case, we assume the system and applicat ion software

already exists and the major effort is in set t ing up the system for evaluat ion.

A synthet ic workload, like a na tu ra l workload, exercises a computer system. B u t unlike a na tu ra l

workload which a t least mus t have s imulated inpu t to " rea l" applicat ion p rograms , a synthet ic workload

is essentially a " fake" set of applicat ion p rograms (or tasks) t h a t are modeling a na tu ra l workload. A

synthet ic workload can test a computer wi thou t having to develop or install applicat ion software.

Character is t ic ly, synthet ic workloads are controllable by the experimenter and can be used to analyze

performance by varying pa ramete r s in the synthet ic workload model.

4.2* A d v a n t a g e s o f A S y n t h e t i c W o r k l o a d

As inferred from the above discussion, a l though a synthet ic workload does no t represent an application

as well as a na tu r a l workload, there are several advantages to synthet ic workloads:

1. Easy to create and debug. A na tu ra l workload mus t be wr i t ten as well as have a na tu ra l or
s imulated external environment . If analyzing performance (perhaps for a performance
improvement s tudy) , a na tu ra l workload would already exist and thus would be preferred.
However, if we are performing a feasibility s tudy where external input , let alone application
software, might no t exist for the system, a synthet ic workload is an excellent device for
measur ing performance. W i t h li t t le effort t o create and debug the synthet ic workload, we
could answer some feasibility questions such as "Is the computer fast enough for our t a rge t

applications?" or "Does the computer have enough capacity for the natural workload we are
modeling?"

2. Easily repeatable. In an earlier section we listed several guidelines for experiments. One of
those guidelines included experimental repeatability. With natural workloads repeating an
experiment would involve recording all the environmental inputs over a measurement period,
as well as output which might have an effect on the input. This is particularly difficult if
output from the system effects the input. The natural workload approach tends to be
cumbersome in terms of storage requirements. A synthetic workload not only simplifies the
environment through a model but also simplifies the interface. The only data that needs to be
recorded for repeat experiments is the workload parameters and the measurement period.
These parameters can set the system to the exact state of the original experiment.

3. Easily controlled by parameters. The workload model is designed to make variation of
parameters easy. With a parametric model, sensitivity to parameter changes can be
systematically explored and bottlenecks discovered.

4. Model many natural workloads. With new computer systems we usually want to study the
feasibility of using the system for many types of applications or natural workloads. Modeling
these applications with a single synthetic workload can yield a good feeling for the
performance of a set of natural workloads.

5. Easily migrated to different systems. Generally the same workload model can be used on
several systems. Thus if we model the same workload on several computer systems it is much
easier to make direct comparisons between systems. Figure 4-1 illustrates this concept. In
this figure, if workload W is a natural workload it is sometimes called a benchmark.

r 1

I System I
I n |
1 .-—'

I Performincet ^
V 9 . J

P, better then <?y

<P, better then <P2

' <P, simiUr to <P,

F i g u r e 4 - 1 : General scheme of perf< lormance comparisons among ti systems (Ferrari 78]

22

Of course there are disadvantages to using synthetic workloads:

1. The system mus t be dedicated while using the synthet ic workload. W i t h na tu ra l workloads
d a t a can be collected while useful work is being done.

2. T h e synthet ic workload is only an approximat ion of a na tu ra l workload.

4 . 3 . M o t i v a t i o n s

An addi t ional mot iva t ion for designing a synthet ic workload for F T M P is t o simplify the

exper imentat ion environment (see Figure 2-5). P r io r to the use of the synthet ic workload, experiments

were performed by creat ing a p rogram on an IBM 4341 followed by compilat ion, assembly and linkage of

the task . A n absolute load module was then downloaded to the suppor t V A X and then t o F T M P for

execution. T h e entire experimental cycle usually took up to two hours assuming the experiment was

designed correctly. Analysis was limited to a few paramete r s in each experiment . T o analyze d a t a from

the experiment the user mus t provide a d a t a collection p rog ram or modify an existing d a t a collection

p rogram. T h e original F T M P baseline experiments were conducted in th is manner . In order to master

the experimental loop, the user had to learn abou t the in ternal s t ruc ture of F T M P , including the sett ing

up of task tables, the C T A interface p rogram between F T M P and the VAX, and the V A X / V M S

command language. Because of the t ime i t took to develop experiments , there was subs tan t ia l mot ivat ion

to simplify the experiment loop, even possibly tak ing the IBM 4341 — the major bot t leneck — completely

ou t of the experimental loop.

A synthet ic workload relieves the user of these details as well as providing a mechanism for further

simplifying experimental prepara t ion . Synthet ic workload experiments would be run by varying

pa ramete r s in the model . T h e pa ramete r s of the synthet ic workload mus t correspond to meaningful

variables; otherwise analogies t o real workloads would be meaningless. There is, of course, a fine line

between representat iveness and ease of use.

T h e next section discusses a real t ime workload model. This is followed by the details of the

implementa t ion of t h a t model on F T M P and the p rogram suppor t for the implementa t ion . Final ly,

several workload experiments are compared to equivalent baseline experiments to calibrate (i.e. test the

representat iveness of) the synthet ic workload.

4 . 4 . A R e a l t i m e W o r k l o a d M o d e l

T h e goal of any model is t o find a simple representat ion of a system t h a t is no t too far removed from

the na tu ra l system. If the model is too complex, deriving conclusions from pa ramete r changes will be

difficult. Conversely, too simplistic a model would no t adequately describe system behavior .

There are several factors t h a t mus t be considered when developing a rea l t ime workload model. F i r s t is

23

the task s t ruc ture of real t ime workloads . A task is a single th read of execution. W i t h a real t ime system,

a task is run a t regular intervals , which defines the i tera t ion r a t e of t h a t task . No t all tasks need to be

run a t the same i tera t ion r a t e (i.e. a display te rminal does not need to be upda ted nearly as often as the

airplane flap control) . T h u s a real t ime task model should allow for mult iple i tera t ion ra tes . Control

systems demand task completion wi thin the interval defined by the task i tera t ion ra te , which is referred

to as a hard deadline. This implies t h a t any implementa t ion of a workload model mus t collect d a t a from

several task i terat ions to check if deadlines, and thus i tera t ion ra tes , are adhered to . A real t ime workload

model was presented in [Clune 84]. T h e following discussion is an overview of t h a t workload model.

Fo r our model, tasks are assumed to be execution entities shar ing a common memory . Each task has
the form:

• read sensor d a t a
• read interprocess communicat ion (IPC) d a t a
• do work (computat ions) on the d a t a
• wr i te I P C d a t a
• wr i te sensor d a t a

On F T M P , a task is represented by the p rogram in Figure 4-2. In this case the loops represent d a t a read

in (P and Q) , opera ted on (T) , and wr i t ten ou t (R and S), wi th A = B + C considered the typical

instruct ion. The communicat ion mechanism between processes on F T M P is main memory . T h u s bo th

sensor and I P C exchanges are done th rough memory reads and writes. T h e value of the real t ime clock is

s tored after each i tera t ion for la ter t iming analysis.

Tas^O;
Begin
ReadCP^ Q 1 # R±, ;
Store(Time);
For X=l to P do

Read Sensor Input (read memory);
Store(Time);
For X=l to Q A do

Read IPC Input (read memory);
Store(Time);
For X=i to T do

Execute Instruction (A = B + C);
Store(Time);
For X=l to R± do

Write Sensor Output (write memory);
Store(Time);
For X=l to S± do

Write IPC Output (write memory);
Store(Time);

End;

F i g u r e 4 - 2 : Representat ion of a Synthet ic Work load Task

The above t a sk model is sufficient to implement a synthet ic workload on F T M P . However, if we wan t

t o more closely approx imate a real t ime system, a higher level s t ruc ture is required.

24

T h e next abs t rac t ion level above the task is the function. A workload can consist of any number of

functions, each of which is composed of one or more tasks . T h e pa ramete r s a t the function level are:

• the number of tasks
• frequency of execution of this function. All tasks within the function will have this i tera t ion

ra te .
• percentage of to ta l system instruct ions used by the function
• percentage of to ta l sensor I / O used by the function
• percentage of to ta l I P C I / O used by the function

Tasks are grouped in to a function because of paramet r ic similarities (i.e. perform approximate ly the same

number of operat ions and have the same execution ra te) , r a the r t h a n functional similari t ies.

Final ly, we define the system level of the model which gives the s t ruc ture and capabil i ty of the overall

real t ime workload. P a r a m e t e r s a t this level are:

• number of instruct ions (thousands of operat ions per second)
• to ta l a m o u n t of sensor I / O (words per second)
• to ta l a m o u n t of I P C (words per second)
• number of functions
• percentage of sensor I / O t h a t is inpu t
• percentage of I P C I / O t h a t is inpu t

F igure 4-3 i l lustrates the workload model for a real t ime system.

A program, called the workload calculator, takes system and functional level pa rame te r s and calculates

i tera t ion numbers t h a t can be used to implement a synthet ic workload. Th is p rogram, developed in

[Clune 84], is discussed in Section 4 .5 .1 .

4 . 5 . I m p l e m e n t a t i o n o f t h e S y n t h e t i c W o r k l o a d o n F T M P

T h e goal of the synthet ic workload implementa t ion is for a user t o be able t o use the workload wi th

minimal knowledge of the underlying system. T h e user should only need to know the workload model.

In addi t ion, the workload should have an easy to use interface. Initially, the discussion of the synthet ic

workload implementa t ion will focus on the user interface. This will be followed by a discussion of the

details of the actual synthet ic workload implementa t ion on F T M P .

4 . 5 . 1 . U s e r I n t e r f a c e s

T o the user there are three pa r t s to the synthet ic workload: the workload calculator, the workload

generator, and the workload data analyzer. Each of these p rograms is invoked a t different t imes in the

developing and running of a workload experiment . The following is a discussion of these three programs.

W o r k l o a d C a l c u l a t o r :
The workload calculator was developed and implemented in [Clune 84]. This p rogram
converts pa ramete r s from the workload model in to i tera t ion numbers in a workload
task on F T M P . This p rogram inputs system and functional level pa ramete r s and
calculates i tera t ion numbers t h a t are used by the synthet ic workload generator . The

25

Fnl

GLOBAL
M E M O R Y

Fn2

FnN

F i g u r e 4 - 3 : Workload Model (Clune 84]

26

system level parameters directly correspond to those pa ramete r s presented in the model.
These pa ramete r s include to ta l instruct ion K O P s , to ta l sensor I / O , and to ta l I P C ra te .
Func t iona l level pa ramete rs also correspond to those presented in the model. Examples
of functional level inputs include the number of tasks per function, the function's
i tera t ion r a t e and the percent of the to ta l system instruct ions, the to ta l sensor I / O , and
the to ta l I P C I / O used bu t each function. This p rog ram o u t p u t s loop i terat ion values
for insertion in to the synthet ic workload tasks (Figure 4-2). T h e workload calculator
can specify workloads for any control computer t h a t implements the same workload
model .

W o r k l o a d G e n e r a t o r :
This p rogram is the interface between the user and F T M P . T h e major mot ivat ion for
the p rog ram is to separate the details of the workload model from the details of
install ing task level pa ramete rs in to the F T M P synthet ic workload. This p rogram uses
i tera t ion values supplied by the user (e.g. those supplied by the workload calculator)
and deposits them into synthet ic workload tasks on F T M P by set t ing up a command
file. W h e n run , this command file enters C T A , the interface between F T M P and the
VAX, and selectively wri tes to F T M P ' s memory to set up the workload. T h e command
file also sets up the number of tasks to run in each r a t e group (again defined by the
calculator) , plus configures F T M P for one, two or three processor t r i ads . T h e workload
generator creates a second command file for collecting t imer d a t a from F T M P . The
user is again quizzed on which t imer values to save and the n u m b e r of i terat ions to
observe. These t imer dumps are la ter analyzed by the th i rd component of the
workload, the data analyzer.

D a t a A n a l y z e r : This p rogram works in conjunction wi th the workload generator t o analyze d a t a dumps
and make his tograms of differences between t imer values. T h e user is quizzed on which
t imer values t o compare and p u t in to h is tograms.

Figure 4-4 i l lustrates the relat ionship of the above programs . Each p rog ram is user oriented, quizzing

the user abou t system configuration, workload s t ruc ture , and t imer values desired. Present ly , the user is

responsible for filling in the link between the workload calculator and the workload generator .

The steps to running an experiment wi th the synthetic workload are:

1. Load F T M P wi th the synthet ic workload (need only be done once).

2. Use the workload calculator to describe the application workload you wish to test . I terat ion
values are s tored in a file called R E S U L T . D A T .

3. R u n the workload generator using d a t a from Step 2 as pa ramete r s in to the workload model.
The workload generator will create two command files: one to configure the the synthet ic
workload on F T M P and a second to collect d a t a from the workload.

4. R u n the first command file to configure F T M P .

5. R u n the second command file, s tor ing the d a t a in an o u t p u t file. R u n this command file
several t imes unt i l you have the desired a m o u n t of da t a .

6. R u n the data analyzer using an o u t p u t file from Step 5 as input . T h e d a t a analyzer ou tpu t s

27

W O R K L O A D

C A L C U L A T O R
Instructions/sec,
Frequencies.
I/O rate, etc

Task Definit ions,
i terat ions, etc

W O R K L O A O

G E N E R A T O R

Reconfiguration

F T M P

Raw Oata.
Timer Pumps

O A T A

A N A L Y Z E R

Data.
Histograms

F i g u r e 4 -4 : FTMP Synthetic Workload Environment

28

the data in a readable form and create histograms of that data.

7. Repeat Steps 2 through 6 for each workload experiment.

Once FTMP is initially loaded with the synthetic workload, the elapsed time from running the workload

calculator to output histograms is about 10 minutes. Occasionally, a hardware interface to FTMP may

stall, in which case the experiment loop can be significantly longer.

4 . 5 . 2 . I m p l e m e n t a t i o n : F T M P T a s k s a n d W o r k l o a d C o n s i d e r a t i o n s

The model for a realtime workload task was presented in Figure 4-2. In this task model the values for

the loop iterations are read in from a special area in memory set up by the workload generator before the

workload starts. Timer values are written back to memory at the end of the task.

FTMP has three task rate groups. For initial implementation, there are three workload tasks for each

rate group. Three per group is not a hard limit since there is room in the task tables to potentially

expand to 15 tasks per rate group (except for the Rl rate group — there are 6 special tasks thus limiting

this rate group to 9 workload tasks). The major limit on the number of workload tasks in FTMP is

memory storage for timer values. The number of tasks that actually run in each rate group is set up by

the workload generator.

Data collection is done in cycles. A collection cycle starts when the data collection command file

(created by the workload generator) enables tasks to execute. For a period of time workload tasks write

timer values to memory. These values are then retrieved from FTMP's memory by the command file for

later analysis. Once this is done tasks are enabled again to start another data collection cycle. The saved

data is essentially a snapshot of the computer over a defined execution period.

To encompass all workload tasks, a collection cycle must include at least one full execution frame of the

lowest frequency rate tasks (Rl). Thus, a collection cycle begins at an Rl frame boundary, called a major

frame. A major frame encompasses four R3 frames and eight R4 frames. An additional R4 task

collection was added, making nine R4 collection frames, to record boundary cases such as missed

deadlines. To monitor when to start collection cycles an additional R4 task is present. This task

monitors when a major frame is ready to begin and sets all the workload tasks to start collecting data. It

then removes itself from the R4 task list so as not to interfere with workload tasks while the workload is

executing. A cycle is begun by externally linking in the special R4 task. All of these details of data

collection is transparent to the user since they are set up by a data collection command file created by the

workload generator.

The workload has to take into consideration several special tasks running on FTMP. These tasks are:

1. A R3 task (R31) called "TIME" which updates TIME.NOW, the current time, in memory by

29

checking R T . C L O C K (the real t ime clock) and BASE.TIME. This is considered essential t o the
computer performance and is always linked in.

2. T h e R l "DISPLAY" task which updates F T M P ' s display te rminal on the s t a tus of the system.
This is considered non-essential and can be t aken ou t if the user so chooses (i.e. if a workload
task already models a system display).

3 . T w o R l tasks "READALL" and ttSCCM which are the faul t - tolerant tasks of F T M P . These
two tasks can be considered essential in a faul t- tolerant computer such as F T M P for fault
recovery and reconfiguration. However, dur ing fault-free execution they only perform self-
tests . Therefore, the user has an opt ion to t ake either of these tasks ou t of the task s t ruc ture ,
which is useful should the user w a n t to investigate the overhead of faul t - tolerant tasks .

T h e workload generator will ask the user which special tasks to include in the workload and links them in
accordingly.

Each task has an associated Task Control Block (TCB) which contains information on t h a t task. Task

Contro l Blocks are in a l inked list common d a t a s t ruc ture in global memory. Processor t r iads select tasks

from this s t ruc tu re when they need a new task to execute. F igure 2-3, presented earlier, i l lustrates the

T C B d a t a s t ruc tu re and the position of workload and o ther tasks in t h a t s t ruc ture . T h e final three R l

tasks , I D L E l , IDLE2 and IDLE3, are special tasks to record idle t ime in a major frame on each of the

processor t r i ads . After a processor has completed an R l task it will select an idle task and hold t h a t task

unt i l o ther processors have finished their R l tasks and select an idle task.

Final ly , the F T M P R l task dispatcher can assign R l tasks to a specific processor if possible. A special

field in the T C B of the task determines which processor (1 , 2, or 3) to run the task on wi th 0 specifying

any processor. " S C C " modifies this field so it can progressively run a ba t t e ry of self-tests on different

processors. Execut ion of S C C effects T C B ordering since the dispatcher will postpone execution of this

task unt i l the requested processor becomes available by moving this task down the task list.

4.5.3. Calibration

T h e final s tep to synthet ic workload implementa t ion is calibration. Cal ibra t ion determines the

correctness of the workload model. T h e best calibration experiments are, of course, direct comparisons to

n a t u r a l workloads . However, comparisons to dedicated F T M P experiments is acceptable since the goal of

cal ibrat ion is to show t h a t the workload can produce similar results.

T h e cal ibrat ion experiments chosen for F T M P ' s synthet ic workload are baseline experiments previously

conducted wi thou t the workload generator in [Clune 84]. These experiments provide an oppor tun i ty for

comparison. The experiment are:

1. A task switching t ime experiment. This finds the overhead associated wi th s ta r t ing a new
task once a t ask finishes. This t ime is found by comparing t imer values recorded a t the end of
the first task and the beginning of the second task respectively. F igure 4-5 i l lustrates task

30

switching overhead.

2. The task startup experiments measures the overhead of starting a task on a processor. This
time is found by comparing timer values taken at the beginning of tasks running on separate
processors. Figure 4-6 illustrates task startup overhead.

Figures 4-7 though 4-10 are the results of four experiments: task switching time, dedicated experiment;
task switching time, workload experiment; task startup overhead, dedicated experiment; and task startup,

workload experiment.

P i
Task Task 2

P I

Task
1̂ Switching y
I Overhead I

Figure 4-5 : Task Switching Overhead

Task 1

Task
Startup

P 2

1 Task 2
X

1
Figure 4-6 : Task Startup Overhead

Initial comparison is encouraging; both baseline and workload experiments have similar shapes. Both
task startup experiments reveal similar dual peak curves with fringe data points. In the baseline
experiment, these lone data points revealed that the dispatcher was occasionally late starting a task. The
synthetic workload exhibits the same behavior.

Closer inspection of the data reveals that the workload curves of task switching overhead and task
startup time are displaced 4 and 1.88 clock ticks (1 and .47 mSec) respectively from their baseline
experiment counterparts. Thus, overhead exists in the workload that is not present in the baseline
experiments. The source of this overhead is obvious upon inspection of the AED source code of the
baseline experiment task (Figure 4-11) and a workload task (Figure 4-12). The baseline experiment was
designed to measure beginning and end task times. Thus, time is read immediately upon entering and
just before exiting the task. In contrast, the workload contains both task entry overhead (statements

31

c l o c k d a t a -
t i c k s t i m e p o i n t s

12 t i c k s (3 . 0 0 mSec) [2 4 2] *
13 t i c k s (3 . 2 5 mSec) [2 9 8] *

A v e r a g e : 1 2 . 5 5 ± 0 . 0 4 2 T i c k s (5 4 0 d a t a p o i n t s)
3 . 1 3 ± 0 . 0 1 1 mSec

F i g u r e 4 -7 : Baseline Exper iment : Task Switching Overhead

c l o c k d a t a -
t i c k s t i m e p o i n t s

16 t i c k s (4 . 0 0 mSec) [1 2 2] *
17 t i c k s (4 . 2 5 mSec) [6 7] *

A v e r a g e : 1 6 . 3 5 ± 0 . 0 6 8 T i c k s (1 8 9 d a t a p o i n t s)
4 . 0 9 ± 0 . 0 1 7 mSec

F i g u r e 4 -8 : Workload Experiment: Task Switching Overhead

S1-S4) and task end overhead to save results (statements E1-E4). Because the synthetic workload is an

application level tool, overhead is put outside the inner loops. The workload can still be used for timing

intertask events if we take into account this overhead.

By summing the execution times of statements S i through S 4 in the workload we can find the workload

task initialization overhead. Execution times of the R D primitive are from a separate experiment

(Appendix I). Execution time of arithmetic operations are taken from [Clune 84]. Execution time of the
M I F , , statement is neglected since global memory R D time is substantially larger.

S t a t e m e n t # I n s t r u c t i o n E x e c u t i o n Time (mSec)

5 1 RD [1 word] 0 . 1 3 8

5 2 IF (EXEC4 GEQ 0) . . . 0 . 0 (f o r s i m p l i f y i n g c a l c u l a t i o n s)
5 3 0 . 0
5 4 RD [5 w o r d s] 0 . 1 5 0

Similarly, the workload end overhead is:
0 . 2 8 8 mSec (A v e .)

32

clock data-
ticks time points

4 ticks (1.00 mSec) [24] ***
5 ticks (1.25 mSec) [298] **
6 ticks (1.50 mSec) [48] ******
7 ticks (1.75 mSec) [2] *
8 ticks (2.00 mSec) C 29] ****
9 ticks (2.25 mSec) [328] **
10 ticks (2.50 mSec) [9] *
11 ticks (2.75 mSec) [0]
12 ticks (3.00 mSec) [0]
13 ticks (3.25 mSec) [1] *
14 ticks (3.50 mSec) [0]
15 ticks (3.75 mSec) [0]
16 ticks (4.00 mSec) [0]
17 ticks (4.25 mSec) [o]
18 ticks (4.50 mSec) [1] •
19 ticks (4.75 mSec) [0]
20--30 ticks [0]
31 ticks (7.75 mSec) [0]
32 ticks (8.00 mSec) [3] *
33 ticks (8.25 mSec) [o]
34 ticks (8.50 mSec) [1] *

Average: 7.15 ± 0.198 Ticks (744 data points)
1.79 ± 0.014 mSec

Figure 4 -9 : Baseline Experiment: Task Startup Time
Statement # Instruction Execution Time (mSec)

El WRT [12 words] 0.190
EXEC4*6 0.063

E2 WRT [1 word] 0.164
3*EXEC4 0.063

E3 EXEC4=EXEC4+1 0.058
E4 WRT [1 word] 0.164

0.702 mSec (Ave.)
In the synthet ic workload, calculation of task switching must consider task ending overhead of the first

task, and task init ial ization overhead of the second task . Final ly, 0.164 mSec is added since the baseline

experiment mus t wr i te a t imer value t o memory (El) a t the end of the task . Tak ing these in to account,

we get

4.09 mS - 0.288 mS - 0.702 mS + 0.164 mS = 3.26 mS (Ave.)

a value wi thin 5 percent of the baseline experiment 's value.

Similarly, overhead should be deducted from the task s t a r t u p t ime experiment . Since this experiment

compares the first t imer values of two workload tasks, task init ialization overhead for bo th tasks should

33

clock
ticks time

data-
points

5 ticks
6 ticks
7 ticks
8 ticks
9 ticks
10 ticks
11 ticks
12 ticks
13 ticks
14 ticks
15 ticks
16 ticks
17 ticks
18 ticks
19 ticks
20 ticks
21 ticks
22 ticks
23 ticks
24 ticks
25 ticks
26 ticks

Average:

(1.25 mSec)
(1.50 mSec)
(1.75 mSec)
(2.00 mSec)
(2.25 mSec)
(2.50 mSec)
(2.75 mSec)
(3.00 mSec)
(3.25 mSec)
(3.50 mSec)
(3.75 mSec)
(4.00 mSec)
(4.25 mSec)
(4.50 mSec)
(4.75 mSec)
(5.00 mSec)
(5.25 mSec)
(5.50 mSec)
(5.75 mSec)
(6.00 mSec)
(6.25 mSec)
(6.50 mSec)

18]
95]
21]
0]
2]

51]
108]
0]
1]
1]
0]
0]
0]
0]
0]
0]
1]
3]
0]
1]
2]
2]

****************************.<.,,.,,.

****************^^J|l+J|tJ(tJ(t^j(tj |tj |tj(ci |tj(tjjtj(tj(ii(tj | i

9.03 ± 0.391 Ticks
2.26 ± 0.098 mSecs

(306 data points)

F i g u r e 4 - 1 0

be deducted. The actual startup time becomes:

2.26 mSec - 2*0.288 mSec = 1.68 mSec (Ave.)

a value within 10 percent to the baseline experiment's value

Workload Experiment: Task Startup Time

The following table summarizes the above results:
Baseline Workload
Experiment Times Experiment Times Experiment

Task Switching time 3.13 mSec (Ave.)

Minus workload
overhead

i
Task Startup time | 1 . 7 9 mSec

Minus Workload
overhead

4.09 mSec

3.26 mSec

2.26 mSec

1.68 mSec

Although these experiments are not application level calibration experiments, they do show that the

synthetic workload is a valid tool for making baseline experiments, as long as workload overhead is

consumed in any intertask measurements. If measurements are intratask, the overhead is much smaller

34

CMU.TESTl BEGIN

DEFINE PROCEDURE TIMETEST1 TOBE
BEGIN

LONG HOLD.HOLD1;
INTEGER EXEC.RTCNUM.I;
INTEGER A;

HREADCRT.CLOCK.HOLD.2);
RD(CMU.EXEC.EXEC.1) ;
IF EXEC LEQ 14

THEN BEGIN
RD(CMU.RTCNUM.RTCNUM.l);
FOR 1=1 STEP 1 UNTIL RTCNUM

DO BEGIN
A=l;

END;
A = EXEC * 6;
WRTCCMU.TIME(A).HOLD,2);
HREAD(RT.CLOCK,HOLD1,2);
WRT(CMU.TIME(A+1) .H0LD1.2) ; E l

END;
RESUME(O);

END;
END FINI;

F i g u r e 4 - 1 1 : Baseline Experiment Task (AED)

since the clock read time (HREAD) is the only overhead. In conclusion, the workload is a useful tool for

performing experiments on FTMP.

35

CMU.TEST BEGIN

DEFINE PROCEDURE WRKL0ADR41 TOBE
BEGIN

INTEGER X, Y, Z; ... NON-STACK LOCALS //
OWN INTEGER A;
OWN INTEGER LOCAL, EXEC4;
OWN LONG ARRAY HOLD(OUT.VALUES); ...HOLDS TIMER VALUES //
OWN INTEGER ARRAY R41.INPUT(5); ...INPUT PARAMETERS //
INTEGER P; P $=$ R41.INPUT(0);
INTEGER Q; Q $=$ R41.INPUT(l);
INTEGER T; T $=$ R41.INPUT(2);
INTEGER R; R $=$ R41.INPUT(3);
INTEGER S; S $=$ R41.INPUT(4);

RD(CMU.EXECCO) ,EXEC4,1) ; S i
IF (EXEC4 GEQ 0) AND (EXEC4 LES 9) THEN S2
BEGIN S3
RD (R4.INPUT(0),R41.INPUT,5); S4
HREAD(RT.CLOCK,HOLD(0),2);
FOR A=l STEP 1 UNTIL P DO

RD(CMU.GLOBAL,LOCAL,1);
HREAD(RT.CLOCK,HOLD(l),2);
FOR A=l STEP 1 UNTIL Q DO

RD(CMU.GLOBAL,LOCAL,1);
HREAD(RT.CLOCK,HOLD(2),2);
FOR A=l STEP 1 UNTIL T DO
X=Y+Z;

HREAD(RT.CLOCK,HOLD(3),2);
FOR A=l STEP 1 UNTIL R DO
WRT(CMU.GLOBAL,LOCAL,1);

HREAD(RT.CLOCK,HOLD(4),2);
FOR A=l STEP 1 WTIL S DO
WRT (CMU.GLOBAL, LOCAL, 1) ;

HREAD (RT. CLOCK, HOLD (5) , 2) ;
WRT(R41.OUTPUT(EXEC4*6) ,HOLD, 12) ; E l
WRT(R4.ID(3*EXEC4) ,TRIAD. ID, 1) ; E2
EXEC4 = EXEC4 + 1; E3
WRT (CMU.EXEC(0) ,EXEC4,1) ; E4

END; ... IF (EXEC4 GEQ 0) AND .. //
RESUME (0) ;

END;

END FINI;

F i g u r e 4 - 1 2 : Synthet ic Workload Task (AED)

36

5. Future Work
Although much work has been done defining the experimental methodology and using i t to val idate

F T M P , there is still work to be done. F i rs t , the methodology should be verified th rough application to

another system. In par t icular , the Software Implemented Fau l t -To le ran t (SIFT) computer a t AIRLAB

should have the val idat ion steps applied to i t . This computer has const ra in ts similar to F T M P ' s and

would be an excellent candidate for the val idat ion procedure.

On F T M P , a few remaining baseline experiments should be performed. These include:

• Measure the t ime to transfer vary ing blocks of d a t a from global to local memory , varying
pa ramete r s much more t h a n was done in the brief R D / W R T experiments described in
Appendix I.

• Measure ins t ruct ion execution t ime in pairs t o see if the result is equivalent to the sum of the
execution t imes when the instruct ions were measured singly.

• Invest igate overhead and var ia t ion in applicat ion software due t o t he faul t - tolerant

mechanisms of F T M P .

• F ind the nominal length of R 3 and R l tasks on F T M P .

• F ind context swap t ime. This t ime is defined as the a m o u n t of t ime it takes t o s t a r t up an R 3
task once the dispatcher finishes wi th R 4 tasks .

T h e la ter three experiments can probably be performed wi th the synthet ic workload.

T h e potent ia l of the synthet ic workload has only been superficially demons t ra ted . T h e workload should

be used for performance tes ts and comparisons, along wi th applicat ion level baseline experiments . Only

th rough use will i ts power be demonst ra ted .

Also, the present synthet ic workload is a minimal implementa t ion t h a t was used to investigate

feasibility. Present ly , there are only three tasks per r a te group. T h e R 4 and R 3 ra t e groups each have

room for ten more tasks in their t ask s t ruc ture , while the R l r a te group has room for seven more tasks.

T h e only l imit ing factor is the a m o u n t of global memory available on F T M P to hold t imer dumps . More

compact t imer dumps could possibly resolve this problem. Any enhancements will require changing the

workload generator and d a t a analyzer.

Final ly , in the future i t will be desirable t o contras t performance versus reliabili ty of fault- tolerant

computers . One idea is t o in tegra te the synthet ic workload — a performance measurement tool — wi th the

fault-injection experiments .

37

6. Conclusion

This project outl ined and refined an experimental methodology for va l ida t ing the multiprocessor

avionics computer , F T M P . The methodology emphasizes a building block approach in which tests are

performed s ta r t ing a t the instruct ion level, progressing th rough the operat ing system level and finally up

to applicat ion level val idat ion. A t each level baseline experiments, which test a single phenomenon, were

performed. These were followed by more sophist icated experiments which test interact ions between

several baseline phenomenon. Finally, the concept of a generalized applicat ion level experiment tool,

called the synthet ic workload, was developed.

Previous research had developed an outl ine of the methodology and tested i t th rough the application

level. This research refined t h a t methodology wi th addi t ional baseline tests . In addit ion, the synthetic

workload was implemented as an application level tool. The synthet ic workload was then calibrated wi th

a baseline experiment t o demons t ra te the workload 's representativeness.

Al though the technique was developed specifically for F T M P the origin of the technique dates back to

earlier work on multiprocessors a t C-MU. Thus , the methods used here should be applicable to other

computer systems. Tests on another system will supply information on the robustness of the technique

along wi th supplying meaningful comparisons between systems.

By no means is the methodology complete. Using the synthet ic workload for experiments will

undoubted ly reveal deficiencies in the original methodology. B u t the existence of this tool will greatly

improve product iv i ty , allowing researchers to run more experiments and further refine the methodology.

In general, the methodology has proven to be a sound approach to val idat ing computer systems.

38

I. Test of Select R D / W R T Primitives
On F T M P , most p rogram tasks access the shared system memory wi th the following bus service

rout ines:

• RD(sy.8.adr,cache.adr,num). This routines transfers num number of words from system
memory address sys.adr t o cache address cache.adr.

• WRT(8ys.adr,cache.adr,num). This procedure is the same as R D except, of course, the
direction of transfer is reversed.

W e wish t o find the t ime these procedures use to access system memory wi th vary ing transfer sizes. In

par t icular , we are interested in the sizes t h a t are used in the workload. T h e following instruct ions were

tested:

1. RD(sys ,cache , l)
2. WRT(sys ,cache , l)
3. RD(sys,cache,5)
4. WRT(sys ,cache ,12)

Instruct ions 1 and 2 were each executed in a loop 100 t imes along wi th the ins t ruct ion ' A = l ; \ T h e

o ther two instruct ions were executed in a similer loop 50 t i m e s 2 . T o find loop overhead, a loop jus t

containing an ^ = 1 ; ' ins t ruct ion was executed bo th 50 and 100 t imes. This is the 'NULL' loop . Times

to execute instruct ions can be found by subt rac t ing loop overhead from the ins t ruct ion loop, leaving only

instruct ion execution t ime.

T h e results of t he measurements were as follows:

cloclc ticks /iSec per instruction Number
Instruction per loop (Ave.) I 1 of data

/loop count w/ overhead w/o overhead points

1) Null 15.7/100 39.3 ± 0.019 0.0 340
2) RD (x,y,num=l) 70.8/100 177.0 ± 0.025 137.7 ± 0.044 220
3) WRT(x,y,num=l) 69.1/100 172.8 ± 0.023 133.5 ± 0.042 260
4) Null 8.3/50 41.5 ± 0.027 0.0 500
5) RD (x,y,num=5) 38.2/50 191.0 ± 0.025 149.5 ± 0.052 500
6) WRT(x,y,num=12) 46.0/50 230.0 ± 0.018 188.5 ± 0.045 300

T h e first column is the raw d a t a in clock ticks (1 clock tick = .25 mSec). T h e next column is the t ime

to execute a single instruct ion including loop overhead. The th i rd column adjusts the t ime from the

second by subt rac t ing overhead.

2 T h e loop count was reduced to 50 for these calls since many large block transfers could take more time than an R4 process is

allowed

3 A loop must contain at least one instruction; otherwise the compiler will not accept it. This is why ' A = l ' is used as a substitute

for a 'NULL' loop

39

II. Example of Workload Use

This appendix contains an example of the running of the workload generator and data analyzer. An

example of the running of the workload calculator is not presented since that program is discussed in

[Clune 84]. This example starts with the very first step of the user providing information to the

workload generator followed by the loading of FTMP with the synthetic workload. Then, using the two

command files produced by the generator, the FTMP synthetic workload is configured and data collection

is run. Output from the data collection is redirected into a file which is used as input to the workload

data analyzer.

The workload generator basically queries the user on how he/she wants the synthetic workload

configured. Input parameters to tasks correspond directly to workload parameters in Figure 4-2. The

workload generator will also ask if the user wants the special R l tasks (SCC, READALL, and DISPLAY)

included in the workload. Finally, this program will inquire about data collection including what values

and how many iterations the user wants from the workload collection.

The workload data analyzer is more complicated. This program reads in timer values produced by the

collection file generated by the generator and quizzes the user on which timer values to compare. The

initial part of the analyzer is file management. The program skips comments and tables in the data file

to find the start of the workload data. It then quizzes the user on where he/she wants output sent.

Should there be a break due to garbage data, a new collection set, or incomplete data (i.e. C T A stalled in

the middle of a collection and had to be restarted), this program will skip to the next major frame of data

and return to the file management prompt.

Next, the Analyzer gets from the user timer values to compare. The format for specifying timer values
is:

<task name> <timer no>
where <task name> : : = READAL. SCC. I D L E [1 2 3] , R [4 3 1] [1 2 3]

<tlmer no> : : = 0 - 5 for Rxx tasks.
6+ for timer value In another collection frame.
0 - 1 for READALL. SCC and IDLE task.

Figure II-l illustrates the workload tasks and timer numbers. For Rxx tasks, the user can specify a

number greater than 5 to refer to a timer value in another collection frame, e.g. 6 corresponds to the 0th

timer value in the task iteration immediately after the current iteration. Thus, to find the time between

running of task R41 we would compare R41 5, the last timer value in task R41, to R41 6, the first timer

value in the next R41 iteration. This is feasible since the timer values for all iterations of a task in a

major frame are stored in a continuous array. The analyzer will try to collect as many data points as

possible in a major frame.

40

R41 / I
Length

Time
Between R4 i
R41 Task J~>o
Runs

R31 A
Frequency

F i g u r e I I - l : Illustration of Workload Tasks

41

It is recommended that the reader look at the steps for running the workload presented in Section 4.5.1

while reading through this example. Figure II-2 illustrates the running of the workload. '.COM' files

contain CTA commands for loading FTMP with the synthetic workload (2TRIAD.COM), configuring the

workload (CONFIG.COM), and collecting data from the workload (C0LLECT.COM). WRKLD.CAP is

the absolute load module of the synthetic workload. WRKLD.LOG is an output log of workload data

produced through the collection command file (C0LLECT.COM). WRKINFO.TXT is an internal file

that communicates workload information from the workload generator to the data analyzer.

Throughout this appendix the user response will be in b o l d f o n t while italicized phrases are guiding

comments. Space constraints require that the example be minimal. Therefore, data collection is for

e i g h t major frames of data. This is much less than would be included in a normal experiment.

Workload
Generator

C0NFIG.COM

2TRIADS.COM

VRKLD.CAP

VRKLD.EXE

F "TM

VRKLD IOG

VORKINFO.TXT

ANAL .EXE

F i g u r e II-2: Running the F T M P Workload
$ R U N W R K L D

I n p u t f i l e [S T D I N] : < C R >
O u t p u t f i l e [STDOUT] : C O N F I G . C O M
N o . o f R l t a s k s : 0
N o . o f R3 t a s k s : 1
T a s k R 3 1 :
T ime l i m i t i n t i c k s (1 t i c k = 0 . 2 5 msec) [48 t i c l c s] : < C R >
I n p u t p a r a m e t e r s [? o r (P Q T R S)] : 0 0 0 0 0

http://2TRIAD.COM
http://CONFIG.COM
http://C0LLECT.COM
http://C0LLECT.COM
http://C0NFIG.COM
http://2TRIADS.COM
http://CONFIG.COM

42

No. of R4 tasks: 2
Task R41:
Time limit in ticks (1 tick=0.25 msec) [24 ticks]: < C R >
Input parameters [? or (P Q T R S)] : 0 0 0 0 0
Task R42:
Time limit in ticks (1 tick=0.25 msec) [24 ticks]: < C R >
Input parameters [? or (P Q T R S)] : 0 0 0 0 0
How many processor triads (1, 2, or 3)? 2
Do you want SCC linked in [Y] ? < C R >
Do you want DISPLAY linked in [Y]? < C R >
Do you want READALL linked in [Y] ? < C R >
Data for collection
Do you want the data collection loop in a separate file? [n] y
Output file [STDOUT] : COLLECT.COM
Wait time between collections [6 sees] : < C R >
There are 2 R4 tasks.

How many of these tasks do you want data from? [ALL] < C R >
There are 1 R3 tasks.

How many of these tasks do you want data from? [ALL] < C R >
Do you want the ID table dumped? [YES] < C R >
Do you want IDLE, SCC, and READALL values dumped? [YES] < C R >
Loop iterations [25]: 8

$ @2TRIADS .COM Load FTMP with the synthetic workload.
Output from loading...
Bit set

THIS PROGRAM STARTS UP 2 PROCESSOR AND MEMORY TRIADS.

MEMBERS OF TRIAD1 ARE LRU'S 0, 1 AND 2.

MEMBERS OF TRIAD2 ARE LRU'S 3, 4 AND 5.

THE MASTER IS LRU "A".

COOP.CAP LOADED IN MASTER

MASTER ISSUING BUS ENABLE/SELECT COMMANDS.

CLEARING SYSTEM MEMORY TO 0
BEGINNING LOAD OF EXEC MEMORY IMAGE
SYSTEM MEMORY LOAD COMPLETE

LRU'S 6,7,8,9,A,B ARE MARKED FAILED.

TRIAD.ID.TABLE, MRR.TABLE SHOULD BE ALTERED TO CHANGE
THIS CONFIGURATION.

SLOP IS SET TO 40 PER CENT OF R4 PERIOD.

STARTING 2 TRIADS

MASTER MAKING FINAL BUS ASSIGNMENTS

http://COLLECT.COM

43

SYSTEM STARTED IN MULTIPROCESSOR MODE.

CONFIGURATION TABLES ARE LOCATED AS FOLLOWS:

LOCATION LENGTH
BUS INMUX SELECT CODE 0 20 12
C BUS ASSIGNMENTS 0 20 12
P, R AND T BUS ASSGN 0 38 12
MEMORY STATUS 0 44 12
PROCESSOR STATUS 0 50 12
ERROR LATCHES 1 00 48
INITIATING TRANSFER OF CLOCK FROM MASTER

Bit is reset
DISCONNECTED FROM C BUS 1
DISCONNECTED FROM C BUS 2
DISCONNECTED FROM C BUS 3
DISCONNECTED FROM C BUS 4
DISCONNECTED FROM C BUS 5

$ © C O N F I G
Output from configuring...

. Linking in DISPLAY .

Preparing Rl tasks

0 Rl tasks .

Preparing R3 tasks

1 R3 Tasks

Preparing R4 tasks

2 R4 Tasks

Bringing up 2 Processors

44

Repairing 0-2 .

Failing 3-8

Bringing up Processors 3-5

Linking in IDLE and (optionally)
SCC, DISPLAY and READALL

$ © C O L L E C T / O U T P U T : W R K L D . L O G
All output going a file

$ R U N A N A L
Send Output to the terminal

Input file [STDIN] : w r k l d . l o g

STARTING COLLECTION

TABLES OF INTEREST LRU assignment table and
table of workload input

0020 0020 0016 0016 0016 0015 0015 0015
0020

0000 0000
0000 0000
0000 0000
0000 0000

0000 0000 0000 0000
0000 0000 0000 0000

0000 0000
0000 0000
0000 0000

0000
0000
0000

0000
0000
0000
0000
042E

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
000A 042D

0000
0000
000A

0000
0000
042D

0000
0000
000F
000F
000F
000F
OOOF
OOOF
0010 OOOA 042F OOOA

JSStart of new data.
Where do you want new data (S,#,N,L,?): N
New output file [STDOUT] : < C R >

EATING DATA...
For this running of the workload we will collect data

to measure four things:
*The R 4 1 task length. This is calculated by subtracting

the first timer value in task R 4 1 (R 4 1 0) from the last
timer value in that task (R 4 1 5) .

* The time for the second processor to start its R 4 task
after the first processor started its R 4 task. This "task
startup " time is found by comparing timer values taken
at the beginning of tasks R 4 I and R 4 2 (R A 1 0 and R 4 2 0 /

*The effective rate of an R 3 task. This is done by comparing
time at the beginning of each iteration of the first R 8 task
(R Z 1 0 to R 3 1 6 / There are four RS task iterations
per major frame of data. Thus, t h r e e values can be
collected in a major frame.

* SCC startup time. This is a measure of the time for SCC to
start a fter the first R 4 task starts. It is found by comparing
the first timer value in SCC (SCC 0) with the first timer

0050
0058
0000
0008
0010
0018
0020
0028
0000

2 processor
triads

45

reading (R 4 1 0) of the first iteration of task R^l.

There are:
2 R4 tasks, 2 are dumped.
1 R3 tasks, 1 are dumped.
0 Rl tasks, 0 are dumped.
The task ID table was dumped.
SCC, READALL and IDLE task values were dumped.
Data point dump 1. Please list highest rate group first.

First timer value (cmd,Q,H,?) [?] > R41 0
Second timer value > R41 5
Name of this data dump: Task R41 length

Data point dump 2. Please list highest rate group first.
First timer value (cmd,Q,H,?) [?] > R41 0
Second timer value > R42 0
Name of this data dump: Task Startup time

Data point dump 3. Please list highest rate group first.
First timer value (cmd,Q,H,?) [?] > R31 0
Second timer value > R31 6
Timer number for 2nd task crosses a frame boundary.
How many collections do you want per dump group? [?] > < C R >

Normal collection values are: 9 (R4) and 4 (R3).
Use a number that is less than default or

you'll go out of bounds on the data structure.

How many collections do you want per dump group? [?] > 3
Name of this data dump: R3 task rate

Data point dump 4. Please list highest rate group first.
First timer value (cmd,Q,H,?) [?] > R41 0
Second timer value > SCC 0
Which R4 task iteration do you want? [0-8] 0
Name of this data dump: sec startup time

Data point dump 5. Please list highest rate group first.
First timer vainp (n™* n u o\ r~-. . ~

4 10 403
4 6
4 10 635
4 6
4 12 380
4 6
4 11
4 7
4 11
4 11 396
4 6
4 11 638
4 6
4 14 380
4 6
4 10
4 7
5 11
4 11 638
3 6

378

89

294

46

5 11
4 7
4 11
4 10 637
3 6
5 11 382
4 6
4 11 643
4 6
5 11
4 7
4 10
5 11 638
4 6
4 16 381
4 6
4 10 642
4 6
4 11
4 7
4 10

»Task R41 length.

4 12 389
4 6
5 11 642
4 6
4 11
5 7
4 10
4 11 638 443
4 6
4 10 381
5 7
3 11 641
4 6
4 10
4 7
5 11
5 11 640 283
3 6
5 11 380
4 6
5 11 638
4 6
4 10
4 7
4 11
5 11 639 84
4 6
4 11 380
4 6
4 11 642
4 6

47

AVERAGE = 4.125000 (72 Data points)
VAR = 0.223592 (ST. DEV. = 0.472855)
MAX = 5 MIN = 3

Print histogram of Task R41 length [Y] ? < C R >
3 (4) * * * *

4 (55) ***
5 (13) *************

»Task Startup time.
AVERAGE = 8.888889 (72 Data points)
VAR = 6.269163 (ST. DEV. = 2.503830)
MAX = 16 MIN = 6

Print histogram of Task Startup time [Y]? < C R >
6 (23) ***********************
7 (9) *********
8 (0)
9 (0)

10 (11) ***********

12 (2) **
13 (0)
14 (1) *
15 (0)
16 (1) *

» R 3 task rate.
AVERAGE = 533.458333 (24 Data points)
VAR = 12412.259040 (ST. DEV. = 128.110339)
MAX = 643 MIN = 380 The spread is too large to print Print histogram of R3 task rate [Y]? no

»scc startup time.
AVERAGE = 240.750000 (8 Data points)
VAR = 21286.214844 (ST. DEV. = 145.897960)
MAX = 443 MIN = 57

Print histogram of sec startup time [Y]? no
Merge any of the data sets? no

$

48

References

[Clune 84]

[Draper 83a]

[Draper 83b]

[Draper 83c]

[Draper 83d]

[Feather 84]

[Ferrari 78]

[Hopkins 78]

[Kong 82]

(NASA 79a)

(NASA 79b)

[Singh 81]

[Toy 78]

E d Clune.
Analysis of the Fau l t -Free Behavior of the F T M P Muliprocessor System: Baseline

Measurements and Synthet ic Work load Development .
Mas te r ' s thesis, Carnegie-Mellon Universi ty, 1984.

Development and Evaluation of a Fault-Tolerant Multiprocessor (FTMP) Computer,
Vol I, FTMP Principles o f Operations
Charles S ta rk Draper Laborator ies , 1983.
Con t r ac t Repor t (CR) 166071.

Development and Evaluation of a FTMP Computer, Vol II, FTMP Software
Charles S ta rk Draper Laborator ies , 1983.
CR166072.

Development and Evaluation of a FTMP Computer, Vol III, FTMP Test and

Evaluation
Charles S ta rk Draper Laborator ies , 1983.
CR166073.
Development and Evaluation of a FTMP Computer, Vol IV, FTMP Executive Summary
Charles S ta rk Draper Laborator ies , 1983.

F r a n k Fea the r , Carlos Liceaga.
FTMP Programmer's Manual
2nd edition, 1984.

Domenico Fe r ra r i .
Computer Systems Performance Evaluation.
Prentice-Hall , 1978.

Hopkins , A.L. , et .al .
F T M P - A Highly Reliable Multiprocessor.
IEEE Trans, on Computers , October , 1978.

T h o m a s H. Kong.
Measur ing T ime for Performance Eva lua t ion of Multiprocessor Systems.
Mas te r ' s thesis, Carnegie-Mellon Universi ty, 1982.

NASA-Langley Research Center .
Validation Methods for Fault-Tolerant Avionics and Control Systems - Working Group

Meeting I, NASA-Langley Research Center , 1979.
NASA Conference Publ ica t ion 2114.

Research Tr iangle Ins t i tu te .
Validation Methods for Fault-Tolerant Avionics and Control Systems - Working Group

Meeting II, NASA-Langley Research Center , 1979.
NASA Conference Publ ica t ion 2130.

Ajay Singh.
Pegasus: A Control lable , Interact ive, Work load Genera tor for Mult iprocessors.
Mas te r ' s thesis, Carnegie-Mellon Universi ty, 1981.

W . N . Toy.
Fau l t -To le ran t Design of Local ESS Processors.
IEEE Trans on Computers , October , 1978.

49

[Wensley 78] Wensley, J.H., et .al .
S IFT: A Compute r for Aircraft Control .
IEEE Trans, on Computers , October, 1978.

