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Abstract

This paper reports on MUD, a drilling fluids consultant developed at Carnegic-Mcllon University. MUD is
able to diagnosc drilling fluid problems and recommend treatments for their correction. MUD's functionality,
its approach to diagnosis, and its trcatnent strategies are discussed.  In addition, we examine why MUD's

approach to diagnosis is successful given domain constraints, and draw scveral conclusions with respect to

knowledge acquisition strategics.
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1. Introduction

‘The designer of a diagnostic system must identify the domain knowledge that allows observed problems to
be cxplained in terms of their causes and must decide how this knowledge is to be represented and used.
Surveying existing diagnostic systems, one sees a continuum of possibilities. At one end. exemplified by the
EMYCIN family of systems [vanMelle 81}, evidential support functions arc applied to evidence whose weight,
with respect to diagnostic conclusions, is cxplicitly represented in the program. The support function takes as
its arguments the degree of support contributed by each of a number of weighted evidential considerations
and returns a value indicating the degree to which the evidence combines to support a diagnostic conclusion.
Such systems are often said to have compiled diagnostic knowledge: this means that the intermediary steps in
the causal path from hypothesized problem to evidential consideration are not represented, and that the

degree of evidential support provided by each consideration is subjectively assigned.

At the other end. exemplified by recent work on computer fault diagnosis [[Yavis 83), diagnosis rests on an
explicit consideration of articulated causal pathways, which are either statically represented as a network of
causally related parts or dynamically generated on the basis of more general causal knowledge. A diagnostic
conclusion is achieved by successfully tracing causal pathways that unite observations with their hypothesized
causes. Here problem solving exploits a world model of events, states, and causal relations. The attempt is to
produce a well-connected causal account, or in the extreme, to simulate a pattern of results which corresponds
to those observed. Unlike the EMYCIN type of system. the diagnostic significance of any observation is a

function of its place in the network of instantiated causal relations.

Along the continuum from ‘evidentially’ to "causally’ oriented systems are those in which the causal and
functional structure of the modelled entity becomes more and more prominent in the representations and
scarch heuristics of the diagnostic system though support functions may still be used to assign evidential
relevance and achicve diagnostic conclusions. Systems such as CADUCEUS [Pople 82], CASNET [Weiss 78], and

ABEL {Patil 81} occupy different points along the continuum.



MUD', a drilling fluid? diagnostic and treatment consultant recently developed at Carncgic-Mecllon
University in cooperation with NI Baroid, occupies a place near the cvidential end of this continuum. MUD
was developed for a number of reasons:

1. To achieve some clarity about the desirability and implications of attacking a diagnostic task using
an cvidentiai as opposed to a causal approach.

2. To explore the appropriateness of existing approaches to diagnosis in a novel domain.

3. To determine how far the flexibility of pattern matching production system languages, such as
ops, could be exploited in a diagnostic and treatment task.

This paper discusses the MUD system and our findings with respect to the above goals. Although MUD has
entered field testing, as of the writing of this paper it is too carly to report on results. During development,
however, MUD was confronted by 25 or so test cases. In these cases it demonstrated a level of competence
comparable to that of expert mud engincers on the 20 or so types of mud problems it knew about at the time.

Thus, we are confident that our design decisions, as discussed below, have led to a workable system.

MUD is designed as a production system and is implemented in OPSs [Forgy 81]. A production system is
composed of conditional. if-then, rules called productions. The if part of each rule is a statement of
conditions, and the then part a statement of actions. Rules are instantiated when their conditions match
expressions, or data objects, in a global working memory. Instantiated rules are said to be members of a
conflict set. The production system interpreter chooses a rule to fire from among those in the conflict set.
When a rule is fired. its actions are carried out. This typiéaliy‘causes changes to working memory resulting in
a new conflict set. While the examples presented below assume limited familiarity with OPSS, this is not

necessary to an understanding of the text.

1.\1any peopie besides ourselves have contribuled to the development of muD: Randall Brooks, Steven Downes-Martin, David Geller,
Kinson Ho, John Hutter, and Jeff Stout deserve speciai mention. Jeff Stout also deserves thanks for coiiecting data on Lhe nature of

MUDY'S ralcs,

b
“Drilling fuids are ofien composed of clay. which gives them a muddy appearance: hence. drilling fluids are referred to as mud and
drilling fluids engincers as mud cnginecrs.



2. vmup and its Domain

MUD serves as a diagnostic and treatment consultant to mud engineers. Mud engincers know how (o test
for and regulate drilling fluid propertics that influence characteristics of the bore hole, as well as aspects of

the drilling operation. A well maintained drilling tluid serves to optimize:

1. Hole cleaning (the removal of cuttings and cavings).
2. The suspension of cuttings and weight material during interruptions in circulation.
3. The removal of sand and cuttings from the mud at the surface.
4, The prevention of caving and sloughing of the hole.
5. The control of subsurface pressures.
6. Filtrate control.
7. Transmission of hydraulic pressure to the bit.
8. The cooling and lubrication of the bit and drill string.
9. The support of the drill string and casing.
10. Well logging.

MUD's. diagnostic conclusions and treatment recommendations must be sensitive to the composition, or
type, of mud in use. At the point that MUD moved from CMU to NL Baroid. it could find the causes of mud
problems and recommend treatments to ;:orrcct these problems for 2 of the 10 standard ud types it will
¢ventually handle. A mud problem is defined as a deviation from cxpected measures for one or more of
about 20 mud properties typically monitored by mud c:nginccrs:3 these propertics include density, solids
content, rheology, and filtrate characteristics, among others. Deviations are recognized from disparities
between current measures and optimal target levels established by a mud plan4 that provides expectations of
the state of the drilling fluid. MUD has some capacity to generate its own mud plem,5 but morce typically the

plan is provided from an external data source or interactively by the user.

Diagnosing a mud problem entails finding the causes for deviant test results. Possible causes include

contaminants, high temperatures, high pressures, and inadequate corrective treatments, including the under-

3The traditional approach has been to enter this data on an API {American Petroleum Institute) drilling mud report form: see
Appendix A,

In the drilling fluids domain this is typically called a mud program: it is referred to here as a plan in order o avoid a software
conaoation.

S N
This 18 done by a companion program to Mub. called TARGET SETTER, Wark en Lhe latter system is primarily due to the clorts of
Steven Downes-Martin,



use of solids-removal cquipment and the unsatisfactory use of chemical additives. MUD may arrive at more
than one hypothesis about possible causcs for any sct ol: test results. In this case, hypotheses are ranked by
confidence: MUD is able to explain its level of confidence in cach hypothesis. MUD suggests treaunents which
may require cither restoring or altering mud properties through the addition of chemical additives or the
operation of special equipment. When alicrnate treatments are available, MUD evaluates them and chooses

the best. In what follows some representative output from the MUD system is described.®

2.1 Diagnosis

Whenever MUD is provided with information about mud propertics, it produces a list of thosc properties
that are either low (L) or high (If) with respect to a desired target value. For example, MUD might produce the
following list:

THE FOLLOWING ARE ABOVE OR BELOW SET TARGETS
DENSITY ' L
PLASTIC VISCOSITY L
YI1ELD POINT L
HTHP CAKE THICKNESS H
SOLIDS CONTENT L

LIQUID CONTENT H

ELECTRICAL STABILITY : H

OIL WATER RATIO

LOW SPECIFIC GRAVITY SOLIDS L

In addition to recognizing deviations with respect to threshold values, MUD is also sensitive to the degree of
change in a mud property and its proximity to a problem threshold. When a property deviates more than a
certain percentage from either its previous level or its reading on a previous day, a warning is issued. A
warning is also issued if the current reading is within a certain degree of a problem threshold. These warnings
are merged by a primitive discourse manager.

***WARNING***
THE CURRENT READING OF YIELD POINT { 6 LBS/ 100 SQ-FT |
IS 67 % HIGIER THAN THI: PREVIOUS READING,
BUT IS MOVING TOWARYD THE TARGET VALUL OF 115 LBS/ 100 SQ-FT

PFEWARNING™

6 . . . .
See Appendix B for an example of a complete interaction with MUD.



THECURRENT RFADING OF PLASTIC VISCOSITY [38CP ]
1516 % LOWER TTIAN THI PREVIOUS READING,
ANIY IS MOVING AWAY FROM THI TARGUT VALUE OF 42.5CP

PAWARNING***
THE CURRENT READING OF TOTAL CHILORIDES [ 280000 MG/L. ]
IS 27 % NIGHER THAN THE PREVIQUS READING
AND RIGHT AT THE MINIMUM ACCEPTABLE VALUE OF 280000 MG/1,
BUT IS MOVING TOWARD THE TARGET YALUE OF 290000.0 MG/L

Having considered the evidence and perhaps after requesting more information from the user, MUD reports
its strongest conclusions, provided that they are supported by a combined evidential weight exceeding a set
threshold. At the same time, any observation not consistent with the hypothetical evaluation is reported.

THERE 15 CONSIDERABLE EVIDENCE THAT:
I: THEREIS AN INFLUX OFHYDROCARBONS
ALTHOUGH THERE IS ENOUGH EVIDENCE TO ACCEPT THE HYPOTIESIS,
CONTRARY TO EXPECTATIONS:
THERE IS NO DECREASE IN ELECTRICAL STABILITY

At this point in an interaction, the user is prescnted with a menu offering several kinds of explanatory
displays. Most importantly, one can examine MUD's reasons for its asscssinent of any hypothesis considered
during a diagnostic session.

WillCH HYPOTHESIS WOULD YOU LIKE EXPLAINED[1]: 1

THAT THERE IS AN INFLUX OF HYDROCARBONS CAN BE ACCEPTED BECAUSE
THERE IS AN INCREASE IN SYSTEM VOLUME !
THERE IS A DECREASE IN LOW SPECIFIC GRAVITY SOLIDS
THERE IS AN DECREASE IN DENSITY
THERE IS A DECREASEIN PV

AND MORE SPECIFICALLY
THE OIL-WATER RATIO IS UP

In addition to explanations of the above sort, a user can find out which hypotheses the system considered
during its analysis (and how confident it was in each), reccive a summary of what each of these hypotheses
would have accounted for, and ask. for any particular symptom (or deviant result), which hypotheses would
have explained it. Finally, the user can ask if there is any deviant data that is not accounted for by some

accepted hypothesis.



2.2 Treatment

Having drawn its conclusions about the causes behind observed property deviations, MUD is prepared 1o
provide treatment recommendations. MUD deals with treatments at two levels of specification. At the first
level, it provides a treatment plan in which the nature of reccommended additives and their conseguences are
described.  Since many of the cffects of the diagnosed problem are secondary resuits of certain deviant
properties, MUD's treatment plan covers only what it believes to be the primary property deviations.

PROBLEM: AN INFLUX OF FORMATION HYDROCARBONS
EFFECTS:
DECREASE IN 10 SECOND GEL-STRENGTH
DECREASE IN 10 MINUTE GEL-STRENGTH
DECREASE IN DENSITY
DECREASE IN LOW SPECIFIC GRAVITY SOLIDS
DECREASE IN PLASTIC VISCOSITY
DECREASE IN YIELD POINT
INCREASE IN OIL WATER RATIO
TREATMENTS:
ADD WEIGHT-MATERIAL TO INCREASE DENSITY
ADD EMULSIFIER TO INCREASE ELECTRIC STABILITY
ADD WATER TO DECREASE OIL WATER RATIO

At the second level of description, MUD recommends specific additives and their amounts; the cost of each
addition is given, together with the total cost of the treatment plan. An asterisk next to an additive means that
the system knows about other additives with the same function.

MATERIAL SPECIFICATIONS

PRODUCT RECOMMENDED CURRENT COST OF
TREATMENT INVENTORY MATERIALS
EZ-MUL 4 DRUMS 1800 DRUMS  § 124
INVERMUL 21 DRUMS 1800 DRUMS  § 17427
* BARGAIN 670 5X 2800 SX 3 1786
WATER 53GALS 2800 GALS $ 13
GELTONE 208X 800 SX 3 1453
TOTAL COST OF THE ABOVE MATERIALS 1S: $ 25914

RESULTING VOLUME = 2064 BBL

‘The user may ask for two kinds of explanations about the recommended treatment plan. [f the user asks to
have the recommended amounts explained. the nature of the explanation offered depends on the function of

the additive. For instance, if an emulsificr is added, the standard rccommended dosage at a particular



temperaturce is indicated, together with any factors that lead to a modification of that dosage. 1 oil is added,
the amount is ¢xplained in terms of that needed 10 incrc.usc the eil/water rativ from some current value (o a
desired target value. The user may also examine the alternatives to an asterisked additive to find out why it
was not MUD's choice: MUD decides among alternatives on the basis of a parametric function which takes into
account cost of treatment, expected side effects, and inventory.

{M]: EXPLAIN EZ-MUL
AT 325 DEGREES A DOSAGE OF 3PPB IS REQUIRED. 1 DRUM ISSLIGHTLY MORE TIIAN 26.25 LS,
21 LBS. SHOULD BE ADDED TO COVER AN ADDITIONAL SYSTEM VOLUME OF 7 BBL.
AN ADDITIONAL 25% OF 17-MUL 1S ADDED TO THE RECOMMENDED TREATMENT WHEN
DRILLING THROUGH SALT, BRINGING THLE TOTAL TO 26.25 LBS.
[M]: ALTERNATIVES TO BARGAIN '
BAROIID} IS AN ALTERNATIVE TO BARGAIN:
BARCID 950 SX 1500 SX 3 4010
BARGAIN WAS PREFERRED BECALUSE:
IT IS CHEAPER
IT HAS FEWER SIDE EFFECTS



3. Diagnosis

3.1 mup’s Approach

There are several substantial design decisions that must be made carly in the development of a diagnostic
system. Perhaps most important is the decision of where to locate a system on the continuum of evidential to
causal approaches. MUD is located near the ¢vidential end of this spectrum for a number of reasens discussed

more fully elsewhere {Kahn 84a].

In summary, MUD has little need of the two features that often make a modcl-driven approach desirable,
namely a constrained search of diagnostic considerations and explanations of why such considerations are
evidentially relevant. An INTERNIST-like causally-constrained scarch from symptoms to deep causcs offers no
advantages because the number of potential diagnostic conclusions is limited due to the initial availability of
diagnosticalfly discriminative evidence. Deep explanations are not required since the typical users of MUD
have little understanding of mud chemistry; they are trained to recognize significant patterns of evidence and
to draw conclusions from these rather than from an ﬁnders‘mnding of how problematic events cause the
observed sympioms. Moreover, in any particular run-time context, it would have been unreasonable to

gather all the information that a model-driven diagnosis would have required.

Once one decides to take an evidential approach, there is a quite natural structure to diagnostic problem

solving:

1. Generate a set of plausible hypotheses.

2. Order the hypotheses for investigation.

3. For each hypothesis, determine what information is required in order to accept or reject it.
4, Seek out this information.

5. Evaluate each hypothesis on the basis of the available evidence.

MUD follows this approach fairly closely, as do INTERNIST [Pople 82], and to a somewhat lesser degree,
EMYCIN [vanMelle 81]. But within this gencral approach, the designer of a diagnostic systern, is presented

with a number of design decisions bearing on

1. the representation of diagnostic knowledge
2. the scarch of the problem space

3. the evaluation of evidence and hypotheses
4. the explanation of diagnostic conclusions.



3.2 Representation

MUD relies on compiled diagnostic knowledge and evidentiat support functions.  Figure 3-1 provides an
example of a rule expressing the relation between a hypothesis and the cvidence which supports it. Fach
diagnostic ruie is a production that may be fired when MUD decides to investigate a relevant hypothesis. A
description of the cvidence supporting a hypothesis is then entered into its global working memeory, Other
more general rules constitute an inference engine and previde the capabilities for secking and evaluating
evidence, as well as deciding among hypotheses.

(P HYPOTHESIS::FORMATION-SOLIDS-CONTAMINATION
(HYPOTHESIS +tNAMLE FORMATION-SOLIDS +STATUS OPEN)
{DATA T™NAME MUD-TYPE *VALUE INVERMUL)
-3
(BIND KNLEWLABEL>)
(MAKE REASON +[FOR FORMATION-SOLIDS tLABEL <NEWLABELY +TYPE RESULT
tNAME LOW-SPECIFIC-GRAVITY-SOLIDS-UP +POSITIVE-SUPPORT ¢ t NEGATIVE-SUPPORT 8)
{(MAKE DATAFOR *FOR <NEWLABEL> +OBJECT DATA tQBIECT-NAME LOW-SPECIFIC-GRAVITY SOL_IDS
tRELEVANT-ATTRIBUTE DIRECTION +CONDITION HIGH))
English translation:’
When assessing the possibility of formation solids contamination using an invermul mud
consider the following evidential relations: -
If the percent of formation solids in the system is higher than expected under normal conditions,
there is considerable reason (.9) for believing that there is formation solids contamination.
If the percent of formation solids in the system is not higher than expected under normal conditions,
there is considerable reason (.8) for disbelieving that there is formation solids contamination.

Figure 3-1: A sample rule

The effect of the diagnostic rules is to generate a tree of evidential considerations or reasons below each
hypothesis. At the top node of each tree is a unique HYPOTHESIS. Below each HYPOTHESIS are one or more
REASONS. A REASON represents a consideration with a positive and negative evidential weight, which may be
used in confirming and/or disc0nﬁnning the HYPOTHESIS. In other words, the evidential focus of the rule can
be considered both in terms of its sufficiency and necessity vis a vis deducing that the hypothesized state

holds.

7 ) . ‘ .
All of the rule translations in this report are hand generaled. The translations emphasize the main import of the rule, and do not

correspond directly to the condition clements or actions of the rules.
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Each REASON is linked by a network to data that can potentially justify the consideration. In the simple
casc, there 1s a single Hnk, expressed in the DATAI'OR, bciwccn the REASON and onc ‘observation’ (the value of
an attribute of a specified data object). In other cases, a REASON may be linked to a set of observations as is
the case in the rule in figure 3-2. A truth value is returned to the REASON by a Boolean function over the set

of associated observations.

In figure 3-1, the REASON provides support for the hypothesis that formation solids are building up in the
drilling fluid. The evidence which grounds the REASON is described in the DATAFOR working memory
clement as the value of the DIRECTION attribute of the DATA object whose name is
LOW-SPECIFIC-GRAVITY-SOLIDS. When the test specified in the +CONDITION field is true for the value of
+RELEVANT-ATTRIBUTE, the REASON is justificd and may be used in support of the hypothesis to which it is
linked. Thus, in the example, if the value of 'DIRECTION in the specified data object is HIGH, then the
REASON linked to the DATAFOR is justified. When a rule is justified, the value specified in the
+POSITIVE-SUPPORT field will be used in computing an overall measure of belief for the hypothesis in
question. The value specified in the +NEGATIVE-SUPPORT ficld will be used in computing an overall measure

of disbelief when a REASON is unjusﬁﬁed (see section 3.4).

In figure 3-2, the top node of the DATAFOR network is a conjunctive condition on subsequen-t DATAFORS,
each of which is denoted by having a +SIBLING ficld of <SIBLING>. The DATAFOR which links the REASON to
the current value of nacl-ppm (parts per million of dissolved sodium chloride) is of +TYPE RELEVANCY. The
consequence of this is that the supported reason will be ignored unless this DATAFOR evaluates to true, which
will be the case if and only if the current amount of dissolved sodium chloride (represented as the +VALUE

attribute of the data object named NACL-PPM) is less than 380,000 ppm.

3.2.1 Big rules and little rules

Diagnostic rule-based expert systems differ in regard to the amount of evidential knowledge represented in
arule. As figure 3-3 shows, the typical MYCIN rule demands that several pieces of evidence, including several
symptoms, be present before any conclusion can be drawn. While MYCIN includes rules that combine distinct
evidential considerations, it also uses an algorithmic procedure of evidential combination. In this respect,

MYCIN differs from systems developed using EXPERT [Weiss 78], in which a distinct rule for every element in
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(P DEMONZNYPOTHESIZE-SALT-NACL-PPM-UP

(IIYPOTTIESIS tNAME SALT 1STATUS OPEN)

(DATA tNAME MUD-TYPE s VALUE INVERMUL)

->

(BIND SNEWLABIEL> (GINTY)

{(MAKE REASON 1T°0OR SAL'T L ABEL KNEWLABEL> tTYPE CAUSE
TNAME NACL-PPM-UP +POSITIVLE-SUPPORT 2 tNEGATIVE-SUPPORT 9)

(BIND <SIBLING> (GINTY)

(MAKE DATAFFOR tI'OR <NEWLABELD *CONDITION AND <SIBLING>)

(MAKE DATAFOR 11FOR KNEWLARBEL> tEXPLAINED-BY SALT tOBIECT DATA tOBJIECT-NAMIE NACL-PPM
tRELEVANT-ATTRIBUTE DIRECTION tCONDITION = HIGH tSIBLING ¢SIBLINGY)

(MAKE DATAT'OR +1FOR <NEWLABEL> t+TYPE RELEVANCY tOBIECT DATA tOBJECT-NAME NACL-PPM
TRELEVANT-ATTRIBUTE YVALUE +CONDITION < 380 tSIBLING <SIBLING>))

English translation:
When assessing the possibility of a sait formation being drilled when using an invermul inud
consider the following evidential relations:
If the current amouni of disselved salt is less than 380,000 ppm and
is present in amounts higher than expected
there is a small reason {.2) for believing that a salt dome is being drilled.
If the current amount of dissolved salt is less than 380,000 ppm and
is not present in amounis higher than expected
there is a considerable reason {.8) for disbelieving that a sait dome is being drilled.

Figure 3-2: A logically comptex rule
the powerset of evidential considerations is required.8 MUD is at the opposite extreme from systems
developed with EXPERT. Domain experts are asked only to specify and weight rules whose conditions cannot
be broken up into more elementary” evidential considerations. An elementary evidential consideration
(referred to as an evidential focus) is typically a single symptom together with one or more background (or
contextual) considerations which affect the diagnostic significance of observing that symptom. The rule of

combination discussed in section 3.4 is used to combine evidence across different rules.

There are several reasons for pushing down to an elementary level. The first is that the knowledge
acquisition task is casier. simply because one needs to inquire about foewer rules. That is, given a set of
symptoms {S} where cach s e S can take one of three values - true (has occurred). false (has not occurred), or

unknown -- there are 3" rules that can be defined on {S}. However, when evidential foei are teased apart,

The position occupicd by MYCIN appears 1o reflect the propensity of physicians to puil logether considerations that fall along the same
path in a dilferential diagnosis. Since there may be several such paths underlying a diagnosiic conclusion. there are several such rules.
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1¥ (D THE ST O THE CULTURLE 1S BLOOD, AND
(2) THE GRAM STAIN IS POSITIVE. AND
(3y TTIE SUSPLECTED PORTAL OF ENTRY OF THLE ORGANISM 1S T1H: GASTRO-INTESTINAL TRACT, AND
(4) THE LOCUS O INFECFION 1S THE ABDOMEN OR THE PELVIS
THEN THERT[S STRONGLY SUGGESTIVE EVIDUNCL(.9) THAT
THERAPY SLHIOULD COVER ENTEROBACTERIACEAE

Figure 3-3: A typical MYCIN rule
there are only 3n possible rules, as the evidential contribution of cach s e § will depend only on the truth
value of s. Once these contributions are determined, they can be composed using accepted algorithms for the

combination of evidence.

Sccondly, complex rules can generate unintuitive results under MYCIN-like assumptions that beliefs are
non-complementary and that uncertainties are propogated using the conjuctive/disjunctive rules of standard
fuzzy logic. For instance, consider the two sets of rules in Figure 3-4, where F represents Bernoulli’s rule of

evidential combination, variants of which are used by both MYCIN and MUD.

Rules C.1. C.2. and C.3 say that when A and B are the case, belicve H to degree (.8), but Believe H to degree
(.3} if only B is true and to degree (.6) if only A is truc. Rules st and s2 ﬁavc virtually the same effect as €2
and 3 when cither A or B is false. However, if both A and B, are true, then both rules will be instantiated in
the simple case. Their combined weight, with respect to the hypothesis they support, will be tallied by the
function F, which in this case, returns .72 .

COMPLEX RULES
C1: A&B->H(8)
C2: A& ~B->H(6)

3 ~A&B->H(3)
SIMPLE RULES

S.1: A-->H{(6)

5.2 B-->H(3}

TOGETHER WITH: F(A.B) > H(.72)

Figure 3-4: Two representations of evidential knowledge

Now consider what happens with the complex representation when uncertainty enters the picture. Again,
following MYCIN, the certainty of a conjunction is taken to be the minimum of the certainties on ¢ach of the
conjuncts. Thus if B is believed true to degree (.6). ~ B Lo degree (0). and A to degree (1), the overall certainty

of the conjunction C.1 is (.6). The contribution of C1 W 4 belicf in 1 is then this value {.6) times the
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confidence factor (.8) which represents the strength of the rule on the condition that its sup;ﬁorling cvidence is
certain. €2 makes no cdmribu[ion to 11, as the certainty on ~B is 0. Thus, in this case, we would be left with a
centribution of (48). On the other hand, the procedure for combining the contributions of the simple rules
calls for diminishing the contribution in proportion to the uncertainty of the evidence on which the rule is
conditional. Thus, the overall beficfin 11 given .1 and 5.2 is 1((.6)*(.3), .6) = .67. In this case, the uncertainty
on B only cffects the contribution of B: A’s contribution remains intact.  Although it is hard to make general

conclusions here, the latter procedurc appears to generate more intuitive results in the mud domain,

Despite the above considerations, complex rules may appear desirable insofar as they reflect a kind of
domain expertise, namely, the ability of the domain expert tw better combine evidence than the combinatoric

functon. However, conflation of this sort makes it difficult to discern the real content of rules.

For instance, one typical conflation that we found when experis volunteered rules was a ‘jackpot effect”:
that is, the weight of scveral observau’oﬁs together far exceeded the weight that would be assigned using a
reasonable function over their individual weights. The reason for this. in general. was that the observations
together constituted a superset of the cvidence for some competing hypothesis. Some additional picce of
evidence, not very significant in itself, was very significant in the context of discerning a difference between
two well supported hypotheses. What allows this assumption to be buried in a complex evidential rule is the
additional assumption that the total set of observations are not due to two distinct hypotheses. While experts
may be trusted to have this knowledge within a domain of predictable possibilities, in more open domains,
such as MUD's, where bore holes may be through a range of lithologies with quite different problem profiles.
no expert is likely to have enough experience to be sure of such an assumption. Thus, in these cases, we have
explored two options. One is to define ways of using the diagnostic rule representation to explicitly state that
some other hypothesis has been ruled out: the other is to define higher level rules that look at the distribution
of evidence across hypotheses, and where reasonable, reject hypotheses whose evidence can be properly
subsumed by some other hypothesis. So far we have found no diagnostic loss in limiting rules to an
expression of the evidential significance of a single evidendial focus, provided that the diagnostic strategies

inherent in assessing combinations of symptoms are made explicit.

Teasing out the different factors which may be naively compounded in a complex rule has led o some

picasing results. For one, we have been able to gain some insights about where confidence factors come from,
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that is, about the objective considerations behind the domain experts’ subjective assignments. These insights
have proved valuabie both to the discernment of crrors in the rule set, as well as to enhancing the

effectivencss of our knowledge acguisition interviews (see section 5.2 below).

3.3 Search

The problem space in a diagnostic system can be viewed as consisting of h.ypor.hcscs. rcasons (in light of
which one judges hypotheses), and the factual data required to support a reason’s application under particular
circumstances. In systems that actively scek confirmatory or disconfirmatory data for potentially true
hypotheses, the interactive burden on the user increases with the number of hypothescs investigated. There
are two ways to reduce this burden. One is to begin by passively collecting significant observations on the
basis of which a relatively small sct of initial hypothescs may appear as plausible candidates. The other
alternative is to constrain scarch by pruning from the set of hypotheses (sometimes all those in the knowledge
base) before all the evidence is in. The latter strategy requires a careful consideration of which rcasons will

provide the most leverage.

INTERNIST relics on both these strategies. MYCIN [Shortliffe 76] only on the second. MUD relies on the first
strategy; it activates a hypothesis if a relevant diagnostically significant” event is known to have gccurred. A
diagnostically significant observation is typically a deviation from an expected value for a mud property. In
interviewing mud engineers we discovered that although they recognize a number of potential consequences
for each possible hypothesis, only some of these consequences are considered 'diagnostically significant’. If
none of the diagnostically éigniﬁcant consequences occur, the associated hypothesis will not even be
considered. Since the search space is small (usually fewer than 6 hypotheses are evoked), this approach works

well.

Figure 3-5 shows a rule of the kind that gencrates a hypothesis for consideration during a diagnostic
session. The conditional side of each such rule has three condition elements. The first is the task name; all
hypotheses arc genererated in the task called DIAGNOSIS. Since the significance of deviant propertics varies
across mud types, each rule specifies the mud systems to which the rule applies; in this example, the mud
system is INVERMUL. The current mud system is always represented as shown: i.c., it is the +VALUE ficld of a

. DATA working memory clement with the sNAME MUD-TYPE. "The third condition clement lists the kinds of
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data, which, if deviant, would indicate that the hypothesis gencrated by the rule should be considered a
potential cause. Hypothesis generation rules come in pﬁirs, with onc listing data which is significant when
observed to be high with respect to expectations and the other listing data which is significant when low. The
tDIRECTION attribute distinguishes these cases. The value of this field is sct by rules which determine if the
current value of the DATA is above or below specifications, as defined by the mud plan.

(P DIAGNOSIS:: FORMATION-SOLIDS-LOW
(TASK tNAME DIAGNOSIS)
(DATA *NAME MUD-TYPE +VALUE INVERMUL)
{DATA tNAME DENSITY tDIRECTION LOW)
->
(MAKE HYPOTHESIS tNAME FORMATION-SQLIDS +CLASS SUPER })

English translation:
If the current task is diagnosis
and an invennul mud is in use
and the density is lower than expected,
then consider the possibility of formation solids contamination.

Figure 3-5: Rulc to evoke a hypothesis

The action side of the rule simply enters a represcmatién of a particular hypothesis into working memory.
Each hypothesis is a member of a class, specified as the value of the +CLASS atribute. Class can be SUPER,
MATERIAL, or the name of a hypothesis whose class is super. All hypotheses involving an under- or over-
dosage of a mud treatment are 1CLASS MATERIAL. All hypotheses which are super-ordinates (or
generalizations) of other hypotheses are tCLASS SUPER. Thus, the hypothesis for formation-solids has the
tCLASS SUPER, while the hypothesis for bentonitic buildup in the system would have as its tCLASS
FORMATION-SOLIDS, since bentonitic buildup is a variant of formation solids buildup. As described below,
class specifications are used in ordering hypotheses for evaluation. In addition, certain strategies regarding

the acceptance and rejection of hypotheses-entail knowing the +CLASS of the hypothesis under consideration.

By using rules of this sort, MUD greatly reduces the number of interactions with the user and the amount of
processing that would have been required to examine all known hypotheses. However. there is an exhaustive
consideration of all hypotheses put into working memory. We have avoided using further pruning strategics
which could lead to the rejection or acceptance of a hypothesis on the basis of errencous information. Since

the mud domain is one in which data gathering procedures are executed under less than ideal conditions, test



16

results are often in crror and open o question.  Since uncertainty is best assessed in leght of as much other
data as possible, MUD does not erminate its investigation of hypotheses until all potentially uscful data is

considered.

3.3.1 Ordering the search

Although MUD cvaluates all the REASONS for all evoked hypothesis, it pursues the information it requires in
a way that mud cngincers find natural. This means (1) it considers the REASONs for the more general SUPER
hypotheses before the REASONS for their sub-ordinate variants; and (2) it considers REASONS for hypothesized

sub-surface problems before those for treatment problems.

As figure (3-6) shows, each strategy is represented by a single rule. In all such rules. a subordinate
hypothesis has the name of its logical superordinate as its +CLASS specification. The effect of setting the
+STATUS attribute of a HYPOTHESIS to OPEN is to evoke rules of the kind shown above in figure 3-1 that add
REASONs and DATAFORS to working memory. When a data object described by a DATAFOR is unknown to
MUD. a data schema is created and MUD infers or asks about the current value of this object. This is in effecta

depth first scarch: as cach reason is added to working memory, MUD secks out its supporting data.

3.4 Evaluation

Fvaluation occurs on several levels and in several different ways in MUD. HYPOTHESES, REASONs and
DATAFORs all must be evaluated. A terminal DATAFOR, one r.hat points directly to a data object, is evaluated
as true, false. or unknown depending on the value returned by the condition test. A logical DATAFOR, one
whose +CONDITION is of the form <BOOLEAN OPERATION> <LABEL>, where <LABEL> is a pointer to the
daughters of the node, is evaluated as true, false, unknown, or irrcievant depending on the value returned by

the operation taken over all the daughter DATAFORs, namely, those whose tSIBLING ficld is <LABEL>.

Tests that appear as the *CONDITIONSs of terminal DATAFORS can be defined as OPS rules. In many cases,
cach test can be defined as a single OpS rule. 1n order to increase run-time cfficiency, many of these rules
have been specialized to be sensitive to the object and ficlds being tested. As can be seen in figure 3-7, tests
can also be defined on a relation between two valucs in the same or differing working memory elements. In

this example, the DATAFOR asks if the current amount of invermul in the drilling system s greater than the
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(P ORDER-HYPOTIIESES:SUPERORDINATES-IIRST
{TASK tNAML ORDER-HYPOTIISIES)
IYPOTIHISIS tCLASS KCLASSY O UNDERTREATMUENT © OVERTREATMENT] tSTATUS NilL)
- (HYPOTHESIS TNAME CCLASS> 1STATUS NILY
-
(MODIY 2 1STATUS OPENY)

English translation:
If the current task is to order the hypotheses
and there is an unevaluated non-treatment hypothesis
and that hypothesis has no unexamined superordinate
then mark the hypothesis as ready for evaluation.

{P ORDER-HYPOTHESES: TREATMENTS-LAST
(TASK tNAME ORDIR-HYPOTHIESES)
{HYPOTUESIS 1CLASS <K UNDERTREATMENT OVERTREATMUENT »» t1STATUS NIL)
- (HYPOTLIESIS 1CLASS {<> UNDERTREATMENT O OVERTREATMENT} tSTATUS NIL)
-.) B
(MODIFY 21STATUS OPEN))

English translation: ,
If the current task is to order the hypotheses

and there is an unevaluated treatment hypothesis

and all non-treatment hypotheses have been evafuated
then mark the hypothesis as ready for evaluation.

Figure 3-6: Ordering rules

amount targeted. Once terminal DATAFORs arc evaluated, simple rules representing Boolean functions
propogate truth values upwards through a network of logical relations for any evaluated DATAFOR.

(DATAFOR tFOR <NEWLABEL> +SIBLING <FICT>
tOBJECT DATA
tOBJECT-NAME INVERMUL
tRELEVANT-ATTRIBUTE VALUE
tOBJECT-2 DATA
tOBJLECT-NAME-2 INVERMUL
TRELEVANT-ATTRIBUTE-2 TARGET
tCONDITION >)

Figure 3-7; A binary datafor condition test

Once the top node of a DATAIOR network is evaluated. this value can be passed on to the corresponding

REASON.  RFASONS that have been evaluated as true make a contribution to a measure of belief in a
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hypothesis, and those that arc false to a measure of disbelief. Irrelevant reasons are ignored. as arc those that
are cvaluated as unknown.” A non-Bayesian function si:'ni]ar to that used in MYCIN [Shortliffe 76] combines
the evidential weights contributed by each REASON. These weights are determined as a result of interviews
with domain cxperts. The function that combines the weights is represented by the ewo rules in figure 3-8.

(P EVAL::EVAL-MEASURE-OF-BELIEF
(TASK tNAME EVAL)
(ITYPOTHESIS 1NAME <NAME> 1STATUS OPEN tMEASURE-OU-BELIEF <MB> TMEASURL-OF-DISBELIEF <MDD)
(REASON tFOR <NAME> tPOSITIVE-SUPPORT <SUPPORT> 1SIGN 1 tCONTIDENCE <CONIIDENCED)
-
(BIND <NEW-CONTRIBUTION> (COMPUTE <SUPPORT> * <CONFIDENCE>)}
(BIND <MB> (COMPUTE <MB> + (CCONTRIBUTION> * (10 - <MB>))))
(MODIFY 2 tMEASURE-OF-BELIEF <MB> 1BLLIEF (COMPUTE <MB> - (MDD

English translation:
If there is new positive evidence for a hypothesis,
then afly it into an accumulator for measure of belief
and reflect this new evidence in the overall belief in the hypothesis.

(P EVAL::EVAL-MEASURE-OF-DISBELIEF :
(TASK +NAME EVAL) . )
(HYPOTHESIS T™NAME <NAME> 1STATUS OPEN tMEASURE-OF-BELIEF <MB> tMEASURE-OF-DISBELIEF <MD>)
(REASON 1FOR <NAME> tPOSITIVE-SUPPORT <SUPPORT> #SIGN -1 tCONFIDENCE <CONFIDENCE)
>
(BIND <NEW-CONTRIBUTION> (COMPUTE <SUPPORT> * <CONFIDENCE>))
(BIND <MD>(COMPUTE <MD> + (CCONTRIBUTIONY * (10 - <MD>)))
(MODIEY 2 tMEASURE-OF-DISBELIEF <MDy tBELIEF (COMPUTE <MB> - <MD>)))

English transtation:
If there is new negative evidence for a hypothesis,
then tally it into an accuntulator for measure of disbelief
and reflect this new evidence in the overall belief in the hypothesis.

Figure 3-8: Evaluation Rules

An overall mcasure of belief is taken to be the difference of +MEASURE-OF-BELIEF and
tMEASURT-OF-DISBELIEF.  After this has been obtained for all hypotheses, hypothescs are then accepted or

rejected in light of acceptance and rejection thresholds, together with limited strategies for cross evaluating

9/\ more sophisticated handling of the latter is desirable, and Lhere are a number of planned enhancements.



19

competing hypotheses. Belief can run from 0 to 10, 1f the *MEASURE-OU-DISBELIEE is gr;:atcr than 6, or if
tBELIET 08 dess than O, the hypothesis is rejected. I fBELIEE §8 greater than 6, the hypothesis is accepted. If
everything that could be explained by an unaccepted hypothesis is explained by one or more accepted
hypotheses, then the former is rejected. If everything explained by a treatiment hypothesis (regarding an over
or under-treatment) results from an accepted hypothesis referring to a sub-surface problem, the treatment
hypothesis is overlooked in favor of reporting the subsurface problem, or root cause, of the drilling fluid

property deviations.

3.5 Explanation

Examples of some of the types of explanation MUD can provide have beea shown above in section 2. When
presented with diagnostic conclusions, the user can ask for an explanation. In order to be able w explain its
conclusions, MUD leaves a trace of its behavior; as MUD's reason-gencrating rules fire, they create working

memory elements containing explanatory text.1”

When presented with a prompt for information, the user can ask why the question is being asked. An
answer o this question is given on the basis of the pathway that links the data being requested back to a
I'YPOTHESIS. MUD's answer is simply that the information is valuable in assessing the hypothesis. Again the

representation in MUD provides opportunities to build more sophisticated explanation capabities.

Explanation in many diagnostic systems is limited to preserving a trace of the rules that were used to lend
support to or disconfirm a particular hypothesis. When this is the only explanatory goal, a rule-based
approach offers no particular advantage. This is especially true when the rule interpretor, as in the OPSS

language, does not make a trace of fired rules accessible to applications programs.

Our goals for MUD, however, included other kinds of explanation capabilitics. We wanted to answer
questions, such as, "What was the most significant consideration that led to accepting H!I instcad of H27";
"Why was treatment T1 chosen rather than treatment T2?"; "How would I know if H1 were occurring?"'; and

"What are the symptoms that characterize H1 but not H2?". These questions cannot be answered by

10 . - . e : .
We have been working on more sophisticated cxplanation capabilities in the context of the MEX program described below in section

356
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maintaining a trace of rules fired during a diagnostic session. In fact. the latter two questions arg ones that
might well be asked outside of a diagnostic session.  Answering questions such as the first two requires the

ability to analyzc and compare traces of rules fired in support of different hypotheses or treatments.

We found the pattern raatching capabilitics of Ops of particular usc in answering these kinds of questions.
With respect to explaining the choice of a treatment plan, we were able to define comparison rules sensitive to
features such as cost, side-cffect, and inventory availability, the attributes with respect to which alternative
treatments were evaluated. We have also used the pattern matching capabilities to answer the last two kinds

of questions. This is currently the responsibility of MEX, a companion system to MUD.

3.5.1 MEX

Although MUD can explain how it arrived at a diagnostic conclusion, it cannot answer questions such as,
"How would I know if there was a <type-x> problem?"”, and "How would | know the difference between a
<type-x> problem and a <type-y> problem?”. Such questions arc the province of MEX, which provides access
to MUD’s rule base outside of a diagnostic session. For example, figure 3-9 shows how MEX displays the
supporting reasons for the hypothesis that there is an influx of water. Figure 3-10 shows MEX's response to a
query with respect to the differences between reasons bearing on two competing hypotheses, namely,
gyp/anhydrite contamination and cement contamination.

THE FOLLOWING CONDITIONS COULD ESTABLISH THAT THERE IS AN INFLUX OF WATER:
R1: THERE IS AN INCREASE IN YIELD POINT,
AND/OR 10 MINUTE GEL-STRENGTH OR 10 SECOND GEL-STRENGTH
R2: THEREIS A DECREA.SE IN DENSITY, ELECTRICAL STABILITY, AND/OR OIL WATER RATIO
R3: EITHER THERE I$ AN INCREASE IN SYSTEM VOLUME OR IT 1S NOT TRUE
THAT THERE IS AN INCREASE IN SYSTEM VOLUME BECAUSE THERE HAS BEEN LOST CIRCULATION

Figure 3-9: An example of MEX output

MEX provides several benefits. For one, it permits drilling fluids engineers to determine the consequences
of expected problems, thus providing information that may allow for the preventive pre-treatment of the
drilling fluid. Secondly, it allows access to MUD rules in an instructional context. And finally it provides a
substantial debugging tool. Without a tool for interpreting the rule base. the misrepresentation of cxpert
diagnostic knowledge may not become cvident until a test case gencrates unacceptable results. While many

such misrepresentations arc unintentional, others result from uncertainty on the part of programmers about
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CONSIDERATIONS WHICH SUPPORT ONLY TUHEHYPOTIIESIS THAT GYP/ANIIYDRITEAS BEING DRIFLED ARLE:
Rl: THERE IS A DECRIASE TN BICARBONATIL AND/OR CARDBONATE
R2: HTTHERE IS AN EINCREASLE IN TOTAL HARDNLESS AS CALCIUM, THEN CONSIDER 11
THERE IS AN INCREASE IN SULIFATE
R3: IFTHERE IS NOT AN INCREASLEIN PH . THEN CONSIDER [F:
TIERE IS AN INCREASE IN TOTAL HARDNESS AS CALCIUM. I'ILTRA'TE APL YIELID POINT,
AND/OR 10 MINUTLE GEL-STRENGTH OR 10 SECONI GEL-STRENGTH.
CONSIDERATIONS WHICH SUPPORT ONLY THE HYPOTHESIS THAT CEMENT IS BEING DRILLED ARE:
R1L: THERE IS AN INCREASE IN TOTAL HARDNESS AS CALCIUM AND PH
R2: IFTIIERE IS AN INCREASE IN TOTAL IHARDNISS AS CALCIUM AND PH, THEN CONSIDER IF:
THERE IS AN INCREASE [N 10 SECOND GEL-STRENGTH OR 10 MINUTE GEL-STRENGTH,
PLASTIC VISCOSITY, AND/OR FUNNEL VISCOSITY

THE FOLLOWING CONSIDERATIONS PROVIDE EVIDENCE ONLY AGAINST THE HYPOTIHESIS THAT
CEMENT IS BEING DRILLED:
R1l: THERE IS NO INCREASE IN PH

THE FOLLOWING CONSIDERATIONS PROVIDE EVIDENCE ONLY AGAINST THE HYPOTHESIS THAT
GYP/ANHYDRITL IS BEING DRILLED:
R1: THEREIS AN INCREASE IN PH

CONSIDERATIONS WHICH PROVIDE EVIDENCE AGAINST BOTII HYPOTTIESIS ARE:
R1: THERE IS NO INCREASE IN TOTAL HARDNESS AS CALCIUM

Figure 3-10: A sample of MEX’s ability to differentiate among hypotheses

how they ought to encode evidential considerations in terms of the representational devices provided by the

program. MEX provides programmers who are adding rules to MUD's knowledge base with a means of

checking the meaning of new rules.

In what follows we survey the special knowledge required to provide an adequate explanation of MUD's

knowledge base. Details regarding MEX’s implementation are provided in [Kahn 85}, MUD’s representation

of diagnostic knowledge is expressed within networks of DATAFOR working memory clements (see section

3.2). A semanlic interpretation of these networks requires:

1. the ability to describe primitive evidential considerations, as represented in a single DATAFOR

2. the ability to recognize logical and conceptual relations cxpressed within a single network of
DATAIORS, dominated by the same REASON;

3. the ability to recognize logical and conceptual relations across distinct networks, each of which is
dominated by a different REASON:

Each of the above abilities is provided by rules designed to recognize the meaning inherent in the

representations used to model diagnostic krowledge in the mud domain,
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3.5.2 Primitive evidential considerations

Much of MEX's text generation capacity is based on rules which gencrate a phrase (represcnted as a string)

given the DATAIOR specification of a working memory clement type, attribute ficld, and condition test.

The DATAFOR shown in figure 3-11, for example, is casily translated to “temperature is greater than or
equal to 325 degrees farenheit” by the rule shown in figure 3-12.  This rule recognizes that a
TRELEVANT-ATTRIBUTE instantiation of VALUE means that the condition test is a test of the value of the
named data object. The translation for ">=" is embodied in the rule. There are similar rules for other
condition tests.

{DATAFOR
+OBJECT DATA
tOBIECT-NAMLE TEMPERATURE
tRELEVANT-ATTRIBUTE VALUE
+CONDITION >= 325)

Figure 3-11: A simple datafor

(P EXPLAIN:: VALUE-GREATER-OR-EQUAL-THAN
(TASK tNAME MAKE-STRING)
(HYP tNAME <HYP> tSTATUS OPEN)
(REASON 1FOR <I1YP> 1LABEL <NEWLABEL>)
(DATAFOR tFOR <XNEWLABEL> tOBJECT DATA tOBJECT-NAME <NAME>
+RELEVANT-ATTRIBUTE VALUE tCONDITION >= <VAL>)
(DATA 1NAME <NAME> 1LONGNAME <LONG> tUNITS CUNITS>)
-2
(CALL IMPLODE {GREATER THAN OR EQUAL TO | <VAL> | |'<UN1Ts>>

(BIND <IMP-COMP> (ANSW))
(MAKE STRING tFOR <NEWLABEL> tLABEL <SLABEL> tSIBLING <SIBLING> +NAME <LONG> sTYPE<TYPE>
+PREFIX NIL tSUBJECT <LONG> tVERB [IS] *COMPLEMENT <IMP-COMP> tPHRASE-TYPE 3VC)

English translation:

If there is, with respect 1o the current hypothesis, a reason grounded on the observation
that the value of a given datum is greater than or equal to a given consiant

then make a note of that fact

Figure 3-12: A rule for translating simpiec DATAFORS

The string that is created in figure 3-12 has ficlds for a prefix, a subject, a verb, and a complement. These
ficlds allow the information held in individual strings to be merged into a linguistically correct phrase. The
value of *PURASI-TYPE indicates how to to compose a gramatically correct sentence from the parsed

representation,
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Many of MEX's elementary steing generation rules are more specialized than the rule shown in figure 3-12;
Lthey can recognize special conditions which calt for a non-liccral translagion. For instance, there is rule that
recognizes that the condition test, "= 1", applicd to the tDIRECTION attribute of a working memory clement
representing a mud property, means "there is an increase in <that mud property?>” rather than "the direction
Cof the mud property> cquals 11", Similarly, when the condition test on the rvatUE ficld of a working
memory clement representing a material additive is "> 07, MEX recognizes that this means not that the

material s greater than 0, but rather that the material "is present in the system".

3.5.3 Single reason complex networks

MEX must also interpret networks which express logical or conceptual relations between two or more
factual considerations underlying a single reason. In some cases MUD nced only combine strings associated
with cach component DATAFOR. taking care to preserve logical scope as it injects logical operators such as

"and” and "or".

However, besides recognizing simple logical relations, MEX must be sensitive to both procedural and
conceptual relations expressed by DATAFOR networks, Procedural relations involve the conditional use of
evidence. MEX displays these relations in the following way:

Rl IFTARGET LEVEL FOR DENSITY IS LESS THAN OR EQUAL TO 10 PPG, THEN CONSIDER IF:
THERE IS AN INCREASE IN DENSITY

Alternatively, multiple evidential considerations underlying a single reason may implicitly represent a
critical conceptual relation. One of MEX's most significant tasks is to provide a mechanism that allows these
conceptual relations to be made explicit. This cannot be done with MEX's rule of logical combination, which
would. for example. intepret the "and” node underlying a supporting reason for an underdosage of invermul
as;

THERE IS AN INCREASE IN HIGH TEMPERATURE / HIGIH PRESSURE FILTRATE
AND THEE AMOUNT OF DURATONE IS BELOW THE DESIRED TARGET

rather than with the more accurate phrasc:

THERE [S AN [INCREASE IN HIGH TEMPIFRATURE 7 HIGH PRESSURE FILTRATE
THAT IS NOT DULTO INSUFFICIENT AMOUNTS OF DURATONE

Text such as this is generated by a rule which fires whenever a supporting reason for an undertreatment of
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a matcrial is supported by a conjunction in which a mud property which has shown an increasc is togically

conjoined to one which tests w see if the amount of some material in the system i less than that targeted.

3.5.4 Logical and conceptual relations across reasons

MEX also recognizes logical and conceptual relations between different REASONS.  Logical relations are
those that are recognized on the basis of the form of the DATAFOR network alone; that is, without additional
information regarding the meaning of the facts referred to. On the other hand, recognizing conceptual

relations requires bringing additional information to bear.

MEX rccognizes a logical relation holding across different relations when, for instance, it merges reasons
which differ in that onc makes a factual reference to the occurrence of a particular fact, while the other refers
to the non-occurence of the same fact. For example, MEX recognizes that the two reasons:

R1: SYSTEM VOLUMEIS UP
R2: SYSTEM VOLUME IS NOT UP AND THERE 18 LOST CIRCULATION

can be combined as:

Rt: EITHER THERE IS AN INCREASE IN SYSTEM VOLUME ORIT IS NOT TRUE
THAT THERE IS AN INCREASE IN SYSTEM VOLUME BECAUSE THERE HAS BEEN LOST CIRCULATION

In more general terms, MEX looks for strings that have their source in DATAFORs which are similar except
for their condition tests, which are logical complements. One and only one of these DATAFORs will be
conjoined to another DATAFOR. MEX assumes that the effect of this associated DATAFOR is to mask or
neutralize the evidential observation expressed by its conjuct’s complement, that is the solitary DATAFOR.

Actions such as this do not require any background knowledge about the facts in particular.

On the other hand, there are times when an appropriate interpretation can make use of additional
background knowledge. For instance. in order to generate the string:

RL: THERE IS AN INCREASE IN DISSOLVED SOD{UM CHLORIDE WHEN THE MUD [S UNDERSATURATED
OR AN INCREASE IN UNDISSOLVED SODIUM CHLORIDE WHEN [T IS QVERSATURATED

MEX must recognize one reason that is relevant to a saturated state and another relevant to an unsaturated
mud solution. Having specific knowledge about some causal properties of the MUD system allows MEX (o s¢¢

such relations when they occur.



4. Treatments

Although questions related to diagnosis dominated our rescarch interests, MUD also required a capacity to
rccommend treatments for mud problems. Beyond the recommendation of correct treatments, we had the

following design goals for this component of MUD:

L Treatment strategics were to be flexible, recognizing that different responscs may be required to
the same problem under different circumstances.

2. There should be room for both heuristic and algorithmic knowledge in calculating how much of a
particular material additive is to be addced to the drilling fluid system.

3. 'There should be the capacity to formulate alternative treatment strategics and the ability pick the
best one.

4. There should be a capacity to explain treatment recommendations.

The current version of MUD succeeds to some extent in meeting all of these goals. In the following sections,

we discuss MUD's approach to treatments. Formulating a treaument plan requires:

1. Generating a functionally appropriate treatment plan

2. Choosing specific chemical additives or equipment which will meet the specified functional
requircments ‘

3. Determining the amount of an additive to be used or the duration with which to run drilling fluids
equipment

4, Evaluating and choosing between alternative treatments with the same function

4.1 Treatment Plan Generation

L ]

Anytime an event occurs that can cause mud propertics to deviate from their desired target levels, the
drilling fluid system requires treatment. Each of these events, represented as a HYPOTHESIS from MUD’s
diagnostic point of view, is associated with a treatment plan in MUD's rule base. A treatment plan describes an
appropriate action to take if the hypothesized event has occurred and mud properties have deviated in a
particular way. The rule in figure 4-1, for instance, indicates that if the problematic event is salt
contamination. an emulsificr should be added if either the measurcments for electrical stability or high
pressure-high temperature filtrate are below a minimally acceptable target level or a decision has atready heen
made to add water. It is imporant to note that at this level of description, the corrective action is described in
functional terms, namely. as that of adding an emulsifier. It is only later that MUD chooses a specific product

and determines the amount to use,
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The representation used to cxpress a treatment plan is very similar to that used o relate REASONS to
supporting evidence (sce scction 3.2). In this case, however, it S a TREATMENT working memary element
which is linked by a DATAFOR network to the evidence on the basis of which one would recommend the
actions specified in the tOPERATOR/TOPERAND aitributes of this working memaory clement. The rule in figure
4-1. for instance, makes the decision w0 add an emulsifier only if the datafor network dominated by the
TREATMENT evaluates as true. In this case at least one of the subordinate disjuncts must be true. |f none are,
MUD will not recommend adding an emulsifier cven though there is salt contamination. Rules of this kind
typically gencrate several TREATMENTs, cach with a set of supporting conditions or DATAFORs. Taken
together the set of TREATMENTS constitutes a {reatment plan.

(P GENERATE-TREATMENT::SALT

(TASK t1NAME GENERATE-TREATMENT tCONTROL SALT *tATTRIBUTE {<COUNTER> <> NIL})

{DATA tNAME MUD-TYPL tVALUE INVERMUL)

>

(BIND <LABEL> (GINT)

(MAKE TREATMENT tHYPOTHESIS SALT tPLAN ¢<COUNTER> tNAME ADD-EMULSIFIER
tLABLL <. ABEL> tACCEPT NIL tFOR E-STABILITY tDIRECTION INCREASE
rOPERATOR ADD 1OPERAND EMULSIFIER)

(BIND <SIBLE> (GINT))

(MAKE DATAFOR tPLAN <COUNTER> tFOR <LABEL> tCONDITION OR <SIBLE> 1TV NIL)

(MAKE DATAFOR tPLAN ¢CCOUNTER> 1FOR <LABEL> 1SIBLING <SIBLE> 1OBJECT DATA
+OBJECT-NAME E-STABILITY tRELEVANT-ATTRIBUTE DIRECTION tCONDITION = LOW)

(MAKE DATAFOR tPLAN <COUNTER> 1FOR <LABEL> 1SIBLING <SIBLE> tOBJECT DATA
+OBJECT-NAME HTHP-FILTER tRELEVANT-ATTRIBUTE DIRECTION 1CONDITION = HIGH)

(MAKE DATAFOR tPLAN <COUNTER> tFOR <LABEL> 1SIBLING <SIBLE> tOBJECT TREATMENT
+OBJECT-NAME ADD-WATER tRELEVANT-ATTRIBUTE ACCEPT tCONDITION = YES)

(MAKE ADDS tORDEROF CALCULATION tARE WATER WEIGHT-MATERIAL EMULSIFIER
1PLAN <COUNTER>))

English translation:
When generating a treatment program for salt contamination of an invermul mud
suggest the addition of emulsifier
if the electrical stability is lower than expected
or if the high temperature/high pressure filtrate is higher than expected
or if the addition of water has already been recommended
Note that emulsifier has its major effect on elecirical siability
and that it should be added only after water and weight material additions

Figure 4-1: A specification of a treatment plan

The first condition clement of this sample rule indicates that a decision has been made to generatc a



treatment plan to deal with the fact that a salt formation is being drilled.  Since the relevant set of
considerations for cach treatment varies across the different mud systems, the second condition element

specifies the mud systems to which the rule applies.

Each TREATMENT created by a rule must have several critical atribute fields instantiated. +11YPOTHIESES has
the name of the HYPOTHESIS on which the TREATMENT bears; +NAME provides an abbreviated name for the
TREATMENT itself: *OPERATOR 18 used to classify the TREATMENT taken: +OPERAND describes in generic or
functional terms, the kind of thing which s being added, or in general, is the rectpient of the action specified
as the tOPERATOR. tDIRFCTION indicates how the action will affect the mud property specified in the +FOR
ficld, tLABEL provides a unique numeric identifier for the TREATMENT; and +PLAN provides a link between

all TREATMENTS which are part of a single plan.

The DATAFOR working memory element links the TREATMENT to the evidence that will warrant its
recommendation. If the DATAFOR network dominated by the TREATMENT cvaluates to true, the TREATMENT
18 accepted. This is indicated by setting *tACCEPT to YES. In the above example, the TREATMENT will be
accepted if any of terminal DATAFORS evaluate to true. DATALFORs are evaluated as described above in section

34

In addition to generating a functional description of a treatment plan, rules such as those shown in figure
4-1 create an ADDS working memory element which indicates the order in which the amount of each
recommended additive must be calculated. In the provided example, the order of calculation is water, weight
material, and emulsifier. Ordering is important as each treatment must be sensitive to other actions taken on
the drilling fluids system. Ordering guarantees that MUD will know about these effects at the correct time,
Weight material, for instance, must be added after dilution occurs in order to bring the density of the drilling

fluid back to its desired state.

As with our approach to diagnosis, we chose to represent treatment knowledge as data generated by the
action part of a rule. rather than as conditions on the exccution of an action. In other words, we chose not to
write rules in which the conditions expressed by a DATAI'OR network were represented in the conditional part
of a rule and the action as the creation of a TREATMENT. The reasons for this are very similar to those

discussed below in section 5.3,
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A treatment is typically pursued when doing so will reduce the difference bctv.vcen the current
measurcment of a mud property and the desired target. Thus, before evaluating the local adequacy of a
TREATMENT, MUD considers if it is necessary to specify new targets for mud propertics, rather than to merely
restore the system to previous target specifications.  For example, if there is an influx of water into the
borchole, it is typically desirable to raise the MUD's target density by a half pound per gallon. The rule
responsible for this action is shown in figure 4-2.

(P ADJUST-TARGET::DENSITY-FOR-FLOW
(TASK tNAME ADJUST-TARGETS
+CONTROL {<NAME> <¢ FORMATION-11YDROCARBONS HYDROCARBONS
WATERFLOW FRESH-WATER-FLOW SALT-WATER-FLOW »})
(DATA tNAME DENSITY 1TARGET {<TARGET> ¢ NIL} tVALUE {<VALUE> <> NIL})
{<T> (TREATMENT +[FOR DENSITY 1TARGET NIL)}
(1IYPOTHESIS tNAME <NAML> tPROBLEM-PERSISTING YES)
-
(CALL COMP <VALUE> + 0.5)
(BIND <VALUE> (ANSW))
(CALL TEST <VALUE> > <TARGET?)
(BIND CANSW> (ANSW))
(MODIFY <> *TARGET (IFFTHENELSE CANSW> TRUE <VALUE> CTARGET>))

English translation:
If adjusting targets because there has been an influx of hydrocarbons or water
and no new targel has been provided for density
and the problem is persisting,
then make the targeted densily the greater of the current target or the current density incremented by .5 ppg

Figure 4-2: A target adjustment rule

4.2 Specifying Treatments

Once a decision has been made to pursue a treatment, MUD chooses specific chemical additives or
equipment which will meet the functional requirements of a treatment plan. Since the selection of
appropriate drilling fluids cquipment differs little from the selection of a material additive, we discuss only

the latter.

Chermical additives are selected by consulting a database of inventory information. In the initdal version of

11

MUD. an external ascii fite was used to hold this information.” MUD creates INVENTORY working memory

11 e . T .
NL Raroid is in the process of creating a database o matntain this information.
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clements, shown in figure 4-3, from data in this file. In the example. the key ficlds for information about
Barite, a trade name product, are shown. In addition lo‘this information the INVENTORY working memory
clement has data regarding standard dosages, cost, inventory availability, and a number of conversion factors
which allow MUD to easity translate between different units in which the amount and cost of Barite might be
described.

{INVENTORY
tPRODUCT BAROID
tFUNCTION WEIGHT-MATERIAL
tGENERIC-NAME BARITE
T1SPECIFIC-GRAVITY 4.2)

Figure 4-3: An INVENTORY working memory element

As shown in figurc 4-4, MUD scarches the set of INVENTORY working memory clements, looking for
products that could meet the functional goals of each treatment. When the +FUNCTION attribute of an
INVENTORY working memory element corresponds to the +OPERAND field of a TREATMENT, MUD creates a DO
working memory element as a potential treatment specification. Values of the +FUNCTION/tQPERAND ficlds
include things such as emulsifier, weight-material, and so forth.,

(P ADDGET-INVENTORY

(TASK TNAME ADD t1CONTROL <FUNCTION> tATTRIBUTE <PLAN>)
{DO tOPERATOR ADD tOPERAND <FUNCTION> 1SPECIFICATION NIL tPLAN <PLANY)
(INVENTORY tPRODUCT <NAME> tFUNCTION <FUNCTION>)

- (DO 1SPECIFICATION <NAME> tPLAN <PLAN>)
- -
(MAKE DO 12 (SUBSTR 22 INF) tLABEL (GINT))
(MODIFY 2 +SPECIFICATION <NAMBE>}}

English translation:
If determining what materials 1o add
and inventory items that can accomplish a current goal have not yet been selected,
" then select those items

Figure 4-4: Seclecting from inventory

The valuc of the TREATMENT's PRODUCT field becomes the valuce of the DO's +SPECIFICATION field.
Barite, the name of a specific product, would be a possible value of an INVENTORY +PRODUCT field. When
there are several additives (INVENTORY working memory clements) of the same functional type, MUD will

create several corresponding DO working memory elements.
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For each material instantiated in a DO working memory clement. MUD calculates the amount required for
an effective treatment. When there are multiple DOs with the same tOPERAND (representing alternative

treatments), MUD chooses the best one, as described below.,

4.3 Determining Amounts

Mud cngineers usc a varicty of procedures to determine how much of a material additive ought to placed
into the drilling fluid system to bring mud properties back to their desired target levels. In some cases,
heuristic considerations are used to come up with a per barrel dosage, as in figure 4-5. In other cases, the
deviation between a current measure on the mud system and a desired target can be used to arrive at the exact

amount of material needed to eliminate the difference, as in figure 4-6.

In interviewing mud cngineers we found that they used many heuristic procedures for determining
amounts. For example, while engineers could tell us that the dosage of invermul increased with temperature,
they could not give us an algorithm for calculating an cxact dosage given a particular bottom hole
temperature. They were, however, able to tell us that the the rate at which they increased a dosage depended
on whether they were drilling under high or low bottom hole temperature conditions. Dosage increascd more
rapidly when the temperature was over 350 degrees farenheit. We ailso found that under high- temperature
conditions, engineers held to a minimum dosage of 14 ppg. Since mud engineers did not use algorithms for
calculating the dosage of invermul, but rather used an “intuitive feel” for an appropriate dosage, we had to
find algorithms that would approximate their subjective assessment of dosage requirements. The rule in
figure 4-5 resulted from this attempt. The action part of the rule specifies a function which computes a
dosage, given temperature as an argument. The result of this function approximates the amounts drilling
fluid engineers would recommend.”> A rule similar to this one was used to calculate an invermul dosage
under low temperature conditions. Of general interest here is the way heuristic knowledge and algorithmic
procedures are combined. We use the mud engincers’ descriptions of the factors which affect treatment as

condition clements, while attempting to design an empirically sound algorithm for each such set of factors.

In other cascs. mud engineers did use reatively precise algorithms to calculate dosage, or the total desired

I‘W’e used an informal procedure with a limiled sample 1o arrive at this formula. We expeet formulas of this type to be reassessed
during [icid testing of the system.
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(P ADDZINVERMUL-HIGH-TEMPERATURE

(TASK :NAME ADD tCONTROL EMUISIFIER tATTRIBUTT <PTAND)
(IATA TNAME MUD-TYPE tVALULE INVERMUL)

{<DO-INVERMUL>
(DO tOPERATOR ADD tSPECIACATION INVERMUL tDOSAGE NIL tAMOUNT NIL tPLAN <PLAN)}
(DATA INAME TEMPERATURFE tVALUE {<TEMP> > 350})
.-> *

(CALL COMP [[2* CTEMP>]/25]- 18)
(BINI) CANSW (ANSW))
(CAI L TEST CANSW> < 14)
(BIND <TEST> (ANSW))
{BIND <DOSAGE> (IFTHENELSE <TEST> TRUE CANSW> 14))
{MODIFY <DO-INVERMUL> t1DOSAGE <DOSAGED))

English translation:
[fadding invermul
and no dosage has yet been calculated
and the temperature is greater than 350 degrees farenheit,
then use the lesser of the prescribed dosage at that temperature or 14 Ibs per gallon

Figure 4-5: A dosage sctting rule
amount of an additive. Figure 4-6 shows a rule in. which the deviation between the current oil/water ratio
and the desircd oil/water ratio is used to arrive at the exact amount of oil needed to eliminate the difference.
In this rule MUD makes use of a 'virtual’ representation of the drilling fluid system. As MUD makes decisions
about the amount of matcrial that is to be added, it has to update a 'virtual' representation of the drilling
fluid. In particular, the effects of each additive on density,.volume, and oil-water ratic must be carefuily
tracked because this information is used in the calculation of subsequent treatments and may reach levels
where problems, such as fracturing and pit overflow, can oceur.’® A virtual representation of a drilling fluid
property with respect to a partially executed treatment plan is maintained in a vector working memory
element at a position indexed by the value of +PLAN. In the example shown, the volume of the system aftc_r
vil is added is maintained by modifying the working memory element, VIRTUAL-VOLUME. Since MUD may be
generating alternative treatment plans, the change in volume must be associated with the current treatment
plan alonc. This is donc by modifying the value indexed by <COUNTER», the current treatment plan’s

identifier.

i3 — .
Adcguate actions in response to these problems have nol vet been implemented.



(P ADD:AMOUNT-O1-01LA
(TASK 1NAME ADI tCONTRO1.0OIL)
(DATA INAME MUD-TYPL 1YALUL INVERMUL)

{<DO> (DO tOPERATOR ADD TOPERAND O, tSPECIFICATION O NI tPLAN <CCOUNTERY tAMOUNT NIL)}
(TREATMENT tOPERAND OIl. tPLAN ¢<COUNTFR> 1 TARGET (NEW-R>)
(DATA TNAMIE SOLIDS tVALUE {<8» <3 U} tVERIFIED YES)

(KVOLUMED (VIRTUAL-VOLUME)}

{<OIL-WATER> (VIRTUAL-OIL-WATER-RATION
->
(BIND <VT> (SUBSTR <VOLUME> <COUNTER> CCOUNTERD))

(BIND <R> (SUBSTR <OIL-WATER> <COUNTER> CCOUNTER>))
{MODIFY <OIL-WATER> 1¢CCOUNTER> <NEW-R>)

(CALL COMPVT> *[1-[<5>/100}])

(BIND <VL> (ANSW))

(CALL COMP <VL> * [(NEW-R>-<R> 1/ [<R> + 1))

(MODIFY <DO> TAMOUNT {ANSW)))

English transiation;
If adding oil to an invermul mud
and no amount has yet been calculated,
then calculate the amount of addition using
the new targeted and current oil/ water ratio, the current solids content, and the current volume

Figure 4-6: An amount setting rule

4.4 Evaluating Alternative Treatments

Once amounts are determined for each additive, the best choice among additives with the same function is
determined. A heuristic polynomial evaluation function is used to determine a weight that predicts the best
choice. As figure 4-7 shows, this weight a function over the cost of using the additive, its potential side-
effects, and its availability {i.e., whether it is in stock or not).

WEIGHT = - {(COST-WGT){(COST-OF-ADDITIVE) +
- (SIDE-EFFECTS-WGT) (SIDE-EFFECTS) +
(AVAILABILITY-WGT) (AVALLABILITY)

Figure 4-7:  The best choice heuristic

MUL uscs a linear function in which the coefficients of the function (the -WGT terms) are provided as inputs
to MUD. The substantive parameters, COST-OT-ADDITIVE, SIDE-FITECTS, and AVAILABILITY are calculated as

values on on a 0 - 100 scale. Where side effects are refative to some quantitative characteristic, such as
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amount. it is not difficult to find a reasonable mapping w a quantitative parameter representing the side
effects in our heuristic cquation.  Where this is not the case, we let mud engineers provide quantitative

subjective assessments of the side effects associated with the use of alternative products.

4.5 Explanation

As discussed in section 2.2, MUD can provide two kinds of explanations about its recommended trcatment
plan. If the user asks to have the recommended amounts explained, the nature of the explanation offered
depends on the function of the additive. For instance, if an emulsifier is added, the standard recommended
dosage at a particular temperature is indicated, together with any factors that lead to a modification of that
dosage. If a weight material is added. the amount is explained in terms of that needed to increase the density

from some current value to a desired target value.

MUD includes specialized rules for each of a number of canonical types of explanation. The condition
clements for each of these rules often include references to special purpose working memory clements that
maintain information ﬁ_ml is relevant to the explanation but would not otherwise be preserved by the MUD
system given its existing data representations. While this approach gave us a great deal of flexibility during
development, especially as we had to learn gradually about what was desired in an explanation, the approach

leads in the ¢nd to too many unwicldy interdependencies between rules.

The user may also ask MUD why it chose the additive it did from among the alternatives. Answers to this
question are easily produced by rules which compare the values assigned each alternative additive with

respect to each of the factors in MUD's heuristic evaluation function, figure 4-7.

We also wanted to provide explanations 1o questions, such as, "What would I need to do if salt
contamination occurred?” As discussed with respect to the explanation of diagnostic reasoning, conditional
explanations of this kind allow access to MUD's knowledge base outside of a performance context. Since the
structure of MUD's treatment generation rules corresponds to the structure of its diagnostic rules, an
explanation of treatments at a functional level could be easily provided by minor enhancements to MEX, the
cxplanation system described above in section 3.5.1. Explaining how MUD calculates how much of a material
additve 1w use wouid. however. be much more difficult, as many different kinds of rules are used to do this.

Implementing this capacity would probably require substantial modifications t MUD.
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5. Discussion

5.1 Why mup Works

‘The current version of MUD assumes that all data entered, as a well as the recognition of diagnostically
significant observations, is certain. So far this has not degraded performance. This is surprising. We had
expected that MUD would need a quantitative way of both recognizing the likelihood of a deviation in a mud
property and of transmitting evidential uncertainty to its hypothetical conclusions. In fact MUD is designed to

allow this functionality, with few modifications, if it becomes desirable.

MUD seems able to succeed, with its assumption of evidential certainty, because its diagnostic procedure is
robust in two. respects. First, there are typically several diagnostically significant evidents which can evoke a
hypothesis. If a problem occurs, it is likely to push at least onc mud property across a detection threshold.
Thus, uncertainty in the data is unlikely tb cause MUD to miss the occurrence of a disruptive event. Secondly,
as MUD weighs several evidential considerations together in coming to a conclusion with respect to any
hypothesis, small errors in some fraction of these observations may wash out given a prcponcicrancg of
evidence for or against the hypothcsis.14 Indeed this might explain why MUD engincers themselves do not
need to rely on mathematical models for handling uncertainty. The following analysis of MUD’s diagnostic

procedure and knowledge base supports this conclusion.

The strength of a diagnostic conclusion in MUD is a function of the difference between accumulated
measures of belief and disbelief. As discussed above, each measure results from an incremental function
which operates over the positive or negative evidential weights associated with cach REASON. These weights
range from 0 to 10, with 0 indicaﬁng no contribution to the relevant belief measure. These values are

subjectively assigned by domain experts.

If a high measure of belief results from at least one highly weighted REASON, onc can accept the hypothesis

with confidence. provided that there is an abscnce of contradictory evidence. However, if a strong belief

Onc place where it is necessary 1o be careful is when a mud property with a high negative-support valuc s near a deteclion threshold.
In these cases. MUD warns Lhe user. but does aok alier its diagnostic conctusion as the detection threshold, set by the engineer. should take
into account the desirable tradeolT belween (alse-positive and false-negative responses. [f the tatter is of concern, the thresheold can be
lowered.
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results from the accumulation of many small weights, one can be sure, only under special conditions, that the

results are duc t the hypothesized problem and not to one or more other problems.

First of all. confidence is warranted when there is a high degree of differentiation in the consequences of
the potential problems responsible for diagnostic symptoms. The more differentiation, the more likely it is

that belief will accumulate more toward one hypothesis than another.

Sccondly, onc can be confident if it proves possible to reject alternative hypotheses. A hypothesis can be
ruled out when expected consequences of the problem fail to materialize. When evidential considerations are
assigned large negative support values, a rule out strategy becomes a powerful diagnostic tool. Since MUD's
evidential support function generates an additive measure of disbelief, a rule out strategy can also be used

when there is an absence of several consequences, each of which has a low negative support value.

Finally, if one expects few concurrent problems with overlapping results, one can legitimately see
significance in marginal differences between potential explanations. Thus, if this condition is met, one can
accept a hypothesis grounded on many weak evidential sources. provided the measure of belief is marginally

above any alterpative.

MUD’s ability to achicve high levels of confidence in its diagnostic conclusions will thus rest largely on how
domain experts assign weights to evidential considerations. MUD's performance will depend on the extent to
which each potential hypothesis has some evidential considerations with high positive and negative support
weights. In addition the amount of differentiation between hypotheses with respect 10 associated evidential

considerations and the likelihood of concurrent problems will affect MUD's performance.

And indeed. it appears that MUD performs well and robustly becausc the above conditions hold extremely
well across most hypotheses. Most hypotheses appear to have at least one consideration that carries
significant positive import, In 17 out of the 20 problem types MUD currently knows about, one evidential
consideration has a weight greater than or equal to 8, MUD's threshold of acceptance under normal
conditions."® There is also a substantial degree of differentiation.  Of the 20 probiems, there arc only 3 for

which there are alternative hypotheses that would explain at least half of their potentially supportive

15 . ‘ . . ) . ) .
When lacking evidence. or when faced with uncxplained inconsisiencies, MUD resorts (o more complicated decision reles. Some of
these capabilities are still under development.
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evidence. This means that evidence for the correct conclusion is unlikely to lend much credence to alternative
hypotheses.  Thus, e¢ven when some potential cvidcm‘:c is degraded or absent, there tend to be other
discriminating considerations, sufficient to drive a diagnostic conclusion in the right direction. In addition,
MUD's diagnostic conclusions are driven by a rule-out strategy that is supported by the high expectation of
obscrving symptoms associated with particular problems. For 17 of the 20 problems, the failure to observe a
key consequence would lead to the belief that that problem had not occurred. In 2 of the remaining cases, the

potential exists for rejecting a hypothesis on the failure to observe more than one expected consequence.

In summary, a consideration of evidential weights proves to be a robust diagnrostic procedure in the mud
domain. One expects cither to find observations that strongly support a unique conclusion, find that the
evidence converges on a unique hypothesis, or successfully rule out competing, but false, hypotheses. These
results do more than confirm some obvious intuitions -- they provide a basis for pushing the analysis one step
farther. Just what kind of evidence can push confidence factors in the directions required for robust

diagnostic performance?

5.1.1 Where confidence factors come from

During interviews with mud engineers, the most significant factor in determining positive-support values
appeared to be the number of alternative hypotheses that could account for the same symptom. Where only
one hypothesis could cxplain a symptom, the assigned weight tended to be at the ceiling {10). Otherwise, the
assigned weight gencrally declined with the number of alternative explanations. But if .the number of
alternative hypotheses were the only consideration, we would expect the symptom (o be assigned the same
weight with respect to any hypothesis that could explain it. This turns out not to be the case. The assignment
of weights also seems to depend on the relative frequency with which a particular symptom is due to one
problem as opposed to another, with the higher wcight assigned to the REASON linked to the more likely

hypothesis.

In contrast, ncgative-support weights seem to reflect the degree to which a symptom can be expected, given
the occurrence of a particular problem, This cxpectation is thought to reflect the freguency with which a
particular problem leads w a particular symptom. When these transitional likelihoods are high, the failure to
observe a symptom is significant evidence that the hypothesized problem has not occurred. A look at the

actual negative-support weights assigned by domain experts suggests, however, that transitional likelihood is
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not the only factor of concern. There is also an clement of caution that appears to have its source in
procedural uncertaintics inherent in taking mud samples and doing ficld tests. One must take any

ubservation with a grain of salt. ‘This has the effect of lowering negative-support values.

5.2 Implications for Knowledge Acquisition

One of the major problems for a knowledge cngineer in a diagnostic domain is learning enough about the
domain to drive the interview process effectively {Boose 84], [Davis 82). In light of our analysis of MUD and
discussions with domain cxperts, we found ourselves relying on a small set of interview strategies that
appeaicd to rapidly lead to a more powerful rule base. These strategies were based on our understanding of

MUD's performance, as described above,

For purposes of discussion these strategies can be labelled as:

» differentiation

¢ frequency conditionalization
e symptom distinction

e symptom conditionalization
e path division

» path differentiation

 [cst differentiation

» test conditionalization

As a simplification, we describe these strategies in terms of symptoms, diagnosable events, and background
conditions. A symptom, or symptomatic event, is any evcr'lt or state conscquent to the occurrence of a
diagnosable event, also referred to as a cause or hypothesis. A background condition is any other event or state
that affects the diagnostic significance of a symptom. Included here are further differentiating characteristics

of the symptom, itself. A reported symptom is a symptom already pointed out by a domain expert and

incorporated into the growing knowledge base.

The first three of these strategics are well known to knowledge engincers. Differentiation implics secking
for symptoms that provide leverage in distinguishing among diagnosabic cvents. Most powerful in this
respect are symptoms which result from a unigue diagnosable ¢vent. ‘Fhese symptoms have maximally high
positive-support values. However, increased differentiation in the knowledge base also results from

incorporating symptoms which are cxplainable by a set of causes different (at least in part) from thosc
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underlying previously reported symptoms. For instance. in the MUD domain, both an influx of water and an
insufficient use of emulsifier can have the same effects on measurable mud propertics. However, an increase
in mud volume is usually associated with the former. While this effect can also result from a hydrocarbon
influx, other shifts in mud propertics distinguish hydrocarbon from water influxes. Thus, the knowledge base
can be further differentiated by adding the fact that an increase in volume is a confirming observation with

respect to a water influx. Correspondingly, this increases the likelihood that evidence will converge on the

actual cause.

Frequency conditionalization is a matter of determining if there are background conditions under which a
particular cause is more or less likely to occur. The more these conditions lead tw the expectation of a
particular cause, the greater the confirmatory significance of a related symptom. For instance, in the MUD
domain, an increase in viscosity often results from drilling through one of a number of contaminants, some of
which may be expected, others unexpected, in the location being drilied. Thus, one would like the evidential
significance of a symptom, such as an increase in viscosity, to be dependent on local knowledge about the

likelihood of encountering various contaminants.

Symptom distinction requires seeking out special characteristics of a symptom that identify it as having been
caused by one as opposed to other causal events. For instance, in the MUD domain both an influx of water
and an increase in low specific gravity solids can cause a decrease in density. However, if density has

decreased rapidly, it is more likely to have been due to an influx of water.

The remaining five strategies. as far as we know, are less familiar w knowledge engineers. Symptom
conditionalization provides a way to increase the negative-support or disconfirmatory values of existing
symptoms and consequently allows greater reliance on a rule-out strategy. Negative-support values, as
discussed above, are proportional to the expectation that a diagnosable event will indeed give rise to a
particular symptom. This cxpeétation can be low if, for instance, the appearance of a symptom requires the
co-occurence of a background condition. In the MUD domain, for example. some viscosity effects normally
associated with salt contamination of a water based drilling fluid will appear only if the fluid has not been
pretreated with surfactant thinners. If there has been a pretrcatment of this kind, the faiture of viscosity
symptoms to appear cannot count as evidence against the hypothesis of salt contamination, However, if onc

knows that the system has not been pretreated in this way, then the disconfirmatory significance of failing to
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observe these viscosity symptoms is much greater than it would be otherwise. Put more generally, symptom
conditionalization involves intervicwing domain experts lﬁ)r the nature of conditions whose occurrence may
cither be required for, or may thwart, the appearance of a particular symptom. In the latter case, knowledge
that the condition has not occurred would be reason for attributing greater significance to the absence of the

symptom.

Path division also leads to stronger rule-out oportunitics. This strategy requires eliciting a symptomatic
event that lies on a causal path from the diagnosable event to an already reported symptom. The new

16 As

symptom must be selected such that it is more expected, given the cause, than the reported symptom.
such, the failure to observe it will be of greater disconfirmatory value ceteris paribus than failing to observe
symptoms later in the causal chain. In the MUD domain, for example, the failure to obscrve an increase in
viscosity is less disconfirmatory with respect to shale contamination than the failure to observe a significant

increase in frce bentonite through the use of a methylene blue test. An increase in bentonite can be

considered an intermediate step between shale collapsing into the bore hole and a change in viscosity.

Path dg’ﬁ?rentiaiforz is a means of finding symptoms with high positive-support values. With this strategy.
the knowledge engineer determines if a symptom, which may result from one of several causes, I7 does so via
(at least partially) non-overlapping causal pathways. Intermediary events on non-overlapping portions of
these pathways arc expected to have a higher positive-support value than symptomatic events on shared
pathways. For instance, in the MUD domain, an increase in plastic viscosity in an oil mud can result from
either salt or water contamination. These effects, however, do not result in entirely the same way. Shale
contamination causes an increase in plastic viscosity by increasing the percentage of solids in the mud system:
water causes an increase by its behavior in a partially emulsified solution. The mud engincer can determine
which of these mechanisms accounts for increased plastic viscosity through the use of additional tests. These
iests measure the amount of unemulsified Water and the solids content of the mud. Positive results on these
tests provide stronger confirmation of the respective causes than docs the shar_cd svmptom of increased plastic

VISCOsity.

16, . . . . ‘ .
This will be the case provided that the expectation of the reported sympiom given the new symplom is not 1 and there are not

alternative pathways lrom the cause 1o the reported symptom. some which do not pass through the new symplom.

17 ..
Such symptoms have low positive-support values,



40

Test differentiation and test conditionalization provide ways of strengthening the confidence in the
observation that a sympmm has occurred or not. As discussed above, the significance of a symptom with
respect to confirming or disconfirming hypotheses is sometimes fess than it might be because the procedure
for determining its occurrence is unreliable. In these cases, the knowledge engineer can seck out conditions

under which the reliability of the observation can be more readily taken for granted.

Test differentiation is a matter of distinguishing the reliability of different tests. In the MUD domain, for
instance, the significance of changes in pH level differ slightly depending on whether pH is measured by
litmus paper or the more accurate pH meter. Test conditionalization is a matter of determining the conditions
under which the use of a particular test, or eye obscrvation, is more accurate. Somc tests, for instance, are
more accurate when measurcments are made within a particular range of values. Other possibly relevant

conditions include consistency with other measures and the experience of the performing technicians.

5.2.1 Automating knowledge acquisition '

The fact that our attempts at knowledge acquisition in the MUD domain became more structured over time
and converged on the eight distinct strategics discussed above encouraged us to explore the potential for an
automated interviewer. Such a tool would have the potential of not only relieving the knowledge engineer of
the interview burden, bult also of allowing a rapid assessment of the strength of the current knowledge base,
and a sclection of interview questions designed to compensate for these weaknesses. [n addition, by
maintaining a mapping between the knowledge base and rules, the system could potentially recognize rules

with unexpected weight assignments. Our recent work in this area is reported in [Kahn 84b].

5.2.2 The adequacy of MUD’s knowledge

The above analysis gives us a tool for pursuing further knowledge acquisition. We can expect to improve
the performance of an evidential system by

1. finding observations with higher transitional likelihoods,

2. finding observations with fewer potential explanations,

3. collecting additional observations with an eye toward increasing the evidential differentiation of
alternative hypotheses.

Although the amount of knowledge in MUD aircady appears high cnough to achicve competent levels of
performance. expanding knowledge in the directions suggested should result in still higher levels of

performance. Unfortunately, we encounter several limitations w so doing.
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Where the negative weight of an observation is low. ideatifying an intenimediate event on the pathway from
inittating causc to the former observation provides an c_vidcntiul consideration with a potentially stronger
transitional likclihood."® The attempt to identify such intermediary cvents in the MUD domain, however,
typically fails for two rcasons. The first is that in general there is an absence of procedures for detecting these
events under ficld conditions. For example, many contaminants, such as shale cuttings and salg, affect gelation
and viscosity propertics of the drilling fluid by altering its molecular structure. The essential events that occur
between the onset of contamination and the field tests which measure gelation and viscosity take place at the
molecular level. Detecting these events in a way that would allow discrimination among potential
contaminants would be a powerful aid to diagnosis. Unfortunately, the appropriate tests require ¢quipment
and expertise that would be impractical in the field. A similar sitvation generally holds for all properties that

reflect chemical changes induced by contaminants,

In addition, the pursuit of further causal knowledge is hindered by the many significant evidential
considerations that involve the recognition of physical events that are closely linked to the occurrence of a
probiem. For instance. a significant drop in mud density is a strong indicator of an influx -of gas or water
under some conditions. Where events have this kind of physical contiguity, there just are no further

intermediary events to draw on.

Although the potential for causal refinements is limited, negative weights associated with already
recognized symptoms can be increasefi by identifying the absence of factors that would normally interfere
with their expression. For instance. MUD has a slight disposition to deny that an influx of water has occurred
when there is no observed increase in mud volume. This disposition is weak because influxes at one depth
can be masked by lost circulation at another. However, if the possibility of lost circulation has been rejected,

then when there is no increase in volume, MUD can confidently deny that there has been an influx of water.

In many cases, we have been able to strengthen MUD's performance by attempting to clarify the reasons
why domain experts assign weak negative weights to potential symptoms. This procedure, however, can only
be carried so far. It is not possible 1o push these weights to a negative certainty for several reasons. For onc,

the observation of a consequence often has to do with the degree to which a problem is occurring. Secondly,

I} S . . . - .
This will be truc unicss the negative weight of the former observation refleets transitions along rmultiple causal pathways.
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domain experts are unable on many occasions to exhaustively list all the potential reasons for failing to
observe an expected consequence. Third, procedures fur ascertaining that an interferring condition has
occurred or not frequently do not exist. And finally, domain experts scem to map procedural uncertaintics
into negative weights as well. Since mud samples may./ not accurately relect down hole conditions or may be

unreliablely measured, the expert diagnostician cautiously assigns diagnostic significance to many tests.

Finding events or states to which one can assign greater positive support would proceed by distinguishing
pathways by which alternative problems result in shared conscquences. Events on the distinct pathways
would presumably be explained by fewer hypotheses, and thus have higher positive weights, Distinguishing
such pathways and events, however, fails for the very reasons discussed above with respect to achieving higher

transitional likelihoods. Pathways are either indistinguishable, or events on these pathways are undetectable.

In the above we have suggested the kind of analysis required to improve diagnostic performance. As a
result of examining the potential for expanding MUD's knowledge of diagnostically significant obscrvations,

our view is that MUD does about the best job it can, with respect to the problems it knows about.

5.3 mub as a Production System

MUD is implemented in OPSs, a general purpose production system language [Forgy 81]. Unlike many OPS
programs, MUD does not take full advantage of the OPS interpreter, as can be seen from the structure of the
sample diagnostic rules. The significant part of the content of such a rule is in its action part; the effect of
applying the rule is to place a description of the evidence supporting a hypothesis into working memory.
Other more general rules match this data and provide the capabilities for secking and evaluating evidence, as
well as deciding among hypotheses. Alternatively, one can imagine rules that exploited the OPS patiern
matcher by placing the evidential descriptions in the conditional part of the rule and using the action part of
the rule to evaluate these with respect to Lﬁeir bearing on a REASON. The decision here can be stated as one
between explicitly representing evidential relations in working memory (the more declarative approach), and
implicitly representing them in the conditions and actions of specialized rules (the more procedural
approach). We found several reasons for preferring the former: it makes it casier to expand and maintain the
knowledge base. explore alternative approaches to various problems, and access the knowledge basc outside

of a performance context.
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Fxpanding the knowledge base manually is casier the less one has to be concerned with issues of
cansistency and control. These problems can arise in many places in a diagnostic system, but most readily
occur in guaranteeing that the data required 10 draw a diagnostic conclusion is available when desired.
Backward chaining systems solve this problem by examining the conditions of the rules that would provide
support to the hypothesis in question and instantiating those that have unknown values. 0Ps does not provide
this capability dircctly. Instead. for the procedural approach to work, there must be rules that gencrate data
when it is nceded by other rules. Since these rules are distinct from those that actually use the data to make
inferences, the burden of maintaining consistency and adequatc sequentiai control is on the programmer.
This is especially worrisome when novice programmers will be augmenting the knowledge base with new
diagnostic rules -- a situation we faced with MUD. With the declarative approach taken by MUD, neither
consistency nor control issucs need be of concern when new evidential rulcs are entered into the system.
Since there is only one rule for each evidential consideration, the consistency issue goes away. Since the
general rules which interpret the diagﬁostic rules provide all Lhé functionality of a backward chaining

inference engine, no additional control issues arise.

The declarative approach also makes it casier to cxplore alternative solutions to ¢ritical problems. One of
these, for example, is that of handling ignorance -- what to do when some desired datum is uninferable by the
system and unknown o a user. Under such conditions one would like to make an intelligent guess or point
out to the user just what information is required to make an accurate diagnostic assessment. This cannot be
dene when the missing datum is represented in the conditi.onal part of a rule: the description is simply
inaccessible. Again, with the procedural approach, one can compensate for this by creating rules whose
conditions constitute the powerset of potential partial mawches. Each rule indicates what to do under the
conditions of ignorance defined in its conditional part. Not only does this result in a lack of conciseness in the
program, but it proves a tremendous obstacle to cxploring alternative global strategies for dealing with
ignorance. Instead of replacing a very few gencral rules, as with the declarative approach, it is necessary (o
modify all the rules which were formulated to handle ignorance in many particular cases. By creating a
working memory representation of evidential relations, a few general rules can provide a global strategy 1o
problems of ignorance. In MUD some of these rules function as part of a multi-valued logic for assigning truth
values o evidential networks: others to assess the pattern of ignorance. deciding what information is

unnecessary or necessary to achieve an adeguate diagnostic conelusion.
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A declarative approach is also required if knowledge about evidential relations is to be accessed outside of
actually running a diagnosis over some sct of Symptoms.. For instance, in the MUD domain, there are
conditions under which engincers would like to ask conditional questions, such as. "How would one know ifa
salt formation were being drilled?”. With the more procedural approach. answering such questions requires
using canned text or an artificial trace which could be inconsistent with the rules that perform the actual
diagnosis. MUD's more dcclarative approach allows us to answer such questions by letting specialized
explanation rules read the same working memory elements that would drive the system during a diagnostic

session.19

While our solution to the above problems is a workable one, it has not been efficient. A large working
memory of evidential relations and a few general interpretive rules puts a strain on the OPS pattern matcher.
One way of gaining the benefits in consistency and concisencss promised by the declarative approach as well
as the efficiency promised by the procedural approach is to use both approaches, cach at its appropriate time.
We are currently exploring the possibility of developing rule generators that would essentially provide a
mapping between the declarative and procedural representations. Building such a generator for diagnostic
knowledge would allow for the creation of specialized instantiations of the general rules currently deployed
by MUD; the input to such a generator would be a representation of the evidential relations reguired for

diagnosing mud problems.

5.3.1 An account of MUD’s rules.

When released to NL Baroid, the MUD system had 826 rules. Of these, approximately 1/3 represented 2
general control mechanism, or procedures that made no assumptions about the domain in particular. Of the
remaining 2/3’s about half involved domain-specific knowledge. The remaining half, while not domain-
specific, were domain-dependent:. that is, they entailed assumptions about the representation of information in

MLD, a represcntation that was constrained by requirements of the domain.

A classification of MUD's 268 domain-specific rules is given in figure 5-1. The large class of data related

rules is composed of rules which cither create a data schema for a particular datum, perform a procedure for

1 These ruies can also be used to provide a run-time explanation of diagnostic decisions. Howoever. they have not el been propertly
integrated into Mup. Thus. MuD still relies on canned text to provide run-time cxplanations.
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inferring the value of datum, or create a set of requests for data from which a desired value can be inferred. A
data schema is a working memory clement that carrics iﬁ formation about a particular kind of datum. ‘This
information includes the default units of an instantiated value, a descriptive phrase for the datum, a question
to be used in asking for the current value of the datum, and constraints on acceptable values, We expect these

rujes to be augmented gradually as the scope of evidence MUD considers increases.

Data related rules: 126
Diagnostic niles: 68
Treatment rules: 52
Inconsistency checking: 19
Scarch Control: 3

Figure 5-1: MUD's domain-specific knowledge

The class of diagnostic rules includes both hypothesis generation rules and evidential rules (those which
create a working memory representation of the evidential requirements for evaluating a hypothesis). We
expect considerable growth in these rules as MUD'Q knowledge base is extended to handle additional mud
types. We also expect considerable refinement of the current set of evidential rules. These refinements will

be refinements in the logical description of evidential considerations.

Treatment rules gencrate treatment plans, calculate the amount or degree of a treatment, or generate
explanation schemata for different kinds of treatments. We expect the number of rules which generate
treatment plans to increase rapidly as MUD is used for other mud systems. We also expect considerable
refinement of the existing treatment rules as the scope of considerations bearing on treatments is extended.
For similar reasons, we expect rules which calculate the amount or degree of a treatment to increase

substantially.

Inconsistency checking rules check for unlikely or impossible combinations of data. This rule set is likely to

grow somewhat, but not to a great extent.

The small class of scarch control rules currently controls the order in which hypotheses are evaluated. As
the MUD system comes to recognize larger classes of relevant hypotheses. it may be necessary to modify or add
to these rules. However, we do not expect this to occur as MUD's early pruning strategics seem to successfully

restrict the set of candidate hypotheses.
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A classification of MUD's 303 domain-dependent rules is given in figure 5-2. ‘Ihe domaiﬁ-dcpcndcnt rules
differ from the domain-épcciﬁc rules in that they provide a variabitized schema of condition ciements. While
these rules are generalized, their form is considerably constrained by the requirements of the mud domain.
Undoubtedly there are other diagnostic and treatment domains to which many of these rules would apply.
However, their present form is a direct consequence of constraints imposed by the mud domain. While some
of these rules correspond to domain knowledge, more typically, the rules cxist to manipulate internal

representations, control the behavior of the program, or explain the behavior of the program to the user.

Data base access and transfers 100
Trend analysis 63
Treatment handling 67
Evidential Assessment 35
User interface 38

Figure 5-2: MuD's domain-dependent knowledge

A large number of data basc access and transfer rules are used to provide an interface between Digital’s
DBMS codycil database and MUD. Most of these rules map between the relatively simple database currently

being used, and MUD's more complex representational structure.

Trend analysis rules are largely computational. They make considerable assumptions about the kind of
data that requires analysis. Whilc these rules are not restricted to the mud domain per sc, they assume a

representational structure constrained by the domain considerations which guided MUD’s design.

Treatment handling rules provide generic procedures for selecting treatments and providing explanations.
A user interface of 179 rules provides a general mechanism for interrogating the user and providing menus;

38 of these rules are used to tailor this interface to the requirements of the MUD domain.
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6. Conclusions

The MUB system demonstrates the applicability of production system architectures to diagnostic and
treatment tasks. Both thesc tasks arce sufficiently well structured to allow incremental growth through the

addition of context specific rules.

MUD's diagnostic approach. like that of many previous sytems, is to rely on evidential rules rather than a
decep causal model. This was much preferred in the drilling fluids domain. MUD took a soimewhat unusual
approach to the representation of declarative knowledge in the context of a forward chaining system. So
doing created the opportunity to provide explanation facilities not usually found in forward chaining systems,

while at the same time making it more difficult to introduce inconsistencics into the knowledge base.

MUD’s approach to providing treatments for diagnosed problems makes use of heuristic knowledge at
several points within what is basically a well-structured task. Generating a treatment plan is well-structured
in that there is an exact sequence of required tasks, namely, that of generating a functionally apﬁropriate
treatment plan, finding material additives or equipment with the required functions, figuring out how much
of a maicrial is to be used or for how long a piece of cquipment is to be run, and choosing among alternative
treatments with the same function. The rules for each of these subtasks, however, require considerable
contextual sensitivity. A rule-based approach allows incremental growth and flexibility in achicving higher

levels of competence with respect to each of these subtasks.

An analysis of why MUD works has shed some light on the prerequisites for the success of evidential
approaches to diagnosis, and has resuited, as well, in a better understanding of knowledge acquisition

strategies for diagnostic tasks.
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To exit the program from any menu, type QUIT

To enter data
Analyze data and form hypotheses

MODES

How to remedy probiems
set options
display this menu
explain an mode
exit from the program

To
To
To
Te

MODE { MENU

] :d

What kind of mud are you using:invermul
What is the down hole depth:1300

What is the down hole temperature [ degrees f. ] :324

AVAILABLE SUBMODES

For control information
Information on the mud systom
Inventory information

Materials used and equipment changes

Information on the bore hole

Information on the drilling system

Logging probiesms encountered
Trends in mud system values
To create or modify a mudspec
To escape to the top menu

DATA [ MENU

] :apt

API MODES

To cycle through all entries

To enter a specific piece of data

Escape to higher level

Explain what a particular mode does

Display this menu
To read data from a file
To display values of data
To write all data to a file

OATA
ANALYSIS
TREATMENT
GPTIONS
MENU

HELP [mode]
EXIT

CON

API

INV

MAT
BORE
RIG
PLOG
TREND
MUOSPEC
EXIT

CYCLE
DATUM
EXIT
HELP [mode]
MENU
READ
SHOW
WRITE
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API [ MENU ] :r

DATA FILE TYPE TO READ

Data is stored in a separate file FILE
Data is stored in a database . DBASE
Escape to higher level EXIT

READ [ MENU ] :f

Give file name [ API.DAT ] :[gsk.datalbc.2
AP] data for waell BC.2 for depth 3375 FT.
Last updated on 28-JUNE-83 at 9:15

It is impossible for pf-filtrate to be above ©

when ph is below 8.3,

Since FILTRATE ALKALINITY (Pf) is .7 Pf and pH is 7,
a maasurement error has probably been made.

Do you want to reenter data [ Y ] :n

READ [ MENU ] :e

API [ MENU ] :e

DATA [ MENU ] :mudspec

MUDSPEC MODES

To cycle through all entries CYCLE

To aenter a specific piece of data DATUM
Escape to higher levael EXIT

To generate target values GEN

Explain what a MUDSPEC mode doas HELP [mode]
Display this menu MENU

To read data from a file READ

To display values of data SHOW

To write all data to a file WRITE

MUDSPEC [ MENU ] :r

DATA FILE TYPE TQ READ

Data is stored in a separate file FILE
Data is stored in a database DBASE
Escape to highser level EXIT

READ [ MENU ] :f

Give file name [ MUDSPEC.DAT ] :[gsk.data]bcplan.2
MUDSPEC data for well BC.2 for depth 3200-3500 FT.
Last updated on 25-JUME-83 at 12:00

READ [ MENU ] :e

MUDSPEC [ MENU ] :e
DATA [ MENU ] :e

MODES
To enter data DATA
Analyze data and form hypothesas ANALYSIS
How to remedy problems ‘ TREATMENT
To set options OPTIONS
To display this menuy MENU
To explain an mode HELP [moda]
To gxit from the program EXIT

MODE [ MENU ] :a

1s thaers a database available for trend analysis ? (Y or N) [ Y 1 :n
Mo trend analysis will be performed, :
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USE + TO RETURN TO DATA MODE
USE < TO MODIFY DATA

Have we gained any volume:y
Ara all surface additions of 0il accounted for :y
Is there water in the hthp filtrate:y

REVIEW [ MENU ] e

VALUES FOR THE FOLLOWING ARE ABOVE OR BELOW SET TARGETS

L IME

LOW SPECIFIC GRAVITY SOLIDS
OIL WATER RATIQ
ELECTRICAL STABILITY
LEQUID CONTENT

SOLIDS CONTENT

HTHP CAKE THICKNESS

10 MINUTE GEL-STRENGTH
10 SECOND GEL-STRENGTH
YIELD POTNT

PLASTIC VISCOSITY
FUNNEL VvISCOSITY
DENSITY

rFErCFCEFICFITTOC

TYPE ANYTHING TO CONTINUE [ € ] :

THERE IS CONSIDERABLE EVIDENCE THAT:
1:  THERE IS AN INFLUX OF HYDROCARBONS

2: THERE IS AN INFLUX OF FORMATION-HYDROCARBONS
3:  THERE IS AN UNDER-DOSAGE OF GELTONE

ALTHOUGH THERE IS SUFFICIENT EVIDENCE TO ACCEPT THE HYPOTHESIS,
IT SHOULD BE NOTED THAT CONTRARY TO EXPECTATIONS:

THE PPB AMOUNT OF GELTONE IS MOT LESS THAN THE AMOUNT TARGETED

4:  THERE IS AN UNDER-DOSAGE OF LIME
TYPE ANYTHING TO CONTINUE [ C ] :

EXPLANATION MENU
DIAGNOSES
SCOPE
REASONS
DATA UNACCOUNTED FOR
EXIT

[ M]:d

mMxx DD

H 1: IT IS EXTREMELY LIKELY THAT
THERE IS AN INFLUX OF HYDROCARBONS.
THIS IS SUFFICIENT TO ACCEPT THE HYPOTHESIS.

H 2: IT IS VERY LIKELY THAT
THERE IS AN INFLUX OF FORMATION-HYDROCARBONS .
THIS IS SUFFICIENT TO ACCEPT THE HYPOTHESIS.

H 3: IT IS VERY LIKELY THAT
THERE IS AN UNDER-DOSAGE OF GELTONE, -
THIS IS SUFFICIENT TO ACCEPT THE HYPOTHESIS.

H 4: IT IS VERY LIKELY THAT
THERE IS AN UNDER-DOSAGE OF LIME.
THIS IS SUFFICIENT TQ ACCEPT THE HYPOTHESIS,

HE : IT IS VERY UNLIKELY THAT
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THERE IS AN UNDER-DOSAGE OF INVERMUL.
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

H 6 : IT IS EXTREMELY UNLIKELY THAT
. THERE IS AN INFLUX OF WATER.
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

"7 : IT IS VERY UNLIKELY THAT
THERE IS AN UNDER-DOSAGE OF EZ-MUL.
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

H 8 : IT IS VERY UNLIKELY THAT
THERE 1S AN OVER-DOSAGE OF EZ-MUL.
THIS IS SUFFICIENT TO REJECT THE RYPOTHESIS.

HS: IT IS EXTREMELY UNLIKELY THAT
THERE HAS BEEN AN OVERDILUTION WITH OIL.
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

H 10 : IT IS VERY UNLIKELY THAT
FORMATION SOLIDS ARE BUILDING UP IN THE SYSTEM.
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

H 11 : IT IS VERY UNLIKELY THAT
THERE IS AN OVER-DOSAGE OF INVERMUL.
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

H 12 : IT IS VERY UNLIKELY THAT
THERE IS AN OVER-DOSAGE OF DURATONE,
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

H 13 ; IT IS VERY UNLIKELY THAT
THERE IS AN OVER-DOSAGE OF LIME.
THIS IS SUFFICIENT TQ REJECT THE HYPOTHESIS.

H 14 : IT IS VERY UNLIKELY TRAT
THERE IS5 AN OVER-DOSAGE OF GELTONE.
THIS IS SUFFICIENT TO REJECT THE HYPOTHESIS.

H 168 : IT IS EXTREMELY UNLIXELY THAT
THERE IS AN UNDER-DOSAGE OF CURATONE.
THIS 1S SUFFICIENT TO REJECT THE HYPOTHESIS.

EXPLANATION MENU

DIAGNOQSES

SCOPE

REASONS

DATA UNACCOUNTED FOR

EXIT
[M]:r
Which hypothesis would you like gxplained [ 1 ] :
H 1: THAT THERE -IS AN INFLUX OF HYDROCARBONS

CAN BE ACCEPTED BECAUSE

R1: THERE IS AN INCREASE IN SYSTEM VOLUME
R2: THERE IS A DECREASE IN ELECTRICAL STABILITY
R 3 THERE IS A DECREASE IN YP
R 4 : THERE IS A DECREASE IN LOW SPECIFIC GRAVITY SOLIDS
RS : THERE 1S AN DECREASE IN DENSITY

R B : THERE 1S A DECBEASE IN PV

m»xJNQ



55

R7: THERE IS A DECREASE IN GEL STRENGTH
AND MORE SPECIFICALLY -
c1: THE OIL-WATER RATIO IS yP
Which hypothesis would you like explained [ 2 ] :2

H 2: THAT THERE IS AN INFLUX OF FOQRMATION-HYDROCARBONS
CAN BE ACCEPTED BECAUSE

R 1: THERE IS EVIDENCE OF A HYDROCARBON INFLUX

AND MORE SPECIFICALLY -
c1: THE OIL WATER RATIO IS ABOVE EXPECTED GIVEN SURFACE OIL ADDITIONS
Which hypothesis would you like explained [ 3 ]

H 3: THAT THERE IS AN UNDER-DOSAGE Of GELTONE
CAN BE ACCEPTED BECAUSE

R1: THERE IS A DECREASE IN GEL STRENGTH
R 2: THERE IS AN INCREASE IN CAKE SIZE
R 3 : THERE IS A DECREASE IN DENSITY

Which hypothesis would you like explained [ 4 ] :8

H 8: THAT THERE IS AN OVER-DOSAGE OF EZ-MUL
CAN BE REJECTED BECAUSE

R 1: THE PPB AMOUNT OF EZ-MUL IS NOT GREATER THAN THE AMOUNT TARGETED
Which hypothesis would you 1ike explained [ 9 ] :

H 9: THAT THERE HAS BEEN AN OVERDILUTION WITH OIL
CAN BE REJECTED BECAUSE

€1: THE OIL WATER RATIQ IS ABOVE EXPECTED GIVEN SURFACE OIL ADDITIONS
Which hypothesis would you like explained [ 10 ] :

H 10: THAT FORMATION SOLIDS ARE BUILDING UP IN THE SYSTEM
CAN BE REJECTED BECAUSE

R1: THERE IS NC INCREASE IN LOW SPECIFIC GRAVITY SOLIDS
Which hypothesis would you like explained [ 11 } :8

H 6: THAT THERE IS AN INFLUX OF WATER
CAN BE REJECTED BECAUSE

R1: THE OIL-WATER RATIO IS MOT DOWN

R 2. THERE IS NO INCREASE IN GEL

R 3 : THERE IS NO INCREASE IN Y-PQINT

R 4 . THERE IS NO DECREASE IN ELECTRICAL STABILITY

Which hypothests would you tike explained [ 7 ] :4

H 4. THAT THERE IS AN UNDER-DOSAGE OF LIME
CAN BE ACCEPTED BECAUSE

R1: THE PPB AMOUNT OF LIME IS LESS THAN THE AMOUNT TARGETED

Which hypothesis would you 1ike explained [ 6 ] :@

EXPLANATION MENU
DIAGNOSES
SCoPE
REASONS
DATA UNACCOUNTED FOR
EXIT
[ W] :x

m» Do
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THERE IS NO ACCEPTED HYPOTHESES WHICH CAN EXPLAIN THE FOLLOWING:.

THE
THE
THE
THE
THE
THE
THE
THE

INCREASE IN ELECTRICAL STABILITY
INCREASE 1IN OIL WATER RATIO

DECREASE IN YIELD POINT

DECREASE IN PLASTIC VISCOSITY

DECREASE IN LOW SPECIFIC GRAVITY SOLIDS
DECREASE IN DENSITY

DECREASE IN 10 MINUTE GEL-STRENGTH
DECREASE IN 10 SECOND GEL-STRENGTH

TYPE ANYTHING TO CONTINUE [ C ] :

EXPLANATION MENU

DIAGNOSES

SCo

PE

REASONS
DATA UNACCOUNTED FOR
EXIT

{M]:s
By Hypothesi

IF THERE IS
THIS WOULD E
THE
THE
THE
THE
THE
THE
THE
THE

IF THERE IS
THIS WQULD E
THE
THE
THE
THE
THE
THE
THE
THE

s or by Property [ H ] :

AN INFLUX OF HYDROCARBONS,
XPLAIN:

INCREASE IN ELECTRICAL STABILITY
INCREASE INM OIL WATER RATIO

DECREASE IN YIELD POINT

DECREASE IN PLASTIC VISCOSITY

DECREASE IN LOW SPECIFIC GRAVITY SOLIDS
DECREASE IN DENSITY

DECREASE IN 10 MINUTE GEL-STRENGTH
DECREASE IN 10 SECOND GEL-STRENGTH

AN INFLUX OF FORMATION-HYDROCARBONS,
XPLAIN:

DECREASE IN 10 SECOND GEL-STRENGTH
DECREASE IN 10 MINUTE GEL-STRENGTH
DECREASE 1IN DENSITY

DECREASE IN LOW SPECIFIC GRAVITY SOLIDS
DECREASE IN PLASTIC VISCOSITY

ODECREASE IN YIELD POINT

INCREASE IN QIL WATER RATIO

INCREASE IN ELECTRICAL STABILITY

IF THERE IS AN UNDER-DOSAGE OF GELTONE,

THIS WOULD EXPLAIN:
THE DECREASE IN 10 SECOND GEL-STRENGTH
THE DECREASE IN 10 MINUTE GEL-STRENGTH
THE DECREASE IN DENSITY
THE INCREASE IN HTHP CAKE THICKMESS

EXPLANATION MENU
DIAGNOSES
SCOPE
REASONS
DATA UNACCOUNTED. FOR
EXIT

[M] e

MODES
To enter data
Analyze data and form hypotheses
How to remedy probiems
To set options
To display this menu
To explain an mode
To exit from the program

MODE [ MENU ] :t

Wwhat 1s the current volume of the mud system [ B8L ] :2000
WHAT WAS THE EXPECTED VOLUME OF THE MUD SYSTEM: 1890

m»xDoDNo

m>xXxwns

DATA
ANALYSIS
TREATMENT
OPTIONS
MENU

HELP [mode]
EXIT



57

H 1 : THERE IS AN INFLUX‘OF HYDROFAREONS .

H2: THERE IS AN INFLUX OF FORMATION-HYDROCARBONS
H 3 THERE IS AN UNDER-DOSAGE OF GELTONE

H 4 : THERE IS AN UNDER-DOSAGE OF LIME

WHICH HYPOTHESIS DO YOU WISH TQ TREAT:1

IS IT STILL TRUE THAT
THERE IS AN INFLUX OF HYDROCARBONS, THAT IS.
IS THIS CONDITION STILL PERSISTING [ Y N U J { Y J :

PROBLEM: THERE IS AN INFLUX OF HYDROCARBONS

EFFECTS: INCREASE IN ELECTRICAL STABILITY
INCREASE IN OIL WATER RATIQ
DECREASE IM YIELD POINT
DECREASE IN PLASTIC VISCOSITY
DECREASE IN LOW SPECIFIC GRAVITY SOLIDS
DECREASE IN DENSITY
DECREASE IN 10 MINUTE GEL-STRENGTH
DECREASE IN 10 SECOND GEL-STRENGTH

TREATMENTS: ADD WEIGHT-MATERIAL
TO INCREASE DENSITY
ADD EMULSIFIER TO INCREASE ELECTRICAL STABILITY
ADD WATER TO DECREASE OIL WATER RATIO

TYPE ANYTHING TO CONTINUE [ € ] :

MATERIAL SPECIFICATIONS

PRODUCT : RECOCMMENDED CURRENT COST OF
TREATMENT INVENTORY MATERIALS
EZ-MUL 2 DRUMS 1800 DRUMS 3 1617
INVERMUL 15 DRUMS 1800 DAUMS b 12448
*BARGAIN ’ 670 SXx 2800 SX $ 3786

WATER 53 GALS 2800 GALS $ 13
GELTONE 20 SX 800 sx $ 1453
TOTAL COST OF THE ABOVE MATERIALS IS: Y 19317

PILOT: NO RESULTING VOLUME = 2058 bbl.

TREATMENT ELABORATION MENU

ALTERNATIVES < PRODUCT > A
EXPLAIN < PRODUCT > EX
£EXIT E

ELABORATION: [ M ] :ex ez-mutl
AT 324 DEGREES A DOSAGE OF 2.9600 PPB IS REQUIRED,

2 DRUMS IS SLIGHTLY MORE THAN 458.8000 LBS WHICH RESULTS AS FOLLOWS:
458.8000 LBS SHOULD BE ADDED TO COVER AN ADDITIONAL SYSTEM VOLUME OF 156 BBL.

TREATMENT ELABORATION MENU

ALTERNATIVES < PRODUCT > A
EXPLAIN < PRODUCT > EX
EXIT E

ELABORATION: [ M ] :ex water

52.9941 GALS OF WATER WERE ADDED TO BRING THE OIL-WATER RATIOQ
FROM 80 7 20 TO 77 / 23
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TREATMENT ELABORATION MENU

ALTERNATIVES < PRODUCT > A
EXPLALIN < PRODUCT > EX
EXIT E

ELABORATION: [ M ] :a bargain

BAROID IS AN ALTERNATIVE TO BARGAIN .

.BAROID. 703 SX 2800 SX 3 5547
DO YOU WANT TO KNOW WHY IT WAS NOT SELECTED [ Y ] :

BARGAIN WAS PREFERRED BECAUSE:

IT HAS LESS DAMAGING SIDE-EFFECTS
IT IS CHEAPER

TYPE ANYTHING TO CONTINUE [ C ] :

TREATMENT ELABCRATICN MENU

ALTERNATIVES < PRODUCT > : A
EXPLAIN < PRODUCT > EX
EXIT E

ELABORATION: [ M ] :e

H1: THERE IS AN INFLUX OF HYDROCARBONS

H2: THERE IS AN INFLUX OF FORMATION-HYDROCARSBONS
H3: THERE IS AN UNDER-DOSAGE OF GELTONE

H 4 : THERE IS AM UNDER-DOSAGE OF LIME

WHICH HYPOTHESIS DO YOU WISH TO TREAT:
+C

[CTRL-C: RETURN TQ TOP]



