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1. What is syntax anyway? 
In recent years, the question of what role syntax should have in natural language understanding has been 

quite controversial. There have been arguments for using syntax first, for integrating it with other knowledge, 
for using it only when absolutely necessary, and even for not worrying about it at all, at least in detail, as a way 
of achieving robustness. This paper is the result of an attempt to sort out the different views, and will 
compare the ways different parsers use different knowledge sources, and present a new approach (or at least a 
new combination of approaches), which integrates syntactic and semantic knowledge in a tractable way. 

But first we will try to determine what syntax really is. Traditionally, it has been defined cither as the 
stmcture of a sentence, with semantics being the actual content, or else as the "parts of speech" and the rules 
which act on them, determining whether a sentence is grammatical or ungrammatical. The idea of structure 
versus content seems strongly related to formal logic, where the semantics of certain logical operators and 
their syntactic arrangement are defined independently from any real-world knowledge (except of course for 
the knowledge of the way logic works). All real-world knowledge is carried by various functions, predicates, 
variables, and constants, which are defined in terms of a model of the world one is talking about. Rather than 
argue about the usefulness of formal logic, or whether perhaps this sort of syntax is only the semantics of a set 
of patterns, it should be sufficient to note that, when used in a computer program, all semantics must be 
represented by structures as well, so the division between structure and content becomes less meaningful1. 
One could try to differentiate surface syntactic structures from deeper semantic structures, but then problems 
arise in differentiating deep syntactic structures from semantic structures. 

Following the grammatically approach, the concept of a sentence being ungrammatical seems to be 
intuitively clear, but also seems to be hard to define formally. A common definition is that syntax is the set of 
rules diat determine which orderings of words are allowed in a given language, plus which ways the 
morphemes of the language can be combined into words 2. Unfortunately, this does not seem to capture what 
people really mean by syntax, since this definition could require the use of any of our real-world knowledge in 
its application. For instance, by rigidly applying this definition, Chomsky's classic example of a syntactically 
correct but meaningless sentence, Colorless green ideas sleep furiously, would be ruled "syntactically" 
incorrect, since no one would claim that this sequence of words is allowed in English. A related definition, 
that it is the existence of a small number of parts of speech which are abstracted from the words of a language, 
and can be used to determine which combinations of words are legal without referring to the rest of one's 
knowledge about the words, will be discussed in a moment, after our intuitions about syntax are looked into. 

As it is intuitively used, syntax seems to mean that portion of a language user's knowledge that indicates 
how to combine the meanings of the morphemes, words, and phrases he knows using positional information 
to get the meanings of larger units: words, phrases, and sentences, respectively. The requirements of syntactic 
agreement, such as between the number of the subject and of the verb in an English sentence, are part of the 
conditions that must be satisfied for these rules to apply. (Understanding syntactically incorrect sentences will 
be discussed shortly.) Thus, each word in the previous example is a word of English, and they can be 
combined by using the rules of English for combining meanings. The problem is that the meaning produced 
is internally inconsistent, and would be rejected in favor of a different interpretation, if one were available. 

One way to approach the concept of syntax, and yet remain intellectually independent from traditional 
notions, is to think of it as that part of our linguistic knowledge which is used in understanding new words and 

In fact, [Woods 75] argues that semantic representations should not be called that, since they deal only in structures, rather than in 
"real" semantics, that is, the relationship between symbolic structures and what they denote. 

For a similar definition, see [Winograd 83], p. 35. 
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novel metaphors. So if one heard Your green ideas will get us killed, or That is a very colorless idea, or Last 
night I slept furiously, one could get a good idea of what the sentence meant. Chomsky's example simply has 
so many anomalies in it that it is hard to derive any consistent interpretation from it. Similarly, if one heard 
Joe frobbed the foo with a bar, one would know that foo was a noun, and frob a verb. This could explain 
where our intuitive notions of syntax rules come from, without requiring us to posit a separate syntactic 
process. Normal processing could proceed in an integrated fashion, cither with syntax integrated into the 
individual rules, or with interleaved execution of syntactic and semantic rules, while purely syntactic 
processing would be used when no current rules containing non-syntactic knowledge apply, to derive a 
meaning for a new word or phrase. Similarly, phrases with syntax errors which are still understandable to 
people could be interpreted by applying purely non-syntactic processing, and correcting the grammar of the 
original internally once a reasonable meaning has been found. (This explicit corrective action is necessary 
because grammar errors can provide useful information on social, educational, and regional differences.) 

Looked at in this way, syntax is somewhat different from semantics and real-world knowledge, but may not 
be categorically different. There may not be any sharp dividing line between these two different types of 
knowledge when they are used by humans in understanding a sentence. The rules and word classes, or "parts 
of speech", that seem to generalize across many examples, without relying (too heavily) on the meanings of 
the words used 3 or requiring detailed hypotheses about the mental processes involved in understanding, are 
seen by us (linguists, AI researchers, and other humans using introspection) as syntax. The parts of speech 
which are sometimes used as evidence for syntax are thus simply the sets of words that are manipulated in 
similar ways by those rules which do not rely too heavily on the meanings of words, and can not in fact be as 
cleanly defined as one is lead to believe in grammar school. In other words, in this view there are just rules, 
some of which are more specialized; some more generalized; some more syntactic, relying more on word 
classes and structures relating only to language; and some more semantic, relying more on the real-world 
properties of the things referred to. The division between syntax and the rest is in the eye of the beholder. 

As an example of the way syntax and meaning can run together, let us consider the differences between 
verbs and nouns. Word classes are usually defined either by the distribution of their member words in 
sentences, by their morphology, or by their meaning. The first two methods are syntactic, and appear to be 
straightforward, although there are real difficulties in using them objectively in a systematic way. The 
distribution method defines word classes by putting two words in the same class if they occur in the same 
contexts. But the distribution of any one word will generally be different from any one other word, unless 
one starts by making some decisions about when these differences are "really semantic" and when they are 
"really syntactic". Also, many words must be assigned to several word classes, while others do not really fit 
into any general word class, and are traditionally lumped together as "adverbs". As for morphology, while 
this seems to cleanly divide verbs and nouns, most word classes in English are not clearly marked, and even 
verbs present problems, since some of the forms they take on act like nouns: Running is good for you. 
(Semantically oriented parsers can avoid problems like these in many cases by not making a syntactic decision 
at all, whereas syntactic ones must always make a decision as to whether it is a noun or a verb.) On the other 
hand, a purely semantic approach which attempts to derive word classes from the semantic properties of the 
objects they refer to cannot deal with the fact that in many cases the class memberships of particular words 
seem to be fairly arbitrary: return is both a noun and a verb, whereas go is only a verb (in its root form)4. The 
correct way to deal with this issue seems to be a combination of the two approaches, acknowledging that many 
concepts can be expressed either as a noun or a verb, but also noting that the form used is not actually an 
arbitrary choice—the choice carries meaning. Expressing a concept as the head noun in a noun phrase refers 

I.c, the interactions of the real-world properties of the objects the words refer to. 

^Example taken from [Winograd 83], p. 5L 
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to it as an object (the tnarriage of John and Sue last Sunday), whereas expressing it as the main verb in a clause 
describes it as an event or state in the train of world events, and uses it to convey a message of some kind (John 
and Sue were married last Sunday), This message may be a question, an assertion, a request, etc., but in any 
case says something using the concept in question as the main concept that the message is built around. It is 
interesting to note in this regard that a verb phrase has a required tense and modality, while a noun phrase 
docs not. As a message, the verb phrase must indicate whether you are asserting the event or state, and the 
time period covered by it. Also worth noting is that although you can include new information in a noun 
phrase (the former marriage of John and Sue), the complete phrase still refers to the object or concept named, 
and is not in isolation a complete utterance (i.e., a message). 

This account of syntax would explain the extreme difficulty linguists have had in defining word classes and 
rules that successfully capture the generalizations of English5. They are attempting to find general rules 
which simply arc not present in the actual natural language understanding systems they arc studying. The 
apparent generalizations found are true for large subsets of the language, but almost always exceptions exist, 
which are often simply special cases that defy inclusion in general rules. Some of these apparent 
generalizations may be due to the way our learning processes form rules6, while others may be due to 
historical accidents, such as the importation of words with Latin morphology, or the fact that the allowable 
ways to form new words have changed over the centuries, but the words formed by the old rules have 
remained in use. 

According to this view, it would not be unreasonable to use syntax explicidy in a natural language 
understanding program. What would be considered unreasonable is the use of syntax as a control scheme. 
Most parsers which explicidy deal with syntax use the syntactic structure of the sentence to drive the parse, 
building a syntactic tree top-down, bottom-up, or using some other strategy. Generally, semantics is used 
only after a syntactic parse is completed, to check whether the proposed structure has a reasonable 
interpretation, or are limited to simple checking of semantic types during the parse. Since the boundary 
between syntax and the other knowledge sources used seems to be indistinct in nature, the use of syntax as a 
separate structure, radically different from semantics of various kinds, might be expected to produce a 
boundary effect, similar to those in any discrete representation of a continuous phenomenon. In fact, such 
effects do seem to occur, in that phenomena that are naturally more "syntactic" become easy to handle, while 
those which are naturally more "semantic" become quite difficult to incorporate. Some examples in English 
include the attachment of prepositional phrases to noun phrases, and the understanding of noun-noun 
compounds, both of which are ambiguous with regard to syntax, and require semantic judgements for their 
resolution. 

There seem to be two main arguments in favor of using a separate syntactically-controlled phase in parsing. 
The first of these is that syntactic parsing is much more efficient than semantic parsing, since the simple 
uniform algorithms that syntactic parsing makes possible can be made to run very quickly, producing a parse 
of a sentence in milliseconds. Semantics can then be used at the end, to verify that the parse found can be 
interpreted. Unfortunately, this comparison leaves out the amount of time that is spent by the syntactic parser 
in interpreting the parse, which can be much larger than the comparable portion of the semantic parser's time, 
since postponing all interpretation until after all syntactic parsing is finished can result in many spurious 
possible parses, each of which must be considered, and many of which would have been filtered out much 
earlier in the parsing process if the parser had used semantics in an integrated fashion. This is an example of 

As noted in [Charniak 76], p. 23. 

See [Anderson 83] for a detailed psychological theory in which these generalizations are the result of specialized rules being created by 
"compiling" sets of more general ones via a general learning mechanism. 
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the general rule in artificial intelligence search problems which says that moving some of a program's testing 
into its generator almost always increases efficiency. 

The other major argument is that the rules of syntax are more general, and therefore more domain-
independent, than semantic knowledge, and that therefore a syntactic parser is much more portable between 
different domains. While this is true to a degree, there are in fact variations between different domains in 
terms of the portions of English syntax that they generally use, so until a parser actually covers all of English, 
it will need to be augmented when it is moved to a new domain. This argument also ignores the fact that the 
underlying semantics of the new domain will have to be developed in any event for the program which will 
make use of the parses produced by the parser. If a semantic parser can take advantage of the semantic 
routines that the application program will need anyway, the difficulty of moving it to a new domain may not 
be much greater than that for a syntactic parser. While this does not appear to be possible for such things as 
semantic grammars (discussed below), the project described in the final two sections has this as one of its long 
term goals. 

2. Different kinds of parsers 
As mentioned above, one dimension on which parsers differ is the extent to which they use syntactic 

knowledge, and the form which this knowledge takes. Other structural dimensions on which parsers may 
differ include: 

• Modularity — the degree of internal organization. While systematic internal structure is desirable 
in any program for software engineering reasons, in parsing programs it has often had the 
unfortunate side-effect of causing them to become inflexible. It becomes very difficult to make 
the parser change with its* dialogue (or other) context. This appears to be due to the integrated 
nature of natural language processing, as noted above. 

• Control strategy — what kind of control strategy they use in attempting to build hierarchical 
structures which match their input The two most common strategies in explicitly syntactic 
parsers are top-down, where the parser starts with the top-level structure it wants to find and fills 
in successive parts until it has accounted for all the words in the input, and bottom-up, where it 
starts with the actual words and builds up constituents until it finds a single structure that accounts 
for the whole input Most semantically oriented parsers use a mixed strategy, using bottom-up 
methods to choose a high-level structure, and then using that structure in a top-down fashion on 
the rest of the input This sort of hypothesize-and-test strategy, which is common to many types 
of frame-based reasoning, has been called "expectation-based parsing" by Schank [Schank 80], 
since reading the beginning of a sentence sets up expectations as to what will be seen in the rest of 
the input (The typical implementation of this concept will be described shortly.) 

• Handling ambiguity — when and how they make decisions between conflicting choices. The 
various possible ways to handle these decisions include picking one and backtracking on error, 
picking one and doing "intelligent error correction" [Birnbaum 81], postponing decisions as long 
as possible (referred to also as "wait and see"), 7 and maintaining the set of all currently plausible 
options in parallel. 

Six parsers will be described along these dimensions: 

Also from [Birnbaum 81], quoting Marcus. 
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• the LUNAR ATN [Woods 72] 

• chart parsers as described in [Winograd 83] 

• the LIFER semantic grammar approach [Hendrix 77] 

• Wilks' preference semantics parser [Charniak 76] 

• die expectation-based conceptual analyzer CA [Birnbaum 81] 

• the IPP program [Schank 80] 

The first two of diesc are highly syntactic. In the ATN (augmented transition network) approach, the 
grammar is specified as a list of states, each with an ordered list of transitions to other states. The transitions 
can depend on the semantic type properties of the current word, and can set and use the results of a set of 
registers (the augmentation that gives this approach its name). States can be pushed and popped, giving the 
overall system Turing machine power. In chart parsers, the grammar is specified as a set of syntactic 
productions, applied by a procedure which only uses the syntactic categories mentioned in the grammar. 
Semantic testing, if done at all, is used at the end to select among the syntactic parses generated, when there is 
more than one. The semantic grammar approach blends the two kinds of knowledge more evenly, using a 
grammar based on domain-dependent categories which embody semantic as well as syntactic knowledge, 
specified by rewrite rules which use LISP action side-effects to build internal structure. The last three (Wilks*, 
CA, and IPP) all take a dim view of syntax, utilizing it as little as possible, and not building any syntactic 
structures at all, but rather building a semantic representation immediately from the surface string. They still 
use syntax in some sense, since they use word order information and syntactic case markers such as 
prepositions. In CA and IPP, the use of word order information is generally implicit, in that one word will set 
up structures and expectations which affect how later words are processed. 

In terms of system structure, the highly syntactic ones are also highly structured, since they use the structure 
provided by syntax as the representation for the linguistic knowledge they have. The simplicity of this 
approach is one of its chief practical attractions, aside from any questions of theoretical correctness. Any 
detailed semantic processing in either ATNs or chart parsers is relegated to unspecified later processing. 
Semantic grammars are also strongly structured, since they follow essentially the same scheme, except that 
they include domain-specific semantic knowledge in the categories and rules they use. Of the non-syntactic 
parsers, the most cleanly structured is Wilks', in that he uses various "formulas" and "paraplates" to represent 
the linguistic knowledge in his system, and has a uniform matching procedure which applies them to the 
input 8. Both CA and IPP use frames with packets of LISP code embedded in them for their word definitions. 
These packets of code are called "requests", and they serve to encode and proceduralize the expectations that 
reading these words generates. This use of unrestricted code in each word definition leads to the kind of 
extremely complex interactions typical of unstructured systems, and the programmer must know a great deal 
about the definitions of previous words in order to successfully add a new word. This is often justified by 
claims that it is the result of the inherent complexity of the task. These two systems differ mainly in the level 
of representation used. CA builds a detailed semantic representation of its input using Conceptual 
Dependency notation [Schank 75], while IPP tries to get at the meat of the story it reads directly, building 
high level knowledge structures [Schank 77] as its representation, and not even attending to all the words in 

Unfortunately the value of this clean structure is diminished somewhat by the impenetrability of the representation used. 
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the input In some sense, it is almost not a parser, but more a program for loosely interpreting a whole story/ 

A somewhat separate issue from the amount of structure in a system is the control strategy it uses in 
analyzing an input and building its internal representation. ATNs and semantic grammars both use a top-
down approach, starting with a set of top-level structures that represent the allowable kinds of sentences, and, 
for each of them, trying to find each of its subparts in turn, line problem with this technique is that the parser 
will generally try to build many structures which do not actually exist in the sentence. There are ways of 
reducing this inefficiency, but it cannot be completely prevented. Pure bottom-up techniques are not used in 
any of the parsers in question, possibly due to the large number of false starts produced when a word is taken 
in isolation as possibly being part of any constituent in the grammar, and all of the ones it fits arc built The 
distinguishing feature of chart parsers is their control strategy, which involves the use of a chart, or well-
formed substring table. This holds every constituent which has been found so far in the current input, and 
can be used in conjunction with top-down, bottom-up, or some other strategy. The presence of constituents 
in a table prevents any constituent from being built more than once, since every rule that would build a new 
structure checks the chart for it first This mechanism greatly increases efficiency, combining the selectivity of 
top-down and bottom-up processing, in much the same way as dynamic programming techniques increase the 
efficiency of recursive algorithms. As for the non-syntactic parsers studied, all three use the expectation-
based hypothesize-and-test paradigm mentioned earlier. The implementations of this scheme vary, however, 
with Wilks instantiating a declarative frame and then using a uniform procedure to try to fill it in, whereas CA 
and IPP activate procedural rules attached to the frame chosen, which then carry out the actions necessary to 
fill in the frame. CA and IPP differ, again, in the size of frame used, CA using primitive CD ACTs, and IPP 
working with scripts and scenes. 

The final dimension on which these systems will be compared is the question of when decisions are made. 
The problem this addresses is that natural languages contain many local ambiguities, so that decision points 
arise where the parser must decide which path to follow, i.e., which local parse to use, or else maintain several 
parses in parallel. The possibilities used include: 

• backtracking on error 

• intelligent error correction 

• only deciding when you have to 

• maintaining all options in parallel 

• avoiding the issue 

ATNs and semantic grammars pick one path, either based on a programmer-supplied ordering of paths or 
nondeterministically. If the chosen path fails, they backtrack and try other possibilities. To avoid this highly 
inefficient process, a chart parser uses its chart to maintain all the options in parallel without incurring too 
much overhead. It thus does not actually need to make a choice unless the entire sentence is ambiguous, in 
which case any parser must make a decision, either taking the first result, returning all of them, or rating them 
somehow and taking the best In Wilks' system, the different possibilities are generated by a simple match of 
"bare templates", and then the preferences each object has for its subparts are used to pick between them, 
producing a single reading for each phrase. This would seem to make it an early decision system, with no 
mention of any backtrack or error repair mechanisms. Since all of a word's semantics are used in this 

It is called, after all, the "Integrated Partial Parser". 
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decision, presumably most ambiguities are sorted out correctly. It is interesting to note, however, that, as 
presented by Wilks, this decision is made before his "paraplates" arc applied to find the deep case relations 
between templates. ITius if there are ambiguities present which depend on preferences for objects in a 
different template for tlieir resolution, Wilks' system may not get them right. While there is a discussion in 
the CA paper on the relative merits of wait-and-see versus early .decisions combined with intelligent error 
correction, this choice is loft up to the programmer, depending on how he writes his Riles. The built-in 
decision mechanisms include examples of both strategies: a word sense disambiguation scheme which keeps 
requests for conflicting definitions from firing until one is clearly preferred (wait-and-see), and a mechanism 
that gives marked cases priority over unmarked ones, so that John gave Mary to the Sheik ofX1® will be 
correctly parsed, even though Mary is at first taken to be the recipient (decide and intelligently backtrack). In 
the case of IPP, decisions arc made immediately, since it has very strong expectations as to what the stories it 
reads are going to say, and would not notice a mistake if it made one. Problems such as multiple word senses 
simply are not handled 1 1, as it will ignore words that it is not interested in, while assuming that the words it 
recognizes have the meanings that it expects them to have. 

An interesting correlation should be noted here, in that the various choices made by the designers of these 
systems seem to depend to a large degree on whether they use an explicit syntactic structure or not. The 
connection with the level of internal system structure is fairly obvious, since the matching of syntactic 
structures allows a relatively simple, well-defined overall scheme, while matching semantic structures can be a 
good deal more complex. Somewhat less obvious is the tendency for the decision to emphasize semantics to 
lead to a hypothesize-and-test scheme. This can be partially explained by the difficulties one has with either 
maintaining parallel alternatives or backtracking in a semantic scheme. In addition, there is a need to have 
some top-down semantic context to work with, since bottom-up generation of all possible semantic 
constituents is clearly not feasible. Finally, the designers of these systems usually want them to work in an 
intuitively appealing fashion. These factors also seem to be the reason diat Wilks' and IPP make final 
decisions fairly early in the process, and that CA proposes either wait-and-see or intelligent error correction or 
both, implemented partly as general schemes, and partly as special-case LISP code. 

3. Why natural language understanding is hard 
Now that we have discussed the relationship between syntax and semantics, and looked at a number of 

parsers that take different approaches to some of the problems of understanding natural language, we are 
ready to discuss which phenomena in English seem to cause the most difficulties. Some of these cause more 
trouble for syntactic parsers, whereas others are harder for non-syntactic parsers. Some are simply not well 
understood, and pose difficulties in any formalism. It should be mentioned here that all of these methods are 
equivalent in formal power, which is to say, any of them can in principle be made to handle any situation that 
any of the others can. The problem with diis notion is that each method is good at handling certain things, 
and very bad at handling others. Although it is possible to get any of these methods to do anything, some 
constructs are simply not feasible for some parsers. 

The phenomena that seem to be the hardest for syntactic parsers to cope with include: 

• word-sense ambiguity 

• prepositional phrase attachment 

Example taken from [Birnbaum 81] p.336, quoting Wilks. 

It is claimed that this does not cause any problems in the domain of skimming newspaper stories. 
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• ill-formed input 

• integration with other processing 

The problem with ambiguity is that most words in English have more than one meaning, and it is often not 
possible to resolve this ambiguity without understanding the meaning of the words in the sentence. This may 
not cause a problem for the parser itself, if all the senses are in the same word class, since it can leave the 
disambiguation up to the interpreter. Unfortunately, these different senses are often in different word classes, 
forcing the parser to make a decision or generate several parses, one using each sense. The problems that arise 
with prepositional phrase attachment and other types of structural ambiguity are similar, in diat there are 
generally many places in the syntactic structure that a prepositional phrase would fit, and the only way to tell 
which is correct is by the semantic plausibility of the attachment. 

Attempts have been made to remedy this situation through the addition of semantic restrictions to syntactic 
parsers. As mentioned earlier in connection with ATNs, these work by allowing only those word senses which 
have the correct semantic type to be combined with words that have semantic restrictions on their 
connections, such as verbs. This has proven to be inadequate, since not all semantic knowledge can be 
encapsulated in this way, and any piece of knowledge may be necessary for a disambiguation. An additional 
approach for handling prepositional phrases involves incorporating case frame information as a test on 
prepositional attachment, so that only those cases a verb allows can be attached to i t 

Handling ill-formed input and coping with dialogue, script and other context effects are difficult because of 
the highly structured framework that syntactic parsers use. It is not clear how to incorporate other 
mechanisms into a syntactic parsing mechanism, since it uses a simple procedure that only looks at the 
syntactic class of a word. Such things might be added as separate routines, called either when an error is 
encountered or at the end of a parse, but appear to have had very limited success. Examples of this kind of 
problem are ungrammaticalities, spelling errors, pronoun interpretation, and dialogue expectations, such as 
expecting a noun phrase as an answer after a question. 

Semantic parsers on the other hand have the most difficulty with structures that depend on fine grain 
syntactic analysis, and those that just seem to be naturally syntactic. An example of this type of syntactic 
detail is given in [Winograd 83], p. 51: 

The man who knew him was going left and The man who knew he was going left are both 
meaningful and contain the same words, differing only in a subtle syntactic marker. But one is 
interpreted as the man who was acquainted with him was going leftward and the other as the man 
who knew that he was going went out. If the message is to be deciphered, the complexities of the 
syntactic structure need to be accounted for. 

Of course, there is no inherent reason why such things could not be addressed within this framework, but by 
and large they are not The reason for this seems to be largely idealogical, in that the proponents of 
non-syntactic parsing wish to do absolutely as much as possible without explicit syntax as they can. Examples 
of constructs that have been claimed to be inherently syntactic include raised and passive sentences, where the 
surface subject can be almost any noun phrase which would have followed the verb, and non-subject relative 
clauses, where the constituent the clause describes is left out of its normal place in the clause. 

Several constructs are just hard, and are not handled well by any current parser. These include anaphoric 
references, such as pronouns with antecedents in previous utterances; extraposed constituents, as in The man 
came in wearing a red hat, and various combinations of conjunction, comparatives, and ellipsis, which often 
occur together: John took the red ball, and Mary the green\ John is taller than Mary (is tall); and John is 
taller, and Mary shorter, than Ruth. Ellipsis also occurs in dialogue settings: Show me all my files. Now my 
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directories. Oh, I meant print out While no current parsers can handle these constructs in general, those 
which do not rely solely on syntax would seem to be the better candidates for eventually handling them, since 
many of the clues as to which structure is correct seem to come from a thorough knowledge of the semantics 
of the situation described. 

4. A different approach 
The most important lesson from the preceding discussion seems to be diat explicitly using syntax really is 

worthwhile, but diat using it as a simple, clean control structure might not be as helpful, due to its rigidity. 
Another way to look at this is that one should try to incorporate as much knowledge as one can, both syntactic 
and semantic, in an integrated fashion, since any of it may be necessary to understand a sentence. All 
previous attempts to leave some knowledge out of the interpretation process have failed, due to examples that 
just could not be handled without die missing knowledge. At the same time, some structure is necessary for 
human engineering reasons, if the parser is to become large enough to cover a reasonably large subset of 
English. In this section, an attempt to develop a parser which can take advantage of the best features of the 
different kinds of systems will be discussed. These features include die chart parser's parallel control and 
decision strategy, the semantic grammar's mixture of semantic and syntactic information, Wilks' use of a 
mostly declarative representation for linguistic knowledge, and an adaptation of CA's and IPP's use of 
expectations. 

The parser is called Psli3 (pronounced "sly three"), and is implemented as a part of an OPS5 [Forgy 81] 
production system natural language interface to the Intelligent Management System [Fox 81] being built in 
the Intelligent Systems Laboratory of the Robotics Institute at Carnegie-Mellon University. A detailed 
description of Psli3 parsing a sample sentence is given in [Frederking 84], included here as an appendix. The 
use of a production system provides the structure needed to make extension to a large system feasible, widiout 
predetermining either the control strategy or the amount of explicit syntax present. OPS5 productions are 
composed of a condition side, which consists of patterns matching declarative objects built from working 
memory elements, and an action side, which involves primarily the placing of objects into working memory. 
Therefore the rules are much more declarative in nature than LISP code. So declarative, in fact, that there are 
plans to eventually produce the productions automatically from SRL 1 2 schemata describing the phrases the 
system knows. Another advantage of using a production system is that all of the semantic representations in 
the system are available to the rules' condition sides in working memory, facilitating the inclusion of any 
semantics present anywhere in the system as part of a phrase's description. (That the rules used are not 
simply syntactic, but include semantics, should be no surprise at this point.) This ability, which gives the 
technique its name, should be helpful in dealing with dialogue phenomena and real-world knowledge. 

Within the general structure of OPS5, the chart parsing mechanism is implemented by having each rule 
check for the starting and ending lexical positions of each constituent state it matches, and having it indicate 
the starting and ending positions of the state it builds. A state represents an interpretation of a word or 
phrase, and includes data structures representing both syntactic and semantic facets of the interpretation, 
separated so that other rules can check only those aspects of the constituent that they are interested in. This is 
in contrast to semantic grammars, where this information is all convolved into a single, atomic category name. 
The chart produced for the example sentence from the appendix, Show me xn [sic] axle ordeP, is shown here 
in figure 4-1. Here, xn is a misspelling of an, which the system corrects. Each line segment in the diagram 

SRL [Wright 82] is the semantic network database used by the Intelligent Management System. 

1 3Actually, "axle" has been substituted for "blade" throughout this example, in order to show an interesting spelling correction using 
xn. The current application is actually a turbine blade factory information system. 
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represents a state built by a rule, usually defining a newly found constituent of the sentence. Each state has 
backlinks to its constituent states, generally used only to assemble die completed parse. For clarity, the only 
backlinks shown are those for the states which arc part of the correct interpretation. 

Figure 4-1: Chart built for "Show me xn [sic] axle order". 

A locally ambiguous word or phrase, such as Show me..}4, produces several interpretations spanning its part 
of the sentence, each of which is available to any rule trying to build a constituent incorporating that section, 
all of which coexist without interfering with each other. This flexibility is due to the use of lexical positions 
when looking for smaller constituents to incorporate into larger ones. One way to think of this is as indexing 
the interpretations of a constituent by attaching them to the actual words used in the surface level 
representation. As mentioned earlier, a chart is used in conjunction with some other control scheme. In this 
case, the scheme used is mostly of the hypothesize-and-test variety, since expectations are used to control the 

^This phrase has a case ambiguity, since me can be either the recipient, as here, or the object, as in Show me to Mark. 
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building of the verb phrases in the system, but the expectations arc the result of the bottom-up construction of 
die original constituents. This top-down control is exerted by only allowing the Riles to attach noun phrases 
or prepositional phrases to a verb phrase if declarative "expectations" included in the description of the verb 
indicate tiiat the phrases fit die cases the verb allows. The use of declarative expectations differs from the CA 
or IPP approach, in which the expectations are embodied as procedural requests. Declarative expectations are 
required by the production system philosophy that rules reside permanently in production memory, and are 
only added by learning processes. Not only docs die decision to build a chart provide a solution to the 
problem of which control strategy to use, but it also handles ambiguity in a simple way, without complicating 
die individual rules. The mechanism is general enough to include all forms of ambiguity, even those resulting 
from ambiguous error corrections, such as the spelling correction in the example. The only ambiguity 
question not addressed so far is how the parser will handle sentences which arc globally ambiguous, but which 
have a clearly preferred meaning. It is currently expected that syntactic and semantic clues, such as 
parallelism between members of a conjunction, and dialogue conventions will allow the construction of rules 
which will prefer one interpretation to another. It is also possible that with some care in the design of the 
rules the OPS5 conflict resolution mechanism will be able to cause the best interpretation to be generated 
first, so that taking the first complete parse would be sufficient. 

The other major feature of the design of Psli3 is the inclusion of rules which define entire phrases as units, 
rather than always building phrases up from the individual words in them. Despite the widespread tendency 
to design parsers that always build up meanings from individual words 1 5, there seem to be important reasons 
to have a "phrasal lexicon" [Becker 75], in which whole phrases and their meanings are stored. The main 
reason that parsers do not usually follow this path seems to be that a word-by-word interpretation ability must 
be present, if the system is to understand novel sentences. What is often ignored is the fact that 
understanding a phrase which one is familiar with is noticeably easier than understanding a truly novel 
phrase, and the possibility that this might be a desirable property for computer systems to emulate, for 
efficiency reasons. In addition, there are many phrases which apparently must be understood as a whole, 
rather than being built up from their constituents. Such phrases include not only obvious idioms, which are 
not at all interpretable from their parts (topull someone's leg), but even phrases which might be derivable 
from their parts, but which lack a single, clear interpretation (such as fire station versus gas station)16, and 
more general patterns, as might be found in the rules of a semantic grammar (such as Now there's a (noun 
phrase) if I ever (perceive)-ed one!). 

The inclusion of phrases such as these in Psli3 is very easy, due to the inclusion of semantics in the rules, 
and the graceful handling of ambiguity. In fact, the inclusion of semantics in the rules by its nature replaces 
single rules for various syntactic constructs with sets of rules which carry semantic information and constraints 
with them. (Of course, where a truly syntactic rule seems to be operating, a general syntactic rule can be 
used.) These semantically oriented rules can be thought of as specializations of the general syntactic rules, 
where additional meaning has been attached to them as they were learned. Thus the existence of a phrasal 
lexicon in this system is quite natural, and could be taken as evidence for its psychological plausibility. One 
can include verb case frames in this scheme, viewing them as verb-specific specializations of the general 
syntactic rule that a verb phrase contains zero, one, or two unmarked objects, plus prepositional phrases. The 
verb phrase is an example of a general syntactic rule that is clearly far too general for the real linguistic facts. 

An exception is the PARRY system, as described by Faught in [Waterman 78], which appears to use a phrasal approach, taking it 
even a step further, in that whole interactions are viewed as single patterns, although they admit that they break these patterns up into a 
set of rules "for ease of implementation". 

The article in [Waterman 78] by McDonald and Hayes-Roth describes some of the difficulties that can arise in trying to infer the 
meanings of such phrases. 
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The existence of general rules that are useful for learning and inference, but too general to account for all 
the phenomena in tlicir domain, is not restricted to language use. As an example, human reasoning about 
numbers must be productive in the same way as language, since we can talk about numbers such as 
39,423,929, yet there are some numbers such as 7 and 13 which clearly have additional cultural meaning that 
cannot be derived from their numerical qualities, but must simply be learned. While Psli3 does not learn new 
phrases currently, it can go into an inference mode, when the rules for words and phrases it knows do not lead 
it to an interpretation for die complete utterance. This general inference mode, which may in the future be 
broken up into bounded and unbounded inference, is where such things as spelling correction and database 
lookup of undefined names occur. It could also include overly general syntactic or semantic rules that could 
propose possible interpretations of difficult or ill-formed inputs, and other heuristics for handling such things 
as novel noun-noun compounds. This is similar to a suggestion in [Newell 78] that most human parsing is 
done in a compiled fashion, with only complex novel constructions pieced together in an interpretive fashion. 

5. Theoretical coverage of the Psli approach 
As is the case with the other formalisms discussed, the mechanisms in Psli3 can handle any phenomena that 

any computer program can. However, as noted in section 3, this says very little, since in actuality some things 
might be hard enough to formulate that they would not actually be handled in practice. In this section, we 
will examine how Psli3 handles, or will handle, the various constructs that pose problems for the other 
parsers. We will also take a look at its efficiency compared to earlier versions. 

5 . 1 . Current capabil i t ies 
First come the constructs that are difficult for syntactic parsers: ambiguity, prepositional phrase 

attachment, ill-formed input, and integration with dialogue and general real-world knowledge. Ambiguity 
and some ill-formed inputs are already handled, using the mechanisms discussed above. One interesting 
point which should be made here is that when chart parsing is applied to grammars that are not context-free, 
one runs into problems with incorporating the context of a constituent into the indexing scheme. That is, two 
constituents might look identical locally, but rely on different interpretations of another part of the input 
The options available include entering each such constituent into the chart separately, and checking later as to 
whether the non-local context matches, or somehow including the non-local context in the indexing scheme. 
In Psli, rules which can be affected by non-local context create a "bindings" working memory element in the 
states they produce, and will only fire if no state exists on the interval in question with a "bindings" element 
identical to the one it would produce. This element indicates which rule is operating, and what its variable 
bindings are, thereby including any non-local context in the index. 

Prepositional phrase attachment is currently done using case frame constraints, as described in the previous 
section. General real-world semantics may eventually be included in the attachment process, by having the 
appropriate rules create subgoals to evaluate the reasonableness of an attachment before doing it. The 
subgoal would cause the activation of error-checking rules which presumably already would exist for any kind 
of request that the system "understands" how to carry out. Another interesting difficulty resolved in the 
design of the Psli parser was the question of how to incorporate case-frame constraints into the production 
system/chart parsing environment, in that the marked cases of a verb can occur in any order, but each case is 
only allowed to occur once per verb phrase. After some thought, the answer appeared to be to represent a 
whole clause, including the subject, as a verb phrase, with the attachment of each noun phrase or 
prepositional phrase extending the lexical interval covered by the verb phrase to include the new constituent's 
lexical interval. This raised a further problem, in that the syntax of OPS5 rules 1 7 appeared to prevent a single 

The infamous Mno variable slots allowed" problem. 
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rule from handling all marked cases if this were done. (In fact, it appeared that a combinatorial number of 
rules might be needed.) Fortunately, the solution to this proved to be simple. Each state representing a verb 
phrase has "inhibit" elements in it, indicating which cases have already been filled, and are therefore not 
allowed to be filled again. A single "inhibition" rule propagates all the "inhibit" elements found in the 
original verb phrase prior to attachment into the new larger one which includes the newly attached case. This 
appears to allow a small number of attachment rules to handle the problem. 

5 .2 . Future capabil i t ies 
As for future developments, dialogue effects and general real-world knowledge are not yet handled by this 

system, but there does not appear to be any theoretical difficulty with introducing mechanisms such as the 
subgoaling scheme described above to deal with such issues. In particular, dialogue rules such as the 
anaphoric reference rules described in [Sidner 81] should be quite easy to integrate with the Psli approach, 
since they are already described as condition-action rules. 

As for the phenomena that give semandc parsers trouble, fine grain syntax should not be an issue with this 
approach, since the parser explicidy keeps track of the syntactic aspects of the sentence it is parsing. However, 
since the coverage of the syntactic forms implemented so far is sdll quite small, this cannot as yet be 
demonstrated. Sentences exhibiting syntactic phenomena that are not yet covered will of course cause 
problems, but this is clearly the case with any parser. As for truly syntactic constructs, these may be fewer in 
number than sometimes claimed. For instance, raising, as in They believed Patty to have robbed the bank, can 
probably be handled quite easily by assuming that the raised form is handled by a slightly different set of 
rules than the unraised form, They believed that Patty robbed the bank, although proof of this will also await 
the results of further implementation. That the two forms mean the same thing can be handled by having the 
two derivations produce the same semantic representation. The assumption here would be tiiat any 
generalization that can be drawn deriving one of these two forms syntactically from the other is the result of 
external factors, as described in the first section, and is not direcdy relevant to the design of a parser's actual 
performance routines. As another example, a passive sentence can be treated as a sentence containing a 
different form of the main verb, which is the semantic inverse of the active form of the verb, rather than being 
looked at as a transformation of a complete active sentence. In fact, most current transformational grammar 
approaches treat passives similarly, based on examples such as Few people read many books versus Many 
books are read by few peopl^, where a passive sentence has a different meaning from its active form, due to 
quantifier scoping. 

As a final and more difficult example of the syntax that this parser could handle, the probable form of the 
rules which will be needed for handling non-subject relative clauses will be considered in some detail. This 
type of relative clause can be difficult for non-syntactic parsers to handle, due to the fact that exacdy one case 
filler will be omitted from somewhere in the case frame, indicating that that case is to be filled by the object 
that the clause is attached to. It is not clear how a parser could keep track of which place the filler is missing 
from without building a detailed syntactic structure. Several variants are possible: 

The paperboy to who(m) I gave the tip quit 
The paperboy who(m) I gave the tip to quit 
The paperboy that I gave the tip to quit 
The paperboy I gave the tip to quit 
The paperboy who(m) I gave the tip quit 

The variability shown here is caused by the availability of several choices along a number of dimensions: 

[Winograd83], p. 559. 
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which of the three relative pronouns 1 9 to use, whether to leave out the relative pronoun altogether, which of 
two possible locations for the case marker to to use, and whether to use the unmarked case instead, which 
corresponds to the difference between / gave the paperboy a tip and / gave a tip to the paperboy. In the 
current set of verb phrase rules, there is one rule for each type of positional (unmarked) case, and a rule for 
marked cases which compares the preposition in a prepositional phrase to the markers mentioned in the 
verb's "expectations". Schematically, the rule for marked cases looks like this: 

<Verb-Phrase-missing-case-X> 
<markcr-for-case-X> 
<Noun-Phrasc-fitting-case-X> 
--> 
<Verb-Phrase-including-case-X>. 

In order to handle the types of non-subject relative clauses in the examples, the most natural extension would 
involve adding two new rules for the unmarked object cases, and at most three new rules for marked cases. 
The need for more than one additional rule for each type of case arises from the OPS5 rule syntax. The most 
straightforward way to allow the relative pronoun to be absent is to have two rules, one with it and one 
without it. Similarly, it may be necessary to have an extra rule for the marked cases to allow the preposition to 
appear in either of the two places allowed when the relative pronoun is present 2 0. The rule for incorporating 
a marked case relative clause into a noun phrase would look something like: 

<Noun-Phrase-fitting-case-X> 
<marker-for-case-X> 
<relative-pronoun-fitting-case-X> 
<Verb-Phrase-missing-only-case-X> 
--> 
<Noun-Phrase-including-Verb-Phrase-as-modifier>. 

As for the two other rules for marked cases, both would require the case marker, with no object, to be 
contained within the verb phrase, with one rule including the relative pronoun and the other lacking i t It 
should be noted that in the rule shown above, the relative pronoun cannot be that unlike in the other two 
rules, and that the verb phrase must not be marked as a question or imperative form, since this would lead to 
sentences such as *The paperboy to whom did I give the tip quit or *The paperboy to whom give the tip quit 
Also note that these rules will be written so that the missing case can belong to a verb case frame embedded 
any number of levels down in the verb phrase, thus achieving the unlimited motion that English syntax 
requires. 

This approach to relative clauses is similar to a technique involving "derived categories" 2 1, in which the 
displacement of a constituent such as a noun phrase, out of another constituent such as a verb phrase, is 
haniled by deriving a new category, VP/NP, which is defined as a verb phrase with exactly one noun phrase 
missing. The constituents of the verb phrase also have this gap, and the overall relative clause is represented 
by a syntactic production similar to the rule above, the main difference being that the Psli rule takes a case 
frame approach, rather than the usual phrase structure approach followed in the reference. The chart parsing 
scheme for handling ambiguity should mesh well with these new rules, since they are very close in form to the 
current method for extending verb phrases. The sorts of ambiguity that can occur when relative clauses such 

1 9Although who is technically incorrect here, its use in informal communication is common enough that it will probably be included as 
a lower preference alternative. 

^I t would be necessary to actually write and test the rule to be sure, since it might be possible to adjust the rule's variables to achieve 
this effect As of final writing, some of the relative clause rules have been implemented and tested, but not these. 

[Winograd83], p. 345. 
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as these are present is illustrated by the second example sentence, The paperboy who(m) I gave the tip to quit, 
which could be interpreted as a noun phrase describing a paperboy who was advised to resign. Such 
ambiguities will simply result in two interpretations which span the length of die utterance, one being a noun 
phrase and the other being a complete sentence. In isolation, the full sentence would be preferred. In 
dialogue situations where the noun phrase interpretation could make sense, such as perhaps after the question 
Who got fired?, dialogue rules could rate each interpretation, and pick the more likely one, with the presence 
of the other interpretation causing no harm. 

5 .3 . Efficiency 
The efficiency of Psli3 compared to its earlier versions will be die last topic addressed in this paper. Each of 

the three versions uses a mixture of syntactic and semantic knowledge, which in itself should improve the 
parser's efficiency over purely syntactic schemes by cutting down on syntactic ambiguities, assuming diat the 
semantics employed are not too expensive. Pslil was designed as a production system implementation of an 
expectation-based parser such as CA. It handled local ambiguities by creating declarative "expectations" for 
the different possibilities, which would wait for further clues to be seen, and then create the correct choice. 
This is the most efficient approach of the three from a run-time point of view, since the only wasted effort is 
in the creation and matching of the expectation working memory elements for those paths which are not 
followed, but it requires each rule associated with a local ambiguity to be hand-crafted, resulting in an 
immensely harder programming task. 

Psli2 attempted to use a search-tree technique, sprouting a leaf from the tree for each possible decision at 
each point in the utterance, and using best-first search to find a globally consistent meaning. This version was 
somewhat easier to program, but it resulted in much inefficiency, especially when several correct choices were 
available at the same time, such as two expectations being satisfied simultaneously. Since only one could be 
chosen for expansion, and any other correct states built could not be "moved over" to the chosen branch, any 
correct states not chosen for further growth had to be replicated. In addition, correcdy constructed 
constituents embedded in larger structures that later proved incorrect might have to be reconstructed several 
times. 

This problem with inefficiency was in large part what motivated the Psli3 design, which turned out to 
provide a much nicer representation for ambiguity as well as improving the efficiency problem. There were 
two other ways in which the Psli2 design was inefficient compared to Psli3, both stemming from the 
production system architecture. The first was that time was wasted not only in building the same structure 
over and over again, but in matching the rules against a much larger working memory, containing the many 
duplicates of these structures. This slowed down the matching, and therefore the execution, of all the rules. 
The other problem was that each state in Psli2 had to keep track of its ancestors, so that the rules matching 
against it could check the rest of its branch for its context. This resulted in the rules matching against a very 
large number of "ancestor" elements, all of which were very similar. This is a very slow process. In contrast, 
most of the rules in Psli3, and in particular all of the ones used in normal, error-free parsing, only need to 
match the lexical position of the states, which are much fewer in number than the "ancestor" elements. The 
resulting savings are roughly combinatorial in practice, resulting in a speed up of roughly an order of 
magnitude. 
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6. Conclusion 
The Psli3 semantic chart parser has been presented as an attempted solution to the problem of 

incorporating syntax into a parser in a flexible fashion. Another goal of its design is to handle ambiguity in a 
clean manner within the architecture of the system, to avoid having to individually tailor knowledge regarding 
ambiguous words and structures. It is hoped that the use of a uniform production system architecture will aid 
in integrating the processing of natural language with other system functions, and that using, a psychologically 
plausible model of cognition will be a useful design heuristic in the future extension of the system. Current 
extension efforts are directed toward enabling die system to handle inter-sentential dialogue ellipsis in a 
general fashion. 
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Abstract 

As part of a long-term project to build an intelligent natural language interface for naive users, a 
parser is being constructed which is designed to integrate all the various knowledge sources 
necessary for natural language understanding within a single, unified framework, and to tolerate 
ambiguity and some forms of ungrammaticality via a general mechanism that is part of that 
framework. The design attempts to achieve this by embedding a rule-based parser in a user-interface 
production system, and using an adaptation of chart parsing as its basic mechanism. The method 
used is discussed, and a currently working example is presented. In the example, the system handles 
ambiguity arising from three different sources, including an ambiguous spelling correction. The 
production system is being implemented in the OPS5 language. 



1 . Project Objectives 
The long-term goal of this project is to construct a natural language dialogue system which 

integrates knowledge about syntax, semantics, pragmatics (real-world knowledge), dialogue 
conventions, and human goals in an elegant and natural way, in order to allow natural English 
conversations wi'th naive users of knowledge-based systems. In addition, knowledgeable users who 
are not intimately familiar with natural language systems should be able to add new nouns and verbs 
to the system. This requires handling ambiguity via a general mechanism built into the architecture of 
the system, rather than having the definitions of ambiguous words handle the problem internally. 

2. System Environment and History 
The system serving as the initial testbed for this user interface is the Intelligent Management 

System [4] being built in the Intelligent Systems Laboratory of the Robotics Institute at Carnegie-
Mellon University. The need for natural language communication arises in this setting because many 
of its users will be managers in a business or factory environment, most of whom will only use the 
system a few times a week. A manager who uses the system in this fashion would prefer to hold a 
conversation with it, and not be forced to learn and remember a complex command language, or go 
through a time-consuming pre-programmed interaction much of which may be irrelevant to his or her 
particular needs. 

In order to achieve this capability, a User Interface Process is being implemented as a production 
system using the OPS5 [3] production system language. The UIP will have four main components: an 
English parser, a system interface which can reason about its capabilities, an English generator, and 
a mechanism for modelling user's goals. It is not intrinsically linked to any one application or 
database. A production system, in the sense used here, refers to a set of condition-action rules, a 
working memory which the rules match against and modify, and a built-in conflict resolution 
mechanism, which selects a rule to fire when many rules match working memory. The decision to use 
OPS5 was driven by the main goal of integrating different sources of knowledge as smoothly and 
gracefully as possible; the advantages of a production system approach will be discussed further 
below, following an example of its use. Construction of this system has begun with the parser and 
closely related parts of the system interface. 

The current version of the parser, known as Psli3 (pronounced "sly three"), was preceded by two 
earlier attempts (as one might suspect). Each of the three versions was designed to intermingle its 
use of syntactic and semantic knowledge, integrating the two types of knowledge both in its 
production rules and in the structures it builds in working memory. Once the decision to use a 
production system architecture was made, the next question to be answered was what parsing 
strategy would be best given this architecture. The main consideration, in addition to retaining the 
capability for knowledge integration provided by the architecture, was to keep the knowledge in the 
rules as self-contained as possible, in order to make human modification of the system feasible. 
Reasonable efficiency was only a secondary criterion, since this is a long-range effort not intended 
for short-term actual use. 

The first attempt, Psiil, was designed to be a production system implementation of an expectation-
based parser like CA [1]. There are two approaches which have traditionally been used to handle 
ambiguity within this type of parser. The one approach is to create an expectation for every 
possibility, each of which can contain an arbitrary set of syntactic and semantic tests to determine 



whether its choice is the correct one. The other approach is to do "intelligent error correction", in 
which the rule in question guesses which choice is correct, and later retracts its guess if another 
choice proves to be the right one. Both of these methods require hand-crafting each rule associated 
with a local ambiguity. This is incompatible with the goal of easy extensibility, since the builder of a 
rule must anticipate all possible conflicts. 

The second version, Psli2, attempted to use a search-tree technique, sprouting a leaf from the tree 
for each possible decision at each point in the utterance, and using best-first search to find a globally 
consistent meaning. This version was somewhat awkward for a system builder to program, and 
resulted in much inefficiency, especially when several correct choices were available at the same time 
(such as two expectations being satisfied simultaneously). Any correct state not chosen for further 
growth had to be replicated. Moreover, correctly constructed constituents embedded in larger 
structures that later proved incorrect might have to be reconstructed several times. 

Neither of these parsing strategies was sufficient for the stated purposes. A technique was needed 
which would handle all kinds of ambiguity in a simple, general fashion, without unreasonable 
inefficiency. It also had to be adaptable to a production system architecture, so that knowledge could 
be applied in an integrated and intuitively appealing fashion. Starting with chart parsing [7] 
(explained cogently by Winograd in [13]) and modifying it to meet these goals lead to the development 
of "semantic chart parsing", so named to indicate the use of semantic information in the chart and in 
the parser's rules. A technique reported recently by Jardine and Shebs [6] appears to function in a 
similar fashion, although it was developed by adding parallelism to PHRAN [12], and is not integrated 
into an overall production system. 

3. Example: Parsing a Sentence with Local Ambiguities 
Each rule in a chart parser checks for the starting and ending lexical positions of each constituent 

state it matches, and indicates the starting and ending positions of the state it builds. A constituent is 
built only once on a given interval, and only those constituents that are part of the interpretation of the 
whole input are seen in the final result. In a semantic chart parser, such as Psli3, a constituent is built 
only if it is semantically as well as syntactically consistent. 

This approach will be demonstrated using the sentence "Show me xn [sic] axle order". This 
sentence contains three types of local ambiguity. The most noticeable is that there is a spelling 
mistake, where "xn" could be corrected to be either "an", "in", or "on", using the current dictionary 
and spelling corrector (a FranzLisp version of [2]). The second local ambiguity is the case 
relationship of "me" to "show". In this sentence, "me" is the recipient of the action, whereas in 
"Show me to Mark", it is the object being shown. Thus in a left-to-right parse, the case of "me" is 
locally ambiguous. The third local ambiguity is whether "axle order" is a noun-noun compound, or 
two separate nouns whose juxtaposition is a coincidence. Axle orders, axles, and orders are all 
objects which can be referred to in the current application 1. 

Figure 3-1 shows the chart built during the parse of this sentence. Each line segment in the diagram 
represents a state built by a rule, usually defining a newly found constituent of the sentence. For 
clarity, the only backlinks shown are those for states which are part of the correct interpretation. The 
actual representation used for a state is shown in figure 3-2, along with an English translation. This 

Actually, "axle" has been substituted for "blade" throughout this example, in order to show an interesting spelling 
correction using xn. The current application is actually a turbine blade factory information system. 



Request / S-imperative 

1 2 3 4 5 6 

Figure 3 - 1 : Chart built for "Show me xn [sic] axle order" 

representation consists of a set of working memory elements, each containing the unique name of 
this state in its "state" field. A typical production rule and its English translation is shown in figure 
3-3. 

The first rule that fires in our example places the interpretation of "show" into working memory. 
This interpretation; shown in figure 3-2, indicates that it is a display action, a verb and a verb phrase, 
and that it spans the interval [1:1]. Several expectations are also placed into this state, indicating 
which syntactic and semantic markers correspond to which cases of this verb. 

The rule for "me" then fires, placing a description of the current speaker into working memory, and 
noting that this is a syntactically complete noun phrase located on the interval [2:2]. At this point, two 
rules fire, one creating a verb phrase on the interval [1:2] with "me" as the recipient of "show", the 
other with "me" as the object. These can both fire because "me" has a known referent (from 
pragmatic knowledge), and fits the syntactic and semantic requirements of both cases. These 
incompatible choices are both entered into the chart, and are both available to higher-level rules 
looking for a verb phrase on the interval [1:2]. 



( s t a t e Ts ta tus posted t s t a t e gOOOll) 
( a c t r t o k e n g00012 t a c t i o n d i s p l a y t s t a t e gOOOll t u t t 1) 
( e x p e c t t t o k e n g00015 tcon g00012 t t y p e e-unmarked tmarker 1 s t 

t s l o t r e c i p t i s a #human t d e f a u l t r e f t s t a t e gOOOll) 
( e x p e c t t t o k e n g00015 tcon gOG012 t t y p e e-marked tmarker to 

t s l o t r e c i p t i s a #human t d e f a u l t r e f t s t a t e gOOOll) 
( e x p e c t t t o k e n g00014 tcon g00012 t t y p e e-unmarked tmarker 2nd 

t s l o t o b j e c t t s t a t e gOOOll) 
( e x p e c t t t o k e n g00013 tcon g00012 t t y p e e-marked tmarker f o r 

t s l o t bene t i s a #human t d e f a u l t r e f t s t a t e gOOOll) 
(POS t t y p e verb t s t a t e gOOOll t u t t 1) 
(POS t t y p e v e r b - p h r a s e t s t a t e gOOOll t u t t 1) 
(word-seq t f i r s t 1 t l a s t 1 t p r e v n i l t n e x t 2 t s t a t e gOOOll t u t t 1) 
( a n c e s t o r t a n c e s t o r iOOOlO t s t a t e gOOOll t u t t 1) 
State gOOOl 1 has been posted (it is active). 
This state contains action gOOOl2, which is a "display" action. 
This state expects an indirect object for action g000l2, which will be the 

human recipient of the action, and defaults to "ref" (the user), 
or a human recipient contained in a prepositional phrase marked by "to". 
This state expects a direct object for action g0O0l2, which will be the 

object acted on by the action. 
This state expects a prepositional phrase marked by "for", which will be the 

human benefactor (who the action is done tor), default "ref". 
This state represents a verb part-of-speech. 
This state also represents a verb phrase part-of-speech. 
This state represents the first word of the input 
This state is backiinked to state iOOOlO (an input word). 

Figure 3-2:. Actual representation of state g00O11 in working memory 

Since no rule can fire on "xn", the rule for the fixed noun phrase "axle order" now fires, creating a 
description of the database item corresponding to the phrase, and noting that it is an incomplete 
noun phrase on the interval [4:5], Incomplete noun phrases are those which have not yet had their 
syntactic boundaries confirmed, and so should not initiate a search for a referent. The rule for "axle" 
then fires similarly, followed by "order" and the punctuation (the carriage return is currently regarded 
as an end-of-sentence punctuation mark). 

Since the incomplete noun phrase recorded for "order" now has a punctuation mark at one end, 
and a word that might not be part of the same noun phrase at the other end ("axle"), a syntactically 
complete noun phrase for it is created on [5:5]. This allows the referent finding rules to act on it. 
Currently, these are very primitive, and merely create a description of the set of all database objects 
which are instances of this type. Such a description is therefore created on [5:5]. 

Due to the misspelling of "an", no other linguistic rules can fire. The rule which would take "order" 
as a second object of "show", for instance, cannot fire because no state for "order" is on an interval 
adjacent to a state for the verb phrase containing "show". Since there is no state spanning the whole 
input, the rule for assembling a completed parse cannot fire, and a goal requesting error correction is 
placed into working memory. This activates a number of rules, including one which attempts to 
correct the spelling of a word if there is nothing covering its interval in the chart, as is the case with 
"xn". The corrections "in", "on", and "an" are each placed into the chart as a simple lexical item on 
[3:3], just as the original word at that location was. 

The goal of error correction is now removed, allowing the linguistic rules to act. The first rule to fire 



(p d i e t - s h o w 
(goa l t s t a t u s a c t i v e tname c p - g r o w - t r e e ) 
( i n p u t tword << show name presen t t e l l g i ve » t u t t n i l 

t s t a t e <s> t p o s i t i o n <pos> t p r e v <prev> t n e x t <nex t> ) 
(speaker t u s e r l D <speaker> ) 
- - > 

; ; ; B u i l d a new s t a t e . 
( b i n d < n e w - s t a t e > ) 
(make s t a t e t s t a t e < n e w - s t a t e > t s t a t u s posted) 
(make ances tor t s t a t e < n e w - s t a t e > t a n c e s t o r <s>) 

; ; ; B u i l d the d i s p l a y concept 
( b i n d <name>) 
(make POS t t y p e verb t s t a t e < n e w - s t a t e > ) 
(make POS t t y p e v e r b - p h r a s e t s t a t e < n e w - s t a t e > ) 
(make word-seq t f i r s t <pos> t l a s t <pos> t p r e v <prev> 

t n e x t <next> t s t a t e < n e w - s t a t e > ) 
(make ac t t a c t i o n d i s p l a y t t o k e n <name> t s t a t e < n e w - s t a t e > ) 

; ; ; S t a r t up the d i s p l a y e x p e c t a t i o n s . 
( b i n d < e 2 > ) ( b i n d < e 3 > ) ( b i n d <e4>) 
(make expect t t y p e e-marked tcon <name> tmarker f o r 

t s t a t e < n e w - s t a t e > t t o k e n <e2> t i s a #human 
t s l o t bene t d e f a u l t <speaker>) 

(make expect t t y p e e-unmarked tcon <name> t t o k e n <e3> 
tmarker 2nd t s t a t e < n e w - s t a t e > t s l o t o b j e c t ) 

(make expect t t y p e e-marked tcon <name> tmarker to 
t s t a t e < n e w - s t a t e > t t o k e n <e4> t i s a #human 
t s l o t r e c i p t d e f a u l t <speaker> ) 

(make expect t t y p e e-unmarked tcon <name> t i s a #human 
t s t a t e < n e w - s t a t e > t t o k e n <e4> tmarker 1st 
t s l o t r e c i p t d e f a u l t <speaker> ) 

) 
RULE diet-show: 
IF there is an active goal to parse input 

and an input word that is one of: show, name, present, tell, give 
and a speaker 

THEN obtain a unique name 
make a posted state indicator 
make a backlink to the input word 
obtain another unique name 
indicate that this state is a verb part-of-speech 
indicate that it is also a verb phrase part-of-speech 
indicate the part of the input it represents 
indicate that it is a display action 
obtain three more unique names 
indicate an expectation for a human "benefactor" (defaults to user) marked by "for1* 
indicate an expectation for an "object" as a direct object 
indicate an expectation for a human "recipient" (defaults to user) marked by "to" 

or as an indirect object. 

Figure 3 -3 : Actual production rule defining show 

defines "on" as a preposition on [3:3]. In this system, prepositions have no semantics except in 
context. Although "on" cannot be used as part of a larger constituent in the current sentence, it does 
allow a complete noun phrase to be built for "axle order" on [4:5], since it provides it with a left 
boundary. A referent finding rule then creates a description of the set of all axle orders, again on 
[4:5]. The same two rules build a complete noun phrase and a referent on [4:4] for "axle". 



Once this takes place, the same rule that defined " o n " as a preposition defines " i n " . This again 
cannot be used as part of any larger structure 2, and this time nothing happens, since the noun 
phrases adjoining it are already complete. Finally, " a n " is defined as an indefinite determiner on 
[3:3]. It can combine with either of the incomplete noun phrases starting at 4, namely "ax le" or "axle 
order". This is possible even though these have already both been used to build complete noun 
phrases; an incorrect decision cannot prevent a correct one from being made later. The first of these 
two incomplete, indefinitely determined noun phrases to be built is for "axle", on [3:4], which in turn 
causes a complete noun phrase and a referent to be built on [3:4]. 

At this point, the two incompatible verb phrases built for "show me" on [1:2] are both adjacent to 
the referent and noun phrase for "an axle" on [3:4]. This, and the expectation that a second object 
will occur, allow a verb phrase spanning the interval [1:4] to be built, with its recipient and object 
cases both filled. Only one new verb phrase is built, because a special mechanism prevents any case 
in a verb phrase from being filled more than once, and "an axle" can only be the object case, due to 
the restrictions on the recipient case. The "special mechanism" is simply a rule which adds to any 
verb phrase a list of all cases which are already filled in any underlying verb phrase. Here we see a 
local ambiguity being decided, since the larger structure cannot incorporate the incorrect verb 
phrase. Unfortunately, this verb phrase is a dead end, because it only covers [1:4], and cannot be 
extended to include "order" at 5. However, the determiner "an" has yet to be combined with "axle 
order". When this occurs a globally consistent parse is found up to the punctuation mark. The verb 
phrase built on [1:5] is essentially identical to the one built for [1:4], except that "axle order" is the 
object instead of "axle". 

Finally, because there is a verb phrase extending from the beginning of the utterance to an end-of-
sentence punctuation mark, a rule fires which builds a request for the described action, and indicates 
that it is an imperative sentence spanning the whole utterance [1:6], The system currently only 
handles surface imperatives, but is easily extensible to other types of sentences and sentence 
fragments, such as noun phrases. In order to capture the completed parse, the "ancestor" elements 
of states that are part of the correct interpretation are traced back, their states are marked as being 
part of this utterance, and the result is assembled into a compact form for further processing. Before 
the next utterance is parsed, the states not included in the correct parse will be deleted from working 
memory. 

An annotated listing of a short user interaction with- this parser is shown in figure 3-4. The first user 
request is the one discussed above. The second illustrates a slightly different verb form, and the last 
demonstrates a somewhat more complex noun phrase. 

4. Strengths of the Approach 
There are a number of ways in which Psli3 is superior to earlier versions of this parser. Most 

significantly, the chart parsing strategy is tolerant of ambiguity in exactly the way desired. The 
individual rules need not know whether there are other interpretations for the constituents they use. 
Because ambiguity is handled globally by the chart mechanism, the rules do not need to handle 
ambiguity internally, and they are thus much simpler, and easier to write and understand than typical 
expectation-based parser rules. Because they do not keep track of the ancestry of a constituent, but 
only know that it is a possible alternative on a particular interval of the utterance, they are simpler and 

2 As the coverage increases, the constituent "in axle order" may actually be built (even if it is syntactically imperfect), but it 
could not lead to a globally consistent parse, and would not interfere with the correct interpretation. 



S c r i p t s t a r t e d on Thu Apr 28 1 0 : 5 1 : 0 5 1983 
Warning: no access to t t y ; thus no job c o n t r o l in t h i s s h e l l . . . 
% is i s 

I S I S , from Franz L isp OPUS 36 1 2 - 2 1 - 8 1 . 
(Diagnostic output editted out] 

1 . l o a d p s l i 3 . 0 . i n i t 
[Diagnostic output editted out.] 

3 . run 

•show me xn a x l e o r d e r 
["blade" has been changed to "axle" throughout, for clarity.] 

Ambiguous s p e l l i n g m i s t a k e : xn 

A t t e m p t i n g (ambiguous) s p e l l i n g c o r r e c t i o n : xn 
Words t r i e d : an in on 

Ready to assemble a meaning f o r s t a t e g00177 
[This indicates that a single overall meaning was found.] 

a x l e - o r d e r - B A £ 9 5 0 3 6 - T l - 0 0 1 2 R 4 1 W 
[The system currently displays all 

Xs if you ask for "an X".] 
a x l e - o r d e r - 9 0 7 4 8 2 - 0 9 - 5 0 9 2 0 0 0 W 

• D i s p l a y the a x l e s to Mark f o r me 
[The system understands this, but cannot really redirect output] 

Ready to assemble a meaning f o r s t a t e g00218 

#731J735001 

#752J351005 

• l i s t the f i n i s h - d a t e s of the a x l e orders 
[Here the user is asking for an attribute of an object] 

Ready to assemble a meaning f o r s t a t e g0039S 

a x l e - o r d e r - B A E 9 5 0 3 6 - T l - 0 0 1 2 R 4 1 W 031282 

[This display routine broke recently.] 

a x l e - o r d e r - 9 0 7 4 8 2 - 0 9 - 5 0 9 2 0 0 0 W 032682 

•bye 

Ready to assemble a meaning f o r s t a t e g00409 

end — e x p l i c i t h a l t 
97 p r o d u c t i o n s (853 / / 1958 nodes) 
669 f i r i n g s (1722 rhs a c t i o n s ) 
355 mean working memory s i z e ( 5 5 1 maximum) 
24 mean c o n f l i c t se t s i z e (125 maximum) 
586 mean token memory s i z e (1263 maximum) 

, [Diagnostic output editted out.] 
s c r i p t done on Thu Apr 28 1 1 : 0 3 : 2 6 1983 

Figu re 3-4: A sample Psli3/user interaction 



faster than the rules in Psli2. The fact that states are not replicated needlessly reduces the number of 
working memory elements that need to be matched against, again promoting ease of understanding 
and acceptable efficiency. 

In the initial, small system typical sentences are parsed in 30 to 45 seconds in FranzLisp OPS5 on a 
lightly loaded Vax Unix™ system. If run under the current Bliss implementation of OPS5, this would 
be cut by a factor of five, making it almost real-time. Using OPS83, a new Pascal implementation of 
OPS5, would yield another factor of three, giving parses in a second or so. Finally, work is under way 
on a special-purpose architecture production system machine, which would add another factor of 
100. It should be realized that these times include all processing of the input, including 
disambiguation and interpretation, not just the time required to produce one of possibly many 
syntactic structures. Since the time complexity of OPS5 production systems tends to be proportional 
to the logarithm of the number of rules, adding a large number of rules to this system should not 
cause significant speed problems. 

This system also has a number of advantages over other rule-based approaches to parsing. The 
use of semantics within the rules which build constituents reduces the number of states built which 
cannot lead to a complete interpretation, compared to a system which uses a separate syntactic 
phase. Only those constituents which are at least locally plausible are built. In addition, Psli3 works 
in a much simpler fashion than other "wait-and-see" systems—notably those of Marcus [8] and 
Ginsparg [5], which wait as long as possible, and CA [1], which waits as long as it must. Psli3 can be 
thought of as tentatively making a decision when it uses a constituent in a larger structure, but not 
finalizing the decision until its global consistency is confirmed after the parse. 

The primary advantage derived from the choice of a production system architecture is that rules 
which can act whenever a certain pattern occurs in working memory greatly facilitate the integration 
of various types of knowledge, as has been demonstrated in expert system architectures. In fact, 
OPS5 has been used to construct various expert systems [9] [10]. The integration of non-linguistic 
knowledge sources has begun with the factory database system, written in SRL [14]. No special 
dictionary is used to interpret the names of any database items mentioned. When an unknown word 
occurs in the input (such as "xn"), it is looked up in the database. If it is found, it is treated in the 
same way during parsing as a noun that is defined as a word. Examples of other rules that can use 
database knowledge are the set/instance noun phrase, such as "order a-o-31212", or the 
attribute/object noun phrase, such as "the due date of a-o-41511". Rules of this nature were present 
in Psli2, and will soon be added to Psli3. 

5. Plans for Further Development 
In addition to extending the linguistic coverage of the system, a general scheme is being 

investigated which should allow the system to handle pragmatics (the influence of general knowledge 
and reasoning on the understanding of a sentence) in a clean fashion. The basic requirement for this 
is that the system be able to verify the reasonableness of a construct before building it. The natural 
way to do this in a production system is to build a goal to verify whether the construct in question 
makes sense. If it does, other rules, outside of the parser, will indicate that the goal succeeded. If 
there is a problem, the outside rules will indicate a failure. Since any. knowledge that the system has 
will be available for use by the production rules, this should allow the entire knowledge of the system 
to be applied to the understanding of natural language inputs, without any adaptation of the non-
linguistic knowledge. 



Several dialogue effects should prove easy to incorporate as well. A mechanism for analyzing a 
user's goals will be added, as well as anaphoric reference rules similar to Sidner's [11]. In a more 
unusual vein, it should be relatively easy to incorporate dialogue expectations into this parser's 
flexible structure, so that dialogue context can influence judgements about how to interpret a 
fragmentary constituent (e.g., as an answer to a question, or as an expected ellipsis). Also, it may be 
possible to handle a truly ambiguous sentence by leaving each global possibility in the chart, and 
allowing the dialogue context to disambiguate the sentence, in effect extending the notion of a chart 
to cover the structure of a conversation. 
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