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1. | nt roducti on

Si nce Carathéodory's pioneer work on the foundation of
t her rodynam cs, nmany authors (e.g. [3,4,7]) have witten on this
subject froma simlar viewpoint. However, in nost of these
expositions, there lacks a clear separation between the mathe-
matical theory and the physical consideration. As a conseguence,
many mat hematically technical points are either overl ooked or
ignored. It is the purpose of this paper to construct a mathenmatica
nodel whi ch rectifies these shortcom ngs and at the same time brings
out clearly all the mathematical hypotheses that are required
in order to draw the desired conclusions. In this regard, the
present investigation is influenced by the work of Aren [1] and
Carter [6]. Also, instead of following a traditional approach
in proving the existence of entropy and absolute tenperature, we
give a sonewhat different and refined proof, in 84, for sinple
t her rodynam ¢ systens. Roughly speaking, sinple thernodynamc
systens are those systens whose states are specified by two therno-
dynam c variables, e.g. pressure and volune. The devel opnent
in this section can be easily generalized to include nore conpli -

cated systens.

In "2, we first introduce the notion of a quasi-thernodynamc
system By inposing additional conditions on it, we arrive at the
concept of a thernodynamc system A basic property for the
t herrodynam ¢ system nanely, its " heat fornml has local integrating
factors, is sumarized in Theorem2.5. Since we restrict our

attention later to sinple systens, we describe a proof only for




such sinple cases.

Al 't hough multi-tenperature systens have been discussed
recently by several authors, we elect to follow the traditional
line in considering only single tenperature systens. The characteri -
zation of such systenms is given in 83.

In the |last section, we discuss the principle of increase
of entropy during an irreversible adiabatic process for those
sinpl e systems whose constant entropy subnanifolds are connect ed.
We first identify the irreversible adiabatic processes with a
certain subset of the set of ordered pairs of states. By generalizing
the'Carathéodory's principle, we are able to showthat, for an
irreversible adiabatic process, the entropy of the final state
is strictly greater than that of the initial state.

Thr oughout this paper, the notations and term nol ogi es
borrowed fromdifferential geonetry follow closely with those
used in [2,10]. By a differentiable manifold, we nmean a separabl e,
Hausdorff topol ogi cal space together with a famly of conpatible
coordi nate systens defined on it. For a precise definition and
many ot her basic facts in differential geonetry which are used in our

di scussion, we again refer readers to [2, 10].
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2. Ther nodynam ¢ Systens

A quasi-thernodynam c system (S, Ae,w) consists of a

C-differentiable manifold S of dinension n ~?

together with
a differenti al 1-form w of class 1 on S and a real -val ued

C>-function ,6e defined on the product manifold SXS such that
for all STgS2 a"~ S3 ¢ 53
(2.1) Ae(s1,S:) + Hels, g8 ) = fel(s &N,

The nenbers of S are called the states, and the real -val ued

functions defined on S are called state functions. W will

interpret ~(s,,s~) as the energy which nust be added or taken

i &
away fromthe systemin going fromstate s., to s It follows
fromequation 2.1 that we have, for all S,,S2 € S, Ae(sl,s,l) =0
and £e(sl,sg) = -As(sz,sl,). The 1-form w is called the work

formof the system

2.2 Theorem For each quasi-thernodynam c system (S, £e,w),

there exists a state function e, unique up to an additive constant,

such that
Aefshs™ = e(sy) - e(sy)
for all S,.S2 € S. Mreover, e is a C2-function.
Proof: Choose any 'soe S and define e S -» Ii’ by
e(s) = te(sos) .

2
Clearly, e is a C -function. Since /?e(?_..,sg) = —Ae(sz,%),

we have




Ae(sl,sz) = Ae(sl,so) + Ae(so,sz)

e(59) - E(Sn)

for all s,, sp e S

! is another such function. Then £e(sqs) =

Now suppose e
e (s) - e'(so) = e(s). Hence, e (s) - e(s) = e (sqg for al
S € S

We shall call e an internal enerqgy function of the system

The 1-form q defined on S by the equation
(2.3) g = de + w

is called the heat formof the system Equation 2.3 is the

statenent of the first |aw of thernodynam cs.

Let | be a closed and bounded interval of the reals. A
function £ | -. S is called a C}-curve if it is the restriction

of a Cl-function defined on some open interval containing I,

and if dE(t) -~ 0 for all t e l. A piecewise differentiable
curve is a continuous function £ | -» S together with a subdivision
of | on whose closed subintervals £ is a Cl-curve. By a

process (or quasi-static process) we nean a peicewi se differentiable
curve in S. The restriction of a process £ | -» S to any cl osed

subinterval of | is called a subprocess of " £  The anount of

wor k done by the systemin traversing a process f: [a,b] -» S is

N b :
given by ITw= [ £w The amount of heat added to the systemin

goi ng alon5 £ & s equal to

jq = e(s2) - e(sy) + \w




wher e s, = $(a) is the initial state and s, = £(b) the fina
state. A process £ is said to be an adiabatic process if jg=20
0

for every subprocess £ of £. A state s; is adiabatically
‘connected to s, if there exists an adiabatic process £:[a,b] - S
such that £(a) = s and £(b) = s,.

- 24—PeftHttt+on A thermodymamc system is a quasi-therno-

dynam ¢ systemwhich satisfies the follow ng additional conditions:
(2.4.a) The heat form q of the systemis nowhere zero.

(2.4.b) In every neighborhood of a given state s, there
exi st states which are not adiabatically connected to s.

The second condition is a mathematical statement of the
second | aw of thernodynam cs, conmmonly known as the Carathéodory's
principle. As a consequence of (2.4.a) and (2.4.b), we have the

followi ng result:

2.5 Theorem Let (S ,As,w) be a thernodynam c system

For each state s e S, there exist an open nei ghborhood U of
s and two real-valued functions Acr defined on U such that
A is a positive Cl-function, a is a C2-function, and Ada
is equal to the restriction of q to U
In the usual axiomatic treatnent of thernodynamcs [3,4,5, 11]
t he above theoremprovides a basic tool in establishing the existence
of entropy and absolute tenperature. However, for our later
di scussion, a restricted version of this theoremto the cases

where S has dinension two is sufficient. In this case, the




proof does not depend on condition (2.4.b), and we argue as
follows: Gven any state s e S, let (V,<) be a coordinate
system about s. Then the heat form q can be witten locally

as

= (—2— . '
q = (axl (e) + WI )dXI + (aXz(e) + W2)d><2u
_ . ' 4
Let us denote QX’_‘EQe) + Wy, ‘rrxz(e) + W, by as ' and a,,
respectively, and let y be an Oformon V. The 1-form -yq

is exact iff +y satisfies the following partial differential

equati on:

S0 -2 a0 = Ghag) - gy |

(2.6) 5%,

2;=,x

Si nce a,,a, are Cl-functi ons and not sinultaneously equal to -
zero, the local existence of sol utibns for equation 2.6 is guaranteed
by the theoremon p. 59 [9]. Moreover, we may assune that y > 0.

5 _
Thus, there exists a C -function or such that da = yq or

g = Ada at sone neighborhood Uc V of s.

VW will call A an integrating factor, c¢r an integrator,

and (A,a) an integrating pair of the heat form q about s.

3. Single Tenperature Systens




Let U denote the class of all thernodynanmic systens. A

fam |y of single tenperature thernodynamc systens is a subclass

U of 3" which satisfies the four conditions |isted bel ow.
(3.1.a) For each nenber (S,"e,w) of U S is sinply
connected and dw(s) ~ 0 for all s e S |
(3.1.b) Gven any two nenbers Sl,Sz of U there exists

a certain distinguished subset S,*Sg of S. XS, such that
X. £ X. £

(i) for each sf’ e SL there exists an s, € S, such that
(s1382) € Si1*Sy,

(ii) if (si1,8,) € Si*S2t tlien (gnagn) e SpxSgx and

(iii) if (SpSj) e SN and (s, S3) € S;*S3, then
(s1,83) € S'Sy

If (st,s;) e $*S,, we say that s* and s, have the
sane Temnmperature. Now suppose s e S. By (i), there exists
an st e S such that (s,s,¥ e S$S. Hence, by (ii), (s4s) e
S*S. It then follows from (iii) that (s?s) e S*S. Thus, the
above condition defines an equivalence relation on each S of

\i, and the equivalence classes of S are called Tsothermats.

A temperature foncttomr J* of S is a state function which is
constant on each isothermal, and is a different constant on
different isothermals. A tenperature state is a collection ®

of tenperature functions, one for each S e U such that if el ez
e © are the tenperature functions for the systenms St and Se,
respectively, then 9;(s;) = 95(s,) iff (s.,s2) e Si1*S,. We point

out here that it follows from3.1.b and the fact that each S e 3"
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is separable that one can always construct a tenperature scale for
U. -~ However, such a tenperature scale does not, in general, possess
the desired snoothness. For this reason, we inpose the next
condition on U

(3.1.c) There exists a tenperature scale ©O for |\,
with the property that each tenperature function 6 6®O is a
Cz-f'unction. Furthernore, if (Acr) is an integrating pair as
described in Theorem2.5, and if 6 e C% is the correspondi ng
tenperature function for the system then d9(s)AdO(s) ~ 0 for
all s e dom(a)e

I'f the dinmension of °7*%2 6 A are m ansa N5 regpectively,

then it follows fromcondition (3.1.c) that *i**0 A% men-1
5

di mensi onal C -subrmanifold of S,lxsz. W wi Il show next that
Sl* S, can be made naturally into a quasi-thernodynam c syst em

To this end, let AX . A5, " the functions induced on

o~

(S1xS;) x(S1xS,) by £& and £e,, respectively, and let #,,w
be the 1-forms induced on sTxS2 by w.* and w,, respectively.
We denote the restriction of AeM + ££, '° (S1*S;)x(Si*Sy)

by 7~e , and the restriction of w, + W, to S;*S_ by w .
C L J-> X £ C

Then (S ,*Sp,Ae ,w) __is clearly a quasiitherrmdy_narrié system
and is called the conposite systemof S, and S,.
. _(3ol.d) For each pair s1>s, € 1, the conposite system
S,*S;, is a thernodynam c system

To save writing, we will denote a single tenperature system

by (S £e,w,9) where 0 1is the corresponding tenperature function
for S in ©_




3.2 Theorem Let ®0 be a tenperature scale for |i as

described in (3.1.c). Then all the nenbers of ®&, have the sane

range and the range is an open interval in R]‘.

Proof: Let 6,, 90 be nenbers of © which correspond to the
syst ens S’l and S,, respectively. For each s,, e Sl’ by (3.1.hb)
and (3.1.c), there exists an 's, e S, such that e”s”) = 6,(s>).
Hence, range(QL) c range(6_?). Simlarly, one can show the. other
inclusion. Thus, all the nenbers in Oo have the same range.

Si nce 91 is continuous and S._L is connected, the range
of 91 is clearly connected. To showthat it is open, we observe
that at each state s e Sl, d9,l(s) N0 according to (3.1.¢).

This inplies that 91 cannot achi eve maxi numor mni mum Hence,

range(9,l) is an open interval in Rl.
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4, The Existence of Entropy and Absolute Tenperature for

Si npl e Syst ens

A sinple systemis defined to be a single tenperature system
(S, £e,w,Q where S has dinension twd. Henceforth, we wll
restrict our discussion to sinple systens, and will establish, in
this section, the existence of global entropy function and absol ute
tenperature for such systens. |

Let (S, Ae,avr™, @), (S £es, w,, 027 PetWesimple systens,
and let (S *S~-,Ae jW) be the correspondi ng conposite system

For any two given states s, e Sy and s, e S;, et (Al,crl)

1
be an integrating pair of the heat form qa. about S1 and | et
(A, cT2r ke ® simlar pair for q, about s,. It follows from

(3.1.c) that there exist nei ghborhoods Vl of s, and V, of

2
S, such that the function o”xe, i V,_-. R defined by cr,g6,;:(s) =

(a—_,(s),(?t(s)) forns a coordi nate system about S, and the

function a,xe,: Vo, -» R2 defined by axx62(s) = (az(s), 02(s) )

fornms a coordinate systemabout s,. W call such coordinate systens
ajXg, CIx8, the " preferred” coordinate systens. We denote

crif V1], 6:[ V1], CTp[V:] and 65[V,] by M, N;, M and N,
respectively. Also, we adopt the follow ng notational convention:

If p is adifferential formon S or S;, then by % we

mean the form induced on S;xS, by p. In this notation, the
function (D V,xV, -. R given by <o(s1,S2) = (a]_(s1,S2), € 1(S1,S2),

CTo(Si ~s2n A2AS| 1Spa  wis acoordinat o gystem about (s ,§2) e S xS,

Moreover, the range of w is MxN, xMsxN,. The set V= (VxVo)n(S *g

\. L £ £ J . 21

)
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is a nonenpty open set in S-jA iff NAKA A j6. In this casd
the restriction of <p to V induces a coordinate system

i): V-» R of SjA*~ givenby ~(s~s” = (crrsrshr, cf,(s.*s5),,
B(sy,8,)) where § = gl, = Ay Therangeol A is  MyxMyx
(I\ll HIEU). Fromour construction of the conposite system the heat

form g of S.*So is sinply equal to the restriction of q =
C X A
gx + g2 to $*S,. Thus, for all (s”s”™ eV, we have

a.(sy:85) = X;(s;,5,)85, (8),8,) + Ky(s,,8,)d0,(s;,8,).
i e Ly : :
The |n_duced form (ib~) g, on Iy}:xl\lg(l\l,LH\l‘_,) is given by
1 * ~ ~ 5 ]7' ~ ~ ~
(\b~ ) qc(ala af »>' ') = Al(l (0'130'23 B)df\l +
A . o
y - . +8)do,-

Note that it follows from the definition of Kl,A and J that

we have

'01~N5=AorX' l ~ |~
(4.1) A° 0~ (apO0fy°n 1°(c'176i)~ (ag,'e),
and
(4«2) eyl ) _1('5130]?23' é) = AZO( agxez) "'1 (AAéT),

for all Caias'Q e MixMx(NnN,) .

4. 3_lemm Let (S.{‘J6e1, Wiy €1) , (Sz, £&sVr,, €;) be two

sinple systens, and let (A" CN) be an integrating pair of q1
about s € S* and let (A, a;) be an integrating pair of q2
about s, e S,. Suppose (V~Ac~xe™ is a " preferred" coordinate
syst em about s1 and (Vo croxe;) is a " preferred’” coordinate

system about s, such that [ V" n 6,tV,] ~ jb. Then the




_1 12
ratio H-'21*°~ 1(gm/A defined on a”™ ] x*j [V x
Ar0(azxxez) ~((T€)

(GJ‘ntVl,]nez[Vz]), i's independent of 9.
-1 * . -1
Proof- Let us denote Ao((T-x6L) by AN and *,-(CT,X6,)

i | - Ala],6)
by As. Suppose the ratio

I's not independent of 9.

AZ( 621 9)
. . 1 Vo)
Then there exists a point (CT°,CT,,9°) € a™~V™ Xax[Vy] x( Q[ V:] n9y|
such that ¥ o o
*
%8 %\, (05,0%)
Let MXMXNCCT,[ Vi] xco[ V2] x(9:t V1] n9,[ V,]) be a conpact
nei ghborhood of (@2, @B P)) e FFor each 9 e N, consider the
followng differential systens:

do

. 1 1
(1) = =
d t WEi
A L
0
CTl:CT1atfc: 0
. da, +
(ii) o=~

Ag(Tnj 9)
v2 ~“2 --t - O
From the existence theoremin the theory of ordinary differential
equations, we know that there exists a T > 0, independent of
9, such that (i) and (ii) have unique solutions in MJ_X[O, T]
and IVAxtQ T], respectively. The solutions of (i) and (ii) can

be witten as
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t
1
N t,e) =c® +J ~ dt!
(i) §{t.¢ 1 o A (3 (t',0),0)
and
P -1
: - oo 4 = at!
(iv) So(t, e) a: o 7\;(22(t’,9),9)
For each T, 0 < T < T, we calculate the determ nant of
t he Jacobi an of the transformation o, = y*(t, e), a, = !>>(t,e)
L -
at (T,9°), Qearly, " £.("9°) = (-1)'t =———+ o(l)
- A: (CT; 6
for i =1,2. Also, from(iii) and (iv), one 'can' 3how t hat
.l N /\9° — % s 4 NN 2 o
36 X ) = O, D2 (a?,e°) + O(T)
[Alcgse)]® 96 X
for I = 1,2. Thus,
3L, 2%,
58 38 Ay (05, 8°)
det = m T - a.l_L_..*. o(r)
3 5 i r,% o0 -0,2 99 &% / O O
%1 Y [AL(CTL, 9 ) J Ae(CTwd 6 )
\ at at
which is different fromzero for sufficiently small T. For such
a r, let qi :'%,uzf) and rh :TZWf}®5- It follows from

the inverse function theoremthat there exist a nei ghborhood
AxB of (T1,0°) and a neighborhood cxp of (Cﬂ},éb such that

the transformation &, = J}-,(t,Qy <jo = Vo(t,8) maps AXB 1-1,
2 2
ont o EXD. Thus, every point (az,,crje) e CxDxN can be connected
to {oi,,%zﬁb n o~ the fo] ] owing piecewise differentiable curve
2 1
in CxDxN. Let (7*,6*) be the inverse inmage of (chjcu)°
Then

AuRY lJBSARY.: |
GHHEE!E-MLLGR priv st
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f(cri,og, (1+t)6*-te%), -L <t <O

(£, (r*-€,8%), T, (r*-t,e*),e*), ot " T
A1) (62,02, rrr-tyex + (t-7¥)e°), T <t £1% + 1

(5 (t-1%-1,0%), 5, (6-1%-1,8%),0°),  rrlgbCrrertl
N

*
which, in viewof equations 4.1 and 4.2, satisfies that ($~]) ge(cs(t)) =
O for all t e [-1,T*+T+1]. This, of course, inplies that every
state in the nei ghborhood j/T'l[O<Dxl\ﬂ of !b~l [c_:rL-" clrza G°] is adiabatically

connected to /T ](&.1>Q1>> 9°) which contradicts 3.1.d.

4.4 Lemma Let (S Ae,w,9) be a sinple systemand |et

(A o) be an integrating pair about s e S Suppose (V, ax6)
is a " preferred" coordinate systemabout s. Then there exi st
a Cl-function f >0 on c[M and a ct -function g >0 on
9V] such that

Ne(ox®) T(o,0) = f(cr)g(6).
If (f',9'") is any other such pair, then ¢ = eg and
f' = i—t for some positive constant c.

Proof: Setting Sl =S, =S and AleZ:A in Lenma

4.3, we obtain

l*(cl,e)
TTo,,67 = Flo1:03) > 0

for all (i 1<J2,Q) e a[V]xcer[V]xe[V] . Now fixing a = of e aV],

we have

A (0-,€) = Flosop) 05, Q = f(<x)g(e) .

Clearly, f and g are positive cl-functions.
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Suppose (f,g') is another pair of such functions. Then
we have f(*)g(e) =f' (cX)g (9) or fffr) =f~f! for all
(a®Q e a[V]x6[V]. Thus, there exists a constént C >0 such
that g =eg and f' :—'5‘-.
! -
4.5 Lemma Let A”MCc xQ*" |, A,0(02x63) be a papr of

functions as described in Lenmma 4.3. Suppose Ao (cr*GA) (a-" &) :(9 )
_ 2
fi(ai)gi(e1) on crq V] xel[V"] and A,o(azxe;) (CT, 6, = fa(cryo;
on cro[ Vo X6o[ Vg . Then there exists a constant C > 0 such that
gi(e) = cgy(e) on erv.hneyva.
Proof; By Lemma 4.3,
\(a:Q f1(CT1) g1(€)
VAN

_&2-,BF)( «rpay) = Ty(a2)0:0€)

for all (ava2, Q e a_[Wi] xaztvy] x( e[vy_] ney[Vz]) . Hence, the

result foll ows.

4.6 Theorem Let Oo be a tenperature scale for |i as
described in (3.1.c) and let J be the common range for all menbers
of ©0. Then there eixsts a C -function T defined on J such

that for each A«(ax9) ~} as described in Lenma 4.4, we have
Ao(crxe)""t = T(6)F(or)

for some F. The function T is unique up to a nmultiplicative
constant and if T is fixed then F is uniquely determ ned.

Moreover, T<8 is a tenperature function.

Proof; Let us index the set of all integrating factors
for the sinple systens by A For each i e A et h'1 = |l og 9.

where g. is a factor of A. as in Lemma 4.4. By Lemma 4.5,
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h.i-h.3 = constant on their comon donmain. Thus the 1-form ¢
defined on J by p(e) = dh”e) where 9 e domh;). is exact,
i.e. p = dh where h 1is a real-valued Cl-function defined on
J. The function T = exp h clearly has all the properties as
stated in the theorem except possibly the fact that Toe is a
tenperature function.

~To shew that T»e 1is a tenperature function, it suffices
*

d -
to show t hat -57 T(e) 2 0 for all 9 e J. Since ((crx9) 35 g(a>6) =

2 (o,8)dg = T(e)P(cr) dor=[*$- eq<ix9) "I(CT, 6) +WO (CTx9) " (¢r, 6) Jdor +

[5\[ eo(ax9) ~'( (T;9) +w. o( CTXe) ~(CT, 6)] de, we have
(4.7) T(e)F(o) =" eo(ax9)"(a, 6) + wo (cTxQ ~*(d;9)
and

(4.8) 0 :"‘r eo(ax9) ~(a, 9) + Wgo(CTX9) "I(CT, 6) *

Differentiating equation 4.7 with respect to 9 and equation 4.8

with respect to a and subtracting the two, we obtain

F(g)r T(9) = ~ W« (CTX9)"YCT, 9) - A wzo'(Uxe)—l(G’:e)

which, by 3.1.a, is different fromzero. Thus, "qu(6) N0 for
all 9 e J.

The function To9 is called an absolute tenperature function

of the system

4.9 Theorem For each sinple system (SsfEe,w,9), there

exists a global entropy function r) such that

g = Toe dnm.
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Proof As shown in Theorem4.6, locally, q(s) =
T(e(s))F(a(s))da(s) = T(e(s))daoa(s) where a(c) = jHecr)der.
If q(s) = T(e(s) )da'oa (s) is another such |ocal representation
of q then d(ctocr - aoa') =0 on the overlap. Thus, we can

define a 1-form p on S by
p(s) = d(aoff)(s) if s e don{aocr) e

Clearly, p is closed. Since S is sinply connected, p 1is
2
exact. Hence, there exists a C -function r\ defined on S such

that q = ToQ drj =

4.10 Corollary For each closed quasi-static process £,

E-%E =0
£
(A cl osed quasi-static process is a process £: [a,b] -« S. such
that A(a) = f(h)).
Finally, it is worth noting that all the propositions in
this section can be generalized to single ternperature systens of
hi gher dinmension. One starts, in this case, fromTheorem2.5, and

then uses this fact to prove Lemma 4.3 in a usual manner.
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5. Irreversible Processes and the Principle of Increase of Entropy.

The theory we have devel oped so far deals strictly with
physi cal systens which are in " thermal equilibriun . However,
one woul d like to draw some conclusions fromit in regard to
irreversi bl e processes such as free expansion of gases, etc.
Al t hough such processes do not fall into our definition of quasi-
static processes, nevertheless, the initial and final state of
such processes lies in the equilibriumstates. Therefore, for
an irreversible process where " no exchange of heat" takes
pl ace, one would like to conclude that the entropy of the fina
state is strictly greater than that of the initial state. To
show this, we first restrict our attention to those sinple systens
whi ch have the follow ng property: Let r) be an'entropy function
of the sinple system (S, £e,w,6). .Then t he constant entropy
submani folds {s e S: t](s) = constant} are connected. W denote

a class of such sinple systens by \r, and prove that

5.1 lemm Let (S,",w,e) el\s, andlet 77 be an entropy

function of S. Two states °v®o ¢S 2'¢2a3japatically connected

iff T)A) =r12sy) .

Proof: Suppose S, .Sz are connected by an adi abatic process
f: [ab] - S Then T)Wt)) is constant for all a £t £Db
For if not, let t A"~ e [a,b] such that r(f(ty)) ™ t)U(ty))

and t; <t,. Let Co=mn{T(6(E(t)): t-~t~t~". W have
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Cg=1t trg=1f T(e(M))dn(f(t))

t
2
>c, Jt an(£()) = C_Inle(ty)) - nle(t )] £ 0
1
which contradicts the fact that t 1is an adiabatic process.

Now suppose r](sy) = T?(S;) . Then s;,s, is arcw se
connected [2, Proposition 1.5.2]. Moreover, by a simlar argunent
as to Proposition 1.5.1 [2], one can construct a piecew se
differentiable curve connecting Sy S2 in the submanifold
{s e S T7(s) :'U(EJ}. Clearly, such a process is an adiabatic
process.

Next we identify the irreversible adiabatic processes for
a sinple system (S, Ae,w, 9) e \s with a subset j of SxS
whi ch has the follow ng properties:

5.2. a |If (SIJ,SQ e & then s is not adiabatically

L
connected to Sy«

5.2.b If (3782) fL 3 and if S» I's not adiabatically
connected to s, t hen (sﬁjSQ e 3
5.2.¢c If (3,32)"(32,32) e 3, then (s-"s™ e 3.

5.2.d For each state s e S the set K = {s,:(s,s.) e 3
S L CX

or s' is adi abatically connected to s} and its conplenent are

connect ed.
The above four conditions together with Lemma 5.1 inply that

5.3 Lenma Let s,,s, and s_ e S If s, e K and
1 A 5 2 sk

s, e K , then s, e K
o sn i sS4
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A state S{,_ is said to be adiabaticallv and irreversibly

connected to s, if (s, ,sq) e «9 By generalizing the Carat héo-

dory's principle 2.4.b to include the irreversible adiabatic

processes as well, we have

5.4 Lemma Let (S, f£e,w, e) e V and let 77 be an entropy

function of S. Then for each s e S, we have either r>(s) £
71 (s1) for all s, e Ky or 77(s) ~TjCs™ for all s e K.

Pr oof For each s e S, by 5.2.d, i?t"| 'S 3 jinterval in

Rt

Suppose T?(°) belongs to the interior of this interval.
Then there exists an open interval J such that ri(s) e Jc 77[K] .
Let (V, T2x6) be a coordinate systemabout s. Then every state
in the nei ghborhood U = (TJx9)-~ f‘(T)[w HJ) XB[V] ] of s can be

connected to s as follows: Suppose S, € U Then there exists

a state sg e K such that T)(s,) = 77(s,). By Lemma 5. 13

s, e K . Hence, by Lenma 5.3, s, e K which contradicts the
X Sn X S .

general i zed Caratheodory's principle. Since s e K, r/(s) nust
be an end point of the interval ri[Kj.

5.5 lLemma Let (S £&w 0) e \s and let 77 £e an entropy

function of S. Suppose s e S is such that TJ(S) * ’\(S,L) for
all s™ e Kyg. Then every state s, e S with rj(s) <i rj(sy)
belongs to K;. A simlar result holds if the inequalities are

rever sed.

Pr oof Suppose there exists a state s, © S such that

t2(s) £ T2(S)) 2"9 S, A K« Inviewof Lemmas 5.1 and 5.3, we

must have n(s') < v(sqg for all s' e Kyg. But this would inply
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that 71[~Kg ] is not connected which contradicts 5.2.d.

5.6 Lemma Let (S £e,w, 6) e If and let 77 be an entropy

function of S. Then either 77”) < rj(sy for all (s""Sj) € 3

or en(s) > T¥S) for all (s-"s* e J.

Proof: First we showthat either T)(S) ~ 17(s") for all
s e S and s' e K or r(s) ~ T?2(S') for all s e S and st e Kge
Suppose not. Let %i~%0°®° such that T2(s,) g, JI(S) for all

£+ —

s e KS and T?(Sy P 77(s) for all s e l§~. We consi der the
Z

~follow ng three cases:

Case 1 n(s,) < TJ(S)). By Lenmma 5.5, we have sy e K and
s, e K . Thusj (spsj € j ahd (s”sj e j which™ by 5.2. C,
inpliesht hat (s,,s,) e J. But this contradicts 5.2. a.

Case 2 17(s;) <r)(s,). Let s e S be such that 77(s;) <
77(s) < 77(s,). Then (sz,s) and (s.,s) / J. By 5 2.b, we have
(s,s,) €] and (s,sz) ej. This inplies that 77(5 belongs to

the interior of ~[K ] which was shown inpossible.
s

Case 3 Tji sf,) - T?(sz). This case again contradi cts Lenma
5. 4.

Finally, the strict inequality follows from5.2.a which
conpl etes the proof.

By a proper choice of the sign of the absolute tenperature,
we obtain our principle result of this section.

H 7 Theorem Let (S, £e,w, 6) e \s. There exists an entropy

function 77 of the systemsuch that if (s,l, s,) e g, then

) < U -
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