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1. Introduction

Since Caratheodory's pioneer work on the foundation of

thermodynamics, many authors (e.g. [3,4,7]) have written on this

subject from a similar viewpoint. However, in most of these

expositions, there lacks a clear separation between the mathe-

matical theory and the physical consideration. As a consequence,

many mathematically technical points are either overlooked or

ignored. It is the purpose of this paper to construct a mathematical

modelwhich rectifies these shortcomings and at the same time brings

out clearly all the mathematical hypotheses that are required

in order to draw the desired conclusions. In this regard, the

present investigation is influenced by the work of Aren [1] and

Carter [6]. Also, instead of following a traditional approach

in proving the existence of entropy and absolute temperature, we

give a somewhat different and refined proof, in §4, for simple

thermodynamic systems. Roughly speaking, simple thermodynamic

systems are those systems whose states are specified by two thermo-

dynamic variables, e.g. pressure and volume. The development

in this section can be easily generalized to include more compli-

cated systems.

In ̂ 2, we first introduce the notion of a quasi-thermodynamic

system. By imposing additional conditions on it, we arrive at the

concept of a thermodynamic system. A basic property for the

thermodynamic system, namely, its " heat form" has local integrating

factors, is summarized in Theorem 2.5. Since we restrict our

attention later to simple systems, we describe a proof only for



such simple cases.

Although multi-temperature systems have been discussed

recently by several authors, we elect to follow the traditional

line in considering only single temperature systems. The characteri-

zation of such systems is given in §3.

In the last section, we discuss the principle of increase

of entropy during an irreversible adiabatic process for those

simple systems whose constant entropy submanifolds are connected.

We first identify the irreversible adiabatic processes with a

certain subset of the set of ordered pairs of states. By generalizing

the Caratheodory's principle, we are able to show that, for an

irreversible adiabatic process, the entropy of the final state

is strictly greater than that of the initial state.

Throughout this paper, the notations and terminologies

borrowed from differential geometry follow closely with those

used in [2,lo]. By a differentiable manifold, we mean a separable,

Hausdorff topological space together with a family of compatible

coordinate systems defined on it. For a precise definition and

many other basic facts in differential geometry which are used in our

discussion, we again refer readers to [2,10].

so



2. Thermodynamic Systems

A qua s i-the rmodynamic system (S,Ae,w) consists of a

C2-differentiable manifold S of dimension n ^ 2 together with

a differential 1-form w of class 1 on S and a real-valued

C2-function ,6e defined on the product manifold SXS such that

for a l l S T J S 2 a n ^ S 3 e 5

(2.1) Ae(s 1 , s 2 ) + 2 3 ^ ^

The members of S are called the states, and the real-valued

functions defined on S are called state functions. We will

interpret ^(s,,s~) as the energy which must be added or taken

away from the system in going from state s.. to s2. It follows

from equation 2.1 that we have, for all s,,s2 e S, Ae(s,,s,) = 0

and £e(s,,s2) = -As(s2,s,). The 1-form w is called the work

form of the system.

2.2 Theorem. For each quasi-thermodynamic system (S,£e,w),

there exists a state function e, unique up to an additive constant,

such that

Aefs^s^ = e(s2) - e(s1)

2
for all s,,s2 e S. Moreover, e is a C -function.

Proof: Choose any s e S and define e: S -» R by

e(s) - te(sQ,s) .

2
Clearly, e is a C -function. Since /?e(s..,s2) = -Ae(s2,s ),

we have



= e(s9) - e(sn)

for all s,, s0 e S.

Now suppose e1 is another such function. Then £e(sQ,s) =

e'(s) - e'(s ) = e(s). Hence, e'(s) - e(s) = e'(sQ) for all

S € S.

We shall call e an internal energy function of the system.

The 1-form q defined on S by the equation

(2.3) q = de + w

is called the heat form of the system. Equation 2.3 is the

statement of the first law of thermodynamics.

Let I be a closed and bounded interval of the reals. A

function £: I -. S is called a C -curve if it is the restriction

of a C -function defined on some open interval containing I,

and if d£(t) -^ 0 for all t e I. A piecewise differentiable

curve is a continuous function £: I -» S together with a subdivision

of I on whose closed subintervals £ is a C -curve. By a

process (or quasi-static process) we mean a peicewise differentiable

curve in S. The restriction of a process £: I -» S to any closed

subinterval of I is called a subprocess of " £. The amount of

work done by the system in traversing a process f: [a,b] -» S is

given by Iw = | £*w. The amount of heat added to the system in

going along £ is equal to

Jq = e(s2) - e(s1) + \w



where s, = $(a) is the initial state and s2 = £(b) the final

state. A process £ is said to be an adiabatic process if jq = 0

c
for every subprocess £ of £. A state s1 is adiabatically

connected to s2 if there exists an adiabatic process £:[a,b] - S

such that £(a) = s^ and £ (b) = s2.

2.4 Definition A thermodynamic system is a quasi-thermo-

dynamic system which satisfies the following additional conditions:

(2.4.a) The heat form q of the system is nowhere zero.

(2.4.b) In every neighborhood of a given state s, there

exist states which are not adiabatically connected to s.

The second condition is a mathematical statement of the

second law of thermodynamics, commonly known as the Caratheodory's

principle. As a consequence of (2.4.a) and (2.4.b), we have the

following result:

2.5 Theorem Let (S,As,w) be a thermodynamic system.

For each state s e S, there exist an open neighborhood U of

s and two real-valued functions A,cr defined on U such that

A is a positive C -function, a is a C -function, and Ada

is equal to the restriction of q to U.

In the usual axiomatic treatment of thermodynamics [3,4,5,11]

the above theorem provides a basic tool in establishing the existence

of entropy and absolute temperature. However, for our later

discussion, a restricted version of this theorem to the cases

where S has dimension two is sufficient. In this case, the



proof does not depend on condition (2.4.b), and we argue as

follows: Given any state s e S, let (V,<p) be a coordinate

system about s. Then the heat form q can be written locally

as

Wl ) d Xl W2 ) d x2"

Let us denote + wo
by a and

x^—(e) + wn ,
QX-i 1 iiX.

respectively, and let y be an O-form on V. The 1-form -yq

is exact iff

equation:

satisfies the following partial differential

Since a ,a. are C -functions and not simultaneously equal to

zero, the local existence of solutions for equation 2.6 is guaranteed

by the theorem on p. 59 [9]. Moreover, we may assume that y > 0.

2

Thus, there exists a C -function or such that da = yq or

q = Ada at some neighborhood U c V of s.

We will call A an integrating factor, cr an integrator,

and (A,a) an integrating pair of the heat form q about s.

3. Single Temperature Systems
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Let U denote the class of all thermodynamic systems. A

family of single temperature thermodynamic systems is a subclass

U of 3" which satisfies the four conditions listed below.

(3.1.a) For each member (S,^e,w) of U, S is simply

connected and dw(s) ^ 0 for all s e S.

(3.1.b) Given any two members S.,S2 of U, there exists

a certain distinguished subset S,*SO of S.XS0 such that
x. £ x. £

(i) for each s. e S,, there exists an s2 e S2 such that

(s1Js2) e S1*S2,

(ii) if (s1,s2) € Si*
S2} tlien (s^s^) e S2*S1* a n d

(iii) if (SpSj) e S^^*^ and (s2,s3) e S2*S3, then

(s1,s3) € S^Sy

If (s,,s2) e S,*S2, we say that s, and s2 have the

same temperature. Now suppose s e S. By (i), there exists

an s, e S such that (s,s,) e S*S. Hence, by (ii), (s.,s) e

S*S. It then follows from (iii) that (s^s) e S*S. Thus, the

above condition defines an equivalence relation on each S of

\i, and the equivalence classes of S are called isothermals.

A temperature function J^ of S is a state function which is

constant on each isothermal, and is a different constant on

different isothermals. A temperature scale is a collection ®

of temperature functions, one for each S e U, such that if e ,e_

e © are the temperature functions for the systems S, and S9,

respectively, then 91(s1) = 92(s2) iff (s;L,s2) e S1*S2. We point

out here that it follows from 3.1.b and the fact that each S e 3"
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is separable that one can always construct a temperature scale for

U. However, such a temperature scale does not, in general, possess

the desired smoothness. For this reason, we impose the next

condition on U.

(3.1.c) There exists a temperature scale © for \j,

with the property that each temperature function 6 6® is a
2

C -function. Furthermore, if (A,cr) is an integrating pair as

described in Theorem 2.5, and if 6 e © is the corresponding

temperature function for the system, then d9(s)Ad0(s) ^ 0 for

all s e dom(a)•

If the dimension of S T * S 2 6 ^ a r e m an<^ n> respectively,

then it follows from condition (3.1.c) that si*so ^s a m+n-1
2

dimensional C -submanifold of S,xS2. We will show next that

S *S 2 can be made naturally into a quasi-thermodynamic system.

To this end, let Aî ,, A<52
 be the functions induced on

(S1xS2) x(S1xS2) by £&^ and £e2, respectively, and let #-,,w2

be the 1-forms induced on S T X S 2 by w.. and w2, respectively.

We denote the restriction of Ae^ + ££2
 to (S1*S2)x(S1*S2)

by ^e , and the restriction of wn + w*o. to S,*S_ by w .
C _L J-> x £ C

Then (S,*S0,Ae ,w ) is clearly a quasi-thermodynamic system,

and is called the composite system of S, and S2.

(3ol.d) For each pair S T > S 2 € 1J, the composite system

S-,*S? is a thermodynamic system.

To save writing, we will denote a single temperature system

by (S,£e,w,9) where 0 is the corresponding temperature function
for S in © .

o



3.2 Theorem Let ® be a temperature scale for li as

described in (3.1.c). Then all the members of ®Q have the same

range and the range is an open interval in R .

Proof: Let 6,, 9O be members of © which correspond to the

systems S, and S2, respectively. For each s, e S,, by (3.1.b)

and (3.1.c), there exists an s2 e S2 such that e^s^) = 62(s2).

Hence, range(9,) c range(6?). Similarly, one can show the other

inclusion. Thus, all the members in 0 have the same range.

Since 9, is continuous and S.. is connected, the range

of 9, is clearly connected. To show that it is open, we observe

that at each state s e S-,, d9,(s) ^ 0 according to (3.1.c).

This implies that 9.. cannot achieve maximum or minimum. Hence,

range(9,) is an open interval in R .
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4. The Existence of Entropy and Absolute Temperature for

Simple Systems

A simple system is defined to be a single temperature system

(S,£e,w,Q) where S has dimension two. Henceforth, we will

restrict our discussion to simple systems, and will establish, in

this section, the existence of global entropy function and absolute

temperature for such systems.

Let (S, , Ae, 3vr^, Qj), (S2, £e2,w2,
 62^ be t w o s i m P l e systems,

and let (S,*S~,Ae jW ) be the corresponding composite system.

For any two given states s, e S, and s2 e S2, let (A.,cr,)

be an integrating pair of the heat form q. about s and let

(A2,CT2^ ke a similar pair for q2 about s2. It follows from

(3.1.c) that there exist neighborhoods V, of s, and V2 of
2

s2 such that the function o^xe, : V., -. R defined by cr,X6-, (s) =

(a-,(s),Q,(s)) forms a coordinate system about s, and the

2
function a2xe2: V2 -» R defined by a2x62(s) = (a2 (s), 02 (s) )

forms a coordinate system about s2. We call such coordinate systems

a-jXS,, CT2X82, the " preferred" coordinate systems. We denote

cr1[V1], 61[V1], CT2[V2] and 62[V2] by M1,N1,M2 and N2,

respectively. Also, we adopt the following notational convention:

If p is a differential form on S, or S2, then by % we

mean the form induced on S1xS2 by p. In this notation, the

function (D: VlXV2 -. R
4 given by <0(s1,s2) = (a]_(s1,s2), e'1(s1,s2),

CT2(
si^s2^ ̂ 2^ sl j S2^ "'"s a c o o r d i n ate system about (s ,s2) e S, xS .

Moreover, the range of w is M,xN,xM»xN0. The set V= (VnxVo)n(S *
\. L £ £ J . 2 1 2
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is a nonempty open set in S-j^^ iff N^K^ ^ j6. In this casd

the restriction of <p to V induces a coordinate system

i|): V -» R3 of Sj^*^ given by ^ ( s ^ s ^ = (cr^s^s^ , cf2 ( s.^ s2) ,,

where § = e-j_l v = ^ v * T h e r a n 9 e of ^ is

(N, HNU). From our construction of the composite system, the heat

form q of S *S O is simply equal to the restriction of q =
C X ^

qx + q2 to S1*S2. Thus, for all (s^s^ e V, we have

-1 *The induced form (ib ) q on lyLxNUx (N, PN,,) is given by

(\b~ ) qc(a1,af2>'
5') = ^1(1" '^

"̂  _ i /~

Note t h a t i t fol lows from t h e d e f i n i t i o n of A , , ^ and J/J t h a t

we have

(4.1) ^i° 0~ ( a p 0 f 2
5 ^ = A

1 ° ( c r
1

x 6 i ) ~ ( a 1 , ' e ) ,

and

(4«2) 2̂o?i) (a1Jcf23'e) = A2o(a2xe2)~ (^^ei),

for all Ca1,a2,'Q) e M1xM2x(NinN2) .

4. 3 Lemma Let (S.^ J6e1,w1J) el) , (S2, £&2>vr2, e2) be two

simple systems, and let ( A ^ C N ) be an integrating pair of q

about ŝ ^ € S^ and let (A2,a2) be an integrating pair of q_

about s2 e S2. Suppose (V^c^xe^ is a " preferred" coordinate

system about s and (V2, cr2xe2) is a " preferred" coordinate

system about s2 such that ^ [ V ^ n 62tV2] ^ jb. Then the



1 2

ratio H-'^l*6^ (gJ^V^ defined on a ^ ] x*2[V2] x
A2o(a2xe2) ((T2,e)

(GntV,]ne2[V2]), is independent of 9.

-1 * -1
Proof Let us denote A1o((T-Lx6 ) by A^ and ^ 2-(CT 2X6 2)

• *

* A,(a-|,6)
by A~. Suppose the ratio — is not independent of 9.

A2(a2,9)

Then there exists a point (CT°,CT2,9°) e a^V^ X a2 [V2] x( Q±[V±] n92[

such that

o.

Let M1XM2XNCCT1[V1]xc2[V2]x(91tV1]n92[V2]) be a compact

borhood of (a?, cr2* 9°) • F

following differential systems:

neighborhood of (a?, cr2* 9°) • For each 9 e N, consider the

d t W fil

CT1 = CT1 a t fc =

da2 ±

dt = ~~*
Ao ( Cfn j 9)

2 ~ CT2 t - O

From the existence theorem in the theory of ordinary differential

equations, we know that there exists a T > 0, independent of

9, such that (i) and (ii) have unique solutions in M,x[O,T]

and IV^xtOjT], respectively. The solutions of (i) and (ii) can

be written as
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(iii) Ej_(t,e) = cr° + J ~

and

P

(iv) So(t,e) = a? +
t

For each T, 0 < T < T, we calculate the determinant of

the Jacobian of the transformation cr, = y^(t, e), a2 = !>>(t,e)

at (T,9°), Clearly, ^ £.(^9°) = (-l)i+1 * I o + o(l)
Ai(CTi>6 >

for i = 1,2. Also, from (iii) and (iv), one can show that

^ ( ^ 9 ° ) = * o o 2 ^ ^ ( a ? , e ° ) + O(T)X [ A ( C T ° e ° ) ] 2 96 x !

for I = 1,2. Thus,

r , / O -O\,2 99 •% / O O>
[A, (CT, , 9 ) J AO(CTOJ 6 )

\at

which is different from zero for sufficiently small T. For such

a r, let <j, = £-,(T,9 ) and rr2 = TZyif}®
0)- It follows from

the inverse function theorem that there exist a neighborhood

AxB of (T,0°) and a neighborhood CXD of (CT-,,a2) such that

the transformation a-, = J}-,(t,Q)} <j0 = vo(t,8) maps AXB 1-1,

2 2
onto CxD. Thus, every point (a-,,cr2je) e CxDxN can be connected

to {o-,,a2>® ^ ^ t h e following piecewise differentiable curve

2 7
in CxDxN: Let (T*,6*) be the inverse image of (cNjCu
Then
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a(t) =1

-t,e*),e*), o ^ t ^ T

(t-T*)e°), t £ T

which, in view of equations 4.1 and 4.2, satisfies that ($~ ) qc(cs(t)) =

0 for all t e [-1,T*+T+1]. This, of course, implies that every

,-1
~ [cr-^ CT2J G°] i sstate in the neighborhood j/f [CxDxN] of

connected to i/T (a-. >Q->> 9°) which contradicts 3.1.d.

4.4 Lemma Let (S,Ae,w,9) be a simple system and let

(A, or) be an integrating pair about s e S. Suppose (V, ax6)

is a " preferred" coordinate system about s. Then there exist

a C -function f > 0 on cr[V] and a C -function g > 0 on

9[V] such t h a t

= f (cr )g(6) .

If (f',g') is any other such pair, then g' = eg and

f' = —f for some positive constant c.

Proof: Setting S, = S2 = S and A, = A2 = A in Lemma

4.3, we obtain

fo r a l l (a , <J2,Q) e a[V]xCT[V]xe[V] . Now f i x i n g a2 = cr2 e a[V] ,

we have

A*(o-,e) = °,Q) = f(<x)g(e)

Clearly, f and g are positive C -functions.



15

Suppose (f,g') is another pair of such functions. Then

we have f (*)g( e) = f ' (cx)g' ( 9) or fff^) = f ^ f 1 for all

(a^Q) e a[V]x6[V]. Thus, there exists a constant C > 0 such

that g' = eg and f' = —f.

1 —1

4.5 Lemma Let A^Cc^xQ^" , A2o(o2x62) be a pair of

functions as described in Lemma 4.3. Suppose A^o (cr̂ G-̂ ) (a-^ 6̂ ) =

f1(a1)g1(e1) on cr1[V1]xe [V^] and A2o(a2xe2) (CT2,62) = f2 (cr2)g2

on cro[Vo] X6O[VO] . Then there exists a constant C > 0 such that

g1(e) = cg2(e) on e^v.^ ne2[v2i.
Proof; By Lemma 4.3,

\(altQ) f1(CT1)g1(e)
^ — - - F ( « r r a 2 ) = f2(a2)g2(e)

for all (ava2,Q) e a]_[V1] xa2tv2] x( e1[v]_] ne2[V2]) . Hence, the

result follows.

4.6 Theorem Let 0 be a temperature scale for li as

described in (3.1.c) and let J be the common range for all members

of © . Then there eixsts a C -function T defined on J sucho

that for each A«(ax9) as described in Lemma 4.4, we have

Ao(crxe)""1 = T(6)F(or)

for some F. The function T is unique up to a multiplicative

constant and if T is fixed then F is uniquely determined.

Moreover, T<>8 is a temperature function.

Proof; Let us index the set of all integrating factors

for the simple systems by A. For each i e A, let h. = log g.

where g. is a factor of A. as in Lemma 4.4. By Lemma 4.5,



h.-h. = constant on their common domain. Thus the 1-form
i 3
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defined on J by p(e) = dh^e) where 9 e dom(hi) is exact,

i.e. p = dh where h is a real-valued C -function defined on

J. The function T = exp h clearly has all the properties as

stated in the theorem except possibly the fact that Toe is a

temperature function.

To shew that T»e is a temperature function, it suffices

d -1 *
to show that •—- T(e) ? 0 for all 9 e J. Since ((crx9) ) q(a> 6)ay

= T(e)P(cr) dCT = [•$- e O(<JX9) "1(CT, 6)+W O (CTX9) " 1( C T, 6) ]dcr

[~r eo(aX9)~1((TJ9)+w.o(CTXe)~
1(CT,6)]de, we have

o" ^

(4.7) T(e)F(o) = ̂ " eo(ax9)"1(a,6) + w no (CTXQ) ~
1(CrJ 9)

and

(4.8) 0 = ̂ r eo(ax9)~1(a,9) + w9 0(CTX9) "
1(CT, 6) •

Differentiating equation 4.7 with respect to 9 and equation 4.8

with respect to a and subtracting the two, we obtain

^ T(9) = ^ W1«)(CTX9)"
1(CT, 9) - ^ 2

which, by 3.1.a, is different from zero. Thus, "rrT(6) ^ 0 for

all 9 e J.

The function To9 is called an absolute temperature function

of the system.

4.9 Theorem For each simple system (S5£e,w,9), there

exists a global entropy function r) such that

q = Toe
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Proof As shown in Theorem 4.6, locally, q(s) =

T(e(s))F(a(s))da(s) = T(e(s))daoa(s) where a(CT) = jF(cr)dcr.

If q(s) = T(e(s) )da'o a'(s) is another such local representation

of q then d(ctocr - a'o a1) = 0 on the overlap. Thus, we can

define a 1-form p on S by

p(s) = d(aoff)(s) if s e dom(aocr) •

Clearly, p is closed. Since S is simply connected, p is
2

exact. Hence, there exists a C -function r\ defined on S such

that q = ToQ drj =

4.10 Corollary For each closed quasi-static process £,

(A closed quasi-static process is a process £: [a,b] -• S such

that A(a) = f(b)).

Finally, it is worth noting that all the propositions in

this section can be generalized to single termperature systems of

higher dimension. One starts, in this case, from Theorem 2.5, and

then uses this fact to prove Lemma 4.3 in a usual manner.
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5. Irreversible Processes and the Principle of Increase of Entropy.

The theory we have developed so far deals strictly with

physical systems which are in " thermal equilibrium" . However,

one would like to draw some conclusions from it in regard to

irreversible processes such as free expansion of gases, etc.

Although such processes do not fall into our definition of quasi-

static processes, nevertheless, the initial and final state of

such processes lies in the equilibrium states. Therefore, for

an irreversible process where " no exchange of heat" takes

place, one would like to conclude that the entropy of the final

state is strictly greater than that of the initial state. To

show this, we first restrict our attention to those simple systems

which have the following property: Let r) be an entropy function

of the simple system (S,£e,w,6). Then the constant entropy

submanifolds {s e S: t](s) = constant} are connected. We denote

a class of such simple systems by \r, and prove that

5.1 Lemma Let (S,^,w, e) e \s, and let 77 be an entropy

function of S. Two states s v s o € s a r e a3iabatically connected

iff T)^) = r?(s2) .

Proof: Suppose s,,s2 are connected by an adiabatic process

f: [a,b] - S. Then T)U(t)) is constant for all a _£ t £ b.

For if not, let t ^ ^ e [a,b] such that r?(f(t1)) ^ t)U(t2))

and t1 < t2. Let CQ = min{T( 6 ( £ (t)) : t - ^ t ^ t ^ . We have



t2 t2 t2
 1 9

q = f t*q = f T(e(Mt))dT?(f(t))

J
which contradicts the fact that t is an adiabatic process.

Now suppose r](s1) = T?(S2) . Then s1,s2 is arcwise

connected [2, Proposition 1.5.2]. Moreover, by a similar argument

as to Proposition 1.5.1 [2], one can construct a piecewise

differentiable curve connecting s.,s2 in the submanifold

{s e S: T7(s) = TJ(S,)}. Clearly, such a process is an adiabatic

process.

Next we identify the irreversible adiabatic processes for

a simple system (S,Ae,w, 9) e \s with a subset j of SxS

which has the following properties:

5.2. a If (s..,,s2) e &, then s, is not adiabatically

connected to s2«

5.2.b If (3^82) fL 3 and if s» is not adiabatically

connected to s~, then (s^jS.) e 3.

5.2.c If (3^^,32)^(32,32) e 3, then (s-^s^ e 3.

5.2.d For each state s e S, the set K = {s,:(s,s.) e 3
S -L X

or s, is adiabatically connected to s} and its complement are

connected.
The above four conditions together with Lemma 5.1 imply that

5.3 Lemma Let s,,so and s_ e S. If so e K and
1 ^ 5 2 s,

s, e K , then s e K
•J S^ j S -1
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A state s, is said to be adiabaticallv and irreversibly

connected to so if (s, ,s9) e «9. By generalizing the Caratheo-
———•• ' Z X ^

dory's principle 2.4.b to include the irreversible adiabatic

processes as well, we have

5.4 Lemma Let (S,£e,w, e) e V and let 77 be an entropy

function of S. Then for each s e S, we have either r>(s) £

T|(s1) for all s± e Kg or 77(s) ^ TjCs^ for all sL e Kg.

Proof For each s e S, by 5.2.d, i?tKsl
 is an interval in

R . Suppose T?(S) belongs to the interior of this interval.

Then there exists an open interval J such that ri(s) e J c 77 [K ] .

Let (V, T?X6) be a coordinate system about s. Then every state

in the neighborhood U = (TJX9)~ [ (T)[V] HJ) XB[V] ] of s can be

connected to s as follows: Suppose s, € U. Then there exists

a state s9 e K such that T)(s,) = 77(so). By Lemma 5.13

s, e K . Hence, by Lemma 5.3, s, e K which contradicts the
X S n X S

generalized Caratheodory's principle. Since s e K , r/(s) must

be an end point of the interval rj[K ] .

5.5 Lemma Let (S,£&,w, 0) e \s and let 77 £>e an entropy

function of S. Suppose s e S is such that TJ(S) ^ ̂ (s,) for

all s^ e Kg. Then every state s2 e S with rj(s) <i rj(s2)

belongs to Kg. A similar result holds if the inequalities are

reversed.

Proof Suppose there exists a state s e S such that

t?(s) £ T?(S
O)

 a n d s
o ^

 K
s« In view of Lemmas 5.1 and 5.3, we

must have n(s') < v(sQ) for all s' e Kg. But this would imply
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t h a t 71 [~K ] is n o t c o n n e c t e d which c o n t r a d i c t s 5 . 2 . d .
SS

5.6 Lemma Let (S,£e,w, 6) e If and let 77 be an entropy

function of S. Then either 77^) < rj(s2) for all (s^Sj) € 3

or •n(s1) > TJ(S2) for all (s-^s^ e J.

Proof: First we show that either T)(S) ^ I7(s') for all

s e S and s' e Kg or r?(s) ^ T?(S') for all s e S and s1 e Kg.

Suppose not. Let si^so 6 s such that T?(s,) <[, TJ(S) for all

s e K and T?(S0) J> 77 (S) for all s e K . We consider thes ^ s ~

following three cases:

Case 1 n(s,) < TJ(S 0). By Lemma 5.5, we have s9 e K and

s, e K . Thus j ( s p s j € j and ( s ^ s j e j which^ by 5.2. c,

implies that (s,,s,) e J. But this contradicts 5.2.a.

Case 2 17 (s-) < r)(s,). Let s e S be such that 77 (s2) <

77(s) < 77(s,). Then (s2,s) and (s.,s) / J. By 5.2.b, we have

(s,s,) e j and (s,s2) e j. This implies that 77(5) belongs to

the interior of ^[K ] which was shown impossible.
s

Case 3 Tjis-,) - T?(s2). This case again contradicts Lemma

5.4.

Finally, the strict inequality follows from 5.2.a which

completes the proof.

By a proper choice of the sign of the absolute temperature,

we obtain our principle result of this section.

5.7 Theorem Let (S,£e,w, 6) e \s. There exists an entropy

function 77 of the system such that if (s,,s?) e rg, then

T)(s, ) < v(s0) .
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