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UNIVALENCE CONDITIONS AND STURM-LIOUVILLE EIGENVALUES

S. Friedland and Z. Nehari

Let f(z) be an analytic function in the unit disk, and

denote by {f,z} its Schwarzian derivative

(l.D (f,z) =<fr-)- - ^(ji-) •

It is known that f(z) will be univalent in |z| < l--i.e.,

f(z,) ^ f(z~) if z1,z? are distinct points in the unit disk--

if {fjZ} is subjected to conditions of the type |{f,z}| £ S(|z|),

where S is a suitably chosen positive function on the interval

[0,1]([3,4]). In particular, the univalence of f(z) is guaranteed

by the conditions

(1.2) I {f,z} | ^ ^T~o> l z l < r>
(1-r )z

([ 3] ) and

1-r

([6]). Both these inequalities are best possible in the sense

that the constants on the right-hand side cannot be replaced

by smaller numbers (for the case of (1.2), cf. [2]). Condition

(1.2) occupies a special position since it becomes a necessary

condition for the univalence of f if the constant 2 on the

right-hand side of (1.2) is replaced by 6 ([3]). Also,

condition (1.2) has been found to be of importance in the theory

of quasi-conformal mapping ([1]).
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The principal aim of the present paper is to establish

the following strengthened versions of these univalence criteria,

Theorem 1.1. Let R(r) be_ a, nonincreasinq nonneqative function

on [0,1) for which

(1.4) T R(r)dr < 1.

I f

(1.5) | { f , z } | < 2 R ( r> 2 , | z | < r,
(1 - r )

then f(z) is univalent in |z| < 1.

2 -1Theorem 1.2. Let R(r) (1 - r ) be_ nonincreasincr in [0,1)

and let

(1.6)

o

If (1.5) holds, then f(z) is univalent in |z| < 1.

It will be observed that condition (1.2) follows from Theorem

1.1 for R(r) = 1, while condition (1.3) corresponds to the

case R(r) =2(1 - r ) of Theorem 1.2.

2. It was shown in [4] that the condition |{f,z} | < 2S(r)

will guarantee univalence if S(r) has the following two pro-

2 2
perties: (a) the function (1 - r ) S(r) is nonincreasing on

[0,1); (b) the differential equation

• ! ! + S(r) y = 0

en HUNT LIBB/KY
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has a solution y which is positive and nonincreasing on [0,1)

Equivalently, property (b) can be expressed by the condition

(2.1) A > 1,

where A is the lowest eigenvalue of the problem

(2.2) V ' + AS (r) v = 0, V (0) = v (1) . = 0.

If S(r) is not defined for r = 1, A will be understood to

mean lim A , where A is the lowest eigenvalue of equation
r r

(2.2) for the boundary conditions V (0) = v(r) = 0, 0 < r < 1.

In the case of Theorems 1.1 and 1.2, the function R(r) =

2 2
(1 - r ) S(r) is nonincreasing, i.e., S(r) has the property (a).

To prove these Theorems, it thus is only necessary to show that,

under our assumptions, the lowest eigenvalue of (2.2) is subject

to the condition (2.1). The remainder of this paper has therefore

nothing to do with complex function theory; all we are concerned

with is to obtain lower bounds for the first eigenvalue of

the problem (2.2), where the coefficient S(r) is subject to

certain restrictions. The required bounds will be provided

by the following result, which is also of independent interest

as a comparison theorem of a rather unusual type for second-

order linear differential equations.

Theorem 2.2. Let p(x),R(x) be nonnegative, and let p(x) be

nondecreasinq and R(x) b_e nonincreasinq on [0,1) . Denote by

A and _/\. , respectively, the lowest eigenvalues of the problems



(2.3) u' ' + AR(x)p(x)u = 0, u< (0) = u(l) = 0,

(2.4) v' ' + Ap(x)v = 0, V (0) = v(l) = 0.

If fc= A (x) is_ defined as the unique root of the equation

(2 5) -fr v > (ft) =
(2<5) ! v]

1 - x

in [0,1) (where v(x) is the solution of (2.4)), and if we set

(2.6) 0(x) = ^ 2

then 0 (x) JLS_ nondecreasinq in [0,1] and

1

(2.7) 7\ J R(x)d0(x) > A •
o

For R(x) = 1, (2.7) becomes an equality.

We first show that the estimates needed to complete the proofs

of Theorems 1.1 and 1.2 indeed are special cases of inequality

2 -2(2.7). In the case of Theorem 1.1, we set p(x) = (1 - x ) ,

and we note that the lowest eigenvalue and the corresponding

eigensolution of (2.4) are, respectively, J\- = 1 and v = (1 - x K

(since p(x) is not defined for x = 1, the eigenvalue has to

be defined by the limiting procedure indicated above). Because

of

the function fo defined in (2.5) is /S = x ' , and (2.6) shows

_ &

that 0(x) = x. Inquality (2.7) therefore reduces to



{ R(x)dx >. 1,

1

A

o

and we conclude that A >_ 1 for functions R(x) satisfying

condition (1.4). Inequality (2.1) thus holds for the lowest

eigenvalue of

u, , + —AR(x) u = 0, u< (0) = u(l) = 0,

(1 - x 2 ) 2

if R(x) is nonnegative and nonincreasing, and is subject to

condition (1.4). By the result quoted at the beginning of this

section, this establishes Theorem 1.1.

2 -1To obtain Theorem 1.2, we set p(x) = (1 - x ) and,

to avoid a clash with the notation of Theorem 1.2, we write

R,(x) instead of R(x) in (2.3). If R(x) is the function appearing

in Theorem 1.2, we then have

(2.8) R(x) = (1 - x2)Rx(x),

and we have to show that (2.1) holds for the lowest eigenvalue of

AR (x)
(2.9) u' » + — =• u = 0, u' (0) = u(l) = 0,

1 - K

if R, (x) is nonincreasing and--in view of (1.6) and (2.8)--

satisfies the condition

1

(2.10) ((1 - x)R1(x)dx < 1.

o
2 -1

For p(x) = (1 - x ) , the lowest eigenvalue and the

corresponding eigenfunction of (2.4) are, respectively, .A. = 2

2
and v = 1 - x . Since



(ft) = 2ft2 ^

equation (2.5) shows that, in this case,

fi " 2 - x *

Hence, by (2.6), 0 (x) = x(2 - x) , and inequality (2.7) takes

the form -,

( (1 - x)RL(x)dx > 1.A

o

Because of (2.10), this implies (2.1) and thus completes the

proof of Theorem (1.2) .

As these two examples show, any problem (2.4) which can

be solved explicitly, and for which equation (2.5) can be solved

for ft> , leads to a criterion of univalence (which is necessarily

the best of its kind). Unfortunately, it is not too easy to

find examples for which these two operations can be carried out

explicitly and which, at the same time, are of interest from

the function-theoretic point of view, it may be noted that,

even in the case p(x) = 1, (2.5) leads to the transcendental

equation

f *«» f - r̂ -K
for ft .

We also note that the assumption that R(x) be nonincreasing

is essential. If this assumption is omitted, the conclusion

(2.7) of Theorem 2.2 does not necessarily follow. in fact,
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as the following example shows, the left-hand side of (2.7)

may be made arbitrarily small if R(x) is not required to be

2 -2
nonincreasing. We set p(x) = (1 - x ) and

2
(2.11) R(x) = (2n - D x ^ ' V " X

2 n ) 2 , n > 1,
1 - x

Since the equation

„,, + (2° - Vf;2 u - 0
., 2n. 2
(1 - x )

has the solution u = (1 - x ) , the lowest eigenvalue A

of the corresponding problem (2.3) has the value 1. As shown

above, the function 0(x) associated with the coefficient

p = (1 - x ) ~ is 0(x) = x, and ./V = 1. If Theorem 2.1 were

applicable to this case, we could conclude from (2.7) that

> x
2 n " 2 M x2\ 2

c >_ 1, where, by (2.11),

C = (2n - 1) \ ^ " * ' dx.
n »J /n zn. 2

o (1 " x >

e
However, the easily confirmed inquality

A
1 " X 9 > nx

n~1 (0 < x < 1, n > 1)
1 x

shows that c < 2/n. Hence, not only does (2.7) not hold in

general for functions R(x) which are not nonincreasing: for

such functions, the left-hand side of (2.7) does not possess a

positive lower bound.
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3. Turning now to the proof of Theorem 2.1, we first

show that it is sufficient to prove (2.7) for the set of non-

increasing functions R(x) consisting of the characteristic

function /^t(x) of the intervals [0,t], where te(O,l) . While

this follows from a general result concerning certain functionals

defined on convex sets [5], it is easy to give a direct proof

which applies to the present case. If we denote the lowest

eigenvalue of (2.3) by A(Rp), in order to indicate its depen-

dence on the coefficient of the equation, it follows from

classical results that

= sup
y o

if y ranges over all functions of D [0,1] which satisfy the

boundary conditions y (0) = y(l) = 0 and the normalization

condition
1

yt2dx = 1.

o
t

If R is a convex combination o(.R, +...+ o£ R (°Ci. > °*

«,+...+ o£ = 1) of functions R.,...,R , and 0(x) is a

nondecreasing function of x in [0,1], we have therefore
n l

1 _ k ^ \Py dx
[A(Rp) ( R d0]"1 = sup ̂  °-

o T

^ o<̂  sup sup —j
k y



o

Accordingly, if the functions R belong to a convex set C,

and it is desired to find the greatest lower bound of

1

(3.1) MRp)

for R€C, it is sufficient to consider the extremal points of C.

If C is the set of nonincreasing nonnegative functions R

on [0,1) which are normalized by the condition R(0) = 1 (this

normalization is possible because the functional (3.1) remains

unchanged if R is multiplied by a constant), C is convex,

and it is easy to see that the extremal points of C correspond

to the characteristic functions JL. of the intervals [0,t],

where te (0,1) .

Accordingly, it is sufficient to prove Theorem 2.1 for the

functions R = J... Since, because of (2.5), (2.6) and the

fact that V (0) = 0, we have 0(0) = 0, inequality (2.7) reduces

in this case to

(3.2) At0(t) > A.

Here, \. denotes the eigenvalue of (2.3) in the case in which

R = X t- (2.3) may now also be formulated as an eigenvalue

problem for the interval [0,t]. Since, in (t^l], u is necessarily

proportional to 1 - x, it follows from the continuity of u

and u' at x = t that



10

u' (t) _
u(t) " 1 - t "

In [0,t], (2.3) is therefore equivalent to the problem

(3.3) u< < + Atp(x)u = 0, u< (0) = 0, U

Theorem 2.1 will be proved if we can show that the eigenvalue

~\ of (3.3) satisfies the inequality (3.2), where -A, is the

eigenvalue of (2.4) and 0(t) is determined by (2.6) and (2.5).

To do so, we require the two following auxiliary results:

(a) the function fc>(x) defined in (2.5) satisfies the inequality

(3.4) ^(x) > x xe[0,l)

and it increases monotonically from 0 to 1 as x varies

from 0 to 1; (b) the function 0(x) is non-decreasing.

To prove (a), we note that, with

(3.5) V =-^L ,

(2.4) is equivalent to the Riccati equation

(3.6) V' = V2 + A p ,

and V will be positive in (0,1) if we assume (as we may)

that v is positive in this interval. By (3.6),

V2 ~

and thus,

vdb- - w i r ̂  xi - x (o < x < Xl < i).

QMUE6IE-MEU0H
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Since V(x,) —^co for x..-->l, this implies

Hence, by (2.5) and (3.5),

1 - x - 1 -

which is equivalent to (3.4). To show the monotonicity of /S

we note that, because of (3.5), (2.5) may be written

(3.7)
- X

Differentiating this with respect to x and simplifying the

result with the help of (3.6) and (3.7), we obtain

(3.8)
P (1 - x ) 2 V (1 - x ) 2

and this shows that fl> is increasing. The fact that A (0) = 0

and A> (1) =1 is obvious from (3.7) . Assertion (b) also follows

2 2
from (3.8). Since 0 = x k~ , we have

and thus, by (3.8)

2(1 - x ) " *

Since |V >_ O, 0 is thus found to be nondec reas ing,

If we set

~ ~ u '

the system (3.3) takes the form



12

(3.9) tf' = <$2 + A t p ( t $ ) , d'(O) = O, 6(1) = ~t

where the prime now denotes differentiation with respect to >

Similarly, setting

and noting that V(0) = 0, we can replace (3.6) by

(3.10) <£< = T2 + (b2AP0K 'C(O) =0, Z(l) =

Since, in accordance with (3.7), /i is determined from the

equation

the boundary conditions in (3.9) and (3.10) are identical. By

assumption, p is nondecreasing, and it follows therefore from

(3.4) that p(t"5) < p(ft̂ ) . If, in addition, it were true that

t At < f>
2.A, equations (3.9) and (3.10) would imply that

2 2 t

^JT [( <f- c )e ] < 0.

This, however, is absurd since, because of the boundary con-

ditions satisfied by <T and t , <T - H vanishes both at | = 0

and £= 1. Hence, we must have t ~h > ^> A- Because of the

definition (2.6) of 0, this establishes inequality (3.2)

and thus completes the proof of Theorem 2.1.
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