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S. Friedland and Z. Nehari

Let. f(z) be an analytic function in the unit disk, and

denote by {f,z} its Schwarzian derivative

(I.D (f,2) =<fr-)- - A(ji-) =

It is known that f(z) wll be univalent in |z] < I--i.e.

f(zl) A f(zz) i f z1,2, are di stinct points in the unit disk--

i f {le} Is subjected to conditions of the type |{f,z}| £ S(]|z]|),
where S is a suitably chosen positive functioh on the interva
[0,1]([3,4]). In particular, the univalence of f(z) is guaranteed

by the conditions

ke ]

(1.2) | {f,z} | ~—"T~o> |°] <'>
(1-r )*
([ 3]) and
4
1-r ©

([6]). Both these inequalities are best possible in the sense
that the constants on the right-hand side cannot be repl aced

by smaller nunbers (for the case of (1.2), cf. [2]). Condition
(1.2) occupies a special position since it becones a necessary
condition for the univalence of f if the constant 2 on the
right-hand side of (1.2) is replaced by 6 ([3]). Also,
condition (1.2) has been found to be of inportance in the theory

of quasi-conformal mapping ([1]).
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The principal aimof the present paper is to establish

the follow ng strengthened versions of these unival ence criteria,

Theorem1.1. Let R(r) be a, _nonincreasing _nonnegative function

1
(1.4) TR(r)dr < 1.
3
| fe
(1.5) [{f.z}| 5 ~—38or lz| <,
(1-r1)

then f(z) is univalent in |z| < 1.

Theorem1.2. Let. R(r) (1 - rz)'1 be _nonincreasincr in [0,1)
and let L
(1.6) S'TR—}}}:— ar < 1.

0

Lf (1.5) haolds, then f(z) is univalent in |z| < 1.

It will be observed that condition (1.2) follows from Theorem
1.1 for R(r) =1, while condition (1.3) corresponds to the

case R(r) :2('1 - r2) of Theorem 1. 2.

2. It was shown in [4] -that the condition |[{f,z} | < 28(r)
w || guarantee univalence if S(r) has the follow ng tw pro-
perties: (a) the function (1 - r2) 2S(r) I S noni ncreasi ng on

[0,1); (b) the differential equation

y +38r)y=20
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has a solution y which is positive and nonincreasing on [0,1).

Equi val ently, property (b) can be expressed by the condition
(2.1) A > 1,

where A is the lowest eigenvalue of the problem

(2.2) V' + AS(r) v=0, V(0 =v(1) .=0.

If S(r) is not defined for r =1, A wll be understood to

nmnean |Iim A, where A is the |owest eigenvalue of equation
r—>1 ' '

(2.2) for the boundary conditions V(0) =v(r) =0, 0<r < 1

In the case of Theorenms 1.1 and 1.2, the function R(r) =

2 2 _
(1 -r ) S(r) is nonincreasing, i.e., S(r) has the property (a).

To prove these Theorens, it thus is only necessary to show that,
under our assunptions, the |owest eigenvalue of (2.2) is subject
to the condition (2.1). The remminder of this paper has therefore
nothing to do with conplex function theory; all we are concerned
with is to obtain |ower bounds for the first eigenval ue of

the problem (2.2), where the coefficient S(r) is subject to
certain restrictions. The required bounds will be provided

by the following result, which is also of independent interest

as a conparison theoremof a rather unusual type for second-

order linear differential equations.

Theorem 2.2. Let p(x),R(x) be nonnegative, and let p(x) be

ndndecreasfng_ and R(x) be nonincreasing on [0,1) . Denote by

A and_J\. , respectiVer, t he | owest eigenvalues_gj t he probl ens




(2.3) u ' + ARX)p(x)u =0, u<(0 =u(l) =0,
(2.4) vi' +Ap(x)v =0, V(0 =v(lI) =0.
Lf fec=

(6= R(x) ls defined as the unique root of the equation

¥ el

in [0,1) (ubere v(X) i_slhn solution of. (2.4)), _a.nd.l_f.me..se.L

(2.6) o(x) ¥ ~17%

then O0(x) JS nondecreasing in tO, 1] and
1

(2.7) N JRx)dO(x) > A
0

For R(x) =1, (2.7) becones an equality.

W first show that the estinates needed to conplete the proofs

of Theorens 1.1 and 1.2 indeed are special cases of inequality

(2.7). In the case of Theorem1.1, we set p(x) = (1 - xz) '2,

and we note that the |owest eigenvalue and the correspondi ng

ei gensol ution of (2.4) are, respectively, J\- =1 and v = (1 - ¥ ¥?2

(since p(x) is not defined for x = 1, the eigenvalue has to

be defined by the Iimting procedure indicated above).
of

Because

v(p) _-’—#

the function fo defined in (2.5 is /15 = xllz, and (2.6) shows
_ &
that O(x) = x. Inquality (2.7) therefore reduces to
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A j! RX)dx >. 1,
(0]

and we conclude that A > 1 for functions R(x) satisfying

condition (1.4). Inequality (2.1) thus holds for the |owest
ei genval ue of
w . o+ AREF——u =0, u<(0) =u(l) =0,
(1-x?%)°?
if R(x) is nonnegative and nonincreasing, and is subject to
condition (1.4). By the result quoted at the beginning of this
section, this establishes Theorem 1. 1.
To obtain Theorem 1.2, we set p(x) = (1 - x2)'1 and,
to avoid a clash with the notation of Theorem 1.2, we wite
R,l(x) instead of R(x) in (2.3). If R(x) is the function appearing

in Theorem 1.2, we then have

(2.8) R(X) = (1 - x?)Ry(x),
and we have to show that (2.1) holds for the |owest eigenval ue of
| AR, (X)
(2.9 u » +—=-_=>u=0, u (00 =u(l) =0,
1- K

i f R,J_(x) I S noni ncreasing and--in viewof (1.6) and (2.8)--

satisfies the condition

1
(2. 10) ((1 - X)Ry(x)dx < 1.
’
0
For p(x) = (1 - x2)'1,_ the | owest ei genval ue and the

correspondi ng ei genfunction of (2.4) are, respectively, .A =2

and v =1 - x2. Si nce




pur (ft) . 2fpr
A V(F) 1 _"(52
equation (2.5) shows that, in this case,
2, X
fi mTZ-x*

Hence, by (2.6), 0(x) =x(2 - x), and inequality (2.7) takes

the form -,

AS (1 - X)R(x)dx > 1.
0

Becaus.e of (2.10), this inplies (2.1) and thus conpletes the
proof of Theorem (1.2) .

As these two exanples show, any problem (2.4) which can
be solved explicitly, and for which equation (2.5) can be solved:
for ft>, leads to a criterion of uni val ence (which is necessarily
the best of its kind). Unfortunately, it is not too easy to
find exanples for which these two operations can be carried out

explicitly and which, at the same tine, are of interest from

the function-theoretic point of view, it may be noted that,
even in the case p(x) =1, (2.5 leads to the transcendental
equati on

f*of - 1=K
forft.
We also note that the assunption that R(x) be nonincreasing

is essential. If this assunption is omtted, the concl usion

(2.7) of Theorem 2.2 does not necessarily follow in fact,




as the follow ng exanpl e shows, the left-hand side of (2.7)

may be made arbitrarily small if R(x) is not required to be
noni ncreasing. W set p(x) = (1 - x2)'2 and
2
(2.11) RX) = (2n - Dx ' V=432 > 1,
1 - x

Since the equation

"y +'€L¥1f)2?'u - O

(1 - X

has the solution u = (1 - xzn) 1/2n the | owest eigenvalue A

of the correspondi ng probl erh (2.3) has the value 1. As shown
above, the function O0(x) associated with the coefficient
p=1(1-x")* 1is 0(x) =x, and ./V=1. If Theorem2.1 were
applicable to this case, we could conclude from (2.7) that

cn>__1, where, by (2.11),

];> 2Nnn 2M X2\ 2
C =(2n- 1) 2 AT E T — dx
n »J n zn. 2
0 (1 o x >
e
However, the easily conf‘ihrlmed inquality
— A
Lo Xy o>=nx"-~t (0 <= <=1, n >1)

1 X

shows that cpn < 2/n. Hence, not only does (2.7) not hold in
general for functions R(x) which are not nonincreasing: for
such functions, the left-hand side of (2.7) does not possess a

positive |ower bound.
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3. Turning nowto the proof of Theorem 2.1, we first
show that it is sufficient to prove (2.7) for the set of' non-
increasing functions R(x) consisting of the characteristic
function '/"‘t_(x) of the intervals [0,t], where te(Ql) . Wile
this follows froma general result concerning certain functionals
defined on convex sets [5], it is easy to give a direct proof
which applies to the present case. |f we denote the |owest
ei genval ue of (2.3) by A(Rp), inorder to indicate its depen-
dence on the coefficient of the equation, it follows from

classical results that

1
(R} ] TH = sup (RevPax,
Yo

if y ranges over all functions of Dl[O,l] whi ch satisfy the
boundary conditions y (0) =y(l) =0 and the normalization

condi tion

i y'2dx = 1.
0

. : : om > o
If R is a convex conbination o GJRy ot o£an ( CI’:_ *

& + ..+ of_=1) of functions R,...,R_, and O(x) is a
L n 1 n

nondecreasing function of x in [0,1], we have therefore
n I
1 . z_dk A \Pyzdx
[AR) ( RdO]"'=supr— %o
0 T =Zo ag
ol

L2
. VR, Py~ ax
< sup sup

y ng ag




1

i -1
= AR, P) ag] ",
sup [\ (Ry éRk

Accordingly, if the functions R belong to a convex set C,

and it is desired to find the greatest |ower bound of
1

(3.1) | MRp) f R af
(@]

for REC, it is sufficient to consider the extremal points of C
If C is the set of nonincreasing nonnegative functions R
on [0,1) which are normalized by the condition R(0) =1 (this
normal i zation is possible because the functional (3.1) remains
unchanged if R is nultiplied by a constant), C is convex,
and it is easy to see that the extremal points of C correspond
to the characteristic functions JI}’.t of the intervals [0,t],
where te(0,1) .

Accordingly, it is sufficient to prove Theorem 2.1 for the
functions R = J.".t. Since, because of (2.5), (2.6) and the
fact that V(00 =0, we have 0(0) =0, inequality (2.7) reduces

in this case to
(3.2 AO(t) > A.

Here, \, denotes the eigenvalue of (2.3) in the case in which
R = 5(}- (2.3) may now also be fornul ated as an ei genval ue
problem for the interval [O,t]. Since, in (t*l], u 1is necessarily
proportional to 1 - x, it follows fromthe continuity of u

and u' at x =t that
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L) 1
u(t) " 1 -1t "
In [0,t], (2.3) is therefore equivalent to the problem
S .
(3.3) u< < + At.lp(x)u =0, u<(0 =0, U;(E) R

Theorem 2.1 will be proved if we can show that the eigenval ue

~\: of (3.3) satisfies the inequality (3.2), where -A is the

ei genvalue of (2.4) and O(t) is determned by (2.6) and (2.5).
To do so, we require the two following auxiliary results:

(a) the function f({:>(x) defined in (2.5) satisfies the inequality

(3.4) AMx) =2 X xe[ 0, )
and it increases nmonotonically from 0 to 1 as x varies
from 0 to 1, (b) the function O(x) is non-decreasing.

To prove (a)', we note that, with
(3.5) V =-"L,
(2.4) is equivalent to the Riccati equation
(3.6) V= V2 + Ap,

and V will be positive in (0,1 if we assune (as we nay)

that v is positive in this interval. By (3.6),

VZ -
and t hus,

vdb- - wi r M -F (0<x <y <i).

QWUEI E- MEWOH HHYERSILE
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Si nce V(x,l)—’\co for x.i-->l, this inmplies

1
l - x°

vi{x) £

Hence, by (2.5 and (3.5),
x A
T - x° 1'-p g

which is equivalent to (3.4). To show the nonotonicity of /IS s

we note that, because of (3.5), (2.5 may be witten

X
(3.7) (wq_s) =1 x°
Differentiating this with respect to x and sinplifying the

result wwth the help of (3.6) and (3.7), we obtain

. | R .
(3.8) " s

P (1 - x)? v (1 - x)?2
and this shows that fl>is increasing. The fact that tA,(O) =0

and A>(1) =1 is obvious from (3.7) . Assertion (b) also follows

2, 2

from (3.8). Since O:xt< , we have

TR

__x g _ 'p.
21 ) A ApeP

and thus, by (3.8)

Since |V > O 0 is thus found to be nondecreasing,,
If we set
v= S otuceh) = 6(f),

the system (3.3) takes the form




(3.9) tf" = <$? + Ap(t$), d(Q =0 6(1) =%,

where the prinme now denotes differentiation with respect to;'

Simlarly, setting
(wq\%) =T | A= (€)
and noting that V(0) = 0, we can replace (3.6) by
(3.10) <$< = T+ (b2?APOK '@Q =0, Z(1) = fvip.

Since, in accordance with (3.7), (i is determ ned fromthe

equation

GV(P) = 1 - t °
t he boundary conditions in (3.9) and (3.10) are identical. By

assunption, p is nondecreasing, and it follows therefore from

(3.4) that p(t"5) 5p(f‘t") . If, inaddition, it were true that
tZA < f>% A equations (3.9) and (3.10) would inply that
2 2 t
) —b(d'+t)ds
AJ;[(<f-c)e ] <O.

This, however, is absurd since, because of the boundary con-
ditions satisfied by <T and t , <T-H vanishes both at f’ =0
and £= 1. Hence, we nust have t ‘=~ht > ">A-  Because of the
definition (2.6) of 0, this establishes ‘i nequality (3.2)

and thus conpletes the proof of Theorem 2. 1.
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