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1. Introduction

In this paper all rings are assumed with identity and all

modules are unitary. For a ring R denote by MR respectively

nN a right respectively left R-module.

A module M is a generator iff for every right R-module

AR

A = £
(M,A)

where ima(p) denotes the image of the homomorphism <p. Dually

Mn is a cogenerator iff for every right R-module A
R *̂

0 = D ^
<peHom (A,M)

where ker(<p) denotes the kernel of the homomorphism ip.

For a ring R the modules RR and RR are projective and

generators. In general these modules are neither injective nor

cogenerators.

The representation theory of finite groups is to a large

extent based on the fact that the group ring of a finite group

with coefficients in a field is on both sides injective and a

cogenerator.

In this connection there exists the following well known

theorem (see [9],[4]): If R is Noetherian or Artinian on one

*The results in this paper arose out of a seminar in the Spring
S of 1969 at Carnegie-Mellon University.
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side and if R is injective or a cogenerator on one side, then

R is Artinian, injective and a cogenerator on both sides.

A ring with these properties is called a Quasi-Frobenius-

ring ( = QF ring).

Several authors ([1],[6],[8],[9]) have considered the hypotheses

of the above theorem dropping the assumptions on chain conditions.

There exist examples which show that being either injective

or a cogenerator on one side does not imply all these properties

for the ring on both sides.

The question arises as to which combination of injective and

cogenerator properties have to be assumed to ensure that R is

an injective cogenerator on both sides.

A still open (well known) conjecture in this direction states:

_.R is injective and a cogenerator iff R_, is injective and a

cogenerator.

The following results have been established.

Theorem 1 (T. Onodera [8], T. Kato [6]): The following state-

ments are equivalent:

(1) R and R are cogenerators.

(2) RR and RR are injective and R is a left and right S-ring.*

Theorem 2 (F. Sandomierski, unpublished): The following state-

ments are equivalent:

(1) R is injective and R is a cogenerator.

(2) RR is a cogenerator and R is injective.

*For the definition of left respectively right S-ring see 3.3.



3

In this paper we generalize some of the results in the

literature from rings to modules. Some of our proofs when restricted

to the case of rings are simpler than those in the literature. Our

setting is the following: Let R be a ring and M_, a right R-

module. Set r = End(MR) with r operating on the left side of

M in the usual manner. Thus M = Jl is a F-R bimodule. If

M = R we have the special case R = R which is the one dealt

with in the literature. We remark that there exists a ring homo-

morphism R»r »-» (Mam •-» mreM) e End(_M). If this mapping is an

isomorphism then we say that R _is_ naturally ring is omorph ic to

End(-M).

In what follows we use a theorem of P. Pahl. Since this

result is unpublished we include a proof of

Theorem 3 (P. Pahl [10]): Let M_, be a generator. Then the

following statements are equivalent:

(1) MR is selfinjective.

(2) M_ is injective.

(3) ry, is injective.

Generalizing theorem 1 and 2 we obtain

Theorem 4: The following statements are equivalent:

(1) MR and _M are projective cogenerators and R is naturally

ring is omorph ic to End(_pi) .

(2) MR and Jl are injective generators, R is a right S-

ring and T is a left S-ring.

and
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Theorem 5: The following statements are equivalent:

(1) M is an injective generator and _# is a cogenerator.

(2) M is a finitely generated, projective cogenerator, Jl

is injective and R is naturally ringisomorphic to End(_pi).

(3) MR, jji, RR, RR, rr and ^T are injective, projective,

finitely generated, generators, cogenerators and semiperfect.

We intend to make this paper as self-contained as possible.

Thus we Include several proofs and facts which are already in the

literature. Since these are spread over several papers and some

are not even available we think that this may prove useful to the

reader.
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2. Changing sides.

The setting described in section 1 holds throughout this

paper.

2.1 Lemma: Let x e M, xR simple and xR contained in an

injective submodule of M_,. Then Tx is simple.

Proof: Let y x ̂  0 for some y el\ Then y xR / 0 and since

xR is simple it follows that

xR3 xr y-* y xr € y xR
o 'o

is an isomorphism. Since xR is contained in an injective

submodule of M_, there exists y, e T such that y.y x = x.

Hence Ty x = Tx and Tx is simple.

is injective then the socle of M is2.2 Corollary: If

contained in the socle of

2.3 Lemma: Let x,y e M, yR = xR and xR contained in an

injective submodule of M . Then Tx is isomorphic to a submodule

of TV.

Proof: By assumption there exists 7\ e T such that

yR 3 yr M Ayr e xR

is the given isomorphism yR = xR. Hence there exist ri^ro e R

such that Ay = xr^, Ayr2 = x. Consider the T-homomorphism

= yAy e TV.

= yx = o} this is a monomorphism.Since yxr1 = 0 implies



2.4 Corollary; Let M be injective, x,y e M, yR = xR and

xR simple. Then Fx is simple and isomorphic to Iy»

Proof: By 2.1 and 2.3.

2.5 Corollary; Let x,y e M, yR = xR and yR and xR con-

tained in injective submodules of M_. Then the injective hulls of

IV and Fx are isomorphic.

Proof: By 2.3 Fx is isomorphic to a submodule of Fy and

TV is isomorphic to a submodule of Fx. Hence an injective hull

of Fx is isomorphic to a submodule of an injective hull of Fy

and vice versa. By [3] two injective modules which are isomorphic

to submodules of each other are isomorphic. This implies 2.5.
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3. Annihilators.

Let U be a submodule of MR. The left annihilator of U

in F is given by

lp(u) = {yerlyU = 0}.

Similarly for a right ideal Jl of T we have

= 0}.

Then 1_,(U) and lr(fl) are left ideals in I\ For a left ideal

A of F we have two right annihilators

rr(A) = [ye rl Ay = 0},

rM(A) = {meM)An = 0}.

Clearly r_(A) is a right ideal of T and r
M(A) is a submodule

of M_,. Obviously these definitions do not depend on the assump-

tion that r is the endomorphism ring of M .

3.1 Lemma; Let jJP be a cogenerator and A a left ideal of T\

Then

^ = A.

Proof (see for example [8], [12]):

i) l_r_(A) = A: This is well known. We give a proof for complete-

ness. By definition Ac l_r (A). Assume £ e l_r (A) and

4 4 A. Since _T is a cogenerator, there exists a T-homomorphism

f: r/A -* r

such that f(J) ^ 0, where If is the coset of £ in I/A. Let
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v* T - T/A

be the natural epimorphism. Then fv(£) / 0 and fv e Hom_(_T, _T).

Hence fv is given by multiplication on the right with an element

y = fv(l) e T. Since fv»(A) = 0 it follows that AyQ = 0, that

is y € rr(A). Since fi/(£) ^ 0 we have £yQ ^ 0 which contra-

dicts £ e lrrr(A) .

ii) l-r^M(A) = A: From rr(A)M c rM(A) it follows that lpFM(A) c

l_(r_(A)M) = l_r_(A) = A. Since Ac 1p rM^^ t h e P r o o f is complete.

3.2 Lemma ([9]): M_. is a cogenerator iff for every simple right

R-module there exists a monomorphism into an injective submodule

Of MR.

Proof: ^: Let U be a simple module and let T: U -• Q be an

injective hull of UD. Since M is a cogenerator there exists

<pi Q -» M such that (pr £ 0. Assume ker(qo) ^ 0. Since

T(U) is large in Q_., T(U) 0 ker(ca) ^ 0 and by simplicity of U,

T(U) C ker((p) which implies #T = 0. Therefore <p is a mono-

morphism and <pT is a monomorphism of U into the injective sub-

module ima(<p) = <p(Q) of M.

fe: Let AR ^ 0 be an arbitrary module and let a e A,

a 7^ 0. Let B be a maximal submodule of the cyclic submodule

aR. By assumption there exists a monomorphism T: aR/B -. Q

where Q is an injective submodule of M . If i>: aR _ aR/B

is the natural epimorphism, then Tt/(a).^ 0. Consider the

diagram



O > aR >

A

M
The existence of 6 is assured since Q is injective. But then

15 € HomR(ARjMR) and *6(a) = Tv(a) ^ 0.

Remark: By Lemma 3.2 M is a cogenerator iff for every simple

right R-module U there exists a monomorphism U -. M which can

be factorized through an injective module. Dually M is a

generator iff for every simple right R-module U there exists

an epimorphism M -• U which can be factorized through a projective

module.

3.3 A ring R is called a left S-ring iff for every proper

left ideal A of R, ro(A) ^ °* Right S-rings are defined

similarly.

Lemma ([7]): R is a left S-ring iff for every simple left

R-module there exists an isomorphic left ideal in R.

Proof: Let A be a left ideal of R. One verifies easily that

rR(A)jx H. (R/A?r i- rxeR) e HomR(R/A,R)

is a right R-isomorphism.

^: Every simple left R-module is isomorphic to R/A for a

certain maximal left ideal A. Since r
R(

A) ^ 0 this implies

HomR(R/A,R) ^ 0 and using the simplicity of R/A we get the

desired isomorphism.
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«.: If R contains a copy of R/A, where A is maximal, then

Hom_(R/A,R) ^ 0, hence ro(A) ^ 0. Since every proper left ideal

is contained in a maximal one R is a left S-ring.

3.4 Corollary: If _,R is a cogenerator, then R is a left
1 R

S-ring. If _,R is injective and R is a left S-ring then R
R *̂

is a cogenerator.

Remark; This corollary gives a proof of the easy part of theorem

1. Note that the assumptions are only needed on one side in this

case.

3.5 Proposition; Let tL be a cogenerator and T a left S-ring.

Then M is injective.

R.

Proof (Special case in [8], page 406):

Let T: M -» Q be a monomorphism of Mo into an injective module

QR. Then A: = HomR(Q,M)T is a left ideal in I\ Assume A f T -

Then there exists <p e T, (p £ 0 such that Aip = 0. Furthermore

T a monomorphism implies r<p £ 0. But since Vi- is a cogenerator,

there exists rj e HomR(Q,M) such that r)r<p ̂  0. This is a

contradiction. Hence A = T and there exists T ' e Horn (Q,M)

such that L= T'T e Jl.

Thus T(M) is a direct summand of Q, hence T(M) and as a

consequence M are also injective.

3.6 Corollary: Let !L be a cogenerator and R a left S-ring.

Then RR is injective.
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Remarks:

1) Corollary 3.6 finishes the proof of theorem 1.

2) Note that in the proof of proposition 3.5 we only need that

M_, is a Q cogenerator and Q can be taken to be an injective

hull of M_..

3) By dualizing the proof we get: Let MR be a generator and

r a right S-ring. Then MR is projective.

3.7 Lemma ([10]): Let M be injective and U,V submodules of

I*L. Then

ir(unv) = i_,(u) + i r(v).

Proof: It is easily verified that 1--,(U) + lr(V) c l-(UDV).

Let a 6 l_(unv) and define

U*u »-• ueM ,

V*v i-» (1+a) veM.

Then for w e U Pi V: <p, (w) = w = (l+a)w = <p2(w). Thus we have

a well-defined R homomorphism

' e M.

By assumption tp can be extended to an R homomorph ism of M

into M R, that is there exists p e T such that pj (U+V) = <p.

Hence pu = u for all u € U and pv = (l+a)v for all v e V.

Thus a = (P-1M) + (lM+a-p) 6 lp(U) + 1_,(V) and the proof is

complete.

3.8 Proposition: Let MR be injective and _T a cogenerator.

Then T is a semiperfect ring.



12

Proof: By [5] we need only show that JT is complemented with

respect to addition. Let ^ c jj1 and let BR c MR be maximal

with respect to rM(A) D B = 0. It follows from 3.1 and 3.7 that

= l r (0 ) = lr(rM(A)nB) = l ^ U ) + l r(B) =

= A + l r ( B ) .

Assume pjl c lp(B) and T = A + Q. Then rM(A) D rM(Q) =

rM(A+fi) = rM(D = 0. Since B c; rMlr(B) c rM(fi), the maximality

of B implies B = r 1_(B) = rM(ft). Hence by 3.1 SI = l_rM(0) =

1_(B) and l.p(B) is minimal with respect to F = A + 1 (B).

3.9 Corollary; Assume R is injective and R is a cogenerator.

Then R is semiperfect and R_ is a cogenerator.

Proof: That R is semiperfect is immediate from 3.8. Thus there

exists only a finite number, say n, of isomorphism classes of

simple left R-modules and the same number for the isomorphism

classes of simple right R-modules. Let U,,...,U be a set of

representatives for the isomorphism classes of simple left R-

modules. By 3.2 there exist monomorphisms

Ti : Ui "* Qi' i = 1} ' ' '>n

with _Q. c DR
 and Q. injective. Let U. = T.(U.). Then

x\ 1 — K 1 1 1 1

U. = U. and U. c Q. c R. We may then consider U,,...,U as

a set of representatives of the n isomorphism classes and write

U^ = Rx.. It follows then from 2.1 that x.R is also simple. Since

RR is injective xiR ? x.R for i ̂  j by 2.3 and then by 3.2

R_ is a cogenerator.
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Remarks;

1) Theorem 2 follows from corollary 3.6 and corollary 3.9.

2) Note that in the above proof we need not use the fact that

R is semiperfect but only that the numbe r of isomorphism

classes of simple R-modules is finite. This follows from

the fact that R/rad(R) is semisimple and this in turn is an

easy consequence of the fact that _,R is complemented with

respect to addition. More generally we prove: If M_ is

complemented with respect to addition, then M = M/rad(M)

is a semis imple R-module. To see this let v. M -• M =

M/rad(M) be the natural epimorphism and A a submodule of M.

Set A = v~ (A). Let Ar be a complement of A such that

M = A + A' and A' minimal in this equation. Then it is

easy to see that A H A ' is a small submodule of M and hence

A n A1 c rad(M). It follows then that M = A © A7 and M

is semisimple.
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4. Generators.

In this section we consider certain results on generators

which appear in an unpublished paper of P. Pahl [10]. For the

convenience of the reader we include here the proofs which are

to some extent related to the Morita theorem (see [2], Chapter II

or [11], 4.11).

4.1 Consider the R-bihomomorphism

$: Hom_(M_,R_,) 8 M J J ? ) . <g>m.i-» £ <p.m. e R
K K . i t < p . 1 1 . 1 1

and the r-bihomomorphism

>!': M <g> Honu(M_,R_) 3 £ m. ® <o . i-» (M 3 x ^ £ m.<p. (x) ) € T-
R Tl R R ± 1 ' i i 1 1

The following r e l a t i ons are ea s i l y ve r i f i ed :

Mlp mj&p^m = p (̂m̂ îgŵ Ĵm = £ m^

for

<P e HomR(MR*RR^ a n d mi' m e M-

We will use these relations througout this section.

4.2 Lemma: (1) if MR is a generator then _pi is finitely

generated and projective.

(2) If Mj^ is finitely generated and projective then J4 is a

generator.

(3) If Mg is a generator then R is naturally ringisomorphic

to End(_pi).
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Proof: (1) If M is a generator then it follows that $ is
R

an epimorphism. Hence there exist

T?^...,^ e HomR(MR,RR) and ex, ...,en e M

such that
$(£ rj .®e •) = Etj.e. = 1 e R.

j !3 3 j '3 3

Then for arbitrary m e M

m — m* 1 = m J

Since ^( -®?7.) e Hom_(_fl, _T) we get by the dual basis lemma that

is finitely generated and projective.

(2) If M_ is finitely generated and projective then there exist
XV

by t h e dua l b a s i s lemma

<P1} • • • , (p k e HomR(MR,RR) and m 1 , . . . , m k e M

such that for all m e M

m = £ m.<p.(m) = £ m.$(<p .<gm) =
j 3 3 j 3 3

= E

Hence 1_ = S *(m.<ap.) and since <jf(-®tp-) € Hom_(Jl,_T) we get

that _pi is a generator.

(3) Let ^ be a generator. Consider the ringhomomorphism

p: R 9 r »-• (Max t-» xr e M) e Hom_(_jyi,

Let f e Homj,(jjl,_#) and m e M. Since MR is a generator

there exist y)^, . . . ,nn e HomR(MR, R^) and e1,...,e e M such that
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mf = (£ ̂ (m®rj.)e.)f = £ tf(m®i7.,)e .f =
j 3 3 3 3 3

= m £ $(rj.®e.f) = m«rf where rf 6 R.
j D D

Hence p is an epimorphism.

Let r € R and Mr = 0. Then e.r = 0 and

r = lr = £ $(T7.j®e.)r = £ ${r}.®e-r) = 0.

3 J J 3 J J

Therefore p is a monomorphism.

4.3 Lemmat MD is a generator iff $ is an isomorphism.

Proof: ^: We mentioned already in the proof of lemma 4.2 that

* is an epimorphism. Assume that $(£ <p.<8*n.) = 0. Then

E p. ® m. = £ S *(T?.®e.)<p.(8im. =
i x i j 3 D i i

= Z p T7_. ^(ej®pi) ® nu =

= £ E T?̂  ® e . *(<p.®m.) = ^ T? • ® e. (£ $(<p.«jn.)) = 0,
i j ] J 1 : L j D J i X 1

where T̂ J and e. are chosen as in the proof of lemma 4.2. Thus

$ is a monomorphism.

e.: MR is a generator since $ is an epimorphism and

R is a generator.

4.4 Lemma: Let M^ be a generator and A a right ideal of R.

Denote by t : AR -. RR the inclusion map. Then

Hom(l C) ® I
(1) 0 -. HomR(MR,AR) <g> M 1 ^ HomR(MR,RR) ® M is exact

and
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(2) *-1(A) = HomR(M ,AR) ® M (where we are identifying

Horn (MR,AR) ®M with a submodule of HomR(MR,RR) ®M via (1)).

Proof: Since Horn is left exact and by lemma 4.2 (1) Jl is

projective hence flat, we obtain (1). Since MR is a generator

<5>(Hom (M ,A ) ® M) = A and since $ is an isomorphism by lemma

4.3, (2) follows.

4.5 Lemma: If M_ is a generator and T-p is injective, then

M_, is injective.

Proof: Let A be a right ideal of R and f e Hom_(A ,M_).
Z\ X\ Jtx

We must find g e Horn (R^,ML) such that g|A = f. Consider the

following diagram ,, .
Hom(l ,C)

0 > HomR(MR,AR) 5* >HomR(MR,RR)

Hom(lM,f)

where I : AR -• RR is the inclusion map. In this diagram the

row is exact and all mappings are right T-homomorphisms. Since

Fp is injective g exists making the diagram commutative. From

this we get a commutative diagram with exact row (see lemma 4.4):

HomR(MR,RR)«M

M

r ® M
r
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Using the isomorphism

6: r O M3» z 7i ® m. M H y.m. e M
T i i

and the fact that $ is an isomorphism by lemma 4.3 we set

g = efS®]^)*"" 1 . I f a e A t h e n # " 1 ( a ) = £ ^KSHIK w i t h (/?ieHomR(MR,AR)

(by lemma 4 . 4 ) . Hence g ( a ) = 6(gVLM) (T, (p^Om^) = 6 ( £ fpJSim^ =

= T f(<p.m.) = f(~£<p.m.) = f(a) and g is the desired homomorphism.
i ii i

A module MD is called selfinjective iff for every exact
R

sequence O -. An H Mn and every R-homomorphism f: Ao -* M_. there
R R K R

exists g: MD - MD such that f = get.

4.6 Proposition (P. Pahl) : Let M be self injective and -fl flat.

Then r_, is injective.

Proof: Let A be a right ideal of T, <-t Ap -» T-p the inclusion

map and f: A— -» T— an arbitrary homomorphism. We have to show

that there exists y e V such that f(A) = y A for all A e A.
C<S>1M.Since _M is flat 0 -• A ® M * r ® M is exact. Thus A ® M

1 r r r
will be considered as a submodule of r ® M. Let 6: r <S> M -. M

r r
be the isomorphism described above. Its restriction

6 _ : A ® M 3 S A . ® m. *-> j A.m. e AM
o r ± i i i i i

is an isomorphism. Set g = 6(f®lM)6~ . Then g is a right

R-homomorphism of AM into M. Since M is selfinjective

there exists yQ e T such that yQ|AM = §. Then g(Am) = f(A)m =

y Am where m e M, A e A and thus f(A) = y A for all A e A.
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4.7 Proof of theorem 3 (as stated in the introduction):

(2) =» (1): by definition.

(1) =» (3): by proposition 4.6.

(3) =» (2): by lemma 4.5.

Remark: (1) =» (2) is a special case of the fact that if a

module is injective with respect to a generator, then it is injective,
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5. Proofs of theorems 4 and 5.

We again refer the reader to the introduction for the

statements of theorems 4 and 5.

5.1 Lemma: Let M be a projective cogenerator. Then R_ is

a cogenerator.

Proof: Since MD is projective there exists a monomorphism

r?: ML, -• © R. where R. = R_ for all i e I. Let A be an
R i € l i i "R R

arbitrary module and 0 ̂  a e A. We have to find g: AR -* R_

such that g(a) ^ 0. Since M_ is a cogenerator there exists
.K

f: A -. M such that f (a) ^ 0. Since rt is a monomorphism we

get t7f(a) ^ 0. Hence there exists a projection w.: @ R. -» R.
3 iel x -1

such that Tr.f]f(a) ̂  0. Thus we can set g = ir.̂ f.

5.2 Lemma; Let RR be a cogenerator and R a left S-ring. If

M is faithful then M_, is a generator.

Proof: ([8], page 407): Consider the left ideal A of R

defined by A = E ima(p) . Assume A c R. Since R is a left
<peHomR(MR,RR)

 F

S-ring there exists r e R, r ^ 0 such that Ar = 0. It
o o o

follows then that <p(MrQ) = 0 for all <p e HomR(MR,R ). Since

RR is a cogenerator this implies Mr = 0 and since M_ is

faithful we get rQ = 0. Hence A = R and ^ is a generator.
5.3 Proof of theorem 4:

(1) => (2) : Since _M and t^ are projective cogenerators it

follows by lemma 5.1 that RR and J" are cogenerators. This

implies by corollary 3.4 that R is a right S-ring and T is a
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left S-ring. By proposition 3.5 we get that MR is injective

and since _fl is flat it follows by proposition 4.6 that Tj,

is injective. Using the assumption that R is naturally ring-

isomorphic to End(Jl) we get similarly that _# and RR are

injective. Then it follows by corollary 3.9 that RR and rU

are cogenerators. Hence ^ and M are generators by lemma 5.2.

(2) =» (1) : Let Uo be simple. Then there exists x e R such

that UD = xR since R is a right S-ring. Since M_, is a

generator M_, is faithful and there exists m e M such that

mx ̂  0. Then U = xR = mxR Q M. Using the assumption that M

is injective we get by lemma 3.2 that ML is a cogenerator. By

lemma 4.2 R is naturally r ing is omorph ic to Endf̂ -M) and M

is projective. Similarly it follows that JI is a projective

cogenerator.

5.4 Proof of theorem 5:

(1) => (3) ; By lemma 4.2 _fl is projective. Hence by lemma

5.1 it follows that _T is a cogenerator. Since M is an

injective generator we get by theorem 3 that r_ is injective.

Hence by corollary 3.9 T is semiperfect, r_ is a cogenerator

and by corollary 3.6 _F is injective. Using the fact that J4

is finitely generated and projective it follows that _N is injective

(since —J" is injective) and _M is semiperfect (since T is

semiperfect) . Obviously Ĵl is faithful. Hence J4 is a

generator by lemma 5.2. Then it follows by lemma 4.2 that M

is a finitely generated projective generator.
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By the Morita theorem it follows that the functor -ig> M^ is
r R

an equivalence between module categories. Since r Q> MR = MR and

IL, is a cogenerator we then get that M is a cogenerator.

r K

We now apply the above results under the assumptions _M is

an injective generator and M^ is a cogenerator, where R is

viewed as the endomorphism ring of .pM via lemma 4.2. Thisallows us to obtain the rest of the statements in (3).

(3) => (1): trivial.

(2) => (3) : Since MR is finitely generated and projective we

get by lemma 4.2 that _M is a generator. By assumption R can

be identified with the endomorphism ring of _M. Switching

sides we then copy the proof of (1) => (3) to obtain (3).

(3) => (2) : Since *L is a generator it follows by lemma 4.2 that

R is naturally ringisomorphic to End( Jl). The other statements

in (2) follow trivially.

Carnegie-Mellon University
Pittsburgh, Pennsylvania
May, 1969
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