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1. I nt roducti on

In this paper all rings are assunmed with identity and al
nodul es are unitary. For a ring R denote by M respectively
nN a right respectively left R-nodule

A nodul e Nk is a generator iff for every right R-nodule
AR

A=£ ima(» ,
<peHomR(MA)

where ima(p) denotes the image of the honmonorphism <p. Dually

M, is a cogenerator iff for every right Rnodule As
R *N\
0 = D ker(d) ,
<pe|—bnk (AN

where ker(<p) denotes the kernel of the hononorphism ip.

For a ring R thenodules Rg and rR are projective and
generators. |In general these nodules are neither injective nor
cogener at or s.

The representation theory of finite groups is to a large
extent based on the fact that the group ring—of a finite group
with coefficients in a field is on both sides injective and a
cogener at or.

In this connection. there exists the follow ng well known

t heorem (see [9],[4]): If R i's Noetherian or Artinian on one

*The results in this paper arose out of a seminar in the Spring
S of 1969 at Carnegie-Mllon University.
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side and if R is injective or a cogenerator on one side, then
R is Artinian, injective and a cogenerator on both sides.
Aring with these properties is called a Quasi-Frobenius-
ring ( = QF ring).
Several authors ([1],[6],[8],[9]) have considered the hypot heses
of the above theorem dropping the assunptions on chain conditions.
There exist exanples which show that being either injective
or a cogenerator on one side does not inply all these properties
for the ring on both sides.
The question arises as to which conbination of injective and
cogenerator properties have to be assumed to ensure that R is
an injective cogenerator on both sides.
A still open (well known) conjecture in this direction states:
R is injective and a cogenerator iff R, is injective and a
cogener at or.

The follow ng results have been established.

Theorem1 (T. Onodera [8], T. Kato [6]): The follow ng state-
ments are equival ent:
(1) R and RR are cogenerators.

(2) Ry and gR are injective and R is a left and right Sring.*

Theorem2 (F. Sandom erski, unpublished): The follow ng state-
ments are equival ent:

(1) R is injective and &R s a cogenerator.

(2) Rg 'is a cogenerator and RR is injective.

*For the definition of left respectively right S-ring see 3.3.




In this paper we generalize some of the results in the
literature fromrings to modules. Sone of our proofs when restricted
to the case of rings are sinpler than those in the literature. Qur
setting is the followmng: Let R be aringand M, aright R
module. Set r = End(My) with r operating on the left side of
Nkz in the usual manner. Thus M:.}‘!R is a FR bimdule. If
IVIR: RR we have the special case R = RRR which is the one dealt
wth inthe literature. W remark that there exists a ring hono-
mor phi sm R»r »» (Mame» nreM e End(r_l\/b. If this mapping is an

i sonorphismthen we say that R _is naturally ringisonorphic to

End(- M.

l——

In what follows we use a theoremof P. Pahl. Since this

result is unpublished we include a proof of

~Theorem 3 (P. Pahl [10]): Let M, be a generator. Then the
following statenents are equival ent:

(1) M is selfinjective.

(2) M, is injective.

(3) ry, is injective.

Generalizing theorem 1l and 2 we obtain

Theorem4: The followng statenents are equival ent:

(1) M and M are projective cogenerators and R is naturally
ringisonorphic to End(_;ii) .

(2) M and :]ll_ are injective generators, R is aright S
ringand T is a left S-ring.

and




Theorem5: The follow ng statenents are equjvalent:

(1) M, is an injective generator and T# IS a cogenerator.

(2) M, is afinitely generated, projective cogenerator, fJ
Is injective and R is naturally ringisonorphic to End(fPi).

(3) Mk, jji, Rg, rRR, r, and AT are injective, projective,

finitely generated, generators, cogenerators and sem perfect.

We intend to nake this paper as self-contained as possible.
Thus we Include several proofs and facts which are already in the
literature. Since these are spread over several papers and sone
are not even available we think that this may prove useful to the

reader.




2. Changi ng si des.

The setting described in section 1 holds throughout this
paper.

2.1 Lenmma: Let x e M xR sinple and xR contained in an

injective submodule of M,. Then Tx is sinple.

Proof: Let Yo X A0 for sone yoel\ Then XOXFQ/ 0 and since

XR is sinmple it follows that
XR3 xr y-* y xr € .yOxR

is an isonmorphism Since xR is contained in an i njective
subnodule of M, there exists y, e T such that y,y x = Xx.
r 1 1’0

Hence Tyox = Tx and Tx is sinple.

2.2 Corollary: |If My is injective then the socle of N& is

contained in the socle of IM.

2.3 lemm: Let x,y e M yR= xR and xR contained in an
i njective subnodul e of Nh. Then Tx is isonorphic to a subnodul e

of TW.
Proof: By assunption there exists 7\ e T such that

yR3yr m Ayr e xR

is the given isonmorphism yR= xR  Hence there exist "i~'o°®R

ke -

such that Ay = xr”, Ayr, = x. Consider the T-honmonorphism

Tx2yx w yxr; =yAy e TV.

Si nce yXr, = 0O inplies YR ¥, = YX = 0 this is a nononorphi sm




2.4 Corollary; Let M, be injective, x,y e M yR= xR and

XR sinple. Then Fx is sinple and isonorphic to Iy»

Proof: By 2.1 and 2.3.

2.5 Corollary; Let x,y eM VyR= xR and yR and xR con-

tained in injective subnodul es of Mﬂ Then the injective hulls of

IV and Fx are isonorphic.

Proof: By 2.3 Fx is’ isonorphic to a subnodule of Fy and

TV is isonorphic to a subnodule of Fx. Hence an injective hul

of Fx is isonorphic to a subnodule of an injective hull of Fy |
and vice versa. By [3] two injective nodul es which are isonorphic

t o subnodul es of each other are isonorphic. This inplies 2.5.




3. Annihilators.

Let U be a subnodule of M. The left annihilator of U
in F is given by
| o(u) = {yerlyU= 0}.
Smlarly for aright ideal JI of T we have
L) = {veT|yQ = 0}.

Then 1_£(L) and |.(fl) are left ideals in I\ For a left ideal

A of F we have two right annihilators
r(A) =[yerl Ay =0},
rM{A) = {meMAn = 0}.

Aearly r_t(A) is aright ideal of T and "W A) is a subnodule
of M,. Qoviously these definitions do not depend on the assunp-

tion that r 1is the endonorphismring of MR.

3.1 Lemma; Let jJP be a cogenerator and A a left ideal of T\

Then

lprn(A) = lprn A=A
Proof (see for exanple [8], [12]):
1) Ii_.ri_.(A) = A This is well known. W give a proof for conplete--
ness. By definition Ac_I_rl, f.A). Assune £ e I_Ir,I(A) and

44 A Snce 1—'T IS a cogenerator, there exists a T-hononorphism
frr/A-*r

such that f(J) ~ 0, where If is the coset of £ in I/A Let




v¥*T- T/ A
be the natural epinorphism Then fv(£) / 0 and fv e Hom_(l._'[,' _lT).
Hence fv is given by multiplication on the right with an el enent
Yo = fv(l) e T. Since fv»(A =0 it follows that Ayg= 0, that
IS y°€ r,_(A). Since fi/(£) ~ 0 we have £yo” O which contra-
dicts £e |I,r (A .

i)y 1-""A =A From r,(AMcry A it follows that |pF A <
L (ry(AM = 1,r (A = A Since Ac’'p'M" ”‘f preef s conpl ete.
3.2 Lemma ([9]): M. is a cogenerator iff for every sinple right

R-nmodul e there exists a nononorphisminto an injective subnodul e

o M.

Proof: ~: Let UR be a sinple nodule and let . T: UR-- Q‘t be an
injective hull of Up. Since M, is a cogenerator there exists
<pi Q-» M such that (pr £ 0. Assune ker(go) » 0. Since

T(U) is largein Q., T(U) O ker(ca) 0 and by sinplicity of U,
T(U) _Cker((p) which inplies #T = 0. Therefore <p is a nono-
nor phismand <pT is a nononorphismof U into the injective sub-

nmodule ima(<p) = <p(Q of M,

fe: Let AR O be an arbitrary nodule and let a e A
a7 0. Let B be a maxi mal subnodul e of the cyclic subnodul e
aR. By assunption there -exi sts a nmononorphism T: aR'B -. Q
where Q is an injective subnodul e of MR If 1> aR_ aR/'B
is the natural epinmorphism then Tt/(a).” 0. Consider the

di agram




Y
Y

The existence of 6 is assured since Q is injective. But then

15 € Homg( Agj Mk) and *6(a) = Tv(a) ™ O.

Renmark: By Lenma 3.2 I\/h is a cogenerator iff for every sinple
right R-nodule U there exists a nmononorphism U-. M which can
be factorized through an injective nodule. Dually I\/h is a
generator iff for every sinple right R-nodule U there exists

an epi norphism M-+ U which can be factorized through a projective

nodul e.

3.3 Aring R is called a left Sring iff for every proper

left ideal A of R 'o(® ~ °* Right Srings are -defined

simlarly.

Lemma ([7]): R is aleft Sring iff for every sinple left

R—rrodule there exists an isonorphic left ideal in R

Proof: Let A be a left ideal of R One verifies easily that
re(A)jxH (RA i- rxeR e Homy(R A R

is aright R-isonorphism

N Every sinple left R-nodule is isonorphic to R A for a
certain maximal left ideal A Since "g(®) ~ 0 this inplies
Homk( RF A, R) »~ 0 and using the sinplicity of R A we get the

desired isonorphism
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«: If R contains a copy of R'A where A is maximal, then
Hom (RFA/R) ~ 0, hence ro (A ~ 0. Since every proper |eft ideal

is contained in a maximal one R is a left S-ring.

3.4 Corollary: If R is a cogenerator, then R is a left
1
R
S-ring. If LR is injective and R is a left Sring then rR
R *N\

IS a cogenerator.
Remark; This corollary gives a proof of the easy part of theorem

1. Note that the assunptions are only needed on one side in this

case.

3.5 Proposition; Let tIR be a cogenerator and_ T a left S-ring.
Then M. is injective.

R
Proof (Special case in [8], page 406):
.Let " T: M-» Q be a nononorphismof M into an ihj ective nodul e
Qr. Then A: = Homk(Q MT is a left ideal in I\ Assune AfrT-
Then there exists <p e T (p £ 0 such that Ap = 0. Furthernore
T' a nmononorphisminplies r<p £ 0. But since .\ﬁlf IS a cogenerator,
thereéxists ri e Homy(Q M such that r)r<p”~ 0. This is a
contradiction. Hence A= T and there exists T' e I-brnR(Ql\/)
such that L= T'T e J.
Thus T(M) 1is adirect sunmand of Q  hence T(M) and as a

R .
consequence M are also injective.

3.6 Corollary: Let !'¥ be a cogenerator and R a left Sring.

Then Rr 1is injective.
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Remar ks:
1) Corollary 3.6 finishes the proof of theorem 1.
2) Note that in the proof of proposition 3.5 we only need that
M, is a Q cogenerator and Q can be taken to be an injective
hull of M, |
3) By dualizing the proof we get: Let M be a generator and
r aright S-ring. Then M is projective.

3.7 Lemmma ([10]): Let N be injective and U,V subnodul es of
[*L. Then
) .4

I(unv) = i:t,(u) +i.(v).
Proof: It is easily verified that _1--1,(l.) + 1 ,(V) _c_I-l(UDV).
Let a 6 Ir,(unv) and define
py3 Uu» ueM,
Pqt V¥vi» (1l+a) veM
Then for we UPI V: <pl(vv) =w= (l+a)w=<py(w). Thus we have
a well-defined R hononorphism

p: U+ Vau+ ve u+ (l4+a)v e M

By assunption tp can be extended to an R hormrmrphism of Nh
into Mg, that is there exists p e T such that pj (HV) = <p.
Hence pu =u for all u € U and pv = (I+a)v for all ve V.
Thus a = (P-1y + (Iwta-p) 6 Ip(U) + 1I,(\0 and the proof is
~conpl ete.

3.8 Proposition: Let M be injective and r‘T a cogenerator.

Then T is a semperfect ring.
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Proof: By [5] we need only show that .i]T I's conplenented with
respect to addition. Let "_=c__jj1 and let Brc My be naxinal
with respect to r((A) DB=0. It follows from3.1 and 3.7 that

T=1,0) = I(m(A)NB) = 12U) + I(B) =
= A+ |.(B).

Assume pjl¢cIp(B) and T= A+ Q. Then ruy(A) D ruy(Q) =
r{Atfi) =ry(D=0. Snce Bc. rd.(B) ¢cryfi), the nmxinality
of B inplies B:r&_ﬁ.B) =ryft). Hence by 3.1 Sl = Itr,\,(O) =
1(B) and I.p(B is mnimal withrespect to F= A+ 1I(B)"

3.9 Corollary; Assume R is injective and _R is a cogenerator.

Then R is semperfect and Rﬂ i'sS a cogenerator.

Proof: That R is semperfect is imediate from3.8. Thus there
exists only a finite nunber, say n, of isonorphismclasses of
sinple left R nodules and the sane nunber for the isonorphi sm
classes of sinple right R nodules. Let UL’ ce Un be a set of
representatives for the isonorphismclasses of sinple left R

nodul es. By 3.2 there exi st nononor phi sns

Ti Ui Il*ql I:1}| T >N

with .Q cpR?1d Q injective. Let U.':T.(U.).' Then
X\ 1 —K 1 1 1 1

U =U and U cQ ¢ R W may then consider U,...,U as

a set of representatives of the n isonorphismclasses and wite
W = Rxt. It follows then from2. 1 that xR is also sinple. S nce
R is injective x;R? xJR for i ~j by 2.3 and then by 3.2

R- is a cogenerator.
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Remar ks;

1) Theorem 2 follows fromcorollary 3.6 and corollary 3.9.

2) Note that in the above proof we need not use the fact that
R is semperfect but only that the nunber of isonorphism
classes of sinmple R-nodules is finite. This follows from
the fact that Rrad(R) is semsinple and this in turn is an
easy consequence of the fact that R is conplemented with
respect to addition. Mre generally we proVe: | f M, IS
compl emented with respect to addition, then WI:_ Mrad(M
is asemsinple R-nodule. To see this let v. M-« M=
Mrad(M be the natural epimorphismand A a subnodule of ™
Set A= v~1('A). Let A" be a conplement of A such that
M=A+ A and A mnimal in this equation. Then it is
easy to see thét AHA" is a small subnodule of M and hence

AnA' crad(M. It follows then that "M =—A @A’ and M

I's sem sinple.
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4, Gener ators.

In this section we consider certain results on generators
whi ch appear in an unpublished paper of P. Pahl [10]. For the
conveni ence of the reader we include here the proofs which are
to sone extent related to the Morita theorem (see [2], Chapter Il

or [11], 4.11).
4.1 Consider the R-bi honmonorphism

$ Hm(M,R,) 8MJJ?). <pmi-» £<p.m e R
K K. it_<p 1. 1 (I W

and the r-bihomomorphism
>t M HonuM ,R)3E£m ®<o0.k» M3x™Em<p. (X)) € T-
F HopM-R) 3 Em ®=<p. B ( MR 09)
The following relations are easily verified:

Mip m&pm = p Aigvm = £ . He e
@, UnRp) = &(p,@m)e for
Pss Prs <P © HomR( MR*RRA and mj+ me M

W will use these relations througout this section.

4.2  lLemm: (1) if M is a generator then _Pl is finitely

generated and projective.

(2) If M”™ is finitely generated and projective then \3_4 is a
generat or .

(3) If My is a generator then R is naturally ringisonorphic

to End(_Pi).
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Proof : (1)) If M is a generator then it follows that $ is
R .

an epi norphism Hence there exist
T?". .., e Homr(Mi, RR) and ey, ...,e, e M

such t hat i
$(J£r!13.®§-) jEt,Jg% =1leR
Then for arbitrary me M

=_ = ) ., Re = X 4 09 1.
m=-nt 1 mJ:i ‘1’(?13 j) :’p\If(rlrl&n';j)@:I

Since 7( -®?7j) e I—bmr(tfl ,l_T) we get by the dual basis | emma that
IM is finitely generated and projective.
(2) If M_ is finitely generated and projective then there exist

XV

by the dual basis lemma
<Py eee,(px € HOMR(Mg,Rr) and mgi,....my e M

such that for all me M

m=£m<p.(mM = £m$(<p.gN =
j 33 j 3 3

Hence 1_1.: Sj (m<§p. ):| and since <j f(-@t%-) € Horg(ﬁl ,fT) we get
t hat 1;p| IS a generator.

(3) Let ~ be a generator. Consi der the ringhononor phi sm

p: R9r» (Maxt» xr e M) e Hom.(,jyi, M} .

Let f e I—bnj,(jjl,l_#) and me M Since M 1is a generator

there exist y)*, ... ,n, e Homy( Mg, R*) and ey, ..., & e M such that
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nf = (ENn®j.)e.)f =£tf(MRI7.,)e.f =
j 3 3 3’ 3 '3
=m¢£ $(rj.®.f) = nmry. where r¢y 6 R
j D D - -

Hence p is an epinorphism
Let r € R and M = 0. Then ejr.: 0 and
r=1r = £ §T7.jR)r =

- 3o

3
Therefore p s a nononorphism

4.3 Lemmat M, is a generator iff $ is an isonorphism

Proof: ~: W nentioned already in the proof of lemma 4.2 that

* is an epinorphism Assune that $(£-<p.ﬁ§*q:) = 0. Then
i

F|% ®m1

S, -

% ., "(e@®i) ®ny =

]
)
i WO

ﬂ:l@‘p(ej&pl) mi =

= ’:IE IEjW]®e.J*(<p.l®nL) = ’] T?D- ®eJ. ?E $(<;>)(.«j n)) =0,

wher e T? and e are chosen as in the proof of lemma 4.2. Thus

]
$ is a nmononorphism
ee: M 1is a generator since $ is an epinorphismand

RR is a generator.

4.4 |lemm: Let M be a generator and A a right ideal of R
Denote by t : AkR-. Ry the inclusion map. Then

Hon(l .,0) ® I__.
(1) 0 -. Homk( Mk AR) @ M P "X Homy(Mk, R) ®M is exact
r r
and
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(2) *1(A) = HO”h(l\ﬂ,AR) ®M (where we are identifying

r _
I—brrh(l\/lq, Ar) ®M with a subnodule of Hong(M;, RR) ®M via (1)).
T T

Proof: Since Hrn is left exact and by lemma 4.2 (1) f_l i's
projective hence flat, we obtain (1). Since M 1is a generator
meﬂr&(l\ﬁ,%)I@M = A and since $ is an isonorphismby |emma
4.3, (2) follows.

4.5 Lemm: If M_R is a generator and T-p is injective, then

M, s injective.

Proof: Let A be aright ideal of R and f e Hom (A .M_).
20 X\ Jtx

f. Consi der the

W nust find g e I—brnR(F(‘,l\/k) such that g|A

foll owi ng di agram '

 Hon(15,0)
0] > Honmk( Mg, AR) 5* >Homg( Mg, RR)
Hom( 1w f) / —~ 8

o -
-
L/
I=Hom, (Mp, M)
where | : AgR-¢ Rg is the inclusion map. In this diagramthe

row i s exact and all mappings are right T-hononorphisns. Since
Fp is injective é\ exi sts nmaki ng the diagram comutative. From

this we get a cormutative diagramw th exact row (see |lemma 4. 4):

Hom ( 1M" )®1M

o '_'-—."—)HO"(\R(MRsAR)@M » Homk( Mgk, Rr) «M
I‘! —
Hom(1,,, £) ®], - 8®1M
.
-
\/ L./-’/
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Usi ng the i sonorphi sm
6: r OM»z7i ®m MHy,m e M
T i 7 [

and the fact that $ is an isonorphismby |lemma 4.3 we set

g = efS®]")*""*. If ae A then #"'(a) = £-KsHK With (meHome(Mg,AR)
i

(by lemma 4.4). Hence g(a) = 6(@VLM) (_T, (prOmMy) = 6§£ fpi]S'm" =

i 1
:Tf(<|g.r{1) :f(_~£§pim) =f(a) and g is the desired hononor phi sm
| I
Anodule M, is called selfinjective iff for every exact
R
sequence O-. A HM and every R-hononorphism f: A, -* M. there
R R K R
exists g M- My such that f = get.

46 Proposition (P. Pahl) : Let M be selfinjective and -{I flat.

Then r, is injective.

Proof: Let A bearight ideal of T, <-t Ap-» T-hp t he incl usion
map and f: AT» 'I;— an arbi trary hononor phi s;n V¢ have to show
that there exists yoe Vv such that f(A) =y A for all Ae A
Since M is flat O--A(erMC(Sjl*rCF)M is exact. Thus A|®M

wi Il be considered as a subnodule of r-®M Let 6. r & M-. M
be the isonorphi smdescribed above. |Its restriction

60: A@M3S+,i6\. ® m. *i> ;‘Ai.m.i e AM
I s an isonorphism  Set @:6(f®@6al. Then @ is aright
R honmonor phismof AM into M S nce I\/{R Is selfinjective

there exists yoe T such that yd AM= §  Then gﬂAn) = f(Am=
y_Am where me M A e A and thus f(A =y A for all Ae A
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4.7 Proof of theorem3 (as stated in the introduction):

(2) =» (1): by definition.
(1) =» (3): by proposition 4.6.
(3) =» (2): by lemn 4.5.

Remark: (1) =» (2) 1is a special case of the fact that if a

modul e is injective wwth respect to a generator, then it is injective,,
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5. Proofs of theorens 4 and 5.

VW again refer the reader to the introduction for the

statenents of theorens 4 and 5.

5.1 Lenmma: Let Nh be a projective cogenerator. Then R I's

a cogenerator.

Proof: Since M is projective there exists a nononorphi sm
r2. M, i-€-|©iR where R =R for all i el. Let A be an
arbitrary nodule and 0~ a e A W have to find g As-* Ry

such that g(a) ~ 0. Since M is a cogenerator there exists
‘ K

f: AA-. M such that f (a) A 0. Since rt is a nononor phi smwe

get t7/f(a) »~ 0. Hence there exists a projection w.: @I RX -» a
ie -
such t hat Trjf]f(a) A0. Thus we can set g = irj’\f.

5.2 lemma; Let Rz be a cogenerator and R a left Sring. |If

M. is faithful then M, 1is a generator.

Proof: ([8], page 407): Consider the left ideal A of R

defined by A = E ina(p) . Assume Ac R Since R is a left
<peHomi( Mk, Rq) "
Sring there exists r e R r ~ 0 suchthat A =0. It
0 0 0

follows then that <p(Mg =0 for all <peHomq(Mq,RR). S nce
R: is a cogenerator this inplies M® =0 and since-Mf I's

faithful we get ro=0. Hence A= R and "~ is a generator.
5.3 Proof of theorem4:

= (2) : Sincel,_M and t" are projective cogenerators it
follows by lemma 5.1 that Rz and \1 are cogenerators. This

inplies by corollary 3.4 that R is aright Sringand T is a
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left Sring. By proposition 3.5 we get that M is injective
and since _Ifl is flat it follows by proposition 4.6 that Tj,

Is injective. Wsing the assunption that R is naturally ring-
I sonorphic to End(f_l) we get simlarly that r# and gRR are
injective. Then it follows by corollary 3.9 that gR and rLﬂ

are cogenerators. Hence " and MR are generators by lemma 5. 2.

(20 =» (1) : Let U, be sinple. Then there exists x e R such
that Wb £ xR since R is aright Sring. Since M, is a
generator M, is faithful and there exists me M such that
nk ~ 0. Then UREXR’E‘ mKR QM Using the assunption that ka
Is injective we get by lemma 3.2 that - M. is a cogenerator. By
lemma 4.2 R is naturally ringisonorphic to EndfA~~-NM and M
Is projective. Smlarly it follows that j.J_I is‘z;lproje(:tivltez

cogener at or .

5.4 Proof of theorem 5:

Q@Q_== (3 ; Bylemra4.21_fl Is projective. Hence by | emma

51 it follows that 1_'T IS a cogenerator. Since I\% s an

I njective generator we get by theorem 3 that rl_ IS injective.

Hence by corollary 3.9 T is semperfect, r]_ IS a cogenerat or

and by corollary 3.6 IF Is injective. Using the fact that 1]'4

is finitely generated and projective it follows that 1“_N IS Injective
(since T] is injective) and 1—M Is semperfect (since T is
semperfect) . Qoviously XN is faithful. Hence J4 is a

generator by lemma 5. 2. Tr:en it follows by | emma 4.12 that M

is a finitelygenerated projective generator.
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By the Morita theoremit follows that the functor -i%;lw s

an equi val ence between nodul e categories. Since r € M =M and
IL, is a cogenerator we then get that M is a cogenerator.
r K L

We now apply the above results under the assunptions _M is

an injective generator and M is a_cogenerator, where R is

7l bGwE 4s tReOBhBbAOE PRI 5RFTi A bPe ShAt @TBNYSnR 432 This
(3= (1): trivial.

2) => (3): Since M is finitely generated and projective we

M is a generator. By assunption R can

M  Switching
I

get by lemma 4.2 that N
be identified with the endonorphism ring of

si des we then copy the proof of (1) => (3) to obtain (3).

3 _=> (2): Since ;L is a generator it follows by | emma 4.2 that

R is naturally ringisonorphic to End(ql!). The other statenents

in (2) followtrivially.

Car negi e- Mel I on University
Pi ttsburgh, Pennsyl vani a
May, 1969
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