is $T P$ iri (a, b).if and only if the following two conditions

 hold:(a) $\quad a_{ \pm j}(t)=0,|i-j| \geq 2, i, j=1, \ldots, n, \quad a<t<b$.
(b) $\quad a_{ \pm},^{i+1}(t) \geq 0, a_{ \pm+1}{\underset{9}{ \pm}}(t) \geq 0, i=1, \ldots, n-1, a<t<b$.

Proof. As total positivity of the system (1.2) implies its positivity, it follows from Lemma 1 that all off-diagonal elements $a_{i j}$ ($(t), i j \not j, \quad o f A(t)$ have to be non-negative in (a,b).
 part (ii) of Corollary 1 would imply that the matrix $B^{(2)}(t)$ of the second compound system has an off-diagonal element which is somewhere negative, and Lemma 1, applied to this second compound system, then shows that (1.2) is not TP. Conditions. (a) and (b) are thus necessary. Their sufficiency follows from part (i) of Corollary 1 and the sufficiency part of Lemma 1, applied to all compound systems (1.3). (Vfe remark that we also use that the
 Hence if $Y(t)=Y(t, r)$ is the solution of (1.2) which satisfies \left. (1.5), then its compound also satisfies ${\underset{p}{p}}_{p}(Y(r))=I.\right)$

Theorem 3. Let the n^{2} real functions $a ._{1}(t), i, j=1, \ldots, n$,
 The differential system

$$
\begin{equation*}
Y^{*}(t)=A(t) Y(t), \tag{1.2}
\end{equation*}
$$

