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Pref ace

A collection of thernodynamc formulas for a system of
one conponent and of fixed mass was published by P.W Bridgnan
in 1914 in the Physical Revue and an enended and expanded
version by him was published by the Harvard University Press
in 1925 wunder the title A Condensed Collection of
Ther nodynami ¢ For mul as. In 1935 A.N. Shaw presented a table
of Jacobians for a system of one conponent and of fixed mass
and explained its use in the derivation of thernodynamc
relations for such a system in an article entitled "The
Derivation of Thernodynanical Relations for a Sinple Systent
published in the Philosophical Transactions of the Royal
Soci ety of London. A collection of thernodynanic fornulas for
mul ti-conmponent systens of variable total mass by RW
Goranson appeared in 1930 as Carnegie Institution of
Washi ngton Publication No. 408 entitled Thernodynani cal
Rel ations in Milti-Conponent Systems. Unfortunately, Goranson
had accepted the erroneous assunption made by Sir Joseph
Larmor in his obituary notice of Josiah WIlard @ bbs
(Proceedings of the Royal Society of London, Vol. 75, pp.
280- 296, 1905) that the differential of the heat received by
an open system is equal to the absolute thernodynanic
tenperature tines the differential of the entropy, dQ = TdS.
In consequence of this error Goranson's basic equations for
the energy and the entropy of a multi-conmponent system are
i ncorrect. In 1933 L.J. Gllespie and J.R Coe, Jr., in an
article published in volune three of the Journal of Chem cal
Physics showed that in the case of an open system "t he
conmplete variation of the entropy, for simultaneous reversible

transfers of heat and mass, is

dS =%§1+Zs:dml."
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1 PREFACE

In this equation dS denotes the increase in the entropy of the
open system dq the amount of heat received by the open
system T the absolute thernodynamc tenperature, sy the
entropy of unit mass of kind 1 added to the open system and
dml the mass of kind 1 added to the open system Thi s
equation is inconsistent with Goranson's basic equations for
the energy and the entropy of a nulti-conponent system and is
al so inconsistent with very nmany .expressions in his tables for
first and second derivatives in the case of a multi-conponent
system G bbs showed in his nenoir entitled "Oh the
Equi | i brium of Heterogeneous Substances" (Trans. Conn. Acad.
of Arts and Sciences, Vol. 3, pp. 108-248 and 343-524,
1874-78) that it is possible to determine the energy and the
entropy of a multi-conponent system by neasurenents of heat
quantities and work quantities in closed systens. O this
basis, the present author made a detailed analysis of the
neasurenents necessary to obtain conplete thernodynanic
information for a binary system of one phase over a given
range of tenperature, pressure, and conposition wthout
involving definitions of heat or work in the case of open
systens, which was published in a book entitled Relations
between Intensive Thernodynamic Quantities and Their First
Derivatives in a Binary Systemof One Phase (WH Freeman and
Conmpany,  1960.) In this book the present author also
presented a table by neans of which any desired relation
between the absol ute thernodynamic tenperature T, the pressure
p, the nass fraction of one conponent ml, the specific vol ume
V, the specific energy U and the specific entropy S, and
their first derivatives for a binary system of one phase can
be derived from the experinentally determned relations by the

use of functional determ nants (Jacobians).
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In the present work, tables of Jacobians are given for
one-conponent systens of unit mass and of variable nass and
for binary systems of unit nmass and of variable total mass by
means of which relations can be obtained between the
thermobdynamic quantities and their first derivatives. An
explanation of the experinmental neasurements necessary to
obtain conplete thernmodynanmic information in each of these
cases is also provided. The table of Jacobians for the case
of a one-conmponent system of unit mass is included for
conparison with the other tables of Jacobians, because the
Jacobians in the tables in the other three cases reduce
essentially to those in the table for the <case of the
one-conponent system of wunit mass when the masses are held
constant. The Jacobians in the table in the present text for
the case of a one-conponent system of unit nass are the sane
as the expressions in Bridgman's tables for this case. The
Jacobians in the tables in the present text for the case of a
binary system of unit mass differ slightly in form from those
in Table 1 of this author's book entitled Relations between
I ntensi ve Thernodynam ¢ Quantities and Their First Derivatives

in a Binary System of One Phase. |t has been found that by

: \
elimnation of the special symbols £i and odi for -a;‘}.]

o o il T, p
‘as A
and f\-grﬁ? ) and adherence to the synbols ’\‘A;‘p J and
u To P rp
(FIS\
f—~T?J a simpler and more perspicuous arrangement of the
m T, p

terms in the Jacobians results in this case. The Jacobians in
the new tables in the present text for the case of a binary
system of variable total mass differ very nmuch from the
expressions in the tables in Carnegie Institution of

Washi ngton Publication No. 408 by RW Goranson. Very nmany of
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the expressions in Coranson's tables are incorrect on account
of his erroneous assunption that dQ = TdS in the case of
open systens when there is sinultaneous reversible transfer of
both heat and mmss. Furthernore, Goranson's expressions
in his tables for first derivatives in such cases are not
formulated in ternms of the mnimm nunber of derivatives
chosen as fundanental as he hinsel f recognized.

As mght be expected there is a considerable parallelism
bet ween the Jacobhians in the tables in the present text for a
one-conponent system of one phase and of variable nass and
those in the tables in the present text for a binary system of
one phase and of wunit mass. There is also a partial
paral l eli sm between the Jacobians in the tables in the present
text for the two cases just nentioned and those in the present
text for the case of a binary system of one phase and of
variable total mass. Thus for exanple in the case of a one-

conponent system of one phase and of variable nass we have

v e e S ral
e R | ORI C NS
where 5 denotes the total entropy, V the total volume, U the
total energy, T the absolute thernodynamic tenperature, p the
pressure, M the mass, S the specific entropy, ‘{/ the specific
vol ung, ‘fJ the specific energy, and 'é\r/ the heat capacity at
constant pressure per unit of mass. For conparison in the
case of a binary systemof one phase and of unit mass we have

5. V. U o y .
H) B [%J)Tt P-P P(%ﬁ_)m - T(Et) ]
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wher e ‘rﬁl denotes the mass fraction of conponent 1, which is

equal to m, the mass of conponent 1, divided by the sumof m

and mt m denoting the nmass of conponent 2.

Furthermore in the case of a binary system of

and of variable total nmass we have

3(5, m:V,
3(7%p, M, /BR)

- I - - BE BF
= -(my + m2) 2{[({} + plV - T8) - ml((—a}?l)iﬂ . + p(ﬁ1

&), - 26, ]

Ds D)
Also we have

3(S, 1712, F, U)_
3(T, p, mi, cia)

Je,,

one

O] G
E(Im(

phase

Ji )]

The last factor in each of these four Jacobians is the sane.

In the case of the next to the last factor in each of t

Jacobians there is sonme parallelism thus the next

to

3(5, V,
last factor in the case of the Jacobian . P,

\j>

VE» v/
[U+ pV - TY which is equal to the specific Gibbs function G

G

or . The next to the last factor in the case of

hese
t he

NS

A
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3(5.V {(a‘ﬁ\ (ai?) (aé‘)
S 1A S FE § SN
acobian 3(T, p, my) 18 Bﬁ\] Tio o1/ o o/ p'\]

a\d

. P _
which is equal to | dnllar’p * Finally the next to the |ast
(S, m ,V U)

—°N

factor in the case of the Jacobian T1rizT——* is
akKJ e p9 mi, m2)
(- -n(@) o) &) )
YT, p Yr.p Yr, p
which is equal to (@ﬁ) and the next to the |ast
amg T
y Dy [
factor in the case of the Jacobian ?—5&“29&’-@ is
oyl * po m ¢ NR)
(G- n(@) o) o) )]
VT, p YT, p YT, p
which is equal to (EJA) . It is to be noted that
my
’ T.P!f]’iz
in all of these four Jacobians a sinplification would result
if use were made of the G bbs function Gand its derivatives;
however, in the tables this would introduce nore first
derivatives t han t he m ni num nunber of f undanent al
derivatives in ternms of which all first derivatives are
expressi bl e. If it is mnmerely desired to calculate a

particular derivative as the quotient of two Jacobians, the
introduction of the G bbs function G (likew se t he
introduction of the enthal py, H= U+ pV, and the Helmholtz
function, A = U - TS) in the expressions for the Jacobians
would cause no difficulty. On the other hand if it s
desired to obtain a relation anpbng certain derivatives by

expressing themin terns of the m ni mum nunber of fundanental
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derivatives and then elimnating the fundanmental derivatives
from the equations, the introduction of the G bbs function G
(or the enthalpy H or the Helmholtz function A in the
expressions for the Jacobi ans woul d defeat the purpose.

The basic theorem on Jacobians that is needed in the
calculation of derivatives of point functions with respect to
a new set of independent variables in terns of derivatives
with respect to an original set of independent variables was
stated by Bryan (in Encykl op&di e der mat emat i schen
W ssenschaften, B.G Teubner, Leipzig, Bd. V, Teil 1, S 113,
1903), and is nentioned (without proof) in a nunber of
text books on the calculus. Proofs of this theoremin cases of
functions of two independent variables and functions of three
i ndependent variables are given in Appendix B to Part | and
Appendix C to Part Il of the present work. In the case of
transformations of line integrals that depend upon the path
from one coordinate system to another coordinate system the
Jacobi an theorem does not apply. To cover this case a new
theorem is needed. The new theorem devel oped by the present
author for the expression of the derivatives of a Iline
integral that depends upon the path along lines parallel to
the coordinate axes in one plane or space in terns of the
derivatives of the line integral along lines parallel to the
coordinate axes in other planes or spaces is stated and proved
in Appendix B to Part | and Appendix C to Part 1l of the
present work (this theorem is expressed by equations (I-B-36)
and (1-B-37) in Appendix B to Part | and equations (II-C-63),
(I'-C64), and (11-C65) in Appendix Cto Part I1). It is a
pleasure to acknow edge ny indebtedness to Pr of essor
CJ.A Halberg, Jr., and Professor V.A Kraner, both of
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the Departnent of Mathenatics of the University of California
at Rverside, who have kindly examned ny proof of this
theorem carefully and in detail and who have confirmed its
correctness. | wish also to express ny gratitude to Ms.
Sheila Marshall for carefully and skillfully typing the
manuscript of this book in form canera-ready for reproduction
by offset photolithography and to M. David Qouch for making
the drawings for Figures II1-1, 11-A1, I1-A2, and IV-A1

George Tunel |

Santa Barbara, California
August 1984
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Part |

Rel ati ons between thernodynanic quantities and
their first derivatives in a one-conponent system

of one phase and of unit mass
I ntroduction

In consequence of the first and second |laws of

t hermodynanics and the equation of state of a one-conponent
system of one phase and of unit nmmss there are very nunerous
relations between the thernodynanmic quantities of such a
system and their derivatives. Bridgman! devised a table of
functions by neans of which any first derivative of a
t hermodynam ¢ quantity of such a system can be evaluated in
A f(a”" ane Ap>

termrs of the three first derivatives, -,
\9Psp AD

together with the absolute thernmodynamic tenperature and
the pressure, as a quotient of two  of the tabul ated
functions. The equation anong any four first derivatives

can then be obtained by elinmnation of the three derivatives,

(JLE) 9 (a%) and Cp, from the four equations expressing
\ D/T .

the four first derivatives in terns of the three derivatives,

.f?i.\ _ v f and c3,.
(8p;T' \%p P

L oBri dgman, P.W, Phys. Rev., (2), 3, 273-281, 1914, also A
Condensed Collection of Ther nodynami ¢ For mul as, Har vard
Uni versity Press, Canbridge, 1925.
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Bridgnan's table has been found very wuseful and has
becone well known. The functions in Bridgnan's table ca.n be
derived by a sinpler nethod, however. The theorem upon which
this method is based had been stated by Bryan,? but a proof of
this theoremis not included in the article by Bryan. 1In the
following pages the functions tabulated by Bridgman are
derived by the method of Jacobians explained by Bryan and the

Jacobi an theorem is proved.
Equati on of state of a one-conponent system of one phase

The principal properties of a one-conponent system of one
phase and of unit nmass that are considered in thernmodynam cs
are the absolute thernodynamc tenperature T, the pressure p,
the specific volume 7, the specific energy U and the specific
entropy 5. It has been established experinmentally that the
tenperature, the pressure, and the specific volume are rel ated
by an equation of state

*(p, V, T) = 0. (1-1)
Even if an algebraic equation with nunerical coefficients
cannot be found that will reproduce the experinmental data for
a particular one-conponent system within the accuracy of the
nmeasurenents over the entire range of the neasurenents, the
equation of state can still be represented graphically wth
such accuracy, and nurerical values can be scaled from the

graphs.?

Bryan, GH, in Encyklopadie  der mat emat i schen
M ssenschaften, B.G Teubner, Leipzig, Bd, V, Teil 1, S. 113,
1903.

8 Dening, WE., and L.E. Shupe, Phys. Rev., (2), 37, 638-654,
1931; York, Robert, Jr., Industrial and Engineering Chem stry,
32, 54-56, 1940.
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Wrk done and heat received by the system

e nay plot the values of the tenperature T and the
pressure p of the systemin a series of states through which
the system passes, laying off the values of T along one
coordinate-axis and the values of p along the other
coordi nate-axis. The points representing the series of states
then forma curve, which, following G bbs® one may call the
path of the system As dbbs further pointed out, the
conception of a path must include the idea of direction, to
express the order in which the system passes through the
series of states. Wth every such change of state there is
connected a certain anount of work, W done by the system and
a certain anount of heat, Q received by the system which
G bbs® and Maxwel | ® called the work and the heat of the path.
Snce the tenperature and pressure are supposed uniform
throughout the system in any one state, all states are
equilibriumstates, and the processes discussed are reversible
processes.

The work done by this system on the surroundings is
expressed nathenatically by the equation

Vv

W= prdV. (1-2)

Vo

4 dbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
2, 311, 1871-73, or Coll ected Wrks, Longmans, Geen and Co.,
New York, 1928, Vol. 1, p. 3.

> Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
2, 311, 1871-73, or Coll ected Wrksy Longmans, Geen and Co.,
New York, 1928, Vol. 1, p. 3.

® Maxwell, J. derk, Theory of Heat, 10th Ed., Longnans,
G een and Conpany, London, 1891, p. 186.
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The value of this integral depends upon the particular path in
the (p» fo plane, and when the path is deternined, for
exampl e, by the relation
P=ftf), d- 3)
the value of the integral can be cal cul at ed.
If the path is plotted in the (T, p)-plane the work done
by the system W may be obtained by transfornmation of the

integral in equation (1-2)

T.P

v- [{oE) ar +ofE) 0} (T-4)
P

To, PO

and the path nay be deternmined in this case by the relation
p=*(T). (1-5)
Sinmlarly the heat, 0, received by the system
TP
Q=] iLc‘de +Ypdp) (1-6)
ToPq
may be calculated provided the heat capacity at constant
pressure per unit of mass, °p, and the latent heat of change
of pressure at constant tenperature per unit of mass, /g, are
known functions of T and p and the path is deternmned by
equation (1-5). The integrals in equations (1-4) and (1-6)
are line integrals’ that depend upon the particul ar choice of

the path.

" For the definition of a line integral, see WF. Gsgood,
Advanced Cal cul us, The Macraillan Conmpany, New York, 1925, pp.
220, 221, or R Courant, Differential and Integral Calculus,
translated by J.E. McShane, Bl ackie & Son, Ltd,, London, 1944,
Vol . 2, pp. 344, 345.
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First and second |aws of thernodynanmi cs applied to a

one-conponent system of one phase and of unit mass

The first law of thernodynamics for a one-conponent
system of one phase and of unit mass traversing a closed path
or cycle is the experinentally established relation

${dQ - dw = 0.8 (1-7)
Replacing <PdQ and $dW by their values from equations (1-4)
and (1-6) in order that the integral may be expressed in terns
of the coordinates of the plane in which the path is plotted,

one has

(R o s

& Blondlot, R, Introduction a | "Et ude de | a Thernmdynani que,
Gauthier-Villars et Fils, Paris, 1888, p. 66; Bryan, GH , op.
cit., p. 83; Poincare, H., Thernodynan que, Second Edition,
Edited by J. Blondin, Gauthier-Villars et Cie, Paris, 1923, p.
69; Keenan, J.H., Thernodynam cs, John Wley & Sons, Inc., New
Yor k, 1941, p. 10; Allis, WP, and M A Herlin,
Thermodynanmi cs and Statistical Mechanics, McGraw Hi | | Book
Co., Inc., New York, 1952, p. 67; Schottky, W, H Uich, and
C. \Wagner, Thernodynam k, die Lehre von den Kreisprozesseny
den physi kal i schen und chem schen Ver ander ungen und
d ei chgewi chten, Julius Springer, Berlin, 1929, pp. 14-15.
Lord Kelvin in his paper entitled "On the dynam cal

theory of heat, wth nunmerical results deduced from M.

Joule's equivalent of a thermal wunit, and M Regnaul t's
observations on stean (Trans. Roy. Soc* Edinburgh, 20,
261-288, 1851) nmde the following statenent: "Let us suppose

a mass of any substance, occupying a volume v, under a
pressure p uniformin all directions, and at a tenperature t,
to expand in volune to v + dv, and to rise in tenperature to
t + dt. The quantity of work which it will produce will be
pdv;
and the quantity of heat which nust be added to it to nake its
tenperature rise during the expansion to t + dt nay be denoted
by
Miv + Ndt,
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From equation (1-8) it follows that the integral

[{le -+ (1 - 404

is independent of the path and defines a function of the

The nechani cal equivalent of this is

Ji Mlv + Ndt),
if J denote the nechanical equivalent of a unit of heat.
Hence the nechanical neasure of the total external effect
produced in the circunstances is

(p - IMdv - JNdt.

The total external effect, after any finite anount of
expansi on, acconpanied by any conti nuous change of
tenperature, has taken place, wll consequently be, in
mechani cal terns,

I{(p - IJMdv - JNdt} ;

where we nust suppose t to vary with v, so as to be the
actual tenperature of the medium at each instant, and the
integration with reference to v nmust be perfornmed between
limts corresponding to the initial and final volunes. Now
if, at any subsequent time, the volune and tenperature of the
medi um become what they were at the beginning, however
arbitrarily they nmay have been nade to vary in the period,
the total external effect must, according to Prop. |., anount
to not hing; and hence
(p - IJIMdv - JNdt

must be the differential of a function of two independent
vari abl es, or we nust have

dip-JM d(-JN M
dt = dv (1)

this being nerely the anal ytical expression of the condition,
that the preceding integral may vanish in every case in which
the initial and final values of v and t are the saneg,
respectively,” And elsewhere in the sane paper Lord Kelvin
wr ot e: "Pr op, l. (Joul e).-Wien equal quantities of
nechani cal effect are produced by any means whatever, from
purely thernal sources, or lost in purely thermal effects,
equal quantities of heat are put out of existence or are
gener at ed/ !
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coordinates; this function, to which the name energy is given
and which is here denoted by the letter U is thus a function

of the state of the system

U(T7 p) - U(T01 Po) =

Ko-'§)> &- 4\ 4 >

"o» Po

The second l|law of thernodynamics for a one-conponent
system of one phase and of wunit mass traversing a closed
reversible path or cycle is the experinentally established

relation
$f-=0,° (1-10)

where T is the tenperature on the absolute thernodynanic
scale. Expressing this integral in terns of the coordinates

of the plane in which the path is plotted, one has

p
{2,

k=<
o
et
n
(=)

® Clausius, R, Die nechanische Vrnetheorie; Dritte aufl.,
Bd. |, Friedrich Vieweg und Sohn, Braunschweig, 1887, S. 93;
Blondlot, R, op. cit., p. 66; Vanft Hoff, J.H., Physi cal
Chemistry in the Service of the Sciencesy English Version by
A. Smith, University of Chicago Press, Chicago, 1903, pp.
21-22; Schottky, W, H Uich, and C. Wagner, op. cit., p. 17;
G bbs, J. Wllard, Proceedings of the American Acadeny of Arts
and Sci ences, new series, 16, 460, 1889, or Collected Wrks,
Vol . 2, Longmans, G een and Conpany, New York, 1928, p. 263.
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Fromequation (1-11) it follows that the integral

T.p .
E.:C'—dT + LQo'
T T ¢P
TO) pO

is independent of the path and defines a function of the
coordinates; this function, to which the name entropy is given
and which is here denoted by the. letter f3 is thus a function
of the state of the system

T, p o
r [ 4 I!
S(T,p) - S(Topo) = f{%ﬂﬂ + —TEdP}. (I-12)
Pa

Fromequation (1-9) it follows directly'® that

b ot

AT P\d_)' (1-13)

/
ol
=

—

1

and P P

T p(g_E)T , (1-14)

L
I

Fromequation (1-12) it follows |ikew se that
(ﬁ\ - 2 (I-15)

and

- ke (1-16)

" For the proof of this theorem see WF. Osgood, op. cit.,
pp. 229-230, or R Courant - J.E MShane, op. cit., Vol. 1,
pp. 352-355.
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A necessary and sufficient condition!® for equation (1-9)

to be true is

[v fdvl "k

P\apf J} JL LY - p%Tff JL

(1-17)

Li kewi se a necessary and sufficient condition for equation

(1-12) to be trué is

l c
B—T‘? _ 3"%" 13
—_ — (. (1-18)
aT P ap T

1 For the proof of this theorem see WF. Osgood, op. cit.,
pp. 228-230, or R Courant - J.E. MShane, op. cit., Vol. 1,
pp. 352-355.

2 Lord Kelvin wote the anal ogous equation with t and v as
the independent variables as an analytical expression of the
"first f undanent al proposition” or first | av; of
thernodynanmics. His statenent follows: "Observing that J is
an absolute constant, we may put the result into the form

d>_ ;dv dN

dt dt " dv *
This equation expresses, in a perfectly conprehensive manner,
the application of the first fundanental proposition to the
t her mal and mechani cal ci rcumst ances -of any substance
what ever, under wuniform pressure in all di rections, when

subjected to any possible variations of tenperature, volune,
and pressure.” (Trans. Roy. Soc. Edinburgh, 20, 270, 1851.)
Clausius also stated that an anal ogous equation, his equation
(5), forms an analytical expression of the first law for
reversible changes in a system the state of which is
determned by two independent variables. (Abhandl ungen ii her
di e mechani sche Wirnetheorie* Zweite Abtheilung, Abhandlung
I X, Friedrich Vieweg und Sohn, Braunschweig, 1867, p. 9.)

¥ dausius stated that his equation (6), to which equation
(1-18) of this text is analogous, constituted an analytical

expression of the second law for reversible processes in a
system the state of which is determined by two independent
vari abl es. (Abhandl ungen iiber die nechani sche V&rnetheoriei

Zweite Abtheilung, Abhandlung |X, Friedrich Vieweg und Sohn,
Braunschwei g, 1867, p* 9.)
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Carrying out the indicated differentiations one obtains from
equation (1-17) the relation

(_a!n\ a2V 73Em @V fd (1-19)
3r/P A3M3p  V3pL  T3p3r \a:mp

and from equation (1-18) the relation

- ) (1-20)
T\dT;I]P ™ "T\de
Conbi ni ng equations (1-19) and (1-20) one has
H ” I-21
b o« - ) . (I-21)
P
Fromequations (1-19) and (1-21) it also follows that
ac, 32§ (I-22)
=P = -
(% )T - T(W)p :

Al the first derivatives of the three quantities V, U and S
expressed as functions of T and p can thus be calculated from
equations (1-13), (1-14), (1-15), (1-16), and (1-21) if

(¥ | (& » @ ap A2e peen deternined experimentally.

‘ -

P 1

In order to be able to calculate all the properties of
this systemat any tenperature and pressure, the volume nust
be determned experimentally as a function of the tenperature

and pressure; the first two derivatives (~a~=) and ('I"’L)

can then be calculated at any tenperature and pressure within
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the range over which the volume has been deternined. The
third derivative, %p, need only be determ ned experinentally

_ e '3 Eps
along sone line not at constant tenperature, ' '* since f\-g;)%’

T

can be calculated from equation (1-22) if ('?J-\I/ff) N85 peen
TP

determned as a function of T and p.

Derivation of any desired relation between the

W w
i ntensive thernodynamc quantities, Tg p> Vo U S and
their first derivatives for a one-conponent system of
one phase fromthe experinentally deternmined relations
by the use of functional determ nants (Jacobi ans)
Equations (1-1), (1-9), and (1-12) can be solved for any

\J \J <S

three of the quantities, To pg V, U S as functions of the
remaining two. The first partial derivative of any one of the

vio vl K

quantities, T, p, V, W S with respect to any second quantity
when any third quantity is held constant can readily be
obtained in terns of the three first derivatives

714 13V -
(ng, ) , \de—j], s, and .o together wth the absolute
thernodynamc tenperature and the pressure, by application
of the theorem stating t hat i f X' = oo(x>y),
if x = f(u» v), and if y = <t>(ug v), then one has

'* PBridgman, P.W, Phys, Rev., (2), 3, 274, 1914.
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{ 3y {i’{)
\ 3u/ \ 3v
\% U
) ay (K. yy 15
ax! \du)v (av )u Hu, v) (1-23)
) e T
9x X\,
(3 = 3, v
\%
(Ez) {3v\
au/, VW
u

provided all the partial derivatives in the determ nants are
continuous and provided the determnant in the denom nator
p)

AP LYY here denotes the
di il v)

is not equal to zero. The synbol
Jacobi an'® of the functions x' and y with respect to the

_?_-Xv
d&U! v,

variables u and v and the synbol nenotes the Jacobian

of the functions x and y with respect to the variables u and
v. |In Table 1-1 the value of the Jacobian is given for each

. . bt L (=)
pair of the variables, T, p, V, U S as x', y or x» y and

% Bryan, GH, op. cit., p. 113, equation (82); see also
Gsgood, WF., op. cit,, p. 150, Exercise 31, Burington, R S.,
and C. C. Torranee. H gher Mathematics with Applications to
Sci ence and Engi neeringg McGrawHi Il Book Co., Inc., New York
and London, 1939, p. 138, Exercise 7, and Sherwood, T.K , and
CE Reed, Applied Mthematics in Cheni cal Engi neeri ng,
MG aw H || Book Co., Inc., New York and London, 1939, p. 174,
equation (164). A proof of this theorem for the case of
functions of two independent variables is given in Appendix B
to Part I.

1 For the definition of a Jacobian, see WB. Fite, Advanced
Cal cul us, The Macmi || an Conpany, Hew York, 1938, pp. 308-309.
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wWith T$ p as ug v* There are 20 Jacobians in the table, but

one has g%%'v[)l = - %(EH))_ because interchanging the rows

of the determ nant changes the sign of the determinant; hence
it is only necessary to calculate the values of 10 of the
determnants.  The calculations of these ten determnants
fol | ow,

3p  9p
TR . (1-24)
alT, P) - dT - ?
5
3 3f
i(/‘_r). - 37 3p _ —(QK) ; (1'25)
3(7, p) 3T 3T o/
3T 3p
1£ 3f
v dT gp o N (I-26)
-3(r1 P) = dT dT = T(ﬁ + p(-é;)'f i
T dp
95 38
35, T 3T dp - d-27)
= = H
(T, pJ 3T 3T (ar)p
3T 3p
v T v 1-28
ﬁgv_'ﬂl = 3 3p = -a-%) H ( )
aT  dp
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303U
v a7 dp . v (1-29)
.?l(t—l—m = = CP - p(g—g-) :
3(r, p) dp dp. P
dr  dp
5 ds.
aSp) . |dT dp| | (1-39
AT, p) d 9 T
ar  3p
\-> Q
o
el oT 3p e o d- 31)
3U, 1) |- T(%)z + 2 (_@Z) .
3T 3p
3% 33
2E Y _ 37 3p i (_3_;;)2 +EE(§.K) ) (1-32)
3(r. p) ¥ 8T, " T \op/y
dr dp
JS  3S
BEE. 5; i T dp| (a‘f)z ) f_%g(ﬂ) ~(1-33)
daT dp

In order to obtain the first partial derivative of any one

K V» \%

of the five quantities T p» W f» S with respect to any
second quantity of the five when any third quantity of the
five is held constant, one has only to divide the value of the
Jacobian in Table 1-1 in which the first letter in the first
line is the quantity being differentiated and in which the
second letter in the first line is the quantity held constant



. _Table 1-1 |
Jacobians of intensive functions for a
one-component system of one phase

B%x',pz! . Zix. pz%

P v 7
1 (%), «® -4\
1 b)
~ @) % + »l57)
P P
(&) SO R AT
T

Txan Py

% avy? | Sppary | (@ Py
T (ar)p'* T (ap) PaT T \ap}T

ST
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by the value of the Jacobian in Table 1-1 in which the first
letter of the first line is the quantity with respect to which
the differentiation is taking place and in which the second
letter in the first line is the quantity held constant.

To obtain the relation among any four derivatives, having
expressed them in terns of the sane three derivatives,
(IaVVr\J ' (%V';" ' anc*UCP' one aas onay L0 e jmnate the three
v }7) y
derivatives fromthe four equations, leaving a single equation
connecting the four derivatives.

Three functions used in thernodynanmics to facilitate the
solution of many problens are the following: the enthalpy H,
defined by the equation H = U+ pV, the Helnholtz function A
defined by the equation A = U- TS, and the G bbs function G
defined by the equation G = U+ pV - TS. The corresponding
specific functions are H A and G Parti al derivati ves
i nvol ving one or nore of the functions b A, and G can also
be calculated as the quotients of two Jacobians, which can
thensel ves be calculated by the same nethod used to cal culate

the Jacobians in Table 1-1.
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Transformation of the work and heat line integrals
from one coordinate plane to other coordinate
pl anes in the case of a one-conponent system of

one phase and of unit nass

The derivatives of the work done and the heat received by
a one-conponent system of one phase and of unit nmass are total
derivatives® with respect to the variables chosen as the
paranmeters defining the paths of the integrals. In order to
obtain the total derivative of the work done along a straight
line parallel to one of the coordinate axes in any plane, one
obtains from Table 1-1 the partial derivative of the volunme
with respect to the quantity plotted along that axis when the
quantity plotted along the other axis is held constant and one
multiplies the partial derivative of the volume by the
pressure. Simlarly to obtain the total derivative of the
heat received along a straight line parallel to one of the
coordinate axes in any plane, one obtains from the table the
partial derivative of the entropy with respect to the quantity
plotted along that axis when the quantity plotted along the
other axis is held constant and one nmnultiplies the partial
derivative of the entropy by the tenperature. For exanpl e,
the derivatives of the work done and heat received along a

straight line parallel to the K-axis in the (7\ 7)-plane are

(§) - P (I-AD

T

1 Tunell, G, Jour. Chenu Physics, 9, 191-192, 1941,

17
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SL=KDI*(II-

The total derivatives of the '"heat received along |ines

and

parallel to the coordinate axes in any desired plane can al so
be derived in terns of the total derivatives of the heat
received along lines parallel to the coordinate axes in the
(T$ p)-plane by transformation of the heat line integral as
explained in the second half of Appendix B to Part |I.
Following is an exanple of such a transformation. In the case
of a one-conponent system of one phase and of unit nass the
heat line integral extended along a path in the (7\ T:')-pl ane

is
T,V
d(} df -4
Q = f{(—)vd:" + (...,) dv}
vdT v dv T
Ty Vo

NV

i +ui} (1-A3)

T“o» VU

where C, denotes the heat capacity at constant volume per unit

of mass and |, denotes the |atent heat of change of volune at

constant tenperature, and where "c'v and |, are functions of T

and 7. This integral depends upon the path in the (T, V)-

pl ane deternmined by an equation between T and \7 T = f(\7).
/dl\ / 3€,\

In this case 1-"Hy/ ("57r) - A" order to transform the

£
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integral for Q from the (7\ I|/)-plane to the (7\ p)-plane, p
denoting the pressure, we nake use of the fact that V is a

function of T and p,
L)

V = F(T, p). (1-A-4)

Thus we wite for the integral transposed to the (7% p)-plane

0./ {c,,dT sl g—) dT + (g—) dp)}

2'o» Po

., P -
= f{(5v+iv(|) dT. A(1f)dp} +  d-AS

TQ po

By definition the coefficients of dT and dp in this integral

are E}_/ and ip. Thus we obtain the equations

& = &+ by (1~A-6)
and P
rp = Ev(%'g')T- (1-4-7)

From equations (I-A-6) and (l-A-7) we obtain ‘t, and |, as

functions of T and p:

) /8, (s

e

and

I, = ‘fp/(%):r. (1-4-9)
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The same result can be obtained by substitution of values in
equations (1-B-35) and (1-B-36) in Appendix B to Part |I. The
equi val ence of synbols for the purpose of this substitution is

given in the follow ng Table.

Table 1-Al

Equi val ence of synbols

r 0]
X T

L)
v v

T
u T
v P
o(u, v) T,
tt(u,v) L

Substituting the values from the right hand colum for the

values in the left hand colum in equations (I-B-35) and
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(1-B-36) we have

- /dn y (dv)
- T

- ¢ _ ! 2]
\dTi« = ¢&v. = a =7
37)
| p
) [gp(%)T + T("g"%);] H (%)T . (I-4-10)
and
Cpxo - F .1
N
(a }iQ— (E)T 1
) ['T(%)p] : (g_p)T . (I-A11)

Finally, equations (l1-A8) and (l-A-10) are equival ent because

k- ‘T(g—:r)p

=(
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Proofs of the relations:

ax p 3,
3u, v
and
a7 dT
du dv
dy Ia
[ dr\ _ du av
\~dX~)y dx dx
u dv
dy
ldE dv

It is assuned that x' is a function of x and vy,

X' =U(x ) (I-B-1)
and that x and y are functions of u and v,

x =f(u, v)o (1-B-2)
and

y =0(u, v). (I-B-3)

[t is assumed further that these functions are continuous
together with their first partial derivatives. By application
of the theorem for change of variables in partial
differentiation’ one then obtains

ox' ax’

du ° dx du dy du (1-B-4)

! ®sgood, WF., Advanced Calculus, The MacMIlan Co., New
York, 1925, pp. 112-115; Taylor, Angus, Advanced Cal cul us,
G nn and Co., Boston, New York, Chicago, Atlanta, Dallas, Palo
Alto, Toronto, London, 1955, pp. 167-172.

22
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and
dx' _ Bx'dx  Bx'dy
Jv 7 313737 3u * (1-B-5)
Fromequations (1-B-4) and (1-B-5) it follows that
f ' . .
ddy 3¢ dxx for T2, i)
dy du du dx du
and 8x'3y _ 3x' _ 3x'3x (I-B-7)
3y dv dv dx dv 3
Dividing both sides of equatjgn (I-B-6) by -rL’r‘ and both
sides of equation (I-B-7) by f"'p we have
dx - 3x3x
3x’! du dx 3u
X .
3y 3j! (1-B-8)
3a
and
3x M2t AL
r. , dv  3x 3v
axt
3y " dy_ * (1-B-9)
dv
It follows that the right side of equation (I1-B-8) is equal to
the right side of equation (I-B-9)
X _ X £EE X'~ 3x'3X
du, dxdu - dv dxdv (1-B-10)
du dv
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o\
Miltiplying both sides of equation (I-B-10) by (""ﬁ"J Ve

have

éz(k’_@x'ﬁzs\ N Byfax"  3x'3x) (1-B-11)
vidu  3x du) dutdv  dx ov/

and consequent|y

dy dx*  dy dx'dx _ dy dx' dyjrIn (I-B-12)
vdu  dvdxdu T 3udv T 3u 3 dv *

3x'3y 8x _ 3x'3y 3x _ By ' _ By 3’ (1-B-13)
U dudv dx dvdu ~ dudv ~ dv du
and
ETETE R R O 3 (1-B-14)
3x\du d v du) " dudv dv du °
Dividing both sides of equation (I-B-14) by (%B—’J—g—“{%ﬁ)
we have
(_B_X_') ~ du v ov cu (I_B_ls)
x0T 2
¥ du dv = dv 3o

The partial derivative Y~ ) is thus equal to the quotient
4
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of two Jacobi an determ nants

X 33X
QU gv
I |
x 3 dx
du dv
1z iz
3u dv

provided the Jacobian determinant in the denominator is not

equal to zero. Thus we obtain the result

3Cx' s 2)

U v (1-B-17)
X, yy

d(z V)

\dxr)
¥

and simlarly we have

3lx", x)
(& - e (1-B-18)

3y 1,

This case corresponds to the case of a one-conponent system of
one phase and of unit mass in which it is desired to transform
a function of the coordinates, such as the volume, the energy,
or the entropy, from one coordinate plane, such as the
entropy-vol une plane to another coordi nate plane, such as the
t enperature-pressure plane.

Equati ons (I-B-17_) and (1-B-18) are not applicable,

however, in the case of a one-conponent system of one phase
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and of unit nass when it is desired to transformthe work |ine
integral or the heat line integral from one coordinate plane,
such as the entropy-vol une plane, to another coordinate pl ane,
such as the tenperature-pressure plane, because the work I|ine
integral and the heat line integral depend upon the path and
are not functions of the coordi nates. In this case, to which
the second equation of the heading of this Appendix applies,
the transformation can be acconplished in the follow ng way.

Let us suppose that a line integral F

Xy
r - f{P(x, y)dx + Qx, y)dy) (I-B-19)
xﬂvyo
depends upon the path in which case TJ%:4 "tgg_ This

integral has no nmeaning unless a further relation is given
between x andy, y = f(x), defining a particular path in the
(*>y)-plane.? W are next given that x and y are functions

of uand v,

X =<t>(u, v), (1-B-20)
and
y = Ku, v). (1-B-21)

It is then desired to transform the integral T from the

2 In general this curve can be represented in parametric
foom, x = X(0), y = 5(a); but in simple cases the curve can
be expressed by the equation y = f(x), or at least in
segments by the equations Yy = f(x V* = F(X).
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(x, y)-plane to the (ug v)-plane.® In this case if equations

(1-B-20) and (1-B-21) can be solved so that we have

<£>(*»y)’ (|-B-22)

c
1

and
¥(x, y), (1-B-23)

<
1

then the curve in the (xg y)-plane can be transforned into the

curve in the (u» v)-plane defined by the equation u = F(v).
. . dx ax
W next replace dx in the integral T by -qj—du + -g—elv and dy

by ‘%t du + j\f;-dv . W then have

U, v
-~ r [ "I r
& ox = At B 2y T T
r‘ =i« rr\l\roédu + X4y o+ vl—'all + =&\, 7 TR 04,
J N :Lu/J. oV ™ ] v '
uQ>VvV'Q

the curve in the (u, v)-plane mow being determined by the

8 Cf. R» Courant, Differenti al and I nt egral Cal cul us,
Translated by J.E. MShane, Blackie & Son Ltd., London and
G asgow, 1944, Vol. 2, p. 373. The procedure for transform ng
a line integral that depends upon the path from the (x, y) -
plane to the (u, v)-plane used by Courant is the same as the
procedure explained here and in Appendix C to Part Il of this
text.
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equation u = F(v). Consequently we thus obtain

\
r Moo 3x
UP(KUV), *(u, V)N * v @

W. vo

\"\F

r:J

+ 0(e(u, v), \Ku, v))[%fdu + %{dv}}

u* v
= f{r[P(¢‘[lit V)g \p(u, V))%E + O(¢(U- V), ib(Up V))'g'f]du

Ugs Vp

+ P{p{u, v), ¥{u, v))[%% + Q(elu,s v), lu, v))%g‘ldv}

= f{IO(u, v)du + Q(u, v)dv} (1-B-25)

where 0 is set equal to

I:P(¢(u. V)! ‘&(Uf V))%—)lf + O(¢(Uo V)v IP(U! V))%f]
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and Qis set equal to
[P(cb(U, V) o\ Ku, v))|j +Q <t>(u, v), \ Ku, v))%ﬂ

In order to evaluate P and O as functions of u and v we next

sol ve the equations

_ Bx_l_ _X (I-B-26)
g = du O
and
n - pM.. ohL (1-B-27)
v v

for P ard 0. Thus we have

QZL = 0-p|i (1-B-28)
du ou
and
] )
Og‘% = - P-‘a—.{ . (1 _Bu29)

D viding both sides of equation (I-B-28) by J¥Z and both sides

du
of equation (I-B-29) by S’;JL we obtain
v
- @/_x ow Ay (I-B-30)
- du -
and
=n/|i-p|s/|j: (1-B-31)

/ dv 9Ov/ dn
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and consequently

- _l = B - ax 'az - ==
GE‘E pau 0 5y P/ ay (I-B-32)

Rom egquation (I-B-32) it fdlons that

pli/|Z . pli/|i = of/|Z_a/|Z . (1_s_33)
3u/8u 3v/3v / 3u [/ 3v

Thus from equation (1-B-33) we obtain the value of P as a

function of u and v:

. YR
S SIS

and multiplying both numerator and denominator of the right

g (I-B-34)

side of equation (I-B-34) by (TEH?I*)We have

b O W

3 {I-B=35)
AV do

Mw P(x; y) is the total derivative of T along a Iine parallel
to the x-axis in the (x, y)-plane«** Also O(u, v) is the total

“ Cf. G Tunell, Jour. Chem Physics, 9, 191-192, 1941.
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derivative of T along a line parallel to the u-axis in the
(U v)-plane and Qu, v) is the total derivative of T along a
line parallel to the v-axis in the (u, v)-piane. Thus from
equation (1-B-35) we have

dar dT
du dv
|z dyi
du dv
><* e y) = \(éjxl)): m (|-B—36)
du dv
hL dy|
du dv

Likewise Qx, y) is the total derivative of T along a line
parallel to the y-axis in the (xg y)-plane. Thus in a simlar
way we have

aT dT1

du dv

_gz dx

u dv

0oy = (£) - —— - (1-B-37)

dy 3y 3

X oy 9¥

du dv

dx_ dx

8u dv

The determ nahts forming the numerators of the fractions
constituting the right sides of equations (I-B-36) and
(1-B-37) are simlar in formto the Jacobi an determ nants used
in the transfornmation of functions of two or nore variables,
but F is not a function of x and y or of u and v and the
derivatives in the top lines of the determ nants constituting
the nuner at or s of the fractions that form the right sides of
equations (1-B-36) and (1-B-37) are total derivatives, not

partial derivatives.
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D scussion of P.W Bridgman's explanation of the derivation
of the functions tabulated in his book entitled

A Condensed Col | ection of Thernodynami ¢ For nul as!

Bridgman explained the derivation of the functions
tabulated in his book entitled A Condensed Collection of

Ther nodynani ¢ Fornulas in the follow ng way.

Al the first derivatives are of the type (2—2-)
X3
where Xy, Xz, and X3 are any three different variables
selected from the fundamental set (for exanpl e,
p, T, v). The meaning of the notation 1is the
conventional one in thernodynam cs, the subscript X3
denoting that the variable x3 is nmintained constant,
and the ratio of the change of x\ to the change of X2
cal cul ated under these conditions. The restrictions
inposed by the physical nature of the system are such
that derivatives of this type have a unique meaning.
The nunber of such first derivatives evidently depends
on the nunber of quantities selected as fundanental.
For nearly all applications 10 such variables are
sufficient, and this is the nunber taken for these
t abl es. 2
Gven now 10 fundarmental quantities, there are
10x9x8 = 720 first derivatives. A conplete collection
of thermodynanic formulas for first derivatives
includes all possible relations between these 720

! Harvard University Press, Canbridge, 1925.

2 The variables selected as fundamental by Bridgman are the
following: the pressure p, the tenperature T, the volune v,
the entropy s, the heat Q the work w, the energy £, the
enthalpy #, the Gbbs function z, and the Helnholtz

function ¥

32
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derivati ves. In general, the relations involve any
four of the derivatives, for any three of t he
derivatives are independent of each other. (There

are, of course, a large nunber of degenerate cases in
which there are relations between fewer than four
derivatives.) Now, except for the degenerate cases,
the nunber of relations between first derivatives is
the nunber of ways in which 4 articles can be selected
from 720, or

720 x 719 x 718 x 717 in.
e = approx. 11x1bd%.

This is the nunber of thermodynanmic relations which
should be tabulated in a conplete set of fornulas, but
such a programme is absolutely out of the question.
We can, however, nmmke it possible to obtain at once
any one of the IlxI O relations if we merely tabul ate
every one of the 720 derivatives in terns of the sane
set of three. For to obtain the relation between any
four derivatives, having expressed them in ternms of
the same fundanental three, we have only to elimnate
the fundamental three between the four equations,
leaving a single equation connecting the desired four
derivatives.

This programme involves the tabulating of 720
derivatives, and is not of inpossible proportions.
But this nunber may be nuch further reduced by

mat hematical artifice. The 720 derivatives fall into
10 groups, all the derivatives of a group having
the sane vari abl e hel d const ant during t he

differentiation. Now each of the 72 derivatives in a
group may be conpletely expressed in terms of only 9
quantities. Consider for exanple the first group, in

which xi is the variable kept constant. Then any
/3X7\ )
derivative of this group \(‘LK’E"‘ My Ne written
*K Xy

in  the fom (..axn\ = /%5 (3% . where

(6308 }xl ~ W Zai \kxf//\\EBalii/Xl

ai is any new variable, not necessarily one of the 10.

Let us make this transfornmation for al | t he
derivatives of the group, keeping the sane a in all
the transformations. Then it is evident that all

derivatives of the group may be expressed in terns of

, o faxaN .. 8%\ . A ,
the nine derivatives 1'111‘11 ( jlx/- A y taking
\’ Y
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the ratio of the appropriate pair. That is, for the
purpose of calculating the derivatives we nay replace

By -
the derivative (3-7) by the ratio of numerator to
L Xl

denoraerator, witing

x (BXj)X
X1 X1
and then substitute for (9x,-) the finite derivative
J X
t dxj\ / x"\

!
and for (B . A ~
vealf o THITERY o
Ve rray now, as a shg(rlt\é%ﬁd/ rrethod of expression,
vvrlte’ the equations

1oAY o
(3xy)x = {") , etc.,

X1

renenbering, however, that this is not strictly an
equation at all (the dimensions of the two sides of
the "equation" are not the sanme), but that the form of
expression is useful because the correct result is
always obtained when the ratio of two such
differentials is taken.

W nay proceed in this way systematically through
the remaining 9 groups of 72 derivatives, choosing a
new and arbitrary a for each group. W will thus have
in all 90 different expressions to tabulate. Thi s
nunber may now be further reduced to 45 by so choosing
the a's in the successive groups that the condition
(3x;0 = - (W) is satisfied. That such a choice

T Xp XJ
is possible requires proof, for having once chosen al,

the choice of a, is fixed by the requirenent that

(dxi) = - (9xy) , and az; is fixed by the
X. 2 Xi
requirenent that (3xi)X3z = -(9x3) X3 so that it is

now a question whether these values of a, and a3 are

such that (gu..)X » - (a*,)x . That these conditions
3 2

are conpatible is an inmrediate consequence of the
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mat hematical identity

(52 (50 (G5 - -

X3 Xi

The only degree of arbitrariness left is now in oti,
which may be chosen to nake the expressions as sinple
as possi bl e. '

In the actual construction of the tables the a's
play no part, and in fact none of them need be
determ ned; their use has been nerely to show the
possibility of witing a derivative as the quotient of
two finite functions, one replacing the differential
nunerator, and the other the differential denom nator.
The tables were actually deduced by witing down a
suf ficient nunber of derivatives obt ai ned by
wel | - known thernodynam ¢ net hods, and then splitting
these derivatives by inspection into the quotient of
nunerator and denom nator. Having once fixed the
value of a single one of t he differentials
arbitrarily, all the others are thereby fixed* For
sinplicity it was decided to put (3x)p = 1.

The choice of the fundanental three derivatives
| eaves much [atitude. It seemed best to take three
which are given directly by ordinary experiment; the
three chosen are

. K
(_éj'\)/\lffdv\ad AL fd_,()g)].
. .)p E) T P[ (a- B

The problem addressed by Bridgnman is that of obtaining a
derivative of any one variable of the 10 variables with
respect to any second variable of the 10 when any third

variable of the 10 is held constant in ternms of the three

i ) av 3 4 4 i
derivatives (37) » ("8 ' "% °p> an certain of t he
P P T
t hernodynam ¢ quantities. This is a problem of obtaining
derivatives with respect to a new set of i ndependent

variables in terns of derivatives with respect to an original
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set of independent variables. The solution of this problem by
means of Jacobians was given by Bryan® in his article in the

Encycl opadi e der nmatemati schen W ssenschaften in 1903 and is

wel | established. The functions listed by Bridgman in his
table as (3p)v, (3x)v, (3s)v, (3E)v, (3p)s, (3x)s, (3V)s, (3E)s,
etc., are really Jacobians, not partial derivatives wth
respect to hypothetical auxiliary variables ot; a". In the

derivation by means of Jacobians explained in the preceding
pages no hypothetical auxiliary variables were involved

and likewise no hypothetical unknown  functions of a,

and p, or of a, and T, or of ot; and v, etc., were involved.
Furthermore it is really not a nmatter of hypothesis that

(3xi) = - (dxo)

The quantity (3xi) is really the
XZ *

1 2

Jacobian dﬁfti*}*P—)*?J anc) the quantity (3xy) x is really the

Jacobi an *& —+la.. The Jacobian jA+*—E~- js equal to the
.Ts D) Te p)
negative of the Jacobian -c-’“";)i&’“"- because interchanging two
0T, p)

rows of a determnant changes the sign of the determ nant.

Finally it is not an arbitrarily adopted convention that

(3i)p = 1. The quantity (3x), 1is equal to the Jacobian
1) /\J\, H H H

_ T,P}{tV\hlch|sautormtlcallyequal to 1.

: Bryan, G.H,, in Encyclopadie der matematischen

\ll\g(%enschaften, B.G. Teubner, Leipzig, Bd. V, Teil 1, S. 113,



Part |1

Rel ati ons between thernodynam c quantities and
their first derivatives in a one-conponent system
of one phase and of variabl e nass

I ntroduction

Thernodynamic relations in open systens of one conponent
and of one phase and other open systens have been anal yzed by
Gllespie and Coe,* Van Wlen,? Hall and lbele ® and Beattie
and Qppenheim* also in part incorrectly by Larnor, ° Mrey,©
Goranson, ' Sage, ® Mel wn-Hughes, ® Callen, ! and Weeler.

! Gllespie, L.J., and J.R Coe, Jr., Jour. Chem Phys., 1,
103- 113, 1933.

2 Van Wl en, GJ., Thernodynanics, John Wley and Sons, Inc.,
New York, Chaprman and Hal |, London, 1959.

3 Hall, NA, and WE. Ibele, Engineering Thernodynamics,
Prentice-Hall, Inc., Englewood-Adiffs, NJ., 1960.

**  Beattie, J.A, and Irwin Qpenheim Principles of
Ther nodynamni cs, H sevier Scientific Publishing Co., Ansterdam
ford, NewYork, 1979, pp. 296-320.

® Larnor, Sir Joseph, Proc. Roy. Soc. London, 75, 280-296,
1905.

> Mrey, GW, Jour. Franklin Inst., 194, 425-484, 1922.

" Goranson, RW, Thernodynani ¢ Rel ati ons i n Ml ti-Conponent
Systens, Carnegie Institution of Washington Publication
No. 408, 1930.

8 sSage, B.H, Thernodynam cs of Milticonponent Systens,
Rei nhol d Publ i shing Corp., New York, 1965.

® Mel wn-Hughes, E A, Physical Chemistry, Perganon Press,
London, New York, Paris, 1957.

1 callen, HE., Thernodynamcs, John Wley and Sons, Inc.,
New York and London, 1960.

1 \Weeler, L.P., Josiah Wllard Gbbs - The History of a
Geat Mnd, Rev. Ed., Yale University Press, MewHaven, 1952,
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In the following text the relations for the energy and the
entropy of a one-conponent system of one phase and of variable
mass are derived and a table of Jacobians is presented by
means of which any first partial derivative of any one of the
quantities, the absolute thernodynamc tenperature T, the
pressure p, the total nass M the total volune V, the total
energy U and the total entropy 5, wth respect to any other
of these quantities can be obtained in terms of the partial
derivative of the specific volune wth respect to the
tenperature, the partial derivative of the specific volunme
with respect to the pressure, the heat capacity at constant

pressure per unit of nass, and certain of the quantities 7\ p,

w 7 >

At VvV, U S

In the case of a one-conponent system of one phase and of
variable mass it is not necessary to nmake use of a definition
of heat or a definition of work in the case of an open system
when nmass is being transferred to or fromthe systemin order
to derive the relations for the total energy and the total
entropy. For sone purposes, however, it has been found useful
to have definitions of heat and work in the case of open
systens when nass is being transferred to or fromthe system
The definitions of heat and work in the case of open systens
used by various authors are discussed in Appendix A to
Part I1.

Cal cul ation of the total volune, the total energy, and the
total entropy of a one-conponent system of one phase and of
vari abl e mass as functions of the absol ute thernodynam c

tenperature, the pressure, and the total nass

Ther modynami ¢ fornul as can be developed in the case of a
one- conponent system of one phase and of variable mass on the
basis of the following set of variable quantities: the

absolute thernmodynamc tenperature T, the pressure P, the
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total mass M the total volunme V, the total energy U the
total entropy 5 the specific volume V, the specific energy U,
the specific entropy 5 the heat capacity at constant pressure
per unit of mass ¥, and the latent heat of change of pressure
at constant tenpérature per unit of nass | p. Two one-
conponent systens of one phase and of variable nmss are
illustrated in Figure Il—4s The formulas developed in the
following pages apply to either open system | or open
system Il in Figure 1. Qpen systenms | and Il together
constitute a closed system

In the case of a one-conponent system of one phase and of
variable mass the total volume V is a function of the absolute
thernmodynamc tenperature T, the pressure p, and the total

nmass M
V=1(7,p, M . (re-1)

The total volune is equal to the total mass tines the specific

volume
(¥
V=MW, (H-2)

and the specific volume is a function of the absolute
t hernodynanic tenperature and the pressure,

V=<t>(T, p) . (11-3)

From equations (I1-1), (Il1-2), and (I1-3) it follows that

(EE%J &% - 4 ),p‘ (1I-4)
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av) (aF)
= = Ml=— ’ IT-5
(ap T, M 3p iy ( )
and
AY w
(12 =Y. f11-6)
\ ZMJ7s u oA
The total energy is a function of the absolute

t hernrodynanmi ¢ tenperature, the pressure, and the total nass

U=M, p, M . (H7)

It is known that the total energy of a one-conmponent system of
one phase and of variable mass is proportional to the total
mass at a given tenperature and a given pressure because it
requires M times as much heat received and M times as nuch
wor k done to take M tines as nuch substance from the standard
state to the given state as to take unit mass of the substance
from the standard state to the given state through the sanme
set of intermediate states. Thus the total energy is equal to

the total mass tinmes the specific energy
ot
u= M. (1r-8)
Furthermore it is known from the case of a one-conponent
system of one phase and of unit mass discussed in part | that

the specific energy is a function of t he absol ute

t hermodynam ¢ tenperature and the pressure
U= 8(T, p) . (H-9)

Thus the relation of the total energy to the absolute
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thermodynam ¢ tenperature, the pressure, and the total mass is
expressed by the equation

UT, p,M - [/(To, PQ D)

e 3 Y 3 -
= f{M[cp - pa—Z’JdT + M[IP - pa—g]dp + UdM}. {I1-10)

Tot L) MO

Fromequations (I1-7), (11-8), (11-9), and (11-10) it follows
t hat

(%)p,ﬁ - *’:Ep - P(’S“g)p] , (I1-11)
(g_g)M - ”:TP-P(S—E)T] : (I1-12)

and
(ﬁ\r. > - 7. (1I-13)

The total entropy is a function of the absolute thermodynamic
temperature, the pressure, and the total mass

S- EiT,pM) . (re_14)

It is known that the total entropy of a one-conponent system
of one phase and of variable mass is proportional to the total
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mass at a given tenperature and a given pressure because it
requires Mtimes as much heat received to take Mtinmes as much
substance from the standard state to the given state as to
take unit mass of the substance fromthe standard state to the
given state reversibly through the same set of internediate
st at es. Thus the total entropy is equal to the total mass

tines the specific entropy
L™
S =M. (11-15)
Furthernore it is known from the case of a one-conponent
system of one phase and of wunit mass discussed in Part | that
the specific entropy 1is a function of the absolute
t hermodynanmi ¢ tenperature and the pressure
S = o0o(T, p) . (11-16)
Thus the relation of the total entropy to the absolute

t hermodynami ¢ tenperature, the pressure, and the total nass is

expressed by the equation

S(Tf p1M - S(T01 po, Nb)

p'H [
ot r - -
- f{uf,;ldmwrf-dp + Sim| . (11-17)
Toe Dos Mp

From equations (11-14), (11-15), (11-16)¢ and (11-17) it
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fol | ows that
(1) = MA (H18)
dep’ M T
/ )
g_i)’ﬂ - ¥-2, (I1-19)
and

TIEET ()

1 9P

It is to be noted that the derivations of equations (11-10)
and (11-17) do not depend on definitions of heat and work in
the case of open systems.'? In equation (11-10) the
coefficient of dT is the partial derivative of the total
energy with respect to tenperature at constant pressure and
constant mass, which is known fromthe case of a one-conponent

one-phase closed system to be Mc, - §X L Likewise the
LY °7J

coefficient of dp in equation (11-10) is the partial

derivative of the total energy with respect to pressure at

constant tenperature and constant mass, which is known from

the case of a one-conponent one-phase closed system to be

M[Tp - pi‘;- | . The coefficient of dMin equation (11-10) is
J

2 It is possible to define heat and work in the case of a

one-conponent system of one phase and of variable mass and
this has been found to have usefulness in sone engineering
probl ens. See Appendix A to Part II.
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the partial derivative of the total energy with respect to
mass, which is sinply the specific energy, because the
addition of mass is at constant tenperature and constant
pressure. Likewise in equation (11-17) the coefficient of dT
is the partial derivative of the total entropy with respect to
tenperature at constant pressure and constant nmass, which is

known fromthe case of a one-conponent one-phase closed system
. .Cp . . .
to be |V:£rr. Al'so in equation (11-17) the coefficient of dp

is the partial derivative of the total entropy with respect to
pressure at constant tenperature and constant mass, which is
known from the case of a one-conponent one-phase closed
E . | |
system to be Mmp . The coefficient of dMin equation (11-17)
is the partial derivative of the total entropy with respect to
mass, which is sinply the specific entropy, because the
addition of mass is at constant tenperature and constant
pressure.

Necessary and sufficient conditions for (11-10) to be

true are

{a["(f'p SEN e B

L]

(n-22)
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and

13

(au\ i {BE‘(?" j P(%)T):l} ] (11-23)

3

[,»

Simlarly, necessary and sufficient conditions for (11-17) to

be true are
; %
(L) . (1120
8T 0, M ap M
2 E‘D\\
(5;? (l%ML/ Ao (n_25)
p.H T;P
and

, a(afa)) |
&), (5 (1129

Carrying out the indicated differentiations in (11-21) and

¥ Oggood, W.F., Advanced Calculus, The Macoillan Co.,
Nav York, 1925, p. 232, and Osgood, W.E, Lehrbuch der
Funktionentheorie, B.G. Teubner, Leipzig, 5 Aufl., 1928,
Bd. L, S 142-150.
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(11-24) one obtains

M_a_R . OF m3Cp 8y~ 3F JTT 97,
T N -
and
le_!.rz ij/g. - Mla_EE II-28
7ar CHTT < Mg - (11-28)

Combining (11-27) and (11-28) one has

h = -r|£ . (ii-29)

Fan (11-27) and (11-29) it also follows that

Aozogls (11-30)

o

From (11-22), (11-23), (11-25), and (11-26) only the already
known equati ons

do - _ 8 -
< - - P35 . (11-31)

gt
o "
ou j OF /TT on\
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|f = A (11-33)
and
= _E.jél ’ (II-34)
are derived,

Thus in order to obtain conplete thernodynanc
information for a one-conponent system of one phase and of
variable mass it is only necessary to determne experimentally
the specific volume as a function of tenperature and pressure
and the heat capacity at constant pressure per unit of mass as
a function of tenperature at one pressure. This is the same
conclusion as the one reached by Bridgman''* in the case of a
one-conponent system of one phase and of constant mass. No
additional neasurenents are required to obtain conplete
thernodynamic information for a one-conponent system of one
phase and of variable mass beyond those required to obtain
conpl ete thernodynamic information for a one-conponent system
of one phase and of constant mass.

' Bicigroan, P.M, Phys. Rev., (2), 3, 274, 1914.
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Derivation of any desired relation between the
t hermodynami ¢ quantities Top, M V, U Sy and their
first derivatives for a one-conponent system of one
phase and of variable mass by the use of

functional determ nants (Jacobi ans)

Equations (I1-1), (11-10) and (11-17) can, in general, be
solved for any three of the quantities, Tg p» M Vo Uy S, as
functions of the remaining three. The first parti al
derivative of any one of the quantities, 7\ p, M V, U S
with respect to any second quantity when any third and fourth

quantities are held constant can be obtained in terns of the

three first derivatives, Ii___l, qfl{lg and "'cn, and certain of the
01

(0] r
oo 15
quantities, T po M V, U Sy by application of the theorem
stating that, if X" = u(x, y» 2)g x = f(ug v, w,

y = <t>(ug Vg Wgo 2z = 4/(Ug Vo W), then one has

3 3¢ A
du dv oOw
3y dy dy
du dv dw
dz dz dz 3(Xs v+ 2)
dx’ du dv dw d(u,v m
9 f
EW) = — = A S L A (11- 35)
Yo 2 dx dx dx 3(xs \n Z
du dv dw d(ug Vg W)
dy dy dy
du dv dw
dz dz dz
du dv dw

15 A proof of this theoremfor the case of functions of three
i ndependent variables is given in Appendix C to Part II.
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provided all the partial derivatives in the determnants are
continuous and provided the determinant in the denominator is
not equal to zero.

In Tables Il-1 to 11-15 the values of the Jacobians are
given for each set of three of the variables, T, p, M V, U §
as x', y, z, or Xgy, z, and with A\'p, M as u, v, w There
are sixty Jacobians in the Table, but one has

d(x, v, z) _ _d(z, y, x) - d(y,z_x) " (11-36), (11-37)
3(u. v, ~ d(u, v, W d(u, v, W

because interchanging two rows of a determinant changes the
sign of the determinant. Hence it is only necessary to
calculate the values of twenty of the sixty Jacobians. The
calculations of these twenty Jacobians follow

¥ 3 B
ar 3p dm

My o) pdT W I - 4 (11-38)

3(r, pr i) aT dp  dM

dp dp dp
dT dp dMm
LA VA1
v, Tp) , |dL BT dr| _B_V) v
3T p, W T 3 | C (BMTp = Vi (11-39)
la 1£ la ’
ar  dp am
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3T, p. M
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dT
dT
aT
3£
dT

du
dp dM
a . o
dpdM

p
p dM
3S 38
3p 3M
33
3p 3ir
3p 3p
3p A
v 17
[ 3M
a o9
dp dM
am dM
dp dM
U du
dp M
dar 41
dp dM
M du
dp dm

(BU\ ~
it = U :
NL'T,p
N
dm‘}T'p

_ ﬁ:’)
o)

”[T$) LT<OA] oo
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(11- 40)

(11-41)

(11-42)

(II-43)
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as %% 3
3(S. T.4) _TT aT _%EAF
dgT, P>M dT dp dM
av dv  dM
T dp dM
du dU gy
dar 4P gm
duT V) _ |dT dT dT
d(T,p, M ~ |dT dp dM
dv. dv dv
ar dp ™

a8 a
ar  dp %?A
Cla a8
AT, p, a  dp dM
v dv o dv
dT  dp dM
¥ O W
US T.U a dT oar
r,p M - g dp dV
du du dqu
dT dp dM
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3T

3T
3K

3f
3D
am
3D

32
dm
3E
dM

dM

am

o Q_[oooo

2le wlw e

Q_| |oo
<2 gl'h <l

5
T
Q_lOJ
—i=t

e

o
¢

- v f3v o
—H[(U + pV)(%) - Cp
P
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(11- 48)

(11- 49)

(11- 50)

v].-

(11-51)
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©©

35
aT

dSp.V) _ [dp
d(T,p.M) ~ | dT

4
dT

I63

dMm

oo

[

M}-%v_"’ 5(%29] ¢ (11-52)

]
=(

|

Iz 38 g
o

<% <IB

(o}
©
o

35 &S
3T 3p
3(5.p.U) _ jdo dp
3(7\p, M) dT dp d™M

3£ dE
dT dp d™m (H-53)

I8 SI

]

2@ -1+ H(E) |
M[T(U 78) + Sp(aT , ;

=3

MLM M

dT dp dM o -

UMY MM M| - -H{T(%ﬂ | +”(£)T] "

3(2% P» M) dT dp dMm

dT dp dMm

95 35 3S
dT dp dMm

diT, poM) dT dp dM

dT dp dM (11-55)
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ds 43

ar dp dM

LY VI V] AT NI

ar dp dm| ° "’*'Z[P(aT)P* TKZ)T\ g
%1_7 du  au

T dp dM (11-56)

H 35 B
aT dp oM
o
aT dp o
w du
3T ap oM

wf[i o7 - ()« 2E) ]} (5D



Table I1-1
Jacohi ans of extensive functions for a
one-conponent system of one phase

3(x'.y . 7) 30:, v, 7)
a(T,p>M -t 3(7%p )

¥ Z T‘p

=C

ac
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Table 11-2
Jacobi ans of extensive functions for a
one- conponent system of one phase

d(x', v, 7) d(x, v, 2)
(T, .M " 3(T, p. M

\5’\ .Z o

P 1

. o)

U o "G (111
S




Table 11-3
Jacobi ans of extensive functions for a
one-conponent system of one phase

ax' vy, 7) 3(X, Y, 2
3T, p/ef) * 3CT, p, ¥

Vi Z 7\ ¥
x.f
X
p v
g {3E)
ap v
v WY | v
H[(t‘f + 5 )T + BT) ]
: ), )]
Th %/
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Table 11-4
Jacobi ans of extensive functions for a
one-conponent system of one phase

dW v, _z) 3(x,_ v, z)
(T, pM *  d(T,pM

y» z T, U
x'\
X \
p = U
y @) + /) ]

ST)p 3p T
\ —H[(E & ;:.-‘ﬁ';)(ﬂ + W’a—F ]
5, 6

S
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. Table I1-5
Jacobi ans of extensive functions for a
one- conponent system of one phase

Hx'; v, z) d(xsy, z)
dT,p,M " d(T,p,M
T,S
X'\
X
p -S
M .»( )
y
v . ["3_5" s(o¥ ]
# V(af)p * S(ap )T
U
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Table 11-6
Jacobi ans of extensive functions for a
one- conponent system of one phase

ad' . v. 7) 3(x, v, z
d(T.p,M * d(T, psM

=
o,
mlm
=i
-U""'\-—-F'
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Table I1-7
Jacobians of extensive functions for a
one-component system of one phase

ax', Yf 2 = _3(x. v. 2
dTpm) 3(T, pM)
Yt z p,V
>X<'\
T \%
M -n(g-;’:)p
u M[CU* p)(ff), - /]
s o) S
[P-"11)d
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Table 11-8
Jacobi ans of extensive functions for a
one- conponent system of one phase

3(x' z) 3(X,VY,7z
Sre) stk

V'i\z p, ¢

x \

T 7

M —H[cp - p(g—i:)p]

\ H[(f!' + PF)(S_'E) - ch]
P

S M[EE - 15) + §p(~§%ﬁ)p]




Table I1-9
Jacobi ans of extensive functions for a
one- conponent system of one phase

o e

y» Z p, S
x"\
X \
b
T S
-
H H =

y "))

J+§p(

C
%
e
rafpe
—~
<
¢
3L,
.u“--...-/
| I—




Tabl e 11-10
Jacobi ans of extensive functions for a
one- conponent systemof one phase

d(x\ v, 2) 3U, v, 7)
d(T,p,M ' Z(Tip, M

—

X X
/Ix

M, ¥V




Tabl e 11-11
Jacobi ans of extensive functions for a
one- conponent systemof one phase

X # Yf 7) X,y 2)
d(T,p*M * d(Tirp. M

\y» z N, (I
*'\

\% H:[‘r(g—g)g + g %E)T]
P
S yl[p(-g—;‘:); + E;,E(g—f)r]
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Tabl e 11-12
Jacobi ans of extensive functions for a
one- conponent systemof one phase

AT, p.M (T, p.M
M S
x'\
X o\
- JdW
P METE
oV . Epfav
V 2 —Rfa¥
¥ [(31')? T ( p)T]

U
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Tabl e 11-13
Jacobi ans of extensive functions for a
one-conponent system of one phase

3(x, v, 7) 3Ax.y, 7)
3(T, p, K&)' 3(T, p, A)

vz 7,0
x"\
X\
T K[(U + pl’)(ig)m + W(g;) :l
T 2
p -+ pa‘?)(g—f)p - &7]
X -u:[r(%—g): + Ep(%g);-]
: o{po T 50
P T
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Table 11-14
Jacobi ans of extensive functions for a
one- conponent systemof one phase

3L Viz) 3(X, i 2)

anp. M LA

' f(i)/4(11]

F’ -5

: [(R(h]

’ -] 56
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Table 11-15
Jacobi ans of extensive functions for a
one- conponent system of one phase

d(x' z) 35)(,! z:
r, p, 3 p, It

# z U, S
i'\\
T H[(Ef - r.‘s')(g—;.";) - EP(—gg)T]
P

P H[E;!(E-Tg)-k.gp(g—;)}

P
. ] )
: of - S )
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In order to obtain the first partial derivative of any-
one of the six quantities, Tg p, M V, U* Sg with respect to
any second quantity of the six when any third and fourth
quantities of the six are held constant, one has only to
divide the value of the Jacobian in which the first letter in
the first line is the quantity being differentiated and in
which the second and third letters in the first line are the
quantities held constant by the value of the Jacobian in which
the first letter of the first line is the quantity wth
respect to which the differentiation is taking place and in
which the second and third letters in the first line are the
quantities held constant.

To obtain the relation anong any four derivatives having

expressed them in terms of the sane three derivatives,
’ A A

3y . fav o o
(-(;}_17'1—0) , \%E)T 9 and [gn, one can then elimnate the three

derivatives fromthe four equations, |leaving a single equation
connecting the four derivatives. |In addition to the relations
among four derivatives there are also degenerate cases in
which there are relations anong fewer than four derivatives.
In case a relation is needed that involves one or nmore of
t he thernodynamic potential functions, H= Uf pv> A EU- TS
G=Z U+ pV- TS, partial derivatives involving one or nore of
these functions can also be calculated as the quotients of two
Jacobi ans, which can thenselves be calculated by the sane
nmet hod used to cal cul ate the Jacobians in Tables II-1 to II-15«
It is interesting to note that in the transformations of
the thernodynam c quantities To po M Vo U S from one
coordi nate space based on any three of these six quantities to
anot her coordinate space |ikew se based on three of these six
quantities, the enthalpy H the Helnmholtz function A and the
G bbs function G appear automatically in the expressions for

many of the Jacobians invol ved.



Appendix A to Part Il

Discussion of the definitions of heat and work in the case
of open systens used by various authors

According to Larmor,! Morey, 2 Goranson, * Moel wyn- Hughes, **
Callen,® and Weeler® in the case of an open system to which
mss is added or from which mass is taken away, t he
differential of the heat received dQ is equal to the absolute
thernmodynanic tenperature T times the differential of the
entropy of the system dS. Neither Larmor nor Mrey nor
Goranson nor Mbel wyn-Hughes nor Callen gave an operational
analysis of any open system in support of their conclusion
that dQ = TdS in the case of open systems. \Weeler attenpted
to explain the Gbbs differential equation for an open system

' Larnor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Morey, GW., Jour. Franklin Inst., 194, 433-434, 1922.

®  Goranson, RW., Thermodynamic Relations in Multi-Component
Systems, Carnegie Institution of Washington Publication
No. 408, 1930, pp. 39, 41, 44, 52.

* Moel wyn-Hughes, E. A, Physical Chemistry, Pergamon Press,
London, New York, Paris, 1957, p. 287.

> Callen, HB., Thernodynamics$ John Wley and Sons, Inc.,
New York and London, 1960, p« 192.

6 \Weeler, L.P., Josiah Wllard G hbs-The Hstory of a Geat
Mnd, Rev. Ed.; Yale University Press, Mw Haven, 1952, p. 76.
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of n conponents

73

dU = TdS - pdV + uydm + \xodmp ... + U, »’
where \ii, Vi, eee Un» denote the chemcal potentials of
conponents 1, 2, ... n, and mgy m* eese @ denote the nmsses
of components 1, 2, ... n in the open system in the follow ng

way.

Wheel er supposed that an:

. imagi nary box is constructed with walls which
in addition to being elastic and thermal |y
conducting are also porous, so that the solution can
pass freely through the pores in either direction -
from inside out or from outside in. Then if the
condition of the fluid is slightly altered as
before, the change in energy in the box wll depend
not only on the heat which may enter or |eave and
the volune change due to the buckling of the walls
but also on the masses of the conponents of the
fluid going through the pores. Thus this energy
change cannot be conputed by the prinme equation® as

it stands. It nust be altered by the addition of as
many energy ternms as there are conponents of the
fluid passing through the walls. If there are n

such conponents, the generalized prime equation wll
express the change in energy in terms of n + 2
i ndependent vari abl es. Each of the added

" Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sciences,
116, 1874-78, or Collected Wrks, Longmans, Geen and Co.,

3,
New

York, 1928, Vol. 1, p. 63.

8 The equation here referred to as the prime equation is the
Clausius differential equation for closed systens:

du = TdS - pdV.
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energy terms, in analogy to those in the prine
equation, G bbs expresses as the product of two
factors, one an intensity and the other an extension
factor. Thus just as the heat termis expressed as
the product of tenperature and the change in
entropy, and the work term as the product of
pressure and the change in volune, so an energy term
due to the added nass of any conponent was expressed
as the product of what G bbs termed a "potential™
and the change in mass.

However, according to Gllespie and Coe® in the case of an

open system

dS = A + | Stdni (11-A1)
1

I.
2
when there is sinultaneous reversible transfer of both heat
and nmss. In this equation, dS denotes the increase in the
entropy of the open system dQ the amount of heat received by
the open system T the absolute thernodynanic tenperature of
the open system \éj the entropy of unit mass of kind i added
to the open system and dmt the mass of kind i added to the
open system

The equation of Gllespie and Coe applied to the case of
an open system in which there is simltaneous reversible
transfer of both heat and nass appears to be correct. Let us
consider the following sinplest inaginable case of an open
system In a thernostat filled with water, suppose that one

has a cylinder closed at both ends by pistons and containing a

° Gllespie, L.J., and J.E Coe, Jr., Jour. Chem Phys., 1,
105, 1933.
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fluid of constant conposition (Figure [1-A-1). Suppose
further that the pistons are connected by a rigid bar so that
the vol une between them renmains constant. In Figure I1-A-1,
let the two arrows indicate the position of a fixed circular
line around the cylinder. The fluid between the two pistons
constitutes a closed systemand at this stage the tenperature,
pressure, and volume of the total mass of fluid are kept
constant. Let us next suppose that the two pistons are noved
slowy to the left in unison from the positions indicated in
Figure 11-A1 by solid lines to the positions indicated by
dotted lines. The mass of fluid to the left of the arrows
then has received an addition and that to the right of the
arrows has undergone a dimnution. The nmass of fluid to the
left of the arrows has constituted an open system which we
designate as system I. Li kewi se, the mass of fluid to the
right of the arrows has constituted a second open system which
we designate as systemll. Systens | and Il together make up
a closed system the entropy of which has renained constant.
The entropy of system |, S* has increased by an anount equal
to the specific entropy of the fluid times the mass of the
fluid that has been noved past the arrows from right to |eft
and the entropy of systemll, S-~, has decreased by the sane

anount. Thus, we had:

dsS!  « SdAf?, (11-A-2)

ds  «  SdM? SSAM; (1T-A3)(11-A-4)

and

ast 4 gsll

0, (II-A-53)

where S denotes the specific entropy of the fluid and M and
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A1l denote the nmasses of systens | and Il. At the sanme tine,
no heat has been received by the fluid from the water bath
since the tenperature of the fluid has remmined the sane as
that of the water bath and the pressure and total volunme of
the fluid have renmi ned constant. The question then remains to
be answered whether or not it can be said that system | has
received any heat and sinilarly whether or not system Il has
given up any heat. To say that at constant tenperature,
constant pressure, and constant specific volume x grams of
fluid have transported y calories of heat from system Il to
system| is the sane as saying that these x granms of fluid at
the constant tenperature t! and constant pressure p' contained
y calories of heat which they carried with them It is well
known in calorinetry, t her nodynani cs, and statistical
mechanics that it is not possible to say that a body at a
certain tenperature and pressure contains a certain anmount of
heat* Doolittle and Zerban'® have stated that "nost nodern
authors of texts on thernmodynam cs and on physics have agreed
on the following conception of heat : Heat is energy
transferred from one substance to another substance because of
a tenperature difference between the two substances.’” In the
case we have been discussing, system |, system Il, and the
water bath of the thernostat have all remained at the sane
tenperature. Consequently, it cannot be said that there has
been any heat flow fromthe water bath to system | or system
Il or from system Il to system |I. At constant tenperature,

constant pressure, and constant specific volunme, we thus had:

10 Doolittle, J.S., and A H. Zer ban, Engi neeri ng
Ther nodynani cs, International Textbook Co., Scranton, 1948,
p. 8.
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i@ = 0 (11-A-6)

40ll = 0 (11-A7)
and

d@t + dg* - o (11-A-8)

where @ and Q' denote the heat quantities received by
systems | and Il. Thus the heat received by a one-conponent
system of one phase and of variable mass can be represented by

the line integral

r" p! M
Q - JMcdT + Midp + Octff} - (11-A-9)

where ¢, and 'r are functions of T and p and the coefficient
of dMis zero.

Ve turn next to the question of the definition of work in
the case of a one-conponent system of one phase and of
variable mass. In this case it remains to be determned
whether or not dMis equal to pdV if one wishes to introduce a
definition of work in the case of an open system when mass is
being transferred to or from the system  Several authors,

""" The question of the definition of the heat received by a
one-conponent system of one phase and of variable mass has been
di scussed by this author nmore conprehensively on pages 17 to 33
of Carnegie Institution of \ashington Publication No. 408A
entitled Thernmodynami ¢ Relations in Open Systems published in
1977.
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Morey, ' Goranson,'®* Moel wyn-Hughes,'* and MWheeler,'® have
stated that in the Glbbs differential equation dW = pdV.
However, none of these authors drew a diagram of an open
system and none of them apparently realized that this
statement does not carry over from the Clausius differential
equation for a closed system without the necessity of an
i mportant new physical decision.

In regard to the question of the definition of work in
the case of an open system we may note that GJ. Van Wlen,*®
formerly Chairman of the Department of Mechanical Engineering
at the University of Mchigan, states in his book entitled
Thermodynamics that "A final point should be made regarding
the work done by an open system Matter crosses the boundary
of the system and in so doing, a certain amount of energy
crosses the boundary of the system  Qur definition of work
does not include this energy.''

The question of the definition of work in the case of an
open system has been discussed by the present author V/ith
Professor R L. WIld of the Physics Department at the
University of California at Riverside. In this discussion we
supposed that in a thernmostat filled with water there was a
cylinder closed at both ends by pistons and containing a fluid
of constant conposition (Figure |1-A-2). In Figure I1-A-2

12

Morey, GV., op. cit., p. 434

i

Goranson, R W, op. cit., pp. 39, 44.

" Moel vyn-Hushes, E.A., op. cit., p. 287.

> \theeler, L.P., op. cit.; p. 76.

¢ Van Uylen, GJ., Thernodynamics, John Wley and Sons,

J
Lnc., 'k*wYork, 1959, p. 49.
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the two arrows indicated the position of a fixed circular line
around the cylinder. The fluid between the two pistons
constituted a closed systemand at this stage the tenperature,
pressure, and volune of- the total mass of fluid were kept
constant. W next supposed that the two pistons were noved
slowy to the left in unison from the positions indicated in
Figure I1-A-2 by solid lines to 'the positions indicated by
dotted Iines. The mass of fluid to the left of the arrows
then had received an addition and that to the right of the
arrows had undergone a dinmnution. The mass of fluid to the
left of the arrows constituted an open system which we
designated as system I. Li kewi se, the mass of fluid to the

right of the arrows constituted a second open system which we

designated as systemIl. Systens | and Il together nede up a
closed system the energy of which renmained constant. The
energy of system I, [/I, had increased by an anount equal to

the specific energy of the fluid times the nmass of the fluid
that had been noved past the arrows fromright to left, and
the energy of system Il, |fi%-y had decreased by the same

amount. Thus we had

dut = UdM, (11-A 10)
dut = UdM! = -WAFL,  (1T-A-11)(11-A 12)

and
dut + dut  « 0, (1'1-A-13)

where U denotes the specific energy of the fluid, and M and
#11 denote the masses of open systems | and I1. In the case
of the open one-conponent system system|, work was certainly

done by the fluid on the piston at the left hand end equal to
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the pressure times the increase in volume
dW = pVdM, (11-A-14)

where p denotes the pressure of the fluid, and V denotes the
specific volume of the fluid. Since the change in energy of
system | was UdM* and work was done by system | equal to
pVdtfi, the amount of energy that came across the fixed
boundary with the inconmng nmass was UM+ p\7E1M‘- whi ch was
equal to Fdlfi. According to Van Wl en'’ none of the energy
represented by the term HIM- is to be considered as work and
this was confirmed by Professor Wld. Thus we had

dut = HIM - de (11-A-15)

The major new physical decision that has to be made if the
definition of work is to be extended fromthe case of a closed
systemto the case of an open systemis whether or not it can
be said that work is done at a fixed boundary surface across
which mass is transported. Van Wlen and Professor WIld have
concluded that it cannot be said that work is done at a fixed
boundary surface across which mass is transported.

7" fan Wlen, op. cit., pp. 49, 75-77, 80.

Hall and lbele in their treatise entitled Engineering
Thermodynanmics (Prentice-Kail, Inc., Englewood Cliffs, NJ.,
1960) stated on page 108 that "A general equation for energy
change in an open systemcan be witten

dE « dQ - dW+iI(e + pv);dm. (7.25)"
This equation reduces to equation (Il1-A-15) in the case of a

transfer of mass of constant conposition at constant
tenperature and constant pressure, in which case dQ « 0.
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Sage, !° on the other hand, stated that in the case of an
system of constant conposition if the material added to
;ystemis at the same pressure as that of the system the
litesinmal anount of work wis given by the equation

w+ij = pdV- pVdm (3.18)

lis equation j represents frictional work -(which would
:e to zero in a reversible change). Sage? stated further-
an open systemis one for which material is transported
JS the boundaries. Sage's equation (3.18) is thus
ided to be applicable to open system | of Figure I1-A2,
lis case Vis a function of T, p, and mand

V. ¥ v
dv = -E{—ldT+2!rD-dp+iE-dm (I'l-A-16)

furthernore

|g =V . (11-A17)
according to Sage
w
w+ " = p-zi%dT + p-(ﬁ\{dp + pvdm - p/\\/dm

= pwmdal + pwodp .
o7 3 (X - A-18)

:he transfer of material of constant conposition is at

Sage, B.H, Thernmobdynanics of Milticonponent Systens,
ihold Publishing Corp., New York, 1965, p. 47.

Sage, B.H, op. cit., p. 46.
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constant tenperature and constant pressure according to Sage
w+j = 0. Thus in the case of open system | discussed on
page 82 according to Sage w+ j = 0, Since open system| for
certain performed work p\7dM‘ against the enclosing piston
Sage’s conclusion requires that the p\\J/dM‘ part of the I?UM\
term be considered as work offsetting the work done by open
system| against the enclosing piston. In other words, Sage?!
considers part of the energy associated with the nass
transferred across the fixed boundary to be work, contrary to
the conclusion of Van Wl en, Goranson, and Professor WId.
The decision between these conflicting views is one to be nade
by physicists and engineers and is, | believe, of sone
interest, but so far as | am aware, all of the thernodynanic
rel ations and neasurenents needed in physical chemstry can be
obt ai ned wi thout involving any such decision or any definition

of work in the case of an open system %2

21 sage (op. cit., p. 47) stated that "This definition of
work for a constant-conposition system of variable weight
differs markedly from that wused by Gbbs and Goranson."
According to Sage, work is defined by these authors for cases
in which j is zero as follows:

r Y " -
w = pdV = np\ TBTV;) dT + (QZ) dp| + pVdm .
il ps W op T, m

This statenent is correct as far as Coranson is concerned, but
in regard to Gbbs it is not correct, since G bbs nowhere
nmentioned work or heat in connection with an open system in
his nemoir entitled fOn the Equilibrium of Heterogeneous
Subst ances/'

22 The definition of work in the case of open systenms has
been of interest chiefly to engineers concerned with flow
processes (see, for exanple, J«H. Keenan, Thernodynam cs, John
Wl ey and Sons, Inc., Hew York, 1948, p. 35).
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In accordance with the conclusion of Van Wl en, Goranson,
and Professor Wld, the work W done by a one-conponent system
of one phase and of variable mass can thus be represented by

the line integral

T,p,M
rr .

W = dT+ p|*dp + pVdMmi. [1-A-19
JIWOII plpp p | ( )

To»Po»”0o

This equation for work in the case of an open one-conponent

system of one phase or the corresponding differential form

dw = pl¥dT+ plndp+ pVaM (11-A-20)

has been found to be of use in sone engineering problens.



Appendix B to Part |1

Transformation of the work and heat line integrals from one
coordi nate space to other coordinate spaces in the case of a

one-component system of one phase and of variable mass

In Part Il it was shown that it is not necessary to
define either work or heat in the case of an open system of
one conponent and of one phase when nass is being transferred
to or fromthe systemin order to obtain the energy and the

entropy as functions of t he absol ute t her mrodynam ¢

t enperature, the pressure, and the total mass from
experinmental neasurenents. Thus the derivation of the
Jacobians listed in Tables I1-1 to 11-15 did not depend upon

definitions of work or heat in the case of an open system of
one conponent and of one phase when nmass is being transferred
to or fromthe system

For some purposes, however , it is wuseful to have
definitions of work and heat in the case of an open system of
one conponent and of one phase when mass is being transferred
to or fromthe system as was shown in Appendix A to Part 11.
The derivatives of the work done by a system of one component
and one phase and of variable mass are total derivatives with
respect to the variables chosen as the paranmeters defining the
paths of the integral. In order to obtain the total
derivative of the work done along a straight line parallel to
one of the coordinate axes in any coordinate space one obtains
fromTables I1-1 to 11-15 the partial derivative of the vol une
with respect to the quantity plotted along that axis when the
quantitites plotted along the other axes are held .constant and

one multiplies this partial derivative by the pressure.
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The derivatives of the heat received by a system of one
conponent and one phase and of variable mass are also total
derivatives with respect to the variables chosen as the
paraneters defining the paths of the integral. However, the
derivatives of the heat 'recei ved by a one-conmponent system of
one phase and of variable mass along straight lines parallel
to the coordinate axes in various coordi nate spaces cannot be
obtained by nultiplication of the' partial derivatives of the
entropy by the ’“absolute thernodynamic tenperature when
transfer of nmasses to or from the system are involved. I'n
such cases the total derivatives of the heat received along
lines parallel to the coordinate axes in any desired
coordinate space can be derived in terns of the total
derivatives of the heat received along lines parallel to the

coordinate axes in (7\ p, A)-space by transformation of the

heat line integrals as explained in the second half of
Appendix C to Part I1. Following is an example of such a
transformation. In the case of a one-conponent system of one
phase and of variable mass the heat line integral extended

along a path in (7\ M F)-space is

T, MV

. [(lde ., 2, 2
Q —f{deT-!- deM+dVdV}

T0| Mo! Vu

LMV
=f{1‘-!€:’vdi"+g—o H+EVdV} ) (11-B-1)
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In order to transformthis integral to (T, p, Af)-space " make

use of equations
Appendix C to Part
values in equations

(I1-C-63), (II-C-64), and (II1-C65) in
1. For the purpose of substitution of
(I1-C-63), (I1-C64) and (II1-C65) the

equi val ence of synbols is given in the follow ng Table.

Table |1-B-1

Equi val ence of synbol s

[ 0
X T
y M
z Vv
(@ 10)
@ { AThy v
oD [dQ
(dy }x. U:%'SJ L ¥
(40 (dQ\
dzJ \dvL ¢
u T
v p
w M
(o i
ary o
(BW.\ Mip
u» W
/dT \ o
[ aw),
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Substituting the values from Table [I1-B-1 in equation
(I1-C63) we have

Mp M, o

J_g.M dv  dm

T 3 3P

¥y

T d M

(%%]- - HE, = p . (11-B-2)

MV dT dT dT
dT dp d™

dM dM d™

dr dp dIl

dv dv dv

drT dp dM

and nultiplying out the quantities in the determnants we
obtain

dq e Ll dv M dvi. rodyo
(dT)}'-: V- Mc, = [p!_ S

Jw vt Jawi Jan (11-3-3)

L *\op/p \OL /) AOBT
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Snmlarly, substituting the values from Table [11-3-1 in
equation (11-G64) we have

M, Nip O

dar dT dT

dT dp d

dv dv dv

q dT dp d
(ﬁ% = , , (11-B-4)

T, V daMm  dM  dNn

dt dp d

dT dT dT

dT dp d

dv dv dvi

dr dp dM

ad multiplying out the quantities in the determinants we
obtain

[TF(%)IJ]%(S_E)T i (11-B-5)



ONE-COMPONENT SYSTEMS OF VARIABLE MASS 91

Finally, substituting the values from Table II-B-1 in equation
(11-C-65) we have

(

M, M, 0
dT dT dr
dT dp d
dM dM d
4o\ , dr dp dN
- = — . 11-B-6
C A av av dv 1ee
. dr dp dhi
jd1 dT dT
dT dp d
dM dM d
dif dp dN\

and multiplying ouft the quantities in the determnants we

obtain

Sl

)

- ) e, 0

= l = [—HF] < [‘
\ dVj M v p
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The corresponding values of the partial derivatives of

the entropy obtained fromTables 11-10, [1-3, and I1-2 are
(33) [Enravy  /ap\zl /7ap) W w
or 7 - ‘ e T
(—g—f;) SR HAN- AR I AN (1]-B-9)
5 L Wi \NVE P ] \CH

(B_S\ B ['(B_TF”) W : (g_;)T' (II-B-10)

1>

Thus it follows from (XI-B-3), (II-B-7), (Il-B-8), and
(11-B-10) that

(%Q‘I_')H'V = T(%%)H’V (I1-B-11)
and
(% = T(/%SF)T Y’ ‘11 (%-12)

but, finally, it also follows from(ll-B-5) and (I1-B-9) that

fe) ) TESY ¢ TT-8g AN
. 1 ¥ 'T; V



Appendix C to Part Il

Proofs of the relations:

alx'y yrz)
( dx' ) _ 3(u»vo W)
o y, z d(X, Vo 7)

3(u, v, w

o.o_lg_ Q_IQ_ Q_IQ_ o_lg_ olo
N C [l D9 CIN C [

du dv dv/

It is assumed that x' is a function of x, y, and z
X' =Uu)(X Y, Z). (11-G1)

and that x» y, and z are functions of u» vy and w

(1-C-2)
x = f(u v,w), y=<f>U Vv, W, z="Nu»v,v). (II-C-3)
(11-C-4)

93
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It is assuned further that these functions are continuous
together with their first partial derivatives. By application
of the theorem for change of wvariables in partial
differentiation one then obtains

g_X' - lax wax N (11-C-5)
- 3x du* dy du® dz du
ay _ayax ,ayay ,aydz | (11-C-6)
dv. ~ dx dv dy dv dz dv

and
X _ 3 dx X3y 3X 3z
dw T~ dx dwtdy dw*Fdz dw - (11-6-7)

Fromequations (I1-C-5), (I1-C-6) and (I11-C7) it follows that

W 3z ¥ 3x X3y A

dzdu = “dxdu"dydutdu (1I-C-8)

3 3z 3 3x X3y W

N7A A T Vo Y T (11-C-9)
and

dz 3w dx dw dy dw ™ d\;v ' (IX-L-10)

Dividing both sides of equation (11-C3) by ££f and both
L1

sides of equation (11-C-9) by _gE, l'i kewise both sides of
v
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equation (I11-C10 by J£ we have

dw
o ayax _ayx
ay U 3% dudy du °
dz = & (11-C11)
dy
ay _ayax _ 323Xy
dx? dv__ 3x dv_ dy dv
4z = iz (11-C12)
av
and
ay aya”™ aan
ay 3w dx dw dy dw
3z o 3z . (H- C-13)
3w

It follov/s that the right side of equation (I1-C11) is equal
to the right side of equation (I1-C12)

X QY dx | '3y
du ' dx 9u dy Su
92
du

11-CG 14
ay _ayda _ oy 3y ( :
dv dx av 9. dv

J

Y

Multiplying both sides of equation (11-C-14) by (-%%S) we
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have
dz /X 3¢ - ) X 3x 93X By
E(‘é: “3x 3u" 3y 3u/ " duldv " dx dv dy d )(11'0'15)

Likewise it follows that the right side of equation (Il-C12)
is equal to the right side of equation (II-GC13)

oz
av
a3 3 a3 (11-C 16)
dw dx dw dy dw
= dz
av/

Miltiplying both sides of equation (I1-C16) by Jﬂ A P we

have

32(3}:’ 8x 3x  drdM 3z/ 3" x 3 j A
ow

SE-EE-0%) - RE- L Baen

Consequently ve have fromequations (I11-C15) and (11-C17)

v 3u" dvdx du' dvdy du " dudv"™ 3udx dv 3udydv'
(11-C18)

- — -

(11-C 19)
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From equati on (I'I-C-18) it follows that

3V3z dE _<Mdz_& _ 1* I*! _Mixl | £971x 3z 3V 3x
3y 3u v y 3v3u ~ 3u 3v 3v 3u T3v3x 3u 3u 3x dv

(11-C20)
and fromequation (I11-C-19) it follows that
S 9x
3y v dw dy dw 3v dv dw dwdv dwdx dv dv dx dw
(11-C21)

bividing both sides of equation (II-C-20) by i o gi—gdj:

C.- gv
we have
323y 7y ¥ dx_dzo ¥ X
& _ 3u3v  3v du dv_dx_du___ du_dx dv Q3_G22)
ay - ’

3u 3v  3v 3u

and dividing both sides of equation  (I1-G21) by
(dZ—QY_ . dz QEOL\. e have

av aw  dwav J

dz ox 3z 3ax 9z 3X 3x Bz 3I¥ Ix

gy 3v dw ~ dwdv T Tdwdx dv Tdv dx dw T o)
HL = T, \ LL—\ J—AD)
®Y by - dr dy

dv dw dw dv

Consequently the right side of equation (11-CG22) is equal
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to the right side of equation (II-C23)

dz dx* dz dx* dz dx* dx dz dx* dx

dz dy dz dy.
dudv dvdu
dz dx! dz dx! dz dx'dx _dz dx'dx
_dvdw dwdv er“ar‘a— dv dx dw (11-G 24)
dzdy_dzdy
dv dw d_

Miltiplying both sides  of equation (11-C24) by

[ 9\%dy7_r \fd;,/dy dz dy\ Wa

ViU vl g have

’ z Ox
(3udv 3v 3u/V3v 3w " 3w 3v T8 3N 3v T 3xdvdv_v)

(11-C-25)
Consequently it follows that
ag)(azc_az B} a_z.a_z)
eX \3v Ju au av/\3v 3w 3w 3Jv
+(aza:_=’ - aaa:_r')(a_z_u . Biﬁx)
su v 9V JuJ\3v aw  3Jw ZV
(11-C-26)

3*\W3w 3v 3v 3*rA3u v 3" 3uy

EE-EREE-5R)
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f
Equation (11-C-26) is then solved for ﬂf{—and we thus obtain

X (.aaa_#_a_z )
ox v ow ow dvJ\dudv dv 3u

(E.z,a_# i a_za_x’\(a_ééx - 22 Bv)
3v dw  dw 3v\

Z z QX ¥ d2f\ldz dvn dz d
: {(\gv__d% ~du ‘3\//53\?15‘%— Tdw dv)

(11-C27)

Miltiplying out the expressions in parentheses in equation
(11-G27) we have

3x "™ | 3v3w3u3v 3u3v3vdu dwdv dudv dwdv dv du

_ gz_s_v_?»_z_ay+3_z3_A§z§y+sza_A3_zgx_dz_dy_c1a§x]
3u3v 3v 31 3udvdwdv dv dudv dw dv 3u dwdv

T ]-i7‘L"££-"£JLZ. NECMENME NMZ M NN MK EMLIENZ
[ 3 3udv dw dv du dwdv du dv dv dw du dv dwdv

dz dx dz_dy  dz dx dz dy , dz dx dz dy _dz dx dz dy]
dwdv du dv dwdv dv du dv dwdu dv dv dwdv duJ "
(11-C28)

Now the third term in the bracket constituting the nunerator

of the right side of equation (I1-C28) cancels the sixth term
in this bracket « Likewise the fourth term in the bracket
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constituting the denomnator of the right side of equation
(I1-C28) cancels the fifth term in this bracket. The
remaining terns in the nunerator and denom nator of the right

side of equation (I1-C28) have a comon factor :ﬁ) which we

next divide out. The terns that are then left are equivalent
to the quotient of two Jacobian determinants. W thus have

dxt odxt dx]
_du _dv dw
1z 12 12z
du dv dw
dz _g_z az
du vV 3w
3x\ -
(dx) S varvarw i (11-C29)
Yy, Z az
3 dav dw
iz 2 h.
du dv dvf
dz dz dz
du dv dw

provided the Jacobian determnant in the denom nator is not
equal to zero. Thus we obtain the result

3(x% v Z

(2—1‘;\ . M (11-G 30)
' ‘¥ Z !X D
’ 3(u, vy%v%
Simlarly we have
Q(#.x.z!
- a(u; L] )
KiyL , * Zoms (11-6:31)

3(ut v, v)
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and

B(X'. X, 22

(—g—’-"l - Swvewd (TT-C-32)
z

>y 3 X, 1

3(u» vg W)
Equations (11-C-30), (I1l1-C-31), and (lI1-C-32) are not
appl i cabl e, however, in the case of a one-conponent system of

one phase and of variable nass when it is desired to transform
the heat line integral from one coordinate space, such as the
t emper at ur e- vol une- nass coordi nate space, to anot her
coordi nate space, such as the tenperature-pressure-nass
coordi nate space, because the heat line integral depends upon
the path and is not a function of the coordinates. In this
case, to which the second equation of the heading of this
Appendi x applies, the transformation can be acconplished in

the following way. Let us suppose that a line integral T

X9 Y, Z

T =/{P(x, y, z)dx + X, y, z)dy +/?2(*, y, z)dz] (II-C33)

XQ Yoo Zo

depends upon the pathY in whilth Hase, TTg’}Ff -'13‘52» 3d:—i/ %;ﬁ and

%o—’\ygsT* This integral has no nmeaning wunless further
T4

relations are given defining a particul ar path in
(x9 y, z)-space. For exanple, the curve can be represented in

paranetric formby the equations, x = f(o)* vy = A{a), and
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z = 5(0). W are next given that x» y, and z are functions

of ii, vg and w
(11-C 34)
X = <€(u, v, W¢ Yy =x(ut v, w, z ="(u, v, w. (I'l-C 35)
(11-C 36)
It is then desired to transform the integral T from
(x, y* z)-space to (usf K, uO-space. In this case if equations

(I1-CG34), (11-C35), and (I1-C36) can be solved so that we

have
(11-C37)
a=*(x,y,2z), v=XX,Y,2), ut=*xv,12z), (1l-C38)
(11-C39)

then the curve in (x, y, z)-space can be transformed into the
curve in (u, v, w)-space defined by the equations u = F(s),
v = A(5), and v = 5(s). W next replace dx in the integral T

by ~du +" dv + ~ dw g also dy by |* du + |~ dv + |~ dv
ou dv o/ f A Y du du 8n

and dz by %‘:‘l—du + -gj—dv + ﬁ'\f; d*« We then have

u v, w
. 2 .E.& E
-f{P[au. o 2]

|_3 du+—zdv+ --ZdJ (”-(}40)

az Az 8z
+ R[a du + 'a-d + g—dw]}

the curve in (us v, v)-space now being determined by the
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equati ons u=F(s)g Vv=A(s)» w = H(s). Consequently we
thus obtain

U, Vo W

~ 'S n a
T=d<R(<t>(ug v, W, x(u, v, W, \p(u, v, W)V du + Adv + 340

Uo, VQQ W

£ Q<t>(u, VoW, X(U, v, W), \J/{ugvgm)[-g—ffdu + gy 4 —gﬁdw]

\
+ R(<t>(Ug Vo Wg X(Ug V, Wy ip(Ug Vg W))[?‘g'z—du + aﬁ'dV + gﬁ—dV\Z\'\

=

UngW -

=f\LQ(ug Vg Wdu + Il(u, v Wdv + tf(ug Vg Wdv/\, (II-C-41)

Ugs Vg Wy

where 0 is set equal to

P(<t>(u, vow, X(ugv, W» "(u, v, V))-qxj

+Qp{u, vy w)y x(u, vy w)y ¥(u, v, W))%‘E

+R(BCu, v» Wo x(ut vow), ~(u»v, "))gg»

Il is set equal to

P{p(u, vowWo x(Ug VI Wo f(u, v, v))-g%

+Q((0, v, v), x(ut vow) o A(u, y, ")) A"

av’
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and Qis set equal to

P(p(u» v, Wo x(u» vow), \p(u, v, V\b)ji:;—

+Q(#(

F ROy ve w)s x(ize vs w)s $(us v, w))-g-f;.

In order to evaluate?, Q and/? as functions of u,
we next solve the equations

for P, 0, and i?

3y , oz
II&+OaU+Rau’
_ pdx g0y, 2
= Pyt lQuy t Ry,
. pdx o3y . 3z
- P3w+oaw+R3w’
Thus we have
32 3 _ o3y
u G'Pau OBu'
n n p% Q]/ol

3
NeE

v, and w

(II-C-42)

{II-C-43)

(I1-C-44)

(I1-C-45)

(11-C-46)
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Dviding both sides of equation (Il-G45) by Tj’é’, both sides
53
of equation (11-G46) by ‘V and both sides of equation

(HC47) by |, we obtain

SOIE-PIfff - «EfEe e

R = H/g—f;— av o—X gﬁ , (II-C~49)
and
R = n/ 05;‘5 32 . (1I-C~50)

Consequently we have

3z  ,9x f3z _ Bz _ oy Bz
e/Bu Pau/ 3u Q B II/ Oav '

(||c51)
ad

PE- - B -

(I-C- 52)

Gw— RS — UG o
Fan equations (11-C-51) and (11-C-52) it follows that

ar /a2 _ axa_/aa/a_z_ 3x faz _ ,3x [3z
05w/ v ~ ¢ Su N5y~ 9/ 3¢ * P35/ 3z - Pav/ 3w
(11-C-53)

ad

08t /22 _ qdr /32

3z az ax az pox /3z
av aw/ aw 1-[/ Q/ +P Bv av

(11-C-54)
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Dividing both sides of equation (I1-C-53) by

(lg%av&dl?;&ufrn both sides of equation (I11-C-54) by

(I )dVdVVlE) vehave

a/32 , pf3x /32 3x /32 )
3v / 3u \3u/3u dvf dv

Q=——@ne _ Iz
3v/3v dufdu

(|

and

iz 3z ox /a=
“/a '9/ ( B _5)

Q = 3y 2z 3y /dz
dvf dv dwf dw

Consequent |y we have
8z 3z 3x f3z dx f3z
H/ av E}/ 2a T P(au W v Bv)

~ oz
dvf dv duf du

3z Bx
Q/ ( w av )

3y/3z 3y 782
dvf dv" dw' dw

(n-c-55)

(H G 56)

(11-C-57)
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Mul ti plying both sides of equation (11-G57) by

3 ._3_2 §X @E)(_@_z Bz " .?_y az\ )
('ETE av " Bu/ du Bv/37 37/an] e obtain

(ﬁ}i 3z 3y Bz) _ E)/ ( Bz 9x Bz)
Bv 3w/ dw, T v
3y /9z _ 3y .3_.%.) ( 32 _ 3x 35)
= (Sv 3¢~ 3u/ du Q/ /=)
(11-C-58)

Solving equation (11-C-58) for P we have

P(ggc_ﬁg_* "3z 3y 82)
dul 3y dvl 3w\3v/ v aw Bw

/3x [3z _3x/3z\I3x/3£_ 3 /Iz)
\3N/ 3" v/ 3 /v 3/ A

[( / z- // ?;D)(dv/ /d?/z - (%ZI/(-?;UZ-)

(11 Idz _ p. /dA (dif_1dz_ “iE/dA]
T @) dujldv/ dv ~ dw/ dw)\ *
(11-G59)

Carrying out the multiplications in equation (II-G59) we
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obt ain

(i) 2= a( )3l 2)
( /az &/& , ax(/az(\ '_EZ_/%)
( %\;v)\2v/ dv) * [dw/ dw]\du/ du)

(avi aiowr 4\ o1 avacsw T
- |(n/2 - [/ )G /%)
(/BN ) (/@3]
(/8@ - /B E/E)
(/3N %) (/8@ %) -

+
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Equation (11-C-60) can then be rewritten as

dx dy dx 3y dx dy dXiZ

, ‘du dv du dw  dv dv dv 9
- - +

dz 3z dz 32 3z Bz dz 32

du dv du dw dv dv dv dw

dxdy  dxhL  dxdy  dx 3y

_dwdv ., dw du . dv du
dzdz  dzdz  dzdz  dz gz
dw dv dw du dv dv vV du
(11-C-61)

A he -~ 2 2

1 dv N du B’\i/ Q u
Tldzdz T 324z dzdz T gz
dv dv dv du w dv dw du

) df
njz Mt e o2

-y oy —— gy - =2
zor a2z H| & @a
dv dv dv ow du dv du dw

The third termin the bracket in the left side of equation
(I'l-G61) cancels the seventh term in this bracket and the
first term in the bracket in the right side of equation
(I'l-C61) cancels the fifth termin this bracket. Miltiplying

the remaining terms in both sides of equation (II-C61) by
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(

g%%\f_v]\ we obtain

o
—iIN

P[M K JE . 2 IzIiE, X izik
du dv dw du dwdv dv dw 3u

LTLZ 3x 3£ dz  dx dy dz.
- (g\ivdv &Zj—* dwdu dv— dv_S% dWi-f

dz (11-C62)
3u 3i/ dv du du dv

+ 1w du ov dw  ow ovJ

Now P(x, y, z) is the total derivative of Y along a line
parallel to thex-axis in (x, y, z)-space. Aso O(u, v, V)
is the total derivative of F along a line parallel to the
u-axis in (u, v, w -space, Il(u vy W is the total
derivative of T along a line parallel to the v-axis in
(u, v, v)-space, and Qu, v, W) is the total derivative of F
along a line parallel to thewaxis in (u, v, uOspace. Thus
we have fromequation (I1-C 62)

dar
dw

oln
-

aw

aw :
= . (11-C63)
ax
aw

e 2e
RNt

R,
v |
S
Qr
=

P(x Y. 2) :(‘3;

aw
az
aw

=R R
R R
K



ONE- COVPONENT SYSTEMS OF VARI ABLE MASS 111

Likewise Qx,. Yy, z) is the total derivative of T along a
line parallel to the y-axis in (u, v, %)-space. Thus in

a simlar way we have

Q‘
T

oo

xX <
RER 'S

NC><C_|

Q_‘Q_ o_lo_ Q.lQ_
c

1
,Q_Io_ Q.IQ_ al
<IN <
o

QAx,y,2) =(j |) = . "(11-C 64)

X» Z

X <

N <

Q_lQ. o.'o_ o.lg_
cIN CIX C
-Q_!Q. Q.IQ_ Q.E.
<

o_'o_ o.lo_ o.}g_
SN Z|IX =

Also R(x* vy, z) is the total derivative of T along a Iline
parallel to the z-axis in (x» y, z)-space. Consequent |y

ina simlar way we have finally

du dv
dx dx
du dv
dy hij
3u dv
(1'1-G-65)

3u dv
dx dx
du dv dw
iz 3 97
du dv dw

l22fs [eN glech




Appendix D to Part |l

D scussion of F.G Donnan's derivation of the equation
du = tds - pdv + \idm for a one-conponent system

of one phase and of variable nass

Donnan' s' proof of the equation
du = tds - pdv +]idm
for a one-conponent system of one phase and of variable mass

is as foll ows:

Applied to a honobgeneous system characterized by a
uniform tenperature t and a uniform pressure p, and
subject to no other external forces except that due to
this pressure, the devel opment of thernobdynamics up to
the date of G bbs' researches may perhaps be briefly
sumari zed in t he equation of d ausi us,
5u = té& - pSv, where u = energy, s = entropy, and
v = volume. This equation applies to a closed system
of constant total nmass, and the first fundamental step
taken by Gbbs was to extend it to a system of
vari abl e nmass. In the equation of dausius the
entropy of the system may be changed by the addition
or subtraction of heat, whilst the volume nay be
altered by work done by or on the system both types
of change producing corresponding changes in the
energy. It is possible, however, simultaneously to
increase or dimnish the energy, entropy, and volune
of the system by increasing or dininishing its nass,
whilst its internal physical state, as deternined by
its tenperature and pressure, renains the sanme. If we
are dealing with a system whose energy, entropy and

! Donnan, F.G, The Influence of J. WIllard Gbbs on the
Sci ence of Physical Chenistry, An Address on the Cccasion of
the Centenary Celebration of the Founding of the Franklin
I nstitute, Phi | adel phi a, The Franklin Institute, 1924,

pp. 6, 7.

112
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volume nmay be regarded as sensibly proportional, at
constant tenperature and pressure, to its mass, we may
wite:

du = 6u + ugdnm

ds = 6s + sgdm

dv. = Sv + v,dm

where the total differentials du, dsg and dv indicate
changes which take account of variation of nass at
constant tenperature and pressure as well as of heat
and work effects at constant nass (indicated by the
differentials 6u, 6s, 5v) and uy» SQ vg denote the
energy, entropy, and volune, respectively, of unit
mass under the specified conditions of tenperature and
pressure. Conbi ning these equations with that of
Cl ausi us, we obtain

du = tds - pdv + (ug - tsqg + pvgdm

or, putting

Up - tso +pvo = i

du = tds - pdv + udoi.

According to Donnan the total differentials dus ds, and dv
indicate the changes in u* s, and v which take account of
variation of mass at constant tenperature and constant
pressure as well as of heat and work effects at constant nmass.
In Donnan's equation du = 8u + uodm the term urdm UQ
being the specific energy, gives the change in energy wth
mass at constant tenperature and constant pressure; it does
not give the change in energy with nass at constant entropy
and constant volume. The independent variables in the right

side of this equation are thus tenperature, pressure, and
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mass. The differential & is consequently really shorthand

for %’t‘-dt +°/%';'dp. Li kewi se in the equation ds = 8s + s,dm
where so is the specific entropy, the term8s is really
shorthand for -zr'frpdt +?r§dp . Similarly in the equation
dv. = 6v + vodm where vqois the specific volune, the term
6v is really shorthand for jrdt +~f’§"dp. Thus written

out in full we have

du = | %dt +9}{dp+qum, (11-D1)

ds = [|dt +8§5dp + sodm, (11-D-2)
and

dv = Jndt +Ylp + vedm. (11-D-3)

Conbi ni ng equations (I1-D-1), (I1-D-2) and (11-D-3) we have

du - tds + pdv

My Bug 8. L 3 av dv
atdr:+apdp tatdt tapdp+patdt+p§;dp

+ (uo - tso + pvgdm .
(11-D-4)
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It is known from the case of a one-conponent system of one
phase and constant nass that

If = ol - e, (I1-D-5)

32 - (i, - ) C1-D-6)

2. a2, CH D7)

g—; = m—i_?. (II-D-8)

|F = mg—i‘ (11-D-9)
and

g_; _ ”’%E (1I-D-10)

Substituting these values of the partial derivatives of u and
s from equations (II-D-5), (lII-D-6), (II-D7), (II-D8),
(I1-P-9), and (11-D-10), in equation (I11-D-4) we obtain

du ~ tds + pdv
= m(Ep - p-g——f)dt + m(Ip - pg—g)dp - mtECE-dt

nt ’édp+rrpatdt +np ;JFEJ dp + (ug - tsg + pvgldm
(11-D112)
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Thus we arrive at Donnan's equation
du = tds - pdv + (uo - tso + pvo)dm , (1'-D12)

but by this nmode of derivation the independent variables are
still t» pf and m not s» v, and m

The real problem Donnan was attenpting to solve was to
show that when the independent variables in the case of a
one-conponent system of one phase and of variable nass are

entropy, volune, and mass, the partial derivatives of the
du Bu ) du f X
energy are " =t, j*=-p, and -~ = (uo - tso + pvo).

In order to solve this problem Donnan had to begin wth
tenperature, pressure, and mass as independent vari ables,
because the change of energy with nass is only equal to the
specific energy at constant tenperature and constant pressure.
The real problem then consists in a transformation from
tenperature, pressure, and nass as independent variables to
entropy, volune, and mass as i ndependent vari abl es.

It is assuned that the equations

s = F(t,p,m (1'-D-13)
and

v = <Kt,p,m (11-D14)
can be solved so that we have

t = F(s, vim (I'l-D15)
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and

p $(s,v, m) (11-D-16)

ad thus finally

u = V(s v,m) . (11-D-17)

Fam equation (11-D-17) it follov/s that

du = ‘Eﬁ-ds + -ilﬁ—dv + ?n;dm . (11-D-18)

The partial derivatives T%—U»T?,E, and -axli—are t hen obtai nabl e
r 0os ov dm

by the use of the Jacobians in Tables (I1l1-D-1G, (II-D12),
and (11-D-14). Thus we have

3(u, 3y v) _mz{t('ri_?f')2 . ¥ .eE) }
3 /m, v s, me v) 2 (I\ZY ££/3V\

3(tf p»m) m{dt}p,m+ t\38% _

=t (11-D-19)

3(u»m* s) 2] [3VY? B.C:‘E_’L.

PR - PGt YT\
() - Len . e E PIem
3, s AWV itit s) mz{(}l‘f_ o, EE(.?_V }

3(t,p, in) tio, m t\ep/le,m
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and
3(u, v, s
/ 3u\ . 3(t.p, ®)
vy o am -
3(t, p, @)

& /av 3M2 | f 11
'”’2{[5 (a ),? +("W'J "o + pvo - tsof

2@, (E )

= Up + pvo - tSgo . (I'-D21)

In the case of a one-conponent system of one phase and

4 k3
of variable nmass the chenmical potential y is equal '[O\g:;ﬁ'

v, s
and consequently to (uo + pvo - tsg) . Substituting the
oy 11 an( _ it
val ues of (*% » I\'g;J » * |\ gm—) from equations
% m s Vg S

(I1-D-19), (11-D-20), and (II-D-21) in equation (lII-D-18) we

arrive at the result

du = tds - pdv + ]idm, (11-D22)
with Sf V, and m as independent variables. Equati on
(I'1-D-22) is thus true wth either t, p, and m as

i ndependent variables or with s, v, and zn as independent
vari abl es. However, the nore inportant significance of
equation (I1-D-22) is that it is true with s» v, and m as

I ndependent vari abl es.



Part |11

Rel ati ons between thernodynam ¢ quantities and
their first derivatives in a binary system of

one phase and of wunit mass

"Introduction

The basic thernpdynamic relations for systens of variable
conposition were first derived by J. WIllard Gbbs in his
nmenoi r entitled "On the Equilibrium of Het er ogeneous
Substances."! Gi bbs? stated that the nature of the equations
which express the relations between the energy, entropy,
volume, and the quantities of the various conmponents for
honogeneous conbi nati ons of the substances in the given nmass
must be found by experinent. The manner in which the
experinental determinations are to be carried out was
indicated by hin? in the followi ng words: ffAs, however, it is
only differences of energy and of entropy that can be
neasured, or indeed that have a physical neaning, the values
of these quantities are so far arbitrary, that we may choose
i ndependent|y for each sinple substance the state in which its

energy and its entropy are both zero. The values of the

! Gbbs, J. Wllard, Trans. Conn, Acad. of Arts and Sciences,
3, 108-248, 1874-78, or Collected Wrks, Longmans, G een and
Conpany, New York, 1928, Vol. 1, pp. 55-184.

2 Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
3, 140, 1874-78, or Collected Wrks, Longmans, Geen and
Conpany, New York, 1928, Vol. 1, p. 85.

3 Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
3, 140-141, 1874-78, or Collected Wrks, Longmans, G een and
Conmpany, New York, 1928, Vol. 1, p. 85.

119
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energy and the entropy of any compound body in any particular
state will then be fixed. Its energy will be the sum of the
work and heat expended in bringing its conponents from the
states in which their energies and their entropies are zero
into conbination and to the state in question; and its entropy

£d4g

is the value of the integral J 8 for any reversible process
by which that change is effected (dQ denoting an elenent of
the heat communicated to the matter thus treated, and t the

tenperature of the matter receiving it)."

Cal cul ation of the specific volume, the specific energy,

and the specific entropy of a binary system of one phase
as functions of the absolute thernodynam c tenperature,
the pressure, and the mass fraction of one conponent

from experi mental neasurenents*

In the case of a binary system of one phase, the nmss

fraction Fﬁl of conponent 1 is defined by the equation

[ - bl _
m = —_—_L_ml PP (III-1)

where m denotes the nmass of conponent 1 and m, denotes the

Tunell, G, Relations between |Intensive Thernodynanic
Quantities and Their First Derivatives in a Binary System of
ot> Phase, V.H Freeman and Co., San Francisco and" London,

[9ti\ opr). 7-16.
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mass of conponent 2; the specific volune V is defined by the

equati on

Vv
my + [Ma

=3
1

(T1I1-2)

—r

where V denotes the total volune; the specific energy U is

defined by the equation

~ U’
U= (111-3)
vihere £/ denotes the total energy; the specific entropy § is

defined by the equation
§: —2 (111-4)

vihere S denotes the total entropy. As a result of experinent
it is known that the pressure pg the specific volune \7f t he
absolute thernodynamic tenperature T, and the mass fraction

Si of conmponent 1 are connected by an equation of state
“(pV N\ F) = 0, (111-5)

which can, in general, be solved for any one of these
quantities as a function of the other three. The relation of
the specific energy of such a system to the tenperature,

pressure, and sass fraction of conponent 1 is expressed
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by the equation

T, p.i12
_ . Wor . [1, A, L
= cp - pRp T * TP PP T M (111-6)
Tu’Pu-F’;xu

where UTp denotes the heat capacity at constant pressure per
unit of mass and |p denotes the latent heat of change of
pressure at constant tenperature per unit of mass. The
relation of the specific entropy S to the tenperature,

pressure, and mass fraction of conponent 1 is expressed by the

equation

ST, p.m) - S(Tq, po.iniJ

v

N\ flii
CP jm IOA R |
j7‘d| + ~-+ dp + ZT dml > /TTT 7N
on J (111-/
Necessary and sufficient conditions® for (111-6) are

aT L dp

e

mny

{M} =IM]}I r(I11-9)
b ¥y :

*  Ossood, ‘I'.F., Advanced Calculus, The !lacnillan Cornpany, 7é#
York, 1925, p. 232, and Lehrbuch der Funktionentheorie» 3d. 1,
Ste Aufl., B.G. Teubner, Leipzig, 192S, pp. 142-150.
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Y] - oV
Jns _ B[c . p——]
{ anu } = { P BT } ’ (I | | _9)
dT o dmi
p, @

and
z'ingLr'! _ 3[}/ - ’gj_v
dmi = P 1Tp .
_ (11-10
3p T i dmi T.p
S mlarly, necessary and sufficient conditions for (I11-7) are
I g
=2 it 24
a T \} = {a T 1 L]
- — (rre-1t)
p* wi 1 ﬂhi"l
aTd _ 3127.,2
m - ’ (111-12)
- 0T Dy 51 LT T, p
and

3 I
3% _ ek
m = y (111- 13)
Bp e 351

Carrying out the indicated differentiations in (111-8) and
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(1'11-1) one obtains

31 2y 3 32y oy
2, e¥ b 9V 97 II1-
5T~ P3Tap op ~ Popal T T (111-14)
ad
al, T 3¢,
122 P i -} _
T o7 Tg = T (I11-15)

Conbi ning (111-14) and (111-15) one has
I, = -THf. (111-16)

Carrying out the indicated differentiations in (I11-9) and
(111-12) one obtains

arf oV

ToE T Tmer (in-17)
and

aTam, - T 8%y ° (I11-18)

Conbmi ns (111-17) and (111-18) one has

32y . 328 8%
3Tom, ~ © aTom, ~ Pam.er *

(III-16)
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Carrying out the indicated differentiations

(111-13) one obtai ns

d?u dn d2v”
dpomy ‘3§T'-p?a”75

325 _ g9l
3pom, 38f o

Gonbi ning (111-20) and (111-21) one has

2?0 _ 2% -
3pom, dpow: P omiep -

From (111-16) it follows that

37, Y
AN

and from (111-14) and (111-16) one obtains

ot '\2\.!
3CE _ _mo 4
TR

From (111-16) it also follows that

- 327
oo = " T35T

125

in (111-10) and

(11_29

(111-21)

(1II1-22})

(II1I-23)

(III-24)

(IT1-35)
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and
L1 (HI - 26)
T o, eT °

Combining (111-26) and (111-20) one has

220 o3 &
K OBt P “aiiop

(111-27;

and, similarly, combining (111-26) and (l11-21) one has

e v (111-28)
Bpaml 3!’.’]10?

There is thus one relation, equation (111-16), between

o N 3F _dv. . dU  ds
the seven auantitiés 'I'I'Ig,l_ 5p Td%hv> Cp AR
Consequently, all seven will be known if the follow ng six

. . . v
are determined by neans of experinental neasurenents: " or®

I v . a0 3§
' 3, SP IR Oy

Q2

ml

There are also eight relations, equations (111-17),
(111-18), (111-23), (111-24), (111-25), (111-26), (111-27),

37 7
(111-28), between the ei ghteen quantities, TaT: T?-’_i’t ey,
al dp ami
o= gy g~ ¥ UL N ot dt ot
_Ff) g°p p p p

oTsp®  3Tam,~ opek,” 37* 3p 3S;” 37* dpgp® By

3 3% 3 _3°s 5285 325 R
Bfam’l' apaﬁﬁ' aﬁz‘f ' afa[ﬁl' apaﬁ{l' 351'1 ’ ¥ means of
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e —

which from the following ten, 7, |7, -&, JjllL,
ol dp am aTop

v _d*v ¢ nE 57 _#g
W 3

3Tem. opomy’ u?" v the

remai ni ng

eight can be calcul ated. From equation (111-24) -~- can

s
al

be cal cul at ed; from equation (111-23) g can be
.61

41

cal cul at ed; from equation (111-25) -r- can be

ajmn
calculated; from equation (111-26) -.s— can be calculated;

I

can be calcul ated; from
--om;

from equation (111-17)

equation (111-27) W can be calculated; from equation

325
(rrr—a8) m" can be calculated; and from equation (111-28)

2

-3—:57- can be calcul ated. It wll therefore suffice to

dpdiiy

determine experinmentally 19 along a line at const ant
1

t enper at ur e, T\ and const ant pressure, p', then to

determ ne experinentally W oat al points in a plane at
3F w

constant pressure, p', and ~j.p-at all points in ( 7\ p;rn'i)-

space, likewise to determ ne ‘ép at all points in a plane

at constant pressure, p', and to deternmine experinentally

~r

ﬁ?& along a line at constant tenperature, T, and constant
1
-
pressure, p', and al so -gg}zr- along a line at constant
1

tenperature, T, and constant pressure, p'.
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From neasurenents of specific volumes over the range of
tenperature, pressure, and conposition that is of interest,

the values of |¥» 9% and TgrﬂJj; can be obtained. By means of

calorimetric neasurements the necessary values of ¢, can

97

also be obtained. The determination of rj- at constant
of 1

tenperature and pressure over the range of conposition of
interest can be acconplished in many cases by means of a
dld
constant volume calorimeter, and in some cases -“p—can be
determined by means of nmeasurenments of the electronotive force
of a galvanic ceil at constant pressure over the ranges of
conposition and tenperature of interest in conbination wth

—

the measurements of specific volume. The determination of rzr-
dmi

at constant tenperature and pressure over the range of
conmposition of interest can be acconplished most readily by
measurements of the electronotive force of a galvanic cell at
constant tenperature and pressure if a suitable cell s
avail abl e.

The methods of determination of -re- and -Ar- by neans

dini dmi
of electronotive force Measurenents can be illustrated by the
following exanple. In the case of a galvanic cell consisting
of electrodes which are liquid thallium amal gans of different
concentrations both immersed in the same solution of a
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thalliumsalt, one has
G- & = -N6 ,° (111-29)

where G denotes the G bbs function, U+ pvV - TSy of a liquid
thallium amal gam -éz denot es t he parti al derivative

(M) -

V"no/t}l p. i at the concentration of one electrode, G' the

sane partial derivative at the concentration of the other
el ectrode, n, the nunber of gram atons of thallium ny, the
nunber of gram atons of mercury, N the nunber of Faradays the
passage of which through the cell acconpanies the reversible
transfer of one gram atom of thallium from the one anul gam to
the other (N= 1 in this case since a pure thallous salt was
used as the electrolyte), F the Faraday equivalent (which is
equal to the charge of one electron tinmes the nunber of atons
inagramatom; and 6 the electronotive force. The values of
the electronotive forces of a nunber of such cells, including
one in which one electrode was a saturated liquid thallium
amal gam were determned at 20°C and 1 atnosphere by Richards
and Daniels.” By neasurenment of the electronptive force of
another galvanic cell in which the electrodes are finely
divided pure crystalline thallium and thallium saturated

liquid amalgam at the sane tenperature and pressure, the

® Lewis, G M» and M Randall, Thernodynanmics and the Free
Ener gy of Chenical Substances* MG aw Hill Book Conpany, Inc.,
Mew Yor k, 1923,. p. 265.

" Richards, T. W, and F. .Daniels, Jour. Amer. Chen. Soc.;
41, 1732-1768, 1919.
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difference 8 - G could be evaluated, Gt denoting the value
of G in the saturated liquid thallium analgam and G the
value of the function G for pure crystalline thallium per
gram atom 2 The value of & being assunmed known from
nmeasurenments on pure thallium the values of G in l'iquid
amal gans of different concentrations are then obtainable from
the measurements of electronotive force in the two kinds of
cell. From the values of G, the values of G - G are

cal cul abl e by the use of the equation

na

A -« fka (111-30)

wir g

0

v/ here ﬂz denotes the gram atom fraction of thallium in the

amal gans.

~ = n
Ay = o (II1-31)

and i the gram atom fraction of nercury,

A2 —— (I11-32)

® Richards, T.U, and F. Daniels, op. cit., pp. 1732-1768;
Lewis, G:, and M Randall, op. cit.» pp. 413-414.

* Lewis, GI-"., and :i. Randall, op. cit., p. 44; cf. also
G bbs, J. Illlard, Trans. Conn, Acad. of Arts and Sci ences, 3,
194, 1874-73, or Coll ected Wrks, Longmans, Geen and Conpany,
rew York, 1925, Vol. 1, p. 135.
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— dG \I *
G the partial derivative -5— , and G the value
Verlim
YT, p, n2
of the function G for pure nmercury per gram atom The

integrand in the integral on the right side of equation
(111-30) remains finite and approaches a limt as £2
approaches zero and the vaklue of the integral is thus

determinable.' The value of G is assuned to be known from

0 G bbs showed that in the case of a solution in which
the mass of the substance chosen as the solute is capable of

fﬁﬂz\
negative val ues, the quantity my( -1 appr oaches
\-fMa/f .
T, p, m
zero as a limt when /T2 approaches zero, Tg p, and m being
held constant, vy, denoting the derivative i-,z ;. he
7, p, m

also showed that in the case of a solution in which the mass
of the substance chosen as the solute is incapable of negative

values, as is true of thallium amal gans, the quantity
A
mz(-'a’pi")r still remains finite, and it approaches a
on21 7 p 8o B
9 M9

limt greater than zero when /72 approaches zero, 7\ p, and m

being held constant, even though the derivative (Bmg)
Ty prm
becones infinite in this case (G bbs, J. viillard, Trans.
Conn. Acad. of Arts and Sciences, 3, 194-196, 1874-78, or
Col | ected Wrks, Longmans, Geen and Company, New York, 1928,

Vol. 1, pp. 135-137). It follows in the sanme way that the
/dG \
quantity Ay also approaches a limit when 02
2 Ty pr ni
approaches zero, T» p, and tii being held constant. By

application of the change of variable theorem in partial
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nmeasurenents on pure mercury, and hence @G can be obtained

as a function of the gram atom fraction at 20°C and

f dG\
1 atnosphere. The derivative (-r-) can be calcul ated
1*pf/Z'A'
from the equation
36 . &2
(aM2) = 52 (111-33)

+ Dy M)

where A, denotes the nunber of grams in a gram atom of

| G\

thallium and the derivative \{)'_j can be calcul ated
. m"T, Dy m2

differentiation one obtains the relation

dnzt.  n 92/ (ni +n,)?
1t P* Hi 1ip
Mul tiplying both sides of this equation by na» one has

nz(%z‘) = (g_gz') 3152 .
2y, p>n\ 2i7,

Since Si approaches 1 as a limt when 112 approaches zero,
fa) fe—
r. p* and n, being held constant, it follows that 2 2
HI \3n2/-|'
1>p

approaches the same limt as™ LR and nJMA
2\ 3n2/r 2\ 3n2/'|'
1>p 1$ptrii
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fromthe equation

Eﬁl

() - (111-36)
i T’ P’ mz

Y
,_.

where A denotes the nunber of granms in a gram atom of

nercury. The intensive function G is defined by the
equation
[ & .
mot . (III-35)
The derivative (d-c’}_"r/-r)p for liquid thallium anmal gans at
-« D

20°C and 1 atnosphere can be cal cul ated fromthe equation

%)
aif 3

Tvp

. (.@i )T i (_3§_)T Y (I11-36)

aml s Py M2 amz v P iy
By application of the G bbs-Hel nholtz equation
1, - b = NFT || - NFE 7 (111-37)

where H denotes the enthalpy, U+ pVy of a liquid thallium

amal gam) H denotes the partial derivative ("T—j > and
RS AR

1 The derivation of equation (X 1-36) is given in Appendix A
to Part I11.

12 lewis, GN, and M Randall, op. cit., pp. 172-173.
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£2 the value of the function H for pure crystalline thallium
per gram atom the partial derivative #2 for liquid thallium
- amal gans could then be deternined, provided the electronotive
forces of the cells be nmeasured over a range of tenperature,
the value of #2 bei ng assumed known from neasurenments on pure

crystalline thallium From the val ues of ﬁz» the values of

H - H are calculable by the use of the equation
n,
— ~ oooao
ffl- H = -f%i—adnz , (111-38)
nl vaz
0
where H\ denotes the partial derivative (;TH) and H;
1
Ty ps iz

the value of the function H for pure nercury per gram atom
The value of H is assuned to be known from measurenents on

pure mercury, and hence H could be obtained as a function of

the gram atom fraction at 20°C and 1 atnosphere. The
N f dH\ i
derivative o could be calculated from the equation
f %I! Dy iy
T
3K 7
(m) = f (II1-39)
T P M 2
P dl-h\
and the derivative {T—= could be calculated from

T, Dy M2
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the equation

(ITI-40)

The intensive function His defined by the equation

o H
7+ 72 (11I-41)
- - . .
The derivative ("=) for liquid thallium analgans at
Vdill 1Jrn °
‘T, p

ATC and 1 atmosphere could then be calculated from the
equation
(_o;L\ _ (it ) _ (dil m (111-42)
aml )T.p §‘ij'7T|P o @2 >T, Ps M

Alternatively, the function iJ of liquid thallium anal gans and

the derivative ( -d"%}‘ could be calculated from calori-
T L

nmetric determinations of heats of mixing of thallium and

nmercury at const ant pressure. Finally the values of

el / bd

(QH_} and (§I§T§ for liquid thallium analgans at
ot p - p

20°C and 1 atnosphere could be calculated from thr* equations

), - @), -, o

t Ts f=) ! v D i v D

13 The derivation of equation (111-42) is given in Appendix A
to Part 111.
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and

g, A, #, )] e

Derivation of any desired relation between the intensive

v n \s V-»
thermodynanmic quantities, Top, m, V, U Sy and their first
derivatives for a binary system of one phase fromthe
experinental ly determned relations by the use of

functional determ nants (Jacobians)'"”

Equations (111-5), (ll11-6), and (111-7) can, in general,
be solved for any three of the quantities, Tgp, n\:l \79 VU9§
as functions of the renmaining three. The first partial
V, & §,

with respect to any second quantity when any third and fourth

derivative of any one of the quantities, T, p, m »

quantities are held constant can be obtained in terns of the

L o dv ,dv .dv . dU s
six flifst dérivatiVeés, -'Erlrg op’ Idr'Fﬂ-Y CP> A B,
together with the absolute thernodynanic tenperature and the
pressure, by application of the theorem?® stating that, if

V= a(xi yoz)* x = f(U v, Woe y = <p(Ur Vo W 2z = "(U, Vg Wy

"+ Tunell, G, op. cit., pp. 17-23.

15 Kk proof of this theoremfor the case of functions of three
i ndependent variables is given in Appendix Cto Part I1.
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then one has

o dx dx

3u ov dw

d_ 38y jz

3u dv  dw

dz dz |
N 5 & % 3 ve z)
(dx\ ) e —— - Su vaw)
\dx ¥ 2 _:_3_)(_ _q)_(' _g)s_ a!}ft Vs Z?

du dv dw 3(u, v»t-/)

iz 4 g

du dv dwr (111- 45)

dz dz dz

du dv dw

provided all the partial derivatives in the deternminants are
continuous and provided the determnant in the denomnator is
not equal to zero.

In Tables Il11-1 to 111-15 the value of the Jacobian is

w \~

given for each set of three of the variables, 7»p» ni » Vg U &
as x',y, z, or X, y, z»and with T* p* it as u» v, v. There are

sixty Jacobians in the Table, but one has

a X » e X ) )
3(u o .gzcuL.vy»_l _(L_—lg(“f L2 XL (111-46), (111-47)

because interchanging two rows of a determinant changes the
sign of the determnant. Hence it is only necessary to
calculate the values of twenty of the sixty Jacobians. The
cal cul ations of these twenty Jacobians follow
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3(i%ig T, p)
3(T» pt Mi)

o

du, T o .

d(T, pois N

dmi

dT

dT
dT

dT

THERVODYNAM C FORMULAS

w
Ti(

g 2|9 ¥
Qs a
3.(!% 3.c|3 A

Q.
©

o
3¢

|

¥ 2 5

—

o S

(111- 48)

(111- 49)

(111- 50)
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&S 35 3
dT 3p 3mi
3(S5. T.p. ar dar 11
d(T, p, SI) dr dp 3
[E 3f 3
dr  3p 355

_ (%l) ; (111-51)

7,p

a7 dy
3T 3  dmi
3(7. 7, mi) _ 3 3 a1
3(7, p, Si) 37 3p dI.
dT dp o,

' \'MP>T,51’ (111-52)
o di do
37 dp 3
a7 By _ |8 o 31
T, ps 1) 37 dp dmi
drT  dp dmi

Y VAN ]
) T(BT) L * p(ap)r,;ﬁl’ (111-53)
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L‘il'q(
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3y V
3(T7 p, 1)

3(5. 7, V)
v pf “hil)

SEASISEI )

-U“'h-__/

[=>] =
BlFe L8 B

[s* RN )
3-?(,@;"\'1’
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‘d%%
2B

(111-54)

(111-56)
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L [

TS

[

d(Vi  p, 18y
3(7’ p; El)

L]

BSU, El 13 !
(T, 5 SO

kO
(0 ¢

@
¢
=

,oo
\'

o
« &

o
C

7 dV_dvT
of op dmj
3 3
37 3p 3m,
oy 3By 2m
3 3p~ oW,
dv)
T o
Ds )
w3 3
37 3p 3
| 9% 3
37 dp (Tr%
3my ¥E, 3
oT Op oM
v
¥, v P(‘S’f) 5
P iy

(111-57)

d\\
)T. p . p(dp h, S, ;

(111-59)

(111- 59)
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g &S 38
?g dp oyt
3G p.hil) _ f8 I£ B
3(7\p, 9) T 3p am
ari dmi dmi
oL \R/ dmi
- f (111-60)
W dg di
dT  dp dmi
Wom¥) . |3 2
3(T, p, @1) 3r dp 3mi
EIA VA 1/
dT Bp 351
- MM T () T”) +Ep(g—§) ; (111-61)
1\33J2 L: \dMidm JV 3T D, E;l 1 T, p
L : J
i, p I»p
=35 B
3T 3p 3N
0(T) p* AI) dar  3p iy
LAV 1
3T 3p dmi
_ EE_(BV\ rasly 3K
TABR, L 4 p (‘é‘f) wo t (111-62)
' P ! pt Hi
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3 & o
3(5, p, 9 dp dp 3p
dT, p om ) dr  dp 9,
o o 8f
"3T ~3p amy
(111-63)
(%) &) Jo(m) @) .
T 3."‘?1 T, p 3jTJ|/7\ D Bml T, p BT)p» :7-;1
— ML
dp  dii
8(T, p,» 1) 3r dp dmi
]
3T 3p dmi_
3V Y
-T(ﬁf o Cp(ap)\ ; (111-64)
1 r.S
a as 3
am;
J_u_,w S. @ vy . |3 3, dii
3(Ts pam1) ofil 1
v ap aF
. LIz
If 3D
(¥ Spfavy .
(ary - T(Bp__ Lo (111-65)
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dT dp dm
3A(S>me ) | 3w dm, Bmy
37 p, S1) W 3pr 3
3y 3y 30
3T p di
vy pEs [ oV
= Plar] U +°77F /), - 2 (111-66)
pe My T,m
a5
s w <*J g\; -wé -%\i
(s, v, U3 _ 1371 3F d_\\/,
3(T\ p» T29) 3 3 dmi
3y oy ol
dar dp 9Sn
(111-67)
(a“’ ) (a“v‘ ) (aé‘ ) }[(aif‘\z §2(37\ ]
= 3 + pla= - Tls= v +
[ dmi . p IR T, p 'y Tep M‘H! I??"l T ap) —
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Table 111-1
Jacobi ans of intensive functions
for a binary systemof one phase

d(x' Z) 3(x, v, 7)
3(7\ p, MO * 3(T, p, 60

L o
v (I'S
U 1)
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Table 111-2
Jacobi ans of intensive functions
for a binary system of one phase

3(x . v, 7) 3(Xi_ y* z)

ofi t pi in\) o(i 't p» M)

' T, i
Xt o>y,
X
p -1
v v
v -(32)

ap T! 5:'

v &) | i
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Table 111-3
Jacobi ans of intensive functions
for a binary systemof one phase

Ay 7)) Lrva)
acr.p.fiu) « acr.p.tfx)
» Z T I«“F
\
- (%)
ol Tt p
: (%)
' P T ny
. au av av ov . {37
u [(ﬁ) +(2) -i(z) L+(%) r{af ~
v ii p i» p ™ i «i i . i
S (%), (&) &), &
aﬁ'j_ am" Trp ¢ Ty
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Table I11-4
Jacobi ans of intensive functions
for a binary system of one phase

i (&),

. {F) -
L9 KO 4 (1),
; (&), ) ) .- )
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Table I11-5
Jacobi ans of intensive functions
for a binary systemof one phase

d(x'; vy, z 3(x, y» z)
ATt pr» FEI*i) T 3(T» p? ONl)
+ Z r, S
X
X \
p -fM
- g‘v’)
- k7.
pt ox
@), @ . -E) &
31T.p:: an'u; an‘T.p aPT.m
~ 3y 35 a¥ 33 v
U [— (—..') + T(—.-) ](—'—‘ + (‘;:'ﬁ ) . plE—
3 T. p o, T.p T . ay  OFUr g iy, 2




_ Table 111-6 _
Jacobians of intensive functions
for a binary system of one phase

3(x', v, 2) 3(x. v, 7)
d(T, p, i) f 3(T,psrai)

p,fIfx
X\
X
T 1
v (V)
u °p-A\3rj -
p. mi
S fa
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Table 111-7
Jacobians of intensive functions
for a binary system of one phase

3(x\v.,? 3(xX, v, 2
3(T,p,Mi) " 3(r,p,nTO

\y, pP.pP
X"\
T (%’1)7»,;‘
# T
p. mi
u [ U*JT,p" pfeJT,JIa?Ig”pfejr,p
S rl»\JTap UXJr,pU;p>Ji
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Table 111-8
Jacobians of intensive functions
for a binary system of one phase

3(x', v; 2) 3(x, Vv, 2)
3(T, p, tfi) " 3(T, p.tfi)

W p. {7

T (#),,

é P * K37

y BOX  (BV\ 1/a?  w/3?
[U)np* His).. Jvw),, 1 - "pfejy,

S

1(f)7p-K1) J*(F )oK,
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Table 111-9
Jacobi ans of intensive functions
for a binary system of one phase

X, V. 7) 3CX, ¥ 23
Ty py 1) * B(Ty p» #1)

\y, z p,§
x\
X >y,
T .
(S e
Y
-, T
y & 13V 38 aF
7 -7 &), (B, ()
T am".f'.p wlT.pan.?i;
v €p [ralf 2§ 3g 3y
g -2|&), &), |-(&), &)
T M:LTlp thQP t r B aTP';l
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Table 111-10

Jacobi ans of intensive functions
for a binary systemof one phase

a(x. . v, z) dx, v,

z)

3(7, p. A1) 3(7, p, »i)

w7
AN
X o\
3V
T - (_)1'
i, 5
o7
P (ﬁ -
Py
U Jdv)? - M
g . .a_"y _Eg(a_i")
aT Be ;l T ap T, ;1
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Table 111-11
Jacobi ans of intensive functions
.for a binary system of one phase

33X, v, Z) 3(x, Yy, 2)
3(7, p, hi) Y 3(T, p, &)

\wvi oz m, ff
x\
X \
aF a¥
T T(ar) ot "(E -
P+ & [ 151
p
p, m
avy2 o f3F
\Y 2(ZY  s: (-3-5)
Oy B T my,
: EIATNNY.") (a_f"
S P(arr) w* T \Gpd
Py ) r B
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Table 111-12
Jacobi ans of intensive functions
for a binary systemof one phase

3Ax, v, 2) 3U, vy, 2)
3(7, p,rai) ' 3(T, p, tfi)

\y, z .5
X\
X Y
o7
T 25
@,
P r
v vy 5 ﬂ)r
(aT)p.fn"; T (aP , B
S A Ut f .
Py L
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Tabl e 111-13
Jacobi ans of intensive functions
for a binary systemof one phase

30 z 3A(x, v, 7).
ofl , p, m) ofr, pi zii)
¥r z \7, U
X" X
X N
3 57 v v o
r [_\4) -l-p(—u) :l— +(-:.- -
(3"“ T p iip, o (GF)T. i 3““)1 'y Y
Pl oF FYi « (3V
P ), o), T, o)
(om1 T p £l T, p T 50 i, Bmhr’ D
. av\2 - faF
: o], -
7 P D) P P T ;I.
2 rlig 3y 38 av\? Ep fa¥
s (38, +=65), @) &), #E&).]
a‘T,p (EE‘ T: p an"T.p Tp.n; T(Bp y By
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Tabl e 111-14 _
Jacobi ans of intensive functions
for a binary systemof one phase

3(x\vy, z) 3(x,¥. 2)
3(Trp»i 73%)  * 3(Top»/ I‘;J )

: @) @) &), @,
. @)L
][, e, ), TE L@,
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Table 111-15
Jacobians of intensive functions
for a binary syssem of one phase

3LV, 7 3(x. Y, 2)
9(7, p, m) ' 97, p.tfi)

¥ Z ‘-" g’
X
X N
A T T AL T Lo RN p* "\3p/i--' iWD-i
Sp 70l {35\ 738\ /3y
P —-F :71 " T\Tzi; ™ l\Qrul * P!\ ) -
" ‘T p ' T.p + P P* ®l
tTAY PEp 3V
X P(ar) .t T (ap)r -
LN 3] s 1
L +| . -t
v f() ") -Hi) TEF 2@
T \3p T
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In order to obtain the first partial derivative of any
one of the six quantities, T, p, Fﬁ', \7, vaé, with respect to
any second quantity of the six when any third and fourth
quantities of the six are held constant, one has only to
divide the value of the Jacobian in which the first letter in
the first line is the quantity being differentiated and in
which the second and third letters in the first line are the
quantities held constant by the value of the Jacobian in which
the first letter of the first line is the quantity wth
respect to which the differentiation is taking place and in
which the second and third letters in the first line are the
quantities held constant.

To obtain the relation anmong any seven derivatives,

having expressed them in ternms of the sanme six derivatives,

(g})\ (dVv\ (dv \ - (W) (ds")
aT .
- - . P Typ

1

one can then elinmnate the six derivatives from the seven
equations, leaving a single equation connecting the seven
derivati ves. In addition to the relations anbng seven
derivatives there are al so degenerate cases in which there are
rel ations anong fewer than seven derivatives.

U- TS is used

An additional therraodynamc function A
to facilitate the solution of many probl ens. The

corresponding intensive function A is defined by the equation

ts 57T1E (m. 68)
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In case a relation is needed that involves one or nore of the
thermodynamc potential functions, H A or G parti al
derivatives involving one or nore of these functions can also
be calculated as the quotients of tw Jacobians, which can
t hensel ves be evaluated by the same method used to calculate

the Jacobians in Tables Ill-1 to 111-15.
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Proof of the relation

1

o

(z

%) )
(aﬁl T p Ty psm2 dma g, Dy My

The quantity Gis defined by the equation

= G ) (T1I-4-1)

(X

Miltiplying both sides of equation (Il1I-A-1) by (/72 + m) one
has
G = Gm +m) . (111-A-2)

Differentiating both sides of equation (I11-A-2) with respect
toai holding T, p, androafast one obtains

( ) (ITI-5-3)
MTephl22 - Ty py g

The quantity & is a function of the tenperature T» the
pressure p* and the mass fraction &. By application of the
theorem for change of variables in partial differentiation
one has thus

(a_‘c' \ (26 (2, \
9] - \2rnd - \amyl . ' (111-A-4)
2 « p? Jt2 J-fp 1* pt U2

Y Tunell, G, Anmer, Jour. Sci., 255, 261-265, 1957, and
Tunell, G, Relations between Intensive Thernodynanic
Quantities and Their First Derivatives in a Binary System of
e Phaset WH. Freeman and Co., San Francisco and London,
1960, pp. 25, 26.
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Since, by definition,

163

= —2i— , (111-A5)
m; 4+ Mz
one has
(_g_/_‘ﬁl\ _ 1
Bml}T’i of i ' my + mz2. (m1 + mz)z
m
= - . I1-A6
—-'L—zol + ) ( )
Heaxe it follows that
3G .5 (E)
(aml)T, Dy @2 = G+ (m +m2) iy T, p (@) + m2)
= G+ f;z(‘g“s ) , (II1I-A~7)
My .
l\’P
and, similarly,
(26 - Fem (3]
N'r.p.an VOTfiZT
(111-A-8)
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By subtracting the left side of equation (lIIl-A-8) from the
left side of equation (IIl-A-7) and the right side of equation
(I'11-A-8) fromthe right side of equation (Il1l-A-7), one thus

obtains the equation to be proved:

), - (), -
aml T, L aml Tv DPs 2 aﬁ?z T! 2 (III_AHQ)

In a sinlar way the equation

(%), - &, T8

Qar

(IIT-4-10)

can al so be derived
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Transformation of the work and heat line integrals from one
coordi nate space to other coordinate spaces in the case of a

bi nary system of one phase and of unit nmass

As in the case of a one conponent system of one phase and
of variable mass, it is also true in the case of a binary
system of one phase and of unit nass that it is not necessary
to define either work or heat when nmsses are being
transferred to or fromthe systemto change its conposition in
order to obtain the energy and the entropy as functions of the
absol ute thernodynam ¢ tenperature, the pressure, and the nass
fraction of one conponent from experinmental neasurenents.
Thus the derivation of the Jacobians listed in Tables I11-1 to
I11-325 did not depend upon definitions of work or heat in the
case of a binary system of one phase and of wunit nass when
nmasses are being transferred to or from the system to change
its conposition.

For some purposes, however, it is useful to have
definitions of work done and heat received in the case of a
binary system of one phase and of unit mass when nesses are
being transferred to or from the system to change its
conposi tion. If the conclusion of Van Wlen and Professor
Uld be accepted that it cannot be said that work is done at a
stationary boundary across which mass is transported, then the

work 1'! done by a binary system of one phase and of unit mass

165
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can be represented by the line integra

i Psmy o o
av a d v II1-3
p(—-) dT + p(r) o dp + p(-- ) dml} (I1I-3-1)
f{ or s 1 P ir, 7\ am /e, D
Tos Pulala

in (f, p, ¥fli)-space. Furthernore, in the case of such a system
the heat 0 received can be represented by the line integra

N p. &y

o SiB) () e (8) )
P T3 pTvET‘]. ’1T:P
TE)f pQt 1Sl

dﬁﬂ} . (IT1-3-2)
p

In order to obtain the total derivative of the work done al ong
a straight line parallel to one of the coordinate axes in any
other coordinate space one obtains fromTables I11-1 to 111-15
the partial derivative of the volume wth respect to the
quantity plotted along, that axis when the quantities plotted
along the other axes are held constant and one multiplies this
partial derivative by the pressure. The total derivative of
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the heat received along a straight line parallel to one of the
coordinate axes in any other space, on the other hand, cannot
be obtained by multiplication of the partial derivative of the
entropy by the absolute thernodynanic tenperature when
transfer of masses to or from the system is involved. In
such cases the total derivatives of the heat received along
lines parallel to the coordinate axes in any desired
coordinate space can be derived in terns of the total
derivatives of the heat received along lines parallel to the
coordinate axes in (7\ p, ™)~space by transformation of the
heat line integrals by the use of the nethod set forth in the

second hal f of Appendix B to Part Il. Following is an exanple
of such a transformation. In the case of a binary system of
one phase and of unit mass the heat line integral extended

along a path in (7\#, 7)-space is

[

T.El,V
nr dQ \ ) do el
Q = 1(5(?\ HdT+('m dii +( dV}

JL dT/ﬂ_"l’ v} \dmi}T’P' . EV)T' El

To, r‘ﬁin, ¥a
T, M V

= [4&dT + {52 iy + 1,9V b . (I111-B-3)
[z« @), 0 )
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dQ

The derivatives \d(r§‘) o (%|) . and (EV)T, 5 can be

1'5;1 L} V W/ Tl v’
evaluated by the nmethod set forth in the second half of
Appendix B to part |l as the quotients of two determ nants.

Thus we have

do do d%-

dT dp dmi

i dii  dS]

dT dp dmi

dv dv 37

(QQ) So- dT dp dm
dT jo A » -

s b dT dT dT

dTr dp dm

] 3ni dmi i

|f Tdp dF

dv dv dv

dT dp dm

- [(g_g)]", P (g_?q)P, o - fdQ\‘ L (_gjp i ] z [_ J'd\hi)-l_’nb‘l' ]
o (37 v [3E\ . I3E\

) [Cp(-g_v)-r' - - Ip | ;-

: [EP(%)T' 5 T(‘S';); El] : (E—E)T’ - (111-B-4)
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and

49 do __

p dii

a1 dr  dT.

dT d 35x

& o if

(_dg _ dT  dp  'dfi
dﬂ"f ; - A A
Y dmi dmi  ofni
daTt  dp  difti

dar  d1  dT

dT dp dmi

o a3

dT dp dimii

: [(ngp\‘a“s)M BRIV \—p)T,
-[(), &), 1F) LG, p] S~

(111-B-5)
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and finally
© 0 ®©
) dp m i
a o dardr
ar dp
am a8
(0 =0, = 1T ®
MT, S dv  dv
ar dp i
ar ar
T o
afi o dii >
ar dp  dii

(111-B-6)



Part |V

Rel ati ons betv/een thernodynanic quantities and
their first derivatives in a binary system of

one phase and of variable total mass
I ntroduction

In the following text the relations for the energy and
the entropy of a binary system of one phase and of variable
total mass are derived and a table of Jacobians is presented
by neans of which any first partial derivative of any one of
the quantities, absolute thernmodynam c tenperature Ty pressure
p, mass m of conmponent 1, mass m of conponent 2, total
volume V; total energy U and total entropy S, with respect to
any other of these quantities can be obtained in terns of the
partial derivative of the specific volune Vwith respect to the
absol ute thernodynanic tenperature, the partial derivative of
the specific volume with respect to the pressure, the partial
derivative of the specific volune with respect to the mass
fraction Si of conponent 1, the heat capacity at constant
pressure per unit of nass 5p the partial derivative of the
specific energy U with respect to the mass fraction of
component 1, the partial derivative of the specific entropy S
with respect to the mass fraction of conponent 1, and certain
of the quantities, 7\ p, m, meffli»S* V, U'S where m

denotes the mass fraction of component 2.

171
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Cal culation of the total volume, the total energy, and
the total entropy of a binary system of one phase and
of variable total mass as functions of the absolute

t hermodynanmi ¢ tenperature, the pressure, and the
masses of components one and two

Thermodynani ¢ fornmulas can be developed in the case of a
binary system of one phase and of variable total nmass on the
basis of the following set of wvariable quantities: the
absolute thermodynamc tenperature, the pressure, the mass
of conponent 1, the mass of conponent 2, the total volune,
the total energy, the total entropy, the mass fraction of
component 1, the mass fraction of component 2, the specific
volume, the specific energy, the specific entropy, the heat
capacity at constant pressure per unit of mass, and the |atent
heat of change of pressure at constant tenperature per unit
of mass (p.

In the case of a binary system of one phase and of
variable total nmass the total volume is a function of the
absol ute thernodynam c tenperature, the pressure, the mass of
conponent 1, and the mass of conponent 2,

Vo= (T p o we m) . (1v-1)

The total volune is equal to the total mass tines the specific
vol ume

r

V. = (i +m)V, (1v-2)

and the specific volume is a function of the absolute
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thernodynam ¢ tenperature, the pressure, and the mass fraction
of conponent 1,

Vo= (MpSx) . (1V-3)

From equations (IV-1), (IV-2), and (IV-3) it then follows
t hat

(8) = @2 (8) (1\-4)

Ph 213 mz Py F1
(%)T, prome <000 >(] )T, 5. (1v=3)
(g_ni)r, o ma v+ (—2%1)1 S (1V-6)
and

The total energy is a function of the absolute thernodynanic
tenperature, the pressure, the mass of conponent 1, and the
mass of conponent 2

Umj (T, prmmz) . (1V-8)

As in the case of a one—eonponent system of one phase and of
variable mass it is known from experinent that the energy is
an extensive function* Thus the total energy is equal to the
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total mass times the specific energy
U = O +mU . (IV-9)

Furthermore it is known that the specific energy is a function
of the absolute thernodynaraic tenperature, the pressure, and
the mass fraction of conponent 1,

U= o, p M) » (1V-10)

Thus the relation of the total energy to the absolute
thermodynami ¢ tenperature, the pressure, the mass of conmponent
1, and the mass of conponent 2 is expressed by the equation

CUT, p$ fi%» 22) ~ U(TQS po» "iy> "2y

Tf p, mis m2
= J[(D! + D)% - Fﬁﬁﬂﬂ b (X + mZE\ 7, - PA} .

T<>f pot 1810- m:o
+ & dey, + % dm Iv-1
331 t Bmz 2 * ( - 1)

Fan equations (1V-8), (IVv-9), (IVv-10), and (IV-11) it
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foll ows that
(f) = (my + mz)[zp -p ] (IV-12)
p» rn(f m, L p)) my
au) v oV
(— = {(m + mz){f - p(—) ] , (TV-13)
ap v M1y 2 P ap T, 51"1
(%f—; ) = U+ 52(% ) . (TV=14)
1 T, Dss ! T, P
and
(%) = U- mkn ] . (1V-15)
2 T, Pl r, P

The total entropy is a function of the absolute thernmodynaraic
tenperature, the pressure, the mass of component 1, and the
mass of conponent 2

S=72(r, p, 125 mp) o (1V-16)

As in the case of a one-conmponent system of one phase and of
variable mass it is known from experinment that the entropy is
an extensive function. Thus the total entropy is equal to the
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total mass tines the specific entropy

wt

s = 4 +ms. (1V-17)

Furthernmore it is known that the specific entropy is a
function of the absolute thermodynamic tenperature, the
pressure, and the mass fraction of conponent 1,

S = g2 p, ¥i) . (1V-18)

Thus the relation of the total entropy to the absolute
thermodynani ¢ tenperature, the pressure, the mass of conponent
1, and the mass of conponent 2 is expressed by the equation

S(Tf p, mi f V\b) - S(TO? pﬂ?mloy mzc)

TS p» ini» w v
. < 1
= (m + M2)_’\'dT + (m; + mg) T dp

TQ Pos mln. mzu

S
+ 'g;ldm + %f?zdmg} . (Iv-1%3
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From equations (IV-16), (IV-17), (I1V-18), and (IV-19) it
fol l ows that

as) €
T | V-2
(dT po nie mp - (M M) T (120
]
(g—ﬁ)T = (m o+ )2, (1V-21)
smlv mz
(?S ) = E + E;g(%é ) ’
TLIT b W2 ®ilp, p (1V-22)
and
S ) o v./a§)
v — = .9 -_ T
(dmZ T, p* m ek, P (1V-23)

Necessary and sufficient conditions for (I1V-11) are

a[(nn * mz>( p - P(g_;>T 5 )]
3 W

8T p* m g in2
) ) l:(m]. + mz)(?:'p - P(§)P» ;J]J_] | (1V-24)

ap T, My T2
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(35.)
om Tip>fll2

3T
-'p9 Winx» IB2

. a[(”" vF -'I;(lpua/);n (IV-25)
{ »

33333

T’ Ps 2

==L

amg

i {8[(&‘?1 + IM)(EP ~ p(%:f)p,ﬁl)]} ’ (1V-26)

al’ ~ , (v-27)
3B3I JT

3 {8 |:(m1 + m2>(2'p - p(g—z_r. . )-H
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3y
a(m
>T, p,m,

ap Lynil,"2
¥ 7
3[(9?1 s o)(lp - () ) ]
- T, %/-1 > , (Iv-28)
3ffi 2 JT, D @y
and
3t au
T - AN
_,rpm__> - r;Pmi|? > (IV_29)
Jr,P;ni I\ Jr-.p;""’i
Similarly, necessary ad sufficient conditions for
(IvV-19) are
3[(m1 + mz)z}l] 3[(!}?1 + mz)fa]
T = {= T , (IV-30)
oT ap

Ds i1y M2 Tlm]_! mnz

a3 S
ol == 3| (my + m2)

(3!31)1-.' by s - { [ o B2 T ]} ., (IV=31)
aT aml r’P, g
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2 &
{3( mz}T ] 3[(”’1+m23T} (1V-32)
SV IS O (I = , 2
Im2 f
8T Dy 1020» My JT, p, m
38 = [ -
(), s + m)-od v
¥ ¢ M = I , 2
3p dmi \T.p. m
NT» [T71> 722
as I
a(_ ) g (m + mz}—R
{ 2/, by m - [ : T] , (1V-34)
dm2:
ap T, M1y Mz T, P Iy
and
s )
Bmz
L. = ___._L_.lL_mz (1\v-35)
om2 T.p,m dm Ty Dv 7D,

Carrying out the indicated differentiations in equation
(1'V-24) one has

£ () 5

(ml + m!) aT - P 5 M
Dy @M1 B2 aT

PeOly Iz
9 3y
= (m + mz) (‘é‘f‘)ﬂ - P _._.BLM_L - (%T_‘) L
it J37» M2 3 P M
P
Ft 371t S2
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Making use of the change of variable theorem in partial

differentiati on one obtains

or p, mi 9 m2 T
. (%2\ / 30\ /7 3La\ /:\;_1)
P T, m p, zaj m T, p* p, m, m
(1V-37)
. . ]
The derivatives (5‘%) and @ are each
p, m, p» mi, [z
equal to zero. Thus one has
3l 51,
(%) - (+#) .- (1v-39
PrE19m psm
Sinmilarly it follows that
oV Vi
B(BP)T E - a(ap)r 5 c 3%y
—=1 - — = dTdp !
37 / oT
po M 9 22 P*nT
(1V-39)
al so
2 - (3
op 3p T, i (1V_ 40)
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3V a7 .
a(a_'r) .y 3(33’) 2\ _ A
- p. iy = — £ | liar o
Bp T Mys M2 ap /T’ El
(1V-41)
o 131,
Consequent|y substituting the values of ( \kaﬂf) y
Pr» 771712
v )4
(&) 5 o(3r)
b)) (s
3T | PliTym, ma \ ip a

from equations (IV-38), (IV-39), (IV-40), and (IV-41) in
equation (IV-36) one obtains

M 3°F %p  3F &2
s TP T e PRpem T (IV-42)

In a simlar way carrying out the indicated differentiations
in equation (I1V-30) and nmeking use of the change of variable
theoremin partial differentiation one obtains

|
T (IV-43)



BI NARY SYSTEMS OF VARI ABLE TOTAL MASS 183

Conbi ni ng equations (I1V-42) and (1V-43) one has

ip = -rlK . (1V-44)
Carrying out the indicated differentiations in equation
(1'V-25) one has
8(%%”) e
T . p
. = (m + m) 3.'}'.'1)
dT b 8 fi2 Tt p» AP
A
ES )
¥ .l':l-?' e BV
] P\\_—é_P'_L *op- P(”ﬁ) .
m To p* m2 pr i
(1V-45)
Maki ng use of equation (1V-14) one has
v o (a0 )
\dmi )T, s _ B(U + w2 (ﬁ: T, .
aT T Coe
Py W19 072 Ip»ffiif in2
(&,)
ag‘ aml
= (aT + m —_‘L!'_E‘ .
Py @1s M2 aT

Py Bio IB2

(IV-46)
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By application of the change of variable theorem in partial
differentiation one then obtains

(ﬁ\ 1 =
"Po mMi * /T2 p* nil )P> Mix M2
dO\  /dp\ fdU \ /dlﬁ_l\
*lap o A ary \OMI/1 vy
P [p, i B Ps My iz rP,,Q f' fy1e My
(IV-47)
The derivatives <2 ) and (2n?! are each equal
61/ p» mi 9 N2 \(6 ‘)Jp9 mi $ ni2
to zero. Thus one has
3l 30
(ﬁ) -~ (IV-48)
P 121»ffl2 pemq
Simlarly it follows that
a a
8(31&'1)T 3(551) 82
—_Ip = — "Ihp = 3To8,
aT “
Py B1s 1072 Pr

(1V-49)
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Also by application of the change of variable theorem in
partial differentiation one obtains

/ £l
The two derivatives (\"ﬁ—\) and ('@r"- ) are

T le a2 TtP;ﬂTz

dom
each equal to zero and the derivative ( ‘?’f’-l} is equal

iy prwaug

wr

~82__ | Thus we have
im 4 ma
.13 3¢, ~
(=2) - (%), wrm (1v-51)
1 T, DBz ks T, fzl b 2
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Simlarly we have

'Ya av
3(&7) o(32) )
o pd) 1ha 1T 7z
| : t @y + M2
i IT, pr» m2 o T.p
R L A4 V- 52
= 35T ma 4o, (1V-52)

Consequently substituting the values of the derivatives from
the right side of equation (IV-46) for the value of the
derivative on the left side of equation (IV-45) one obtains

. ’(%)
\d1T LE J"Q)
p> it o7 ip, sii, fiz
3 2(@)
= (m + mz) (%5?)_, D ) P|/_£:&£L
It p» 2 \ om T, D m
A (1V-53)

pr o1

Next substituting the wvalues of the derivatives from
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equations (1V-48), (I1V-49), (IV-51), and (IV-52) in equation
(1V-53) one has

> 38 ~ 52y
= ms mZ)[m + m; (351‘)1",,0 mit om 7 a"ﬁlaT]
g A
+&p - p(ﬁ\] A (|V'54)
The d S /3t7\ A 1S ec al” o0 e plg?f;l;\
e derivative LW, ’ ~ 7
M P A A

Hence one obtains finally

25 ac A 1 )
a?'aﬁil = =2 ML (1v-55)
3 PomdT ke

In a simlar way carrying out the indicated differentiations
in equation (I1V-31) and making use of the change of variable
theoremin partial differentiation one has

M - i -sf- o (V.5

! The same result is derivable fromequation (I¥%26)..

2 The sane result is derivable fromequation (IV-32).
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Conbi ning equations (1V-55) and (IV-56) one has

d’u _ v d’s  dv
3791 T OTq¥y ' P i3 * (1V-57)

Likewise carrying out the indicated differentiations in
equation (1V-27) and naking use of the change of variable
theoremin partial differentiation one obtains

d?U  3*p d?v 3 ,
EPEER (1v-38)

Also, carrying out the indicated differentiations in equation
(IV-33) ad me&king use of the change of variable theorem in
partial differentiation one has

(

¢S 1 2l “
3 = T (1V-50)
Combi ning equations (1V-58) and (1V-59) one has
220 _ 323 2y
s C T3%7 padE (1V60)

® The sane result is derivable fromequation (IV-28).

* The same result is derivable fromequation (1V-34).
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From(1V-44) it follows that
al, 2V 3y
=p . . - gy -
or = T W (1v-61)

and from (1V-43), (1V-44) and (1V-61) it also follows that

g 527
—E _ .78 -
P - T_B?‘T . (IV-62)
Fom (1V-44) it follows that
<3 azv
% =TT (1)
and
E;g I LA IV-64
3%, - " TEEer (IvV-64)
Combining (IV-58) and (1V-64) one has
apom: - - Tamer - " 3B73 (1V-65)

and, sinilarly, conbining (IV-59) and (IV—64) one has

d?S 3%y
3paB, = 3BT (1V-66)
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Finally substituting the value of |, from equation (IV-44)
in equations (1V-13) and (IV-21) one obtains

(-g%)r = -(m + mz)l:T(g—g) s p(g—;-) . :!

@1y m Dy il Ty i1
(1V-67)
and
(&) - o+ (%) . (Tv-68)
Bp . T -
T» me M2 Py iy

Thus, just as in the case of a binary system of one
phase and of unit mass, there is one relation, equation

(1V-44), between the seven derivatives, ﬂ\ét Q_\L GR'S é\n, Zn,
01 op o r r

s/

6 » 3ge1 . Consequently all seven will be known if the

o

following six are determined by means of experimental

measurements: %é 9'3/—, Ry . Ven, d“?», %2 . There are

ol op o1l m uHJ& [ORVES

also eight relations, equations (IV-55), (IV-56), (IV-61),
(Iv-62), (I1V-63), (IV-64), (1V-65), (IV-66), between the

327 3% 82 3%V 3%
3p?’ om?" oTop’ oTom,' 3pdd,’

2\-?
eighteen derivatives, g—f-.
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d&g ~R HE HE HE HE @& g 220
73T 3t tSmwo 37 dp® dm? TRE T BpRE, T AT

o bl

d v e __ . .
) 0o, mﬁz » by means of which fromthe followi ng ten,

527 327 d2“\'/ BEP BEE 320 828
STZ' 3dp?' DBm' oTop’ OTom.  opém,® o' omi oml’ omZ’

the remaining eight can be calculated. From equation (IV-62)

dt

3
—— can be calculated; from equation (I1V-61) -rS- can be

N

op ol

cal cul ated; from equation (IV-63) ——‘— can be calcul ated;
op

3z
from equation (IV-64) i(rmsz- can be cal cul ated; from equation
1

St .‘\2”

(1V-55) = z : A cah be cal'cll’at éd; “from equéfion (TIT\/-%)-;O—“*!
2

can be calculated; from equation (IV-56) -“g“}% can be

35T

cal cul ated; and from equation (IV-66) _Ap_dn!u_ can be cal cul at ed.

It will therefore suffice in the case of a binary system of
one phase and of variable total mass, just as in the case of a
binary system of one phase and of unit mass, to determne the
specific volume over the range of temperature, pressure, and
composition that is of interest. The value of Tp then needs
to be determned as a function of temperature and composition
at one pressure. Finally the values of the energy and the



192 CONDENSED COLLECTIONS OF THERMODYNAM C FORMULAS

entropy need to be deternined as functions of the conposition
at one tenperature and one pressure. Thus in order to obtain
conpl ete therraodynanic information for a binary system of one
phase and of variable total mass no additional experinental
measurenents have to be nmade beyond those required to be made
in order to obtain conplete thernmodynamic information for a
bi nary system of one phase and of wunit mass over the sane
range of tenperature, pressure, and conposition. The
necessary measurements to obtain conplete thermodynanic
information for a binary system of one phase and of wunit mass
over a given range of tenperature, pressure, and conposition
were described in Part Il of this text on pages 126-136. |In
part 11l the use of galvanic cells to determine the specific
G bbs function was explained, and from the specific G bbs
function conbined with neasurenents of the specific volume and
deterninations of the specific energy (which do not require
neasurements of heat quantities under equilibrium conditions)
the calculation of the specific entropy was also explained.
In the authorfs article entitled "The COperational Basis and
Mat hematical Derivation of the Gbbs Differential Equation,
Wiich |'s the Fundanmental Equation of Chemical Thernodynanics"?®
it_ was shown how osmotic cells could al so be used in place of
galvanic cells to obtain the specific Gbbs function.

It is notable that in order to obtain conplete
thermodynam ¢ information for a binary system of one phase and

of unit mass, and likewise for a binary system of one phase

5 Tunell, G, in Thernodynamics of Mnerals and Mlts -

Advances in Physical Geochemstry, edited by R C Newton, A

Navrot sky, and 3.J. Wod, Springer-Verlag New York, Inc., New
Yor k, Heidel berg, Berlin, 1981, pp. 3-16.
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and of variable total nass no definition or neasurenent of
heat or work in the case of an open system when masses are

being transferred to or fromthe systemis required.®

Derivation of any desired relation between the
t hermodynami ¢ quantities T, p, m, JH;, Vo Uy S,

and their first derivatives for a binary system of one
phase and of variable total mass by the use of

functional determ nants (Jacobi ans)

Equations (1V-1), (IV-11), and (IV-19) can, in general,
be solved for any three of the quantities, Top, Mo /T?» Vo U S
as functions of the renaining four. The first partial
derivative of any one of the quantities, T, p, m»m>V, U S
with respect to any second quantity when any third, fourth,
and fifth quantities are held constant can be obtained in

~ s - i L

terms of the six derivatives -7= , TT~, TT1Z, * c¢n TT1Z?, TIZ,
01 op oi B\ y dmi awi

A

and certain of the quantities T, p, m, m» M, m V. G s by

application of the t heorem stating t hat, i f
w = QJ(V» x, y, 2)t w = f(s, tg U, V)y X = <p(Ssg t, u, Vv)j
y = (s, t, u, v), z = 6(Si»t, u, v), then one has

® The definitions of heat and work in the case of o-pen

systens used by various authors are discussed in Appendix A to
Part Il and Appendix A to Part IV of this text.
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d) odw v
ds 3t U dv
dx o odx i
ds 3t u dv
1z iz
ds dt 4, dv
'd—z" E dz E BW'. X 1 Z
(awf\ ds dt du dv _ 3(3» t, u, V)
3 Ay, 2 dw dw dw dw 3(0 Xy z)
ds dt du dv d(set, u, v)
dx  dx  dx dx
ds at du dv
ht iz h. h. (1\-69)
s al g gy
& 4y o dz
ds at 3u  dv
provided all the partial derivatives are continuous and

provided the determinant in the denonminator is not equal to
zero.

In Tables IV-1 to IV-35 (on pages 230-264) the value of
the Jacobian is given for each set of four of the variables,
TN pofflii"2» " SE as W, x, yoz or i/, x, y, z, and wth
T, ppm* nmz as s» ty u» y. There are 140 Jacobians in the

Tabl es, but one has

dw x, v, z) 3z x. vy, W) (¥s y Zow) 3(x,_ Y.z, W

3(s» tf w» v) © T 3(sit»U» Y © 3(s» tr» U V) 3(sft, U )

(1V-70), (1V-71), (IV-72)

because interchanging two rows of a determinant changes the
sign of the deterninant. Hence it is only necessary to
calculate the values of 35 of the 140 Jacobi ans. The

cal cul ations of these 35 Jacobians foll ow
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dm  dm2 2@
dp dmi  dm2

dT 8T

8{mz, T. p>1m) dp dmi  dm2

| a
dp dmi dm2

dm  dm; 3w
dp dmi 312

B(Tv Dy M1y m2)

SEgs SR
Ro

dny. dm2 | am2 | _B_mz.
= qg1°0- dp 0 +4m 0 - 1
= 0-0+0-1-1

= 1l (1V-73)
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A IK K 1Z
3T 3p 3/731  3m
3L 4 3T 3T
¥» N Pm)  _ |37 3% dni dm
3(r, proom) T | do o d
ar  dp dni dm
dnii dm dmi dmi
dT  dp dni  dm2

- Fen(E) (1V-74)
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317317 3£ IML
dT  dp dmi dm2

6 0L 6L d
%U, T, p, mi) dT  dp dmi dm2
3(r, p» /Di»m2) gﬂ _dp_ QP_ m
dT  dp  dmi dm2

doi dini gmi i
T dp  dmi dm2

T i dp "0 F 30 10
N V)
B am:
- U E‘(g_g' ) ; (IV-75)
)
T’ p
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dS 45 s
a7 dp dmi dm2
dT  dr 3 dr
ar dp  dm  dm
ot poomi' M) £ I £
dT dp gy dm2
dni  dm - dmi
ar  dp  dm dm

E -dS-O—'as"0+3§m1'0'|A-l

i ]

1) ; (1V-76)
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Fox I
3T gp  omy a2
a I T 3
3. LLop, A2) _ ar 3p ml 3m2
3(r, p,zx»n2) if 22 3 3p
o 9 M1 om.
m2 32 m2 3,
' 3wl 3m2
av v
= af 0 - °p 0+ dm1 dm2
.
3m1
4 ) r’; N
= V + mg(%g H

19

(1V-77)
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MI ML ML MI
T dp dmi 7R
31 11 H I
du T p_m) _ |97 dpdmdm,
3(T> po mi, f122) 3 3 385 op

dT dp dmi dm

din2 dm2 dn.2 dm2
3T *3p ~dm\ ~dm,

- ML.op_3. o
= 0 5P 0+3mx1 E;sz
ar
- M
3m1

(IV-78)

]
=l
+
5¢
i)
T
[+B] [+ %)
E(IC‘:(
e
-
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ds Os 33 3S
dT dp ITi gym2
ar dr 11 3r
3(S.T,.p.m). _ di dp dmi 3%,
37", p, 1B, fi)2) IE R £ If
ar - dp " 372
dm2  3m, 3m2 33
ar . dmi  3m2
- B n_:'3§"0+a—s-1_..a.§.o
: ' am om,
. 88
- 3m

= 8 +S\(dn412t

(1V-79)

Al
i=}
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50 3 3y 31
dT  3p dmi  3h2

dT 8T dT dT

dT  3p dmi ©9ms

3!U,T, p, V) _
3(7\ p» 113i9 Hi2) B i£ |£ 3£ -
8p Bm1 3Tz
o W
3T  3p amy dmap |
WL
= 37 D_ap O"'Bml dm2 dm, dmi
ML, LI _ 3¢

dmy Oms 3mz O

(1V-80)

I
1
S
.
mdm
E =3
o
+
=2
. e
e S
3
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g ds &
diT  dp dal ﬁ
2
a dar 4
ds T b ) dT  dp dml dm2
dT, p, n?%, B2 £ _ - la
dT  dp dmi
& avo11
dT dp dml dm,

. ds , as ,_as 3F. as dwv

T dp dml  dm2  dm2 dnmi’

dS » V. _3S ., 3E
3ii2i dm2 ai?2 3771

~

114 a5 . .
- - (aﬁl)y, o V(afﬁl)T, ; (IV-81)



204 CONDENSED COLLECTI ONS OF TKERMCDYNAM C FORMULAS

& ds 35
dr  dp b dm2

a dar di 37
diT dp  dmi  dm2

dS,_T, p. U) _
d(T, P, My Ez) - 9£ EE ER EE
ar 3 dmi dm,
 du 3 dg
di  dp dmi dm2
= - G + . .
dT dp dm dm2 dm 3mi

n
o
3
=
L]

i
mlw
= L
(]
éf;

n
1
ng
TR
=
+
=11
T———
[1[-%]
J&
—

; (1V-82)
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dav 37 - 11
dar dT 3T 3T
3(7, T, Mys @) dT dp 3ml 3m2
3P, mym) - |dm dnd 3ml 3ml
dT 3p 3ml dm2
dmz dm? dm dm
3T dp dml dm2
iy 2% i Y14 S
= 3T dp dmi dm
. av )
= - (ml + mz) 5"‘ ol (lV—83)
p T, ml
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A o U
3T dp ami ,\(ﬂ]—z
ST dr 3T BT

dus Ty mi 9 AR 3 g dml dm2

3(TE p M9 Z») 3i2z7i dm1 dml dm1i
dr dp dm1l Qmy

dm?2 gdm, dm2 dm,
ar dp 3N dm 2

ay U,

= 8T'0-dp'1+3_ml.0_;m20
__au
v dv\
= (m + mz)[T 57 =) E
(BT )P! El (ka AT O
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as
dT

dT
&S To mi 9 1112) a7

B(Tﬁ Py M1y mz) ﬂl
dT

dm?

dT

3S A Q _ds A

dT dp

_ds
dp

= (DI + z&a(%

>=i

d4s
dp

ar
dp
dmt
dp
dm2
dp

1+

as

e
ar. °
dml dm2
dmi  dm_
dml dm2
dm  dm?
dm1 m,
ds o _3S
3/731 377,

) s

Dy @1

207

(IV-85)
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ar dp 8771 dm2
dr dr IT dT

T M dn
du, T, mi, V d do 8 dm2

dTf p, m¢ m) | dmi dmi 8 dmi
daT dp 8771  dm2
dv dv dv

dT dp E’nl Enz

!
= M’o_ﬂ;oﬂ+ﬂ!.0+ﬂoﬂ
dT dp dm2 dmi dm, dp
_ .8 3. @

T T g/7zz+ gmy dp

—

) (3_ /e
v F aﬁl)
+ P

= (m o+ m){[u? F oWy - (%f:;

Te L BFY ] (ai’\
+ Mt /-ffl Il@m}f;T, pJTT — _— } H (|V-86)
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g dS 3
dT  dp  3m1
T 4T dT

3(8, -|-| m" \/) ~ aT dp dm1
3(1", p> i, 012) - 32 dmi  dmil
dar  3p dml

v 37 dv

dT  3p  dmi

8, _38 .3 ,3 - 35
8T dp " dm T %m, YVt dm)

ds

dz

dm

dn
AT

dm2
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d 8 g5

a P

a o dar 30
3(s. T, m ) ) ar dp am i
ar. oo om0 oo s dmy

ar dp dmi

& ow W

ar dp dm i
=T dp dm2 dml " dm2
- -LE.M M. M

op dm2 dm2 dp

Y

(nu +- mz){[(l}‘ - Tg) - a‘.ﬁ'l <(%1)
Ty p

CONDENSED COLLECTI ONS OF TKERMCODYNAM C FORMULAS

dm 2
dr
dm 2

dm i
dm 2

MI

dm 2

dp

(1V-88)
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du 3F W
dmi dm

7T m ) aT  dp  dmi dm2
3(7\p, Bi» m) - dm?  dm?  dm2  dm2
ar dp dmi dm2
dv. d&v. ‘M M
dar dp dmi

av
%41-1_.0+dp e

= ML .II -i£ 411

dp 3771 371 3p

= —-(m + J'M){[(E + Pﬁ) + EZ((%%I--?-’F) * p(-g_.;l)'f, P>](g_g>T’ JI;1'1
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&S & g5 &
ar dp i dn2
a dar 3T 3T
S, nom V) (@ @ aioamo

307 pe M9 B2) 2 dn2 M2 a2

dp 3mi 32

ar
&K IK 2
dr &g Mi dm2

Noos 1M9Z- £ & al- a8 .

i
daT dp 3mi 33 3p dm?2

=, K _E K
3p Bml 3m1 a)

< - voffre @) 1)

Nt
bsm

+ [S‘ " az(g—gl )?J/\IW 1. (1V-90)
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BI NARY SYSTEMS OF VARI ABLE TOTAL MASS

g d 4 gg
dr dp g2

a a4 11 1

T, u) ar dp am i dm 2

3(T>p m 9 ng dn?2 dn2 dm, dm,

dT dp dm! dm 2

w oo XML
ar dp dni  dm2

as 3 AT A £ 3
2. , - _

0
Prdp M T s s e

35 ou

3
- dmi dmi dp

dp

-(m: + mz)ﬂ:(ﬁ - T5) + 52<(%”;1)T - T(%
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214 CONDENSED COLLECTI ONS OF THERMCDYNAM C FORMULAS

45 ds 35 7
dT dp dmi dm2

af dar ar 37
3(S. T, V. U) dp dml  dm2
3(r, pni»br) T | AV Qv AV dv

’ dar dp  dml dm
dy 30 3u 33U
dar 3  dm dm>

i E(ﬁl’. W, ar )
= Id%' 0 = 3p\am, 'M|§,272 T 3m 9mg

— | — =y w8

35/37 sU ay v )
+ 3i2él\3p dmy ©Op dms

(IV-92)
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dv dv gy 2¥
drT dp  dmj dm2

@ £ 3 te
d(ve PoMigy) _ Sp dm( dm2

3(2\ p. mif my) 3Dl &m; dmi  dmi
3T ap dmi  dm,

dm, 373, dm2 dm2
daT 3D dmi dmg

- /- dv
Wl EH %t a0 w0

n
~
=2
-
+
=]

[
—r
T
[=E] L=t}
“'3|‘T:(
—

(1V-93)
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CONDENSED COLLECTIONS OF THERVODYNAM C FORMULAS

3(t/» p> inif M%)

d(T, p, mi,

my)

dmi

ML

dmi

8p

dmi

dmi
dmi

dm2
dmi

ML

dm2

SE
dm2

dmi
dm2

dm2
dm2

Oﬁ'i'z

(ni +/772)li€'|:) .P| "3—'['\]}3'51} ;

(1V-94)
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gt dp  dmi dm,
9 9t I IR
d(S9_ po  mi9_/222) p dmi  dm2
dTe p9 mi9 n?2) d_mi d_mi _d..”..l..' _(m
dr dp dmi dms,

dm2 dm2 dm2 dm?2
diT  dp  dmi  dm2

<si dp dmi dm 2
= ‘aS‘
3T
&
= (\7 + mz)_TB 3 (IV-95)
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I H W 3£
3f 8p 3nx 3m2
3 2 3p 3p
dp dml dm2

1 dml dml 3mi

dU, p, mi, V dT
dm
dT dp dml dm
37

8(T» p» m9 m2)

9F 3F 9f
dT dp dmi dne

O M1K Ao 3 ., 30, 3
= dT " &n,” & om mp a7
LA I 14
= 3T " 8m, " %m: BT

~

ay

= -(m1 + m2) [(5 + PV) - El((’égl)T
s



3(5, p.ai, 7)

BINARY SYSTEMS OF VARIABLE TOTAL MASS

3S
3T
3>
3T

3(T>p» mi, ma) dmi

37"

37
37

35 S 38

3T~ 3m,” dp " ° * Bmy

X1t 11,10
dr * 3m,  as;z T

3S

3£

3p
3mi
ap
37
dp

15 glg gk 2k

Bml

3s

_Ezl

(@, + mz){%ﬂ[‘ﬁ '».(£,!,,]

as
am2

2
dm

dmi
3m2

37
3m2

14
aT
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ds ds 38 3s
dT dp dm  3m2
P 2 2 |E£

8(5. prmi > ~ di dp dm g

3(N\p, mem) dmi dmi  dmi - dmi
dT dp dmi dm?2
du dg sv  du
dT 8p dmi  dm2

- i S-. M_ _-3£ 0+

dT  dm2 dp dm\ dm2 dT

88 3 _dS U
= 3T  dm " %m, oT

¥ [§ ) E‘(§1)T' p]" (ﬁ;) o } ; (1V-98)
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W W U d

T dp i am2

[
37, p m» VI _ 3p dmi ©om?2
Ol 9 p» mi? il2) M2 3m2 dn2 dm?

ar 8p dm i dm,

T AN VA

3r SQ dm | dmo_

a_ _av du oy dv 30U

= "0T " Fm 3 0T dm 3T am, O

- ¥ D
= T aT 3m'd+3m1-3-|—

(1 + mz){[(ﬁ +pV) + Ez((g—f;) + p(%gl) )
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3’ ds gg O
3r dp dmi.  9m2

& s 2 2

d(S, p. mas ¥ ~ aT 3p dmi 2
d(T, p, @»m2} 3m, Bm, dm2 7T,

3T ap dmi  dm™

YA VAR VA1
dT dp dmi  dm2

_ls 3y _3s. ,,-85..31_3S.9
37 ' 3l T 3p 3mi 3T ~ 3m,

38 3£ 35 . 3V

= T3¢ ani t omy 9T

T o /3
— (m1 4+ m ){-E'[V + m; ) ]
1 2 T (a N T’p

X

E1¢



35 mf U
(T, p> 3%, "2
= - a3
ar %m; dp
R 1)
- 3T om 3m!"

il

BI NARY SYSTEMS OF VAR ABLE TOTAL MASS

223

B B g

I an g 72

- g 3 If

3r dp 3331 omg

3132 dn? 32 372

3r dp dm 1 372

W 33U

3r % dm 1 3772
5\, + A A A 0

(IV-101)
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3(5,p, V,
3(7%p$ mi $/72)

av

S (.
So;\am; dT dT°

dT
dp
dT
dv

dT

dT

)

dp
dai
3£ dv_
dp dm
3£ du
dp 3/2?

CONDENSED COLLECTI ONS OF THERMODYNAM C FORMULAS

3S
dm
dp.
dm
jE
dm
du_
dm




BI NARY SYSTEMS OF VARI ABLE TOTAL MASS

W oy

dT dp dmi

dmi dmi dmi

3(/7, mi, mf V) = ar dp dmi
3(Te pi mi 3372) \3/1\13/2 '?jﬂz dm2
p dm i

a v 11

dr dp 3mi

ML £L 3£ 11 .1*. p-1~. p
3T * 3p dp ' dT * 3m/

3my*

dr'dp dp'dT

i}

av\? v (3
(my + mz)z[T(ﬁ) L+ cp(g)'r -

W
dm2

dmi
dmz

dm.
dm2

37
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35 35

= a5 45
or  dp dm 3m2
g di gm 3
3(5. my,mp V) |97 dp dm 3m2
d(T, p, mysm2) dw dm dm  3m2
dT  3p dm 3m
v ey dv
dT  dp dmi 3m2
a5 w _3s 38
= dT+dp " dp ' dT* 3m O‘ﬁg 0
L) 2 i L4
= (m + mz)z[(%) + ET‘?-(%“) } : (1V-104)
~r p T ~
Ps @ s P
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95 95 dS  ds_

T dp dmi

dm dm dmi dmi
dS._mpempe 1) _ |97 G dm
3(7, Dy @1 mz) d_mz MZ d_m2 d_.

dT dp dmi dm

du du sz M

dr dp dm 4
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228 CONDENSED COLLECTIONS OF THERMODYNAMIC
ds ds |f 35S
dar dp y 312
3my dmi 3 3m
3(S, my ] dT ap i 2
3(7\ Pr > M) a dv |t 37
dar dp i 3
U du 3 W
dT dp IRi dm2
_ 3517 4 3E _ 37 4 3E\
T 3T3m, dp  dp dmy)
8 Y L ML.
dP\dm, dT 2T ' dmy) = 321
B ¥)
am,\3p 8T ~ 3p a7

= - (m + ﬂ?z)z{[(

7oV - TS) - XM )
V3n?1 T p

£),.]

T,m

FORMULAS

(IV-106)
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3 35
dT dp % 4
IB dm2
d2 e g dm2
3(S, m. Ve U) dT dp dmi dm2
3(7%p» m 9 ne) dv dv 37 dv_
du du M du
ar dp  dmi  dm

21(ML 2L ML . ML)\
dT [dmx* dp 377 * dp |

2121 .21 _IK . 2IL)
dp \3i37i* dT ~ 333/ dT )

£ 21 (21 1K _2121) _is4q
AM3x\ 3p dT dp dTlI are

= (m; + mz)z{[(ff + pf" - Tg) + o ((%1).-. + p(%)m - T(i?:
J*P 3o P

]} ] (IV-107)

I AY Ep (¥
if _B(ﬁ_)
[ );p, - " T \3p

e
m T, m
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Table V-1
Jacobi ans of extensive functions for a
bi nary system of one phase

3y Yi 2 3V Xy Z)
3(7\ p, al, m) * 3(r, p,/BX, D7y
\xp y» 2 Toptil,
w!
w
02 -1
y - F'l';],(‘g‘—z)
I'Tnp
\ ﬂ-l-;;(%‘)
1 Tvp
S = S4v (112
eau;!.'p
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Table V-2
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w , x Z d(w, x, vy, z)

ol f P1 U\ UL2) ofi $ pi BIIf 1112)

>
R mp. m
wA
w\
oy l
14 ?4-52(‘2_5)
ks T, p
> o (3l
v U+mz(ﬁ1)
» P
5 E-l-iz(%)
‘T'P
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Table V-3
Jacobi ans of extensive functions for a
bi nary systemof one phase

3V, x, v, 7). v xoyp 2
a(7\p.*i.o02) ' 3(r,p.memz)

\>\y* z T, p, V
wl

wo\
v . fa¥
= - 5(%)
Yr, p
. 7 (i)
lT!p
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Table V-4
Jacobians of extensive functions for a
binary sysem of one phase

d(w', x Z dws X, Vv, z
3(T, p, nyg my) ¥ 3(T, p, mi¢ny)

&Y r,p,d
wt \
m; - .
V3ra|/-|—’p
m, - U - m2tas )
v (&) -V(i&
\dmiJrin 3ffll/+
i» P 1t P
wfa (35
S -8G5, ¢ i)

Tvp T. p
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Table IV-5
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w x, y, 2 v, x, v, 2}
E(T’ D Ty mz) a(T; Py Ty ﬂ?;)

X»y»z 7’ p'S
wot,
' 5 - a(35)
" - aHIT,p
& ] 3§
o ¥-n)
. p
: ), -6
a"T-p 1?1?
v 8) o)
1 1

)
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Table 1V-5
Jacobi ans of extensive functions for a
bi nary system of one phase

30\ X, Vv, 7) 3(w,_Xty, 7)
3(T, p, zax ~2) ' 3(r»ponil +8ry)
My ¥a Z 7, m1.m2
w!
w
p -1
v -(m: +mz)(-g'§) .
Tl ol
(J (¢ +m:)[T(%‘TE) . +pa_lr") . ]
P I T 1
S (= + ﬂz)(gj') -
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Table IV-7
Jacobians of extensive functions for a
binary system of one phase

30/' . X, v, 2) 30, X, Y, 2
3(2\p.mlL.M) ' 3(r, p, M »iDy)
\x\>\> y» Z Tvay ¥
1}
14
p - ‘T + 5’1 (ﬁl)

T»p

)

{zy + ni2t
WP, Wi

V o d
* = o f3¥ 3V
..... + |V = ml("“" ) }T(-._
[ aJ'.‘?], T, P 8T )p' 51
= e i
« m;){[‘lf - ml(ﬁl)'r %) -
S LI -
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Table 1V-8
Jacobians of extensive functions for a
binary system of one phase

dw, Xf v.2) &sx.y.2z)
3(7\ p, n?%s @2} T 3(T, p, . 02)

VX Y, Z T, mi, U

w
p -0+ Ji;"“(g_ﬂ[ﬁ‘;r:l.)r' P
§ e i) ol ]

-(mi + i33z)|i|:(£l+ pv) - it /|®,)r ,J(«l .S|

. !
o+ {10 ([, o WU i

S

- 1
- I’<S~JT I, a)
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Table 1V-9
Jacobi ans of extensive functions for a
bi nary system of one phase

* [+2 (vt Xf v»

« !
3(Tt pt Im» OT2) * 3(7*1 p» [™x v Bz}

Xt y»z

Tt mi1 S
' - au
P -5 + ﬂ;(ﬁ
BWI)T' )
, a-(mx + m:)(%;:) .
p» #
v o f3F v
= (m +m=){[l’-m(—-= ]— o
V AN
AN
L nem fl p ap T’ yl
< v, fralf as av
~{R1 + m,){[(u -T$H -5 ((— - T(— ) (—
U 1 31!1)1.' P OFf 3 P eT , &
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Table IV-10
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w, x, v, 7) d(w, x
3(Tt pi E20x A2) ' 3T p»/nle mg)
e oM v
1
w
5
P .*..(&>”
av
, ~{@m + B2)\5—
' z(ap)r,sl
"4 o) -I-ﬂ.'!z %%1 M
u '
fl-[V-i-mz P]T(—az
GH +mz){[V+5(%) ](M) -
[S T,

[res), 1B, L)
IT.p Tym
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Table 1V-11
Jacobi ans of extensive functions for a
bi nary system of one phase

30, Xs Vs «)

' 3(r, p,a7y.T7y)

J(vitx, y* 7
3(7%p»i0 s az)

Xr ¥ 2] T, oy U
wf
w
P i + mz(a—g )
tir, p
av av
{m + mz) [T(—-) + p(——) }
T » Hl ap ki 51

v fralf 28 av
- TS) + m;((—-) - T(—... ) \.I( \
o T.p %1 /y, p/J"ﬁ"p, Si
A 28 af
[rond), 1))
[ oil T P P * El
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Table 1V-12
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w . x, y. z)" 30» X, X» Z)
3(7, p, m, nz) ' 3(7,p, /D, m
\x,\y, z 7 S
wl\
w
2, 5038
P S+ Z(EEL)T. P
v
« (m: + mz)(S—T) .
Ds My
v o faf -
(@ +ﬂlz]{[‘r"+mz—) ATy
v &), o\ VLsi

g, > a§ E'F'
+ [S + m(ﬁ';) T, p](ﬁ)f, 51}
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Table 1V-13
Jacobians of extensive functions for a
binary system of one phase

dw, X, v, 2) 90, X, V., 2)

3(Tip, Dinnt ' 9(T» p»311»n2t

7 4 T.V,U
w.l
W
3 alf
P W), )
& 1 T P ﬁl T P
U 7Y v
(=, + mz){[(b' + pV) = oy ((%) + p(% ) )](_g.f) .
Yo, p Vo, p/1VP 7, 5,
my
r VAN Bl 1o\ n
1111 | | UWI
’
« .
I ’ | ’ | ’ | |
v - ~ -
eooflf) o-m@) (@) -8) ]
S Py "T.P IT.p IT,p
e e iy Wl g Y
FE1>_0J (U 4*.Dr.}I_>_S%* 1 —" OI'\?J"""'F"' | +.QF-; N 1
V&P, ' mf \u$®\/m.p {\Of@‘l-/ri’p M@llT_‘».P,\I
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Table 1V-14
Jacobi ans of extensive functions for a
bi nary 'system of one phase

3w’y X, v, 7) 30, X, V: 2)
3(7% ptW f /*R) * 3(7%p» 571+ @2}

\'x, vy, z

3 T%F, S
W N
p 'E(%l)wop ¥ F\;(%%'1)7%@
(mi + m2) {[ﬁ - El(’g%l)r, p](g—gl, A
fr-a@), 1))
e ara) {[u + E:(%EL)T. p}(LEp’ -
. '
H3+E(M) J( | J
L A s Tf ]
U = (@ +m ){(’g_g)p( n‘#LI-L(E ) T§)‘(%§‘)Tt p ) F((%%")T' P T(%;)T' ")]

@) foen@), -(E), @) )
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Table 1V-15
Jacobians of extensive functions for a
binary system of one phase

3(v',x Z diw, X, v, 2)

(Mo p>Mix» B?,) ' 3(T, p, J7,02)
\'x, vz T UL S
N
W
P -53e
W) .. <<, ,
o ({2
- TS5) - ml((aﬁl)?,p 0. 1 S R PR
mi -
) 1))
aml T'D 3P T, Vl
v o= o ({30 g 37
= (= + mz){[(U - TS} + Elz((—_- ) - T(—. ) (-——
(98 p 3&1/ g pj;! TE
m;
- §+52(§§.) }p(ﬁl) }
[ a T;P ap T 51
v 2. (av o 13} 38
(m+mz){( ) u[(U—TS)——... -F(—.) -T( ) ]
v T i, e, p Balp, p  \Ep,
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Tabl e | V-16
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w X, v, 7) 3{w» "y y» Z)
d(T, prwi, m) ' d(Bopt s1s mz)

\XQ» z B 871> 1112
w!
w o\
T 1
¥
\Vi (EFI_ + 4% >(| ')) -
1

U {m1 + nz)[&'p - p(% J

« ..

S (mi +mz)f{r2
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Table |V-17
Jacobi ans of extensive functions for a
bi nary system of one phase

(W, X,y 2) d(w,_x, vy, 7)
A(JT, p, nil, m) * d(T, p, M, aj)

Xr ¥ p. an V
wl
w o\
. a_;}’)
T 7- & -
m +”2)(%) o
p* nil
e a7y Yol
ren - ((aal)... ¥ P(am)r )](ar) 5
U i3 P v B By Dy
- lr-a@) )
Typ
(o, + ﬂ’z){—fg [F - 51(‘3‘?5 ) ]
Y1, p
S
- 792 3
— ks . AT (_§§) -K’Bj_%) }
-y Pr oy
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Table 1V-18
Jacobi ans of extensive functions for a
bi nary system of one phase

dw, X, v, z 30, X, V¥, 7)

3(X» pt ni 11 Mp) * HT, Pyni . «2)

Py E p»*D11 &
wf
W
~ a3
T v- o ﬁl)i,' o
- ¥
m -(@; + my) |-Cp - P(g_yz - ]
L « nrl
2 = o {75l av aF
(o) + m){[(u + 1) - ml(("—.r ) + p(—» ) ](__)
V Bm-,_ T, P 3m T, P aT s 51
57 -5(,), 1}
Yo, p
o[ o - T
(= + m,){-ﬁr(u I ml((%) - %) )}
S L T, vy
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Tabl e 1V-19
Jacobi ans of extensive functions for a
bi nary system of one phase

3V, X, V.. 7) dlw,_x, vy, 7)
3(7\ p, 32, JD2) 37T pr 113 » 182D
X y’ z p»i271»5
wi‘
w

: ),

g
« - (m + fﬂz)"TE
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Table 1V-20
Jacobians of extensive functions for a
binary system of one phase

(v, x>V, 2 dw, x, vf_27)

3(M% pi 139 /m2) ' 3(27» p» miys @2)

\ X

\y, p* mof vV
wl’
w \
T V- r‘.:’z(%
i T!P
mi (mi + @z} (-g—;)
pi i
(@) o)
U 1 Tsp b T.p D £
| e w'/3~“\ 1
""" cnl ¥V + e\a=
91: N3E, o I
~(ay + mz){%{l [F + E,(%) ]
. 4y T
S *P

545 (28 an
- [S e (aal)r. p](:BT/ 3

p» flij.-'
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) Table IV-21
Jacobi ans of extensive functions for
binary systen of one phase

a

dw, x, V¢ 2) 3(w_ X Z

3(7\ pf m ma) 3T p, ai s+
L ponir U
wf
W

aff)
T Ve =z
m (H31 4 mg) [E:'p - p(-g—;) ]
P ni
coreoffaeomn(f), -8, 1)

v Yr,op Y7o pr @

Top
SRS NB) )
P P
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Table 1V-22
Jacobians of extensive functions for a
binary system of one phase

30, X, V. 7) Mi..z)_j
/T'»ptmit 312) ' 3("» P» Als B2

\*»y* z
\ P....S
w
. 5- az(g—g,l)t p
z
2 (mi + 02)"~
{m {E‘E[v & (EE ) }
v+ 27| Vo+ BagE
y § ) Tep
- 3
. [ . mz(%; )T, p](i?)p- oy
W + BJZ)JE-E E(t}'_ i'g; + IBE'le;iI . '
J . L ) \] ' | * u |

x - (35 (14
+[S+mz(§gl)r’ J aT)p' ] J
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Table 1V-23
Jacobians of extensive functions for a
binary system of one phase

3(W\ X, v, 2)_ d(w, Xty, 2)

S(T n m m
O\l » p» JZ7Lf "*2y O”l » p, C31» CI2~

Y, p- V. U
wt
W
T Wi/, ’ KT
e vmf[0eon -5(@) o) NE)
_ T p Iy pr 1
w | ~ ‘af")
cP[V m(ﬁl oo ]}
" o - 35 3“ aﬁ
@ + mz){[(” + o)+ mz(‘—= ) +#&). NEF
( @ T, P Buu T, p aT)p' E;:I.
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Table 1V-24
Jacobi ans of extensive functions for a
bi nary system of one phase

_3,_(W*X>Y»zl d(jve x, y» =3
3(7\ p, nil, ay) ' 3(T.p,ai»@2>
\ X, Y, pe ', S
Wt
T @), )
(m + mz}{%E [V - 51(% ]
m w e
v [88 :
- [E - ﬂl(’é}’l)?'p] (TT/F. m1>
- {m {E;rg [F * E’(%u%). ]
mz H 1
(Al
_{31-182 J‘T-p% rer...
- (m1 + ﬂz]{ETE [(E - Tg)(%gl)?' P - F((%%:)r jD -TlVg'fhm )T' p>]
y .
- ('g_;)p. A {(U * pV)(g—El) P - E((%S%x).r’ “ Pi\%l) T, p)]}
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Table 1V-25
Jacobi ans of extensive functions for a

binary systemof one phase

aw’!xl y Z alwi x » 7
3(1%p, m, m) ' 3(T, p» ni»iny)

Yy, z p, U S
:;
Y 5(28
T 5 g’:)T’ P - U(aﬁll)vl .
(m +mz) ~ - AU TS) - & (%—g‘)T.p - T(%%)T' p)}
@y
+[5-48). AW) -1
r’ p-+ »nil's
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y {m, + mz){%g [(U - 1@)(3_:1)?' » - E((%%L)T’ P -T (%g;:)i" p)]
@) L loenE) (&), - 4&), )]}




255

Tabl e |V-26

Jacobi ans of extensive functions for a

bi nary systemof one phase

d(w _ x, v, 7) 3(RI_X Z
Tt P»/D » m2) ' Ty oy 2yy 2)
\'x,y, z r
AN
W .
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T (m + mz)(""')
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aT D* i
. AN v (37
U (m+m,)’[ —) - +c(—) :]
T Py m P 3P T, 51
AY Ep (aF
S (m; -+ ﬂg)a[( ) + -2( )T ]
ﬁpl 51 T Tp- DE],
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Table |V-27
Jacobi ans of extensive functions for a
binary systemof one phase

3(pl' o x. v, 7) 31, % v, 2)
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Tabl e |V-28

Jacobi ans of extensive functions for a

bi nary system of one phase
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Table 1V-29
Jacobians of extensive fun
binary system of one

ctions for a
phase
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Tabl e 1V-30
Jacobi ans of extensive functions for a
bi nary system of one phase

3w, Xty z) d Xt y» z
' 3(7ip-airfr12)

3C7. p. ai, Ury)

—(IH + 112;1[7 —Tn(/'ayy\ ”;ABE}
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Table IV-31
Jacobians of extensive functions for a
binary system of one phase
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Table 1V-32
Jacobians of extensive functions for a
binary sysem of one phase
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Table 1V-33
Jacobians of extensive functions for a
binary system of one phase

3(vEx v,2 30 X, V. 2)
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Table | V-34
Jacobi ans of extensive functions for a
bi nary system of one phase
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Table 1V-35
Jacobians of extensive functions for a
binary system of one phase

dw.x v.2  AV.x, v.2)
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In order to obtain the first partial derivative of any
one of the seven quantities, T, p, mom, V, U Sy wth respect
to any second quantity of the seven when any third, fourth,
and fifth quantities of the seven are held constant, one has
only to divide the value of the Jacobian in which the first
letter in the first line is the quantity being differentiated
and in which the second, third, and fourth letters in the
first line are the quantities held constant by the value of
the Jacobian in which the first letter of the first line is
the quantity with respect to which the differentiation is
taking place and in which the second, third, and fourth
letters in the first line are the quantities held constant.

To obtain the relation anpbng any seven derivatives

having expressed them in terns of the same six derivatives,

(2£) -, () (V) o (W) (a:?i)r
BT /i aqugvm. \Bmlirgp p \aml{.j 0 \3f, \

one can then elimnate the six derivatives from the seven
equations, leaving a single equation connecting the seven
derivati ves. In addition to the relations anobng seven
derivatives there are also degenerate cases in which there are
relations anong fewer than seven derivatives.

In case a relation is needed that involves one or nore
of the thermodynamic potenti al functions H =" 17 + pV,
A = U- TS G = U+ pVv- TS partial derivatives
involving one or nore of these functions can also be
calculated as the quotients of tw Jacobians, which can
t hensel ves be cal culated by the sane method used to calcul ate
the Jacobians in Tables IV-1 to |V-35.
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It will be noted that the expressions for the Jacobians
in Tables I1V-1 to [V-35 are not symetrical with respect
to the two mass fractions Si and M. If the Jacobians in

these Tables had been expréssed in terns of the derivatives

-~ a

&v dav dU dU ds . ds .
| St* MZ> alx* B 2. | an and a¥2| WthresPecttOIhe

two nmass fractions, ™ and Ty rather than in terns of the

derivati ves, gn"? , drrnf » and o;r:]c , With respect to the single
mass fraction, m; the symmetry of the expressions for the
Jacobians with respect to m and m would have been
preserved, but the Jacobians would not have been expressed in
terms of the mninum number of first derivatives. In this
case it would not have been possible to use the expressions
for the Jacobians directly to obtain a desired relation anopng

any seven first derivatives of the quantities, Tgp, Mg My

L™

V, U and 5 by elimnation of the first derivatives, -512,9
dv dv dv - W du as , ds , .
"5~» irz f ~z~zt cp9 "T3 9 7%‘ o TC * and 53 » rrom tne
op dmi ane n om i~ om om

seven equations for the seven first derivatives. Actual ly

with the use of the Jacobians in Tables IV-1 to IV-35 which

are expressed in terns of the mninmum nunber of fundanental

- -

N -
derivati ves, AV Jyg &F, Cpo q‘U, and t;{S, m spite of

[ -

the fact that these expressions are unsyraretrical with

respect tom and S,9 it does not nake any difference in the
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final result which conponent is chosen as conmponent 1 and
whi ch conponent is chosen as conponent 2. For exanple, if
one thinks of a solution of water and ethyl alcohol and if

water is chosen as conmponent 1, then from Table [V-32 one

obtains the derivative f_gS \I equal to
.20 V' U
1 [ - %/ \J - ﬁf‘; a; ag
- =+ pV—TS) ff|2((/\. ) +P("_') -*T(—) ] .
T + o ) T; p aﬁl T' p am’l T, P

Now from Table |V-29 one obtains the derivative r\]

mi» Ve U

equal to

15 4 oF - 8y - ({22 (1 28
S AN AN

1 T!P 1 T, o 1 T,p

On account of the fact that S\ +m = 1, one has
(%n% ) = “(% ) . Thus (g—g ) is also equal to

" p Ty p 2y, Ve i

IC:c

o]
i

_%[(I}J+ oV - TS) +fﬂ'1<(a ) +p(g—gz) -T(%%I)T-P)] '

lep Top

Consequently the sane value would be obtained for the partial
derivative of the total entropy with respect to the mass of
wat er regardl ess of whether water were chosen as conponent 1

or as conponent 2.



Appendi x A to Part IV

Equations for energy and entropy in the case of a
bi nary system of one phase and of variable total nass
devel oped on the basis of an expression for heat

in the case of an open system

In the author*s Carnegie |Institution of \WAshington
Publ i cati on No, 408A! equations were devel oped for energy and
entropy in the case of open systenms on the basis of an
expression for the heat received by an open system In the
case of a binary system of one phase undergoing reversible
changes of tenperature, pressure, nass of conmponent 1, and
mass of conponent 2, the heat received was shown to be

represented by the integral in the followi ng equation

T, Fa@B1e By

Q= f {(%?—:)dl" + (%g-)dp + (%gl)dml + (%z)dmz }

Dy fiye Wz T, ligs Ma

TO»pOQ/Z?E »[n2y

T»p»nt*»m;
:J E(m( +m) ZpdT + (m + my) Todp + Imydm, + fmzdmz}.
Tof Po»ffl |.-n>"2.,'| (IV—A—I)

where |w denotes the reversible heat of addition of
conponent 1 at constant tenperature, constant pressure, and

constant mass of conponent 2, and I"k denotes the reversible

! Tunell, G, Thernbdynanic Relations in Open Systens,

Carnegie Institution of Washi ngton Publication No. 408A, 1977.

268
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heat of addition of component 2 at constant tenperature,
constant pressure, and constant mass of conponent 1.2 In the
case of a binary system of one phase undergoing reversible
changes of tenperature, pressure, nass of conponent 1, and
mass of conmponent 2, the energy change was shown to be

represented by the integral in the followi ng equation

UT, p, nil*m) - WTa po, m*, nt)

T'pg/\l*mz
. e R aF}
-/{.(m|+mz)LCp-P J\dT+(m|+|T.3'2)Lp-1r.v31J dp

*
To* pos Mygy» M2y

+ [tml - PEZ%%]_ - pV + Hl] dmy
+ [z,,,z o pitdl o I;"”] iz } (IV-A-2)

where m denotes the nmass fraction of conponent 1, S, denotes
the mass fraction of conponent 2, I—T denotes the specific
enthal py of pure component 1 in equilibrium with the binary
solution across a semni permeable nmenbrane perneable only to
conponent 1, and Ft' denotes the specific enthalpy of pure
conponent 2 in equilibriumwith the binary solution across a

seni per neabl e menbrane perneable only to conponent 2.% In the

2 Tunell, G, Carnegie Institution of Wshington Publication
No. 408A, 1977, p. 40, equation (B-6), p. 42, equations
(B-10), and (B-11), p, 46, equation (B-19), and P. 47,
equation (B-20).

8 Tunell, G, Car negie Institution of WAshington Publication
Mb- 408A, 1977, p. 52, equation (B-35).
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sane case the entropy change was shown to be represented by

the integral in the follow ng equation

S(T, pp m, 1TI2) - S(Te po? N2y mzu)

Fi p, mys Mo o
1 1

g,
- f(ml +m) -jrdT+ (m +.022) -ijr dp

T
0>Po> My, » A2,

ri- w1 ri. ]
$\-£> +S'\dm. AP + S"\dm,p
L ¢ J L* J

(IV-A-3)

where 5' denotes the specific entropy of pure conponent 1 in
equilibrium with the binary solution across a sem perneable
nenbrane perneable only to conponent 1, and ‘é denotes the
specific entropy of pure conponent 2 in equi.librium with the
binary solution across a seniperneabl e nenbrane perneable only
to conmponent 2.%** 5 The derivation of these equations for
heat, energy, and entropy was based on a detailed operational
analysis of a system of three chambers imersed in a water
bath the tenperature of which could be controlled (Figure
IV-A-1). Chanbers | and Il containing pure conponents 1 and 2
were separated by seniperneable nenbranes from chanber |11,

which contained a solution of conponents 1 and 2. The

" Tunell, G, Carnegie Institution of Washington Publication

No. 408A, 1977, p. 56, equation (B-46)-.
> For an explanation of nethods for obtaining experinental
values for the |Ig% see G Tunell, I|dem pages 46 and 59-62.
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nmenbrane separating chanbers | and |1l was supposed perneable
only to conponent 1; sinilarly, the nenbrane separating
chanmbers Il and |1l was supposed permeable only to conponent
2. Wen the pressures exerted by the three pistons on the
contents of the three chanbers were changed w th maintenance
of osnotic equilibrium causing novenent of the three pistons,
and when the tenperature of the water bath was changed,
causing a flow of heat to or fromthe materials in the three
chanbers, the change of energy of the materials in the three
chanmbers, v/hich together constituted a closed system was

given by the equation

L-U = Q- W (IV-A-4)

where [/, denotes the energy of the naterials in the three
chanbers in the final state, £/, denotes the energy of the
materials in the three chanbers in the initial state, O
denotes the heat received by the materials in the three
chanbers from the water bath (a positive or negative
quantity), and Wdenotes the work done on the three pistons by
the nmaterials in the three chanbers (a positive or negative
quantity). Note that maintenance of osnotic equilibrium
required that of the three pressures in the three chanbers

only one was independent, the other two were functions of the

tenperature, the concentration in chanber 111, and the one
pressure taken as independent. The materials in the three
chanbers I, |1, and Ill, together constituted a closed system

under goi ng a reversi ble change of state. Consequently we have

2
S, - S, :f-’\ , (1V-A-5)
1
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where Si denotes the entropy of the materials in the three
chanbers in the final state and S\ denotes the entropy of the
materials in the three chanbers in the initial state. Thus
the total change in energy and the total change in entropy of
the closed system consisting of the materials in the three
chanbers were experinentally determ nable. Fi nal | y, by
subtraction of the energy changes of the pure conponents 1 and
2 in the side chanbers | and Il from the total energy change
of the materials in the three chambers, the change in energy
of the binary solution in chanber 111 as represented in
equation (IV-A-2) was derived. Likew se by subtraction of the
entropy changes of the pure conmponents 1 and 2 in the side
chambers | and Il from the total entropy change of the
materials in the three chanbers, the change in entropy of the
binary solution in chanber 111 as represented in equation
(I'V-A-3) was derived. For the details of these proofs the
reader is referred to Appendix B of the author’s Carnegie

Institution of Washington Publication No. 408A.° It is to be

noted that the only physical information wused in the
derivations of equations (IV-A-1), (IV-A-2), and (IV-A-3) in
addition to the well established thernmodynanmic relations for

closed systems, was the fact that when mass of constant
conposition is added reversibly to an open system of the sane
conposition at constant tenperature and constant pressure no

heat is added.’

6 Tunell, G, Car negie Institution of Wshington Publication
Ho. 408A, 1977, pp. 34-58.

TOCf. L.J. Gllesple and J.R Coe, Jr., Jour. Phys. Chem,
Vol. 1, p. 105, 1933, and G Tunell, Carnegie Institution of
i %bashi ngton Publication No. 408A, 1977, pp. 18-24.
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It was not necessary to nake use of any definition of
work in the case of an open system when nasses are being
transferred to or from the system in the derivation of
equations (IV-A-1), (Iv-A-2), and (I'V-A-3). However ,
according to the definition of work done by an open system

used by Goranson® and by Van Wl en® we have
dW = pdv . (1V- A 6)

In Appendix A to Part Il of this text reasons for the
acceptance of this definition of work in the case of an open
system when masses are being transferred to or fromthe system
were set forth in detail.

The correct differential equation for the energy change
in an open system when use is made of definitions of heat
received and work done in the case of open systens, was given
by Hall and Ibele in their treatise entitled Engineering
Ther nodynami cs.  They!® stated that "A general equation for

energy change in an open systemcan be witten

dE = dQ- dw+ I(e + pv) dm. (7.25)"
1

8 Gor anson, RW, Carnegie Institution of Washington
Publ i cation No. 408, 1930, pp. 39, 44.

% Van Wl en, GJ., Thernodynam cs, John Wley and Sons Inc.,
New Yor k, 1959, pp. 49, 75-77, 80

0 Hall, N.A, and WE., Ibele, Engineering Thernodynamn cs,
Prentice-Hall, Inc., Englewod Cliffs, NJ., 1960, p. 108.
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In this equation dE denotes the energy change of the open
system dQ the heat received by the open system dW the work
done by the open system e the specific energy of pure
conponent i in equilibrium with the open system across a
sen pernmeabl e menbrane perneable only to component i, p the
pressure of pure conponent i in equilibrium with the open
system across a nenbrane perneable only to conponent i, and v
the specific volume of pure conponent i in equilibrium with
the open system across a seni perneabl e nenbrane perneable only
to conponent i . This equation is consistent with equation
(I'V-A-2) of this text as well as wth the -equation of
Gllespie and Coe and with the G bbs differential equation, as

we proceed to show. According to Gllespie and Coe'?
dS = 40+ ZSian; .
i

where dS denotes the increase in entropy of an open system dQ

the heat received by the open system §J the specific entropy

of pure conmponent i in equilibriumw th the open system across
a sem perneabl e nmenbrane pernmeable only to conponent i, and
dwj the mass of conponent i added to the open system  Thus
we have
dQ = TdS —ZLSE@Z2 .
P

Substituting this value of dQ in the equation of Hall and

1 Gllespie, L.J., and JR. Coe, Jr., Jour. Chenu Phys., 1,
105, 1933.
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I bel e we have
dU = TdS - dw+ !i((/.”g + pVi - TShdnii
According to Goranson,'? Van Wlen,'® and Professor WId**
dv = pdVv
in the case of an open system Thus we obtain

du = TdS - pdV + LGdmt ,
2

wher e E:— denotes the specific G bbs function of pure conponent
i in equilibrium with the solution across a semniperneable
menbrane permeable only to conponent i. Since G bbs proved
that at equilibrium the chem cal potentials of a conponent on
both sides of a sem permeabl e nenbrane are equal and since the
chenmical potential u of a pure conponent is equal to the
specific Gbbs function of this conponent, we thus arrive at

the result

du = TdS - pdV + Zujdn; »
[

12 Goranson, RJi., Carnegie Institution of Washington
Publication No, 408, 1930, pp. 39 and 44.

13 van Wlen, op. cit, pp. 49, 75-77, 80.
U4 private comunication from Professor R L. Wld, who was

fornerly the Chairman of the Physics Department of the
University of California at Riverside.
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where y” denotes the chemical potential of component i in the
open system (solution) and dnt denotes the mass of conponent i
added to the open system W have thus denonstrated that the
equation of Gllespie and Coe and the equation of Hall and

Ibele are consistent with the G bbs differential equation.



Appendix B to Part 1V

Transformation of the work and heat line integrals from
one coordinate space to other coordinate spaces in the case

of a binary system of one phase and of variable total mass

As in the case of a one conponent system of one phase and
of variable mass it is also true in the case of a binary
system of one phase and of variable total mass that it is not
necessary to define either work or heat when nasses are being
transferred to or from the system in order to obtain the
energy and the entropy as functions of the absolute
t hernodynami c tenperature, the pressure, and the masses of the
two conponents from experinental neasurenents. Thus the
derivation of the Jacobians listed in Tables I1V-1 to I1V-35 did
not depend upon definitions of work done or heat received in
the case of a binary system of one phase and of variable total
mass when masses are being transferred to or fromthe system

For some purposes, however, it is useful to have
definitions of work and heat in the case of a binary system of
one phase and of variable total nmmss. If the conclusion of
Van Wlen and Professor WIld be accepted that it cannot be
said that work is done at a stationary boundary across which
mass is transported, then the work Wdone by a binary system
of one phase and of variable total nass can be represented by

the line integral

T op fill$ 22

v - [{sfdT . pdp . Pl + PIE< o,

Tu' Po, M Df m . (|V_B_1)
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in (T, p, .i7lg m)-space. Furthernmore it was shown in Appendix
IV-A that the heat 0 received by such a systemis represented

by the line integral

T, p, m, m
+ m3)lpdp + I dm + Imzdmz}

fo. Po. «Ho. £ 126 (1V-B-2)

in (7\ p» m, m)-space, where |, denotes the reversible heat
of addition of component 1 at constant tenperature, constant
pressure and constant nmass of conponent 2, and In}2 denot es
the reversible heat of addition of conmponent 2 at constant
tenperature, constant pressure, and constant mass of conponent
1. In order to obtain the total derivative of the work done
along a straight line parallel to one of the coordinate axes
in any other coordinate space one obtains from Tables V-1 to
IV-35 the partial derivative of the volume with respect to the
quantity plotted along that axis when the quantities plotted
along the other axes are held constant and one nultiplies this
partial derivative by the pressure. The total derivative of
the heat received along a straight line parallel to one of the
coordi nate axes in any other space, on the other hand, cannot
be obtained by multiplication of the partial derivative of the
entropy by the absolute thernmodynanmic tenperature when
reversible transfers of masses to or from the system are
involved. In such cases the total derivatives of the heat
received along lines parallel to coordinate axes in any
desired coordinate space can be derived in terns of the total

derivatives of the heat received along lines parallel to the
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coordinate axes in (T, p, m, m) -space by transformation of

the heat line integrals by an extension of the nethod set

forth in Appendix C to Part |I1. Following is an exanple of
such a transfornmation. In the case of a binary system of one
phase and of variable total nmass the heat line integral

extended along a path in (A/ni >tf?2»F)-space is

Nm,mgs ¥

CH(Ge (B> (£, @

Tyting m
Tpe m, §1B2 » Vo

Ty wom Mgs v

=f (m1 + mz)EvdT + (g;%l)dml + (3_52)0‘512 + Ev-dV} .

T' figs V T’ Ty V
Toym 0 "
° (1V-B-3)
The derivatives ( 8) , (f) , (F) ,
Wyl iiZs ¥ s iz ¥ +
and (3%1] can then be evaluated as quotients of two
* TR6l Hi my

determ nants. Thus we have
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d 4o 49 d
dmi i dmi gm
ar dp dmi  dm2

dp2  dm, 377, dm;
"ST 8p  dmy1  ame

av av dv dav

ar dp dmi  dm2
() = (i + m)E = -
Tys mzs V a, d di 87T
dr dp omy  am,
dmi i 3my  Im
ar dp dmi  dm,
dm2 dm, dm., dm
ar dp dmi 3272
& Aoy K

ar dp dmi 37,

gt OAREAY
LBl [H o -l

- {3V v (3
(m + my)°c (_) - (my + m2)? (—) }
PAop T, e PAST D- @y

+{(m1 + mz)(%)T . }
y M3

{

(IV-B-4)
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d_ do do 4@
dT dp  dmi dm2
dT AT dT T
dT dp 37 377,
dn2 dmy dm. 37,
ar dp am i
dm2
v 3
ar @ oz |
).,
R Y dmi dni dmi am
dT dp dm, 37,
3T 9T 3T BT
dT dp dmi 3722
dm?2  dm, dmy a7,
daT ap I 3,
dv avr dv. 3
dr dp ami  dm2
= . - Q
L. deL J dpl 3my) dmlll__ 3p {7 dm, ]}
siolo] ~of- &L j 4 2mi_ SV 4o
om am P B
- - au i
= {(ml + mz)lp [V + mg(-a-gl)r :]l =gy, G+ my) (g#)u 1
,p T

(IV-B-5)
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d0 dQ do 4o
dT dp dmi dm2
3T dT 2ar 3T
dT dp dmi dm2
dmi  dmi  dmi dmi
dT dp dmi dm2
v v v v
(Q_Q) _ dT de dmi dm2
/1, an, v W o a2
dT ¢ dmi  dm2
3T 8T 3T 3T
dT dp dm dm2
dni dni dm dnmi
dT dp dm dm2
dv dv dv dv
dT dp dm dm

Houm2[]-5-2]

fold-ofe)eo ] L g]

v . A
{- G+ o0, (v ~a(TT ) mmmy )

'T,p"

. { /:\ﬁ) }
* (m+tfa)tg] s
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o do A2 X
ar AP dmi  dm2

dz H da 41
dT 3p dmy  3i77,

dmi dmi  dmi 372
dar  dp dmi 372

S22 dm2 dm2 dm2
(d ) dT dp 37 dmy,
av :

To 10 2 K 1K av_ 3¢
daT 3p dm1l dm2

3T 3T dr dT
dT 3p dml dm2

3772l 3i77i 3771 3/771
3T 3p 77 3T

dm, dm, dm, 9m,
3T 3p I IR

(2[££
[or +a7y) oo o)
{1

(IV-B-7)
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The corresponding values of the partial

entropy obtained from Tables |V-26,
as follows:

]

(=)

S (ov
I(ﬂh + m,)r—:,‘.l(“—)
17>»/732»" n L

I'V-10,

derivatives of the
V-7, and IV-6 are

A D)

»-N

(IV-B-8)

T, el T mny Ty m
e ) 317 817
= v+ mz('-: ) K_)
{[ Bm1 T, p BT D Hl
AR
aml T, P iz ap T, E’;l ap T, ﬂ?l

(IV-B-9)
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%) {{7-#%) &)
88 _ - #
iy v By, N o, iy,

Ty Ds ) Ty m Tow
57 1_" WL
= {(a_) 4 —ini\(ir-zz ) ]
p, m T p
r ir \" 1
+ [%’:‘r"“ + S"](-iﬁl\ }; \(BM )
ﬂ‘:’f’l p T9 "51
(1V-B-10)
' Fromequations (1V-22) and (IV-23) we have
. — e gy iy ow ——— . — 2 = ] "—».-‘)
dm11T7’ o i \dm; /Tf 0 \dmsz’ oo H I \Bml 7t 7
Also from equation (XV-A-3) we have ("5=) = -=2A + B
\ dmljm. P+ 2 1
and 1 T°"/ "~ "7~ + 5%  where S denotes the specific
vz T, Dy M1 -

entropy of pure conponent 1 in equilibrium with the binary
solution across a sempermeable menbrane permeable only to
conponent 1, and S® the specific entropy of pure component 2 in
equilibrium with the binary solution across a semperneable
menbrane perneable only to conponent 2,
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and

* (as) _L iy e

LemMyy Wy Dy iy . T, my
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(iv-Bii)

Thus it follows from (1V-B-4), (IV-B-7), (I1V-B-8), and

(1V-B-11) that

Mys D2 v

but, finally, it also follows from (IV-B-5),

(1V-B-9), and (I1V-B-10) that

5),.,, ¢ )
(dml T’ L'IpV aml T! mZ'V

(f) ey

bl
'T,ﬂll’v P T

(IV-B-12)

(1V-B-U)

(1V-B-6)

(IV-B-14)

(1V-B-15)



Appendi x Cto Part IV

Di scussion of the tables of thernodynam c.fornulas for
mul ti-component systenms presented in Carnegie Institution

of Washi ngton Publication No. 408 by RW Goranson

On account of the fact that Goranson accepted the
erroneous assunption of Sir Joseph Larnor! that in the case of

the G bbs differential equation,
dUu = TdS - pdV + Ucfoi + Vidm ... + V,dmy

TdS represents dQ and that dQ represents an infinitesimal
amount of heat which is acquired in a specified state of the
system at a tenperature Ty Goranson's basic equations for the
energy and the entropy of a nulti-conmponent system are
incorrect. Goranson's equation for the energy change of a
bi nary system undergoi ng changes of tenperature, pressure, and

masses of the two conponents

WT, p, Wf 072) - yTQ po* /mo.ng)

Topom >m
R aJ{ | . | aT,l
:"Ji(m +ra2) ,{\-p " Pg-AJ":I-(n] +/\2) |lp' PJI"J.Jp
Tot Po, iZ%i0> 712
(IV-C1)

mlcu
th=r

- - - e - ] 2
-pV & U\dm + \lmp + pmt - pVvV + I\/lz\dmg},
i _ g

+[£"”1'PE‘ ) ] L

! Larnor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Cor anson, R W, Car negi e Institution of Washi ngt on
Publication No. 408, 1930, the first equation in 832 on page
48.

288
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wher e Il denotes the reversible heat of addition of
conponent 1 at constant tenperature, constant pressure, and
constant mass of conponent 2, L, denotes the reversible
heat of addition of conponent 2 at constant tenperature,
constant pressure, and constant mass of conponent 1,
denotes the mass fraction m/(m + m), m denotes the mass
fraction m/(m + m), U denotes the chenical potential of
component 1, and U2 denotes the chenical potenti al of
component 2, should be replaced by equation (IV-A-2) of this
text which is repeated here as aquation (IV-C 2)

ur, pr omi, m) - UTe po, Mg , ITiy)

T, pt OTL» M2

=/ f(m 4- n}l\cp- P"fj\dT+(m’1 +mz)\LIp- pj"\Jdp

Too Par mlny mzn

[

Y o - aF o wn T
"'[{m; - pmzys - pV + H]dml +|:£m2 + phimE - oV + HJ\dng\ ,
(1V-G2)

where H and H denote the specific enthalpies of the pure
conponents 1 and 2 in equilibrium with the solution across
sem per meabl e menbranes perneable only to conponents 1 and 2,
respectively. Simlar corrections are to be applied in the
incorrect equation for the energy U in the case of a
mul ti-conponent system on page 60 of Carnegie Institution of
Washi ngt on Publication No. 408 [equation (1) in 841].
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Li kewi se CGoranson's equation for the entropy change of a
bi nary system undergoing reversible changes of tenperature,
pressure, and masses of the two components, the first equation
in 852 [equation (2)] on page 52 of Carnegie Institution of
Washi ngt on Publication No. 408

ibhi» pi IH 9 @) - BN\J- 0t Po» Al ,* mlpa

Tep»m At m -
J"'r b .ER
= ](m; + mz)-?ﬂT + (@1 + B2) 7 dp

To Po, M s mz

I I
+ A dwi +-2r2 dm } (IV-C-3)

should be replaced by equation (IV-A-3) of this text v/hich is

repeated here as equation (IV-C-4)
S(Tep, M, m) - S(Tg Pe M1,» @2,)

T, pr m¢ m

(

-

& J
:,/ ﬂ (f1% + m)-j'rdT + (an +mz)—f?-dp

et

To' PO’ mlu' mzu

e . f ex
+{?"’=+S':|dm1+“e$3\dn§\\, (1V-C 4)
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where S' denotes the specific entropy of pure conponent 1 in
equilibrium with the binary solution across a seniperneable
nenbrane perneable only to conponent 1, and S" denotes the
specific entropy of pure conponent 2 in equilibrium with the
bi nary solution across a seni pernmeabl e nenbrane perneable only
to conmponent 2. Similar corrections are to be applied to the
incorrect equation for the entropy S in the case of a
mul ti-conmponent system on page 64 of Carnegie Institution of
Washi ngton Publication No. 408 (first equation in 843).

In Goranson's Tables of Thermpdynami ¢ Rel ations for First
Derivatives expressions are listed such that any first
derivative of one of the quantities, absolute thernodynanic
tenperature, pressure, ness of a conponent, volune, energy,
entropy, G bbs function, enthalpy, Helmholtz function, work,
or heat with respect to any second of these quantities,
certain other quantities being held constant, should be

obt ai nabl e in terns of t he st andar d derivatives,

(@) (dv) . (dv)
fl;n

3p 4 ! * & denoting

1» £21t oo, p» 071t .o« fl2, N1 opf IUF

all the conmponent nmsses except ral, (H + ... + m)Chi
Irrlj* /c =1, ...,n» and ]i®, k = 1» . «.»n, by division of one
of the listed expressions by a second listed expression, the
same quantities being held constant in each of these two
listed expressions.

The expressions listed by Goranson for first derivatives
in his Goups 1-8 are for the case in which all masses are
held constant and are the sane as the expressions listed by
Bridgman for this case and the sane as the Jacobians listed in

Table 1-1 of this text. Unfortunately very nmany of the



292

expressi ons
derivatives (G oups

t hat

first

erroneous assunption

listed by Goranson
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for
his

hi s

are

remai ning G oups
by
reversible

in
162)
TdS when there

9 - i nval i dat ed

dQ =

is

Thus for in

and S are held constant

transfer of mass as well as heat. exanpl e

Goranson's Group 18 in which p, m,

the foll owing expressions are | i sted:

G oup 18
(According to Goranson, Carnegie Institution of Washington
Publication No. 408, p. 181)

p, /2> S constant
CoIE -%’Ek
(dmp) = (o 4+ ouu 4 mn)i.
vy = _!_??k ¥, p(a, fonet ) g_;k
O = Blg gre mv s mn)f;ﬂ[uk - p%;,‘%k]
(36) = %[szmk Fomy o+ . 4 m)oix ]
(3H) = %,(ml + + mn)E’puk
(34) = % [Jmk(s + pf )_+ g + ...+ mn)ap(uk - p%ﬁk)]
@) = pim gy Tim ) ;ézk
(dQ =0
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The corrected expressions for this group when account is taken
of the equation of Gllespie and Coe are given in the

following table

(Bmy)

(ov)

(aU)

(36}

(3f)

(24)

(W)

n

Goup 18
(Corrected by & Tunell)
Ps Mg S constant

- o= _ﬁk_gk
k T
g
(1111+...4.m,-,)—34rEl
_ﬁ M. EPQI + ... fan) 8V
dmp 3T ™ - Sy,

(_ﬁk_ §k)ﬂ+5p(m1 + ... + mg) IV
T aT T amy,

as 3v p av
P3my, 3T + (2 + ou. @) [uk - pamk]

{ w c
p(—mk +Sk)ﬂ-+ (m + ... +mn)—]g[uk—p-a-zj|

T aT omy
35 CpHlie
l: amk+(ml-t- cee + my) T ]

=

= &1;(571 + oo+ B

y & v
-_— (S + pa—T)+ {m + ... + mn)—,ﬁ—’(uk - p'g;k)

%j/(lmk + TSk (S + P%)"' (i + ..Q-Ifm) A Lrvfc.. p%:?k]i

L v g
P(?gk + Sk)aV plmy + ... + @;) 3V

?T T omy,

—(m1 + ... F mn)EPShk
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In the corrected Table for ‘Goup 18, S denotes the specific
entropy of pure conponent k in equilibrium with the nulti-
conponent solution across a sem perneabl e menbrane perneabl e
only to conponent k*3 In a good many cases Goranson's
expressions involving the term Imkcan be corrected by the
substitution of (I m + ék) for ImK. However, in sone cases
this substitution does not nmake the necessary correction.

In conclusion it may be noted that the principal
differences between Coranson's Tables and the present

author's Tables are caused by Goranson's erroneous assunption

{36 ° [ :

t hat I\—@S i = -, m denoting all the conponent
LmAT, p’ m‘j‘: -

masses except O L, whereas'in reality I( i 1= 3 = ~7yrv* +XE'-_>%

and by CGoranson's use of 3n + 3 standard derivatives, whereas
in reality all the partial derivatives with respect to the
various thermodynami c quantities can be expressed in terns of

3n fundanental derivatives, as Coranson hinsel f recogni zed. **

5 It may be noted that the expressions in the table for G oup
18 as corrected by the present author are consistent with the
expressions in Table IV-22 of this text, although they differ
in appearance fromthe expressions in Table |V-22.

kK Goranson supplied an auxiliary table (Table A on page 149
of Carnegie Institution of Washington Publication 408) which
is intended to permt the expression of the 3n + 3 standard
derivatives in terms of 3n fundanmental derivatives and the
masses of the components. However, Goransonfs Table A is also

partly invalidated by his i ncorrect assunption t hat
S lm
i = —_k

Fo



Pref ace

A collection of thernodynamc formulas for a system of
one conponent and of fixed mass was published by P.W Bridgnan
in 1914 in the Physical Revue and an enended and expanded
version by him was published by the Harvard University Press
in 1925 wunder the title A Condensed Collection of
Ther nodynami ¢ For mul as. In 1935 A.N. Shaw presented a table
of Jacobians for a system of one conponent and of fixed mass
and explained its use in the derivation of thernodynamc
relations for such a system in an article entitled "The
Derivation of Thernodynanical Relations for a Sinple Systent
published in the Philosophical Transactions of the Royal
Soci ety of London. A collection of thernodynanic fornulas for
mul ti-conmponent systens of variable total mass by RW
Goranson appeared in 1930 as Carnegie Institution of
Washi ngton Publication No. 408 entitled Thernodynani cal
Rel ations in Milti-Conponent Systems. Unfortunately, Goranson
had accepted the erroneous assunption made by Sir Joseph
Larmor in his obituary notice of Josiah WIlard @ bbs
(Proceedings of the Royal Society of London, Vol. 75, pp.
280- 296, 1905) that the differential of the heat received by
an open system is equal to the absolute thernodynanic
tenperature tines the differential of the entropy, dQ = TdS.
In consequence of this error Goranson's basic equations for
the energy and the entropy of a multi-conmponent system are
i ncorrect. In 1933 L.J. Gllespie and J.R Coe, Jr., in an
article published in volune three of the Journal of Chem cal
Physics showed that in the case of an open system "t he
conmplete variation of the entropy, for simultaneous reversible

transfers of heat and mass, is

dS =%§1+Zs:dml."

v S
Lammegie Meie

Pittshurgh B 5200 )
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In this equation dS denotes the increase in the entropy of the
open system dq the amount of heat received by the open
system T the absolute thernodynamc tenperature, sy the
entropy of unit mass of kind 1 added to the open system and
dml the mass of kind 1 added to the open system Thi s
equation is inconsistent with Goranson's basic equations for
the energy and the entropy of a nulti-conponent system and is
al so inconsistent with very nmany .expressions in his tables for
first and second derivatives in the case of a multi-conponent
system G bbs showed in his nenoir entitled "Oh the
Equi | i brium of Heterogeneous Substances" (Trans. Conn. Acad.
of Arts and Sciences, Vol. 3, pp. 108-248 and 343-524,
1874-78) that it is possible to determine the energy and the
entropy of a multi-conponent system by neasurenents of heat
quantities and work quantities in closed systens. O this
basis, the present author made a detailed analysis of the
neasurenents necessary to obtain conplete thernodynanic
information for a binary system of one phase over a given
range of tenperature, pressure, and conposition wthout
involving definitions of heat or work in the case of open
systens, which was published in a book entitled Relations
between Intensive Thernodynamic Quantities and Their First
Derivatives in a Binary Systemof One Phase (WH Freeman and
Conmpany,  1960.) In this book the present author also
presented a table by neans of which any desired relation
between the absol ute thernodynamic tenperature T, the pressure
p, the nass fraction of one conponent ml, the specific vol ume
V, the specific energy U and the specific entropy S, and
their first derivatives for a binary system of one phase can
be derived from the experinentally determned relations by the

use of functional determ nants (Jacobians).
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In the present work, tables of Jacobians are given for
one-conponent systens of unit mass and of variable nass and
for binary systems of unit nmass and of variable total mass by
means of which relations can be obtained between the
thermobdynamic quantities and their first derivatives. An
explanation of the experinmental neasurements necessary to
obtain conplete thernmodynanmic information in each of these
cases is also provided. The table of Jacobians for the case
of a one-conmponent system of unit mass is included for
conparison with the other tables of Jacobians, because the
Jacobians in the tables in the other three cases reduce
essentially to those in the table for the <case of the
one-conponent system of wunit mass when the masses are held
constant. The Jacobians in the table in the present text for
the case of a one-conponent system of unit nass are the sane
as the expressions in Bridgman's tables for this case. The
Jacobians in the tables in the present text for the case of a
binary system of unit mass differ slightly in form from those
in Table 1 of this author's book entitled Relations between
I ntensi ve Thernodynam ¢ Quantities and Their First Derivatives

in a Binary System of One Phase. |t has been found that by

: \
elimnation of the special symbols £i and odi for -a;‘}.]

o o il T, p
‘as A
and f\-grﬁ? ) and adherence to the synbols ’\‘A;‘p J and
u To P rp
(FIS\
f—~T?J a simpler and more perspicuous arrangement of the
m T, p

terms in the Jacobians results in this case. The Jacobians in
the new tables in the present text for the case of a binary
system of variable total mass differ very nmuch from the
expressions in the tables in Carnegie Institution of

Washi ngton Publication No. 408 by RW Goranson. Very nmany of
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the expressions in Coranson's tables are incorrect on account
of his erroneous assunption that dQ = TdS in the case of
open systens when there is sinultaneous reversible transfer of
both heat and mmss. Furthernore, Goranson's expressions
in his tables for first derivatives in such cases are not
formulated in ternms of the mnimm nunber of derivatives
chosen as fundanental as he hinsel f recognized.

As mght be expected there is a considerable parallelism
bet ween the Jacobhians in the tables in the present text for a
one-conponent system of one phase and of variable nass and
those in the tables in the present text for a binary system of
one phase and of wunit mass. There is also a partial
paral l eli sm between the Jacobians in the tables in the present
text for the two cases just nentioned and those in the present
text for the case of a binary system of one phase and of
variable total mass. Thus for exanple in the case of a one-

conponent system of one phase and of variable nass we have

v e e S ral
e R | ORI C NS
where 5 denotes the total entropy, V the total volume, U the
total energy, T the absolute thernodynamic tenperature, p the
pressure, M the mass, S the specific entropy, ‘{/ the specific
vol ung, ‘fJ the specific energy, and 'é\r/ the heat capacity at
constant pressure per unit of mass. For conparison in the
case of a binary systemof one phase and of unit mass we have

5. V. U o y .
H) B [%J)Tt P-P P(%ﬁ_)m - T(Et) ]
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wher e ‘rﬁl denotes the mass fraction of conponent 1, which is

equal to m, the mass of conponent 1, divided by the sumof m

and mt m denoting the nmass of conponent 2.

Furthermore in the case of a binary system of

and of variable total nmass we have

3(5, m:V,
3(7%p, M, /BR)

- I - - BE BF
= -(my + m2) 2{[({} + plV - T8) - ml((—a}?l)iﬂ . + p(ﬁ1

&), - 26, ]

Ds D)
Also we have

3(S, 1712, F, U)_
3(T, p, mi, cia)

Je,,

one

O] G
E(Im(

phase

Ji )]

The last factor in each of these four Jacobians is the sane.

In the case of the next to the last factor in each of t

Jacobians there is sonme parallelism thus the next

to

3(5, V,
last factor in the case of the Jacobian . P,

\j>

VE» v/
[U+ pV - TY which is equal to the specific Gibbs function G

G

or . The next to the last factor in the case of

hese
t he

NS

A

t he
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3(5.V {(a‘ﬁ\ (ai?) (aé‘)
S 1A S FE § SN
acobian 3(T, p, my) 18 Bﬁ\] Tio o1/ o o/ p'\]

a\d

. P _
which is equal to | dnllar’p * Finally the next to the |ast
(S, m ,V U)

—°N

factor in the case of the Jacobian T1rizT——* is
akKJ e p9 mi, m2)
(- -n(@) o) &) )
YT, p Yr.p Yr, p
which is equal to (@ﬁ) and the next to the |ast
amg T
y Dy [
factor in the case of the Jacobian ?—5&“29&’-@ is
oyl * po m ¢ NR)
(G- n(@) o) o) )]
VT, p YT, p YT, p
which is equal to (EJA) . It is to be noted that
my
’ T.P!f]’iz
in all of these four Jacobians a sinplification would result
if use were made of the G bbs function Gand its derivatives;
however, in the tables this would introduce nore first
derivatives t han t he m ni num nunber of f undanent al
derivatives in ternms of which all first derivatives are
expressi bl e. If it is mnmerely desired to calculate a

particular derivative as the quotient of two Jacobians, the
introduction of the G bbs function G (likew se t he
introduction of the enthal py, H= U+ pV, and the Helmholtz
function, A = U - TS) in the expressions for the Jacobians
would cause no difficulty. On the other hand if it s
desired to obtain a relation anpbng certain derivatives by

expressing themin terns of the m ni mum nunber of fundanental
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derivatives and then elimnating the fundanmental derivatives
from the equations, the introduction of the G bbs function G
(or the enthalpy H or the Helmholtz function A in the
expressions for the Jacobi ans woul d defeat the purpose.

The basic theorem on Jacobians that is needed in the
calculation of derivatives of point functions with respect to
a new set of independent variables in terns of derivatives
with respect to an original set of independent variables was
stated by Bryan (in Encykl op&di e der mat emat i schen
W ssenschaften, B.G Teubner, Leipzig, Bd. V, Teil 1, S 113,
1903), and is nentioned (without proof) in a nunber of
text books on the calculus. Proofs of this theoremin cases of
functions of two independent variables and functions of three
i ndependent variables are given in Appendix B to Part | and
Appendix C to Part Il of the present work. In the case of
transformations of line integrals that depend upon the path
from one coordinate system to another coordinate system the
Jacobi an theorem does not apply. To cover this case a new
theorem is needed. The new theorem devel oped by the present
author for the expression of the derivatives of a Iline
integral that depends upon the path along lines parallel to
the coordinate axes in one plane or space in terns of the
derivatives of the line integral along lines parallel to the
coordinate axes in other planes or spaces is stated and proved
in Appendix B to Part | and Appendix C to Part 1l of the
present work (this theorem is expressed by equations (I-B-36)
and (1-B-37) in Appendix B to Part | and equations (II-C-63),
(I'-C64), and (11-C65) in Appendix Cto Part I1). It is a
pleasure to acknow edge ny indebtedness to Pr of essor
CJ.A Halberg, Jr., and Professor V.A Kraner, both of
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the Departnent of Mathenatics of the University of California
at Rverside, who have kindly examned ny proof of this
theorem carefully and in detail and who have confirmed its
correctness. | wish also to express ny gratitude to Ms.
Sheila Marshall for carefully and skillfully typing the
manuscript of this book in form canera-ready for reproduction
by offset photolithography and to M. David Qouch for making
the drawings for Figures II1-1, 11-A1, I1-A2, and IV-A1

George Tunel |

Santa Barbara, California
August 1984
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Part |

Rel ati ons between thernodynanic quantities and
their first derivatives in a one-conponent system

of one phase and of unit mass
I ntroduction

In consequence of the first and second |laws of

t hermodynanics and the equation of state of a one-conponent
system of one phase and of unit nmmss there are very nunerous
relations between the thernodynanmic quantities of such a
system and their derivatives. Bridgman! devised a table of
functions by neans of which any first derivative of a
t hermodynam ¢ quantity of such a system can be evaluated in
A f(a”" ane Ap>

termrs of the three first derivatives, -,
\9Psp AD

together with the absolute thernmodynamic tenperature and
the pressure, as a quotient of two  of the tabul ated
functions. The equation anong any four first derivatives

can then be obtained by elinmnation of the three derivatives,

(JLE) 9 (a%) and Cp, from the four equations expressing
\ D/T .

the four first derivatives in terns of the three derivatives,

.f?i.\ _ v f and c3,.
(8p;T' \%p P

L oBri dgman, P.W, Phys. Rev., (2), 3, 273-281, 1914, also A
Condensed Collection of Ther nodynami ¢ For mul as, Har vard
Uni versity Press, Canbridge, 1925.
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Bridgnan's table has been found very wuseful and has
becone well known. The functions in Bridgnan's table ca.n be
derived by a sinpler nethod, however. The theorem upon which
this method is based had been stated by Bryan,? but a proof of
this theoremis not included in the article by Bryan. 1In the
following pages the functions tabulated by Bridgman are
derived by the method of Jacobians explained by Bryan and the

Jacobi an theorem is proved.
Equati on of state of a one-conponent system of one phase

The principal properties of a one-conponent system of one
phase and of unit nmass that are considered in thernmodynam cs
are the absolute thernodynamc tenperature T, the pressure p,
the specific volume 7, the specific energy U and the specific
entropy 5. It has been established experinmentally that the
tenperature, the pressure, and the specific volume are rel ated
by an equation of state

*(p, V, T) = 0. (1-1)
Even if an algebraic equation with nunerical coefficients
cannot be found that will reproduce the experinmental data for
a particular one-conponent system within the accuracy of the
nmeasurenents over the entire range of the neasurenents, the
equation of state can still be represented graphically wth
such accuracy, and nurerical values can be scaled from the

graphs.?

Bryan, GH, in Encyklopadie  der mat emat i schen
M ssenschaften, B.G Teubner, Leipzig, Bd, V, Teil 1, S. 113,
1903.

8 Dening, WE., and L.E. Shupe, Phys. Rev., (2), 37, 638-654,
1931; York, Robert, Jr., Industrial and Engineering Chem stry,
32, 54-56, 1940.
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Wrk done and heat received by the system

e nay plot the values of the tenperature T and the
pressure p of the systemin a series of states through which
the system passes, laying off the values of T along one
coordinate-axis and the values of p along the other
coordi nate-axis. The points representing the series of states
then forma curve, which, following G bbs® one may call the
path of the system As dbbs further pointed out, the
conception of a path must include the idea of direction, to
express the order in which the system passes through the
series of states. Wth every such change of state there is
connected a certain anount of work, W done by the system and
a certain anount of heat, Q received by the system which
G bbs® and Maxwel | ® called the work and the heat of the path.
Snce the tenperature and pressure are supposed uniform
throughout the system in any one state, all states are
equilibriumstates, and the processes discussed are reversible
processes.

The work done by this system on the surroundings is
expressed nathenatically by the equation

Vv

W= prdV. (1-2)

Vo

4 dbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
2, 311, 1871-73, or Coll ected Wrks, Longmans, Geen and Co.,
New York, 1928, Vol. 1, p. 3.

> Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
2, 311, 1871-73, or Coll ected Wrksy Longmans, Geen and Co.,
New York, 1928, Vol. 1, p. 3.

® Maxwell, J. derk, Theory of Heat, 10th Ed., Longnans,
G een and Conpany, London, 1891, p. 186.
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The value of this integral depends upon the particular path in
the (p» fo plane, and when the path is deternined, for
exampl e, by the relation
P=ftf), d- 3)
the value of the integral can be cal cul at ed.
If the path is plotted in the (T, p)-plane the work done
by the system W may be obtained by transfornmation of the

integral in equation (1-2)

T.P

v- [{oE) ar +ofE) 0} (T-4)
P

To, PO

and the path nay be deternmined in this case by the relation
p=*(T). (1-5)
Sinmlarly the heat, 0, received by the system
TP
Q=] iLc‘de +Ypdp) (1-6)
ToPq
may be calculated provided the heat capacity at constant
pressure per unit of mass, °p, and the latent heat of change
of pressure at constant tenperature per unit of mass, /g, are
known functions of T and p and the path is deternmned by
equation (1-5). The integrals in equations (1-4) and (1-6)
are line integrals’ that depend upon the particul ar choice of

the path.

" For the definition of a line integral, see WF. Gsgood,
Advanced Cal cul us, The Macraillan Conmpany, New York, 1925, pp.
220, 221, or R Courant, Differential and Integral Calculus,
translated by J.E. McShane, Bl ackie & Son, Ltd,, London, 1944,
Vol . 2, pp. 344, 345.
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First and second |aws of thernodynanmi cs applied to a

one-conponent system of one phase and of unit mass

The first law of thernodynamics for a one-conponent
system of one phase and of unit mass traversing a closed path
or cycle is the experinentally established relation

${dQ - dw = 0.8 (1-7)
Replacing <PdQ and $dW by their values from equations (1-4)
and (1-6) in order that the integral may be expressed in terns
of the coordinates of the plane in which the path is plotted,

one has

(R o s

& Blondlot, R, Introduction a | "Et ude de | a Thernmdynani que,
Gauthier-Villars et Fils, Paris, 1888, p. 66; Bryan, GH , op.
cit., p. 83; Poincare, H., Thernodynan que, Second Edition,
Edited by J. Blondin, Gauthier-Villars et Cie, Paris, 1923, p.
69; Keenan, J.H., Thernodynam cs, John Wley & Sons, Inc., New
Yor k, 1941, p. 10; Allis, WP, and M A Herlin,
Thermodynanmi cs and Statistical Mechanics, McGraw Hi | | Book
Co., Inc., New York, 1952, p. 67; Schottky, W, H Uich, and
C. \Wagner, Thernodynam k, die Lehre von den Kreisprozesseny
den physi kal i schen und chem schen Ver ander ungen und
d ei chgewi chten, Julius Springer, Berlin, 1929, pp. 14-15.
Lord Kelvin in his paper entitled "On the dynam cal

theory of heat, wth nunmerical results deduced from M.

Joule's equivalent of a thermal wunit, and M Regnaul t's
observations on stean (Trans. Roy. Soc* Edinburgh, 20,
261-288, 1851) nmde the following statenent: "Let us suppose

a mass of any substance, occupying a volume v, under a
pressure p uniformin all directions, and at a tenperature t,
to expand in volune to v + dv, and to rise in tenperature to
t + dt. The quantity of work which it will produce will be
pdv;
and the quantity of heat which nust be added to it to nake its
tenperature rise during the expansion to t + dt nay be denoted
by
Miv + Ndt,



6 CONDENSED COLLECTI ONS OF THERMODYNAM C FORMULAS

From equation (1-8) it follows that the integral

[{le -+ (1 - 404

is independent of the path and defines a function of the

The nechani cal equivalent of this is

Ji Mlv + Ndt),
if J denote the nechanical equivalent of a unit of heat.
Hence the nechanical neasure of the total external effect
produced in the circunstances is

(p - IMdv - JNdt.

The total external effect, after any finite anount of
expansi on, acconpanied by any conti nuous change of
tenperature, has taken place, wll consequently be, in
mechani cal terns,

I{(p - IJMdv - JNdt} ;

where we nust suppose t to vary with v, so as to be the
actual tenperature of the medium at each instant, and the
integration with reference to v nmust be perfornmed between
limts corresponding to the initial and final volunes. Now
if, at any subsequent time, the volune and tenperature of the
medi um become what they were at the beginning, however
arbitrarily they nmay have been nade to vary in the period,
the total external effect must, according to Prop. |., anount
to not hing; and hence
(p - IJIMdv - JNdt

must be the differential of a function of two independent
vari abl es, or we nust have

dip-JM d(-JN M
dt = dv (1)

this being nerely the anal ytical expression of the condition,
that the preceding integral may vanish in every case in which
the initial and final values of v and t are the saneg,
respectively,” And elsewhere in the sane paper Lord Kelvin
wr ot e: "Pr op, l. (Joul e).-Wien equal quantities of
nechani cal effect are produced by any means whatever, from
purely thernal sources, or lost in purely thermal effects,
equal quantities of heat are put out of existence or are
gener at ed/ !
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coordinates; this function, to which the name energy is given
and which is here denoted by the letter U is thus a function

of the state of the system

U(T7 p) - U(T01 Po) =

Ko-'§)> &- 4\ 4 >

"o» Po

The second l|law of thernodynamics for a one-conponent
system of one phase and of wunit mass traversing a closed
reversible path or cycle is the experinentally established

relation
$f-=0,° (1-10)

where T is the tenperature on the absolute thernodynanic
scale. Expressing this integral in terns of the coordinates

of the plane in which the path is plotted, one has

p
{2,

k=<
o
et
n
(=)

® Clausius, R, Die nechanische Vrnetheorie; Dritte aufl.,
Bd. |, Friedrich Vieweg und Sohn, Braunschweig, 1887, S. 93;
Blondlot, R, op. cit., p. 66; Vanft Hoff, J.H., Physi cal
Chemistry in the Service of the Sciencesy English Version by
A. Smith, University of Chicago Press, Chicago, 1903, pp.
21-22; Schottky, W, H Uich, and C. Wagner, op. cit., p. 17;
G bbs, J. Wllard, Proceedings of the American Acadeny of Arts
and Sci ences, new series, 16, 460, 1889, or Collected Wrks,
Vol . 2, Longmans, G een and Conpany, New York, 1928, p. 263.
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Fromequation (1-11) it follows that the integral

T.p .
E.:C'—dT + LQo'
T T ¢P
TO) pO

is independent of the path and defines a function of the
coordinates; this function, to which the name entropy is given
and which is here denoted by the. letter f3 is thus a function
of the state of the system

T, p o
r [ 4 I!
S(T,p) - S(Topo) = f{%ﬂﬂ + —TEdP}. (I-12)
Pa

Fromequation (1-9) it follows directly'® that

b ot

AT P\d_)' (1-13)

/
ol
=

—

1

and P P

T p(g_E)T , (1-14)

L
I

Fromequation (1-12) it follows |ikew se that
(ﬁ\ - 2 (I-15)

and

- ke (1-16)

" For the proof of this theorem see WF. Osgood, op. cit.,
pp. 229-230, or R Courant - J.E MShane, op. cit., Vol. 1,
pp. 352-355.
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A necessary and sufficient condition!® for equation (1-9)

to be true is

[v fdvl "k

P\apf J} JL LY - p%Tff JL

(1-17)

Li kewi se a necessary and sufficient condition for equation

(1-12) to be trué is

l c
B—T‘? _ 3"%" 13
—_ — (. (1-18)
aT P ap T

1 For the proof of this theorem see WF. Osgood, op. cit.,
pp. 228-230, or R Courant - J.E. MShane, op. cit., Vol. 1,
pp. 352-355.

2 Lord Kelvin wote the anal ogous equation with t and v as
the independent variables as an analytical expression of the
"first f undanent al proposition” or first | av; of
thernodynanmics. His statenent follows: "Observing that J is
an absolute constant, we may put the result into the form

d>_ ;dv dN

dt dt " dv *
This equation expresses, in a perfectly conprehensive manner,
the application of the first fundanental proposition to the
t her mal and mechani cal ci rcumst ances -of any substance
what ever, under wuniform pressure in all di rections, when

subjected to any possible variations of tenperature, volune,
and pressure.” (Trans. Roy. Soc. Edinburgh, 20, 270, 1851.)
Clausius also stated that an anal ogous equation, his equation
(5), forms an analytical expression of the first law for
reversible changes in a system the state of which is
determned by two independent variables. (Abhandl ungen ii her
di e mechani sche Wirnetheorie* Zweite Abtheilung, Abhandlung
I X, Friedrich Vieweg und Sohn, Braunschweig, 1867, p. 9.)

¥ dausius stated that his equation (6), to which equation
(1-18) of this text is analogous, constituted an analytical

expression of the second law for reversible processes in a
system the state of which is determined by two independent
vari abl es. (Abhandl ungen iiber die nechani sche V&rnetheoriei

Zweite Abtheilung, Abhandlung |X, Friedrich Vieweg und Sohn,
Braunschwei g, 1867, p* 9.)
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Carrying out the indicated differentiations one obtains from
equation (1-17) the relation

(_a!n\ a2V 73Em @V fd (1-19)
3r/P A3M3p  V3pL  T3p3r \a:mp

and from equation (1-18) the relation

- ) (1-20)
T\dT;I]P ™ "T\de
Conbi ni ng equations (1-19) and (1-20) one has
H ” I-21
b o« - ) . (I-21)
P
Fromequations (1-19) and (1-21) it also follows that
ac, 32§ (I-22)
=P = -
(% )T - T(W)p :

Al the first derivatives of the three quantities V, U and S
expressed as functions of T and p can thus be calculated from
equations (1-13), (1-14), (1-15), (1-16), and (1-21) if

(¥ | (& » @ ap A2e peen deternined experimentally.

‘ -

P 1

In order to be able to calculate all the properties of
this systemat any tenperature and pressure, the volume nust
be determned experimentally as a function of the tenperature

and pressure; the first two derivatives (~a~=) and ('I"’L)

can then be calculated at any tenperature and pressure within
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the range over which the volume has been deternined. The
third derivative, %p, need only be determ ned experinentally

_ e '3 Eps
along sone line not at constant tenperature, ' '* since f\-g;)%’

T

can be calculated from equation (1-22) if ('?J-\I/ff) N85 peen
TP

determned as a function of T and p.

Derivation of any desired relation between the

W w
i ntensive thernodynamc quantities, Tg p> Vo U S and
their first derivatives for a one-conponent system of
one phase fromthe experinentally deternmined relations
by the use of functional determ nants (Jacobi ans)
Equations (1-1), (1-9), and (1-12) can be solved for any

\J \J <S

three of the quantities, To pg V, U S as functions of the
remaining two. The first partial derivative of any one of the

vio vl K

quantities, T, p, V, W S with respect to any second quantity
when any third quantity is held constant can readily be
obtained in terns of the three first derivatives

714 13V -
(ng, ) , \de—j], s, and .o together wth the absolute
thernodynamc tenperature and the pressure, by application
of the theorem stating t hat i f X' = oo(x>y),
if x = f(u» v), and if y = <t>(ug v), then one has

'* PBridgman, P.W, Phys, Rev., (2), 3, 274, 1914.
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{ 3y {i’{)
\ 3u/ \ 3v
\% U
) ay (K. yy 15
ax! \du)v (av )u Hu, v) (1-23)
) e T
9x X\,
(3 = 3, v
\%
(Ez) {3v\
au/, VW
u

provided all the partial derivatives in the determ nants are
continuous and provided the determnant in the denom nator
p)

AP LYY here denotes the
di il v)

is not equal to zero. The synbol
Jacobi an'® of the functions x' and y with respect to the

_?_-Xv
d&U! v,

variables u and v and the synbol nenotes the Jacobian

of the functions x and y with respect to the variables u and
v. |In Table 1-1 the value of the Jacobian is given for each

. . bt L (=)
pair of the variables, T, p, V, U S as x', y or x» y and

% Bryan, GH, op. cit., p. 113, equation (82); see also
Gsgood, WF., op. cit,, p. 150, Exercise 31, Burington, R S.,
and C. C. Torranee. H gher Mathematics with Applications to
Sci ence and Engi neeringg McGrawHi Il Book Co., Inc., New York
and London, 1939, p. 138, Exercise 7, and Sherwood, T.K , and
CE Reed, Applied Mthematics in Cheni cal Engi neeri ng,
MG aw H || Book Co., Inc., New York and London, 1939, p. 174,
equation (164). A proof of this theorem for the case of
functions of two independent variables is given in Appendix B
to Part I.

1 For the definition of a Jacobian, see WB. Fite, Advanced
Cal cul us, The Macmi || an Conpany, Hew York, 1938, pp. 308-309.
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wWith T$ p as ug v* There are 20 Jacobians in the table, but

one has g%%'v[)l = - %(EH))_ because interchanging the rows

of the determ nant changes the sign of the determinant; hence
it is only necessary to calculate the values of 10 of the
determnants.  The calculations of these ten determnants
fol | ow,

3p  9p
TR . (1-24)
alT, P) - dT - ?
5
3 3f
i(/‘_r). - 37 3p _ —(QK) ; (1'25)
3(7, p) 3T 3T o/
3T 3p
1£ 3f
v dT gp o N (I-26)
-3(r1 P) = dT dT = T(ﬁ + p(-é;)'f i
T dp
95 38
35, T 3T dp - d-27)
= = H
(T, pJ 3T 3T (ar)p
3T 3p
v T v 1-28
ﬁgv_'ﬂl = 3 3p = -a-%) H ( )
aT  dp
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303U
v a7 dp . v (1-29)
.?l(t—l—m = = CP - p(g—g-) :
3(r, p) dp dp. P
dr  dp
5 ds.
aSp) . |dT dp| | (1-39
AT, p) d 9 T
ar  3p
\-> Q
o
el oT 3p e o d- 31)
3U, 1) |- T(%)z + 2 (_@Z) .
3T 3p
3% 33
2E Y _ 37 3p i (_3_;;)2 +EE(§.K) ) (1-32)
3(r. p) ¥ 8T, " T \op/y
dr dp
JS  3S
BEE. 5; i T dp| (a‘f)z ) f_%g(ﬂ) ~(1-33)
daT dp

In order to obtain the first partial derivative of any one

K V» \%

of the five quantities T p» W f» S with respect to any
second quantity of the five when any third quantity of the
five is held constant, one has only to divide the value of the
Jacobian in Table 1-1 in which the first letter in the first
line is the quantity being differentiated and in which the
second letter in the first line is the quantity held constant



. _Table 1-1 |
Jacobians of intensive functions for a
one-component system of one phase

B%x',pz! . Zix. pz%
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by the value of the Jacobian in Table 1-1 in which the first
letter of the first line is the quantity with respect to which
the differentiation is taking place and in which the second
letter in the first line is the quantity held constant.

To obtain the relation among any four derivatives, having
expressed them in terns of the sane three derivatives,
(IaVVr\J ' (%V';" ' anc*UCP' one aas onay L0 e jmnate the three
v }7) y
derivatives fromthe four equations, leaving a single equation
connecting the four derivatives.

Three functions used in thernodynanmics to facilitate the
solution of many problens are the following: the enthalpy H,
defined by the equation H = U+ pV, the Helnholtz function A
defined by the equation A = U- TS, and the G bbs function G
defined by the equation G = U+ pV - TS. The corresponding
specific functions are H A and G Parti al derivati ves
i nvol ving one or nore of the functions b A, and G can also
be calculated as the quotients of two Jacobians, which can
thensel ves be calculated by the same nethod used to cal culate

the Jacobians in Table 1-1.
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Transformation of the work and heat line integrals
from one coordinate plane to other coordinate
pl anes in the case of a one-conponent system of

one phase and of unit nass

The derivatives of the work done and the heat received by
a one-conponent system of one phase and of unit nmass are total
derivatives® with respect to the variables chosen as the
paranmeters defining the paths of the integrals. In order to
obtain the total derivative of the work done along a straight
line parallel to one of the coordinate axes in any plane, one
obtains from Table 1-1 the partial derivative of the volunme
with respect to the quantity plotted along that axis when the
quantity plotted along the other axis is held constant and one
multiplies the partial derivative of the volume by the
pressure. Simlarly to obtain the total derivative of the
heat received along a straight line parallel to one of the
coordinate axes in any plane, one obtains from the table the
partial derivative of the entropy with respect to the quantity
plotted along that axis when the quantity plotted along the
other axis is held constant and one nmnultiplies the partial
derivative of the entropy by the tenperature. For exanpl e,
the derivatives of the work done and heat received along a

straight line parallel to the K-axis in the (7\ 7)-plane are

(§) - P (I-AD

T

1 Tunell, G, Jour. Chenu Physics, 9, 191-192, 1941,

17
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SL=KDI*(II-

The total derivatives of the '"heat received along |ines

and

parallel to the coordinate axes in any desired plane can al so
be derived in terns of the total derivatives of the heat
received along lines parallel to the coordinate axes in the
(T$ p)-plane by transformation of the heat line integral as
explained in the second half of Appendix B to Part |I.
Following is an exanple of such a transformation. In the case
of a one-conponent system of one phase and of unit nass the
heat line integral extended along a path in the (7\ T:')-pl ane

is
T,V
d(} df -4
Q = f{(—)vd:" + (...,) dv}
vdT v dv T
Ty Vo

NV

i +ui} (1-A3)

T“o» VU

where C, denotes the heat capacity at constant volume per unit

of mass and |, denotes the |atent heat of change of volune at

constant tenperature, and where "c'v and |, are functions of T

and 7. This integral depends upon the path in the (T, V)-

pl ane deternmined by an equation between T and \7 T = f(\7).
/dl\ / 3€,\

In this case 1-"Hy/ ("57r) - A" order to transform the

£
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integral for Q from the (7\ I|/)-plane to the (7\ p)-plane, p
denoting the pressure, we nake use of the fact that V is a

function of T and p,
L)

V = F(T, p). (1-A-4)

Thus we wite for the integral transposed to the (7% p)-plane

0./ {c,,dT sl g—) dT + (g—) dp)}

2'o» Po

., P -
= f{(5v+iv(|) dT. A(1f)dp} +  d-AS

TQ po

By definition the coefficients of dT and dp in this integral

are E}_/ and ip. Thus we obtain the equations

& = &+ by (1~A-6)
and P
rp = Ev(%'g')T- (1-4-7)

From equations (I-A-6) and (l-A-7) we obtain ‘t, and |, as

functions of T and p:

) /8, (s

e

and

I, = ‘fp/(%):r. (1-4-9)
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The same result can be obtained by substitution of values in
equations (1-B-35) and (1-B-36) in Appendix B to Part |I. The
equi val ence of synbols for the purpose of this substitution is

given in the follow ng Table.

Table 1-Al

Equi val ence of synbols

r 0]
X T

L)
v v

T
u T
v P
o(u, v) T,
tt(u,v) L

Substituting the values from the right hand colum for the

values in the left hand colum in equations (I-B-35) and
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(1-B-36) we have

- /dn y (dv)
- T

- ¢ _ ! 2]
\dTi« = ¢&v. = a =7
37)
| p
) [gp(%)T + T("g"%);] H (%)T . (I-4-10)
and
Cpxo - F .1
N
(a }iQ— (E)T 1
) ['T(%)p] : (g_p)T . (I-A11)

Finally, equations (l1-A8) and (l-A-10) are equival ent because

k- ‘T(g—:r)p

=(
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Proofs of the relations:

ax p 3,
3u, v
and
a7 dT
du dv
dy Ia
[ dr\ _ du av
\~dX~)y dx dx
u dv
dy
ldE dv

It is assuned that x' is a function of x and vy,

X' =U(x ) (I-B-1)
and that x and y are functions of u and v,

x =f(u, v)o (1-B-2)
and

y =0(u, v). (I-B-3)

[t is assumed further that these functions are continuous
together with their first partial derivatives. By application
of the theorem for change of variables in partial
differentiation’ one then obtains

ox' ax’

du ° dx du dy du (1-B-4)

! ®sgood, WF., Advanced Calculus, The MacMIlan Co., New
York, 1925, pp. 112-115; Taylor, Angus, Advanced Cal cul us,
G nn and Co., Boston, New York, Chicago, Atlanta, Dallas, Palo
Alto, Toronto, London, 1955, pp. 167-172.

22
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and
dx' _ Bx'dx  Bx'dy
Jv 7 313737 3u * (1-B-5)
Fromequations (1-B-4) and (1-B-5) it follows that
f ' . .
ddy 3¢ dxx for T2, i)
dy du du dx du
and 8x'3y _ 3x' _ 3x'3x (I-B-7)
3y dv dv dx dv 3
Dividing both sides of equatjgn (I-B-6) by -rL’r‘ and both
sides of equation (I-B-7) by f"'p we have
dx - 3x3x
3x’! du dx 3u
X .
3y 3j! (1-B-8)
3a
and
3x M2t AL
r. , dv  3x 3v
axt
3y " dy_ * (1-B-9)
dv
It follows that the right side of equation (I1-B-8) is equal to
the right side of equation (I-B-9)
X _ X £EE X'~ 3x'3X
du, dxdu - dv dxdv (1-B-10)
du dv
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o\
Miltiplying both sides of equation (I-B-10) by (""ﬁ"J Ve

have

éz(k’_@x'ﬁzs\ N Byfax"  3x'3x) (1-B-11)
vidu  3x du) dutdv  dx ov/

and consequent|y

dy dx*  dy dx'dx _ dy dx' dyjrIn (I-B-12)
vdu  dvdxdu T 3udv T 3u 3 dv *

3x'3y 8x _ 3x'3y 3x _ By ' _ By 3’ (1-B-13)
U dudv dx dvdu ~ dudv ~ dv du
and
ETETE R R O 3 (1-B-14)
3x\du d v du) " dudv dv du °
Dividing both sides of equation (I-B-14) by (%B—’J—g—“{%ﬁ)
we have
(_B_X_') ~ du v ov cu (I_B_ls)
x0T 2
¥ du dv = dv 3o

The partial derivative Y~ ) is thus equal to the quotient
4
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of two Jacobi an determ nants

X 33X
QU gv
I |
x 3 dx
du dv
1z iz
3u dv

provided the Jacobian determinant in the denominator is not

equal to zero. Thus we obtain the result

3Cx' s 2)

U v (1-B-17)
X, yy

d(z V)

\dxr)
¥

and simlarly we have

3lx", x)
(& - e (1-B-18)

3y 1,

This case corresponds to the case of a one-conponent system of
one phase and of unit mass in which it is desired to transform
a function of the coordinates, such as the volume, the energy,
or the entropy, from one coordinate plane, such as the
entropy-vol une plane to another coordi nate plane, such as the
t enperature-pressure plane.

Equati ons (I-B-17_) and (1-B-18) are not applicable,

however, in the case of a one-conponent system of one phase
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and of unit nass when it is desired to transformthe work |ine
integral or the heat line integral from one coordinate plane,
such as the entropy-vol une plane, to another coordinate pl ane,
such as the tenperature-pressure plane, because the work I|ine
integral and the heat line integral depend upon the path and
are not functions of the coordi nates. In this case, to which
the second equation of the heading of this Appendix applies,
the transformation can be acconplished in the follow ng way.

Let us suppose that a line integral F

Xy
r - f{P(x, y)dx + Qx, y)dy) (I-B-19)
xﬂvyo
depends upon the path in which case TJ%:4 "tgg_ This

integral has no nmeaning unless a further relation is given
between x andy, y = f(x), defining a particular path in the
(*>y)-plane.? W are next given that x and y are functions

of uand v,

X =<t>(u, v), (1-B-20)
and
y = Ku, v). (1-B-21)

It is then desired to transform the integral T from the

2 In general this curve can be represented in parametric
foom, x = X(0), y = 5(a); but in simple cases the curve can
be expressed by the equation y = f(x), or at least in
segments by the equations Yy = f(x V* = F(X).
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(x, y)-plane to the (ug v)-plane.® In this case if equations

(1-B-20) and (1-B-21) can be solved so that we have

<£>(*»y)’ (|-B-22)

c
1

and
¥(x, y), (1-B-23)

<
1

then the curve in the (xg y)-plane can be transforned into the

curve in the (u» v)-plane defined by the equation u = F(v).
. . dx ax
W next replace dx in the integral T by -qj—du + -g—elv and dy

by ‘%t du + j\f;-dv . W then have

U, v
-~ r [ "I r
& ox = At B 2y T T
r‘ =i« rr\l\roédu + X4y o+ vl—'all + =&\, 7 TR 04,
J N :Lu/J. oV ™ ] v '
uQ>VvV'Q

the curve in the (u, v)-plane mow being determined by the

8 Cf. R» Courant, Differenti al and I nt egral Cal cul us,
Translated by J.E. MShane, Blackie & Son Ltd., London and
G asgow, 1944, Vol. 2, p. 373. The procedure for transform ng
a line integral that depends upon the path from the (x, y) -
plane to the (u, v)-plane used by Courant is the same as the
procedure explained here and in Appendix C to Part Il of this
text.
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equation u = F(v). Consequently we thus obtain

\
r Moo 3x
UP(KUV), *(u, V)N * v @

W. vo

\"\F

r:J

+ 0(e(u, v), \Ku, v))[%fdu + %{dv}}

u* v
= f{r[P(¢‘[lit V)g \p(u, V))%E + O(¢(U- V), ib(Up V))'g'f]du

Ugs Vp

+ P{p{u, v), ¥{u, v))[%% + Q(elu,s v), lu, v))%g‘ldv}

= f{IO(u, v)du + Q(u, v)dv} (1-B-25)

where 0 is set equal to

I:P(¢(u. V)! ‘&(Uf V))%—)lf + O(¢(Uo V)v IP(U! V))%f]
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and Qis set equal to
[P(cb(U, V) o\ Ku, v))|j +Q <t>(u, v), \ Ku, v))%ﬂ

In order to evaluate P and O as functions of u and v we next

sol ve the equations

_ Bx_l_ _X (I-B-26)
g = du O
and
n - pM.. ohL (1-B-27)
v v

for P ard 0. Thus we have

QZL = 0-p|i (1-B-28)
du ou
and
] )
Og‘% = - P-‘a—.{ . (1 _Bu29)

D viding both sides of equation (I-B-28) by J¥Z and both sides

du
of equation (I-B-29) by S’;JL we obtain
v
- @/_x ow Ay (I-B-30)
- du -
and
=n/|i-p|s/|j: (1-B-31)

/ dv 9Ov/ dn
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and consequently

- _l = B - ax 'az - ==
GE‘E pau 0 5y P/ ay (I-B-32)

Rom egquation (I-B-32) it fdlons that

pli/|Z . pli/|i = of/|Z_a/|Z . (1_s_33)
3u/8u 3v/3v / 3u [/ 3v

Thus from equation (1-B-33) we obtain the value of P as a

function of u and v:

. YR
S SIS

and multiplying both numerator and denominator of the right

g (I-B-34)

side of equation (I-B-34) by (TEH?I*)We have

b O W

3 {I-B=35)
AV do

Mw P(x; y) is the total derivative of T along a Iine parallel
to the x-axis in the (x, y)-plane«** Also O(u, v) is the total

“ Cf. G Tunell, Jour. Chem Physics, 9, 191-192, 1941.
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derivative of T along a line parallel to the u-axis in the
(U v)-plane and Qu, v) is the total derivative of T along a
line parallel to the v-axis in the (u, v)-piane. Thus from
equation (1-B-35) we have

dar dT
du dv
|z dyi
du dv
><* e y) = \(éjxl)): m (|-B—36)
du dv
hL dy|
du dv

Likewise Qx, y) is the total derivative of T along a line
parallel to the y-axis in the (xg y)-plane. Thus in a simlar
way we have

aT dT1

du dv

_gz dx

u dv

0oy = (£) - —— - (1-B-37)

dy 3y 3

X oy 9¥

du dv

dx_ dx

8u dv

The determ nahts forming the numerators of the fractions
constituting the right sides of equations (I-B-36) and
(1-B-37) are simlar in formto the Jacobi an determ nants used
in the transfornmation of functions of two or nore variables,
but F is not a function of x and y or of u and v and the
derivatives in the top lines of the determ nants constituting
the nuner at or s of the fractions that form the right sides of
equations (1-B-36) and (1-B-37) are total derivatives, not

partial derivatives.
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D scussion of P.W Bridgman's explanation of the derivation
of the functions tabulated in his book entitled

A Condensed Col | ection of Thernodynami ¢ For nul as!

Bridgman explained the derivation of the functions
tabulated in his book entitled A Condensed Collection of

Ther nodynani ¢ Fornulas in the follow ng way.

Al the first derivatives are of the type (2—2-)
X3
where Xy, Xz, and X3 are any three different variables
selected from the fundamental set (for exanpl e,
p, T, v). The meaning of the notation 1is the
conventional one in thernodynam cs, the subscript X3
denoting that the variable x3 is nmintained constant,
and the ratio of the change of x\ to the change of X2
cal cul ated under these conditions. The restrictions
inposed by the physical nature of the system are such
that derivatives of this type have a unique meaning.
The nunber of such first derivatives evidently depends
on the nunber of quantities selected as fundanental.
For nearly all applications 10 such variables are
sufficient, and this is the nunber taken for these
t abl es. 2
Gven now 10 fundarmental quantities, there are
10x9x8 = 720 first derivatives. A conplete collection
of thermodynanic formulas for first derivatives
includes all possible relations between these 720

! Harvard University Press, Canbridge, 1925.

2 The variables selected as fundamental by Bridgman are the
following: the pressure p, the tenperature T, the volune v,
the entropy s, the heat Q the work w, the energy £, the
enthalpy #, the Gbbs function z, and the Helnholtz

function ¥

32
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derivati ves. In general, the relations involve any
four of the derivatives, for any three of t he
derivatives are independent of each other. (There

are, of course, a large nunber of degenerate cases in
which there are relations between fewer than four
derivatives.) Now, except for the degenerate cases,
the nunber of relations between first derivatives is
the nunber of ways in which 4 articles can be selected
from 720, or

720 x 719 x 718 x 717 in.
e = approx. 11x1bd%.

This is the nunber of thermodynanmic relations which
should be tabulated in a conplete set of fornulas, but
such a programme is absolutely out of the question.
We can, however, nmmke it possible to obtain at once
any one of the IlxI O relations if we merely tabul ate
every one of the 720 derivatives in terns of the sane
set of three. For to obtain the relation between any
four derivatives, having expressed them in ternms of
the same fundanental three, we have only to elimnate
the fundamental three between the four equations,
leaving a single equation connecting the desired four
derivatives.

This programme involves the tabulating of 720
derivatives, and is not of inpossible proportions.
But this nunber may be nuch further reduced by

mat hematical artifice. The 720 derivatives fall into
10 groups, all the derivatives of a group having
the sane vari abl e hel d const ant during t he

differentiation. Now each of the 72 derivatives in a
group may be conpletely expressed in terms of only 9
quantities. Consider for exanple the first group, in

which xi is the variable kept constant. Then any
/3X7\ )
derivative of this group \(‘LK’E"‘ My Ne written
*K Xy

in  the fom (..axn\ = /%5 (3% . where

(6308 }xl ~ W Zai \kxf//\\EBalii/Xl

ai is any new variable, not necessarily one of the 10.

Let us make this transfornmation for al | t he
derivatives of the group, keeping the sane a in all
the transformations. Then it is evident that all

derivatives of the group may be expressed in terns of

, o faxaN .. 8%\ . A ,
the nine derivatives 1'111‘11 ( jlx/- A y taking
\’ Y
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the ratio of the appropriate pair. That is, for the
purpose of calculating the derivatives we nay replace

By -
the derivative (3-7) by the ratio of numerator to
L Xl

denoraerator, witing

x (BXj)X
X1 X1
and then substitute for (9x,-) the finite derivative
J X
t dxj\ / x"\

!
and for (B . A ~
vealf o THITERY o
Ve rray now, as a shg(rlt\é%ﬁd/ rrethod of expression,
vvrlte’ the equations

1oAY o
(3xy)x = {") , etc.,

X1

renenbering, however, that this is not strictly an
equation at all (the dimensions of the two sides of
the "equation" are not the sanme), but that the form of
expression is useful because the correct result is
always obtained when the ratio of two such
differentials is taken.

W nay proceed in this way systematically through
the remaining 9 groups of 72 derivatives, choosing a
new and arbitrary a for each group. W will thus have
in all 90 different expressions to tabulate. Thi s
nunber may now be further reduced to 45 by so choosing
the a's in the successive groups that the condition
(3x;0 = - (W) is satisfied. That such a choice

T Xp XJ
is possible requires proof, for having once chosen al,

the choice of a, is fixed by the requirenent that

(dxi) = - (9xy) , and az; is fixed by the
X. 2 Xi
requirenent that (3xi)X3z = -(9x3) X3 so that it is

now a question whether these values of a, and a3 are

such that (gu..)X » - (a*,)x . That these conditions
3 2

are conpatible is an inmrediate consequence of the
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mat hematical identity

(52 (50 (G5 - -

X3 Xi

The only degree of arbitrariness left is now in oti,
which may be chosen to nake the expressions as sinple
as possi bl e. '

In the actual construction of the tables the a's
play no part, and in fact none of them need be
determ ned; their use has been nerely to show the
possibility of witing a derivative as the quotient of
two finite functions, one replacing the differential
nunerator, and the other the differential denom nator.
The tables were actually deduced by witing down a
suf ficient nunber of derivatives obt ai ned by
wel | - known thernodynam ¢ net hods, and then splitting
these derivatives by inspection into the quotient of
nunerator and denom nator. Having once fixed the
value of a single one of t he differentials
arbitrarily, all the others are thereby fixed* For
sinplicity it was decided to put (3x)p = 1.

The choice of the fundanental three derivatives
| eaves much [atitude. It seemed best to take three
which are given directly by ordinary experiment; the
three chosen are

. K
(_éj'\)/\lffdv\ad AL fd_,()g)].
. .)p E) T P[ (a- B

The problem addressed by Bridgnman is that of obtaining a
derivative of any one variable of the 10 variables with
respect to any second variable of the 10 when any third

variable of the 10 is held constant in ternms of the three

i ) av 3 4 4 i
derivatives (37) » ("8 ' "% °p> an certain of t he
P P T
t hernodynam ¢ quantities. This is a problem of obtaining
derivatives with respect to a new set of i ndependent

variables in terns of derivatives with respect to an original
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set of independent variables. The solution of this problem by
means of Jacobians was given by Bryan® in his article in the

Encycl opadi e der nmatemati schen W ssenschaften in 1903 and is

wel | established. The functions listed by Bridgman in his
table as (3p)v, (3x)v, (3s)v, (3E)v, (3p)s, (3x)s, (3V)s, (3E)s,
etc., are really Jacobians, not partial derivatives wth
respect to hypothetical auxiliary variables ot; a". In the

derivation by means of Jacobians explained in the preceding
pages no hypothetical auxiliary variables were involved

and likewise no hypothetical unknown  functions of a,

and p, or of a, and T, or of ot; and v, etc., were involved.
Furthermore it is really not a nmatter of hypothesis that

(3xi) = - (dxo)

The quantity (3xi) is really the
XZ *

1 2

Jacobian dﬁfti*}*P—)*?J anc) the quantity (3xy) x is really the

Jacobi an *& —+la.. The Jacobian jA+*—E~- js equal to the
.Ts D) Te p)
negative of the Jacobian -c-’“";)i&’“"- because interchanging two
0T, p)

rows of a determnant changes the sign of the determ nant.

Finally it is not an arbitrarily adopted convention that

(3i)p = 1. The quantity (3x), 1is equal to the Jacobian
1) /\J\, H H H

_ T,P}{tV\hlch|sautormtlcallyequal to 1.

: Bryan, G.H,, in Encyclopadie der matematischen

\ll\g(%enschaften, B.G. Teubner, Leipzig, Bd. V, Teil 1, S. 113,
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Rel ati ons between thernodynam c quantities and
their first derivatives in a one-conponent system
of one phase and of variabl e nass

I ntroduction

Thernodynamic relations in open systens of one conponent
and of one phase and other open systens have been anal yzed by
Gllespie and Coe,* Van Wlen,? Hall and lbele ® and Beattie
and Qppenheim* also in part incorrectly by Larnor, ° Mrey,©
Goranson, ' Sage, ® Mel wn-Hughes, ® Callen, ! and Weeler.

! Gllespie, L.J., and J.R Coe, Jr., Jour. Chem Phys., 1,
103- 113, 1933.

2 Van Wl en, GJ., Thernodynanics, John Wley and Sons, Inc.,
New York, Chaprman and Hal |, London, 1959.

3 Hall, NA, and WE. Ibele, Engineering Thernodynamics,
Prentice-Hall, Inc., Englewood-Adiffs, NJ., 1960.

**  Beattie, J.A, and Irwin Qpenheim Principles of
Ther nodynamni cs, H sevier Scientific Publishing Co., Ansterdam
ford, NewYork, 1979, pp. 296-320.

® Larnor, Sir Joseph, Proc. Roy. Soc. London, 75, 280-296,
1905.

> Mrey, GW, Jour. Franklin Inst., 194, 425-484, 1922.

" Goranson, RW, Thernodynani ¢ Rel ati ons i n Ml ti-Conponent
Systens, Carnegie Institution of Washington Publication
No. 408, 1930.

8 sSage, B.H, Thernodynam cs of Milticonponent Systens,
Rei nhol d Publ i shing Corp., New York, 1965.

® Mel wn-Hughes, E A, Physical Chemistry, Perganon Press,
London, New York, Paris, 1957.

1 callen, HE., Thernodynamcs, John Wley and Sons, Inc.,
New York and London, 1960.

1 \Weeler, L.P., Josiah Wllard Gbbs - The History of a
Geat Mnd, Rev. Ed., Yale University Press, MewHaven, 1952,
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In the following text the relations for the energy and the
entropy of a one-conponent system of one phase and of variable
mass are derived and a table of Jacobians is presented by
means of which any first partial derivative of any one of the
quantities, the absolute thernodynamc tenperature T, the
pressure p, the total nass M the total volune V, the total
energy U and the total entropy 5, wth respect to any other
of these quantities can be obtained in terms of the partial
derivative of the specific volune wth respect to the
tenperature, the partial derivative of the specific volunme
with respect to the pressure, the heat capacity at constant

pressure per unit of nass, and certain of the quantities 7\ p,

w 7 >

At VvV, U S

In the case of a one-conponent system of one phase and of
variable mass it is not necessary to nmake use of a definition
of heat or a definition of work in the case of an open system
when nmass is being transferred to or fromthe systemin order
to derive the relations for the total energy and the total
entropy. For sone purposes, however, it has been found useful
to have definitions of heat and work in the case of open
systens when nass is being transferred to or fromthe system
The definitions of heat and work in the case of open systens
used by various authors are discussed in Appendix A to
Part I1.

Cal cul ation of the total volune, the total energy, and the
total entropy of a one-conponent system of one phase and of
vari abl e mass as functions of the absol ute thernodynam c

tenperature, the pressure, and the total nass

Ther modynami ¢ fornul as can be developed in the case of a
one- conponent system of one phase and of variable mass on the
basis of the following set of variable quantities: the

absolute thernmodynamc tenperature T, the pressure P, the
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total mass M the total volunme V, the total energy U the
total entropy 5 the specific volume V, the specific energy U,
the specific entropy 5 the heat capacity at constant pressure
per unit of mass ¥, and the latent heat of change of pressure
at constant tenpérature per unit of nass | p. Two one-
conponent systens of one phase and of variable nmss are
illustrated in Figure Il—4s The formulas developed in the
following pages apply to either open system | or open
system Il in Figure 1. Qpen systenms | and Il together
constitute a closed system

In the case of a one-conponent system of one phase and of
variable mass the total volume V is a function of the absolute
thernmodynamc tenperature T, the pressure p, and the total

nmass M
V=1(7,p, M . (re-1)

The total volune is equal to the total mass tines the specific

volume
(¥
V=MW, (H-2)

and the specific volume is a function of the absolute
t hernodynanic tenperature and the pressure,

V=<t>(T, p) . (11-3)

From equations (I1-1), (Il1-2), and (I1-3) it follows that

(EE%J &% - 4 ),p‘ (1I-4)
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av) (aF)
= = Ml=— ’ IT-5
(ap T, M 3p iy ( )
and
AY w
(12 =Y. f11-6)
\ ZMJ7s u oA
The total energy is a function of the absolute

t hernrodynanmi ¢ tenperature, the pressure, and the total nass

U=M, p, M . (H7)

It is known that the total energy of a one-conmponent system of
one phase and of variable mass is proportional to the total
mass at a given tenperature and a given pressure because it
requires M times as much heat received and M times as nuch
wor k done to take M tines as nuch substance from the standard
state to the given state as to take unit mass of the substance
from the standard state to the given state through the sanme
set of intermediate states. Thus the total energy is equal to

the total mass tinmes the specific energy
ot
u= M. (1r-8)
Furthermore it is known from the case of a one-conponent
system of one phase and of unit mass discussed in part | that

the specific energy is a function of t he absol ute

t hermodynam ¢ tenperature and the pressure
U= 8(T, p) . (H-9)

Thus the relation of the total energy to the absolute
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thermodynam ¢ tenperature, the pressure, and the total mass is
expressed by the equation

UT, p,M - [/(To, PQ D)

e 3 Y 3 -
= f{M[cp - pa—Z’JdT + M[IP - pa—g]dp + UdM}. {I1-10)

Tot L) MO

Fromequations (I1-7), (11-8), (11-9), and (11-10) it follows
t hat

(%)p,ﬁ - *’:Ep - P(’S“g)p] , (I1-11)
(g_g)M - ”:TP-P(S—E)T] : (I1-12)

and
(ﬁ\r. > - 7. (1I-13)

The total entropy is a function of the absolute thermodynamic
temperature, the pressure, and the total mass

S- EiT,pM) . (re_14)

It is known that the total entropy of a one-conponent system
of one phase and of variable mass is proportional to the total
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mass at a given tenperature and a given pressure because it
requires Mtimes as much heat received to take Mtinmes as much
substance from the standard state to the given state as to
take unit mass of the substance fromthe standard state to the
given state reversibly through the same set of internediate
st at es. Thus the total entropy is equal to the total mass

tines the specific entropy
L™
S =M. (11-15)
Furthernore it is known from the case of a one-conponent
system of one phase and of wunit mass discussed in Part | that
the specific entropy 1is a function of the absolute
t hermodynanmi ¢ tenperature and the pressure
S = o0o(T, p) . (11-16)
Thus the relation of the total entropy to the absolute

t hermodynami ¢ tenperature, the pressure, and the total nass is

expressed by the equation

S(Tf p1M - S(T01 po, Nb)

p'H [
ot r - -
- f{uf,;ldmwrf-dp + Sim| . (11-17)
Toe Dos Mp

From equations (11-14), (11-15), (11-16)¢ and (11-17) it
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fol | ows that
(1) = MA (H18)
dep’ M T
/ )
g_i)’ﬂ - ¥-2, (I1-19)
and

TIEET ()

1 9P

It is to be noted that the derivations of equations (11-10)
and (11-17) do not depend on definitions of heat and work in
the case of open systems.'? In equation (11-10) the
coefficient of dT is the partial derivative of the total
energy with respect to tenperature at constant pressure and
constant mass, which is known fromthe case of a one-conponent

one-phase closed system to be Mc, - §X L Likewise the
LY °7J

coefficient of dp in equation (11-10) is the partial

derivative of the total energy with respect to pressure at

constant tenperature and constant mass, which is known from

the case of a one-conponent one-phase closed system to be

M[Tp - pi‘;- | . The coefficient of dMin equation (11-10) is
J

2 It is possible to define heat and work in the case of a

one-conponent system of one phase and of variable mass and
this has been found to have usefulness in sone engineering
probl ens. See Appendix A to Part II.
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the partial derivative of the total energy with respect to
mass, which is sinply the specific energy, because the
addition of mass is at constant tenperature and constant
pressure. Likewise in equation (11-17) the coefficient of dT
is the partial derivative of the total entropy with respect to
tenperature at constant pressure and constant nmass, which is

known fromthe case of a one-conponent one-phase closed system
. .Cp . . .
to be |V:£rr. Al'so in equation (11-17) the coefficient of dp

is the partial derivative of the total entropy with respect to
pressure at constant tenperature and constant mass, which is
known from the case of a one-conponent one-phase closed
E . | |
system to be Mmp . The coefficient of dMin equation (11-17)
is the partial derivative of the total entropy with respect to
mass, which is sinply the specific entropy, because the
addition of mass is at constant tenperature and constant
pressure.

Necessary and sufficient conditions for (11-10) to be

true are

{a["(f'p SEN e B

L]

(n-22)




46 CONDENSED COLLECTI ONS OF THERMODYNAM C FORMULAS

and

13

(au\ i {BE‘(?" j P(%)T):l} ] (11-23)

3

[,»

Simlarly, necessary and sufficient conditions for (11-17) to

be true are
; %
(L) . (1120
8T 0, M ap M
2 E‘D\\
(5;? (l%ML/ Ao (n_25)
p.H T;P
and

, a(afa)) |
&), (5 (1129

Carrying out the indicated differentiations in (11-21) and

¥ Oggood, W.F., Advanced Calculus, The Macoillan Co.,
Nav York, 1925, p. 232, and Osgood, W.E, Lehrbuch der
Funktionentheorie, B.G. Teubner, Leipzig, 5 Aufl., 1928,
Bd. L, S 142-150.
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(11-24) one obtains

M_a_R . OF m3Cp 8y~ 3F JTT 97,
T N -
and
le_!.rz ij/g. - Mla_EE II-28
7ar CHTT < Mg - (11-28)

Combining (11-27) and (11-28) one has

h = -r|£ . (ii-29)

Fan (11-27) and (11-29) it also follows that

Aozogls (11-30)

o

From (11-22), (11-23), (11-25), and (11-26) only the already
known equati ons

do - _ 8 -
< - - P35 . (11-31)

gt
o "
ou j OF /TT on\
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|f = A (11-33)
and
= _E.jél ’ (II-34)
are derived,

Thus in order to obtain conplete thernodynanc
information for a one-conponent system of one phase and of
variable mass it is only necessary to determne experimentally
the specific volume as a function of tenperature and pressure
and the heat capacity at constant pressure per unit of mass as
a function of tenperature at one pressure. This is the same
conclusion as the one reached by Bridgman''* in the case of a
one-conponent system of one phase and of constant mass. No
additional neasurenents are required to obtain conplete
thernodynamic information for a one-conponent system of one
phase and of variable mass beyond those required to obtain
conpl ete thernodynamic information for a one-conponent system
of one phase and of constant mass.

' Bicigroan, P.M, Phys. Rev., (2), 3, 274, 1914.
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Derivation of any desired relation between the
t hermodynami ¢ quantities Top, M V, U Sy and their
first derivatives for a one-conponent system of one
phase and of variable mass by the use of

functional determ nants (Jacobi ans)

Equations (I1-1), (11-10) and (11-17) can, in general, be
solved for any three of the quantities, Tg p» M Vo Uy S, as
functions of the remaining three. The first parti al
derivative of any one of the quantities, 7\ p, M V, U S
with respect to any second quantity when any third and fourth

quantities are held constant can be obtained in terns of the

three first derivatives, Ii___l, qfl{lg and "'cn, and certain of the
01

(0] r
oo 15
quantities, T po M V, U Sy by application of the theorem
stating that, if X" = u(x, y» 2)g x = f(ug v, w,

y = <t>(ug Vg Wgo 2z = 4/(Ug Vo W), then one has

3 3¢ A
du dv oOw
3y dy dy
du dv dw
dz dz dz 3(Xs v+ 2)
dx’ du dv dw d(u,v m
9 f
EW) = — = A S L A (11- 35)
Yo 2 dx dx dx 3(xs \n Z
du dv dw d(ug Vg W)
dy dy dy
du dv dw
dz dz dz
du dv dw

15 A proof of this theoremfor the case of functions of three
i ndependent variables is given in Appendix C to Part II.
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provided all the partial derivatives in the determnants are
continuous and provided the determinant in the denominator is
not equal to zero.

In Tables Il-1 to 11-15 the values of the Jacobians are
given for each set of three of the variables, T, p, M V, U §
as x', y, z, or Xgy, z, and with A\'p, M as u, v, w There
are sixty Jacobians in the Table, but one has

d(x, v, z) _ _d(z, y, x) - d(y,z_x) " (11-36), (11-37)
3(u. v, ~ d(u, v, W d(u, v, W

because interchanging two rows of a determinant changes the
sign of the determinant. Hence it is only necessary to
calculate the values of twenty of the sixty Jacobians. The
calculations of these twenty Jacobians follow

¥ 3 B
ar 3p dm

My o) pdT W I - 4 (11-38)

3(r, pr i) aT dp  dM

dp dp dp
dT dp dMm
LA VA1
v, Tp) , |dL BT dr| _B_V) v
3T p, W T 3 | C (BMTp = Vi (11-39)
la 1£ la ’
ar  dp am
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3(rvp M

a( T,N%
3T, p. M
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dT
dT
aT
3£
dT

du
dp dM
a . o
dpdM

p
p dM
3S 38
3p 3M
33
3p 3ir
3p 3p
3p A
v 17
[ 3M
a o9
dp dM
am dM
dp dM
U du
dp M
dar 41
dp dM
M du
dp dm

(BU\ ~
it = U :
NL'T,p
N
dm‘}T'p

_ ﬁ:’)
o)

”[T$) LT<OA] oo
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(11- 40)

(11-41)

(11-42)

(II-43)
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as %% 3
3(S. T.4) _TT aT _%EAF
dgT, P>M dT dp dM
av dv  dM
T dp dM
du dU gy
dar 4P gm
duT V) _ |dT dT dT
d(T,p, M ~ |dT dp dM
dv. dv dv
ar dp ™

a8 a
ar  dp %?A
Cla a8
AT, p, a  dp dM
v dv o dv
dT  dp dM
¥ O W
US T.U a dT oar
r,p M - g dp dV
du du dqu
dT dp dM
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(11- 44)

(11-47)
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3(r, p«>f)
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3T

3T
3K

3f
3D
am
3D

32
dm
3E
dM

dM

am

o Q_[oooo

2le wlw e

Q_| |oo
<2 gl'h <l

5
T
Q_lOJ
—i=t

e

o
¢

- v f3v o
—H[(U + pV)(%) - Cp
P
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(11- 48)

(11- 49)

(11- 50)

v].-

(11-51)
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©©

35
aT

dSp.V) _ [dp
d(T,p.M) ~ | dT

4
dT

I63

dMm

oo

[

M}-%v_"’ 5(%29] ¢ (11-52)

]
=(

|

Iz 38 g
o

<% <IB

(o}
©
o

35 &S
3T 3p
3(5.p.U) _ jdo dp
3(7\p, M) dT dp d™M

3£ dE
dT dp d™m (H-53)

I8 SI

]

2@ -1+ H(E) |
M[T(U 78) + Sp(aT , ;

=3

MLM M

dT dp dM o -

UMY MM M| - -H{T(%ﬂ | +”(£)T] "

3(2% P» M) dT dp dMm

dT dp dMm

95 35 3S
dT dp dMm

diT, poM) dT dp dM

dT dp dM (11-55)
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ds 43

ar dp dM

LY VI V] AT NI

ar dp dm| ° "’*'Z[P(aT)P* TKZ)T\ g
%1_7 du  au

T dp dM (11-56)

H 35 B
aT dp oM
o
aT dp o
w du
3T ap oM

wf[i o7 - ()« 2E) ]} (5D



Table I1-1
Jacohi ans of extensive functions for a
one-conponent system of one phase

3(x'.y . 7) 30:, v, 7)
a(T,p>M -t 3(7%p )

¥ Z T‘p

=C

ac
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Table 11-2
Jacobi ans of extensive functions for a
one- conponent system of one phase

d(x', v, 7) d(x, v, 2)
(T, .M " 3(T, p. M

\5’\ .Z o

P 1

. o)

U o "G (111
S




Table 11-3
Jacobi ans of extensive functions for a
one-conponent system of one phase

ax' vy, 7) 3(X, Y, 2
3T, p/ef) * 3CT, p, ¥

Vi Z 7\ ¥
x.f
X
p v
g {3E)
ap v
v WY | v
H[(t‘f + 5 )T + BT) ]
: ), )]
Th %/
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Table 11-4
Jacobi ans of extensive functions for a
one-conponent system of one phase

dW v, _z) 3(x,_ v, z)
(T, pM *  d(T,pM

y» z T, U
x'\
X \
p = U
y @) + /) ]

ST)p 3p T
\ —H[(E & ;:.-‘ﬁ';)(ﬂ + W’a—F ]
5, 6

S
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. Table I1-5
Jacobi ans of extensive functions for a
one- conponent system of one phase

Hx'; v, z) d(xsy, z)
dT,p,M " d(T,p,M
T,S
X'\
X
p -S
M .»( )
y
v . ["3_5" s(o¥ ]
# V(af)p * S(ap )T
U
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Table 11-6
Jacobi ans of extensive functions for a
one- conponent system of one phase

ad' . v. 7) 3(x, v, z
d(T.p,M * d(T, psM

=
o,
mlm
=i
-U""'\-—-F'
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Table I1-7
Jacobians of extensive functions for a
one-component system of one phase

ax', Yf 2 = _3(x. v. 2
dTpm) 3(T, pM)
Yt z p,V
>X<'\
T \%
M -n(g-;’:)p
u M[CU* p)(ff), - /]
s o) S
[P-"11)d
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Table 11-8
Jacobi ans of extensive functions for a
one- conponent system of one phase

3(x' z) 3(X,VY,7z
Sre) stk

V'i\z p, ¢

x \

T 7

M —H[cp - p(g—i:)p]

\ H[(f!' + PF)(S_'E) - ch]
P

S M[EE - 15) + §p(~§%ﬁ)p]




Table I1-9
Jacobi ans of extensive functions for a
one- conponent system of one phase

o e

y» Z p, S
x"\
X \
b
T S
-
H H =

y "))

J+§p(

C
%
e
rafpe
—~
<
¢
3L,
.u“--...-/
| I—




Tabl e 11-10
Jacobi ans of extensive functions for a
one- conponent systemof one phase

d(x\ v, 2) 3U, v, 7)
d(T,p,M ' Z(Tip, M

—

X X
/Ix

M, ¥V




Tabl e 11-11
Jacobi ans of extensive functions for a
one- conponent systemof one phase

X # Yf 7) X,y 2)
d(T,p*M * d(Tirp. M

\y» z N, (I
*'\

\% H:[‘r(g—g)g + g %E)T]
P
S yl[p(-g—;‘:); + E;,E(g—f)r]
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Tabl e 11-12
Jacobi ans of extensive functions for a
one- conponent systemof one phase

AT, p.M (T, p.M
M S
x'\
X o\
- JdW
P METE
oV . Epfav
V 2 —Rfa¥
¥ [(31')? T ( p)T]

U
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Tabl e 11-13
Jacobi ans of extensive functions for a
one-conponent system of one phase

3(x, v, 7) 3Ax.y, 7)
3(T, p, K&)' 3(T, p, A)

vz 7,0
x"\
X\
T K[(U + pl’)(ig)m + W(g;) :l
T 2
p -+ pa‘?)(g—f)p - &7]
X -u:[r(%—g): + Ep(%g);-]
: o{po T 50
P T
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Table 11-14
Jacobi ans of extensive functions for a
one- conponent systemof one phase

3L Viz) 3(X, i 2)

anp. M LA

' f(i)/4(11]

F’ -5

: [(R(h]

’ -] 56
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Table 11-15
Jacobi ans of extensive functions for a
one- conponent system of one phase

d(x' z) 35)(,! z:
r, p, 3 p, It

# z U, S
i'\\
T H[(Ef - r.‘s')(g—;.";) - EP(—gg)T]
P

P H[E;!(E-Tg)-k.gp(g—;)}

P
. ] )
: of - S )




ONE- COVPONENT SYSTEMS OF VARI ABLE MASS 71

In order to obtain the first partial derivative of any-
one of the six quantities, Tg p, M V, U* Sg with respect to
any second quantity of the six when any third and fourth
quantities of the six are held constant, one has only to
divide the value of the Jacobian in which the first letter in
the first line is the quantity being differentiated and in
which the second and third letters in the first line are the
quantities held constant by the value of the Jacobian in which
the first letter of the first line is the quantity wth
respect to which the differentiation is taking place and in
which the second and third letters in the first line are the
quantities held constant.

To obtain the relation anong any four derivatives having

expressed them in terms of the sane three derivatives,
’ A A

3y . fav o o
(-(;}_17'1—0) , \%E)T 9 and [gn, one can then elimnate the three

derivatives fromthe four equations, |leaving a single equation
connecting the four derivatives. |In addition to the relations
among four derivatives there are also degenerate cases in
which there are relations anong fewer than four derivatives.
In case a relation is needed that involves one or nmore of
t he thernodynamic potential functions, H= Uf pv> A EU- TS
G=Z U+ pV- TS, partial derivatives involving one or nore of
these functions can also be calculated as the quotients of two
Jacobi ans, which can thenselves be calculated by the sane
nmet hod used to cal cul ate the Jacobians in Tables II-1 to II-15«
It is interesting to note that in the transformations of
the thernodynam c quantities To po M Vo U S from one
coordi nate space based on any three of these six quantities to
anot her coordinate space |ikew se based on three of these six
quantities, the enthalpy H the Helnmholtz function A and the
G bbs function G appear automatically in the expressions for

many of the Jacobians invol ved.



Appendix A to Part Il

Discussion of the definitions of heat and work in the case
of open systens used by various authors

According to Larmor,! Morey, 2 Goranson, * Moel wyn- Hughes, **
Callen,® and Weeler® in the case of an open system to which
mss is added or from which mass is taken away, t he
differential of the heat received dQ is equal to the absolute
thernmodynanic tenperature T times the differential of the
entropy of the system dS. Neither Larmor nor Mrey nor
Goranson nor Mbel wyn-Hughes nor Callen gave an operational
analysis of any open system in support of their conclusion
that dQ = TdS in the case of open systems. \Weeler attenpted
to explain the Gbbs differential equation for an open system

' Larnor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Morey, GW., Jour. Franklin Inst., 194, 433-434, 1922.

®  Goranson, RW., Thermodynamic Relations in Multi-Component
Systems, Carnegie Institution of Washington Publication
No. 408, 1930, pp. 39, 41, 44, 52.

* Moel wyn-Hughes, E. A, Physical Chemistry, Pergamon Press,
London, New York, Paris, 1957, p. 287.

> Callen, HB., Thernodynamics$ John Wley and Sons, Inc.,
New York and London, 1960, p« 192.

6 \Weeler, L.P., Josiah Wllard G hbs-The Hstory of a Geat
Mnd, Rev. Ed.; Yale University Press, Mw Haven, 1952, p. 76.

72
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of n conponents

73

dU = TdS - pdV + uydm + \xodmp ... + U, »’
where \ii, Vi, eee Un» denote the chemcal potentials of
conponents 1, 2, ... n, and mgy m* eese @ denote the nmsses
of components 1, 2, ... n in the open system in the follow ng

way.

Wheel er supposed that an:

. imagi nary box is constructed with walls which
in addition to being elastic and thermal |y
conducting are also porous, so that the solution can
pass freely through the pores in either direction -
from inside out or from outside in. Then if the
condition of the fluid is slightly altered as
before, the change in energy in the box wll depend
not only on the heat which may enter or |eave and
the volune change due to the buckling of the walls
but also on the masses of the conponents of the
fluid going through the pores. Thus this energy
change cannot be conputed by the prinme equation® as

it stands. It nust be altered by the addition of as
many energy ternms as there are conponents of the
fluid passing through the walls. If there are n

such conponents, the generalized prime equation wll
express the change in energy in terms of n + 2
i ndependent vari abl es. Each of the added

" Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sciences,
116, 1874-78, or Collected Wrks, Longmans, Geen and Co.,

3,
New

York, 1928, Vol. 1, p. 63.

8 The equation here referred to as the prime equation is the
Clausius differential equation for closed systens:

du = TdS - pdV.
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energy terms, in analogy to those in the prine
equation, G bbs expresses as the product of two
factors, one an intensity and the other an extension
factor. Thus just as the heat termis expressed as
the product of tenperature and the change in
entropy, and the work term as the product of
pressure and the change in volune, so an energy term
due to the added nass of any conponent was expressed
as the product of what G bbs termed a "potential™
and the change in mass.

However, according to Gllespie and Coe® in the case of an

open system

dS = A + | Stdni (11-A1)
1

I.
2
when there is sinultaneous reversible transfer of both heat
and nmss. In this equation, dS denotes the increase in the
entropy of the open system dQ the amount of heat received by
the open system T the absolute thernodynanic tenperature of
the open system \éj the entropy of unit mass of kind i added
to the open system and dmt the mass of kind i added to the
open system

The equation of Gllespie and Coe applied to the case of
an open system in which there is simltaneous reversible
transfer of both heat and nass appears to be correct. Let us
consider the following sinplest inaginable case of an open
system In a thernostat filled with water, suppose that one

has a cylinder closed at both ends by pistons and containing a

° Gllespie, L.J., and J.E Coe, Jr., Jour. Chem Phys., 1,
105, 1933.
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fluid of constant conposition (Figure [1-A-1). Suppose
further that the pistons are connected by a rigid bar so that
the vol une between them renmains constant. In Figure I1-A-1,
let the two arrows indicate the position of a fixed circular
line around the cylinder. The fluid between the two pistons
constitutes a closed systemand at this stage the tenperature,
pressure, and volume of the total mass of fluid are kept
constant. Let us next suppose that the two pistons are noved
slowy to the left in unison from the positions indicated in
Figure 11-A1 by solid lines to the positions indicated by
dotted lines. The mass of fluid to the left of the arrows
then has received an addition and that to the right of the
arrows has undergone a dimnution. The nmass of fluid to the
left of the arrows has constituted an open system which we
designate as system I. Li kewi se, the mass of fluid to the
right of the arrows has constituted a second open system which
we designate as systemll. Systens | and Il together make up
a closed system the entropy of which has renained constant.
The entropy of system |, S* has increased by an anount equal
to the specific entropy of the fluid times the mass of the
fluid that has been noved past the arrows from right to |eft
and the entropy of systemll, S-~, has decreased by the sane

anount. Thus, we had:

dsS!  « SdAf?, (11-A-2)

ds  «  SdM? SSAM; (1T-A3)(11-A-4)

and

ast 4 gsll

0, (II-A-53)

where S denotes the specific entropy of the fluid and M and
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A1l denote the nmasses of systens | and Il. At the sanme tine,
no heat has been received by the fluid from the water bath
since the tenperature of the fluid has remmined the sane as
that of the water bath and the pressure and total volunme of
the fluid have renmi ned constant. The question then remains to
be answered whether or not it can be said that system | has
received any heat and sinilarly whether or not system Il has
given up any heat. To say that at constant tenperature,
constant pressure, and constant specific volume x grams of
fluid have transported y calories of heat from system Il to
system| is the sane as saying that these x granms of fluid at
the constant tenperature t! and constant pressure p' contained
y calories of heat which they carried with them It is well
known in calorinetry, t her nodynani cs, and statistical
mechanics that it is not possible to say that a body at a
certain tenperature and pressure contains a certain anmount of
heat* Doolittle and Zerban'® have stated that "nost nodern
authors of texts on thernmodynam cs and on physics have agreed
on the following conception of heat : Heat is energy
transferred from one substance to another substance because of
a tenperature difference between the two substances.’” In the
case we have been discussing, system |, system Il, and the
water bath of the thernostat have all remained at the sane
tenperature. Consequently, it cannot be said that there has
been any heat flow fromthe water bath to system | or system
Il or from system Il to system |I. At constant tenperature,

constant pressure, and constant specific volunme, we thus had:

10 Doolittle, J.S., and A H. Zer ban, Engi neeri ng
Ther nodynani cs, International Textbook Co., Scranton, 1948,
p. 8.
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i@ = 0 (11-A-6)

40ll = 0 (11-A7)
and

d@t + dg* - o (11-A-8)

where @ and Q' denote the heat quantities received by
systems | and Il. Thus the heat received by a one-conponent
system of one phase and of variable mass can be represented by

the line integral

r" p! M
Q - JMcdT + Midp + Octff} - (11-A-9)

where ¢, and 'r are functions of T and p and the coefficient
of dMis zero.

Ve turn next to the question of the definition of work in
the case of a one-conponent system of one phase and of
variable mass. In this case it remains to be determned
whether or not dMis equal to pdV if one wishes to introduce a
definition of work in the case of an open system when mass is
being transferred to or from the system  Several authors,

""" The question of the definition of the heat received by a
one-conponent system of one phase and of variable mass has been
di scussed by this author nmore conprehensively on pages 17 to 33
of Carnegie Institution of \ashington Publication No. 408A
entitled Thernmodynami ¢ Relations in Open Systems published in
1977.
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Morey, ' Goranson,'®* Moel wyn-Hughes,'* and MWheeler,'® have
stated that in the Glbbs differential equation dW = pdV.
However, none of these authors drew a diagram of an open
system and none of them apparently realized that this
statement does not carry over from the Clausius differential
equation for a closed system without the necessity of an
i mportant new physical decision.

In regard to the question of the definition of work in
the case of an open system we may note that GJ. Van Wlen,*®
formerly Chairman of the Department of Mechanical Engineering
at the University of Mchigan, states in his book entitled
Thermodynamics that "A final point should be made regarding
the work done by an open system Matter crosses the boundary
of the system and in so doing, a certain amount of energy
crosses the boundary of the system  Qur definition of work
does not include this energy.''

The question of the definition of work in the case of an
open system has been discussed by the present author V/ith
Professor R L. WIld of the Physics Department at the
University of California at Riverside. In this discussion we
supposed that in a thernmostat filled with water there was a
cylinder closed at both ends by pistons and containing a fluid
of constant conposition (Figure |1-A-2). In Figure I1-A-2

12

Morey, GV., op. cit., p. 434

i

Goranson, R W, op. cit., pp. 39, 44.

" Moel vyn-Hushes, E.A., op. cit., p. 287.

> \theeler, L.P., op. cit.; p. 76.

¢ Van Uylen, GJ., Thernodynamics, John Wley and Sons,

J
Lnc., 'k*wYork, 1959, p. 49.
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the two arrows indicated the position of a fixed circular line
around the cylinder. The fluid between the two pistons
constituted a closed systemand at this stage the tenperature,
pressure, and volune of- the total mass of fluid were kept
constant. W next supposed that the two pistons were noved
slowy to the left in unison from the positions indicated in
Figure I1-A-2 by solid lines to 'the positions indicated by
dotted Iines. The mass of fluid to the left of the arrows
then had received an addition and that to the right of the
arrows had undergone a dinmnution. The mass of fluid to the
left of the arrows constituted an open system which we
designated as system I. Li kewi se, the mass of fluid to the

right of the arrows constituted a second open system which we

designated as systemIl. Systens | and Il together nede up a
closed system the energy of which renmained constant. The
energy of system I, [/I, had increased by an anount equal to

the specific energy of the fluid times the nmass of the fluid
that had been noved past the arrows fromright to left, and
the energy of system Il, |fi%-y had decreased by the same

amount. Thus we had

dut = UdM, (11-A 10)
dut = UdM! = -WAFL,  (1T-A-11)(11-A 12)

and
dut + dut  « 0, (1'1-A-13)

where U denotes the specific energy of the fluid, and M and
#11 denote the masses of open systems | and I1. In the case
of the open one-conponent system system|, work was certainly

done by the fluid on the piston at the left hand end equal to
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the pressure times the increase in volume
dW = pVdM, (11-A-14)

where p denotes the pressure of the fluid, and V denotes the
specific volume of the fluid. Since the change in energy of
system | was UdM* and work was done by system | equal to
pVdtfi, the amount of energy that came across the fixed
boundary with the inconmng nmass was UM+ p\7E1M‘- whi ch was
equal to Fdlfi. According to Van Wl en'’ none of the energy
represented by the term HIM- is to be considered as work and
this was confirmed by Professor Wld. Thus we had

dut = HIM - de (11-A-15)

The major new physical decision that has to be made if the
definition of work is to be extended fromthe case of a closed
systemto the case of an open systemis whether or not it can
be said that work is done at a fixed boundary surface across
which mass is transported. Van Wlen and Professor WIld have
concluded that it cannot be said that work is done at a fixed
boundary surface across which mass is transported.

7" fan Wlen, op. cit., pp. 49, 75-77, 80.

Hall and lbele in their treatise entitled Engineering
Thermodynanmics (Prentice-Kail, Inc., Englewood Cliffs, NJ.,
1960) stated on page 108 that "A general equation for energy
change in an open systemcan be witten

dE « dQ - dW+iI(e + pv);dm. (7.25)"
This equation reduces to equation (Il1-A-15) in the case of a

transfer of mass of constant conposition at constant
tenperature and constant pressure, in which case dQ « 0.
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Sage, !° on the other hand, stated that in the case of an
system of constant conposition if the material added to
;ystemis at the same pressure as that of the system the
litesinmal anount of work wis given by the equation

w+ij = pdV- pVdm (3.18)

lis equation j represents frictional work -(which would
:e to zero in a reversible change). Sage? stated further-
an open systemis one for which material is transported
JS the boundaries. Sage's equation (3.18) is thus
ided to be applicable to open system | of Figure I1-A2,
lis case Vis a function of T, p, and mand

V. ¥ v
dv = -E{—ldT+2!rD-dp+iE-dm (I'l-A-16)

furthernore

|g =V . (11-A17)
according to Sage
w
w+ " = p-zi%dT + p-(ﬁ\{dp + pvdm - p/\\/dm

= pwmdal + pwodp .
o7 3 (X - A-18)

:he transfer of material of constant conposition is at

Sage, B.H, Thernmobdynanics of Milticonponent Systens,
ihold Publishing Corp., New York, 1965, p. 47.

Sage, B.H, op. cit., p. 46.
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constant tenperature and constant pressure according to Sage
w+j = 0. Thus in the case of open system | discussed on
page 82 according to Sage w+ j = 0, Since open system| for
certain performed work p\7dM‘ against the enclosing piston
Sage’s conclusion requires that the p\\J/dM‘ part of the I?UM\
term be considered as work offsetting the work done by open
system| against the enclosing piston. In other words, Sage?!
considers part of the energy associated with the nass
transferred across the fixed boundary to be work, contrary to
the conclusion of Van Wl en, Goranson, and Professor WId.
The decision between these conflicting views is one to be nade
by physicists and engineers and is, | believe, of sone
interest, but so far as | am aware, all of the thernodynanic
rel ations and neasurenents needed in physical chemstry can be
obt ai ned wi thout involving any such decision or any definition

of work in the case of an open system %2

21 sage (op. cit., p. 47) stated that "This definition of
work for a constant-conposition system of variable weight
differs markedly from that wused by Gbbs and Goranson."
According to Sage, work is defined by these authors for cases
in which j is zero as follows:

r Y " -
w = pdV = np\ TBTV;) dT + (QZ) dp| + pVdm .
il ps W op T, m

This statenent is correct as far as Coranson is concerned, but
in regard to Gbbs it is not correct, since G bbs nowhere
nmentioned work or heat in connection with an open system in
his nemoir entitled fOn the Equilibrium of Heterogeneous
Subst ances/'

22 The definition of work in the case of open systenms has
been of interest chiefly to engineers concerned with flow
processes (see, for exanple, J«H. Keenan, Thernodynam cs, John
Wl ey and Sons, Inc., Hew York, 1948, p. 35).



ONE- COVPONENT SYSTEMS OF VARI ABLE MASS 85

In accordance with the conclusion of Van Wl en, Goranson,
and Professor Wld, the work W done by a one-conponent system
of one phase and of variable mass can thus be represented by

the line integral

T,p,M
rr .

W = dT+ p|*dp + pVdMmi. [1-A-19
JIWOII plpp p | ( )

To»Po»”0o

This equation for work in the case of an open one-conponent

system of one phase or the corresponding differential form

dw = pl¥dT+ plndp+ pVaM (11-A-20)

has been found to be of use in sone engineering problens.



Appendix B to Part |1

Transformation of the work and heat line integrals from one
coordi nate space to other coordinate spaces in the case of a

one-component system of one phase and of variable mass

In Part Il it was shown that it is not necessary to
define either work or heat in the case of an open system of
one conponent and of one phase when nass is being transferred
to or fromthe systemin order to obtain the energy and the

entropy as functions of t he absol ute t her mrodynam ¢

t enperature, the pressure, and the total mass from
experinmental neasurenents. Thus the derivation of the
Jacobians listed in Tables I1-1 to 11-15 did not depend upon

definitions of work or heat in the case of an open system of
one conponent and of one phase when nmass is being transferred
to or fromthe system

For some purposes, however , it is wuseful to have
definitions of work and heat in the case of an open system of
one conponent and of one phase when mass is being transferred
to or fromthe system as was shown in Appendix A to Part 11.
The derivatives of the work done by a system of one component
and one phase and of variable mass are total derivatives with
respect to the variables chosen as the paranmeters defining the
paths of the integral. In order to obtain the total
derivative of the work done along a straight line parallel to
one of the coordinate axes in any coordinate space one obtains
fromTables I1-1 to 11-15 the partial derivative of the vol une
with respect to the quantity plotted along that axis when the
quantitites plotted along the other axes are held .constant and

one multiplies this partial derivative by the pressure.



ONE- COVMPONENT SYSTEMS CF VARI ABLE NASS 87

The derivatives of the heat received by a system of one
conponent and one phase and of variable mass are also total
derivatives with respect to the variables chosen as the
paraneters defining the paths of the integral. However, the
derivatives of the heat 'recei ved by a one-conmponent system of
one phase and of variable mass along straight lines parallel
to the coordinate axes in various coordi nate spaces cannot be
obtained by nultiplication of the' partial derivatives of the
entropy by the ’“absolute thernodynamic tenperature when
transfer of nmasses to or from the system are involved. I'n
such cases the total derivatives of the heat received along
lines parallel to the coordinate axes in any desired
coordinate space can be derived in terns of the total
derivatives of the heat received along lines parallel to the

coordinate axes in (7\ p, A)-space by transformation of the

heat line integrals as explained in the second half of
Appendix C to Part I1. Following is an example of such a
transformation. In the case of a one-conponent system of one
phase and of variable mass the heat line integral extended

along a path in (7\ M F)-space is

T, MV

. [(lde ., 2, 2
Q —f{deT-!- deM+dVdV}

T0| Mo! Vu

LMV
=f{1‘-!€:’vdi"+g—o H+EVdV} ) (11-B-1)
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In order to transformthis integral to (T, p, Af)-space " make

use of equations
Appendix C to Part
values in equations

(I1-C-63), (II-C-64), and (II1-C65) in
1. For the purpose of substitution of
(I1-C-63), (I1-C64) and (II1-C65) the

equi val ence of synbols is given in the follow ng Table.

Table |1-B-1

Equi val ence of synbol s

[ 0
X T
y M
z Vv
(@ 10)
@ { AThy v
oD [dQ
(dy }x. U:%'SJ L ¥
(40 (dQ\
dzJ \dvL ¢
u T
v p
w M
(o i
ary o
(BW.\ Mip
u» W
/dT \ o
[ aw),
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Substituting the values from Table [I1-B-1 in equation
(I1-C63) we have

Mp M, o

J_g.M dv  dm

T 3 3P

¥y

T d M

(%%]- - HE, = p . (11-B-2)

MV dT dT dT
dT dp d™

dM dM d™

dr dp dIl

dv dv dv

drT dp dM

and nultiplying out the quantities in the determnants we
obtain

dq e Ll dv M dvi. rodyo
(dT)}'-: V- Mc, = [p!_ S

Jw vt Jawi Jan (11-3-3)

L *\op/p \OL /) AOBT
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Snmlarly, substituting the values from Table [11-3-1 in
equation (11-G64) we have

M, Nip O

dar dT dT

dT dp d

dv dv dv

q dT dp d
(ﬁ% = , , (11-B-4)

T, V daMm  dM  dNn

dt dp d

dT dT dT

dT dp d

dv dv dvi

dr dp dM

ad multiplying out the quantities in the determinants we
obtain

[TF(%)IJ]%(S_E)T i (11-B-5)
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Finally, substituting the values from Table II-B-1 in equation
(11-C-65) we have

(

M, M, 0
dT dT dr
dT dp d
dM dM d
4o\ , dr dp dN
- = — . 11-B-6
C A av av dv 1ee
. dr dp dhi
jd1 dT dT
dT dp d
dM dM d
dif dp dN\

and multiplying ouft the quantities in the determnants we

obtain

Sl

)

- ) e, 0

= l = [—HF] < [‘
\ dVj M v p
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The corresponding values of the partial derivatives of

the entropy obtained fromTables 11-10, [1-3, and I1-2 are
(33) [Enravy  /ap\zl /7ap) W w
or 7 - ‘ e T
(—g—f;) SR HAN- AR I AN (1]-B-9)
5 L Wi \NVE P ] \CH

(B_S\ B ['(B_TF”) W : (g_;)T' (II-B-10)

1>

Thus it follows from (XI-B-3), (II-B-7), (Il-B-8), and
(11-B-10) that

(%Q‘I_')H'V = T(%%)H’V (I1-B-11)
and
(% = T(/%SF)T Y’ ‘11 (%-12)

but, finally, it also follows from(ll-B-5) and (I1-B-9) that

fe) ) TESY ¢ TT-8g AN
. 1 ¥ 'T; V



Appendix C to Part Il

Proofs of the relations:

alx'y yrz)
( dx' ) _ 3(u»vo W)
o y, z d(X, Vo 7)

3(u, v, w

o.o_lg_ Q_IQ_ Q_IQ_ o_lg_ olo
N C [l D9 CIN C [

du dv dv/

It is assumed that x' is a function of x, y, and z
X' =Uu)(X Y, Z). (11-G1)

and that x» y, and z are functions of u» vy and w

(1-C-2)
x = f(u v,w), y=<f>U Vv, W, z="Nu»v,v). (II-C-3)
(11-C-4)

93
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It is assuned further that these functions are continuous
together with their first partial derivatives. By application
of the theorem for change of wvariables in partial
differentiation one then obtains

g_X' - lax wax N (11-C-5)
- 3x du* dy du® dz du
ay _ayax ,ayay ,aydz | (11-C-6)
dv. ~ dx dv dy dv dz dv

and
X _ 3 dx X3y 3X 3z
dw T~ dx dwtdy dw*Fdz dw - (11-6-7)

Fromequations (I1-C-5), (I1-C-6) and (I11-C7) it follows that

W 3z ¥ 3x X3y A

dzdu = “dxdu"dydutdu (1I-C-8)

3 3z 3 3x X3y W

N7A A T Vo Y T (11-C-9)
and

dz 3w dx dw dy dw ™ d\;v ' (IX-L-10)

Dividing both sides of equation (11-C3) by ££f and both
L1

sides of equation (11-C-9) by _gE, l'i kewise both sides of
v
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equation (I11-C10 by J£ we have

dw
o ayax _ayx
ay U 3% dudy du °
dz = & (11-C11)
dy
ay _ayax _ 323Xy
dx? dv__ 3x dv_ dy dv
4z = iz (11-C12)
av
and
ay aya”™ aan
ay 3w dx dw dy dw
3z o 3z . (H- C-13)
3w

It follov/s that the right side of equation (I1-C11) is equal
to the right side of equation (I1-C12)

X QY dx | '3y
du ' dx 9u dy Su
92
du

11-CG 14
ay _ayda _ oy 3y ( :
dv dx av 9. dv

J

Y

Multiplying both sides of equation (11-C-14) by (-%%S) we
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have
dz /X 3¢ - ) X 3x 93X By
E(‘é: “3x 3u" 3y 3u/ " duldv " dx dv dy d )(11'0'15)

Likewise it follows that the right side of equation (Il-C12)
is equal to the right side of equation (II-GC13)

oz
av
a3 3 a3 (11-C 16)
dw dx dw dy dw
= dz
av/

Miltiplying both sides of equation (I1-C16) by Jﬂ A P we

have

32(3}:’ 8x 3x  drdM 3z/ 3" x 3 j A
ow

SE-EE-0%) - RE- L Baen

Consequently ve have fromequations (I11-C15) and (11-C17)

v 3u" dvdx du' dvdy du " dudv"™ 3udx dv 3udydv'
(11-C18)

- — -

(11-C 19)
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From equati on (I'I-C-18) it follows that

3V3z dE _<Mdz_& _ 1* I*! _Mixl | £971x 3z 3V 3x
3y 3u v y 3v3u ~ 3u 3v 3v 3u T3v3x 3u 3u 3x dv

(11-C20)
and fromequation (I11-C-19) it follows that
S 9x
3y v dw dy dw 3v dv dw dwdv dwdx dv dv dx dw
(11-C21)

bividing both sides of equation (II-C-20) by i o gi—gdj:

C.- gv
we have
323y 7y ¥ dx_dzo ¥ X
& _ 3u3v  3v du dv_dx_du___ du_dx dv Q3_G22)
ay - ’

3u 3v  3v 3u

and dividing both sides of equation  (I1-G21) by
(dZ—QY_ . dz QEOL\. e have

av aw  dwav J

dz ox 3z 3ax 9z 3X 3x Bz 3I¥ Ix

gy 3v dw ~ dwdv T Tdwdx dv Tdv dx dw T o)
HL = T, \ LL—\ J—AD)
®Y by - dr dy

dv dw dw dv

Consequently the right side of equation (11-CG22) is equal
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to the right side of equation (II-C23)

dz dx* dz dx* dz dx* dx dz dx* dx

dz dy dz dy.
dudv dvdu
dz dx! dz dx! dz dx'dx _dz dx'dx
_dvdw dwdv er“ar‘a— dv dx dw (11-G 24)
dzdy_dzdy
dv dw d_

Miltiplying both sides  of equation (11-C24) by

[ 9\%dy7_r \fd;,/dy dz dy\ Wa

ViU vl g have

’ z Ox
(3udv 3v 3u/V3v 3w " 3w 3v T8 3N 3v T 3xdvdv_v)

(11-C-25)
Consequently it follows that
ag)(azc_az B} a_z.a_z)
eX \3v Ju au av/\3v 3w 3w 3Jv
+(aza:_=’ - aaa:_r')(a_z_u . Biﬁx)
su v 9V JuJ\3v aw  3Jw ZV
(11-C-26)

3*\W3w 3v 3v 3*rA3u v 3" 3uy

EE-EREE-5R)
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f
Equation (11-C-26) is then solved for ﬂf{—and we thus obtain

X (.aaa_#_a_z )
ox v ow ow dvJ\dudv dv 3u

(E.z,a_# i a_za_x’\(a_ééx - 22 Bv)
3v dw  dw 3v\

Z z QX ¥ d2f\ldz dvn dz d
: {(\gv__d% ~du ‘3\//53\?15‘%— Tdw dv)

(11-C27)

Miltiplying out the expressions in parentheses in equation
(11-G27) we have

3x "™ | 3v3w3u3v 3u3v3vdu dwdv dudv dwdv dv du

_ gz_s_v_?»_z_ay+3_z3_A§z§y+sza_A3_zgx_dz_dy_c1a§x]
3u3v 3v 31 3udvdwdv dv dudv dw dv 3u dwdv

T ]-i7‘L"££-"£JLZ. NECMENME NMZ M NN MK EMLIENZ
[ 3 3udv dw dv du dwdv du dv dv dw du dv dwdv

dz dx dz_dy  dz dx dz dy , dz dx dz dy _dz dx dz dy]
dwdv du dv dwdv dv du dv dwdu dv dv dwdv duJ "
(11-C28)

Now the third term in the bracket constituting the nunerator

of the right side of equation (I1-C28) cancels the sixth term
in this bracket « Likewise the fourth term in the bracket
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constituting the denomnator of the right side of equation
(I1-C28) cancels the fifth term in this bracket. The
remaining terns in the nunerator and denom nator of the right

side of equation (I1-C28) have a comon factor :ﬁ) which we

next divide out. The terns that are then left are equivalent
to the quotient of two Jacobian determinants. W thus have

dxt odxt dx]
_du _dv dw
1z 12 12z
du dv dw
dz _g_z az
du vV 3w
3x\ -
(dx) S varvarw i (11-C29)
Yy, Z az
3 dav dw
iz 2 h.
du dv dvf
dz dz dz
du dv dw

provided the Jacobian determnant in the denom nator is not
equal to zero. Thus we obtain the result

3(x% v Z

(2—1‘;\ . M (11-G 30)
' ‘¥ Z !X D
’ 3(u, vy%v%
Simlarly we have
Q(#.x.z!
- a(u; L] )
KiyL , * Zoms (11-6:31)

3(ut v, v)
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and

B(X'. X, 22

(—g—’-"l - Swvewd (TT-C-32)
z

>y 3 X, 1

3(u» vg W)
Equations (11-C-30), (I1l1-C-31), and (lI1-C-32) are not
appl i cabl e, however, in the case of a one-conponent system of

one phase and of variable nass when it is desired to transform
the heat line integral from one coordinate space, such as the
t emper at ur e- vol une- nass coordi nate space, to anot her
coordi nate space, such as the tenperature-pressure-nass
coordi nate space, because the heat line integral depends upon
the path and is not a function of the coordinates. In this
case, to which the second equation of the heading of this
Appendi x applies, the transformation can be acconplished in

the following way. Let us suppose that a line integral T

X9 Y, Z

T =/{P(x, y, z)dx + X, y, z)dy +/?2(*, y, z)dz] (II-C33)

XQ Yoo Zo

depends upon the pathY in whilth Hase, TTg’}Ff -'13‘52» 3d:—i/ %;ﬁ and

%o—’\ygsT* This integral has no nmeaning wunless further
T4

relations are given defining a particul ar path in
(x9 y, z)-space. For exanple, the curve can be represented in

paranetric formby the equations, x = f(o)* vy = A{a), and
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z = 5(0). W are next given that x» y, and z are functions

of ii, vg and w
(11-C 34)
X = <€(u, v, W¢ Yy =x(ut v, w, z ="(u, v, w. (I'l-C 35)
(11-C 36)
It is then desired to transform the integral T from
(x, y* z)-space to (usf K, uO-space. In this case if equations

(I1-CG34), (11-C35), and (I1-C36) can be solved so that we

have
(11-C37)
a=*(x,y,2z), v=XX,Y,2), ut=*xv,12z), (1l-C38)
(11-C39)

then the curve in (x, y, z)-space can be transformed into the
curve in (u, v, w)-space defined by the equations u = F(s),
v = A(5), and v = 5(s). W next replace dx in the integral T

by ~du +" dv + ~ dw g also dy by |* du + |~ dv + |~ dv
ou dv o/ f A Y du du 8n

and dz by %‘:‘l—du + -gj—dv + ﬁ'\f; d*« We then have

u v, w
. 2 .E.& E
-f{P[au. o 2]

|_3 du+—zdv+ --ZdJ (”-(}40)

az Az 8z
+ R[a du + 'a-d + g—dw]}

the curve in (us v, v)-space now being determined by the
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equati ons u=F(s)g Vv=A(s)» w = H(s). Consequently we
thus obtain

U, Vo W

~ 'S n a
T=d<R(<t>(ug v, W, x(u, v, W, \p(u, v, W)V du + Adv + 340

Uo, VQQ W

£ Q<t>(u, VoW, X(U, v, W), \J/{ugvgm)[-g—ffdu + gy 4 —gﬁdw]

\
+ R(<t>(Ug Vo Wg X(Ug V, Wy ip(Ug Vg W))[?‘g'z—du + aﬁ'dV + gﬁ—dV\Z\'\

=

UngW -

=f\LQ(ug Vg Wdu + Il(u, v Wdv + tf(ug Vg Wdv/\, (II-C-41)

Ugs Vg Wy

where 0 is set equal to

P(<t>(u, vow, X(ugv, W» "(u, v, V))-qxj

+Qp{u, vy w)y x(u, vy w)y ¥(u, v, W))%‘E

+R(BCu, v» Wo x(ut vow), ~(u»v, "))gg»

Il is set equal to

P{p(u, vowWo x(Ug VI Wo f(u, v, v))-g%

+Q((0, v, v), x(ut vow) o A(u, y, ")) A"

av’
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and Qis set equal to

P(p(u» v, Wo x(u» vow), \p(u, v, V\b)ji:;—

+Q(#(

F ROy ve w)s x(ize vs w)s $(us v, w))-g-f;.

In order to evaluate?, Q and/? as functions of u,
we next solve the equations

for P, 0, and i?

3y , oz
II&+OaU+Rau’
_ pdx g0y, 2
= Pyt lQuy t Ry,
. pdx o3y . 3z
- P3w+oaw+R3w’
Thus we have
32 3 _ o3y
u G'Pau OBu'
n n p% Q]/ol

3
NeE

v, and w

(II-C-42)

{II-C-43)

(I1-C-44)

(I1-C-45)

(11-C-46)
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Dviding both sides of equation (Il-G45) by Tj’é’, both sides
53
of equation (11-G46) by ‘V and both sides of equation

(HC47) by |, we obtain

SOIE-PIfff - «EfEe e

R = H/g—f;— av o—X gﬁ , (II-C~49)
and
R = n/ 05;‘5 32 . (1I-C~50)

Consequently we have

3z  ,9x f3z _ Bz _ oy Bz
e/Bu Pau/ 3u Q B II/ Oav '

(||c51)
ad

PE- - B -

(I-C- 52)

Gw— RS — UG o
Fan equations (11-C-51) and (11-C-52) it follows that

ar /a2 _ axa_/aa/a_z_ 3x faz _ ,3x [3z
05w/ v ~ ¢ Su N5y~ 9/ 3¢ * P35/ 3z - Pav/ 3w
(11-C-53)

ad

08t /22 _ qdr /32

3z az ax az pox /3z
av aw/ aw 1-[/ Q/ +P Bv av

(11-C-54)
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Dividing both sides of equation (I1-C-53) by

(lg%av&dl?;&ufrn both sides of equation (I11-C-54) by

(I )dVdVVlE) vehave

a/32 , pf3x /32 3x /32 )
3v / 3u \3u/3u dvf dv

Q=——@ne _ Iz
3v/3v dufdu

(|

and

iz 3z ox /a=
“/a '9/ ( B _5)

Q = 3y 2z 3y /dz
dvf dv dwf dw

Consequent |y we have
8z 3z 3x f3z dx f3z
H/ av E}/ 2a T P(au W v Bv)

~ oz
dvf dv duf du

3z Bx
Q/ ( w av )

3y/3z 3y 782
dvf dv" dw' dw

(n-c-55)

(H G 56)

(11-C-57)
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Mul ti plying both sides of equation (11-G57) by

3 ._3_2 §X @E)(_@_z Bz " .?_y az\ )
('ETE av " Bu/ du Bv/37 37/an] e obtain

(ﬁ}i 3z 3y Bz) _ E)/ ( Bz 9x Bz)
Bv 3w/ dw, T v
3y /9z _ 3y .3_.%.) ( 32 _ 3x 35)
= (Sv 3¢~ 3u/ du Q/ /=)
(11-C-58)

Solving equation (11-C-58) for P we have

P(ggc_ﬁg_* "3z 3y 82)
dul 3y dvl 3w\3v/ v aw Bw

/3x [3z _3x/3z\I3x/3£_ 3 /Iz)
\3N/ 3" v/ 3 /v 3/ A

[( / z- // ?;D)(dv/ /d?/z - (%ZI/(-?;UZ-)

(11 Idz _ p. /dA (dif_1dz_ “iE/dA]
T @) dujldv/ dv ~ dw/ dw)\ *
(11-G59)

Carrying out the multiplications in equation (II-G59) we
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obt ain

(i) 2= a( )3l 2)
( /az &/& , ax(/az(\ '_EZ_/%)
( %\;v)\2v/ dv) * [dw/ dw]\du/ du)

(avi aiowr 4\ o1 avacsw T
- |(n/2 - [/ )G /%)
(/BN ) (/@3]
(/8@ - /B E/E)
(/3N %) (/8@ %) -

+
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Equation (11-C-60) can then be rewritten as

dx dy dx 3y dx dy dXiZ

, ‘du dv du dw  dv dv dv 9
- - +

dz 3z dz 32 3z Bz dz 32

du dv du dw dv dv dv dw

dxdy  dxhL  dxdy  dx 3y

_dwdv ., dw du . dv du
dzdz  dzdz  dzdz  dz gz
dw dv dw du dv dv vV du
(11-C-61)

A he -~ 2 2

1 dv N du B’\i/ Q u
Tldzdz T 324z dzdz T gz
dv dv dv du w dv dw du

) df
njz Mt e o2

-y oy —— gy - =2
zor a2z H| & @a
dv dv dv ow du dv du dw

The third termin the bracket in the left side of equation
(I'l-G61) cancels the seventh term in this bracket and the
first term in the bracket in the right side of equation
(I'l-C61) cancels the fifth termin this bracket. Miltiplying

the remaining terms in both sides of equation (II-C61) by
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(

g%%\f_v]\ we obtain

o
—iIN

P[M K JE . 2 IzIiE, X izik
du dv dw du dwdv dv dw 3u

LTLZ 3x 3£ dz  dx dy dz.
- (g\ivdv &Zj—* dwdu dv— dv_S% dWi-f

dz (11-C62)
3u 3i/ dv du du dv

+ 1w du ov dw  ow ovJ

Now P(x, y, z) is the total derivative of Y along a line
parallel to thex-axis in (x, y, z)-space. Aso O(u, v, V)
is the total derivative of F along a line parallel to the
u-axis in (u, v, w -space, Il(u vy W is the total
derivative of T along a line parallel to the v-axis in
(u, v, v)-space, and Qu, v, W) is the total derivative of F
along a line parallel to thewaxis in (u, v, uOspace. Thus
we have fromequation (I1-C 62)

dar
dw

oln
-

aw

aw :
= . (11-C63)
ax
aw

e 2e
RNt

R,
v |
S
Qr
=

P(x Y. 2) :(‘3;

aw
az
aw

=R R
R R
K
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Likewise Qx,. Yy, z) is the total derivative of T along a
line parallel to the y-axis in (u, v, %)-space. Thus in

a simlar way we have

Q‘
T

oo

xX <
RER 'S

NC><C_|

Q_‘Q_ o_lo_ Q.lQ_
c

1
,Q_Io_ Q.IQ_ al
<IN <
o

QAx,y,2) =(j |) = . "(11-C 64)

X» Z

X <

N <

Q_lQ. o.'o_ o.lg_
cIN CIX C
-Q_!Q. Q.IQ_ Q.E.
<

o_'o_ o.lo_ o.}g_
SN Z|IX =

Also R(x* vy, z) is the total derivative of T along a Iline
parallel to the z-axis in (x» y, z)-space. Consequent |y

ina simlar way we have finally

du dv
dx dx
du dv
dy hij
3u dv
(1'1-G-65)

3u dv
dx dx
du dv dw
iz 3 97
du dv dw

l22fs [eN glech




Appendix D to Part |l

D scussion of F.G Donnan's derivation of the equation
du = tds - pdv + \idm for a one-conponent system

of one phase and of variable nass

Donnan' s' proof of the equation
du = tds - pdv +]idm
for a one-conponent system of one phase and of variable mass

is as foll ows:

Applied to a honobgeneous system characterized by a
uniform tenperature t and a uniform pressure p, and
subject to no other external forces except that due to
this pressure, the devel opment of thernobdynamics up to
the date of G bbs' researches may perhaps be briefly
sumari zed in t he equation of d ausi us,
5u = té& - pSv, where u = energy, s = entropy, and
v = volume. This equation applies to a closed system
of constant total nmass, and the first fundamental step
taken by Gbbs was to extend it to a system of
vari abl e nmass. In the equation of dausius the
entropy of the system may be changed by the addition
or subtraction of heat, whilst the volume nay be
altered by work done by or on the system both types
of change producing corresponding changes in the
energy. It is possible, however, simultaneously to
increase or dimnish the energy, entropy, and volune
of the system by increasing or dininishing its nass,
whilst its internal physical state, as deternined by
its tenperature and pressure, renains the sanme. If we
are dealing with a system whose energy, entropy and

! Donnan, F.G, The Influence of J. WIllard Gbbs on the
Sci ence of Physical Chenistry, An Address on the Cccasion of
the Centenary Celebration of the Founding of the Franklin
I nstitute, Phi | adel phi a, The Franklin Institute, 1924,

pp. 6, 7.

112
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volume nmay be regarded as sensibly proportional, at
constant tenperature and pressure, to its mass, we may
wite:

du = 6u + ugdnm

ds = 6s + sgdm

dv. = Sv + v,dm

where the total differentials du, dsg and dv indicate
changes which take account of variation of nass at
constant tenperature and pressure as well as of heat
and work effects at constant nass (indicated by the
differentials 6u, 6s, 5v) and uy» SQ vg denote the
energy, entropy, and volune, respectively, of unit
mass under the specified conditions of tenperature and
pressure. Conbi ning these equations with that of
Cl ausi us, we obtain

du = tds - pdv + (ug - tsqg + pvgdm

or, putting

Up - tso +pvo = i

du = tds - pdv + udoi.

According to Donnan the total differentials dus ds, and dv
indicate the changes in u* s, and v which take account of
variation of mass at constant tenperature and constant
pressure as well as of heat and work effects at constant nmass.
In Donnan's equation du = 8u + uodm the term urdm UQ
being the specific energy, gives the change in energy wth
mass at constant tenperature and constant pressure; it does
not give the change in energy with nass at constant entropy
and constant volume. The independent variables in the right

side of this equation are thus tenperature, pressure, and
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mass. The differential & is consequently really shorthand

for %’t‘-dt +°/%';'dp. Li kewi se in the equation ds = 8s + s,dm
where so is the specific entropy, the term8s is really
shorthand for -zr'frpdt +?r§dp . Similarly in the equation
dv. = 6v + vodm where vqois the specific volune, the term
6v is really shorthand for jrdt +~f’§"dp. Thus written

out in full we have

du = | %dt +9}{dp+qum, (11-D1)

ds = [|dt +8§5dp + sodm, (11-D-2)
and

dv = Jndt +Ylp + vedm. (11-D-3)

Conbi ni ng equations (I1-D-1), (I1-D-2) and (11-D-3) we have

du - tds + pdv

My Bug 8. L 3 av dv
atdr:+apdp tatdt tapdp+patdt+p§;dp

+ (uo - tso + pvgdm .
(11-D-4)
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It is known from the case of a one-conponent system of one
phase and constant nass that

If = ol - e, (I1-D-5)

32 - (i, - ) C1-D-6)

2. a2, CH D7)

g—; = m—i_?. (II-D-8)

|F = mg—i‘ (11-D-9)
and

g_; _ ”’%E (1I-D-10)

Substituting these values of the partial derivatives of u and
s from equations (II-D-5), (lII-D-6), (II-D7), (II-D8),
(I1-P-9), and (11-D-10), in equation (I11-D-4) we obtain

du ~ tds + pdv
= m(Ep - p-g——f)dt + m(Ip - pg—g)dp - mtECE-dt

nt ’édp+rrpatdt +np ;JFEJ dp + (ug - tsg + pvgldm
(11-D112)
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Thus we arrive at Donnan's equation
du = tds - pdv + (uo - tso + pvo)dm , (1'-D12)

but by this nmode of derivation the independent variables are
still t» pf and m not s» v, and m

The real problem Donnan was attenpting to solve was to
show that when the independent variables in the case of a
one-conponent system of one phase and of variable nass are

entropy, volune, and mass, the partial derivatives of the
du Bu ) du f X
energy are " =t, j*=-p, and -~ = (uo - tso + pvo).

In order to solve this problem Donnan had to begin wth
tenperature, pressure, and mass as independent vari ables,
because the change of energy with nass is only equal to the
specific energy at constant tenperature and constant pressure.
The real problem then consists in a transformation from
tenperature, pressure, and nass as independent variables to
entropy, volune, and mass as i ndependent vari abl es.

It is assuned that the equations

s = F(t,p,m (1'-D-13)
and

v = <Kt,p,m (11-D14)
can be solved so that we have

t = F(s, vim (I'l-D15)
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and

p $(s,v, m) (11-D-16)

ad thus finally

u = V(s v,m) . (11-D-17)

Fam equation (11-D-17) it follov/s that

du = ‘Eﬁ-ds + -ilﬁ—dv + ?n;dm . (11-D-18)

The partial derivatives T%—U»T?,E, and -axli—are t hen obtai nabl e
r 0os ov dm

by the use of the Jacobians in Tables (I1l1-D-1G, (II-D12),
and (11-D-14). Thus we have

3(u, 3y v) _mz{t('ri_?f')2 . ¥ .eE) }
3 /m, v s, me v) 2 (I\ZY ££/3V\

3(tf p»m) m{dt}p,m+ t\38% _

=t (11-D-19)

3(u»m* s) 2] [3VY? B.C:‘E_’L.

PR - PGt YT\
() - Len . e E PIem
3, s AWV itit s) mz{(}l‘f_ o, EE(.?_V }

3(t,p, in) tio, m t\ep/le,m
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and
3(u, v, s
/ 3u\ . 3(t.p, ®)
vy o am -
3(t, p, @)

& /av 3M2 | f 11
'”’2{[5 (a ),? +("W'J "o + pvo - tsof

2@, (E )

= Up + pvo - tSgo . (I'-D21)

In the case of a one-conponent system of one phase and

4 k3
of variable nmass the chenmical potential y is equal '[O\g:;ﬁ'

v, s
and consequently to (uo + pvo - tsg) . Substituting the
oy 11 an( _ it
val ues of (*% » I\'g;J » * |\ gm—) from equations
% m s Vg S

(I1-D-19), (11-D-20), and (II-D-21) in equation (lII-D-18) we

arrive at the result

du = tds - pdv + ]idm, (11-D22)
with Sf V, and m as independent variables. Equati on
(I'1-D-22) is thus true wth either t, p, and m as

i ndependent variables or with s, v, and zn as independent
vari abl es. However, the nore inportant significance of
equation (I1-D-22) is that it is true with s» v, and m as

I ndependent vari abl es.



Part |11

Rel ati ons between thernodynam ¢ quantities and
their first derivatives in a binary system of

one phase and of wunit mass

"Introduction

The basic thernpdynamic relations for systens of variable
conposition were first derived by J. WIllard Gbbs in his
nmenoi r entitled "On the Equilibrium of Het er ogeneous
Substances."! Gi bbs? stated that the nature of the equations
which express the relations between the energy, entropy,
volume, and the quantities of the various conmponents for
honogeneous conbi nati ons of the substances in the given nmass
must be found by experinent. The manner in which the
experinental determinations are to be carried out was
indicated by hin? in the followi ng words: ffAs, however, it is
only differences of energy and of entropy that can be
neasured, or indeed that have a physical neaning, the values
of these quantities are so far arbitrary, that we may choose
i ndependent|y for each sinple substance the state in which its

energy and its entropy are both zero. The values of the

! Gbbs, J. Wllard, Trans. Conn, Acad. of Arts and Sciences,
3, 108-248, 1874-78, or Collected Wrks, Longmans, G een and
Conpany, New York, 1928, Vol. 1, pp. 55-184.

2 Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
3, 140, 1874-78, or Collected Wrks, Longmans, Geen and
Conpany, New York, 1928, Vol. 1, p. 85.

3 Gbbs, J. Wllard, Trans. Conn. Acad. of Arts and Sci ences,
3, 140-141, 1874-78, or Collected Wrks, Longmans, G een and
Conmpany, New York, 1928, Vol. 1, p. 85.
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energy and the entropy of any compound body in any particular
state will then be fixed. Its energy will be the sum of the
work and heat expended in bringing its conponents from the
states in which their energies and their entropies are zero
into conbination and to the state in question; and its entropy

£d4g

is the value of the integral J 8 for any reversible process
by which that change is effected (dQ denoting an elenent of
the heat communicated to the matter thus treated, and t the

tenperature of the matter receiving it)."

Cal cul ation of the specific volume, the specific energy,

and the specific entropy of a binary system of one phase
as functions of the absolute thernodynam c tenperature,
the pressure, and the mass fraction of one conponent

from experi mental neasurenents*

In the case of a binary system of one phase, the nmss

fraction Fﬁl of conponent 1 is defined by the equation

[ - bl _
m = —_—_L_ml PP (III-1)

where m denotes the nmass of conponent 1 and m, denotes the

Tunell, G, Relations between |Intensive Thernodynanic
Quantities and Their First Derivatives in a Binary System of
ot> Phase, V.H Freeman and Co., San Francisco and" London,

[9ti\ opr). 7-16.
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mass of conponent 2; the specific volune V is defined by the

equati on

Vv
my + [Ma

=3
1

(T1I1-2)

—r

where V denotes the total volune; the specific energy U is

defined by the equation

~ U’
U= (111-3)
vihere £/ denotes the total energy; the specific entropy § is

defined by the equation
§: —2 (111-4)

vihere S denotes the total entropy. As a result of experinent
it is known that the pressure pg the specific volune \7f t he
absolute thernodynamic tenperature T, and the mass fraction

Si of conmponent 1 are connected by an equation of state
“(pV N\ F) = 0, (111-5)

which can, in general, be solved for any one of these
quantities as a function of the other three. The relation of
the specific energy of such a system to the tenperature,

pressure, and sass fraction of conponent 1 is expressed
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by the equation

T, p.i12
_ . Wor . [1, A, L
= cp - pRp T * TP PP T M (111-6)
Tu’Pu-F’;xu

where UTp denotes the heat capacity at constant pressure per
unit of mass and |p denotes the latent heat of change of
pressure at constant tenperature per unit of mass. The
relation of the specific entropy S to the tenperature,

pressure, and mass fraction of conponent 1 is expressed by the

equation

ST, p.m) - S(Tq, po.iniJ

v

N\ flii
CP jm IOA R |
j7‘d| + ~-+ dp + ZT dml > /TTT 7N
on J (111-/
Necessary and sufficient conditions® for (111-6) are

aT L dp

e

mny

{M} =IM]}I r(I11-9)
b ¥y :

*  Ossood, ‘I'.F., Advanced Calculus, The !lacnillan Cornpany, 7é#
York, 1925, p. 232, and Lehrbuch der Funktionentheorie» 3d. 1,
Ste Aufl., B.G. Teubner, Leipzig, 192S, pp. 142-150.
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Y] - oV
Jns _ B[c . p——]
{ anu } = { P BT } ’ (I | | _9)
dT o dmi
p, @

and
z'ingLr'! _ 3[}/ - ’gj_v
dmi = P 1Tp .
_ (11-10
3p T i dmi T.p
S mlarly, necessary and sufficient conditions for (I11-7) are
I g
=2 it 24
a T \} = {a T 1 L]
- — (rre-1t)
p* wi 1 ﬂhi"l
aTd _ 3127.,2
m - ’ (111-12)
- 0T Dy 51 LT T, p
and

3 I
3% _ ek
m = y (111- 13)
Bp e 351

Carrying out the indicated differentiations in (111-8) and
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(1'11-1) one obtains

31 2y 3 32y oy
2, e¥ b 9V 97 II1-
5T~ P3Tap op ~ Popal T T (111-14)
ad
al, T 3¢,
122 P i -} _
T o7 Tg = T (I11-15)

Conbi ning (111-14) and (111-15) one has
I, = -THf. (111-16)

Carrying out the indicated differentiations in (I11-9) and
(111-12) one obtains

arf oV

ToE T Tmer (in-17)
and

aTam, - T 8%y ° (I11-18)

Conbmi ns (111-17) and (111-18) one has

32y . 328 8%
3Tom, ~ © aTom, ~ Pam.er *

(III-16)
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Carrying out the indicated differentiations

(111-13) one obtai ns

d?u dn d2v”
dpomy ‘3§T'-p?a”75

325 _ g9l
3pom, 38f o

Gonbi ning (111-20) and (111-21) one has

2?0 _ 2% -
3pom, dpow: P omiep -

From (111-16) it follows that

37, Y
AN

and from (111-14) and (111-16) one obtains

ot '\2\.!
3CE _ _mo 4
TR

From (111-16) it also follows that

- 327
oo = " T35T

125

in (111-10) and

(11_29

(111-21)

(1II1-22})

(II1I-23)

(III-24)

(IT1-35)
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and
L1 (HI - 26)
T o, eT °

Combining (111-26) and (111-20) one has

220 o3 &
K OBt P “aiiop

(111-27;

and, similarly, combining (111-26) and (l11-21) one has

e v (111-28)
Bpaml 3!’.’]10?

There is thus one relation, equation (111-16), between

o N 3F _dv. . dU  ds
the seven auantitiés 'I'I'Ig,l_ 5p Td%hv> Cp AR
Consequently, all seven will be known if the follow ng six

. . . v
are determined by neans of experinental neasurenents: " or®

I v . a0 3§
' 3, SP IR Oy

Q2

ml

There are also eight relations, equations (111-17),
(111-18), (111-23), (111-24), (111-25), (111-26), (111-27),

37 7
(111-28), between the ei ghteen quantities, TaT: T?-’_i’t ey,
al dp ami
o= gy g~ ¥ UL N ot dt ot
_Ff) g°p p p p

oTsp®  3Tam,~ opek,” 37* 3p 3S;” 37* dpgp® By

3 3% 3 _3°s 5285 325 R
Bfam’l' apaﬁﬁ' aﬁz‘f ' afa[ﬁl' apaﬁ{l' 351'1 ’ ¥ means of
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e —

which from the following ten, 7, |7, -&, JjllL,
ol dp am aTop

v _d*v ¢ nE 57 _#g
W 3

3Tem. opomy’ u?" v the

remai ni ng

eight can be calcul ated. From equation (111-24) -~- can

s
al

be cal cul at ed; from equation (111-23) g can be
.61

41

cal cul at ed; from equation (111-25) -r- can be

ajmn
calculated; from equation (111-26) -.s— can be calculated;

I

can be calcul ated; from
--om;

from equation (111-17)

equation (111-27) W can be calculated; from equation

325
(rrr—a8) m" can be calculated; and from equation (111-28)

2

-3—:57- can be calcul ated. It wll therefore suffice to

dpdiiy

determine experinmentally 19 along a line at const ant
1

t enper at ur e, T\ and const ant pressure, p', then to

determ ne experinentally W oat al points in a plane at
3F w

constant pressure, p', and ~j.p-at all points in ( 7\ p;rn'i)-

space, likewise to determ ne ‘ép at all points in a plane

at constant pressure, p', and to deternmine experinentally

~r

ﬁ?& along a line at constant tenperature, T, and constant
1
-
pressure, p', and al so -gg}zr- along a line at constant
1

tenperature, T, and constant pressure, p'.
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From neasurenents of specific volumes over the range of
tenperature, pressure, and conposition that is of interest,

the values of |¥» 9% and TgrﬂJj; can be obtained. By means of

calorimetric neasurements the necessary values of ¢, can

97

also be obtained. The determination of rj- at constant
of 1

tenperature and pressure over the range of conposition of
interest can be acconplished in many cases by means of a
dld
constant volume calorimeter, and in some cases -“p—can be
determined by means of nmeasurenments of the electronotive force
of a galvanic ceil at constant pressure over the ranges of
conposition and tenperature of interest in conbination wth

—

the measurements of specific volume. The determination of rzr-
dmi

at constant tenperature and pressure over the range of
conmposition of interest can be acconplished most readily by
measurements of the electronotive force of a galvanic cell at
constant tenperature and pressure if a suitable cell s
avail abl e.

The methods of determination of -re- and -Ar- by neans

dini dmi
of electronotive force Measurenents can be illustrated by the
following exanple. In the case of a galvanic cell consisting
of electrodes which are liquid thallium amal gans of different
concentrations both immersed in the same solution of a
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thalliumsalt, one has
G- & = -N6 ,° (111-29)

where G denotes the G bbs function, U+ pvV - TSy of a liquid
thallium amal gam -éz denot es t he parti al derivative

(M) -

V"no/t}l p. i at the concentration of one electrode, G' the

sane partial derivative at the concentration of the other
el ectrode, n, the nunber of gram atons of thallium ny, the
nunber of gram atons of mercury, N the nunber of Faradays the
passage of which through the cell acconpanies the reversible
transfer of one gram atom of thallium from the one anul gam to
the other (N= 1 in this case since a pure thallous salt was
used as the electrolyte), F the Faraday equivalent (which is
equal to the charge of one electron tinmes the nunber of atons
inagramatom; and 6 the electronotive force. The values of
the electronotive forces of a nunber of such cells, including
one in which one electrode was a saturated liquid thallium
amal gam were determned at 20°C and 1 atnosphere by Richards
and Daniels.” By neasurenment of the electronptive force of
another galvanic cell in which the electrodes are finely
divided pure crystalline thallium and thallium saturated

liquid amalgam at the sane tenperature and pressure, the

® Lewis, G M» and M Randall, Thernodynanmics and the Free
Ener gy of Chenical Substances* MG aw Hill Book Conpany, Inc.,
Mew Yor k, 1923,. p. 265.

" Richards, T. W, and F. .Daniels, Jour. Amer. Chen. Soc.;
41, 1732-1768, 1919.
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difference 8 - G could be evaluated, Gt denoting the value
of G in the saturated liquid thallium analgam and G the
value of the function G for pure crystalline thallium per
gram atom 2 The value of & being assunmed known from
nmeasurenments on pure thallium the values of G in l'iquid
amal gans of different concentrations are then obtainable from
the measurements of electronotive force in the two kinds of
cell. From the values of G, the values of G - G are

cal cul abl e by the use of the equation

na

A -« fka (111-30)

wir g

0

v/ here ﬂz denotes the gram atom fraction of thallium in the

amal gans.

~ = n
Ay = o (II1-31)

and i the gram atom fraction of nercury,

A2 —— (I11-32)

® Richards, T.U, and F. Daniels, op. cit., pp. 1732-1768;
Lewis, G:, and M Randall, op. cit.» pp. 413-414.

* Lewis, GI-"., and :i. Randall, op. cit., p. 44; cf. also
G bbs, J. Illlard, Trans. Conn, Acad. of Arts and Sci ences, 3,
194, 1874-73, or Coll ected Wrks, Longmans, Geen and Conpany,
rew York, 1925, Vol. 1, p. 135.
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— dG \I *
G the partial derivative -5— , and G the value
Verlim
YT, p, n2
of the function G for pure nmercury per gram atom The

integrand in the integral on the right side of equation
(111-30) remains finite and approaches a limt as £2
approaches zero and the vaklue of the integral is thus

determinable.' The value of G is assuned to be known from

0 G bbs showed that in the case of a solution in which
the mass of the substance chosen as the solute is capable of

fﬁﬂz\
negative val ues, the quantity my( -1 appr oaches
\-fMa/f .
T, p, m
zero as a limt when /T2 approaches zero, Tg p, and m being
held constant, vy, denoting the derivative i-,z ;. he
7, p, m

also showed that in the case of a solution in which the mass
of the substance chosen as the solute is incapable of negative

values, as is true of thallium amal gans, the quantity
A
mz(-'a’pi")r still remains finite, and it approaches a
on21 7 p 8o B
9 M9

limt greater than zero when /72 approaches zero, 7\ p, and m

being held constant, even though the derivative (Bmg)
Ty prm
becones infinite in this case (G bbs, J. viillard, Trans.
Conn. Acad. of Arts and Sciences, 3, 194-196, 1874-78, or
Col | ected Wrks, Longmans, Geen and Company, New York, 1928,

Vol. 1, pp. 135-137). It follows in the sanme way that the
/dG \
quantity Ay also approaches a limit when 02
2 Ty pr ni
approaches zero, T» p, and tii being held constant. By

application of the change of variable theorem in partial
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nmeasurenents on pure mercury, and hence @G can be obtained

as a function of the gram atom fraction at 20°C and

f dG\
1 atnosphere. The derivative (-r-) can be calcul ated
1*pf/Z'A'
from the equation
36 . &2
(aM2) = 52 (111-33)

+ Dy M)

where A, denotes the nunber of grams in a gram atom of

| G\

thallium and the derivative \{)'_j can be calcul ated
. m"T, Dy m2

differentiation one obtains the relation

dnzt.  n 92/ (ni +n,)?
1t P* Hi 1ip
Mul tiplying both sides of this equation by na» one has

nz(%z‘) = (g_gz') 3152 .
2y, p>n\ 2i7,

Since Si approaches 1 as a limt when 112 approaches zero,
fa) fe—
r. p* and n, being held constant, it follows that 2 2
HI \3n2/-|'
1>p

approaches the same limt as™ LR and nJMA
2\ 3n2/r 2\ 3n2/'|'
1>p 1$ptrii
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fromthe equation

Eﬁl

() - (111-36)
i T’ P’ mz

Y
,_.

where A denotes the nunber of granms in a gram atom of

nercury. The intensive function G is defined by the
equation
[ & .
mot . (III-35)
The derivative (d-c’}_"r/-r)p for liquid thallium anmal gans at
-« D

20°C and 1 atnosphere can be cal cul ated fromthe equation

%)
aif 3

Tvp

. (.@i )T i (_3§_)T Y (I11-36)

aml s Py M2 amz v P iy
By application of the G bbs-Hel nholtz equation
1, - b = NFT || - NFE 7 (111-37)

where H denotes the enthalpy, U+ pVy of a liquid thallium

amal gam) H denotes the partial derivative ("T—j > and
RS AR

1 The derivation of equation (X 1-36) is given in Appendix A
to Part I11.

12 lewis, GN, and M Randall, op. cit., pp. 172-173.
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£2 the value of the function H for pure crystalline thallium
per gram atom the partial derivative #2 for liquid thallium
- amal gans could then be deternined, provided the electronotive
forces of the cells be nmeasured over a range of tenperature,
the value of #2 bei ng assumed known from neasurenments on pure

crystalline thallium From the val ues of ﬁz» the values of

H - H are calculable by the use of the equation
n,
— ~ oooao
ffl- H = -f%i—adnz , (111-38)
nl vaz
0
where H\ denotes the partial derivative (;TH) and H;
1
Ty ps iz

the value of the function H for pure nercury per gram atom
The value of H is assuned to be known from measurenents on

pure mercury, and hence H could be obtained as a function of

the gram atom fraction at 20°C and 1 atnosphere. The
N f dH\ i
derivative o could be calculated from the equation
f %I! Dy iy
T
3K 7
(m) = f (II1-39)
T P M 2
P dl-h\
and the derivative {T—= could be calculated from

T, Dy M2
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the equation

(ITI-40)

The intensive function His defined by the equation

o H
7+ 72 (11I-41)
- - . .
The derivative ("=) for liquid thallium analgans at
Vdill 1Jrn °
‘T, p

ATC and 1 atmosphere could then be calculated from the
equation
(_o;L\ _ (it ) _ (dil m (111-42)
aml )T.p §‘ij'7T|P o @2 >T, Ps M

Alternatively, the function iJ of liquid thallium anal gans and

the derivative ( -d"%}‘ could be calculated from calori-
T L

nmetric determinations of heats of mixing of thallium and

nmercury at const ant pressure. Finally the values of

el / bd

(QH_} and (§I§T§ for liquid thallium analgans at
ot p - p

20°C and 1 atnosphere could be calculated from thr* equations

), - @), -, o

t Ts f=) ! v D i v D

13 The derivation of equation (111-42) is given in Appendix A
to Part 111.
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and

g, A, #, )] e

Derivation of any desired relation between the intensive

v n \s V-»
thermodynanmic quantities, Top, m, V, U Sy and their first
derivatives for a binary system of one phase fromthe
experinental ly determned relations by the use of

functional determ nants (Jacobians)'"”

Equations (111-5), (ll11-6), and (111-7) can, in general,
be solved for any three of the quantities, Tgp, n\:l \79 VU9§
as functions of the renmaining three. The first partial
V, & §,

with respect to any second quantity when any third and fourth

derivative of any one of the quantities, T, p, m »

quantities are held constant can be obtained in terns of the

L o dv ,dv .dv . dU s
six flifst dérivatiVeés, -'Erlrg op’ Idr'Fﬂ-Y CP> A B,
together with the absolute thernodynanic tenperature and the
pressure, by application of the theorem?® stating that, if

V= a(xi yoz)* x = f(U v, Woe y = <p(Ur Vo W 2z = "(U, Vg Wy

"+ Tunell, G, op. cit., pp. 17-23.

15 Kk proof of this theoremfor the case of functions of three
i ndependent variables is given in Appendix Cto Part I1.
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then one has

o dx dx

3u ov dw

d_ 38y jz

3u dv  dw

dz dz |
N 5 & % 3 ve z)
(dx\ ) e —— - Su vaw)
\dx ¥ 2 _:_3_)(_ _q)_(' _g)s_ a!}ft Vs Z?

du dv dw 3(u, v»t-/)

iz 4 g

du dv dwr (111- 45)

dz dz dz

du dv dw

provided all the partial derivatives in the deternminants are
continuous and provided the determnant in the denomnator is
not equal to zero.

In Tables Il11-1 to 111-15 the value of the Jacobian is

w \~

given for each set of three of the variables, 7»p» ni » Vg U &
as x',y, z, or X, y, z»and with T* p* it as u» v, v. There are

sixty Jacobians in the Table, but one has

a X » e X ) )
3(u o .gzcuL.vy»_l _(L_—lg(“f L2 XL (111-46), (111-47)

because interchanging two rows of a determinant changes the
sign of the determnant. Hence it is only necessary to
calculate the values of twenty of the sixty Jacobians. The
cal cul ations of these twenty Jacobians follow
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3(i%ig T, p)
3(T» pt Mi)

o

du, T o .

d(T, pois N

dmi

dT

dT
dT

dT

THERVODYNAM C FORMULAS

w
Ti(

g 2|9 ¥
Qs a
3.(!% 3.c|3 A

Q.
©

o
3¢

|

¥ 2 5

—

o S

(111- 48)

(111- 49)

(111- 50)
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&S 35 3
dT 3p 3mi
3(S5. T.p. ar dar 11
d(T, p, SI) dr dp 3
[E 3f 3
dr  3p 355

_ (%l) ; (111-51)

7,p

a7 dy
3T 3  dmi
3(7. 7, mi) _ 3 3 a1
3(7, p, Si) 37 3p dI.
dT dp o,

' \'MP>T,51’ (111-52)
o di do
37 dp 3
a7 By _ |8 o 31
T, ps 1) 37 dp dmi
drT  dp dmi

Y VAN ]
) T(BT) L * p(ap)r,;ﬁl’ (111-53)
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N
—
aslas
L‘il'q(

- r

3y V
3(T7 p, 1)

3(5. 7, V)
v pf “hil)

SEASISEI )

-U“'h-__/

[=>] =
BlFe L8 B

[s* RN )
3-?(,@;"\'1’

CONDENSED CCOLLECTI ONS GF THERMODYNAM C FORMULAS

‘d%%
2B

(111-54)

(111-56)
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L [

TS

[

d(Vi  p, 18y
3(7’ p; El)

L]

BSU, El 13 !
(T, 5 SO

kO
(0 ¢

@
¢
=

,oo
\'

o
« &

o
C

7 dV_dvT
of op dmj
3 3
37 3p 3m,
oy 3By 2m
3 3p~ oW,
dv)
T o
Ds )
w3 3
37 3p 3
| 9% 3
37 dp (Tr%
3my ¥E, 3
oT Op oM
v
¥, v P(‘S’f) 5
P iy

(111-57)

d\\
)T. p . p(dp h, S, ;

(111-59)

(111- 59)
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g &S 38
?g dp oyt
3G p.hil) _ f8 I£ B
3(7\p, 9) T 3p am
ari dmi dmi
oL \R/ dmi
- f (111-60)
W dg di
dT  dp dmi
Wom¥) . |3 2
3(T, p, @1) 3r dp 3mi
EIA VA 1/
dT Bp 351
- MM T () T”) +Ep(g—§) ; (111-61)
1\33J2 L: \dMidm JV 3T D, E;l 1 T, p
L : J
i, p I»p
=35 B
3T 3p 3N
0(T) p* AI) dar  3p iy
LAV 1
3T 3p dmi
_ EE_(BV\ rasly 3K
TABR, L 4 p (‘é‘f) wo t (111-62)
' P ! pt Hi
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3 & o
3(5, p, 9 dp dp 3p
dT, p om ) dr  dp 9,
o o 8f
"3T ~3p amy
(111-63)
(%) &) Jo(m) @) .
T 3."‘?1 T, p 3jTJ|/7\ D Bml T, p BT)p» :7-;1
— ML
dp  dii
8(T, p,» 1) 3r dp dmi
]
3T 3p dmi_
3V Y
-T(ﬁf o Cp(ap)\ ; (111-64)
1 r.S
a as 3
am;
J_u_,w S. @ vy . |3 3, dii
3(Ts pam1) ofil 1
v ap aF
. LIz
If 3D
(¥ Spfavy .
(ary - T(Bp__ Lo (111-65)
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dT dp dm
3A(S>me ) | 3w dm, Bmy
37 p, S1) W 3pr 3
3y 3y 30
3T p di
vy pEs [ oV
= Plar] U +°77F /), - 2 (111-66)
pe My T,m
a5
s w <*J g\; -wé -%\i
(s, v, U3 _ 1371 3F d_\\/,
3(T\ p» T29) 3 3 dmi
3y oy ol
dar dp 9Sn
(111-67)
(a“’ ) (a“v‘ ) (aé‘ ) }[(aif‘\z §2(37\ ]
= 3 + pla= - Tls= v +
[ dmi . p IR T, p 'y Tep M‘H! I??"l T ap) —
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Table 111-1
Jacobi ans of intensive functions
for a binary systemof one phase

d(x' Z) 3(x, v, 7)
3(7\ p, MO * 3(T, p, 60

L o
v (I'S
U 1)
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Table 111-2
Jacobi ans of intensive functions
for a binary system of one phase

3(x . v, 7) 3(Xi_ y* z)

ofi t pi in\) o(i 't p» M)

' T, i
Xt o>y,
X
p -1
v v
v -(32)

ap T! 5:'

v &) | i
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Table 111-3
Jacobi ans of intensive functions
for a binary systemof one phase

Ay 7)) Lrva)
acr.p.fiu) « acr.p.tfx)
» Z T I«“F
\
- (%)
ol Tt p
: (%)
' P T ny
. au av av ov . {37
u [(ﬁ) +(2) -i(z) L+(%) r{af ~
v ii p i» p ™ i «i i . i
S (%), (&) &), &
aﬁ'j_ am" Trp ¢ Ty
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Table I11-4
Jacobi ans of intensive functions
for a binary system of one phase

i (&),

. {F) -
L9 KO 4 (1),
; (&), ) ) .- )
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Table I11-5
Jacobi ans of intensive functions
for a binary systemof one phase

d(x'; vy, z 3(x, y» z)
ATt pr» FEI*i) T 3(T» p? ONl)
+ Z r, S
X
X \
p -fM
- g‘v’)
- k7.
pt ox
@), @ . -E) &
31T.p:: an'u; an‘T.p aPT.m
~ 3y 35 a¥ 33 v
U [— (—..') + T(—.-) ](—'—‘ + (‘;:'ﬁ ) . plE—
3 T. p o, T.p T . ay  OFUr g iy, 2




_ Table 111-6 _
Jacobians of intensive functions
for a binary system of one phase

3(x', v, 2) 3(x. v, 7)
d(T, p, i) f 3(T,psrai)

p,fIfx
X\
X
T 1
v (V)
u °p-A\3rj -
p. mi
S fa
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Table 111-7
Jacobians of intensive functions
for a binary system of one phase

3(x\v.,? 3(xX, v, 2
3(T,p,Mi) " 3(r,p,nTO

\y, pP.pP
X"\
T (%’1)7»,;‘
# T
p. mi
u [ U*JT,p" pfeJT,JIa?Ig”pfejr,p
S rl»\JTap UXJr,pU;p>Ji
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Table 111-8
Jacobians of intensive functions
for a binary system of one phase

3(x', v; 2) 3(x, Vv, 2)
3(T, p, tfi) " 3(T, p.tfi)

W p. {7

T (#),,

é P * K37

y BOX  (BV\ 1/a?  w/3?
[U)np* His).. Jvw),, 1 - "pfejy,

S

1(f)7p-K1) J*(F )oK,




153

Table 111-9
Jacobi ans of intensive functions
for a binary system of one phase

X, V. 7) 3CX, ¥ 23
Ty py 1) * B(Ty p» #1)

\y, z p,§
x\
X >y,
T .
(S e
Y
-, T
y & 13V 38 aF
7 -7 &), (B, ()
T am".f'.p wlT.pan.?i;
v €p [ralf 2§ 3g 3y
g -2|&), &), |-(&), &)
T M:LTlp thQP t r B aTP';l
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Table 111-10

Jacobi ans of intensive functions
for a binary systemof one phase

a(x. . v, z) dx, v,

z)

3(7, p. A1) 3(7, p, »i)

w7
AN
X o\
3V
T - (_)1'
i, 5
o7
P (ﬁ -
Py
U Jdv)? - M
g . .a_"y _Eg(a_i")
aT Be ;l T ap T, ;1
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Table 111-11
Jacobi ans of intensive functions
.for a binary system of one phase

33X, v, Z) 3(x, Yy, 2)
3(7, p, hi) Y 3(T, p, &)

\wvi oz m, ff
x\
X \
aF a¥
T T(ar) ot "(E -
P+ & [ 151
p
p, m
avy2 o f3F
\Y 2(ZY  s: (-3-5)
Oy B T my,
: EIATNNY.") (a_f"
S P(arr) w* T \Gpd
Py ) r B
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Table 111-12
Jacobi ans of intensive functions
for a binary systemof one phase

3Ax, v, 2) 3U, vy, 2)
3(7, p,rai) ' 3(T, p, tfi)

\y, z .5
X\
X Y
o7
T 25
@,
P r
v vy 5 ﬂ)r
(aT)p.fn"; T (aP , B
S A Ut f .
Py L
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Tabl e 111-13
Jacobi ans of intensive functions
for a binary systemof one phase

30 z 3A(x, v, 7).
ofl , p, m) ofr, pi zii)
¥r z \7, U
X" X
X N
3 57 v v o
r [_\4) -l-p(—u) :l— +(-:.- -
(3"“ T p iip, o (GF)T. i 3““)1 'y Y
Pl oF FYi « (3V
P ), o), T, o)
(om1 T p £l T, p T 50 i, Bmhr’ D
. av\2 - faF
: o], -
7 P D) P P T ;I.
2 rlig 3y 38 av\? Ep fa¥
s (38, +=65), @) &), #E&).]
a‘T,p (EE‘ T: p an"T.p Tp.n; T(Bp y By
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Tabl e 111-14 _
Jacobi ans of intensive functions
for a binary systemof one phase

3(x\vy, z) 3(x,¥. 2)
3(Trp»i 73%)  * 3(Top»/ I‘;J )

: @) @) &), @,
. @)L
][, e, ), TE L@,
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Table 111-15
Jacobians of intensive functions
for a binary syssem of one phase

3LV, 7 3(x. Y, 2)
9(7, p, m) ' 97, p.tfi)

¥ Z ‘-" g’
X
X N
A T T AL T Lo RN p* "\3p/i--' iWD-i
Sp 70l {35\ 738\ /3y
P —-F :71 " T\Tzi; ™ l\Qrul * P!\ ) -
" ‘T p ' T.p + P P* ®l
tTAY PEp 3V
X P(ar) .t T (ap)r -
LN 3] s 1
L +| . -t
v f() ") -Hi) TEF 2@
T \3p T
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In order to obtain the first partial derivative of any
one of the six quantities, T, p, Fﬁ', \7, vaé, with respect to
any second quantity of the six when any third and fourth
quantities of the six are held constant, one has only to
divide the value of the Jacobian in which the first letter in
the first line is the quantity being differentiated and in
which the second and third letters in the first line are the
quantities held constant by the value of the Jacobian in which
the first letter of the first line is the quantity wth
respect to which the differentiation is taking place and in
which the second and third letters in the first line are the
quantities held constant.

To obtain the relation anmong any seven derivatives,

having expressed them in ternms of the sanme six derivatives,

(g})\ (dVv\ (dv \ - (W) (ds")
aT .
- - . P Typ

1

one can then elinmnate the six derivatives from the seven
equations, leaving a single equation connecting the seven
derivati ves. In addition to the relations anbng seven
derivatives there are al so degenerate cases in which there are
rel ations anong fewer than seven derivatives.

U- TS is used

An additional therraodynamc function A
to facilitate the solution of many probl ens. The

corresponding intensive function A is defined by the equation

ts 57T1E (m. 68)
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In case a relation is needed that involves one or nore of the
thermodynamc potential functions, H A or G parti al
derivatives involving one or nore of these functions can also
be calculated as the quotients of tw Jacobians, which can
t hensel ves be evaluated by the same method used to calculate

the Jacobians in Tables Ill-1 to 111-15.
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Proof of the relation

1

o

(z

%) )
(aﬁl T p Ty psm2 dma g, Dy My

The quantity Gis defined by the equation

= G ) (T1I-4-1)

(X

Miltiplying both sides of equation (Il1I-A-1) by (/72 + m) one
has
G = Gm +m) . (111-A-2)

Differentiating both sides of equation (I11-A-2) with respect
toai holding T, p, androafast one obtains

( ) (ITI-5-3)
MTephl22 - Ty py g

The quantity & is a function of the tenperature T» the
pressure p* and the mass fraction &. By application of the
theorem for change of variables in partial differentiation
one has thus

(a_‘c' \ (26 (2, \
9] - \2rnd - \amyl . ' (111-A-4)
2 « p? Jt2 J-fp 1* pt U2

Y Tunell, G, Anmer, Jour. Sci., 255, 261-265, 1957, and
Tunell, G, Relations between Intensive Thernodynanic
Quantities and Their First Derivatives in a Binary System of
e Phaset WH. Freeman and Co., San Francisco and London,
1960, pp. 25, 26.
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Since, by definition,

163

= —2i— , (111-A5)
m; 4+ Mz
one has
(_g_/_‘ﬁl\ _ 1
Bml}T’i of i ' my + mz2. (m1 + mz)z
m
= - . I1-A6
—-'L—zol + ) ( )
Heaxe it follows that
3G .5 (E)
(aml)T, Dy @2 = G+ (m +m2) iy T, p (@) + m2)
= G+ f;z(‘g“s ) , (II1I-A~7)
My .
l\’P
and, similarly,
(26 - Fem (3]
N'r.p.an VOTfiZT
(111-A-8)
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By subtracting the left side of equation (lIIl-A-8) from the
left side of equation (IIl-A-7) and the right side of equation
(I'11-A-8) fromthe right side of equation (Il1l-A-7), one thus

obtains the equation to be proved:

), - (), -
aml T, L aml Tv DPs 2 aﬁ?z T! 2 (III_AHQ)

In a sinlar way the equation

(%), - &, T8

Qar

(IIT-4-10)

can al so be derived
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Transformation of the work and heat line integrals from one
coordi nate space to other coordinate spaces in the case of a

bi nary system of one phase and of unit nmass

As in the case of a one conponent system of one phase and
of variable mass, it is also true in the case of a binary
system of one phase and of unit nass that it is not necessary
to define either work or heat when nmsses are being
transferred to or fromthe systemto change its conposition in
order to obtain the energy and the entropy as functions of the
absol ute thernodynam ¢ tenperature, the pressure, and the nass
fraction of one conponent from experinmental neasurenents.
Thus the derivation of the Jacobians listed in Tables I11-1 to
I11-325 did not depend upon definitions of work or heat in the
case of a binary system of one phase and of wunit nass when
nmasses are being transferred to or from the system to change
its conposition.

For some purposes, however, it is useful to have
definitions of work done and heat received in the case of a
binary system of one phase and of unit mass when nesses are
being transferred to or from the system to change its
conposi tion. If the conclusion of Van Wlen and Professor
Uld be accepted that it cannot be said that work is done at a
stationary boundary across which mass is transported, then the

work 1'! done by a binary system of one phase and of unit mass

165
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can be represented by the line integra

i Psmy o o
av a d v II1-3
p(—-) dT + p(r) o dp + p(-- ) dml} (I1I-3-1)
f{ or s 1 P ir, 7\ am /e, D
Tos Pulala

in (f, p, ¥fli)-space. Furthernore, in the case of such a system
the heat 0 received can be represented by the line integra

N p. &y

o SiB) () e (8) )
P T3 pTvET‘]. ’1T:P
TE)f pQt 1Sl

dﬁﬂ} . (IT1-3-2)
p

In order to obtain the total derivative of the work done al ong
a straight line parallel to one of the coordinate axes in any
other coordinate space one obtains fromTables I11-1 to 111-15
the partial derivative of the volume wth respect to the
quantity plotted along, that axis when the quantities plotted
along the other axes are held constant and one multiplies this
partial derivative by the pressure. The total derivative of
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the heat received along a straight line parallel to one of the
coordinate axes in any other space, on the other hand, cannot
be obtained by multiplication of the partial derivative of the
entropy by the absolute thernodynanic tenperature when
transfer of masses to or from the system is involved. In
such cases the total derivatives of the heat received along
lines parallel to the coordinate axes in any desired
coordinate space can be derived in terns of the total
derivatives of the heat received along lines parallel to the
coordinate axes in (7\ p, ™)~space by transformation of the
heat line integrals by the use of the nethod set forth in the

second hal f of Appendix B to Part Il. Following is an exanple
of such a transformation. In the case of a binary system of
one phase and of unit mass the heat line integral extended

along a path in (7\#, 7)-space is

[

T.El,V
nr dQ \ ) do el
Q = 1(5(?\ HdT+('m dii +( dV}

JL dT/ﬂ_"l’ v} \dmi}T’P' . EV)T' El

To, r‘ﬁin, ¥a
T, M V

= [4&dT + {52 iy + 1,9V b . (I111-B-3)
[z« @), 0 )
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dQ

The derivatives \d(r§‘) o (%|) . and (EV)T, 5 can be

1'5;1 L} V W/ Tl v’
evaluated by the nmethod set forth in the second half of
Appendix B to part |l as the quotients of two determ nants.

Thus we have

do do d%-

dT dp dmi

i dii  dS]

dT dp dmi

dv dv 37

(QQ) So- dT dp dm
dT jo A » -

s b dT dT dT

dTr dp dm

] 3ni dmi i

|f Tdp dF

dv dv dv

dT dp dm

- [(g_g)]", P (g_?q)P, o - fdQ\‘ L (_gjp i ] z [_ J'd\hi)-l_’nb‘l' ]
o (37 v [3E\ . I3E\

) [Cp(-g_v)-r' - - Ip | ;-

: [EP(%)T' 5 T(‘S';); El] : (E—E)T’ - (111-B-4)
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and

49 do __

p dii

a1 dr  dT.

dT d 35x

& o if

(_dg _ dT  dp  'dfi
dﬂ"f ; - A A
Y dmi dmi  ofni
daTt  dp  difti

dar  d1  dT

dT dp dmi

o a3

dT dp dimii

: [(ngp\‘a“s)M BRIV \—p)T,
-[(), &), 1F) LG, p] S~

(111-B-5)
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and finally
© 0 ®©
) dp m i
a o dardr
ar dp
am a8
(0 =0, = 1T ®
MT, S dv  dv
ar dp i
ar ar
T o
afi o dii >
ar dp  dii

(111-B-6)



Part |V

Rel ati ons betv/een thernodynanic quantities and
their first derivatives in a binary system of

one phase and of variable total mass
I ntroduction

In the following text the relations for the energy and
the entropy of a binary system of one phase and of variable
total mass are derived and a table of Jacobians is presented
by neans of which any first partial derivative of any one of
the quantities, absolute thernmodynam c tenperature Ty pressure
p, mass m of conmponent 1, mass m of conponent 2, total
volume V; total energy U and total entropy S, with respect to
any other of these quantities can be obtained in terns of the
partial derivative of the specific volune Vwith respect to the
absol ute thernodynanic tenperature, the partial derivative of
the specific volume with respect to the pressure, the partial
derivative of the specific volune with respect to the mass
fraction Si of conponent 1, the heat capacity at constant
pressure per unit of nass 5p the partial derivative of the
specific energy U with respect to the mass fraction of
component 1, the partial derivative of the specific entropy S
with respect to the mass fraction of conponent 1, and certain
of the quantities, 7\ p, m, meffli»S* V, U'S where m

denotes the mass fraction of component 2.

171
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Cal culation of the total volume, the total energy, and
the total entropy of a binary system of one phase and
of variable total mass as functions of the absolute

t hermodynanmi ¢ tenperature, the pressure, and the
masses of components one and two

Thermodynani ¢ fornmulas can be developed in the case of a
binary system of one phase and of variable total nmass on the
basis of the following set of wvariable quantities: the
absolute thermodynamc tenperature, the pressure, the mass
of conponent 1, the mass of conponent 2, the total volune,
the total energy, the total entropy, the mass fraction of
component 1, the mass fraction of component 2, the specific
volume, the specific energy, the specific entropy, the heat
capacity at constant pressure per unit of mass, and the |atent
heat of change of pressure at constant tenperature per unit
of mass (p.

In the case of a binary system of one phase and of
variable total nmass the total volume is a function of the
absol ute thernodynam c tenperature, the pressure, the mass of
conponent 1, and the mass of conponent 2,

Vo= (T p o we m) . (1v-1)

The total volune is equal to the total mass tines the specific
vol ume

r

V. = (i +m)V, (1v-2)

and the specific volume is a function of the absolute
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thernodynam ¢ tenperature, the pressure, and the mass fraction
of conponent 1,

Vo= (MpSx) . (1V-3)

From equations (IV-1), (IV-2), and (IV-3) it then follows
t hat

(8) = @2 (8) (1\-4)

Ph 213 mz Py F1
(%)T, prome <000 >(] )T, 5. (1v=3)
(g_ni)r, o ma v+ (—2%1)1 S (1V-6)
and

The total energy is a function of the absolute thernodynanic
tenperature, the pressure, the mass of conponent 1, and the
mass of conponent 2

Umj (T, prmmz) . (1V-8)

As in the case of a one—eonponent system of one phase and of
variable mass it is known from experinent that the energy is
an extensive function* Thus the total energy is equal to the
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total mass times the specific energy
U = O +mU . (IV-9)

Furthermore it is known that the specific energy is a function
of the absolute thernodynaraic tenperature, the pressure, and
the mass fraction of conponent 1,

U= o, p M) » (1V-10)

Thus the relation of the total energy to the absolute
thermodynami ¢ tenperature, the pressure, the mass of conmponent
1, and the mass of conponent 2 is expressed by the equation

CUT, p$ fi%» 22) ~ U(TQS po» "iy> "2y

Tf p, mis m2
= J[(D! + D)% - Fﬁﬁﬂﬂ b (X + mZE\ 7, - PA} .

T<>f pot 1810- m:o
+ & dey, + % dm Iv-1
331 t Bmz 2 * ( - 1)

Fan equations (1V-8), (IVv-9), (IVv-10), and (IV-11) it
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foll ows that
(f) = (my + mz)[zp -p ] (IV-12)
p» rn(f m, L p)) my
au) v oV
(— = {(m + mz){f - p(—) ] , (TV-13)
ap v M1y 2 P ap T, 51"1
(%f—; ) = U+ 52(% ) . (TV=14)
1 T, Dss ! T, P
and
(%) = U- mkn ] . (1V-15)
2 T, Pl r, P

The total entropy is a function of the absolute thernmodynaraic
tenperature, the pressure, the mass of component 1, and the
mass of conponent 2

S=72(r, p, 125 mp) o (1V-16)

As in the case of a one-conmponent system of one phase and of
variable mass it is known from experinment that the entropy is
an extensive function. Thus the total entropy is equal to the
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total mass tines the specific entropy

wt

s = 4 +ms. (1V-17)

Furthernmore it is known that the specific entropy is a
function of the absolute thermodynamic tenperature, the
pressure, and the mass fraction of conponent 1,

S = g2 p, ¥i) . (1V-18)

Thus the relation of the total entropy to the absolute
thermodynani ¢ tenperature, the pressure, the mass of conponent
1, and the mass of conponent 2 is expressed by the equation

S(Tf p, mi f V\b) - S(TO? pﬂ?mloy mzc)

TS p» ini» w v
. < 1
= (m + M2)_’\'dT + (m; + mg) T dp

TQ Pos mln. mzu

S
+ 'g;ldm + %f?zdmg} . (Iv-1%3
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From equations (IV-16), (IV-17), (I1V-18), and (IV-19) it
fol l ows that

as) €
T | V-2
(dT po nie mp - (M M) T (120
]
(g—ﬁ)T = (m o+ )2, (1V-21)
smlv mz
(?S ) = E + E;g(%é ) ’
TLIT b W2 ®ilp, p (1V-22)
and
S ) o v./a§)
v — = .9 -_ T
(dmZ T, p* m ek, P (1V-23)

Necessary and sufficient conditions for (I1V-11) are

a[(nn * mz>( p - P(g_;>T 5 )]
3 W

8T p* m g in2
) ) l:(m]. + mz)(?:'p - P(§)P» ;J]J_] | (1V-24)

ap T, My T2
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(35.)
om Tip>fll2

3T
-'p9 Winx» IB2

. a[(”" vF -'I;(lpua/);n (IV-25)
{ »

33333

T’ Ps 2

==L

amg

i {8[(&‘?1 + IM)(EP ~ p(%:f)p,ﬁl)]} ’ (1V-26)

al’ ~ , (v-27)
3B3I JT

3 {8 |:(m1 + m2>(2'p - p(g—z_r. . )-H
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3y
a(m
>T, p,m,

ap Lynil,"2
¥ 7
3[(9?1 s o)(lp - () ) ]
- T, %/-1 > , (Iv-28)
3ffi 2 JT, D @y
and
3t au
T - AN
_,rpm__> - r;Pmi|? > (IV_29)
Jr,P;ni I\ Jr-.p;""’i
Similarly, necessary ad sufficient conditions for
(IvV-19) are
3[(m1 + mz)z}l] 3[(!}?1 + mz)fa]
T = {= T , (IV-30)
oT ap

Ds i1y M2 Tlm]_! mnz

a3 S
ol == 3| (my + m2)

(3!31)1-.' by s - { [ o B2 T ]} ., (IV=31)
aT aml r’P, g
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2 &
{3( mz}T ] 3[(”’1+m23T} (1V-32)
SV IS O (I = , 2
Im2 f
8T Dy 1020» My JT, p, m
38 = [ -
(), s + m)-od v
¥ ¢ M = I , 2
3p dmi \T.p. m
NT» [T71> 722
as I
a(_ ) g (m + mz}—R
{ 2/, by m - [ : T] , (1V-34)
dm2:
ap T, M1y Mz T, P Iy
and
s )
Bmz
L. = ___._L_.lL_mz (1\v-35)
om2 T.p,m dm Ty Dv 7D,

Carrying out the indicated differentiations in equation
(1'V-24) one has

£ () 5

(ml + m!) aT - P 5 M
Dy @M1 B2 aT

PeOly Iz
9 3y
= (m + mz) (‘é‘f‘)ﬂ - P _._.BLM_L - (%T_‘) L
it J37» M2 3 P M
P
Ft 371t S2
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Making use of the change of variable theorem in partial

differentiati on one obtains

or p, mi 9 m2 T
. (%2\ / 30\ /7 3La\ /:\;_1)
P T, m p, zaj m T, p* p, m, m
(1V-37)
. . ]
The derivatives (5‘%) and @ are each
p, m, p» mi, [z
equal to zero. Thus one has
3l 51,
(%) - (+#) .- (1v-39
PrE19m psm
Sinmilarly it follows that
oV Vi
B(BP)T E - a(ap)r 5 c 3%y
—=1 - — = dTdp !
37 / oT
po M 9 22 P*nT
(1V-39)
al so
2 - (3
op 3p T, i (1V_ 40)
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3V a7 .
a(a_'r) .y 3(33’) 2\ _ A
- p. iy = — £ | liar o
Bp T Mys M2 ap /T’ El
(1V-41)
o 131,
Consequent|y substituting the values of ( \kaﬂf) y
Pr» 771712
v )4
(&) 5 o(3r)
b)) (s
3T | PliTym, ma \ ip a

from equations (IV-38), (IV-39), (IV-40), and (IV-41) in
equation (IV-36) one obtains

M 3°F %p  3F &2
s TP T e PRpem T (IV-42)

In a simlar way carrying out the indicated differentiations
in equation (I1V-30) and nmeking use of the change of variable
theoremin partial differentiation one obtains

|
T (IV-43)
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Conbi ni ng equations (I1V-42) and (1V-43) one has

ip = -rlK . (1V-44)
Carrying out the indicated differentiations in equation
(1'V-25) one has
8(%%”) e
T . p
. = (m + m) 3.'}'.'1)
dT b 8 fi2 Tt p» AP
A
ES )
¥ .l':l-?' e BV
] P\\_—é_P'_L *op- P(”ﬁ) .
m To p* m2 pr i
(1V-45)
Maki ng use of equation (1V-14) one has
v o (a0 )
\dmi )T, s _ B(U + w2 (ﬁ: T, .
aT T Coe
Py W19 072 Ip»ffiif in2
(&,)
ag‘ aml
= (aT + m —_‘L!'_E‘ .
Py @1s M2 aT

Py Bio IB2

(IV-46)
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By application of the change of variable theorem in partial
differentiation one then obtains

(ﬁ\ 1 =
"Po mMi * /T2 p* nil )P> Mix M2
dO\  /dp\ fdU \ /dlﬁ_l\
*lap o A ary \OMI/1 vy
P [p, i B Ps My iz rP,,Q f' fy1e My
(IV-47)
The derivatives <2 ) and (2n?! are each equal
61/ p» mi 9 N2 \(6 ‘)Jp9 mi $ ni2
to zero. Thus one has
3l 30
(ﬁ) -~ (IV-48)
P 121»ffl2 pemq
Simlarly it follows that
a a
8(31&'1)T 3(551) 82
—_Ip = — "Ihp = 3To8,
aT “
Py B1s 1072 Pr

(1V-49)
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Also by application of the change of variable theorem in
partial differentiation one obtains

/ £l
The two derivatives (\"ﬁ—\) and ('@r"- ) are

T le a2 TtP;ﬂTz

dom
each equal to zero and the derivative ( ‘?’f’-l} is equal

iy prwaug

wr

~82__ | Thus we have
im 4 ma
.13 3¢, ~
(=2) - (%), wrm (1v-51)
1 T, DBz ks T, fzl b 2
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Simlarly we have

'Ya av
3(&7) o(32) )
o pd) 1ha 1T 7z
| : t @y + M2
i IT, pr» m2 o T.p
R L A4 V- 52
= 35T ma 4o, (1V-52)

Consequently substituting the values of the derivatives from
the right side of equation (IV-46) for the value of the
derivative on the left side of equation (IV-45) one obtains

. ’(%)
\d1T LE J"Q)
p> it o7 ip, sii, fiz
3 2(@)
= (m + mz) (%5?)_, D ) P|/_£:&£L
It p» 2 \ om T, D m
A (1V-53)

pr o1

Next substituting the wvalues of the derivatives from
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equations (1V-48), (I1V-49), (IV-51), and (IV-52) in equation
(1V-53) one has

> 38 ~ 52y
= ms mZ)[m + m; (351‘)1",,0 mit om 7 a"ﬁlaT]
g A
+&p - p(ﬁ\] A (|V'54)
The d S /3t7\ A 1S ec al” o0 e plg?f;l;\
e derivative LW, ’ ~ 7
M P A A

Hence one obtains finally

25 ac A 1 )
a?'aﬁil = =2 ML (1v-55)
3 PomdT ke

In a simlar way carrying out the indicated differentiations
in equation (I1V-31) and making use of the change of variable
theoremin partial differentiation one has

M - i -sf- o (V.5

! The same result is derivable fromequation (I¥%26)..

2 The sane result is derivable fromequation (IV-32).



188 CONDENSED COLLECTI ONS OF THERMODYNAM C FORMULAS

Conbi ning equations (1V-55) and (IV-56) one has

d’u _ v d’s  dv
3791 T OTq¥y ' P i3 * (1V-57)

Likewise carrying out the indicated differentiations in
equation (1V-27) and naking use of the change of variable
theoremin partial differentiation one obtains

d?U  3*p d?v 3 ,
EPEER (1v-38)

Also, carrying out the indicated differentiations in equation
(IV-33) ad me&king use of the change of variable theorem in
partial differentiation one has

(

¢S 1 2l “
3 = T (1V-50)
Combi ning equations (1V-58) and (1V-59) one has
220 _ 323 2y
s C T3%7 padE (1V60)

® The sane result is derivable fromequation (IV-28).

* The same result is derivable fromequation (1V-34).
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From(1V-44) it follows that
al, 2V 3y
=p . . - gy -
or = T W (1v-61)

and from (1V-43), (1V-44) and (1V-61) it also follows that

g 527
—E _ .78 -
P - T_B?‘T . (IV-62)
Fom (1V-44) it follows that
<3 azv
% =TT (1)
and
E;g I LA IV-64
3%, - " TEEer (IvV-64)
Combining (IV-58) and (1V-64) one has
apom: - - Tamer - " 3B73 (1V-65)

and, sinilarly, conbining (IV-59) and (IV—64) one has

d?S 3%y
3paB, = 3BT (1V-66)
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Finally substituting the value of |, from equation (IV-44)
in equations (1V-13) and (IV-21) one obtains

(-g%)r = -(m + mz)l:T(g—g) s p(g—;-) . :!

@1y m Dy il Ty i1
(1V-67)
and
(&) - o+ (%) . (Tv-68)
Bp . T -
T» me M2 Py iy

Thus, just as in the case of a binary system of one
phase and of unit mass, there is one relation, equation

(1V-44), between the seven derivatives, ﬂ\ét Q_\L GR'S é\n, Zn,
01 op o r r

s/

6 » 3ge1 . Consequently all seven will be known if the

o

following six are determined by means of experimental

measurements: %é 9'3/—, Ry . Ven, d“?», %2 . There are

ol op o1l m uHJ& [ORVES

also eight relations, equations (IV-55), (IV-56), (IV-61),
(Iv-62), (I1V-63), (IV-64), (1V-65), (IV-66), between the

327 3% 82 3%V 3%
3p?’ om?" oTop’ oTom,' 3pdd,’

2\-?
eighteen derivatives, g—f-.
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d&g ~R HE HE HE HE @& g 220
73T 3t tSmwo 37 dp® dm? TRE T BpRE, T AT

o bl

d v e __ . .
) 0o, mﬁz » by means of which fromthe followi ng ten,

527 327 d2“\'/ BEP BEE 320 828
STZ' 3dp?' DBm' oTop’ OTom.  opém,® o' omi oml’ omZ’

the remaining eight can be calculated. From equation (IV-62)

dt

3
—— can be calculated; from equation (I1V-61) -rS- can be

N

op ol

cal cul ated; from equation (IV-63) ——‘— can be calcul ated;
op

3z
from equation (IV-64) i(rmsz- can be cal cul ated; from equation
1

St .‘\2”

(1V-55) = z : A cah be cal'cll’at éd; “from equéfion (TIT\/-%)-;O—“*!
2

can be calculated; from equation (IV-56) -“g“}% can be

35T

cal cul ated; and from equation (IV-66) _Ap_dn!u_ can be cal cul at ed.

It will therefore suffice in the case of a binary system of
one phase and of variable total mass, just as in the case of a
binary system of one phase and of unit mass, to determne the
specific volume over the range of temperature, pressure, and
composition that is of interest. The value of Tp then needs
to be determned as a function of temperature and composition
at one pressure. Finally the values of the energy and the
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entropy need to be deternined as functions of the conposition
at one tenperature and one pressure. Thus in order to obtain
conpl ete therraodynanic information for a binary system of one
phase and of variable total mass no additional experinental
measurenents have to be nmade beyond those required to be made
in order to obtain conplete thernmodynamic information for a
bi nary system of one phase and of wunit mass over the sane
range of tenperature, pressure, and conposition. The
necessary measurements to obtain conplete thermodynanic
information for a binary system of one phase and of wunit mass
over a given range of tenperature, pressure, and conposition
were described in Part Il of this text on pages 126-136. |In
part 11l the use of galvanic cells to determine the specific
G bbs function was explained, and from the specific G bbs
function conbined with neasurenents of the specific volume and
deterninations of the specific energy (which do not require
neasurements of heat quantities under equilibrium conditions)
the calculation of the specific entropy was also explained.
In the authorfs article entitled "The COperational Basis and
Mat hematical Derivation of the Gbbs Differential Equation,
Wiich |'s the Fundanmental Equation of Chemical Thernodynanics"?®
it_ was shown how osmotic cells could al so be used in place of
galvanic cells to obtain the specific Gbbs function.

It is notable that in order to obtain conplete
thermodynam ¢ information for a binary system of one phase and

of unit mass, and likewise for a binary system of one phase

5 Tunell, G, in Thernodynamics of Mnerals and Mlts -

Advances in Physical Geochemstry, edited by R C Newton, A

Navrot sky, and 3.J. Wod, Springer-Verlag New York, Inc., New
Yor k, Heidel berg, Berlin, 1981, pp. 3-16.
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and of variable total nass no definition or neasurenent of
heat or work in the case of an open system when masses are

being transferred to or fromthe systemis required.®

Derivation of any desired relation between the
t hermodynami ¢ quantities T, p, m, JH;, Vo Uy S,

and their first derivatives for a binary system of one
phase and of variable total mass by the use of

functional determ nants (Jacobi ans)

Equations (1V-1), (IV-11), and (IV-19) can, in general,
be solved for any three of the quantities, Top, Mo /T?» Vo U S
as functions of the renaining four. The first partial
derivative of any one of the quantities, T, p, m»m>V, U S
with respect to any second quantity when any third, fourth,
and fifth quantities are held constant can be obtained in

~ s - i L

terms of the six derivatives -7= , TT~, TT1Z, * c¢n TT1Z?, TIZ,
01 op oi B\ y dmi awi

A

and certain of the quantities T, p, m, m» M, m V. G s by

application of the t heorem stating t hat, i f
w = QJ(V» x, y, 2)t w = f(s, tg U, V)y X = <p(Ssg t, u, Vv)j
y = (s, t, u, v), z = 6(Si»t, u, v), then one has

® The definitions of heat and work in the case of o-pen

systens used by various authors are discussed in Appendix A to
Part Il and Appendix A to Part IV of this text.
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d) odw v
ds 3t U dv
dx o odx i
ds 3t u dv
1z iz
ds dt 4, dv
'd—z" E dz E BW'. X 1 Z
(awf\ ds dt du dv _ 3(3» t, u, V)
3 Ay, 2 dw dw dw dw 3(0 Xy z)
ds dt du dv d(set, u, v)
dx  dx  dx dx
ds at du dv
ht iz h. h. (1\-69)
s al g gy
& 4y o dz
ds at 3u  dv
provided all the partial derivatives are continuous and

provided the determinant in the denonminator is not equal to
zero.

In Tables IV-1 to IV-35 (on pages 230-264) the value of
the Jacobian is given for each set of four of the variables,
TN pofflii"2» " SE as W, x, yoz or i/, x, y, z, and wth
T, ppm* nmz as s» ty u» y. There are 140 Jacobians in the

Tabl es, but one has

dw x, v, z) 3z x. vy, W) (¥s y Zow) 3(x,_ Y.z, W

3(s» tf w» v) © T 3(sit»U» Y © 3(s» tr» U V) 3(sft, U )

(1V-70), (1V-71), (IV-72)

because interchanging two rows of a determinant changes the
sign of the deterninant. Hence it is only necessary to
calculate the values of 35 of the 140 Jacobi ans. The

cal cul ations of these 35 Jacobians foll ow
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dm  dm2 2@
dp dmi  dm2

dT 8T

8{mz, T. p>1m) dp dmi  dm2

| a
dp dmi dm2

dm  dm; 3w
dp dmi 312

B(Tv Dy M1y m2)

SEgs SR
Ro

dny. dm2 | am2 | _B_mz.
= qg1°0- dp 0 +4m 0 - 1
= 0-0+0-1-1

= 1l (1V-73)
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A IK K 1Z
3T 3p 3/731  3m
3L 4 3T 3T
¥» N Pm)  _ |37 3% dni dm
3(r, proom) T | do o d
ar  dp dni dm
dnii dm dmi dmi
dT  dp dni  dm2

- Fen(E) (1V-74)
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317317 3£ IML
dT  dp dmi dm2

6 0L 6L d
%U, T, p, mi) dT  dp dmi dm2
3(r, p» /Di»m2) gﬂ _dp_ QP_ m
dT  dp  dmi dm2

doi dini gmi i
T dp  dmi dm2

T i dp "0 F 30 10
N V)
B am:
- U E‘(g_g' ) ; (IV-75)
)
T’ p
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dS 45 s
a7 dp dmi dm2
dT  dr 3 dr
ar dp  dm  dm
ot poomi' M) £ I £
dT dp gy dm2
dni  dm - dmi
ar  dp  dm dm

E -dS-O—'as"0+3§m1'0'|A-l

i ]

1) ; (1V-76)
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Fox I
3T gp  omy a2
a I T 3
3. LLop, A2) _ ar 3p ml 3m2
3(r, p,zx»n2) if 22 3 3p
o 9 M1 om.
m2 32 m2 3,
' 3wl 3m2
av v
= af 0 - °p 0+ dm1 dm2
.
3m1
4 ) r’; N
= V + mg(%g H

19

(1V-77)
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MI ML ML MI
T dp dmi 7R
31 11 H I
du T p_m) _ |97 dpdmdm,
3(T> po mi, f122) 3 3 385 op

dT dp dmi dm

din2 dm2 dn.2 dm2
3T *3p ~dm\ ~dm,

- ML.op_3. o
= 0 5P 0+3mx1 E;sz
ar
- M
3m1

(IV-78)

]
=l
+
5¢
i)
T
[+B] [+ %)
E(IC‘:(
e
-
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ds Os 33 3S
dT dp ITi gym2
ar dr 11 3r
3(S.T,.p.m). _ di dp dmi 3%,
37", p, 1B, fi)2) IE R £ If
ar - dp " 372
dm2  3m, 3m2 33
ar . dmi  3m2
- B n_:'3§"0+a—s-1_..a.§.o
: ' am om,
. 88
- 3m

= 8 +S\(dn412t

(1V-79)

Al
i=}
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50 3 3y 31
dT  3p dmi  3h2

dT 8T dT dT

dT  3p dmi ©9ms

3!U,T, p, V) _
3(7\ p» 113i9 Hi2) B i£ |£ 3£ -
8p Bm1 3Tz
o W
3T  3p amy dmap |
WL
= 37 D_ap O"'Bml dm2 dm, dmi
ML, LI _ 3¢

dmy Oms 3mz O

(1V-80)

I
1
S
.
mdm
E =3
o
+
=2
. e
e S
3
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g ds &
diT  dp dal ﬁ
2
a dar 4
ds T b ) dT  dp dml dm2
dT, p, n?%, B2 £ _ - la
dT  dp dmi
& avo11
dT dp dml dm,

. ds , as ,_as 3F. as dwv

T dp dml  dm2  dm2 dnmi’

dS » V. _3S ., 3E
3ii2i dm2 ai?2 3771

~

114 a5 . .
- - (aﬁl)y, o V(afﬁl)T, ; (IV-81)
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& ds 35
dr  dp b dm2

a dar di 37
diT dp  dmi  dm2

dS,_T, p. U) _
d(T, P, My Ez) - 9£ EE ER EE
ar 3 dmi dm,
 du 3 dg
di  dp dmi dm2
= - G + . .
dT dp dm dm2 dm 3mi

n
o
3
=
L]

i
mlw
= L
(]
éf;

n
1
ng
TR
=
+
=11
T———
[1[-%]
J&
—

; (1V-82)
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dav 37 - 11
dar dT 3T 3T
3(7, T, Mys @) dT dp 3ml 3m2
3P, mym) - |dm dnd 3ml 3ml
dT 3p 3ml dm2
dmz dm? dm dm
3T dp dml dm2
iy 2% i Y14 S
= 3T dp dmi dm
. av )
= - (ml + mz) 5"‘ ol (lV—83)
p T, ml
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A o U
3T dp ami ,\(ﬂ]—z
ST dr 3T BT

dus Ty mi 9 AR 3 g dml dm2

3(TE p M9 Z») 3i2z7i dm1 dml dm1i
dr dp dm1l Qmy

dm?2 gdm, dm2 dm,
ar dp 3N dm 2

ay U,

= 8T'0-dp'1+3_ml.0_;m20
__au
v dv\
= (m + mz)[T 57 =) E
(BT )P! El (ka AT O



BINARY SYSTEMS OF VARIABLE TOTAL MASS

as
dT

dT
&S To mi 9 1112) a7

B(Tﬁ Py M1y mz) ﬂl
dT

dm?

dT

3S A Q _ds A

dT dp

_ds
dp

= (DI + z&a(%

>=i

d4s
dp

ar
dp
dmt
dp
dm2
dp

1+

as

e
ar. °
dml dm2
dmi  dm_
dml dm2
dm  dm?
dm1 m,
ds o _3S
3/731 377,

) s

Dy @1

207

(IV-85)
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ar dp 8771 dm2
dr dr IT dT

T M dn
du, T, mi, V d do 8 dm2

dTf p, m¢ m) | dmi dmi 8 dmi
daT dp 8771  dm2
dv dv dv

dT dp E’nl Enz

!
= M’o_ﬂ;oﬂ+ﬂ!.0+ﬂoﬂ
dT dp dm2 dmi dm, dp
_ .8 3. @

T T g/7zz+ gmy dp

—

) (3_ /e
v F aﬁl)
+ P

= (m o+ m){[u? F oWy - (%f:;

Te L BFY ] (ai’\
+ Mt /-ffl Il@m}f;T, pJTT — _— } H (|V-86)
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g dS 3
dT  dp  3m1
T 4T dT

3(8, -|-| m" \/) ~ aT dp dm1
3(1", p> i, 012) - 32 dmi  dmil
dar  3p dml

v 37 dv

dT  3p  dmi

8, _38 .3 ,3 - 35
8T dp " dm T %m, YVt dm)

ds

dz

dm

dn
AT

dm2

209

(1V-87)
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d 8 g5

a P

a o dar 30
3(s. T, m ) ) ar dp am i
ar. oo om0 oo s dmy

ar dp dmi

& ow W

ar dp dm i
=T dp dm2 dml " dm2
- -LE.M M. M

op dm2 dm2 dp

Y

(nu +- mz){[(l}‘ - Tg) - a‘.ﬁ'l <(%1)
Ty p

CONDENSED COLLECTI ONS OF TKERMCODYNAM C FORMULAS

dm 2
dr
dm 2

dm i
dm 2

MI

dm 2

dp

(1V-88)
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du 3F W
dmi dm

7T m ) aT  dp  dmi dm2
3(7\p, Bi» m) - dm?  dm?  dm2  dm2
ar dp dmi dm2
dv. d&v. ‘M M
dar dp dmi

av
%41-1_.0+dp e

= ML .II -i£ 411

dp 3771 371 3p

= —-(m + J'M){[(E + Pﬁ) + EZ((%%I--?-’F) * p(-g_.;l)'f, P>](g_g>T’ JI;1'1
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&S & g5 &
ar dp i dn2
a dar 3T 3T
S, nom V) (@ @ aioamo

307 pe M9 B2) 2 dn2 M2 a2

dp 3mi 32

ar
&K IK 2
dr &g Mi dm2

Noos 1M9Z- £ & al- a8 .

i
daT dp 3mi 33 3p dm?2

=, K _E K
3p Bml 3m1 a)

< - voffre @) 1)

Nt
bsm

+ [S‘ " az(g—gl )?J/\IW 1. (1V-90)
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g d 4 gg
dr dp g2

a a4 11 1

T, u) ar dp am i dm 2

3(T>p m 9 ng dn?2 dn2 dm, dm,

dT dp dm! dm 2

w oo XML
ar dp dni  dm2

as 3 AT A £ 3
2. , - _

0
Prdp M T s s e

35 ou

3
- dmi dmi dp

dp

-(m: + mz)ﬂ:(ﬁ - T5) + 52<(%”;1)T - T(%

213



214 CONDENSED COLLECTI ONS OF THERMCDYNAM C FORMULAS

45 ds 35 7
dT dp dmi dm2

af dar ar 37
3(S. T, V. U) dp dml  dm2
3(r, pni»br) T | AV Qv AV dv

’ dar dp  dml dm
dy 30 3u 33U
dar 3  dm dm>

i E(ﬁl’. W, ar )
= Id%' 0 = 3p\am, 'M|§,272 T 3m 9mg

— | — =y w8

35/37 sU ay v )
+ 3i2él\3p dmy ©Op dms

(IV-92)
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dv dv gy 2¥
drT dp  dmj dm2

@ £ 3 te
d(ve PoMigy) _ Sp dm( dm2

3(2\ p. mif my) 3Dl &m; dmi  dmi
3T ap dmi  dm,

dm, 373, dm2 dm2
daT 3D dmi dmg

- /- dv
Wl EH %t a0 w0

n
~
=2
-
+
=]

[
—r
T
[=E] L=t}
“'3|‘T:(
—

(1V-93)
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3(t/» p> inif M%)

d(T, p, mi,

my)

dmi

ML

dmi

8p

dmi

dmi
dmi

dm2
dmi

ML

dm2

SE
dm2

dmi
dm2

dm2
dm2

Oﬁ'i'z

(ni +/772)li€'|:) .P| "3—'['\]}3'51} ;

(1V-94)
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gt dp  dmi dm,
9 9t I IR
d(S9_ po  mi9_/222) p dmi  dm2
dTe p9 mi9 n?2) d_mi d_mi _d..”..l..' _(m
dr dp dmi dms,

dm2 dm2 dm2 dm?2
diT  dp  dmi  dm2

<si dp dmi dm 2
= ‘aS‘
3T
&
= (\7 + mz)_TB 3 (IV-95)
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I H W 3£
3f 8p 3nx 3m2
3 2 3p 3p
dp dml dm2

1 dml dml 3mi

dU, p, mi, V dT
dm
dT dp dml dm
37

8(T» p» m9 m2)

9F 3F 9f
dT dp dmi dne

O M1K Ao 3 ., 30, 3
= dT " &n,” & om mp a7
LA I 14
= 3T " 8m, " %m: BT

~

ay

= -(m1 + m2) [(5 + PV) - El((’égl)T
s
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3S
3T
3>
3T

3(T>p» mi, ma) dmi

37"

37
37

35 S 38

3T~ 3m,” dp " ° * Bmy

X1t 11,10
dr * 3m,  as;z T

3S

3£

3p
3mi
ap
37
dp

15 glg gk 2k

Bml

3s

_Ezl

(@, + mz){%ﬂ[‘ﬁ '».(£,!,,]

as
am2

2
dm

dmi
3m2

37
3m2

14
aT

219

(1V-97)
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ds ds 38 3s
dT dp dm  3m2
P 2 2 |E£

8(5. prmi > ~ di dp dm g

3(N\p, mem) dmi dmi  dmi - dmi
dT dp dmi dm?2
du dg sv  du
dT 8p dmi  dm2

- i S-. M_ _-3£ 0+

dT  dm2 dp dm\ dm2 dT

88 3 _dS U
= 3T  dm " %m, oT

¥ [§ ) E‘(§1)T' p]" (ﬁ;) o } ; (1V-98)
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W W U d

T dp i am2

[
37, p m» VI _ 3p dmi ©om?2
Ol 9 p» mi? il2) M2 3m2 dn2 dm?

ar 8p dm i dm,

T AN VA

3r SQ dm | dmo_

a_ _av du oy dv 30U

= "0T " Fm 3 0T dm 3T am, O

- ¥ D
= T aT 3m'd+3m1-3-|—

(1 + mz){[(ﬁ +pV) + Ez((g—f;) + p(%gl) )
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3’ ds gg O
3r dp dmi.  9m2

& s 2 2

d(S, p. mas ¥ ~ aT 3p dmi 2
d(T, p, @»m2} 3m, Bm, dm2 7T,

3T ap dmi  dm™

YA VAR VA1
dT dp dmi  dm2

_ls 3y _3s. ,,-85..31_3S.9
37 ' 3l T 3p 3mi 3T ~ 3m,

38 3£ 35 . 3V

= T3¢ ani t omy 9T

T o /3
— (m1 4+ m ){-E'[V + m; ) ]
1 2 T (a N T’p

X

E1¢



35 mf U
(T, p> 3%, "2
= - a3
ar %m; dp
R 1)
- 3T om 3m!"

il
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B B g

I an g 72

- g 3 If

3r dp 3331 omg

3132 dn? 32 372

3r dp dm 1 372

W 33U

3r % dm 1 3772
5\, + A A A 0

(IV-101)



224

3(5,p, V,
3(7%p$ mi $/72)

av

S (.
So;\am; dT dT°

dT
dp
dT
dv

dT

dT

)

dp
dai
3£ dv_
dp dm
3£ du
dp 3/2?

CONDENSED COLLECTI ONS OF THERMODYNAM C FORMULAS

3S
dm
dp.
dm
jE
dm
du_
dm




BI NARY SYSTEMS OF VARI ABLE TOTAL MASS

W oy

dT dp dmi

dmi dmi dmi

3(/7, mi, mf V) = ar dp dmi
3(Te pi mi 3372) \3/1\13/2 '?jﬂz dm2
p dm i

a v 11

dr dp 3mi

ML £L 3£ 11 .1*. p-1~. p
3T * 3p dp ' dT * 3m/

3my*

dr'dp dp'dT

i}

av\? v (3
(my + mz)z[T(ﬁ) L+ cp(g)'r -

W
dm2

dmi
dmz

dm.
dm2

37
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(IV-103)



226 CONDENSED COLLECTI ONS OF THERMODYNAM C FORMULAS

35 35

= a5 45
or  dp dm 3m2
g di gm 3
3(5. my,mp V) |97 dp dm 3m2
d(T, p, mysm2) dw dm dm  3m2
dT  3p dm 3m
v ey dv
dT  dp dmi 3m2
a5 w _3s 38
= dT+dp " dp ' dT* 3m O‘ﬁg 0
L) 2 i L4
= (m + mz)z[(%) + ET‘?-(%“) } : (1V-104)
~r p T ~
Ps @ s P



Bl NARY SYSTEMS OF VAR ABLE TOTAL NMASS

95 95 dS  ds_

T dp dmi

dm dm dmi dmi
dS._mpempe 1) _ |97 G dm
3(7, Dy @1 mz) d_mz MZ d_m2 d_.

dT dp dmi dm

du du sz M

dr dp dm 4
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228 CONDENSED COLLECTIONS OF THERMODYNAMIC
ds ds |f 35S
dar dp y 312
3my dmi 3 3m
3(S, my ] dT ap i 2
3(7\ Pr > M) a dv |t 37
dar dp i 3
U du 3 W
dT dp IRi dm2
_ 3517 4 3E _ 37 4 3E\
T 3T3m, dp  dp dmy)
8 Y L ML.
dP\dm, dT 2T ' dmy) = 321
B ¥)
am,\3p 8T ~ 3p a7

= - (m + ﬂ?z)z{[(

7oV - TS) - XM )
V3n?1 T p

£),.]

T,m

FORMULAS

(IV-106)
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3 35
dT dp % 4
IB dm2
d2 e g dm2
3(S, m. Ve U) dT dp dmi dm2
3(7%p» m 9 ne) dv dv 37 dv_
du du M du
ar dp  dmi  dm

21(ML 2L ML . ML)\
dT [dmx* dp 377 * dp |

2121 .21 _IK . 2IL)
dp \3i37i* dT ~ 333/ dT )

£ 21 (21 1K _2121) _is4q
AM3x\ 3p dT dp dTlI are

= (m; + mz)z{[(ff + pf" - Tg) + o ((%1).-. + p(%)m - T(i?:
J*P 3o P

]} ] (IV-107)

I AY Ep (¥
if _B(ﬁ_)
[ );p, - " T \3p

e
m T, m
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Table V-1
Jacobi ans of extensive functions for a
bi nary system of one phase

3y Yi 2 3V Xy Z)
3(7\ p, al, m) * 3(r, p,/BX, D7y
\xp y» 2 Toptil,
w!
w
02 -1
y - F'l';],(‘g‘—z)
I'Tnp
\ ﬂ-l-;;(%‘)
1 Tvp
S = S4v (112
eau;!.'p
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Table V-2
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w , x Z d(w, x, vy, z)

ol f P1 U\ UL2) ofi $ pi BIIf 1112)

>
R mp. m
wA
w\
oy l
14 ?4-52(‘2_5)
ks T, p
> o (3l
v U+mz(ﬁ1)
» P
5 E-l-iz(%)
‘T'P
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Table V-3
Jacobi ans of extensive functions for a
bi nary systemof one phase

3V, x, v, 7). v xoyp 2
a(7\p.*i.o02) ' 3(r,p.memz)

\>\y* z T, p, V
wl

wo\
v . fa¥
= - 5(%)
Yr, p
. 7 (i)
lT!p
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Table V-4
Jacobians of extensive functions for a
binary sysem of one phase

d(w', x Z dws X, Vv, z
3(T, p, nyg my) ¥ 3(T, p, mi¢ny)

&Y r,p,d
wt \
m; - .
V3ra|/-|—’p
m, - U - m2tas )
v (&) -V(i&
\dmiJrin 3ffll/+
i» P 1t P
wfa (35
S -8G5, ¢ i)

Tvp T. p
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Table IV-5
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w x, y, 2 v, x, v, 2}
E(T’ D Ty mz) a(T; Py Ty ﬂ?;)

X»y»z 7’ p'S
wot,
' 5 - a(35)
" - aHIT,p
& ] 3§
o ¥-n)
. p
: ), -6
a"T-p 1?1?
v 8) o)
1 1

)
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Table 1V-5
Jacobi ans of extensive functions for a
bi nary system of one phase

30\ X, Vv, 7) 3(w,_Xty, 7)
3(T, p, zax ~2) ' 3(r»ponil +8ry)
My ¥a Z 7, m1.m2
w!
w
p -1
v -(m: +mz)(-g'§) .
Tl ol
(J (¢ +m:)[T(%‘TE) . +pa_lr") . ]
P I T 1
S (= + ﬂz)(gj') -
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Table IV-7
Jacobians of extensive functions for a
binary system of one phase

30/' . X, v, 2) 30, X, Y, 2
3(2\p.mlL.M) ' 3(r, p, M »iDy)
\x\>\> y» Z Tvay ¥
1}
14
p - ‘T + 5’1 (ﬁl)

T»p

)

{zy + ni2t
WP, Wi

V o d
* = o f3¥ 3V
..... + |V = ml("“" ) }T(-._
[ aJ'.‘?], T, P 8T )p' 51
= e i
« m;){[‘lf - ml(ﬁl)'r %) -
S LI -
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Table 1V-8
Jacobians of extensive functions for a
binary system of one phase

dw, Xf v.2) &sx.y.2z)
3(7\ p, n?%s @2} T 3(T, p, . 02)

VX Y, Z T, mi, U

w
p -0+ Ji;"“(g_ﬂ[ﬁ‘;r:l.)r' P
§ e i) ol ]

-(mi + i33z)|i|:(£l+ pv) - it /|®,)r ,J(«l .S|

. !
o+ {10 ([, o WU i

S

- 1
- I’<S~JT I, a)
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Table 1V-9
Jacobi ans of extensive functions for a
bi nary system of one phase

* [+2 (vt Xf v»

« !
3(Tt pt Im» OT2) * 3(7*1 p» [™x v Bz}

Xt y»z

Tt mi1 S
' - au
P -5 + ﬂ;(ﬁ
BWI)T' )
, a-(mx + m:)(%;:) .
p» #
v o f3F v
= (m +m=){[l’-m(—-= ]— o
V AN
AN
L nem fl p ap T’ yl
< v, fralf as av
~{R1 + m,){[(u -T$H -5 ((— - T(— ) (—
U 1 31!1)1.' P OFf 3 P eT , &
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Table IV-10
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w, x, v, 7) d(w, x
3(Tt pi E20x A2) ' 3T p»/nle mg)
e oM v
1
w
5
P .*..(&>”
av
, ~{@m + B2)\5—
' z(ap)r,sl
"4 o) -I-ﬂ.'!z %%1 M
u '
fl-[V-i-mz P]T(—az
GH +mz){[V+5(%) ](M) -
[S T,

[res), 1B, L)
IT.p Tym




240

Table 1V-11
Jacobi ans of extensive functions for a
bi nary system of one phase

30, Xs Vs «)

' 3(r, p,a7y.T7y)

J(vitx, y* 7
3(7%p»i0 s az)

Xr ¥ 2] T, oy U
wf
w
P i + mz(a—g )
tir, p
av av
{m + mz) [T(—-) + p(——) }
T » Hl ap ki 51

v fralf 28 av
- TS) + m;((—-) - T(—... ) \.I( \
o T.p %1 /y, p/J"ﬁ"p, Si
A 28 af
[rond), 1))
[ oil T P P * El
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Table 1V-12
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w . x, y. z)" 30» X, X» Z)
3(7, p, m, nz) ' 3(7,p, /D, m
\x,\y, z 7 S
wl\
w
2, 5038
P S+ Z(EEL)T. P
v
« (m: + mz)(S—T) .
Ds My
v o faf -
(@ +ﬂlz]{[‘r"+mz—) ATy
v &), o\ VLsi

g, > a§ E'F'
+ [S + m(ﬁ';) T, p](ﬁ)f, 51}
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Table 1V-13
Jacobians of extensive functions for a
binary system of one phase

dw, X, v, 2) 90, X, V., 2)

3(Tip, Dinnt ' 9(T» p»311»n2t

7 4 T.V,U
w.l
W
3 alf
P W), )
& 1 T P ﬁl T P
U 7Y v
(=, + mz){[(b' + pV) = oy ((%) + p(% ) )](_g.f) .
Yo, p Vo, p/1VP 7, 5,
my
r VAN Bl 1o\ n
1111 | | UWI
’
« .
I ’ | ’ | ’ | |
v - ~ -
eooflf) o-m@) (@) -8) ]
S Py "T.P IT.p IT,p
e e iy Wl g Y
FE1>_0J (U 4*.Dr.}I_>_S%* 1 —" OI'\?J"""'F"' | +.QF-; N 1
V&P, ' mf \u$®\/m.p {\Of@‘l-/ri’p M@llT_‘».P,\I
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Table 1V-14
Jacobi ans of extensive functions for a
bi nary 'system of one phase

3w’y X, v, 7) 30, X, V: 2)
3(7% ptW f /*R) * 3(7%p» 571+ @2}

\'x, vy, z

3 T%F, S
W N
p 'E(%l)wop ¥ F\;(%%'1)7%@
(mi + m2) {[ﬁ - El(’g%l)r, p](g—gl, A
fr-a@), 1))
e ara) {[u + E:(%EL)T. p}(LEp’ -
. '
H3+E(M) J( | J
L A s Tf ]
U = (@ +m ){(’g_g)p( n‘#LI-L(E ) T§)‘(%§‘)Tt p ) F((%%")T' P T(%;)T' ")]

@) foen@), -(E), @) )




244

Table 1V-15
Jacobians of extensive functions for a
binary system of one phase

3(v',x Z diw, X, v, 2)

(Mo p>Mix» B?,) ' 3(T, p, J7,02)
\'x, vz T UL S
N
W
P -53e
W) .. <<, ,
o ({2
- TS5) - ml((aﬁl)?,p 0. 1 S R PR
mi -
) 1))
aml T'D 3P T, Vl
v o= o ({30 g 37
= (= + mz){[(U - TS} + Elz((—_- ) - T(—. ) (-——
(98 p 3&1/ g pj;! TE
m;
- §+52(§§.) }p(ﬁl) }
[ a T;P ap T 51
v 2. (av o 13} 38
(m+mz){( ) u[(U—TS)——... -F(—.) -T( ) ]
v T i, e, p Balp, p  \Ep,
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Tabl e | V-16
Jacobi ans of extensive functions for a
bi nary system of one phase

d(w X, v, 7) 3{w» "y y» Z)
d(T, prwi, m) ' d(Bopt s1s mz)

\XQ» z B 871> 1112
w!
w o\
T 1
¥
\Vi (EFI_ + 4% >(| ')) -
1

U {m1 + nz)[&'p - p(% J

« ..

S (mi +mz)f{r2
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Table |V-17
Jacobi ans of extensive functions for a
bi nary system of one phase

(W, X,y 2) d(w,_x, vy, 7)
A(JT, p, nil, m) * d(T, p, M, aj)

Xr ¥ p. an V
wl
w o\
. a_;}’)
T 7- & -
m +”2)(%) o
p* nil
e a7y Yol
ren - ((aal)... ¥ P(am)r )](ar) 5
U i3 P v B By Dy
- lr-a@) )
Typ
(o, + ﬂ’z){—fg [F - 51(‘3‘?5 ) ]
Y1, p
S
- 792 3
— ks . AT (_§§) -K’Bj_%) }
-y Pr oy
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Table 1V-18
Jacobi ans of extensive functions for a
bi nary system of one phase

dw, X, v, z 30, X, V¥, 7)

3(X» pt ni 11 Mp) * HT, Pyni . «2)

Py E p»*D11 &
wf
W
~ a3
T v- o ﬁl)i,' o
- ¥
m -(@; + my) |-Cp - P(g_yz - ]
L « nrl
2 = o {75l av aF
(o) + m){[(u + 1) - ml(("—.r ) + p(—» ) ](__)
V Bm-,_ T, P 3m T, P aT s 51
57 -5(,), 1}
Yo, p
o[ o - T
(= + m,){-ﬁr(u I ml((%) - %) )}
S L T, vy
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Tabl e 1V-19
Jacobi ans of extensive functions for a
bi nary system of one phase

3V, X, V.. 7) dlw,_x, vy, 7)
3(7\ p, 32, JD2) 37T pr 113 » 182D
X y’ z p»i271»5
wi‘
w

: ),

g
« - (m + fﬂz)"TE
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Table 1V-20
Jacobians of extensive functions for a
binary system of one phase

(v, x>V, 2 dw, x, vf_27)

3(M% pi 139 /m2) ' 3(27» p» miys @2)

\ X

\y, p* mof vV
wl’
w \
T V- r‘.:’z(%
i T!P
mi (mi + @z} (-g—;)
pi i
(@) o)
U 1 Tsp b T.p D £
| e w'/3~“\ 1
""" cnl ¥V + e\a=
91: N3E, o I
~(ay + mz){%{l [F + E,(%) ]
. 4y T
S *P

545 (28 an
- [S e (aal)r. p](:BT/ 3

p» flij.-'
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) Table IV-21
Jacobi ans of extensive functions for
binary systen of one phase

a

dw, x, V¢ 2) 3(w_ X Z

3(7\ pf m ma) 3T p, ai s+
L ponir U
wf
W

aff)
T Ve =z
m (H31 4 mg) [E:'p - p(-g—;) ]
P ni
coreoffaeomn(f), -8, 1)

v Yr,op Y7o pr @

Top
SRS NB) )
P P
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Table 1V-22
Jacobians of extensive functions for a
binary system of one phase

30, X, V. 7) Mi..z)_j
/T'»ptmit 312) ' 3("» P» Als B2

\*»y* z
\ P....S
w
. 5- az(g—g,l)t p
z
2 (mi + 02)"~
{m {E‘E[v & (EE ) }
v+ 27| Vo+ BagE
y § ) Tep
- 3
. [ . mz(%; )T, p](i?)p- oy
W + BJZ)JE-E E(t}'_ i'g; + IBE'le;iI . '
J . L ) \] ' | * u |

x - (35 (14
+[S+mz(§gl)r’ J aT)p' ] J
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Table 1V-23
Jacobians of extensive functions for a
binary system of one phase

3(W\ X, v, 2)_ d(w, Xty, 2)

S(T n m m
O\l » p» JZ7Lf "*2y O”l » p, C31» CI2~

Y, p- V. U
wt
W
T Wi/, ’ KT
e vmf[0eon -5(@) o) NE)
_ T p Iy pr 1
w | ~ ‘af")
cP[V m(ﬁl oo ]}
" o - 35 3“ aﬁ
@ + mz){[(” + o)+ mz(‘—= ) +#&). NEF
( @ T, P Buu T, p aT)p' E;:I.
my -
..E’P[ff + Ez(% ) ]}
Yir b
E ' " av .4 35; a§
o[, o), o) )
S T ( 1 T,p EEI' TIP aﬁl Trp
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Table 1V-24
Jacobi ans of extensive functions for a
bi nary system of one phase

_3,_(W*X>Y»zl d(jve x, y» =3
3(7\ p, nil, ay) ' 3(T.p,ai»@2>
\ X, Y, pe ', S
Wt
T @), )
(m + mz}{%E [V - 51(% ]
m w e
v [88 :
- [E - ﬂl(’é}’l)?'p] (TT/F. m1>
- {m {E;rg [F * E’(%u%). ]
mz H 1
(Al
_{31-182 J‘T-p% rer...
- (m1 + ﬂz]{ETE [(E - Tg)(%gl)?' P - F((%%:)r jD -TlVg'fhm )T' p>]
y .
- ('g_;)p. A {(U * pV)(g—El) P - E((%S%x).r’ “ Pi\%l) T, p)]}
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Table 1V-25
Jacobi ans of extensive functions for a

binary systemof one phase

aw’!xl y Z alwi x » 7
3(1%p, m, m) ' 3(T, p» ni»iny)

Yy, z p, U S
:;
Y 5(28
T 5 g’:)T’ P - U(aﬁll)vl .
(m +mz) ~ - AU TS) - & (%—g‘)T.p - T(%%)T' p)}
@y
+[5-48). AW) -1
r’ p-+ »nil's
/= \JL‘.JP i.fr-t T 1 ﬁﬂ@'m{?,} ) _‘@%131‘ “;]
m M p r.p
+ [S’ + M(%l)'r.p] P(%)p' hh}
y {m, + mz){%g [(U - 1@)(3_:1)?' » - E((%%L)T’ P -T (%g;:)i" p)]
@) L loenE) (&), - 4&), )]}




255

Tabl e |V-26

Jacobi ans of extensive functions for a

bi nary systemof one phase

d(w _ x, v, 7) 3(RI_X Z
Tt P»/D » m2) ' Ty oy 2yy 2)
\'x,y, z r
AN
W .
57
T (m + mz)(""')
Ty
aw
=] (1 + mz)(—-)
aT D* i
. AN v (37
U (m+m,)’[ —) - +c(—) :]
T Py m P 3P T, 51
AY Ep (aF
S (m; -+ ﬂg)a[( ) + -2( )T ]
ﬁpl 51 T Tp- DE],
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Table |V-27
Jacobi ans of extensive functions for a
binary systemof one phase

3(pl' o x. v, 7) 31, % v, 2)
3(2% pt Bit 1®) ' 9(2% p» /X s @2)
\x Y, Wy Doy U
74
T + ni 2), rag;\ ) + P('g—fi) ]
LY & Pir, 5
[ 5B\
P @ emfe - o) ]
P2y
V

~-{@1 + ‘D2) Z[T\fgvj\z 5 N CT) (a_i;) . }
T L 5}

={my + 33)* [1'-‘(‘2—-}}':)2 . ¥ gc:;'a(a_f") - ]

Py
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Tabl e |V-28

Jacobi ans of extensive functions for a

bi nary system of one phase

d(w  Xf vy, 7) dw, Xx¢ vy, 2)
9(2%p, 2Si, /32) *  3(2%pt nil s Bz}
\*2y, 2z mo mit S
wf
7 e m(3)
pt Zen
o
) -{a@y + m)

v - (@ +m:}2[(%)z - +E:F. flJ
P ,

4

u (my + my)? {P(%)z

-
b @
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Table 1V-29
Jacobians of extensive fun
binary system of one

ctions for a
phase

3(V.x* v, 2

acr ,pssi1,* 2)

3(

30, x, v, 2.

r,p.iDisfi2)

My Ve 7

=({m + mz)ﬂ-(U + pVJ - nn((\
vL \

+ [V - m1(351 . p}
¥

37'n|\/m

b

-
+ 11y

37 a7

p(ﬁi)r )}(ap
itp P

14

T(ar)p' 51}

Im

m;

e

e
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Tabl e 1V-30
Jacobi ans of extensive functions for a
bi nary system of one phase

3w, Xty z) d Xt y» z
' 3(7ip-airfr12)

3C7. p. ai, Ury)

—(IH + 112;1[7 —Tn(/'ayy\ ”;ABE}
v.L Tip-*' p* nil

Ttp/ J
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Table IV-31
Jacobians of extensive functions for a
binary system of one phase

dw', Xt v* 2) dw, x, v, 7)
] 3(Ttp»#X .5 2)

3(T» p* oi# 1U2)

Xr¥r 2 Wy U, 5
]
W\
e "Naa> 23 )]ai?
—{m + m}{|(U - TS) - m{is= - Ti=% T
BAt) 13, _— (a - (3T)p.a
T
!’~ 3% '| v J
- 18 - Bl == Plaem
- l(am)r, 0J (ar)r .
. S« v el 33
— e ©2){~| I[ t =T = l\\O%;l)T,P -7 EL)T, P)}
P o -
+r§-ﬁliflf) .‘D(I") ,}
L uiolr, pJ V3rTydy
3F\? FCI I |
12, -{m + ﬂ:)z e + = \ ]
[ aT}p.Ex i (%
— - - ’} dat et st
o - v 38
v Sl w2 S V- TY - VLT A p(sg‘ L ) T(E‘)r.pn
Udv]? ERfdV], ]}
" 1




Table 1V-32
Jacobians of extensive functions for a
binary sysem of one phase

3V, % 7.2) 30.x.v.2_
a(rep,eein,fla) '

3(repsernimz)

X
<
N

fl22» Vv, U
F

E!’.‘

_|
Foin)
B
+
B
11
——
P
ot
+
o
3t
+
B
»
/;:_\\
oilar
Htl'«':t
—t
+
-
T
mlm
(=3¢
-
R
3
-]
7
.
2tas
&%
A
e

—(my + m2)? [7(3—‘;):’ 5 + EP(%E)T' 51]

{m; + mz)’{[(f:{+ PF - '13"3.') + 52((%51)“ p * ‘p(%\) T, p - -(gi;l)'r,p)]
WY L Ik@EN 1
[UWp j A 1 lap ije ]
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Table 1V-33
Jacobians of extensive functions for a
binary system of one phase

3(vEx v,2 30 X, V. 2)
3(7*tp» Ble@ma}y ' F(Tw pr@yr il
\X» y» Z 2o Ve §
w!
w >\
@oran{[FenlZ) (&)
T Tep Pe i31
5. - (3§ } v }
+ + malee -
[ 2(3 1)T, p (ap )T. 8,
T8 Ty o
(nn. + 02/_F<1L—T£ 1Ly £ 13 21'\%1)1-' p]
P
A (1), 40
-[ 4t rup pl 5,
AN
n -{m + g .- . _)T
o O : ®\3 v
(] <<_<<’l” (P + 2
-(u;+az)z{[(f+pF-T§)+§'(aﬁ +pav
a (&), o)
flap & a")r 1}
| . + —
)P' El T (ap ’ EI
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Table | V-34
Jacobi ans of extensive functions for a
bi nary system of one phase

(V. XaV, 2) i/, x*Yf_z\
3(T»p, m, 532) * 3(T\ prm, 572

\ X Y 2 s e S
W
w >
N (R (T, ) (@)
(a4 ”2){[(‘" SIS+ “2((31)1. - T(aal) ] T
T » D T, o p, nil
v = (35 a¥
- S+m;(—‘.) ]p(—) }
l: oy T. p op T, 3,
oni th @)n !;IEEJ' I; : +ST‘~\¥ 1272‘-1‘\/(33*9' ) A.».\i{g:.% ) )}
P L “ \ Ly p T.p
= ~r Bg QF
+ |5+ mg(—-: ) ]p(—) - }
[ o Ts p o7 Ty 11
2
m
........ [ * " J
(Z1 + nzjzfrff? + DF - T§\ - ;-.((a—u, ‘ - n(ﬂ \ - T(%% ) )}
v V.L \ 1t p Tt p r.p

e, %), ]
ar B 51 T ap Ts El
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Table 1V-35
Jacobians of extensive functions for a
binary system of one phase

dw.x v.2  AV.x, v.2)
ONTL p, tni, a?2) ' DT> p9 nilt niZ
\X, Y, 2 vV, U, S
) - (g + m:)Kg_E)P' 51]:(U - TS)(S_,EI)T' » - E((-g:;)ﬂp - T@%Jq- ):l
) e -d(E) i), )
i -{m + mz){:TE[(U - Tg)(a—;l)j_' , - E('g’g'l)r o - T(%;‘?;)T p)}
) JoemE) (@), <) ]
(21 + 52)2{[(3 +pV - T5) - m((g_g;),r + P(S_EI)T - T(%l )T )]
P + P P
ey . 26 ]
. ={m + @3) {r(y + PV TS) + B"((g.gl.).r’ P + P(a_]::. )T. P - T(g_g: )T.p)]
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In order to obtain the first partial derivative of any
one of the seven quantities, T, p, mom, V, U Sy wth respect
to any second quantity of the seven when any third, fourth,
and fifth quantities of the seven are held constant, one has
only to divide the value of the Jacobian in which the first
letter in the first line is the quantity being differentiated
and in which the second, third, and fourth letters in the
first line are the quantities held constant by the value of
the Jacobian in which the first letter of the first line is
the quantity with respect to which the differentiation is
taking place and in which the second, third, and fourth
letters in the first line are the quantities held constant.

To obtain the relation anpbng any seven derivatives

having expressed them in terns of the same six derivatives,

(2£) -, () (V) o (W) (a:?i)r
BT /i aqugvm. \Bmlirgp p \aml{.j 0 \3f, \

one can then elimnate the six derivatives from the seven
equations, leaving a single equation connecting the seven
derivati ves. In addition to the relations anobng seven
derivatives there are also degenerate cases in which there are
relations anong fewer than seven derivatives.

In case a relation is needed that involves one or nore
of the thermodynamic potenti al functions H =" 17 + pV,
A = U- TS G = U+ pVv- TS partial derivatives
involving one or nore of these functions can also be
calculated as the quotients of tw Jacobians, which can
t hensel ves be cal culated by the sane method used to calcul ate
the Jacobians in Tables IV-1 to |V-35.
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It will be noted that the expressions for the Jacobians
in Tables I1V-1 to [V-35 are not symetrical with respect
to the two mass fractions Si and M. If the Jacobians in

these Tables had been expréssed in terns of the derivatives

-~ a

&v dav dU dU ds . ds .
| St* MZ> alx* B 2. | an and a¥2| WthresPecttOIhe

two nmass fractions, ™ and Ty rather than in terns of the

derivati ves, gn"? , drrnf » and o;r:]c , With respect to the single
mass fraction, m; the symmetry of the expressions for the
Jacobians with respect to m and m would have been
preserved, but the Jacobians would not have been expressed in
terms of the mninum number of first derivatives. In this
case it would not have been possible to use the expressions
for the Jacobians directly to obtain a desired relation anopng

any seven first derivatives of the quantities, Tgp, Mg My

L™

V, U and 5 by elimnation of the first derivatives, -512,9
dv dv dv - W du as , ds , .
"5~» irz f ~z~zt cp9 "T3 9 7%‘ o TC * and 53 » rrom tne
op dmi ane n om i~ om om

seven equations for the seven first derivatives. Actual ly

with the use of the Jacobians in Tables IV-1 to IV-35 which

are expressed in terns of the mninmum nunber of fundanental

- -

N -
derivati ves, AV Jyg &F, Cpo q‘U, and t;{S, m spite of

[ -

the fact that these expressions are unsyraretrical with

respect tom and S,9 it does not nake any difference in the
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final result which conponent is chosen as conmponent 1 and
whi ch conponent is chosen as conponent 2. For exanple, if
one thinks of a solution of water and ethyl alcohol and if

water is chosen as conmponent 1, then from Table [V-32 one

obtains the derivative f_gS \I equal to
.20 V' U
1 [ - %/ \J - ﬁf‘; a; ag
- =+ pV—TS) ff|2((/\. ) +P("_') -*T(—) ] .
T + o ) T; p aﬁl T' p am’l T, P

Now from Table |V-29 one obtains the derivative r\]

mi» Ve U

equal to

15 4 oF - 8y - ({22 (1 28
S AN AN

1 T!P 1 T, o 1 T,p

On account of the fact that S\ +m = 1, one has
(%n% ) = “(% ) . Thus (g—g ) is also equal to

" p Ty p 2y, Ve i

IC:c

o]
i

_%[(I}J+ oV - TS) +fﬂ'1<(a ) +p(g—gz) -T(%%I)T-P)] '

lep Top

Consequently the sane value would be obtained for the partial
derivative of the total entropy with respect to the mass of
wat er regardl ess of whether water were chosen as conponent 1

or as conponent 2.



Appendi x A to Part IV

Equations for energy and entropy in the case of a
bi nary system of one phase and of variable total nass
devel oped on the basis of an expression for heat

in the case of an open system

In the author*s Carnegie |Institution of \WAshington
Publ i cati on No, 408A! equations were devel oped for energy and
entropy in the case of open systenms on the basis of an
expression for the heat received by an open system In the
case of a binary system of one phase undergoing reversible
changes of tenperature, pressure, nass of conmponent 1, and
mass of conponent 2, the heat received was shown to be

represented by the integral in the followi ng equation

T, Fa@B1e By

Q= f {(%?—:)dl" + (%g-)dp + (%gl)dml + (%z)dmz }

Dy fiye Wz T, ligs Ma

TO»pOQ/Z?E »[n2y

T»p»nt*»m;
:J E(m( +m) ZpdT + (m + my) Todp + Imydm, + fmzdmz}.
Tof Po»ffl |.-n>"2.,'| (IV—A—I)

where |w denotes the reversible heat of addition of
conponent 1 at constant tenperature, constant pressure, and

constant mass of conponent 2, and I"k denotes the reversible

! Tunell, G, Thernbdynanic Relations in Open Systens,

Carnegie Institution of Washi ngton Publication No. 408A, 1977.

268
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heat of addition of component 2 at constant tenperature,
constant pressure, and constant mass of conponent 1.2 In the
case of a binary system of one phase undergoing reversible
changes of tenperature, pressure, nass of conponent 1, and
mass of conmponent 2, the energy change was shown to be

represented by the integral in the followi ng equation

UT, p, nil*m) - WTa po, m*, nt)

T'pg/\l*mz
. e R aF}
-/{.(m|+mz)LCp-P J\dT+(m|+|T.3'2)Lp-1r.v31J dp

*
To* pos Mygy» M2y

+ [tml - PEZ%%]_ - pV + Hl] dmy
+ [z,,,z o pitdl o I;"”] iz } (IV-A-2)

where m denotes the nmass fraction of conponent 1, S, denotes
the mass fraction of conponent 2, I—T denotes the specific
enthal py of pure component 1 in equilibrium with the binary
solution across a semni permeable nmenbrane perneable only to
conponent 1, and Ft' denotes the specific enthalpy of pure
conponent 2 in equilibriumwith the binary solution across a

seni per neabl e menbrane perneable only to conponent 2.% In the

2 Tunell, G, Carnegie Institution of Wshington Publication
No. 408A, 1977, p. 40, equation (B-6), p. 42, equations
(B-10), and (B-11), p, 46, equation (B-19), and P. 47,
equation (B-20).

8 Tunell, G, Car negie Institution of WAshington Publication
Mb- 408A, 1977, p. 52, equation (B-35).
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sane case the entropy change was shown to be represented by

the integral in the follow ng equation

S(T, pp m, 1TI2) - S(Te po? N2y mzu)

Fi p, mys Mo o
1 1

g,
- f(ml +m) -jrdT+ (m +.022) -ijr dp

T
0>Po> My, » A2,

ri- w1 ri. ]
$\-£> +S'\dm. AP + S"\dm,p
L ¢ J L* J

(IV-A-3)

where 5' denotes the specific entropy of pure conponent 1 in
equilibrium with the binary solution across a sem perneable
nenbrane perneable only to conponent 1, and ‘é denotes the
specific entropy of pure conponent 2 in equi.librium with the
binary solution across a seniperneabl e nenbrane perneable only
to conmponent 2.%** 5 The derivation of these equations for
heat, energy, and entropy was based on a detailed operational
analysis of a system of three chambers imersed in a water
bath the tenperature of which could be controlled (Figure
IV-A-1). Chanbers | and Il containing pure conponents 1 and 2
were separated by seniperneable nenbranes from chanber |11,

which contained a solution of conponents 1 and 2. The

" Tunell, G, Carnegie Institution of Washington Publication

No. 408A, 1977, p. 56, equation (B-46)-.
> For an explanation of nethods for obtaining experinental
values for the |Ig% see G Tunell, I|dem pages 46 and 59-62.
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nmenbrane separating chanbers | and |1l was supposed perneable
only to conponent 1; sinilarly, the nenbrane separating
chanmbers Il and |1l was supposed permeable only to conponent
2. Wen the pressures exerted by the three pistons on the
contents of the three chanbers were changed w th maintenance
of osnotic equilibrium causing novenent of the three pistons,
and when the tenperature of the water bath was changed,
causing a flow of heat to or fromthe materials in the three
chanbers, the change of energy of the materials in the three
chanmbers, v/hich together constituted a closed system was

given by the equation

L-U = Q- W (IV-A-4)

where [/, denotes the energy of the naterials in the three
chanbers in the final state, £/, denotes the energy of the
materials in the three chanbers in the initial state, O
denotes the heat received by the materials in the three
chanbers from the water bath (a positive or negative
quantity), and Wdenotes the work done on the three pistons by
the nmaterials in the three chanbers (a positive or negative
quantity). Note that maintenance of osnotic equilibrium
required that of the three pressures in the three chanbers

only one was independent, the other two were functions of the

tenperature, the concentration in chanber 111, and the one
pressure taken as independent. The materials in the three
chanbers I, |1, and Ill, together constituted a closed system

under goi ng a reversi ble change of state. Consequently we have

2
S, - S, :f-’\ , (1V-A-5)
1
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where Si denotes the entropy of the materials in the three
chanbers in the final state and S\ denotes the entropy of the
materials in the three chanbers in the initial state. Thus
the total change in energy and the total change in entropy of
the closed system consisting of the materials in the three
chanbers were experinentally determ nable. Fi nal | y, by
subtraction of the energy changes of the pure conponents 1 and
2 in the side chanbers | and Il from the total energy change
of the materials in the three chambers, the change in energy
of the binary solution in chanber 111 as represented in
equation (IV-A-2) was derived. Likew se by subtraction of the
entropy changes of the pure conmponents 1 and 2 in the side
chambers | and Il from the total entropy change of the
materials in the three chanbers, the change in entropy of the
binary solution in chanber 111 as represented in equation
(I'V-A-3) was derived. For the details of these proofs the
reader is referred to Appendix B of the author’s Carnegie

Institution of Washington Publication No. 408A.° It is to be

noted that the only physical information wused in the
derivations of equations (IV-A-1), (IV-A-2), and (IV-A-3) in
addition to the well established thernmodynanmic relations for

closed systems, was the fact that when mass of constant
conposition is added reversibly to an open system of the sane
conposition at constant tenperature and constant pressure no

heat is added.’

6 Tunell, G, Car negie Institution of Wshington Publication
Ho. 408A, 1977, pp. 34-58.

TOCf. L.J. Gllesple and J.R Coe, Jr., Jour. Phys. Chem,
Vol. 1, p. 105, 1933, and G Tunell, Carnegie Institution of
i %bashi ngton Publication No. 408A, 1977, pp. 18-24.
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It was not necessary to nake use of any definition of
work in the case of an open system when nasses are being
transferred to or from the system in the derivation of
equations (IV-A-1), (Iv-A-2), and (I'V-A-3). However ,
according to the definition of work done by an open system

used by Goranson® and by Van Wl en® we have
dW = pdv . (1V- A 6)

In Appendix A to Part Il of this text reasons for the
acceptance of this definition of work in the case of an open
system when masses are being transferred to or fromthe system
were set forth in detail.

The correct differential equation for the energy change
in an open system when use is made of definitions of heat
received and work done in the case of open systens, was given
by Hall and Ibele in their treatise entitled Engineering
Ther nodynami cs.  They!® stated that "A general equation for

energy change in an open systemcan be witten

dE = dQ- dw+ I(e + pv) dm. (7.25)"
1

8 Gor anson, RW, Carnegie Institution of Washington
Publ i cation No. 408, 1930, pp. 39, 44.

% Van Wl en, GJ., Thernodynam cs, John Wley and Sons Inc.,
New Yor k, 1959, pp. 49, 75-77, 80

0 Hall, N.A, and WE., Ibele, Engineering Thernodynamn cs,
Prentice-Hall, Inc., Englewod Cliffs, NJ., 1960, p. 108.
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In this equation dE denotes the energy change of the open
system dQ the heat received by the open system dW the work
done by the open system e the specific energy of pure
conponent i in equilibrium with the open system across a
sen pernmeabl e menbrane perneable only to component i, p the
pressure of pure conponent i in equilibrium with the open
system across a nenbrane perneable only to conponent i, and v
the specific volume of pure conponent i in equilibrium with
the open system across a seni perneabl e nenbrane perneable only
to conponent i . This equation is consistent with equation
(I'V-A-2) of this text as well as wth the -equation of
Gllespie and Coe and with the G bbs differential equation, as

we proceed to show. According to Gllespie and Coe'?
dS = 40+ ZSian; .
i

where dS denotes the increase in entropy of an open system dQ

the heat received by the open system §J the specific entropy

of pure conmponent i in equilibriumw th the open system across
a sem perneabl e nmenbrane pernmeable only to conponent i, and
dwj the mass of conponent i added to the open system  Thus
we have
dQ = TdS —ZLSE@Z2 .
P

Substituting this value of dQ in the equation of Hall and

1 Gllespie, L.J., and JR. Coe, Jr., Jour. Chenu Phys., 1,
105, 1933.
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I bel e we have
dU = TdS - dw+ !i((/.”g + pVi - TShdnii
According to Goranson,'? Van Wlen,'® and Professor WId**
dv = pdVv
in the case of an open system Thus we obtain

du = TdS - pdV + LGdmt ,
2

wher e E:— denotes the specific G bbs function of pure conponent
i in equilibrium with the solution across a semniperneable
menbrane permeable only to conponent i. Since G bbs proved
that at equilibrium the chem cal potentials of a conponent on
both sides of a sem permeabl e nenbrane are equal and since the
chenmical potential u of a pure conponent is equal to the
specific Gbbs function of this conponent, we thus arrive at

the result

du = TdS - pdV + Zujdn; »
[

12 Goranson, RJi., Carnegie Institution of Washington
Publication No, 408, 1930, pp. 39 and 44.

13 van Wlen, op. cit, pp. 49, 75-77, 80.
U4 private comunication from Professor R L. Wld, who was

fornerly the Chairman of the Physics Department of the
University of California at Riverside.
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where y” denotes the chemical potential of component i in the
open system (solution) and dnt denotes the mass of conponent i
added to the open system W have thus denonstrated that the
equation of Gllespie and Coe and the equation of Hall and

Ibele are consistent with the G bbs differential equation.



Appendix B to Part 1V

Transformation of the work and heat line integrals from
one coordinate space to other coordinate spaces in the case

of a binary system of one phase and of variable total mass

As in the case of a one conponent system of one phase and
of variable mass it is also true in the case of a binary
system of one phase and of variable total mass that it is not
necessary to define either work or heat when nasses are being
transferred to or from the system in order to obtain the
energy and the entropy as functions of the absolute
t hernodynami c tenperature, the pressure, and the masses of the
two conponents from experinental neasurenents. Thus the
derivation of the Jacobians listed in Tables I1V-1 to I1V-35 did
not depend upon definitions of work done or heat received in
the case of a binary system of one phase and of variable total
mass when masses are being transferred to or fromthe system

For some purposes, however, it is useful to have
definitions of work and heat in the case of a binary system of
one phase and of variable total nmmss. If the conclusion of
Van Wlen and Professor WIld be accepted that it cannot be
said that work is done at a stationary boundary across which
mass is transported, then the work Wdone by a binary system
of one phase and of variable total nass can be represented by

the line integral

T op fill$ 22

v - [{sfdT . pdp . Pl + PIE< o,

Tu' Po, M Df m . (|V_B_1)
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in (T, p, .i7lg m)-space. Furthernmore it was shown in Appendix
IV-A that the heat 0 received by such a systemis represented

by the line integral

T, p, m, m
+ m3)lpdp + I dm + Imzdmz}

fo. Po. «Ho. £ 126 (1V-B-2)

in (7\ p» m, m)-space, where |, denotes the reversible heat
of addition of component 1 at constant tenperature, constant
pressure and constant nmass of conponent 2, and In}2 denot es
the reversible heat of addition of conmponent 2 at constant
tenperature, constant pressure, and constant mass of conponent
1. In order to obtain the total derivative of the work done
along a straight line parallel to one of the coordinate axes
in any other coordinate space one obtains from Tables V-1 to
IV-35 the partial derivative of the volume with respect to the
quantity plotted along that axis when the quantities plotted
along the other axes are held constant and one nultiplies this
partial derivative by the pressure. The total derivative of
the heat received along a straight line parallel to one of the
coordi nate axes in any other space, on the other hand, cannot
be obtained by multiplication of the partial derivative of the
entropy by the absolute thernmodynanmic tenperature when
reversible transfers of masses to or from the system are
involved. In such cases the total derivatives of the heat
received along lines parallel to coordinate axes in any
desired coordinate space can be derived in terns of the total

derivatives of the heat received along lines parallel to the
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coordinate axes in (T, p, m, m) -space by transformation of

the heat line integrals by an extension of the nethod set

forth in Appendix C to Part |I1. Following is an exanple of
such a transfornmation. In the case of a binary system of one
phase and of variable total nmass the heat line integral

extended along a path in (A/ni >tf?2»F)-space is

Nm,mgs ¥

CH(Ge (B> (£, @

Tyting m
Tpe m, §1B2 » Vo

Ty wom Mgs v

=f (m1 + mz)EvdT + (g;%l)dml + (3_52)0‘512 + Ev-dV} .

T' figs V T’ Ty V
Toym 0 "
° (1V-B-3)
The derivatives ( 8) , (f) , (F) ,
Wyl iiZs ¥ s iz ¥ +
and (3%1] can then be evaluated as quotients of two
* TR6l Hi my

determ nants. Thus we have
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d 4o 49 d
dmi i dmi gm
ar dp dmi  dm2

dp2  dm, 377, dm;
"ST 8p  dmy1  ame

av av dv dav

ar dp dmi  dm2
() = (i + m)E = -
Tys mzs V a, d di 87T
dr dp omy  am,
dmi i 3my  Im
ar dp dmi  dm,
dm2 dm, dm., dm
ar dp dmi 3272
& Aoy K

ar dp dmi 37,

gt OAREAY
LBl [H o -l

- {3V v (3
(m + my)°c (_) - (my + m2)? (—) }
PAop T, e PAST D- @y

+{(m1 + mz)(%)T . }
y M3

{

(IV-B-4)
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d_ do do 4@
dT dp  dmi dm2
dT AT dT T
dT dp 37 377,
dn2 dmy dm. 37,
ar dp am i
dm2
v 3
ar @ oz |
).,
R Y dmi dni dmi am
dT dp dm, 37,
3T 9T 3T BT
dT dp dmi 3722
dm?2  dm, dmy a7,
daT ap I 3,
dv avr dv. 3
dr dp ami  dm2
= . - Q
L. deL J dpl 3my) dmlll__ 3p {7 dm, ]}
siolo] ~of- &L j 4 2mi_ SV 4o
om am P B
- - au i
= {(ml + mz)lp [V + mg(-a-gl)r :]l =gy, G+ my) (g#)u 1
,p T

(IV-B-5)
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d0 dQ do 4o
dT dp dmi dm2
3T dT 2ar 3T
dT dp dmi dm2
dmi  dmi  dmi dmi
dT dp dmi dm2
v v v v
(Q_Q) _ dT de dmi dm2
/1, an, v W o a2
dT ¢ dmi  dm2
3T 8T 3T 3T
dT dp dm dm2
dni dni dm dnmi
dT dp dm dm2
dv dv dv dv
dT dp dm dm

Houm2[]-5-2]

fold-ofe)eo ] L g]

v . A
{- G+ o0, (v ~a(TT ) mmmy )

'T,p"

. { /:\ﬁ) }
* (m+tfa)tg] s
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(1V-B-6)
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o do A2 X
ar AP dmi  dm2

dz H da 41
dT 3p dmy  3i77,

dmi dmi  dmi 372
dar  dp dmi 372

S22 dm2 dm2 dm2
(d ) dT dp 37 dmy,
av :

To 10 2 K 1K av_ 3¢
daT 3p dm1l dm2

3T 3T dr dT
dT 3p dml dm2

3772l 3i77i 3771 3/771
3T 3p 77 3T

dm, dm, dm, 9m,
3T 3p I IR

(2[££
[or +a7y) oo o)
{1

(IV-B-7)
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The corresponding values of the partial

entropy obtained from Tables |V-26,
as follows:

]

(=)

S (ov
I(ﬂh + m,)r—:,‘.l(“—)
17>»/732»" n L

I'V-10,

derivatives of the
V-7, and IV-6 are

A D)

»-N

(IV-B-8)

T, el T mny Ty m
e ) 317 817
= v+ mz('-: ) K_)
{[ Bm1 T, p BT D Hl
AR
aml T, P iz ap T, E’;l ap T, ﬂ?l

(IV-B-9)



286 CONDENSED COLLECTI ONS OF THERMODYNAM C FORMULAS

%) {{7-#%) &)
88 _ - #
iy v By, N o, iy,

Ty Ds ) Ty m Tow
57 1_" WL
= {(a_) 4 —ini\(ir-zz ) ]
p, m T p
r ir \" 1
+ [%’:‘r"“ + S"](-iﬁl\ }; \(BM )
ﬂ‘:’f’l p T9 "51
(1V-B-10)
' Fromequations (1V-22) and (IV-23) we have
. — e gy iy ow ——— . — 2 = ] "—».-‘)
dm11T7’ o i \dm; /Tf 0 \dmsz’ oo H I \Bml 7t 7
Also from equation (XV-A-3) we have ("5=) = -=2A + B
\ dmljm. P+ 2 1
and 1 T°"/ "~ "7~ + 5%  where S denotes the specific
vz T, Dy M1 -

entropy of pure conponent 1 in equilibrium with the binary
solution across a sempermeable menbrane permeable only to
conponent 1, and S® the specific entropy of pure component 2 in
equilibrium with the binary solution across a semperneable
menbrane perneable only to conponent 2,
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and

* (as) _L iy e

LemMyy Wy Dy iy . T, my
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(iv-Bii)

Thus it follows from (1V-B-4), (IV-B-7), (I1V-B-8), and

(1V-B-11) that

Mys D2 v

but, finally, it also follows from (IV-B-5),

(1V-B-9), and (I1V-B-10) that

5),.,, ¢ )
(dml T’ L'IpV aml T! mZ'V

(f) ey

bl
'T,ﬂll’v P T

(IV-B-12)

(1V-B-U)

(1V-B-6)

(IV-B-14)

(1V-B-15)



Appendi x Cto Part IV

Di scussion of the tables of thernodynam c.fornulas for
mul ti-component systenms presented in Carnegie Institution

of Washi ngton Publication No. 408 by RW Goranson

On account of the fact that Goranson accepted the
erroneous assunption of Sir Joseph Larnor! that in the case of

the G bbs differential equation,
dUu = TdS - pdV + Ucfoi + Vidm ... + V,dmy

TdS represents dQ and that dQ represents an infinitesimal
amount of heat which is acquired in a specified state of the
system at a tenperature Ty Goranson's basic equations for the
energy and the entropy of a nulti-conmponent system are
incorrect. Goranson's equation for the energy change of a
bi nary system undergoi ng changes of tenperature, pressure, and

masses of the two conponents

WT, p, Wf 072) - yTQ po* /mo.ng)

Topom >m
R aJ{ | . | aT,l
:"Ji(m +ra2) ,{\-p " Pg-AJ":I-(n] +/\2) |lp' PJI"J.Jp
Tot Po, iZ%i0> 712
(IV-C1)

mlcu
th=r

- - - e - ] 2
-pV & U\dm + \lmp + pmt - pVvV + I\/lz\dmg},
i _ g

+[£"”1'PE‘ ) ] L

! Larnor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Cor anson, R W, Car negi e Institution of Washi ngt on
Publication No. 408, 1930, the first equation in 832 on page
48.

288
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wher e Il denotes the reversible heat of addition of
conponent 1 at constant tenperature, constant pressure, and
constant mass of conponent 2, L, denotes the reversible
heat of addition of conponent 2 at constant tenperature,
constant pressure, and constant mass of conponent 1,
denotes the mass fraction m/(m + m), m denotes the mass
fraction m/(m + m), U denotes the chenical potential of
component 1, and U2 denotes the chenical potenti al of
component 2, should be replaced by equation (IV-A-2) of this
text which is repeated here as aquation (IV-C 2)

ur, pr omi, m) - UTe po, Mg , ITiy)

T, pt OTL» M2

=/ f(m 4- n}l\cp- P"fj\dT+(m’1 +mz)\LIp- pj"\Jdp

Too Par mlny mzn

[

Y o - aF o wn T
"'[{m; - pmzys - pV + H]dml +|:£m2 + phimE - oV + HJ\dng\ ,
(1V-G2)

where H and H denote the specific enthalpies of the pure
conponents 1 and 2 in equilibrium with the solution across
sem per meabl e menbranes perneable only to conponents 1 and 2,
respectively. Simlar corrections are to be applied in the
incorrect equation for the energy U in the case of a
mul ti-conponent system on page 60 of Carnegie Institution of
Washi ngt on Publication No. 408 [equation (1) in 841].
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Li kewi se CGoranson's equation for the entropy change of a
bi nary system undergoing reversible changes of tenperature,
pressure, and masses of the two components, the first equation
in 852 [equation (2)] on page 52 of Carnegie Institution of
Washi ngt on Publication No. 408

ibhi» pi IH 9 @) - BN\J- 0t Po» Al ,* mlpa

Tep»m At m -
J"'r b .ER
= ](m; + mz)-?ﬂT + (@1 + B2) 7 dp

To Po, M s mz

I I
+ A dwi +-2r2 dm } (IV-C-3)

should be replaced by equation (IV-A-3) of this text v/hich is

repeated here as equation (IV-C-4)
S(Tep, M, m) - S(Tg Pe M1,» @2,)

T, pr m¢ m

(

-

& J
:,/ ﬂ (f1% + m)-j'rdT + (an +mz)—f?-dp

et

To' PO’ mlu' mzu

e . f ex
+{?"’=+S':|dm1+“e$3\dn§\\, (1V-C 4)
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where S' denotes the specific entropy of pure conponent 1 in
equilibrium with the binary solution across a seniperneable
nenbrane perneable only to conponent 1, and S" denotes the
specific entropy of pure conponent 2 in equilibrium with the
bi nary solution across a seni pernmeabl e nenbrane perneable only
to conmponent 2. Similar corrections are to be applied to the
incorrect equation for the entropy S in the case of a
mul ti-conmponent system on page 64 of Carnegie Institution of
Washi ngton Publication No. 408 (first equation in 843).

In Goranson's Tables of Thermpdynami ¢ Rel ations for First
Derivatives expressions are listed such that any first
derivative of one of the quantities, absolute thernodynanic
tenperature, pressure, ness of a conponent, volune, energy,
entropy, G bbs function, enthalpy, Helmholtz function, work,
or heat with respect to any second of these quantities,
certain other quantities being held constant, should be

obt ai nabl e in terns of t he st andar d derivatives,

(@) (dv) . (dv)
fl;n

3p 4 ! * & denoting

1» £21t oo, p» 071t .o« fl2, N1 opf IUF

all the conmponent nmsses except ral, (H + ... + m)Chi
Irrlj* /c =1, ...,n» and ]i®, k = 1» . «.»n, by division of one
of the listed expressions by a second listed expression, the
same quantities being held constant in each of these two
listed expressions.

The expressions listed by Goranson for first derivatives
in his Goups 1-8 are for the case in which all masses are
held constant and are the sane as the expressions listed by
Bridgman for this case and the sane as the Jacobians listed in

Table 1-1 of this text. Unfortunately very nmany of the
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expressi ons
derivatives (G oups

t hat

first

erroneous assunption

listed by Goranson
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for
his

hi s

are

remai ning G oups
by
reversible

in
162)
TdS when there

9 - i nval i dat ed

dQ =

is

Thus for in

and S are held constant

transfer of mass as well as heat. exanpl e

Goranson's Group 18 in which p, m,

the foll owing expressions are | i sted:

G oup 18
(According to Goranson, Carnegie Institution of Washington
Publication No. 408, p. 181)

p, /2> S constant
CoIE -%’Ek
(dmp) = (o 4+ ouu 4 mn)i.
vy = _!_??k ¥, p(a, fonet ) g_;k
O = Blg gre mv s mn)f;ﬂ[uk - p%;,‘%k]
(36) = %[szmk Fomy o+ . 4 m)oix ]
(3H) = %,(ml + + mn)E’puk
(34) = % [Jmk(s + pf )_+ g + ...+ mn)ap(uk - p%ﬁk)]
@) = pim gy Tim ) ;ézk
(dQ =0
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The corrected expressions for this group when account is taken
of the equation of Gllespie and Coe are given in the

following table

(Bmy)

(ov)

(aU)

(36}

(3f)

(24)

(W)

n

Goup 18
(Corrected by & Tunell)
Ps Mg S constant

- o= _ﬁk_gk
k T
g
(1111+...4.m,-,)—34rEl
_ﬁ M. EPQI + ... fan) 8V
dmp 3T ™ - Sy,

(_ﬁk_ §k)ﬂ+5p(m1 + ... + mg) IV
T aT T amy,

as 3v p av
P3my, 3T + (2 + ou. @) [uk - pamk]

{ w c
p(—mk +Sk)ﬂ-+ (m + ... +mn)—]g[uk—p-a-zj|

T aT omy
35 CpHlie
l: amk+(ml-t- cee + my) T ]

=

= &1;(571 + oo+ B

y & v
-_— (S + pa—T)+ {m + ... + mn)—,ﬁ—’(uk - p'g;k)

%j/(lmk + TSk (S + P%)"' (i + ..Q-Ifm) A Lrvfc.. p%:?k]i

L v g
P(?gk + Sk)aV plmy + ... + @;) 3V

?T T omy,

—(m1 + ... F mn)EPShk
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In the corrected Table for ‘Goup 18, S denotes the specific
entropy of pure conponent k in equilibrium with the nulti-
conponent solution across a sem perneabl e menbrane perneabl e
only to conponent k*3 In a good many cases Goranson's
expressions involving the term Imkcan be corrected by the
substitution of (I m + ék) for ImK. However, in sone cases
this substitution does not nmake the necessary correction.

In conclusion it may be noted that the principal
differences between Coranson's Tables and the present

author's Tables are caused by Goranson's erroneous assunption

{36 ° [ :

t hat I\—@S i = -, m denoting all the conponent
LmAT, p’ m‘j‘: -

masses except O L, whereas'in reality I( i 1= 3 = ~7yrv* +XE'-_>%

and by CGoranson's use of 3n + 3 standard derivatives, whereas
in reality all the partial derivatives with respect to the
various thermodynami c quantities can be expressed in terns of

3n fundanental derivatives, as Coranson hinsel f recogni zed. **

5 It may be noted that the expressions in the table for G oup
18 as corrected by the present author are consistent with the
expressions in Table IV-22 of this text, although they differ
in appearance fromthe expressions in Table |V-22.

kK Goranson supplied an auxiliary table (Table A on page 149
of Carnegie Institution of Washington Publication 408) which
is intended to permt the expression of the 3n + 3 standard
derivatives in terms of 3n fundanmental derivatives and the
masses of the components. However, Goransonfs Table A is also

partly invalidated by his i ncorrect assunption t hat
S lm
i = —_k

Fo



