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Preface

A collection of thermodynamic formulas for a system of

one component and of fixed mass was published by P.W. Bridgman

in 1914 in the Physical Revue and an emended and expanded

version by him was published by the Harvard University Press

in 1925 under the title A Condensed Collection of

Thermodynamic Formulas. In 1935 A.N. Shaw presented a table

of Jacobians for a system of one component and of fixed mass

and explained its use in the derivation of thermodynamic

relations for such a system in an article entitled "The

Derivation of Thermodynamical Relations for a Simple System"

published in the Philosophical Transactions of the Royal

Society of London. A collection of thermodynamic formulas for

multi-component systems of variable total mass by R.W.

Goranson appeared in 1930 as Carnegie Institution of

Washington Publication No. 408 entitled Thermodynamical

Relations in Multi-Component Systems. Unfortunately, Goranson

had accepted the erroneous assumption made by Sir Joseph

Larmor in his obituary notice of Josiah Willard Gibbs

(Proceedings of the Royal Society of London, Vol. 75, pp.

280-296, 1905) that the differential of the heat received by

an open system is equal to the absolute thermodynamic

temperature times the differential of the entropy, dQ = TdS.

In consequence of this error Goransonrs basic equations for

the energy and the entropy of a multi-component system are

incorrect. In 1933 L.J. Gillespie and J.R. Coe, Jr., in an

article published in volume three of the Journal of Chemical

Physics showed that in the case of an open system, "the

complete variation of the entropy, for simultaneous reversible

transfers of heat and mass, is

.;,T 0
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In this equation dS denotes the increase in the entropy of the

open system, dq the amount of heat received by the open

system, T the absolute thermodynamic temperature, sx the

entropy of unit mass of kind 1 added to the open system, and

dm the mass of kind 1 added to the open system. This

equation is inconsistent with GoransonTs basic equations for

the energy and the entropy of a multi-component system and is

also inconsistent with very many .expressions in his tables for

first and second derivatives in the case of a multi-component

system. Gibbs showed in his memoir entitled "On the

Equilibrium of Heterogeneous Substances" (Trans. Conn. Acad.

of Arts and Sciences, Vol. 3, pp. 108-248 and 343-524,

1874-78) that it is possible to determine the energy and the

entropy of a multi-component system by measurements of heat

quantities and work quantities in closed systems. On this

basis, the present author made a detailed analysis of the

measurements necessary to obtain complete thermodynamic

information for a binary system of one phase over a given

range of temperature, pressure, and composition without

involving definitions of heat or work in the case of open

systems, which was published in a book entitled Relations

between Intensive Thermodynamic Quantities and Their First

Derivatives in a Binary System of One Phase (W.H. Freeman and

Company, 1960.) In this book the present author also

presented a table by means of which any desired relation

between the absolute thermodynamic temperature T, the pressure

p, the mass fraction of one component m , the specific volume

V, the specific energy U, and the specific entropy S, and

their first derivatives for a binary system of one phase can

be derived from the experimentally determined relations by the

use of functional determinants (Jacobians).
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In the present work, tables of Jacobians are given for

one-component systems of unit mass and of variable mass and

for binary systems of unit mass and of variable total mass by

means of which relations can be obtained between the

thermodynamic quantities and their first derivatives. An

explanation of the experimental measurements necessary to

obtain complete thermodynamic information in each of these

cases is also provided. The table of Jacobians for the case

of a one-component system of unit mass is included for

comparison with the other tables of Jacobians, because the

Jacobians in the tables in the other three cases reduce

essentially to those in the table for the case of the

one-component system of unit mass when the masses are held

constant. The Jacobians in the table in the present text for

the case of a one-component system of unit mass are the same

as the expressions in Bridgman!s tables for this case. The

Jacobians in the tables in the present text for the case of a

binary system of unit mass differ slightly in form from those

in Table 1 of this author's book entitled Relations between

Intensive Thermodynamic Quantities and Their First Derivatives

in a Binary System of One Phase. It has been found that by

elimination of the special symbols £i and o*i for (-^ J
1711 p

and f-rr? ) and adherence to the symbols ^^p J and

u
 l

 T9 p Wl r, p
/ dS \
f -~T? J a simpler and more perspicuous arrangement of the

mi T, p

terms in the Jacobians results in this case. The Jacobians in

the new tables in the present text for the case of a binary

system of variable total mass differ very much from the

expressions in the tables in Carnegie Institution of

Washington Publication No. 408 by R.W. Goranson. Very many of
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the expressions in Goranson's tables are incorrect on account

of his erroneous assumption that dQ = TdS in the case of

open systems when there is simultaneous reversible transfer of

both heat and mass. Furthermore, Goranson's expressions

in his tables for first derivatives in such cases are not

formulated in terms of the minimum number of derivatives

chosen as fundamental as he himself recognized.

As might be expected there is a considerable parallelism

between the Jacobians in the tables in the present text for a

one-component system of one phase and of variable mass and

those in the tables in the present text for a binary system of

one phase and of unit mass. There is also a partial

parallelism between the Jacobians in the tables in the present

text for the two cases just mentioned and those in the present

text for the case of a binary system of one phase and of

variable total mass. Thus for example in the case of a one-

component system of one phase and of variable mass we have

3(S, V, U) IJZJ ̂

where 5 denotes the total entropy, V the total volume, U the

total energy, T the absolute thermodynamic temperature, p the

pressure, M the mass, S the specific entropy, V the specific

volume, U the specific energy, and cV, the heat capacity at

constant pressure per unit of mass. For comparison in the

case of a binary system of one phase and of unit mass we have

3(5, V, U)
1 \Am«J \umif m \uujt\i m

t P I t p T*
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Correspondence of Tables of Jacobians

Part I
Table 1-1

1

1

1

1

1

Part II
Tables II-l
to 11-15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Part III
Tables III-l

to 111-15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Part IV
Tables IV-1
to IV-35

1 & 2

6

7 & 10

8 & 11

9 & 12

16

17 & 20

18 & 21

19 & 22

26

27

28

29 & 32

30 & 33

31 & 34

3

4

5

13

14

15

23

24

25

35
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where m denotes the mass fraction of component 1, which is

equal to m , the mass of component 1, divided by the sum of m1

and m2t m2 denoting the mass of component 2.

Furthermore in the case of a binary system of one phase

and of variable total mass we have

3(5, mlt V, U)
3(7% p, mi, /B2)

Also we have

3 ( S , 1712, F, U)
3 ( T , p , m i , cia

The last factor in each of these four Jacobians is the same.

In the case of the next to the last factor in each of these

Jacobians there is some parallelism; thus the next to the

3(5, V, U)
last factor in the case of the Jacobian 3(T, p, M) ^s

v*» v / \j> ^

[U + pV - TS] which is equal to the specific Gibbs function G

G
or -j. The next to the last factor in the case of the
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)
Jacobian

3(5, V, U) J
± 1 P

\J

f \
which is equal to I dnii) • Finally the next to the last

factor in the case of the Jacobian TTT-ZT—*-*—2 N
a K J- • p 9 m i , m 2 )

i s

which is equal to and the next to the last

factor in the case of the Jacobian ^> ̂ 2>—»

oyl * p9 mi f m2)

which is equal to (£J^ It is to be noted that

in all of these four Jacobians a simplification would result

if use were made of the Gibbs function G and its derivatives;

however, in the tables this would introduce more first

derivatives than the minimum number of fundamental

derivatives in terms of which all first derivatives are

expressible. If it is merely desired to calculate a

particular derivative as the quotient of two Jacobians, the

introduction of the Gibbs function G (likewise the

introduction of the enthalpy, H = U + pV, and the Helmholtz

function, A = U - TS) in the expressions for the Jacobians

would cause no difficulty. On the other hand if it is

desired to obtain a relation among certain derivatives by

expressing them in terms of the minimum number of fundamental
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derivatives and then eliminating the fundamental derivatives

from the equations, the introduction of the Gibbs function G

(or the enthalpy H or the Helmholtz function A) in the

expressions for the Jacobians would defeat the purpose.

The basic theorem on Jacobians that is needed in the

calculation of derivatives of point functions with respect to

a new set of independent variables in terms of derivatives

with respect to an original se.t of independent variables was

stated by Bryan (in Encyklopadie der matematischen

Wissenschaften, B.G. Teubner, Leipzig, Bd. V, Teil 1, S. 113,

1903), and is mentioned (without proof) in a number of

textbooks on the calculus. Proofs of this theorem in cases of

functions of two independent variables and functions of three

independent variables are given in Appendix B to Part I and

Appendix C to Part II of the present work. In the case of

transformations of line integrals that depend upon the path

from one coordinate system to another coordinate system, the

Jacobian theorem does not apply. To cover this case a new

theorem is needed. The new theorem developed by the present

author for the expression of the derivatives of a line

integral that depends upon the path along lines parallel to

the coordinate axes in one plane or space in terms of the

derivatives of the line integral along lines parallel to the

coordinate axes in other planes or spaces is stated and proved

in Appendix B to Part I and Appendix C to Part II of the

present work (this theorem is expressed by equations (I-B-36)

and (I-B-37) in Appendix B to Part I and equations (II-C-63),

(II-C-64), and (II-C-65) in Appendix C to Part II). It is a

pleasure to acknowledge my indebtedness to Professor

C.J.A. Halberg, Jr., and Professor V.A. Kramer, both of
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the Department of Mathematics of the University of California

at Riverside, who have kindly examined my proof of this

theorem carefully and in detail and who have confirmed its

correctness. I wish also to express my gratitude to Mrs.

Sheila Marshall for carefully and skillfully typing the

manuscript of this book in form camera-ready for reproduction

by offset photolithography and to Mr. David Crouch for making

the drawings for Figures II-l, II-A-1, II-A-2, and IV-A-1.

George Tunell

Santa Barbara, California

August 1984
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Part I

Relations between thermodynamic quantities and

their first derivatives in a one-component system

of one phase and of unit mass

Introduction

In consequence of the first and second laws of

thermodynamics and the equation of state of a one-component

system of one phase and of unit mass there are very numerous

relations between the thermodynamic quantities of such a

system and their derivatives. Bridgman1 devised a table of

functions by means of which any first derivative of a

thermodynamic quantity of such a system can be evaluated in

terms of the three first derivatives, (—) , (—] , an(* ^p>

together with the absolute thermodynamic temperature and

the pressure, as a quotient of two of the tabulated

functions. The equation among any four first derivatives

can then be obtained by elimination of the three derivatives,

(JL£ ) 9 ( —) , and Cp , from the four equations expressing

the four first derivatives in terms of the three derivatives,

*1\ _ (W\ f and cp.

1 Bridgman, P.W., Phys. Rev., (2), 3, 273-281, 1914, also A
Condensed Collection of Thermodynamic Formulas, Harvard
University Press, Cambridge, 1925.

1
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Bridgman's table has been found very useful and has

become well known. The functions in Bridgman's table can be

derived by a simpler method, however. The theorem upon which

this method is based had been stated by Bryan,2 but a proof of

this theorem is not included in the article by Bryan. In the

following pages the functions tabulated by Bridgman are

derived by the method of Jacobians explained by Bryan and the

Jacobian theorem is proved.

Equation of state of a one-component system of one phase

The principal properties of a one-component system of one

phase and of unit mass that are considered in thermodynamics

are the absolute thermodynamic temperature T, the pressure p,

the specific volume 7, the specific energy U, and the specific

entropy 5. It has been established experimentally that the

temperature, the pressure, and the specific volume are related

by an equation of state

*(p, V, T) = 0. (1-1)

Even if an algebraic equation with numerical coefficients

cannot be found that will reproduce the experimental data for

a particular one-component system within the accuracy of the

measurements over the entire range of the measurements, the

equation of state can still be represented graphically with

such accuracy, and numerical values can be scaled from the

graphs.3

Bryan, G.H., in Encyklopadie der matematischen
Missenschaften, B.G. Teubner, Leipzig, Bd, V, Teil 1, S. 113,
1903.

3 Deming, W.E., and L.E. Shupe, Phys. Rev., (2), 37, 638-654,
1931; York, Robert, Jr., Industrial and Engineering Chemistry,
32, 54-56, 1940.
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Work done and heat received by the system

One may plot the values of the temperature T and the

pressure p of the system in a series of states through which

the system passes, laying off the values of T along one

coordinate-axis and the values of p along the other

coordinate-axis. The points representing the series of states

then form a curve, which, following Gibbs^ one may call the

path of the system. As Gibbs further pointed out, the

conception of a path must include the idea of direction, to

express the order in which the system passes through the

series of states. With every such change of state there is

connected a certain amount of work, W, done by the system, and

a certain amount of heat, Q, received by the system, which

Gibbs5 and Maxwell6 called the work and the heat of the path.

Since the temperature and pressure are supposed uniform

throughout the system in any one state, all states are

equilibrium states, and the processes discussed are reversible

processes.

The work done by this system on the surroundings is

expressed mathematically by the equation

V

W = JpdV. (1-2)

Vo

4 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
2, 311, 1871-73, or Collected Works, Longmans, Green and Co.,
New York, 1928, Vol. 1, p. 3.

5 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
2, 311, 1871-73, or Collected Works9 Longmans, Green and Co.,
New York, 1928, Vol. 1, p. 3.

6 Maxwell, J. Clerk, Theory of Heat, 10th Ed., Longmans,
Green and Company, London, 1891, p. 186.
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The value of this integral depends upon the particular path in

the (p» tO-plane, and when the path is determined, for

example, by the relation

P = ftf), d-3)
the value of the integral can be calculated.

If the path is plotted in the (T, p)-plane the work done

by the system, W, may be obtained by transformation of the

integral in equation (1-2)

T.P

To, Po

and the path may be determined in this case by the relation

p = *(T). (1-5)

Similarly the heat, 0, received by the system,

T,P

Q = jicpdT +Ypdp\ , (1-6)

TQ f PQ
may be calculated provided the heat capacity at constant

pressure per unit of mass, cp, and the latent heat of change

of pressure at constant temperature per unit of mass, /«, are

known functions of T and p and the path is determined by

equation (1-5). The integrals in equations (1-4) and (1-6)

are line integrals7 that depend upon the particular choice of

the path.

7 For the definition of a line integral, see W.F. Osgood,
Advanced Calculus, The Macraillan Company, New York, 1925, pp.
220, 221, or R. Courant, Differential and Integral Calculus,
translated by J.E. McShane, Blackie & Son, Ltd,, London, 1944,
Vol. 2, pp. 344, 345.
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First and second laws of thermodynamics applied to a

one-conponent system of one phase and of unit mass

The first law of thermodynamics for a one-component

system of one phase and of unit mass traversing a closed path

or cycle is the experimentally established relation

${dQ - dW} = 0.8 (1-7)

Replacing <PdQ and $dW by their values from equations (1-4)

and (1-6) in order that the integral may be expressed in terms

of the coordinates of the plane in which the path is plotted,

one has

/{[*„ - P(if) y • [rp - P(f

8 Blondlot, R., Introduction a l'Etude de la Thermodynamique,
Gauthier-Villars et Fils, Paris, 1888, p. 66; Bryan, G.H., op.
cit., p. 83; Poincare, H., Thermodynami que, Second Edition,
Edited by J. Blondin, Gauthier-Villars et Cie, Paris, 1923, p.
69; Keenan, J.H., Thermodynamics, John Wiley & Sons, Inc., New
York, 1941, p. 10; Allis, W.P., and M.A. Herlin,
Thermodynamics and Statistical Mechanics, McGraw-Hill Book
Co., Inc., New York, 1952, p. 67; Schottky, W., H. Ulich, and
C. Wagner, Thermodynamik, die Lehre von den Kreisprozessen9
den physikalischen und chemischen Veranderungen und
Gleichgewichten, Julius Springer, Berlin, 1929, pp. 14-15.

Lord Kelvin in his paper entitled "On the dynamical
theory of heat, with numerical results deduced from Mr.
Joule's equivalent of a thermal unit, and M. Regnault's
observations on steam" (Trans. Roy. Soc* Edinburgh, 20,
261-288, 1851) made the following statement: "Let us suppose
a mass of any substance, occupying a volume v, under a
pressure p uniform in all directions, and at a temperature t,
to expand in volume to v + dv, and to rise in temperature to
t + dt. The quantity of work which it will produce will be

pdv;
and the quantity of heat which must be added to it to make its
temperature rise during the expansion to t + dt may be denoted
by

Mdv + Ndt,
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From equation (1-8) it follows that the integral

To» Po

is independent of the path and defines a function of the

The mechanical equivalent of this is
JiMdv + Ndt),

if J denote the mechanical equivalent of a unit of heat.
Hence the mechanical measure of the total external effect
produced in the circumstances is

(p - JM)dv - JNdt.
The total external effect, after any finite amount of
expansion, accompanied by any continuous change of
temperature, has taken place, will consequently be, in
mechanical terms,

/{(p - JM)dv - JNdt} ;

where we must suppose t to vary with v, so as to be the
actual temperature of the medium at each instant, and the
integration with reference to v must be performed between
limits corresponding to the initial and final volumes. Now
if, at any subsequent time, the volume and temperature of the
medium become what they were at the beginning, however
arbitrarily they may have been made to vary in the period,
the total external effect must, according to Prop. I., amount
to nothing; and hence

(p - JM)dv - JNdt
must be the differential of a function of two independent
variables, or we must have

dip - JM) d(-JN) M.
dt = dv ( 1 )'

this being merely the analytical expression of the condition,
that the preceding integral may vanish in every case in which
the initial and final values of v and t are the same,
respectively,n And elsewhere in the same paper Lord Kelvin
wrote: "Prop, I. (Joule).-When equal quantities of
mechanical effect are produced by any means whatever, from
purely thermal sources, or lost in purely thermal effects,
equal quantities of heat are put out of existence or are
generated/1
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coordinates; this function, to which the name energy is given

and which is here denoted by the letter U, is thus a function

of the state of the system

U(T, p) - U(T0, p0) =

Kb -'$)>• & - 4\] 4 • «-»>
ro» Po

The second law of thermodynamics for a one-component

system of one phase and of unit mass traversing a closed

reversible path or cycle is the experimentally established

relation

f- = 0 , 9 (1-10)

where T is the temperature on the absolute thermodynamic

scale. Expressing this integral in terms of the coordinates

of the plane in which the path is plotted, one has

(I-ll)

9 Clausius, R., Die mechanische Warmetheorief Dritte aufl.,
Bd. I, Friedrich Vieweg und Sohn, Braunschweig, 1887, S. 93;
Blondlot, R., op. cit., p. 66; Vanft Hoff, J.H., Physical
Chemistry in the Service of the Sciences9 English Version by
A. Smith, University of Chicago Press, Chicago, 1903, pp.
21-22; Schottky, W., H. Ulich, and C. Wagner, op. cit., p. 17;
Gibbs, J. Willard, Proceedings of the American Academy of Arts
and Sciences, new series, 16, 460, 1889, or Collected Works,
Vol. 2, Longmans, Green and Company, New York, 1928, p. 263.
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From equation (1-11) it follows that the integral

T.p

To, p0

is independent of the path and defines a function of the

coordinates; this function, to which the name entropy is given

and which is here denoted by the. letter f>, is thus a function

of the state of the system

S(T,p) - S(To,po) =

From equation (1-9) it follows directly10 that

\df) = P " P\dT)

P Pand

From equation (1-12) it follows likewise that

(
p

and

(ffl - k •

10 For the proof of this theorem, see W.F. Osgood, op. cit.,
pp. 229-230, or R. Courant - J.E. McShane, op. cit., Vol. 1,
pp. 352-355.
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A necessary and sufficient condition11 for equation (1-9)

to be true is

fdv\ "k r *IV /an ~k
12

(1-17)
P uH j,

Likewise a necessary and sufficient condition for equation

(1-12) to be true is

(1-18)

11 For the proof of this theorem, see W.F. Osgood, op. cit.,
pp. 228-230, or R. Courant - J.E. McShane, op. cit., Vol. 1,
pp. 352-355.

12 Lord Kelvin wrote the analogous equation with t and v as
the independent variables as an analytical expression of the
"first fundamental proposition" or first lav; of
thermodynamics. His statement follows: "Observing that J is
an absolute constant, we may put the result into the form

dj> _ dM dN
dt dt " dv *

This equation expresses, in a perfectly comprehensive manner,
the application of the first fundamental proposition to the
thermal and mechanical circumstances of any substance
whatever, under uniform pressure in all directions, when
subjected to any possible variations of temperature, volume,
and pressure." (Trans. Roy. Soc. Edinburgh, 20, 270, 1851.)
Clausius also stated that an analogous equation, his equation
(5), forms an analytical expression of the first law for
reversible changes in a system the state of which is
determined by two independent variables. (Abhandlungen iiher
die mechanische Warmetheorie* Zweite Abtheilung, Abhandlung
IX, Friedrich Vieweg und Sohn, Braunschweig, 1867, p. 9.)

13 Clausius stated that his equation (6), to which equation
(1-18) of this text is analogous, constituted an analytical
expression of the second law for reversible processes in a
system the state of which is determined by two independent
variables. (Abhandlungen iiber die mechanische Warmetheoriei
Zweite Abtheilung, Abhandlung IX, Friedrich Vieweg und Sohn,
Braunschweig, 1867, p* 9.)
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Carrying out the indicated differentiations one obtains from

equation (1-17) the relation

d2V fdV\ (1-19)
3r / ^ 3T3p V 3p / F 3p3r \

P j

and from equation (1-18) the relation

T \dT 1
P

Combining equations (1-19) and (1-20) one has

J T* " T \ d p

P

From equations (1-19) and (1-21) it also follows that

All the first derivatives of the three quantities V, U* and S

expressed as functions of T and p can thus be calculated from

equations (1-13), (1-14), (1-15), (1-16), and (1-21) if

(—) , (—) » anc^ ^p ^ave been determined experimentally.

In order to be able to calculate all the properties of

this system at any temperature and pressure, the volume must

be determined experimentally as a function of the temperature

and pressure; the first two derivatives (~~=) and ( T — )

can then be calculated at any temperature and pressure within



ONE-COMPONENT SYSTEMS OF UNIT MASS 11

the range over which the volume has been determined. The

third derivative, cp, need only be determined experimentally

along some line not at constant temperature, ll* since f g )

can be calculated from equation (1-22) if ("jvf) ^ a s been
P

determined as a function of T and p.

Derivation of any desired relation between the
w v-/ w

intensive thermodynamic quantities, T9 p> V9 U, S9 and

their first derivatives for a one-component system of

one phase from the experimentally determined relations

by the use of functional determinants (Jacobians)

Equations (1-1), (1-9), and (1-12) can be solved for any
\J \J <S

three of the quantities, T9 p9 V, U9 S9 as functions of the

remaining two. The first partial derivative of any one of the
yj v-/ KJ

quantities, T, p, V, U9 S9 with respect to any second quantity

when any third quantity is held constant can readily be

obtained in terms of the three first derivatives

(•̂r , ( — ]
\oIJ \dpJj, and Q 9 together with the absolute

thermodynamic temperature and the pressure, by application

of the theorem stating that if x' = oo(x>y),

if x = f(u» v), and if y = <t>(u9 v), then one has

Bridgman, P.W., Phys, Rev., (2), 3, 274, 1914.
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\3u/ \3v
V U

\du) Hu, v)

\"3u/
V

/3x\

u

V3W
u

3(x,
3(u,

y)

15

(1-23)

provided all the partial derivatives in the determinants are

continuous and provided the determinant in the denominator

is not equal to zero. The symbol -trr,—! -v here denotes the

Jacobian16 of the functions x1 and y with respect to the

variables u and v and the symbol ~> } ^ e n o t e s the Jacobian

of the functions x and y with respect to the variables u and

v. In Table 1-1 the value of the Jacobian is given for each

pair of the variables, T, p, V, U, S9 as x', y or x» y and

15 Bryan, G.H., op. cit., p. 113, equation (82); see also
Osgood, W.F., op. cit,, p. 150, Exercise 31, Burington, R.S.,
and C.C. Torranee. Higher Mathematics with Applications to
Science and Engineering9 McGraw-Hill Book Co., Inc., New York
and London, 1939, p. 138, Exercise 7, and Sherwood, T.K., and
C.E. Reed, Applied Mathematics in Chemical Engineering,
McGraw-Hill Book Co., Inc., New York and London, 1939, p. 174,
equation (164). A proof of this theorem for the case of
functions of two independent variables is given in Appendix B
to Part I.

16 For the definition of a Jacobian, see W.B. Fite, Advanced
Calculus, The Macmillan Company, Hew York, 1938, pp. 308-309.
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with T$ p as u9 v * There are 20 Jacobians in the table, but

x» y) _ 3(y, x)
one has (u» v) 3(u, v), because interchanging the rows

of the determinant changes the sign of the determinant; hence

it is only necessary to calculate the values of 10 of the

determinants. The calculations of these ten determinants

follow:

3(p, T)
P)

3T 3p

ar dT
dp

= - 1
(1-24)

3(/, r)
3(7, p)

3Ĵ  3£
37 3p

3T 3T
3T 3p

(1-25)

3(r, P)

1£ 3£
dT dp

dT
dT

dT
dp

, T)

95 3S
3T dp

_3T 3T
3T 3p

(ar)
d-27)

, p)

3<r, P)

3T 3p

2R
dp

(1-28)
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3(t/, p)
3(r, p)

dT dp

dp dp
dT dp

(1-29)

J5 dS_
dT dp

dp 9p
3T 3p

(I-3O)

3(r,p)

\-> o

d-31)

3(S, V)
3(r,p)

35 3S
37 3p

dT dp

V-/ V-» (1-32)

)S 3S

W_ dU
dT dp

Vji ^/ (1-33)

In order to obtain the first partial derivative of any one
KJ V-» V>

of the five quantities Tf p» V̂ f £/» S# with respect to any

second quantity of the five when any third quantity of the

five is held constant, one has only to divide the value of the

Jacobian in Table 1-1 in which the first letter in the first

line is the quantity being differentiated and in which the

second letter in the first line is the quantity held constant



Table 1-1
Jacobians of intensive functions for a

one-component system of one phase

3(7\ p) ' a(7\ p)

x \

T

P

KJ

V

KJ

u

KJ

s

T

-1

P

P

1

\j

P

cp - p(!f)
p

T

V

"P ' rn

\J

"(ar)
P

Kir+«p(tf) r

KJ KJ KJ

•

«®, - 4\

P

\^ <J

Xdf) " CP\dp)m
P T

(dV\2 Pcp(dV\

KJ

s

/an
\dT/

P

T

-i);4(Dr
\J KJ \J
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by the value of the Jacobian in Table 1-1 in which the first

letter of the first line is the quantity with respect to which

the differentiation is taking place and in which the second

letter in the first line is the quantity held constant.

To obtain the relation among any four derivatives, having

expressed them in terms of the same three derivatives,

\lvrJ ' \1T") ' anc* CP' o n e ^ a s on^y t0 eli mi n a te the three

derivatives from the four equations, leaving a single equation

connecting the four derivatives.

Three functions used in thermodynamics to facilitate the

solution of many problems are the following: the enthalpy H,

defined by the equation H = U + pV, the Helmholtz function A,

defined by the equation A = U - TS, and the Gibbs function G,

defined by the equation G = U + pV - TS. The corresponding

specific functions are Hf A9 and G. Partial derivatives

involving one or more of the functions H9 A, and G, can also

be calculated as the quotients of two Jacobians, which can

themselves be calculated by the same method used to calculate

the Jacobians in Table 1-1.



Appendix A to Part I

Transformation of the work and heat line integrals

from one coordinate plane to other coordinate

planes in the case of a one-component system of

one phase and of unit mass

The derivatives of the work done and the heat received by

a one-component system of one phase and of unit mass are total

derivatives1 with respect to the variables chosen as the

parameters defining the paths of the integrals. In order to

obtain the total derivative of the work done along a straight

line parallel to one of the coordinate axes in any plane, one

obtains from Table 1-1 the partial derivative of the volume

with respect to the quantity plotted along that axis when the

quantity plotted along the other axis is held constant and one

multiplies the partial derivative of the volume by the

pressure. Similarly to obtain the total derivative of the

heat received along a straight line parallel to one of the

coordinate axes in any plane, one obtains from the table the

partial derivative of the entropy with respect to the quantity

plotted along that axis when the quantity plotted along the

other axis is held constant and one multiplies the partial

derivative of the entropy by the temperature. For example,

the derivatives of the work done and heat received along a

straight line parallel to the K-axis in the (7\ 7)-plane are

(§) - P (I-A-D

Tunell, G., Jour. Chenu Physics, 9, 191-192, 1941,

17
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and

$1= KDJ* (II-
The total derivatives of the 'heat received along lines

parallel to the coordinate axes in any desired plane can also

be derived in terms of the total derivatives of the heat

received along lines parallel to the coordinate axes in the

(T$ p)-plane by transformation of the heat line integral as

explained in the second half of Appendix B to Part I.

Following is an example of such a transformation. In the case

of a one-component system of one phase and of unit mass the

heat line integral extended along a path in the (7\ F)-plane

is

7\ V
(I-A-3)

io»

where cv denotes the heat capacity at constant volume per unit

of mass and lv denotes the latent heat of change of volume at

constant temperature, and where cv and lv are functions of T

and 7. This integral depends upon the path in the (T, V ) -

plane determined by an equation between T and V, T = f(V).

/dlv\ /3cv\
In this case 1-^H w / ("57r) • ^n order to transform the



ONE-COMPONENT SYSTEMS OF UNIT MASS 19

integral for Q from the (7\ l/)-plane to the (7\ p)-plane, p

denoting the pressure, we make use of the fact that V is a

function of T and p,

V = F(T, p). (I-A-4)

Thus we write for the integral transposed to the (7% p)-plane

0 ./{
2"o» Po

r. P
+ iv(|^) )dT+ ̂ (|f)dp} • d-A-5)

TQ, po

By definition the coefficients of dT and dp in this integral

are cV, and ip. Thus we obtain the equations

and
P

rp
From equations (I-A-6) and (I-A-7) we obtain cv and lv as

functions of T and p:

v - cp -

and
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The same result can be obtained by substitution of values in

equations (I-B-35) and (I-B-36) in Appendix B to Part I. The

equivalence of symbols for the purpose of this substitution is

given in the following Table.

Table I-A-l

Equivalence of symbols

r o

0(u, v) cp

tt(u, v) L

Substituting the values from the right hand column for the

values in the left hand column in equations (I-B-35) and



ONE-COMPONENT SYSTEMS OF UNIT MASS 21

(I-B-36) we have

- /an y (dv\

\dTi C

and

« = cv. = a

i

CP*°
/3£\ #Q _

P

(I-A-ll)

Finally, equations (I-A-8) and (I-A-10) are equivalent because

TlP
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Proofs of the relations:

dx' , v)

and

/dr\
\~dx~)

dT
du
dy
du

dx

Iz
du

dT
dv

h.
dv

dx
dv
d y
d v

It is assumed that x' is a function of x and y,

x' = U)(x, y) (I-B-l)

and that x and y are functions of u and v,

x = f(u, v)9 (I-B-2)

and

y = 0(u, v). (I-B-3)

It is assumed further that these functions are continuous

together with their first partial derivatives. By application

of the theorem for change of variables in partial

differentiation1 one then obtains

du dx du dy du (I-B-4)

1 Osgood, W,F., Advanced Calculus, The MacMillan Co., New
York, 1925, pp. 112-115; Taylor, Angus, Advanced Calculus,
Ginn and Co., Boston, New York, Chicago, Atlanta, Dallas, Palo
Alto, Toronto, London, 1955, pp. 167-172.

22



ONE-COMPONENT SYSTEMS OF UNIT MASS 23

and

Jv = 3l37 +37 3u * (I-B-5)

From equations (I-B-4) and (I-B-5) it follows that

dxfdy _ _3x' dx^'dx_ f-r T> fi\

dy du du dx du

and

3y dv dv dx dv

Dividing both sides of equation (I-B-6) by -r^ and both

sides of equation (I-B-7) by -̂ p we have

dxr 3x;3x
du dx 3u

3y " 3j/ (I-B-8)
3a

and

3x' ^2l! ^2L
r. , dv 3x 3v

3y "" dy_ * (I-B-9)
dv

It follows that the right side of equation (I-B-8) is equal to

the right side of equation (I-B-9)

3x' _ 3x'££ dx1 _ 3x'3x
du dx du - dv dx dv

—i7~ —H—
du dv
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Multiplying both sides of equation (I-B-10) by (^"^J v/e

have

^ (I-B-ll)
3x du) du^dv dx

and consequently

dy dx1 dy dx 'dx dy dx' dy j^'J^
dv du dv dx du 3u dv 3u 3x dv

From equation (I-B-12) it follows that

dx du dv dx dv du ~ du dv dv du

and

3x \du dv dv du) " du dv dv du

Dividing both sides of equation (I-B-14) by

we have

Y~ ) is thus equal to the quotient
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of two Jacobian determinants

3x'
du

iz
du

3x
du

iz
3u

3x'
3v

iz
3v

dx
dv

iz
dv

(I-B-16)

provided the Jacobian determinant in the denominator is not

equal to zero. Thus we obtain the result

\dx

and similarly we have

3Cx'
3(u,

3(x,

v)

y)
(LZ, V)

(I-B-17)

* 9(y> x)
(I-B-18)

This case corresponds to the case of a one-component system of

one phase and of unit mass in which it is desired to transform

a function of the coordinates, such as the volume, the energy,

or the entropy, from one coordinate plane, such as the

entropy-volume plane to another coordinate plane, such as the

temperature-pressure plane.

Equations (I-B-17) and (I-B-18) are not applicable,

however, in the case of a one-component system of one phase
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and of unit mass when it is desired to transform the work line

integral or the heat line integral from one coordinate plane,

such as the entropy-volume plane, to another coordinate plane,

such as the temperature-pressure plane, because the work line

integral and the heat line integral depend upon the path and

are not functions of the coordinates. In this case, to which

the second equation of the heading of this Appendix applies,

the transformation can be accomplished in the following way.

Let us suppose that a line integral F

X* y

x, y)dx + Q(x, y)dy)

yo

dP 30
depends upon the path in which case TJ— 4 "tr- . This

integral has no meaning unless a further relation is given

between x and y, y = f(x), defining a particular path in the

(*> y)-plane.2 We are next given that x and y are functions

of u and v,

x = <t>(u, v), (I-B-20)
and

y = Ku, v). (I-B-21)

It is then desired to transform the integral T from the

2 In general this curve can be represented in parametric
form, x = X(o), y = 5(a) f but in simple cases the curve can
be expressed by the equation y = f(x) , or at leas t in
segments by the equations yl = f(x)f ya = F(x).
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(x, y)-plane to the (u9 v)-plane.
3 In this case if equations

(I-B-20) and (I-B-21) can be solved so that we have

u = <£>(*» y), (I-B-22)

and

v = ¥(x, y), (I-B-23)

then the curve in the (x9 y)-plane can be transformed into the

curve in the (u» v)-plane defined by the equation u = F(v).

We next replace dx in the integral T by -g— du + -g—dv and dy

by TT-du + Tp-dv . We then have
du dv

U, V

r [ \ r\\ ox 1 ox - i ^ I ° / J U y i i i / -r T» n / \

/ I 1 n/ l n V Jf» wtr II v '

U Q > V"Q

the curve in the (u, v)-plane now being determined by the

3 Cf. R» Courant, Differential and Integral Calculus,
Translated by J.E. McShane, Blackie & Son Ltd., London and
Glasgow, 1944, Vol. 2, p. 373. The procedure for transforming
a line integral that depends upon the path from the (x, y ) -
plane to the (u, v)-plane used by Courant is the same as the
procedure explained here and in Appendix C to Part II of this
text.
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equation u = F(v). Consequently we thus obtain

u, v

U* V

rr
[lit v)9 \p(u,

where 0 is set equal to

r = / IP(<KU,V), *(u, v))|^(

Uo.

u, v), \Ku,

U, V

0(u, v)du + Q(u, v)dv} , (I-B-25)
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and Q is set equal to

U, v)9 \Ku, v))|j + Q(<t>(u, v), \Ku,

In order to evaluate P and 0 as functions of u and v we next

solve the equations

du ' ' 9u

and

n . PM. + QhL (I-B-27)

for P and 0. Thus we have

QZL = 0 - p | i (I-B-28)
du ou

and

(I-B"29)

Dividing both sides of equation (I-B-28) by J±Z and both sides
du

of equation (I-B-29) by S^JL we obtain

and

o = n/|i-p|s/|j: (I-B-31)
/ dv 9v/ d̂  v 7
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and consequently

From equation (I-B-32) it follows that

P | i / |Z . P | i / | i = 0 / |Z_ f l / |Z . ( I _ B _ 3 3 )
3u / 8u 3v/ 3v / 3u / 3v

Thus from equation ( I -B-33) we ob ta in the va lue of P as a

function of u and v:

ox oy ox joy
3u/ du dv/ d

(I-B-34)
du dv/ dv

and multiplying both numerator and denominator of the right

side of equation (I-B-34) by (T*""jT*")we have

0 ^ - Q&
p ov du

3u dv dv du

Mow P(xf y) is the total derivative of T along a line parallel

to the x-axis in the (x, y)-plane«** Also 0(u, v) is the total

4 Cf. G. Tunell, Jour. Chem. Physics, 9, 191-192, 1941.
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derivative of T along a line parallel to the u-axis in the

(Uf v)-plane and Q(u, v) is the total derivative of T along a

line parallel to the v-axis in the (u, v)-piane. Thus from

equation (I-B-35) we have

><*•
(dl) _
\dx) ~

y

dT
du

Iz
du

dx
du
hL
du

dT
dv
dy_
dv

dx
dv
dy_
dv

(I-B-36)

Likewise Q(x, y) is the total derivative of T along a line

parallel to the y-axis in the (x9 y)-plane. Thus in a similar

way we have

X

dT
du
dx
du

du
dx_
8u

dT
dv
dx
dv

dv
dx
dv

(I-B-37)

The determinants forming the numerators of the fractions

constituting the right sides of equations (I-B-36) and

(I-B-37) are similar in form to the Jacobian determinants used

in the transformation of functions of two or more variables,

but F is not a function of x and y or of u and v and the

derivatives in the top lines of the determinants constituting

the numerators of the fractions that form the right sides of

equations (I-B-36) and (I-B-37) are total derivatives, not

partial derivatives.



Appendix C to Part I

Discussion of P.W. Bridgman's explanation of the derivation

of the functions tabulated in his book entitled

A Condensed Collection of Thermodynamic Formulas1

Bridgman explained the derivation of the functions

tabulated in his book entitled A Condensed Collection of

Thermodynamic Formulas in the following way.

All the first derivatives are of the type

where xx, x2, and X3 are any three different variables
selected from the fundamental set (for example,
p, T, v). The meaning of the notation is the
conventional one in thermodynamics, the subscript X3
denoting that the variable x3 is maintained constant,
and the ratio of the change of x\ to the change of X2
calculated under these conditions. The restrictions
imposed by the physical nature of the system are such
that derivatives of this type have a unique meaning.
The number of such first derivatives evidently depends
on the number of quantities selected as fundamental.
For nearly all applications 10 such variables are
sufficient, and this is the number taken for these
tables. ...2

Given now 10 fundamental quantities, there are
10x9x8 = 720 first derivatives. A complete collection
of thermodynamic formulas for first derivatives
includes all possible relations between these 720

1 Harvard University Press, Cambridge, 1925.

2 The variables selected as fundamental by Bridgman are the
following: the pressure p, the temperature T, the volume v,
the entropy s, the heat Q, the work w, the energy £, the

enthalpy #, the Gibbs function z , and the Helmholtz

function ¥.

32
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derivatives. In general, the relations involve any
four of the derivatives, for any three of the
derivatives are independent of each other. (There
are, of course, a large number of degenerate cases in
which there are relations between fewer than four
derivatives.) Now, except for the degenerate cases,
the number of relations between first derivatives is
the number of ways in which 4 articles can be selected
from 720, or

720 x 719 x 718 x 717 in i n 9
l x 2 x 3 x 4 = approx. 11x10*.

This is the number of thermodynamic relations which
should be tabulated in a complete set of formulas, but
such a programme is absolutely out of the question.
We can, however, make it possible to obtain at once
any one of the llxlO9 relations if we merely tabulate
every one of the 720 derivatives in terms of the same
set of three. For to obtain the relation between any
four derivatives, having expressed them in terms of
the same fundamental three, we have only to eliminate
the fundamental three between the four equations,
leaving a single equation connecting the desired four
derivatives.
This programme involves the tabulating of 720

derivatives, and is not of impossible proportions.
But this number may be much further reduced by
mathematical artifice. The 720 derivatives fall into
10 groups, all the derivatives of a group having
the same variable held constant during the
differentiation. Now each of the 72 derivatives in a
group may be completely expressed in terms of only 9
quantities. Consider for example the first group, in
which xi is the variable kept constant. Then any

/ 3x 7- \
derivative of this group ("T"*"̂ ) m a y ^e written

*k*
k x

. l\ =
dxkk

in the form (. l\ = / JL\ /( k\ , where
\dxk ~ V 3ai J / \ 3 o t i /k x xf xV 3ai J /\3otix1 xx

f x1

oti is any new variable, not necessarily one of the 10.
Let us make this transformation for all the
derivatives of the group, keeping the same a in all
the transformations. Then it is evident that all
derivatives of the group may be expressed in terms of

the nine derivatives IT""/ ••• ("5""/ * ^y taking
1̂ "̂i
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the ratio of the appropriate pair. That is, for the
purpose of calculating the derivatives we may replace

the derivative (3-^) by the ratio of numerator to

denoraerator, writing

—l)
\ 9x/wK x

and then substitute for (9x?-) the finite derivative
J X\

t dxj\
/ . — M and for (Bx/,) ,
V 9ai / J K xi V

x

dxj\ / 9x^ \

M d f ( B ) -^r~
xi V 9ax /

xi xi
We may now, as a short-hand method of expression,
write the equations

(3xy)xi = {^) , etc.,

remembering, however, that this is not strictly an
equation at all (the dimensions of the two sides of
the "equation" are not the same), but that the form of
expression is useful because the correct result is
always obtained when the ratio of two such
differentials is taken.

We may proceed in this way systematically through
the remaining 9 groups of 72 derivatives, choosing a
new and arbitrary a for each group. We will thus have
in all 90 different expressions to tabulate. This
number may now be further reduced to 45 by so choosing
the ars in the successive groups that the condition
(3x7O = - (9x/c) is satisfied. That such a choice

X jv X j

is possible requires proof, for having once chosen a ,

the choice of a2 is fixed by the requirement that

(dxi) = - (9x2) , and a3 is fixed by the
X.2 X i

requirement that (3xi) = -(9x3) , so that it is

now a question whether these values of a2 and a3 are

such that (gv ) » - (a*,) . That these conditions
x3 x2

are compatible is an immediate consequence of the
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mathematical identity

2 dxs dxj
x3 xi x2

The only degree of arbitrariness left is now in oti,
which may be chosen to make the expressions as simple
as possible.

In the actual construction of the tables the a's
play no part, and in fact none of them need be
determined; their use has been merely to show the
possibility of writing a derivative as the quotient of
two finite functions, one replacing the differential
numerator, and the other the differential denominator.
The tables were actually deduced by writing down a
sufficient number of derivatives obtained by
well-known thermodynamic methods, and then splitting
these derivatives by inspection into the quotient of
numerator and denominator. Having once fixed the
value of a single one of the differentials
arbitrarily, all the others are thereby fixed* For
simplicity it was decided to put (3x)p = 1.

The choice of the fundamental three derivatives
leaves much latitude. It seemed best to take three
which are given directly by ordinary experiment; the
three chosen are

/dv\ fdv\ * n \- fdQ
3?)' fe)- and CP[ = (a?

The problem addressed by Bridgman is that of obtaining a

derivative of any one variable of the 10 variables with

respect to any second variable of the 10 when any third

variable of the 10 is held constant in terms of the three

derivatives (37) » ("§£) ' a n d cp> a n d certain of the
P P T
)
P

thermodynamic quantities. This is a problem of obtaining

derivatives with respect to a new set of independent

variables in terms of derivatives with respect to an original
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set of independent variables. The solution of this problem by

means of Jacobians was given by Bryan3 in his article in the

Encyclopadie der matematischen Wissenschaften in 1903 and is

well established. The functions listed by Bridgman in his

table as (3p)v, (3x)v, (3s)v, (3E)V, (3p)s, (3x)s, (3V) S, (3E) S,

etc., are really Jacobians, not partial derivatives with

respect to hypothetical auxiliary variables ot3, a^. In the

derivation by means of Jacobians explained in the preceding

pages no hypothetical auxiliary variables were involved

and likewise no hypothetical unknown functions of a

and p, or of a2 and T, or of ot3 and v, etc., were involved.

Furthermore it is really not a matter of hypothesis that

(3xi) = - (dx2) . The quantity (3xi) is really the
Xz *1 *2

Jacobian 1*1* *?J ancj the quantity (3x2) is real ly the
o\t* P) xi

Jacobian ^*z* *1^ . The Jacobian j^**' *^ is equal to the

negative of the Jacobian ^; 2> ̂ ^ because interchanging two
o ̂ T, p )

rows of a determinant changes the sign of the determinant.

Finally it is not an arbitrarily adopted convention that

(3i)p = I. The quantity (3x)p is equal to the Jacobian

3 / f ̂ '{ t which is automatically equal to 1.

Bryan, G.H., in Encyclopadie der matematischen
Wissenschaften, B.G. Teubner, Leipzig, Bd. V, Teil 1, S. 113,
1903.



Part II

Relations between thermodynamic quantities and

their first derivatives in a one-component system

of one phase and of variable mass

Introduction

Thermodynamic relations in open systems of one component

and of one phase and other open systems have been analyzed by

Gillespie and Coe,1 Van Wylen,2 Hall and Ibele,3 and Beattie

and Oppenheim,4 also in part incorrectly by Larmor, 5 Morey,6

Goranson,7 Sage,8 Moelwyn-Hughes,9 Callen,10 and Wheeler.11

1 Gillespie, L.J., and J.R. Coe, Jr., Jour. Chem. Phys., 1,
103-113, 1933.
2 Van Wylen, G.J., Thermodynamics, John Wiley and Sons, Inc.,
New York, Chapman and Hall, London, 1959.
3 Hall, N.A., and W.E. Ibele, Engineering Thermodynamics,
Prentice-Hall, Inc., Englewood-Cliffs, N.J., 1960.

** Beattie, J.A., and Irwin Oppenheim, Principles of
Thermodynamics, Elsevier Scientific Publishing Co., Amsterdam,
Oxford, New York, 1979, pp. 296-320.
5 Larmor, Sir Joseph, Proc. Roy. Soc. London, 75, 280-296,
1905.
5 Morey, G.W., Jour. Franklin Inst., 194, 425-484, 1922.
7 Goranson, R.W., Thermodynamic Relations in Multi-Component
Systems, Carnegie Institution of Washington Publication
No. 408, 1930.
8 Sage, B.H., Thermodynamics of Multicomponent Systems,
Reinhold Publishing Corp., New York, 1965.
9 Moelwyn-Hughes, E.A., Physical Chemistry, Pergamon Press,
London, New York, Paris, 1957.
10 Callen, H.E., Thermodynamics, John Wiley and Sons, Inc.,
New York and London, 1960.
11 Wheeler, L.P., Josiah Willard Gibbs - The History of a
Great Mind, Rev. Ed., Yale University Press, Mew Haven, 1952,
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In the following text the relations for the energy and the

entropy of a one-component system of one phase and of variable

mass are derived and a table of Jacobians is presented by

means of which any first partial derivative of any one of the

quantities, the absolute thermodynamic temperature T, the

pressure p, the total mass Mf the total volume V , the total

energy U, and the total entropy 5, with respect to any other

of these quantities can be obtained in terms of the partial

derivative of the specific volume with respect to the

temperature, the partial derivative of the specific volume

with respect to the pressure, the heat capacity at constant

pressure per unit of mass, and certain of the quantities 7\ p,
W V-/ VJ>

Aft V, U, S.

In the case of a one-component system of one phase and of

variable mass it is not necessary to make use of a definition

of heat or a definition of work in the case of an open system

when mass is being transferred to or from the system in order

to derive the relations for the total energy and the total

entropy. For some purposes, however, it has been found useful

to have definitions of heat and work in the case of open

systems when mass is being transferred to or from the system.

The definitions of heat and work in the case of open systems

used by various authors are discussed in Appendix A to

Part II.

Calculation of the total volume, the total energy, and the

total entropy of a one-component system of one phase and of

variable mass as functions of the absolute thermodynamic

temperature, the pressure, and the total mass

Thermodynamic formulas can be developed in the case of a

one-component system of one phase and of variable mass on the

basis of the following set of variable quantities: the

absolute thermodynamic temperature Tt the pressure P, the
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Water
bath

Figure II-l
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total mass M, the total volume V, the total energy U, the

total entropy 5, the specific volume V, the specific energy U,

the specific entropy 5, the heat capacity at constant pressure

per unit of mass cp, and the latent heat of change of pressure

at constant temperature per unit of mass I p. Two one-

component systems of one phase and of variable mass are

illustrated in Figure II—1• The formulas developed in the

following pages apply to either open system I or open

system II in Figure II—1. Open systems I and II together

constitute a closed system.

In the case of a one-component system of one phase and of

variable mass the total volume V is a function of the absolute

thermodynamic temperature T, the pressure p, and the total

mass M

V = f(7, p, M) . (II-l)

The total volume is equal to the total mass times the specific

vo1ume

V = MV , (H-2)

and the specific volume is a function of the absolute

thermodynamic temperature and the pressure,

V = <t>(T, p) . (II-3)

From equations (II-l), (II-2), and (II-3) it follows that

) . - 4 ) •"<,«
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and

[|Z] = y fII-6)
\ZMJT$ p

 U ^

The total energy is a function of the absolute

thermodynamic temperature, the pressure, and the total mass

U = MT, p, M) . (H-7)

It is known that the total energy of a one-component system of

one phase and of variable mass is proportional to the total

mass at a given temperature and a given pressure because it

requires M times as much heat received and M times as much

work done to take M times as much substance from the standard

state to the given state as to take unit mass of the substance

from the standard state to the given state through the same

set of intermediate states. Thus the total energy is equal to

the total mass times the specific energy

U = MU . (II-8)

Furthermore it is known from the case of a one-component

system of one phase and of unit mass discussed in part I that

the specific energy is a function of the absolute

thermodynamic temperature and the pressure

U = 8(T, p) . (H-9)

Thus the relation of the total energy to the absolute
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thermodynamic temperature, the pressure, and the total mass is

expressed by the equation

U(T, p,M) - [/(To, PQ9 Mo)

From equations (II-7), (II-8), (II-9), and (11-10) it follows

that

and

MLr.

The total entropy is a function of the absolute thermodynamic

temperature, the pressure, and the total mass

S- E,iT,p,M) . ( I I - 1 4 )

It is known that the total entropy of a one-component system

of one phase and of variable mass is proportional to the total
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mass at a given temperature and a given pressure because it

requires M times as much heat received to take M times as much

substance from the standard state to the given state as to

take unit mass of the substance from the standard state to the

given state reversibly through the same set of intermediate

states. Thus the total entropy is equal to the total mass

times the specific entropy

S = MS . (11-15)

Furthermore it is known from the case of a one-component

system of one phase and of unit mass discussed in Part I that

the specific entropy is a function of the absolute

thermodynamic temperature and the pressure

S = oo(T, p) . (11-16)

Thus the relation of the total entropy to the absolute

thermodynamic temperature, the pressure, and the total mass is

expressed by the equation

S(Tf p,M) - S(T0, po, Mo)

r,
+ M-f-dp + SdM | . (11-17)

T o •

From equations (11-14), (11-15), (11-16)f and (11-17) it
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follows that

If) = M%, (H-18)
dTjp, M T

and

II • *• (II"20)
I 9 P

It is to be noted that the derivations of equations (11-10)

and (11-17) do not depend on definitions of heat and work in

the case of open systems.12 In equation (11-10) the

coefficient of dT is the partial derivative of the total

energy with respect to temperature at constant pressure and

constant mass, which is known from the case of a one-component

one-phase closed system to be M\cn - p^ L Likewise the

L y o TJ
coefficient of dp in equation (11-10) is the partial

derivative of the total energy with respect to pressure at

constant temperature and constant mass, which is known from

the case of a one-component one-phase closed system to be

lp - p77- | . The coefficient of dM in equation (11-10) is

12 It is possible to define heat and work in the case of a
one-component system of one phase and of variable mass and
this has been found to have usefulness in some engineering
problems. See Appendix A to Part II.
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the partial derivative of the total energy with respect to

mass, which is simply the specific energy, because the

addition of mass is at constant temperature and constant

pressure. Likewise in equation (11-17) the coefficient of dT

is the partial derivative of the total entropy with respect to

temperature at constant pressure and constant mass, which is

known from the case of a one-component one-phase closed system

cD
to be iV-rr. Also in equation (11-17) the coefficient of dp

is the partial derivative of the total entropy with respect to

pressure at constant temperature and constant mass, which is

known from the case of a one-component one-phase closed

\j>

lD
system to be M~ . The coefficient of dM in equation (11-17)

is the partial derivative of the total entropy with respect to

mass, which is simply the specific entropy, because the

addition of mass is at constant temperature and constant

pressure.

Necessary and sufficient conditions for (11-10) to be

true are

r *\ML ~ M)
. (n-22)
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and

3p/r,»

Similarly, necessary and sufficient conditions for (11-17) to

be true are

U) > (11-24)

p, M T, M

) " (LJL/ J • (n_25)

and

(11-26)

Carrying out the indicated differentiations in (11-21) and

13 Osgood, W.F., Advanced Calculus, The Macoillan Co.,
New York, 1925, p. 232, and Osgood, W.F., Lehrbuch der
Funktionentheorie, B.G. Teubner, Leipzig, 5 Aufl., 1928,
Bd. L, S. 142-150.
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(11-24) one o b t a i n s

and

3.. 9F M 3 c p 8y 3F , T T 9 7 ,

v-> v«/

Combining (11-27) and (11-28) one has

h = -r|£ . (ii-29)

From (11-27) and (11-29) it also follows that

^ = -r|S * (II-30)

From (11-22), (11-23), (11-25), and (11-26) only the already

known equations

dU ~
df = °P

OU j O F /TT on\
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|f = ^ ' (II-33)

and

I
are derived,

Thus in order to obtain complete thermodynamic

information for a one-component system of one phase and of

variable mass it is only necessary to determine experimentally

the specific volume as a function of temperature and pressure

and the heat capacity at constant pressure per unit of mass as

a function of temperature at one pressure. This is the same

conclusion as the one reached by Bridgmanli+ in the case of a

one-component system of one phase and of constant mass. No

additional measurements are required to obtain complete

thermodynamic information for a one-component system of one

phase and of variable mass beyond those required to obtain

complete thermodynamic information for a one-component system

of one phase and of constant mass.

Bricigroan, P.M., Phys. Rev., (2), 3, 274, 1914.
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Derivation of any desired relation between the

thermodynamic quantities T9 p, M, V, Uf S9 and their

first derivatives for a one-component system of one

phase and of variable mass by the use of

functional determinants (Jacobians)

Equations (II-l), (11-10) and (11-17) can, in general, be

solved for any three of the quantities, T9 p» M9 V9 U9 S, as

functions of the remaining three. The first partial

derivative of any one of the quantities, 7\ p, M9 V, U, S9

with respect to any second quantity when any third and fourth

quantities are held constant can be obtained in terms of the

three first derivatives, TTTT, TT~9 and cn, and certain of the
01 Op r

\J V> sj

quantities, T9 p9 M9 V, U9 S9 by application of the theorem

stating that, if xr = u)(x, y» z)9 x = f(u9 v, w),

y = <t>(u9 v9 w)9 z = 4/(u9 v9 w), then one has

(
[dx

y9

du dv ow
3y dy dy
du dv dw
dz dz dz
du dv dw

dx dx dx
du dv dw
dy dy dy
du dv dw
dz dz dz
du dv dw

Y*
d(u9 vf w)

_y»
d(u9 v9 w)

(11-35)

15 A proof of this theorem for the case of functions of three
independent variables is given in Appendix C to Part II.
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provided all the partial derivatives in the determinants are

continuous and provided the determinant in the denominator is

not equal to zero.

In Tables II-l to 11-15 the values of the Jacobians are

given for each set of three of the variables, T, p, M, V, U9 S,

as xr, y, z, or x9 y, z, and with 7\ p, M, as u, v, w. There

are sixty Jacobians in the Table, but one has

d(x, y, z) _ _d(z, y, x) = d'(y,z, x) ^ (11-36), (11-37)
3(u. v, w) ~ d(u, v, w) d(u, v, w)

because interchanging two rows of a determinant changes the

sign of the determinant. Hence it is only necessary to

calculate the values of twenty of the sixty Jacobians. The

calculations of these twenty Jacobians follow:

, r,
3(r,

ar 3p dM

dT <W II
dT dp dM
dp dp dp
dT dp dM

= 1 (11-38)

, Tf p)
, M)

dT

dT
dT

la
dT

dV
dp

l£
dp

dM

dT
dM

la
dM

T,p
V ; (11-39)
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_3(E7, T, p)
3(r, p, M)

dU
dT
dT
dT

3£
dT

du
dp
dT
dp

3p

dU
dM

• dT

dM

dM

ML U ; (11-40)

3(s, r, P)
3(T, p, AT)

35 3S 3S
3T 3p 3M
3T _3T _3T
3T 3p 3î
3p 3p 3p
3r 3p 3Af

/N ., ) ~ O » (11-41)

,̂ T, Af)
3(T,

3T
dV_
dp

1Z
3M

M; 9T 9T
dT dp dM
dM_ dM^ dM_
dT dp dM

(11-42)

30/.
3(7\

T,
P»

W)
M) "

dU
dT

dT
dT

dM
dT

dU
dp

dT
dp

dM
dp

dU
dM

dT
dM

dM
dM

$).+<%\] ••
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3(S,
d(T,

T,
P>M) '

as
dT
dT
dT

dM
dT

as
dp

dT
dp

dM
dp

as
dM
dT
dM
dM
dM

41 (11-44)

d(U, T,
d(T, p,

V)
M) ~

du
dT
dT
dT

dV
dT

dU
dp
dT
dp

dV
dp

du
dM
dT
dM
dv
dM (11-45)

a(s,
d{T,

r. v)
p,M) -

as
ar
ar
ar
dV
dT

as
dP

ar
dp

dV
dp

as
dM
ar
dM

dv
dM

&) + S(^) I ; (II-46)

US,
3(r,

T.
p,
U)
M) •

as
ar
ar
ar
du
dT

asdP
dT
dP
du
dp

asdM
ar
dM

dU
dM (11-47)
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d(V, p, M)
3(T, p, M)

dV
dT

l£
3r
dM
dT

dV
dp
3£
3D

dM
3 D

3^
dM
3£
dM

dM
dM

dT) (11-48)

diu,
d(T,

P'
p>
M)
M) ~

dU
dT

dp_
dT
dM
dT

dU
dp

3£
dP
dM
dp

dU
dM

i£
dM
dM
dM

M\cp - p ^ (11-49)

3(r,
p»
p»Af) "

3S
3T

3^
3T

3Af
3T

3S
3p

3p

dM
3D

3S
3M

3£
dM

dM
dM

(11-50)

3(y,
3(r,

p»
p«>f) =

3U
3T

i£
3T
3K

du
dp

3p

dV
9p

3t7
3M

3£
3Af

3^
dM (11-51)
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d(S, p , V)
d(T, p.M)

35
dT

95 3S
dp dM

dp dp dp
dT dp dM

dT dp dM

M\%V- (11-52)

3(5, p, U)
3(7\ p, M)

35 &S .35
3T1 3p 3 ^

dp dp dp
dT dp dM

3£ d£ dll
dT dp dM (H-53)

d(U9 M, V)
3(2% P» M)

ML M M
dT dp dM

M M M
dT dp dM

M. $1 ML
dT dp dM

dfl

(11-54)

3(5 , M, V)
dlT, p9 M)

95 35 3S
dT dp dM

M M. M.
dT dp dM

di di ar
dT dp dM (11-55)
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3(S,
3(r,

M,
P>

U)
M) ~

dS

ar
dM
dT

3(7
dT

ds
dp

dM
dp

dU
dp

dS
dM

dM
dM

dU
dM

\Z)T\
(11-56)

3(S, V, U)
3(7\ p, M)

95 3S
dp

dp

dU

35

(H-57)



56

Table II-l
Jacobians of extensive functions for a
one-component system of one phase

'. y,z)
d(T,p>M)

30:, y, z)
3(7% p,tt)

T,p

V
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Table II-2
Jacobians of extensive functions for a
one-component system of one phase

\ y, z
x\
x \.

P

V

U

s

d(x', y, z) d(x, y, z)
3(T, p,M) f 3(T, p, M)

T, M

-1

«[r©P * '(111
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Table II-3
Jacobians of extensive functions for a
one-component system of one phase

', y, z) 3(x, y,z)
3(T,p,/•/) * 3CT, p,

7\



Table II-4
Jacobians of extensive functions for a

one-component system of one phase

\y» z

x'\
X \

p

M

V

s

dW, v, z) 3(x, y, z)
3(T, p,M) * d(T,p,M)

T, U

-u
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Table II-5
Jacobians of extensive functions for a
one-component system of one phase

x'\
X \

p

M

V

U

Hx'f y,z) d(xfy,z)
d(T,p,M) ' d(T,p,M)

T, S

-s

-»(i)p



61

Table II-6
Jacobians of extensive functions for a
one-component system of one phase

X \

T

V

U

s

a Of', y, z) 3(x, v, z)
d(T,p,M) ' d(T,p9M)

p,M

1
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Table II-7
Jacobians of extensive functions for a

one-component system of one phase

\Yt Z

x'\
X \

T

M

u

s

d(x', Yf z) 3(x, y, z)
d(T,p,M) ' 3(T, p,M)

P;v

V

-M[CU * p?)(ff)p - ? / ]

-[?»- S1I)J
I
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Table II-8
Jacobians of extensive functions for a
one-component system of one phase

V i Z

x \.

T

M

V

s

3(xr, y, z) 3(x, y, z)
3(T, p,Af) ' 3(T, p,A/)

p, (/
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Table II-9
Jacobians of extensive functions for a
one-component system of one phase

\y» z

x'\
X \

T

H

y

U

d(x', v, z) 3(x, v, z)
KT,p,M) f 3(T, p,Af)

p,S

*»/

S

^[>* - =(f )J
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Table 11-10
Jacobians of extensive functions for a
one-component system of one phase

\y» z
x'\
X \

T

P

U

S

d(x\ y,z) 3U, y, z)
d(T,p,M) ' Z(Tfp,M)
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Table 11-11
Jacobians of extensive functions for a
one-component system of one phase

\y» z

* ' \
x X

T

P

V

s

3(x'# Yf z) 3(x, y. 2)
d(T,p*M) * d(Tf p, M)

A/, (/

4#)/'(l)J
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Table 11-12
Jacobians of extensive functions for a
one-component system of one phase

x'\
X \

T

P

V

U

d(x', v, z) a(x, y, z)
d{T,p,M) ' 3(T, p,M)

M, S

JdV\
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Table 11-13
Jacobians of extensive functions for a

one-component system of one phase

\y» z

x'\
X \

T

P

X

]

r

3(x', y,z) 3(x, y,z)
3(T, p, Af.) ' 3(T, p, Af)

7, U
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Table 11-14
Jacobians of extensive functions for a
one-component system of one phase

\v f z
x \

T

P

M

U

3(x't yfZ) 3(x, yt z)

a(r, p. M) ' a(T, P,A/)

f(i)/2(li]

-[(H)/*(li]
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Table 11-15
Jacobians of extensive functions for a
one-component system of one phase

\y# z

x \

T

P

M

U

d(x', yf z) 3(x, y, z)
3 r, p, M 3 r, p, /r

u, s
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In order to obtain the first partial derivative of any-

one of the six quantities, T9 p, M9 V, U* S9 with respect to

any second quantity of the six when any third and fourth

quantities of the six are held constant, one has only to

divide the value of the Jacobian in which the first letter in

the first line is the quantity being differentiated and in

which the second and third letters in the first line are the

quantities held constant by the value of the Jacobian in which

the first letter of the first line is the quantity with

respect to which the differentiation is taking place and in

which the second and third letters in the first line are the

quantities held constant.

To obtain the relation among any four derivatives having

expressed them in terms of the same three derivatives,

(-77=) , \T~) 9 and cn, one can then eliminate the three
\ oT I \ dp JT P

derivatives from the four equations, leaving a single equation

connecting the four derivatives. In addition to the relations

among four derivatives there are also degenerate cases in

which there are relations among fewer than four derivatives.

In case a relation is needed that involves one or more of

the thermodynamic potential functions, H = U f pV> A E U - TS9

G = U + pV - TS9 partial derivatives involving one or more of

these functions can also be calculated as the quotients of two

Jacobians, which can themselves be calculated by the same

method used to calculate the Jacobians in Tables II-l to II-15«

It is interesting to note that in the transformations of

the thermodynamic quantities T9 p9 M9 V9 U9 S from one

coordinate space based on any three of these six quantities to

another coordinate space likewise based on three of these six

quantities, the enthalpy H, the Helmholtz function At and the

Gibbs function G appear automatically in the expressions for

many of the Jacobians involved.



Appendix A to Part II

Discussion of the definitions of heat and work in the case

of open systems used by various authors

According to Larmor,1 Morey,2 Goranson,3 Moelwyn-Hughes, **

Callen,5 and Wheeler6 in the case of an open system to which

mass is added or from which mass is taken away, the

differential of the heat received dQ is equal to the absolute

thermodynamic temperature T times the differential of the

entropy of the system dS. Neither Larmor nor Morey nor

Goranson nor Moelwyn-Hughes nor Callen gave an operational

analysis of any open system in support of their conclusion

that dQ = TdS in the case of open systems. Wheeler attempted

to explain the Gibbs differential equation for an open system

1 Larmor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Morey, G.W., Jour. Franklin I n s t . , 194, 433-434, 1922.

3 Goranson, R.W., Thermodynamic Relations in Multi-Component
Systems, Carnegie Inst i tut ion of Washington Publication
No. 408, 1930, pp. 39, 41, 44, 52.

% Moelwyn-Hughes, E.A., Physical Chemistry, Pergamon Press,
London, New York, Paris, 1957, p. 287.

5 Callen, H.B., Thermodynamics $ John Wiley and Sons, Inc.,
New York and London, 1960, p« 192.

6 Wheeler, L.P., Josiah Willard Gihbs-The History of a Great
Mind, Rev. Ed.f Yale University Press, Mew Haven, 1952, p. 76.
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of n components

dU = TdS - pdV + uldml + \x2dm2 ... + u n ^ n »
7

where \ii, Vi, ••• Un» denote the chemical potentials of

components 1, 2, ... n, and m\9 mi* ••• ®n denote the masses

of components 1, 2, ... n in the open system, in the following

way. Wheeler supposed that an:

. . . imaginary box is constructed with walls which
in addition to being elastic and thermally
conducting are also porous, so that the solution can
pass freely through the pores in either direction -
from inside out or from outside in. Then if the
condition of the fluid is slightly altered as
before, the change in energy in the box will depend
not only on the heat which may enter or leave and
the volume change due to the buckling of the walls
but also on the masses of the components of the
fluid going through the pores. Thus this energy
change cannot be computed by the prime equation8 as
it stands. It must be altered by the addition of as
many energy terms as there are components of the
fluid passing through the walls. If there are n
such components, the generalized prime equation will
express the change in energy in terms of n + 2
independent variables. Each of the added

7 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
3, 116, 1874-78, or Collected Works, Longmans, Green and Co.,
New York, 1928, Vol. 1, p. 63.

8 The equation here referred to as the prime equation is the

Clausius differential equation for closed systems:

dU = TdS - pdV.
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energy terms, in analogy to those in the prime
equation, Gibbs expresses as the product of two
factors, one an intensity and the other an extension
factor. Thus just as the heat term is expressed as
the product of temperature and the change in
entropy, and the work term as the product of
pressure and the change in volume, so an energy term
due to the added mass of any component was expressed
as the product of what Gibbs termed a "potential"
and the change in mass.

However, according to Gillespie and Coe9 in the case of an

open system

dS = ^ + lS±dmi (II-A-1)
1 2

when there is simultaneous reversible transfer of both heat

and mass. In this equation, dS denotes the increase in the

entropy of the open system, dQ the amount of heat received by

the open system, T the absolute thermodynamic temperature of

the open system, Sj the entropy of unit mass of kind i added

to the open system, and dm± the mass of kind i added to the

open system.

The equation of Gillespie and Coe applied to the case of

an open system in which there is simultaneous reversible

transfer of both heat and mass appears to be correct. Let us

consider the following simplest imaginable case of an open

system. In a thermostat filled with water, suppose that one

has a cylinder closed at both ends by pistons and containing a

9 Gillespie, L.J., and J.E. Coe, Jr., Jour. Chem. Phys., 1,
105, 1933.
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fluid of constant composition (Figure II-A-1). Suppose

further that the pistons are connected by a rigid bar so that

the volume between them remains constant. In Figure II-A-1,

let the two arrows indicate the position of a fixed circular

line around the cylinder. The fluid between the two pistons

constitutes a closed system and at this stage the temperature,

pressure, and volume of the total mass of fluid are kept

constant. Let us next suppose that the two pistons are moved

slowly to the left in unison from the positions indicated in

Figure II-A-1 by solid lines to the positions indicated by

dotted lines. The mass of fluid to the left of the arrows

then has received an addition and that to the right of the

arrows has undergone a diminution. The mass of fluid to the

left of the arrows has constituted an open system which we

designate as system I. Likewise, the mass of fluid to the

right of the arrows has constituted a second open system which

we designate as system II. Systems I and II together make up

a closed system, the entropy of which has remained constant.

The entropy of system I, S^, has increased by an amount equal

to the specific entropy of the fluid times the mass of the

fluid that has been moved past the arrows from right to left

and the entropy of system II, S-^, has decreased by the same

amount. Thus, we had:

dS1 « SdAf1, (II-A-2)

dS11 « SdM11 = -SdM1; (II-A-3)(II-A-4)

and

where S denotes the specific entropy of the fluid and M^ and
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A/II denote the masses of systems I and II. At the same time,

no heat has been received by the fluid from the water bath

since the temperature of the fluid has remained the same as

that of the water bath and the pressure and total volume of

the fluid have remained constant. The question then remains to

be answered whether or not it can be said that system I has

received any heat and similarly whether or not system II has

given up any heat. To say that at constant temperature,

constant pressure, and constant specific volume x grams of

fluid have transported y calories of heat from system II to

system I is the same as saying that these x grams of fluid at

the constant temperature t} and constant pressure pf contained

y calories of heat which they carried with them. It is well

known in calorimetry, thermodynamics, and statistical

mechanics that it is not possible to say that a body at a

certain temperature and pressure contains a certain amount of

heat* Doolittle and Zerban10 have stated that "most modern

authors of texts on thermodynamics and on physics have agreed

on the following conception of heat: Heat is energy

transferred from one substance to another substance because of

a temperature difference between the two substances.ff In the

case we have been discussing, system I, system II, and the

water bath of the thermostat have all remained at the same

temperature. Consequently, it cannot be said that there has

been any heat flow from the water bath to system I or system

II or from system II to system I. At constant temperature,

constant pressure, and constant specific volume, we thus had:

10 Doolittle, J.S., and A.H. Zerban, Engineering
Thermodynamics, International Textbook Co., Scranton, 1948,
p. 8.
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dQ1

and

0,

0,

dQ1 + dQ11 - 0,

(II-A-6)

(II-A-7)

(II-A-8)

where Q* and Q^ denote the heat quantities received by

systems I and II. Thus the heat received by a one-component

system of one phase and of variable mass can be represented by

the line integral

r,
Q - J[McpdT + Mlpdp + Octff} -11 (II-A-9)

where cp and !„ are functions of T and p and the coefficient

of dM is zero.

We turn next to the question of the definition of work in

the case of a one-component system of one phase and of

variable mass. In this case it remains to be determined

whether or not dM is equal to pdV if one wishes to introduce a

definition of work in the case of an open system when mass is

being transferred to or from the system. Several authors,

iA The question of the definition of the heat received by a
one-conponent system of one phase and of variable mass has been
discussed by this author more comprehensively on pages 17 to 33
of Carnegie Institution of Washington Publication No. 408A
entitled Tbermodynamic Relations in Open Systems published in
1977.
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Morey,12 Goranson,13 Moelwyn-Hughes,14 and Wheeler,15 have

stated that in the GIbbs differential equation dW = pdV.

However, none of these authors drew a diagram of an open

system and none of them apparently realized that this

statement does not carry over from the Clausius differential

equation for a closed system without the necessity of an

important new physical decision.

In regard to the question of the definition of work in

the case of an open system, we may note that G.J. Van Wylen,16

formerly Chairman of the Department of Mechanical Engineering

at the University of Michigan, states in his book entitled

Thermodynamics that "A final point should be made regarding

the work done by an open system: Matter crosses the boundary

of the system, and in so doing, a certain amount of energy

crosses the boundary of the system. Our definition of work

does not include this energy.!f

The question of the definition of work in the case of an

open system has been discussed by the present author v/ith

Professor R.L. Wild of the Physics Department at the

University of California at Riverside. In this discussion we

supposed that in a thermostat filled with water there was a

cylinder closed at both ends by pistons and containing a fluid

of constant composition (Figure II-A-2). In Figure II-A-2

12 Morey, G.V., op. cit., p. 434.

xi Goranson, R.W., op. cit.t pp. 39, 44.

:if Moelvyn-Hushes, E.A., op. cit., p.. 287.

15 Wheeler, L.P., op. cit.f p. 76.

Van u'ylen, G.J., Thermodynamics, John Wiley and Sons,
Inc., !k*w York, lc)59, p. 49.
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the two arrows indicated the position of a fixed circular line

around the cylinder. The fluid between the two pistons

constituted a closed system and at this stage the temperature,

pressure, and volume of- the total mass of fluid were kept

constant. We next supposed that the two pistons were moved

slowly to the left in unison from the positions indicated in

Figure II-A-2 by solid lines to the positions indicated by

dotted lines. The mass of fluid to the left of the arrows

then had received an addition and that to the right of the

arrows had undergone a diminution. The mass of fluid to the

left of the arrows constituted an open system which we

designated as system I. Likewise, the mass of fluid to the

right of the arrows constituted a second open system which we

designated as system II. Systems I and II together made up a

closed system, the energy of which remained constant. The

energy of system I, [/I, had increased by an amount equal to

the specific energy of the fluid times the mass of the fluid

that had been moved past the arrows from right to left, and

the energy of system II, lfi*-9 had decreased by the same

amount. Thus we had

dU1 = UdM1, (II-A-10)

dU11 = UdM11 = -WAfI, (II-A-11)(II-A-12)

and

dU1 + dU11 « 0, (II-A-13)

W T

where U denotes the specific energy of the fluid, and Ml and

#11 denote the masses of open systems I and II. In the case

of the open one-component system, system I, work was certainly

done by the fluid on the piston at the left hand end equal to
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the pressure times the increase in volume

dW1 = pVdM1, (II-A-14)

where p denotes the pressure of the fluid, and V denotes the

specific volume of the fluid. Since the change in energy of

system I was UdM^ and work was done by system I equal to

pVdtfi, the amount of energy that came across the fixed

boundary with the incoming mass was UdM~^ + pVdM^- which was

equal to Hdlfi. According to Van Wylen17 none of the energy

represented by the term HdM^- is to be considered as work and

this was confirmed by Professor Wild. Thus we had

dU1 = HdM1 - dF^1, 18 (II-A-15)

The major new physical decision that has to be made if the

definition of work is to be extended from the case of a closed

system to the case of an open system is whether or not it can

be said that work is done at a fixed boundary surface across

which mass is transported. Van Wylen and Professor Wild have

concluded that it cannot be said that work is done at a fixed

boundary surface across which mass is transported.

17 fan Wylen, op. cit., pp. 49, 75-77, 80.

18 Hall and Ibele in their treatise entitled Engineering
Thermodynamics (Prentice-Kail, Inc., Englewood Cliffs, N,J.,
1960) stated on page 108 that "A general equation for energy
change in an open system can be written

dE « dQ - dW + l(e + pv)idmi. (7.25)"

This equation reduces to equation (II-A-15) in the case of a
transfer of mass of constant composition at constant
temperature and constant pressure, in which case dQ « 0.
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Sage,19 on the other hand, stated that in the case of an

system of constant composition if the material added to

;ystem is at the same pressure as that of the system the

litesimal amount of work w is given by the equation

w + j = pdV - pVdm. (3.18)

lis equation j represents frictional work (which would

:e to zero in a reversible change). Sage20 stated further-

an open system is one for which material is transported

JS the boundaries. Sage's equation (3.18) is thus

ided to be applicable to open system I of Figure II-A-2,

lis case V is a function of T, p, and m and

dV = -KjidT + 7r-dp + Tr-dm (II-A-16)

furthermore

|~ = V . (II-A-17)

according to Sage

Si/ 3V w ^
w + j = p-zjzdT + p-Tr-dp + pVdm - pVdm

61 dp

(XI-A-18)

:he transfer of material of constant composition is at

Sage, B.H., Thermodynamics of Multicomponent Systems,
ihold Publishing Corp., New York, 1965, p. 47.

Sage, B.H., op. cit., p. 46.
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constant temperature and constant pressure according to Sage

w + j = 0. Thus in the case of open system I discussed on

page 82 according to Sage w + j = 0, Since open system I for

certain performed work pVdM^ against the enclosing piston

Sagefs conclusion requires that the pVdM^ part of the HdM^

term be considered as work offsetting the work done by open

system I against the enclosing piston. In other words, Sage21

considers part of the energy associated with the mass

transferred across the fixed boundary to be work, contrary to

the conclusion of Van Wylen, Goranson, and Professor Wild.

The decision between these conflicting views is one to be made

by physicists and engineers and is, I believe, of some

interest, but so far as I am aware, all of the thermodynamic

relations and measurements needed in physical chemistry can be

obtained without involving any such decision or any definition

of work in the case of an open system.22

21 Sage (op. cit., p. 47) stated that "This definition of
work for a constant-composition system of variable weight
differs markedly from that used by Gibbs and Goranson."
According to Sage, work is defined by these authors for cases
in which j is zero as follows:

w = pdV = mp\ -TT=

This statement is correct as far as Goranson is concerned, but
in regard to Gibbs it is not correct, since Gibbs nowhere
mentioned work or heat in connection with an open system in
his memoir entitled f10n the Equilibrium of Heterogeneous
Substances/'
22 The definition of work in the case of open systems has
been of interest chiefly to engineers concerned with flow
processes (see, for example, J«H. Keenan, Thermodynamics, John
Wiley and Sons, Inc., Hew York, 1948, p. 35).
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In accordance with the conclusion of Van Wylen, Goranson,

and Professor Wild, the work W done by a one-component system

of one phase and of variable mass can thus be represented by

the line integral

T, p , M

W = M p | | d T + p | ^ d p + pVdMi. (II-A-19)

To» Po» ̂ o

This equation for work in the case of an open one-component

system of one phase or the corresponding differential form

dW = p|~dT+ p | ^dp+ pVdM , (II-A-20)

has been found to be of use in some engineering problems.



Appendix B to Part II

Transformation of the work and heat line integrals from one

coordinate space to other coordinate spaces in the case of a

one-component system of one phase and of variable mass

In Part II it was shown that it is not necessary to

define either work or heat in the case of an open system of

one component and of one phase when mass is being transferred

to or from the system in order to obtain the energy and the

entropy as functions of the absolute thermodynamic

temperature, the pressure, and the total mass from

experimental measurements. Thus the derivation of the

Jacobians listed in Tables II-l to 11-15 did not depend upon

definitions of work or heat in the case of an open system of

one component and of one phase when mass is being transferred

to or from the system.

For some purposes, however, it is useful to have

definitions of work and heat in the case of an open system of

one component and of one phase when mass is being transferred

to or from the system as was shown in Appendix A to Part II.

The derivatives of the work done by a system of one component

and one phase and of variable mass are total derivatives with

respect to the variables chosen as the parameters defining the

paths of the integral. In order to obtain the total

derivative of the work done along a straight line parallel to

one of the coordinate axes in any coordinate space one obtains

from Tables II-l to 11-15 the partial derivative of the volume

with respect to the quantity plotted along that axis when the

quantitites plotted along the other axes are held .constant and

one multiplies this partial derivative by the pressure.

86
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The derivatives of the heat received by a system of one

component and one phase and of variable mass are also total

derivatives with respect to the variables chosen as the

parameters defining the paths of the integral. However, the

derivatives of the heat received by a one-component system of

one phase and of variable mass along straight lines parallel

to the coordinate axes in various coordinate spaces cannot be

obtained by multiplication of the' partial derivatives of the

entropy by the absolute thermodynamic temperature when

transfer of masses to or from the system are involved. In

such cases the total derivatives of the heat received along

lines parallel to the coordinate axes in any desired

coordinate space can be derived in terns of the total

derivatives of the heat received along lines parallel to the

coordinate axes in (7\ p, A/)-space by transformation of the

heat line integrals as explained in the second half of

Appendix C to Part II. Following is an example of such a

transformation. In the case of a one-component system of one

phase and of variable mass the heat line integral extended

along a path in (7\ M* F)-space is

T,M9 V

r, M, v
(II-B-1)

dN
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In order to transform this integral to (T, p, Af)-space we

use of equations (II-C-63), (II-C-64), and (II-C-65) in

Appendix C to Part II. For the purpose of substitution of

values in equations (II-C-63), (II-C-64) and (II-C-65) the

equivalence of symbols is given in the following Table.

Table II-B-1

Equivalence of symbols

r o
x T

y M

z V
rdl\ fdQ)

: y, z ^dThu v
/dT\ /dQ'

4L\ (dQ\
dz J \dvL s/

u T

v p

w M

dJTJ MCP
V, W

dvl MlP
u» w

[dw)
u, v
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Substituting the values from Table II-B-1 in equation

(II-C-63) we have

dQ\
l'M, V

McD ML

dM
dT

dV
dT

dT
dT

dM
dT

dV
dT

dM
3p

dV
dp

dT
dp

dM
dp

dV
dp

dM
3J?
dV
dM

dT
dM

dM
dll

dv
dM

(II-B-2)

and multiplying out the quantities in the determinants we

obtain

dv M^ dvi. r dv

Jw fdv\ JdvVl ./dv\ (II-3-3)
>'T'
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Similarly, substituting the values from Table II-3-1 in

equation (II-C-64) we have

dQ

Mcp
dT
dT

dV
dT

dM
dT

dT
dT

dV
dT

Nip
dT
dp

dv
dp

dM
dp

dT
dp

dV
dp

0
dT
dM

dV
dM

dM
dM

dT
dM

dV
dM

(II-B-4)

and multiplying out the quantities in the determinants we

obtain

4.P- r 11

(II-B-5)
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Finally, substituting the values from Table II-B-1 in equation

(II-C-65) we have

dQ\

lT, M

Mcp
dT
dT
dM
dT

dV
dT

dT
dT

dM
dT

Mlp
dT
dp

dM
dp

dV
dp

dT
dp

dM
dp

0

dr_
dM
dM
dM

dV
dM

dT
dM

dM
dM

(II-B-6)

and multiplying out the quantities in the determinants we

obtain

\dVj
T, M

" \Zp/T '
(II-B-7)
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The corresponding values of the partial derivatives of

the entropy obtained from Tables 11-10, II-3, and II-2 are

(11 v n>

[-B-9)
I 1 /"f I t I S~l / 1 / I I /~I II i

and

1 > ivj P J

Thus it follows from (XI-B-3), (II-B-7), (II-B-8), and

(II-B-10) that

and

sy V 3 F / {-6-

but, finally, it also follows from (II-B-5) and (II-B-9) that

f£fi] j T ( — I r TT—^—1 ̂ ^



Appendix C to Part II

Proofs of the relations:

t y*
dx'
dx

y, z

3(u»- v9 w)

d(x, y9 z)
3(u, v, w)

and

)
dx 1y, z

du dv dw
dy dy dy
du dv aw
dz dz dz
du dv dw

dx dx dx
du dv dw
dy dy dy
du dv dw
dz dz dz
du dv dv/

It is assumed that x' is a function of x, y, and z

x' = u)(x, y, z). (II-C-1)

and that x» y, and z are functions of u» v9 and w

(II-C-2)

x = f(u, v, w), y = <f>(u9 v, w)t z = ^(u» v, v) . (II-C-3)

(II-C-4)

93
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It is assumed further that these functions are continuous

together with their first partial derivatives. By application

of the theorem for change of variables in partial

differentiation one then obtains

â ax wax l^ii
3x du + dy du + dz du '

ay ay ax ay ay ay dz
dv ~ dx dv dy dv dz dv

and

dw dx dw dy dw dz dw

From equations (II-C-5), (II-C-6) and (II-C-7) it follows that

dz du dx du dy du du

JzJv a ~"dx~dv~Jydv+~dvf (II-C-9)

and

dz 3w dx dw dy dw + dw ' (IX-L-IO)

Dividing both sides of equation (1I-C-3) by j£ f and both

sides of equation (1I-C-9) by 3£, likewise both sides of
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equation (II-C-1O) by Jl£ we have
dw

gy
dz

dx1

dz

dx1

9u

ay
dv

_ ay ax
3x du

dz

au

_ ay ax
3x dv

dz
dv

_ ay^x
dy du

dy dv

(II-C-11)

(II-C-12)

and

ay __ ay ax ̂ _ay a^
gy 3w dx dw dy dw
_ m _ • (H-C-13)

It follov/s that the right side of equation (II-C-11) is equal

to the right side of equation (II-C-12)

du '

ay
dv

ay
dx

ay
dx

dx
9u

92

du

dx
dv

dx1

dy

9y

ay

9u

dv

(II-C-14)

9v

Multiplying both sides of equation (II-C-14) by (•5~~T~
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have

3u " 3y 3u/ " du\dv " dx dv dy dv

Likewise it follows that the right side of equation (II-C-12)

is equal to the right side of equation (II-C-13)

_ ^1 _ ^ lz
dv 3x dv dy 3v

dv

(II-C-16)
3x[ _ 3/ 3x ^ 3^ 3^
dw dx dw dy dw

dz_
dv/

Multiplying both sides of equation (II-C-16) by f-^-^-j we

have

d^d^\ 3z/3^ 3xJ 3x j ^
dy dv ) = dv\dw ~ dx dw ~ dy

Consequently ve have from equations (II-C-15) and (II-C-17)

3v 3u " dv dx du ' dv dy du " du dv " 3u dx dv 3u dy dv '
(II-C-18)

and

v 3y 3v *
(II-C-19)
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From equation (II-C-18) it follows that

3V 3z d£ _ <M dz_ & _ 1* 1*! _ M i*! l£9^1x 3z 3V 3x
3y 3u 3v 3y 3v 3u ~ 3u 3v 3v 3u 3v 3x 3u 3u 3x dv

(II-C-20)

and from equation (II-C-19) it follows that

3y 3v dw dy dw 3v dv dw dw dv dw dx dv dv dx dw
(II-C-21)

7F" T~- - — —2- j

we have

3z 3y _ ĵ z _3y _3ẑ  _3V dx_ _ dz_ _3xJ _3x
3u 3v 3v 3u dv dx du du dx dv Q J C-22)

3u 3v 3v 3u

and dividing both sides of equation (II-C-21) by

dz dy dz dy \ ,_— —JL . _- -_JL we have
av aw dw av J

gy 3v dw dw dv dw dx dv dv dx dw fTT r OQ\
1.1~. — • \LL—\J—AD)

®Y dz dy dz dy
dv dw dw dv

Consequently the right side of equation (II-C-22) is equal
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to the right side of equation (II-C-23)

dz dx* dz dx* dz dx* dx dz dx* dx
du dv dv du dv dx du du dx dv

dz dy dz dy
du dv dv du

dz dx! dz dx! dz dx1 dx dz dxt dx
dv dw dw dv dw dx dv dv dx dw

dz dy dz dy
dv dw dw dv

(II-C-24)

Multiplying both sides of equation (II-C-24) by

/ 92 dy dz dy\fdz dy dz dy\ ,
i v IT- - 7T- -^-Hl-^— -%*- - yr~ ~zr~ i w^ have\ ov aw dw avj\du av ov du /

dz^dz 9 £ l z V ^ . l ^ - l ^ ^ 3^_9zj)x 3^ Jz dx_
dv dw ~ dw dv)\du dv dv du + dx dv du " dx du dv

3u dv " 3v 3u/V3v 3w " 3w 3v + 8x 3^ 3v 3x dv dw

(II-C-25)

Consequently it follows that

(II-C-26)

3*\3w 3v 3v 3*r/\3u 3v 3^ 3u

0 .
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dxfEquation (II-C-26) is then solved for TT— and we thus obtain

dv J\du dv dv 3u

3v 3v 3u/\3v dw dw 3v\
(II-C-27)

z. (Qz_ Qx_ _ _3z_ d2£\/dz_ dv_ _ dz_ dy\
[\dv du du 3v/\3v^ dw dw dv)

3z 3x _ _3:z_ dx\ /dz_ _3^ _ _3z_ _3j/
3^ 3v 3v 3v/ \du dv dv du

Multiplying out the expressions in parentheses in equation

(II-C-27) we have

^ _ |^£ 3V dz d_y _ 3z dx! dz dy _ 3z 3^ 3z 3y + 3z 3^ 3z 3y
3x "" I 3v 3w 3u 3v 3u 3v 3v du dw dv du dv dw dv dv du

dz 3V 3z 3y 3z 3^ 3z 3y 3z 3.̂  3z dy dz dx* dz 3y
3u 3v 3v 3û  3u dv dw dv dv du dv dw dv 3u dw dv

- î L ̂££ -̂ £ JLz. ̂ £. ̂££ ̂£. ̂!Z ^5. ̂£. ̂. ̂ K ̂ £ ̂£1 j£. ̂ Z
[_3v 3u dv dw dv du dw dv du dv dv dw du dv dw dv

dz dx dz dy dz dx dz dy dz dx dz dy dz dx dz dy
dw dv du dv dw dv dv du dv dw du dv dv dw dv duJ '

(II-C-28)

Now the third term in the bracket constituting the numerator

of the right side of equation (II-C-28) cancels the sixth term

in this bracket • Likewise the fourth term in the bracket
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constituting the denominator of the right side of equation

(II-C-28) cancels the fifth term in this bracket. The

remaining terms in the numerator and denominator of the right

side of equation (II-C-28) have a common factor 7p which we

next divide out. The terms that are then left are equivalent

to the quotient of two Jacobian determinants. We thus have

dx)
y, z

dx1
du
iz
du
dz
du

dx
3u
iz
du
dz
du

dx1
dv
iz
dv
dz
dv

dx
dv

dv
dz
dv

dx1
dw
Iz
dw
dz
3w

3x
dw
h.
dv/
dz
dw

(II-C-29)

provided the Jacobian determinant in the denominator is not

equal to zero. Thus we obtain the result

.3*/..

3(x%
3(u,

3(x,

y»

y» z)
3(u, v, w)

(II-C-30)

Similarly we have

KdyL
w)

3(ut v, v)

(II-C-31)
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and

, y)

x> y 3 Q , x, 7)
3(u» v9 w)

Equations (II-C-30), (II-C-31), and (II-C-32) are not

applicable, however, in the case of a one-component system of

one phase and of variable mass when it is desired to transform

the heat line integral from one coordinate space, such as the

temperature-volume-mass coordinate space, to another

coordinate space, such as the temperature-pressure-mass

coordinate space, because the heat line integral depends upon

the path and is not a function of the coordinates. In this

case, to which the second equation of the heading of this

Appendix applies, the transformation can be accomplished in

the following way. Let us suppose that a line integral T

x9 y, z

T = /{P(x, y, z)dx + Q(x, y, z)dy + /?(*, y, z)dz] (II-C-33)

XQ, y09 z0

v - u- u 3P ,30 3P / 3/? jdepends upon the path, in which case, TT~ f -TT-» -g— f -g—•, and

~%~ ̂  "sT* This integral has no meaning unless further

relations are given defining a particular path in

(x9 y, z)-space. For example, the curve can be represented in

parametric form by the equations, x = f(o)* y = A{a), and
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z = 5(o). We are next given that x» y, and z are functions

of ii, v9 and w9

(II-C-34)
x = <£(u, v, w)f y = x(ut v, w), z = ̂ (u, v, w). (II-C-35)

(II-C-36)

It is then desired to transform the integral T from

(x, y* z)-space to (uf K, uO-space. In this case if equations

(II-C-34), (II-C-35), and (II-C-36) can be solved so that we

have

(II-C-37)
a = *(x, y, z), v = X(x, y, z ) , u^ = *(x, y, z ) , (II-C-38)

(II-C-39)

then the curve in (x, y, z)-space can be transformed into the

curve in (u, v, w)-space defined by the equations u = F(s),

v = A(5), and v = 5(s). We next replace dx in the integral T

by ^ du +^ dv + ^ dw 9 also dy by |* du + |^ dv + |^ dv
ou dv dv/ f ^ J du du 8^

and dz by -~— du + -r— dv + TT~ d^« We then have
on dv dw

Ut V, W

f ] (II-C-40)

the curve in (uf v, v)-space mow being determined by the
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equations u = F(s)9 v=A(s)» w = H(s). Consequently we

thus obtain

u, v9 w

T =J<P(<t>(u9 v, w), x(u, v, w), \p(u, v, w))\"^du + ̂ dv + " 3 ^ ^

u0, VQ9 W0

Q(<t>(u, v9 w), x(u, v, w), \J/{u9 v9 w)

+ R(<t>(u9 v9 w)9 x(u9 v, w)9 ip(u9 v9 w)) -g— du + -^r-dv + -r—dw ^

u9 v9 w

f\ Q(u9 v9 w)du + II(u, v9 w)dv + tt(u9 v9 w)dv/\,

where 0 is set equal to

dx
P(<t>(u, v9 w), x(u9 v, w)» ^(u, v, v))-^j

u, v» w)9 x(ut v9 w), ^(u» v, ̂ ))g—»

II is set equal to

, v9 w)9 x(u9 vt w)9 f(u, v, v)

(o, v, v), x(ut v9 w)9 ̂ (u, y, w ) ) ^ "
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and Q is set equal to

dxu» v, w)9 x(u» v9 w), \p(u, v, W ) ) T —

In order to evaluate?, Q, and /? as functions of u, v, and w

we next solve the equations

0 - "&

and

for P, 0, and i?. Thus we have

^ = n " p% - Q% '

and
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Dividing both sides of equation (II-C-45) by TT-, both sides

of equation (II-C-46) by y, and both sides of equation

(H-C-47) by |^, we obtain

• - 6 / t - plf/If - «£/£ •

and

Consequently we have

(II-C-51)

and

fi/i2. _ P$2L/§£ _ n i z /^£ = n /— - P — /— - Q^-/—
I dw dw/ dw dw/ dw / dv dv/ dv dv/ dv

(I-C-52)

From equations (II-C-51) and (II-C-52) it follows that

(II-C-53)

and

9v
(II-C-54)
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Dividing both s ides of equation ( I I -C-53) by

ll/$z. _ &/$£) and both sides of equation (II-C-54) by
dvf dv duf du j

|I/ |£.|Z/|£) v e h a v e
dv/ dv dwf d I

/ 3v / 3u \3u/ 3u dvf dv

Q = zrnz I77Z (n-c-55)
3v/ 3v duf du

and

dvf dv dwf dw

Consequently we have

dvf dv duf du

3y /3z 5y 7&2
dvf dv " dw/ dw

(H-C-56)
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Multiplying both sides of equation (II-C-57) by

3z 3
37 " 37/a^J we o b t a i n

(II-C-58)

Solving equation (II-C-58) for P we have

dv I 3vy \3v

_ / 3x / 3z 3x /3z\/3x / 3£ 3^ / l z
\ 3^ / 3^ " 3v / 3v/ V3v / 3v 3u / 3u

3v / dw)\dv/ dv du I du t

I dz __ p. /dz\ (dj£_ I dz_ j)j£ / dz\
I dv ®/ du)\dv/ dv ~ dw/ dw)\ *

(II-C-59)

Carrying out the multiplications in equation (II-C-59) we
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obtain

/\(h./) _ ( / ) ( /

)(&/&) ( ( z

%w)\2v/ dv) + [dw/ dw]\du/ du

dv I dvj\dv/ dvj \ dv I dv/\c$u/ 3u/J

(II-C-60)
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Equation (II-C-60) can then be rewritten as

dx dy
du dv

du dv

dx dy
dw dv +

dz dz
dw dv

11 dv

dz_dz_
dv dv

n |z
dv

dv dv

dx
du

dz
du

dx
dw

dz
dw

n

32

dv

n

32

dv

dw

32
dw

hL
du

dz
du

hL
du

dz
du

hL
dw

dx dy
dv dv

dv dv

dx dy

dz dz
dv dv

dv

dz dz
dw dv

+ Hii
du dv

dx
dv

dz
dv

dx
dv

dz
dv

Q

dz
dw

0

dz
du

iz

32
dw

du

dz
du

du

dz
du

d£
dw

dz
dw

(II-C-61)

The third term in the bracket in the left side of equation

(II-C-61) cancels the seventh term in this bracket and the

first term in the bracket in the right side of equation

(II-C-61) cancels the fifth term in this bracket. Multiplying

the remaining terms in both sides of equation (II-C-61) by
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dz dz dz \
du dv dw j we obtain

M IK J!£ _. i* lz i£ i* iz ik
du dv dw du dw dv dv dw 3u

Q?L iLZ QZ_ _3X _3j£ dz_ dx dy dz
dw dv du dw du dv dv 3u dwj

I 3u 3i/ dv du du dv

aw du ov dw ow ovJ

(II-C-62)

Now P(x, y, z) is the total derivative of Y along a line

parallel to the x-axis in (x, y, z)-space. Also 0(u, v, v)

is the total derivative of F along a line parallel to the

u-axis in (u, v, w) -space, II(u, v9 w) is the total

derivative of T along a line parallel to the v-axis in

(u, v, v)-space, and Q(u, v, w) is the total derivative of F

along a line parallel to the w-axis in (u, v, uO-space. Thus

we have from equation (II-C-62)

du dv dw
dy ay dy

P(X,y,Z) =

y* z

M. M.

3"

M

(II-C-63)



ONE-COMPONENT SYSTEMS OF VARIABLE MASS 111

Likewise Q(x,. y, z) is the total derivative of T along a

line parallel to the y-axis in (u, v, ^)-space. Thus in

a similar way we have

Q(x,y,z) =(j|
x» z

dT dH d£
du dv dw
dx dx dx
du - dv dw
dz dz dz
du dv dv/

dy dy dy
du dv dw
dx dx dx
du dv dw
dz dz dz
du dv dw

'(II-C-64)

Also R(x* y, z) is the total derivative of T along a line

parallel to the z-axis in (x» y, z)-space. Consequently

in a similar way we have finally

R(x, y, z)
(dT\

x, y

dT
du
dx
du
dy
3u

dz
3u
dx
du

iz
du

dT
dv
dx
dv

hi
dv

dz
dv
dx
dv
3y
dv

dT
dw
dx
dw

Iz
dw

dz
dw
dx
dw
9Z
dw

(II-C 65)



Appendix D to Part II

Discussion of F.G. Donnanfs derivation of the equation

du = tds - pdv + \idm for a one-component system

of one phase and of variable mass

Donnan's1 proof of the equation

du - tds - pdv + ]idm

for a one-component system of one phase and of variable mass

is as follows:

Applied to a homogeneous system characterized by a
uniform temperature t and a uniform pressure p, and
subject to no other external forces except that due to
this pressure, the development of thermodynamics up to
the date of Gibbsf researches may perhaps be briefly
summarized in the equation of Clausius,
5u = t&s - pSv, where u = energy, s = entropy, and
v = volume. This equation applies to a closed system
of constant total mass, and the first fundamental step
taken by Gibbs was to extend it to a system of
variable mass. In the equation of Clausius the
entropy of the system may be changed by the addition
or subtraction of heat, whilst the volume may be
altered by work done by or on the system, both types
of change producing corresponding changes in the
energy. It is possible, however, simultaneously to
increase or diminish the energy, entropy, and volume
of the system by increasing or diminishing its mass,
whilst its internal physical state, as determined by
its temperature and pressure, remains the same. If we
are dealing with a system whose energy, entropy and

1 Donnan, F.G., The Influence of J. Willard Gibbs on the
Science of Physical Chemistry, An Address on the Occasion of
the Centenary Celebration of the Founding of the Franklin
Institute, Philadelphia, The Franklin Institute, 1924,
pp. 6, 7.

112
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volume may be regarded as sensibly proportional, at
constant temperature and pressure, to its mass, we may
write:

du - 6u +

ds = 6s +

dv = Sv + vodm

where the total differentials du, ds9 and dv indicate
changes which take account of variation of mass at
constant temperature and pressure as well as of heat
and work effects at constant mass (indicated by the
differentials 6u, 6s, 5v) and uo» SQ, vQf denote the
energy, entropy, and volume, respectively, of unit
mass under the specified conditions of temperature and
pressure. Combining these equations with that of
Clausius, we obtain

du = tds - pdv + (u0 - tsQ + pvQ)dm

or, putting

u0 - ts0 + pvo = li

du = tds - pdv + udoi.

According to Donnan the total differentials duf ds, and dv

indicate the changes in u* s, and v which take account of

variation of mass at constant temperature and constant

pressure as well as of heat and work effects at constant mass.

In Donnan !s equation du = 8u + uodm the term u^dm9 UQ

being the specific energy, gives the change in energy with

mass at constant temperature and constant pressure; it does

not give the change in energy with nass at constant entropy

and constant volume. The independent variables in the right

side of this equation are thus temperature, pressure, and
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mass. The differential &u is consequently really shorthand

for 4^-dt +%r-dp. Likewise in the equation ds = 8s + sodm,
ot op

where so is the specific entropy, the term 8s is really

shorthand for -rrpdt + ydp . Similarly in the equation

dv = 6v + vodm, where vQ is the specific volume, the term

6v is really shorthand for jr-dt + ~^~"dp . Thus written

out in full we have

du = |~dt + y-dp + uQdm , (II-D-1)

ds = ||dt + y-dp + sodm , (II-D-2)

and

dv = j^dt +ydp + vQdm . (II-D-3)

Combining equations (II-D-1), (II-D-2) and (II-D-3) we have

du - tds + pdv

+ pvQ)dm .

(II-D-4)



ONE-COMPONENT SYSTEMS OF VARIABLE MASS 115

It is known from the case of a one-component system of one

phase and constant mass that

It

- P§) . CII-D-6)

• CH-D-7)

IF
and

3p

Substituting these values of the partial derivatives of u and

s from equations (II-D-5), (II-D-6), (II-D-7), (II-D-8),

(II-P-9), and (II-D-10), in equation (II-D-4) we obtain

du ~ tds + pdv

- mt-^-dp + mp—^dt + mp-Tr-dp + (u0 -£ at op
(II-D-11)
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Thus we arrive at Donnanfs equation

du = tds - pdv + (uo - tso + pvo)dm , (II-D-12)

but by this mode of derivation the independent variables are

still t» pf and m, not s» v, and m.

The real problem Donnan was attempting to solve was to

show that when the independent variables in the case of a

one-component system of one phase and of variable mass are

entropy, volume, and mass, the partial derivatives of the

du Bu , du f x

energy are j^ = t, j^ = -p, and -^ = (uo - tso + pvo).

In order to solve this problem Donnan had to begin with

temperature, pressure, and mass as independent variables,

because the change of energy with mass is only equal to the

specific energy at constant temperature and constant pressure.

The real problem then consists in a transformation from

temperature, pressure, and mass as independent variables to

entropy, volume, and mass as independent variables.

It is assumed that the equations

s = F(t,p,m) (II-D-13)

and

v = <Kt,p,m) (II-D-14)

can be solved so that we have

t = F(s, vf m) (II-D-15)
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and

p = $ ( s , v, m) (II-D-16)

and thus finally

u = V(s, v, m) . (II-D-17)

From equation (II-D-17) it follov/s that

du = Tr-ds + -rr-dv + ir-dm . (II-D-18)

The partial derivatives TT-» TT~, and -xt— are then obtainable
r os ov dm

by the use of the Jacobians in Tables (II-D-1G), (II-D-12),

and (II-D-14). Thus we have

lvY +££/3v\
3(tf p» m)

= t , (II-D-19)

3(u» m* s)

on ) s
 d(t9 P> n )

s d\Vf itit s )

3 ( t , p , in) p
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and

3(u, v,

/3u\ = 3(t.p,

• ^

3(t, p,

3^\2 If 11
"57"J uo + pv0 - ts0 ?

= u0 + pv0 - ts0 . (II-D-21)

In the case of a one-component system of one phase and

of variable mass the chemical potential y is equal to f — j
v, s

and consequently to (uo + pvo - ts0) . Substituting the

values of (*g—) » l"g~"J » an(* I-g— ) from equations
m, v m9 s v9 s

(II-D-19), (II-D-20), and (II-D-21) in equation (II-D-18) we

arrive at the result

du = tds - pdv + ]idm , (II-D-22)

with Sf V, and m as independent variables. Equation

(II-D-22) is thus true with either t, p, and m as

independent variables or with s, v, and zn as independent

variables. However, the more important significance of

equation (II-D-22) is that it is true with s» v, and m as

Independent variables.



Part III

Relations between thermodynamic quantities and

their first derivatives in a binary system of

one phase and of unit mass

'Introduction

The basic thermodynamic relations for systems of variable

composition were first derived by J. Willard Gibbs in his

memoir entitled "On the Equilibrium of Heterogeneous

Substances."1 Gibbs2 stated that the nature of the equations

which express the relations between the energy, entropy,

volume, and the quantities of the various components for

homogeneous combinations of the substances in the given mass

must be found by experiment. The manner in which the

experimental determinations are to be carried out was

indicated by him3 in the following words: ffAs, however, it is

only differences of energy and of entropy that can be

measured, or indeed that have a physical meaning, the values

of these quantities are so far arbitrary, that we may choose

independently for each simple substance the state in which its

energy and its entropy are both zero. The values of the

1 Gibbs, J. Willard, Trans. Conn, Acad. of Arts and Sciences,
3, 108-248, 1874-78, or Collected Works, Longmans, Green and
Company, New York, 1928, Vol. 1, pp. 55-184.

2 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
3, 140, 1874-78, or Collected Works, Longmans, Green and
Company, New York, 1928, Vol. 1, p. 85.

3 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
3, 140-141, 1874-78, or Collected Works, Longmans, Green and
Company, New York, 1928, Vol. 1, p. 85.

119
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energy and the entropy of any compound body in any particular

state will then be fixed. Its energy will be the sum of the

work and heat expended in bringing its components from the

states in which their energies and their entropies are zero

into combination and to the state in question; and its entropy

is the value of the integral J -~- for any reversible process

by which that change is effected (dQ denoting an element of

the heat communicated to the matter thus treated, and t the

temperature of the matter receiving it)."

Calculation of the specific volume, the specific energy,

and the specific entropy of a binary system of one phase

as functions of the absolute thermodynamic temperature,

the pressure, and the mass fraction of one component

from experimental measurements4

In the case of a binary system of one phase, the mass

fraction m of component 1 is defined by the equation

where ml denotes the mass of component 1 and m denotes the

Tunell, G., Relations between Intensive Thernodynamic
Quantities and Their First Derivatives in a Binary System of
9nt> Phase, V.H. Freeman and Co., San Francisco and" London,
I9ti\ pr). 7-16.
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mass of component 2; the specific volume V is defined by the

equation

where V denotes the total volume; the specific energy U is

defined by the equation

U = mi + m2
(III-3)

v/here £/ denotes the total energy; the specific entropy S is

defined by the equation

•mi + m2
(III-4)

v/here S denotes the total entropy. As a result of experiment

it is known that the pressure p9 the specific volume Vf the

absolute thermodvnamic temperature T, and the mass fraction

Si of component 1 are connected by an equation of state

*(pf V* 7\ = 0 , (111-5)

which can, in general, be solved for any one of these

quantities as a function of the other three. The relation of

the specific energy of such a system to the temperature,

pressure, and sass fraction of component 1 is expressed
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by the equation

P , f l ? i

cp - p
oV 9/7

where Cp denotes the heat capacity at constant pressure per

unit of mass and lp denotes the latent heat of change of

pressure at constant temperature per unit of mass. The

relation of the specific entropy S to the temperature,

pressure, and mass fraction of component 1 is expressed by the

equation

S(T, p,mx) - S(T0, po.iniJ

7\ p, flii

P jm P J 0^ J1*̂  I

7"di + ~-±-dp + -ZT;dmi > . / T T T 7N

i ojni J ( 1 1 1 - / ;

Necessary and sufficient conditions5 for (III-6) are

(III-S)

* Ossood, I ' .F . , Advanced Calculus, The !!acnillan Cornpany, ?!e\#
York, 1925, p. 232, and Lehrbuch der Funktionentheorie» 3d. 1,
Ste Auf l . , B.G. Teubner, Leipzig , 192S, pp. 142-150.
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cP '
dV

dT
p,

dm i
T,p

(III-9)

and

. dU
a Trzr

dm i

y dv
1P ~ ?irP

T,ml
dm i

T,p

(III-1O)

Similarly, necessary and sufficient conditions for (III-7) are

p * w i 1 j

(III-ll)

a TT^J
dm i

- oT

,22.

71 T,p

(111-12)

and

ami (111-13)

Carrying out the indicated differentiations in (III-8) and
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(III—11) one obtains

and

v / v-»

Combining (111-14) and (111-15) one has

lp = -Tff. (111-16)

Carrying out the indicated differentiations in (III-9) and

(111-12) one obtains

%2V

44= (in-17)

and

Conbmin3 (111-17) and (111-18) one has
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Carrying out the indicated differentiations in (111-10) and

(111-13) one obtains

d2u d^p d2v
3»T - p a ^ > (III-2C)

and

= 7 3§f • (111-21)

Combining (111-20) and (111-21) one has

From (111-16) it follows that

dT " ' F 3T

and from (111-14) and (111-16) one obtains

3c

From (111-16) it also follows that

dp
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and

(HI-26)

Combining (111-26) and (111-20) one has

3p3/i?x OIB \aT ofii\op

and, similarly, combining (111-26) and (III-21) one has

32S d2V (111-28)

There is thus one relation, equation (111-16), between

dV 3F dV Y dU dS
the seven auantities TTT;, TT—, TTW-> cD, /n,oT op dmi r ¥

Consequently, all seven will be known if the following six

dV
are determined by means of experimental measurements: -^=9ol

There are also eight relations, equations (111-17),

(111-18), (111-23), (111-24), (111-25), (111-26), (111-27),

(111-28), between the eighteen quantities, T^T, Tr-Tt \^ \ »
al dp am i

d c p g^p otp d t p

dp937* 3p f 3S1
> 37 * dp

32S 52S 325

f
m e a n s o f
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which from the following ten, f^, |^, - & , JjlL,
ol dp ami aTop

d2V d2V dZ ^ 2
p n 3(/ 3 g

3Tf dwl ' U ? " ' 3 ^ ' the remaining

eight can be calculated. From equation (111-24) -^- can

be calculated; from equation (111-23) -̂ *r can be
61

calculated; from equation (111-25) -r-41 can be

OtjT)

calculated; from equation (111-26) - s — can be calculated;

32[/
from equation (111-17) %T<\^ can be calculated; from

equation (111-27) ^ ^ can be calculated; from eouation
oponii

32S
(III—18) ^rp^>^ can be calculated; and from equation (111-28)

ol oih i

can be calculated. It will therefore suffice to

dV
determine experimentally TO- along a line at constant

temperature, T\ and constant pressure, p', then to

determine experimentally -^ at all points in a plane at

3F w
constant pressure, p f, and ^j— at all points in ( 7\ pf rn'i)-

space, likewise to determine Cp at all points in a plane

at constant pressure, p', and to determine experimentally

<T55- along a line at constant temperature, T', and constant

pressure, p', and also -zrzr- along a line at constant

temperature, Tr, and constant pressure, p'.
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From measurements of specific volumes over the range of

temperature, pressure, and composition that is of interest,

the values of |~» y% and TJJ- can be obtained. By means of

calorimetric measurements the necessary values of cp can

9/7
also be obtained. The determination of r j - at constant

offl i

temperature and pressure over the range of composition of

interest can be accomplished in many cases by means of a

dlJ
constant volume calorimeter, and in some cases -^p— can be

determined by means of measurements of the electromotive force

of a galvanic ceil at constant pressure over the ranges of

composition and temperature of interest in combination with

the measurements of specific volume. The determination of -rzr-
dm i

at constant temperature and pressure over the range of

composition of interest can be accomplished most readily by

measurements of the electromotive force of a galvanic cell at

constant temperature and pressure if a suitable cell is

available.

The methods of determination of -re- and -^r- by means
din i dm i

of electromotive force Measurements can be illustrated by the

following example. In the case of a galvanic cell consisting

of electrodes which are liquid thallium amalgams of different

concentrations both immersed in the same solution of a
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thallium salt, one has

G2 - G2' = -NF6 ,6 (111-29)

where G denotes the Gibbs function, U + pV - TS9 of a liquid

thallium amalgam, G2 denotes the partial derivative

(M.)
V^no/m at the concentration of one electrode, G2' the7, p. ni

same partial derivative at the concentration of the other

electrode, n2 the number of gram atoms of thallium, nx the

number of gram atoms of mercury, N the number of Faradays the

passage of which through the cell accompanies the reversible

transfer of one gram atom of thallium from the one amalgam to

the other (N = 1 in this case since a pure thallous salt was

used as the electrolyte), F the Faraday equivalent (which is

equal to the charge of one electron times the number of atoms

in a gram atom); and 6 the electromotive force. The values of

the electromotive forces of a number of such cells, including

one in which one electrode was a saturated liquid thallium

amalgam, were determined at 20°C and 1 atmosphere by Richards

and Daniels.7 By measurement of the electromotive force of

another galvanic cell in which the electrodes are finely

divided pure crystalline thallium and thallium saturated

liquid amalgam at the same temperature and pressure, the

6 Lewis, G. M.» and M. Randall, Thermodynamics and the Free
Energy of Chemical Substances * McGraw-Hill Book Company, Inc.,
Mew York, 1923,. p. 265.

7 Richards, T. W,, and F. .Daniels, Jour. Amer. Chen. Soc.f
41, 1732-1768, 1919.
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difference G§ - G2 could be evaluated, G% denoting the value

of G2 in the saturated liquid thallium amalgam, and G2 the

value of the function G for pure crystalline thallium per

gram atom. The value of G2 being assumed known from

measurements on pure thallium, the values of G2 in liquid

amalgams of different concentrations are then obtainable from

the measurements of electromotive force in the two kinds of

cell. From the values of G2, the values of G\ - G\ are

calculable by the use of the equation

?i - £1 « - /f

n 2

'If2- dn2 , (111-30)

v/here n2 denotes the gram atom fraction of thallium in the

amalgams.

and iii the gram atom fraction of mercury,

s Richards, T.U., and F. Daniels, op. cit., pp. 1732-1768;
Lewis, G.:T., and M. Randall, op. cit.» pp. 413-414.

* Lewis, G.I-"., and :i. Randall, op. cit., p. 44; cf. also
Gibbs, J. llllard, Trans. Conn, Acad. of Arts and Sciences, 3,
194, 1874-73, or Collected Works, Longmans, Green and Company,
;:ew York, 1925, Vol. 1, p. 135.
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— t dG \ *
G\ the partial derivative - 5 — , and G\ the value

V °n 1 Im
L/T, p, n2

of the function G for pure mercury per gram atom. The

integrand in the integral on the right side of equation

(111-30) remains finite and approaches a limit as £2

approaches zero and the value of the integral is thus

determinable.10 The value of Gi is assumed to be known from

10 Gibbs showed that in the case of a solution in which
the mass of the substance chosen as the solute is capable of

negative values, the quantity m2( ̂
 2 1 approaches

T, p, mi

zero as a limit when /T?2 approaches zero, T9 p, and mi being

l-z—)
/rr

held constant, y2 denoting the derivative l-z—) ; he
/7, p, mi

also showed that in the case of a solution in which the mass
of the substance chosen as the solute is incapable of negative
values, as is true of thallium amalgams, the quantity

"̂ ~2") still remains finite, and it approaches a
0m2Irp „ m

1 9 p9 mi

limit greater than zero when /7J2 approaches zero, 7\ p, and m\

being held constant, even though the derivative

becomes infinite in this case (Gibbs, J. v/illard, Trans.
Conn. Acad. of Arts and Sciences, 3, 194-196, 1874-78, or
Collected Works, Longmans, Green and Company, New York, 1928,
Vol. 1, pp. 135-137). It follows in the same way that the

/dG \
quantity ^("jr""^) also approaches a limit when 02

2 T9 pf ni

approaches zero, T» p, and tii being held constant. By

application of the change of variable theorem in partial
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measurements on pure mercury, and hence Gi can be obtained

as a function of the gram atom fraction at 20°C and

f dG \
1 atmosphere. The derivative (-r—l) can be calculated

1 * p f /Z?i

from the equation

(111-33)

where A2 denotes the number of grams in a gram atom of

I oG \
thallium, and the derivative (^— can be calculated

\omiJ

differentiation one obtains the relation

n1
T n n r (ni + n 2 )

2

1 t P* Hi 1 i p

Multiplying both sides of this equation by na» one has

I » p> n\ p

Since Si approaches 1 as a limit when 112 approaches zero,

r. p* and nx being held constant, it follows that TT
2- H^2-)

HI \3n2/T

1 > p

approaches the same limit as n^.i^A and nJ^A
2\3n2/r

 2\3n2/T
1 > p 1 $ pt rii
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from the equation

where Ai denotes the number of grams in a gram atom of

mercury. The intensive function G is defined by the

equation

G E

The derivative ( -^r-) for liquid thallium amalgams at
\dmi/rp °

20°C and 1 atmosphere can be calculated from the equation

By application of the Gibbs-Helmholtz equation

12 - H2 = NFT || - NF£ ^ (111-37)

where H denotes the enthalpy, U + pV9 of a liquid thallium

amalgam, H2 denotes the partial derivative ("T~~j > and
Tf p* ni

11 The derivation of equation (XII-36) is given in Appendix A
to Part III.

12 Lewis, G.N., and M. Randall, op. cit., pp. 172-173.
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£2 the value of the function H for pure crystalline thallium

per gram atom, the partial derivative #2 for liquid thallium

amalgams could then be determined, provided the electromotive

forces of the cells be measured over a range of temperature,

the value of #2 being assumed known from measurements on pure

crystalline thallium. From the values of //2» the values of

Hi - Hi are calculable by the use of the equation

n2

ffl -
n 1

^ d n 2 (111-38)

where H\ denotes the partial derivative and Ht

the value of the function H for pure mercury per gram atom.

The value of H\ is assumed to be known from measurements on

pure mercury, and hence Hi could be obtained as a function of

the gram atom fraction at 20°C and 1 atmosphere. The

derivative
f dH \
f ̂—1

T

could be calculated from the equation

and the derivative dH \r—J could be calculated from
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the equation

The intensive function H is defined by the equation

The derivative ("̂ =~ ) for liquid thallium amalgams at
V dill 1 Jrn °

'T, p

2CTC and 1 atmosphere could then be calculated from the

equation
oti \ _ (_dtt_\ _ (_dtL\ m (111-42)

Alternatively, the function iJ of liquid thallium amalgams and

/ dH \
the derivative ( -^3- could be calculated from calori-

metric determinations of heats of mixing of thallium and

mercury at constant pressure. Finally the values of

-*—-] and ("7T3T-) for liquid thallium amalgams at

20°C and 1 atmosphere could be calculated from thr* equations

cni-43)

13 The derivation of equation (111-42) is given in Appendix A
to Part III.
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and

Derivation of any desired relation between the intensive
V* ^ \s v-»

thermodynamic quantities, T9 p, mi, V, U, S9 and their first

derivatives for a binary system of one phase from the

experimentally determined relations by the use of

functional determinants (Jacobians) ll+

Equations (III-5), (III-6), and (III-7) can, in general,

be solved for any three of the quantities, T9 p, mi, V9 U9 S,

as functions of the remaining three. The first partial

derivative of any one of the quantities, T1, p, mi» V, U9 S,

with respect to any second quantity when any third and fourth

quantities are held constant can be obtained in terms of the

,. , . „. dv dv dv du ds
six first derivatives, -Tr=9 ^—, i^r-t c D > -^?—,

61 op dm i r dm i

together with the absolute thermodynamic temperature and the

pressure, by application of the theorem15 stating that, if

V = a)(xi y9 z ) * x = f(Uf v, w)9 y = <p(uf v9 w)f z = ^(u, v9 w)9

ll* Tunell, G., op. cit., pp. 17-23.

15 k proof of this theorem for the case of functions of three
independent variables is given in Appendix C to Part II.
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then one has

(dx'\

dx1

3u
dj_
3u
dz
3u

3x
du

iz
du
dz
du

dx-

dv
dz
dv

dx
dv
dy
dv
dz
dv

dx>
dw

iz
dw
is.
dw

dx_
dw
dy
dvr
dz_
dw

3(u,

(u, v» t-/)

(111-45)

provided all the partial derivatives in the determinants are

continuous and provided the determinant in the denominator is

not equal to zero.

In Tables III-l to 111-15 the value of the Jacobian is
w w w \^

given for each set of three of the variables, 7» p» mi» V9 U, S*

as x',y, z, or x, y, z» and with T* p* mit as u» v, v. There are

sixty Jacobians in the Table, but one has

3(u,
y»
v ,

2 )
V )

3(z,
3(u,

y»
V ,

3(y» i
3(iif \^, w) f (111-46), (111-47)

because interchanging two rows of a determinant changes the

sign of the determinant. Hence it is only necessary to

calculate the values of twenty of the sixty Jacobians. The

calculations of these twenty Jacobians follow;
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3(ii?i 9 T, p)
3(T» pt Mi)

dm i
dT

dT
dT

dT

dp

dT
dp

3p

dm i
dm i

dT
dm i

dm i

3(7, r,
p»

31/ 3F

9T 3T 3T
dT dp dm i
dp dp dp
dT dp dm i

d(u,
d(T,

T, p)
pflUiJ

dT

dT
dT

dT

dp

dT
dp

3£
dp

W
dm

dT

as
¥
dm

(111-48)

IE \
fT,p

(111-49)

f dU \
\ 35 / (111-50)
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3(S, T,
d(T, p,

P)
S i ) "

dS
dT

dT
dT

l£
dT

35
3p
dT
dp

3£
3 P

3S
3m i

11
3ffli

3D

355!

dS
l 7 7 , p

(111-51)

3(7 , 7, mi)
3(7 , p, S i )

31/
3T

dm i
dT

3 P

_37 .37
37 3p

dm i
dp

dv_
dm i

dT_
dS]

. M\ (111-52)

7,

dU
37

37
37

dm i
dT

du
dp
dT
dp

dm i
dp

du
3»i

37
dm i

dm i
dm i

+ p
\ (111-53)
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3(5, 7, mY]
3(7, p,Mx;

35
37

35 _35
3p 3/^1

37 17 37
37 3p 3SL

37 3p dmi

(111-54)

, r,
p,

din i

9(7
dT dp

dv
dp

ML
dm i

dT_

(111-55)

'IF) -T{§)

3(5, 7, V)
d\Tv pf nil)

as
dT
dT

dV
dT

as
dP

dT
dp

dv
dp

dg

dT_
3m i

i£
3m i

(111-56)
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3(S,
3(7,

T, U)
p, Si)

3S
3T

dT
dT

dU
dT

dS
dp

dT
dp

dU
dp

9S
3/77 ]_

37
dm i

dU_
dm i

dU
dm i

T, p p9 m%

(111-57)

dV\

h, s

d(V, p,l
3(7, p,

of
dV_ dV_
op dm ]

37 3p

"37" 3p~

dv\
dT! (III-5S)

>, SO

37 3p 3mi

OD op op
37 dp dm i

oT op oM\

"P (111-59)
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3(S, p,
3(7\p,

nil)
Si)

as

3/77 i
'NT'

01

dS
dp

l£
3p

dm iw dm i
dm i

f (III-6O)

> p»
3(T, p ,

W_ dg dll
dT dp dm i

3£
3r

dT

3m i

(M ] + (II ) | II
I \3JJ?I L \dMiJm JV 3T
L i , p /» p J

+ Cr (111-61)

0 ( 1) p * HI i )

T, p
l 4 , P

\_/
3S
3T

l£
dT

3T

/3K

3S
3p

l£
3p

/ w

pt Hi

3S
3^1

H

dm i

t (111-62)
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3(S, p, g)
d(T, p, ffll

dS dS
3T

dp dp
dT dp

"3T ~3p

J i J l / 7 \ D

ds
(111-63)

'p»

d(u, CTI, n

3T

3r

3T

ML
dp

dm i
dp

3P

dm i

dm i
dm i

dmi

\2
" C r

^r.S
(111-64)

.. y)

as as 3s

3T 3p

3T 3p

If 3D

dm i
Ofil

V
i t

(111-65)



144 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

3(S> m\9
3('7\ p, S

3S 3S 3S
dT dp dmi

W 3pT 3mi
s-/ v-< s-/

3 T dp dm i

(111-66)

\s w <*J

3 ( T \ p» /z?i)

assr
37
3r

asdp

3F
3D

as35i

dV
dm i

dm i

dT dp Sin!

ML

(111-67)

37 \
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Table III-l
Jacobians of intensive functions
for a binary system of one phase

\y» z
X'N.
x N.

Si

V

u

%J

s

d(x', y, z) 3(x, v, z)
3(7\ p, mO ' 3(T, p, oO

T, p

1

(IS)

(ft)

(is)



146

X1 >v
X ><

p

V

V

s

Table III-2
Jacobians of intensive
for a binary system of

3(x', y, z) 3(x
o{i t pi in\) o(i

T, mi

- 1

/ *Jl\ / **

functions
one phase

i y* z)

t p» Mi)

I

"U
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X \

p

.-,

U

s

Table III-3
Jacobians of intensive functions
for a binary system of one phase

3(x\ y, z) 3Ĉ r, v, z)
acr.p.nu) • acr.p.tfx)

T t p

w ii p i» p i • « i i

• r 1 ~— ]
t p p • /mi
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x Nk

P

*,

Table III-4
Jacobians of intensive functions
for a binary system of one phase

3(x', y, z) 3(x, v, z)

3(7, p. ft) ' 3(7, p. ft)

-(&),„

[-(S),P-KCiJ(4,-(t), * T\d7) v.
p p, mi
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Table III-5
Jacobians of intensive functions
for a binary system of one phase

x'X
X \

p

.-,

' •

U

d(x'f y, z) 3(x, y» z)
d(T*t p» ffl*i) f 3(T» p? OTI)

r, s

- f M \

- (—)
pt ox
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Table I I I -6
Jacobians of intensive functions
for a binary system of one phase

x'\
x \.

T

V

u

s

3(x', y, z) 3(x, y, z)
d(T, p, mi) f 3(T,p frai)

p, flfx

1

(dV)

cp-p\3rj -
p . mi

fa
r
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Table III-7
Jacobians of intensive functions
for a binary system of one phase

\y, z
x'\

T

U

s

3 ( x \ y, z) 3(x, y, z)
3(T, p , Mi) ' 3 ( r , p , m O

p , p

p. mi

[- U*JT, p" pfeJT, J l a ? I Si
 + cpfej r , p

rl»JT,p UxJr,pU;p>Ji
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Table III-8
Jacobians of intensive functions
for a binary system of one phase

\Vf Z

X \

T

V

s

3(x', vt z) 3(x, v, z)
3(T, p, tfi) f 3(T, p.tf i)

p, (/

- c P + K3?j -

[/BOX (%V \ l /a?\ w/3?\

[ U ) n p* His,),.. Jvw),, ft - 'pfejr, p

l[(f,)7.p-Ki,),J*(f,)r.;Kii,,
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\y, z
x\
X >v

T

.-,

7

U

Table III-9
Jacobians of intensive
for a binary system of

3(x', y, z) 3Cx

p,S

(Si)

T

functions
one phase

%P

J
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Table 111-10
Jacobians of intensive functions
for a binary system of one phase

X \

T

P

U

s

d(x', y, z) d(x, y, z)
3(7, p.Afi) J 3(7, p, »i)

JdV)2 - ^\
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Table III-ll
Jacobians of intensive functions
.for a binary system of one phase

\v' z

x\
X \

T

P

V

w

S

3(x', y, z) 3(x, y, z)
3(7, p, ni) J 3(T, p, a!)

mi, ff

'p, mi
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Table 111-12
Jacobians of intensive functions
for a binary system of one phase

\y, z
x\
x y.

T

P

V

s

3(x', v, z) 3U, y, 2)
3(7, p,rai) ' 3(T, p, tfi)

r

-^;.,-*(f),.-,
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x X
x N.

r

P

s

Table 111-13
Jacobians of intensive functions
for a binary system of one phase

3O', y, z) 3(x, y, z)
o{l , p, mi ) o{r, pi zi i)

V, U

--.;r©,,,

ffll'r, p
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\ y> z
x\
x X

T

P

mi

if [-

Table 111-14
Jacobians of intensive functions
for a binary system of one phase

3(x\ y, z) 3(x, y, z)
3(T»p»i73^) 3(T»p»/I7j)

Vy S

<=p fdV \ fdS \ fdV\
Hi i.- ^^ i _ I — > — i ____ i
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X N,

T

P

y

Table 111-15
Jacobians of intensive functions
for a binary system of one phase

3(x', y, zj 3(x, y, z)
9(7, p, mi) f 9(7, p.tfi)

*- 7» p Tt p-* p» fflj 7» p

T 1115n? / "* \ ^ 5 i "̂* 1 OJ^ 1 * P!

f(I) +'(I) -Hi) T(f)2

/3K \
* ̂  \3p / - w.

i » iDi

P * ®l

J
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In order to obtain the first partial derivative of any

one of the six quantities, T, p, mi, V, U9 S, with respect to

any second quantity of the six when any third and fourth

quantities of the six are held constant, one has only to

divide the value of the Jacobian in which the first letter in

the first line is the quantity being differentiated and in

which the second and third letters in the first line are the

quantities held constant by the value of the Jacobian in which

the first letter of the first line is the quantity with

respect to which the differentiation is taking place and in

which the second and third letters in the first line are the

quantities held constant.

To obtain the relation among any seven derivatives,

having expressed them in terms of the same six derivatives,

dv\ (dv\ (dv \ - (w \ (ds

one can then eliminate the six derivatives from the seven

equations, leaving a single equation connecting the seven

derivatives. In addition to the relations among seven

derivatives there are also degenerate cases in which there are

relations among fewer than seven derivatives.

An additional therraodynamic function A = U - TS is used

to facilitate the solution of many problems. The

corresponding intensive function A is defined by the equation

1 s S7T1£ • (m-68)
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In case a relation is needed that involves one or more of the

thermodynamic potential functions, H, A9 or G* partial

derivatives involving one or more of these functions can also

be calculated as the quotients of two Jacobians, which can

themselves be evaluated by the same method used to calculate

the Jacobians in Tables III-l to 111-15.



Appendix A to Part III

Proof of the relation

The quantity G is defined by the equation

G

Multiplying both sides of equation (III-A-1) by (/??! + m2) one

has

G = G{mx + m2) . (III-A-2)

Differentiating both sides of equation (III-A-2) with respect

to ai holding T, p, and roa fast one obtains

l / T p fl?2

The quantity & is a function of the temperature T» the

pressure p* and the mass fraction sx. By application of the

theorem for change of variables in partial differentiation

one has thus

J \2rnJ n\am1L ' (III-A-4)
2 « p? Jft2 J- f p 1 * pt UI2

1 Tunell, G., Amer, Jour. Sci., 255, 261-265, 1957, and
Tunell, G,, Relations between Intensive Thermo dynamic
Quantities and Their First Derivatives in a Binary System of
One Phaset W.H. Freeman and Co., San Francisco and London,
1960, pp. 25, 26.
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Since, by definition,

one has

3/771 \ _ 1 __ /771

i pf ni2

O i + m2)
2

Hence it follows that

^

and, similarly,

^'r.p.an V O f f l 2 T,p

(III-A-5)

(III-A-6)

) . (III-A-8)
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By subtracting the left side of equation (III-A-8) from the

left side of equation (III-A-7) and the right side of equation

(III-A-8) from the right side of equation (III-A-7), one thus

obtains the equation to be proved:

In a similar way the equation

3tf \ fdH

P

can also be derived.



Appendix B to Part III

Transformation of the work and heat line integrals from one

coordinate space to other coordinate spaces in the case of a

binary system of one phase and of unit mass

As in the case of a one component system of one phase and

of variable mass, it is also true in the case of a binary

system of one phase and of unit mass that it is not necessary

to define either work or heat when masses are being

transferred to or from the system to change its composition in

order to obtain the energy and the entropy as functions of the

absolute thermodynamic temperature, the pressure, and the mass

fraction of one component from experimental measurements.

Thus the derivation of the Jacobians listed in Tables III-l to

III—15 did not depend upon definitions of work or heat in the

case of a binary system of one phase and of unit mass when

masses are being transferred to or from the system to change

its composition.

For some purposes, however, it is useful to have

definitions of work done and heat received in the case of a

binary system of one phase and of unit mass when masses are

being transferred to or from the system to change its

composition. If the conclusion of Van Wylen and Professor

Uild be accepted that it cannot be said that work is done at a

stationary boundary across which mass is transported, then the

work I'! done by a binary system of one phase and of unit mass

165
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can be represented by the line integral

7\ p

* •

in (f, p, ffli)-space. Furthermore, in the case of such a system

the heat 0 received can be represented by the line integral

7\ p.

Tf)f pQ t lSl0

Tf p» ©x

(f 1
I f

In order to obtain the total derivative of the work done along

a straight line parallel to one of the coordinate axes in any

other coordinate space one obtains from Tables III-l to 111-15

the partial derivative of the volume with respect to the

quantity plotted along, that axis when the quantities plotted

along the other axes are held constant and one multiplies this

partial derivative by the pressure. The total derivative of
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the heat received along a straight line parallel to one of the

coordinate axes in any other space, on the other hand, cannot

be obtained by multiplication of the partial derivative of the

entropy by the absolute thermodynamic temperature when

transfer of masses to or from the system is involved. In

such cases the total derivatives of the heat received along

lines parallel to the coordinate axes in any desired

coordinate space can be derived in terms of the total

derivatives of the heat received along lines parallel to the

coordinate axes in (7\ p, m1)~space by transformation of the

heat line integrals by the use of the method set forth in the

second half of Appendix B to Part II. Following is an example

of such a transformation. In the case of a binary system of

one phase and of unit mass the heat line integral extended

along a path in (7\#i, 7)-space is

T

• / " •J
To,

1 \~^F
I \ dT

mi ,

\

>̂
V

( dQ \
I MMM 1

T, mlf V

(III-B-3)

To* #io»
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The derivatives (§
\dT

(%l)
W/

. and can be

evaluated by the method set forth in the second half of

Appendix B to part II as the quotients of two determinants.

Thus we have

= c,,

dQ
dT

dm i
dT
dV
dT

dT
dT
3ni

If
dv
dT

dQ
dp

dm i
dp

dv
dp

dT
dp

dm i
dp

dv
dp

dg
dm i

dSj
dm i

37
dm±

dT
dm i

3g1
dm i

dv
dml

dQ d£
mx

dV
/T,nl

mi

/3£\ , /3£\

(III-B-4)
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and

T, V

dQ
dT

dT
dT

dv
dT

dm i

dT

dT
dT

dv
dT

dQ
dp

dT
dp

dv
dp

dm i

dp

dT
dp

dv
dp

dm i

dT_
35 x

if
'dm i

^ ̂ofn i

din i

dT
dm i

3£
dm i

\(dQ\ - ^ 3F dv\

T9 p T$ mi Tip-* T,

pJ '
 V3^ yr, ̂  '

(1II-B-5)
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and finally

—c

dVl,
= I,

T, S

dQ
dT

dT
dT

ami
dT

dv
dT

dT
dT

dm i
dT

dQ
dp

dT
dp

dmx
dp

dv
dp

dT
dp

dm i
dp

dQ
dm i

dT

0/37 i

dm i

ar

dmi

(III-B-6)



Part IV

Relations betv/een thermodynamic quantities and

their first derivatives in a binary system of

one phase and of variable total mass

Introduction

In the following text the relations for the energy and

the entropy of a binary system of one phase and of variable

total mass are derived and a table of Jacobians is presented

by means of which any first partial derivative of any one of

the quantities, absolute thermodynamic temperature T9 pressure

p, mass mi of component 1, mass m2 of component 2, total

volume Vf total energy U9 and total entropy S, with respect to

any other of these quantities can be obtained in terms of the

partial derivative of the specific volume V with respect to the

absolute thermodynamic temperature, the partial derivative of

the specific volume with respect to the pressure, the partial

derivative of the specific volume with respect to the mass

fraction Si of component 1, the heat capacity at constant

pressure per unit of mass Cp, the partial derivative of the

specific energy U with respect to the mass fraction of

component 1, the partial derivative of the specific entropy S

with respect to the mass fraction of component 1, and certain

of the quantities, 7\ p, mi, m29 ffli» S2* V, U, S, where m2

denotes the mass fraction of component 2.
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Calculation of the total volume, the total energy, and

the total entropy of a binary system of one phase and

of variable total mass as functions of the absolute

thermodynamic temperature, the pressure, and the

masses of components one and two

Thermodynamic formulas can be developed in the case of a

binary system of one phase and of variable total mass on the

basis of the following set of variable quantities: the

absolute thermodynamic temperature, the pressure, the mass

of component 1, the mass of component 2, the total volume,

the total energy, the total entropy, the mass fraction of

component 1, the mass fraction of component 2, the specific

volume, the specific energy, the specific entropy, the heat

capacity at constant pressure per unit of mass, and the latent

heat of change of pressure at constant temperature per unit

of mass (p.

In the case of a binary system of one phase and of

variable total mass the total volume is a function of the

absolute thermodynamic temperature, the pressure, the mass of

component 1, and the mass of component 2,

V = f(T, p, w19 m2) . (IV-1)

The total volume is equal to the total mass times the specific

volume

V = (ffll + mz)V , (IV-2)

and the specific volume is a function of the absolute
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thermodynamic temperature, the pressure, and the mass fraction

of component 1,

V = (7\ p,Sx) . (IV-3)

From equations (IV-1), (IV-2), and (IV-3) it then follows

that

(§) = (ai + .2) (§) , (IV-4)
p / 2 ? m

<•••->(i

(IV-6)

and

The total energy is a function of the absolute thermodynamic

temperature, the pressure, the mass of component 1, and the

mass of component 2

U m j,(T, p f m l f m 2 ) . (IV-8)

As in the case of a one—component system of one phase and of

variable mass it is known from experiment that the energy is

an extensive function* Thus the total energy is equal to the
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t o t a l mass times the spec i f i c energy

U = Oi + m2)U . (IV-9)

Furthermore it is known that the specific energy is a function

of the absolute thermodynaraic temperature, the pressure, and

the mass fraction of component 1,

U = 0(T, p, mi) • (IV-10)

Thus the relation of the total energy to the absolute

thermodynamic temperature, the pressure, the mass of component

1, and the mass of component 2 is expressed by the equation

C/(T, p$ fl?j» ^ 2 ) ~ U(TQ§ po» ^ i n > ro2ft)

Tf p , mi9

= J|(/D! + DJ2)j?p - PjfldT + (mx + m2)\ 7p - P^

T<>f pot

From equations (IV-8), (IV-9), (IV-10), and (IV-11) it
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follows that

(f)
• p» mXf m 2

 L p»

and

U - m1 kn ] . (IV-15)

The total entropy is a function of the absolute thermodynaraic

temperature, the pressure, the mass of component 1, and the

mass of component 2

S = ?(r, p, fl?if m 2) • (IV-16)

As in the case of a one-component system of one phase and of

variable mass it is known from experiment that the entropy is

an extensive function. Thus the total entropy is equal to the



176 COisTDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

total mass times the specific entropy

S = Oi + m2)S . (IV-17)

Furthermore it is known that the specific entropy is a

function of the absolute thermodynamic temperature, the

pressure, and the mass fraction of component 1,

S = a)(2\ p, mi) . (IV-18)

Thus the relation of the total entropy to the absolute

thermodynamic temperature, the pressure, the mass of component

1, and the mass of component 2 is expressed by the equation

S(Tf p, mif w2) -

T $ p» in i» w2

(mi ) ^

TQ,
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From equations (IV-16), (IV-17), (IV-18), and (IV-19) it

follows that

p9 mi

D
= (mi + m2) -jT ,

(IV-20)

(IV-21)

as
T, p9

(IV-22)

and

dm 2 T, p*
c i .

(IV-23)

Necessary and sufficient conditions for (IV-11) are

p* mi 9 in2

§) J]
P» #1 , (IV-24)
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t p > fll 2

3T
- 'p 9 W i » IB 2

dT

3 / 1 3 1

mi, m2

V F "TC'p.a/jy , (IV-25)

(IV-26)

T, a/ J ^ , (IV-27)

3B3I
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l2'T, p , m x

~ n i l , " 2

T, a/-l > , (IV-28)

3ffi

and

5 f l 7 i y r P m J I r P m i i > (IV_29)
8/32 j r , P,ni I 3mi J r . p,

Similarly, necessary and sufficient conditions for

(IV-19) are

, (IV-30)

Jr, P,
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T, p,

8T 3/77 2
/J?I »

jT, p,

, (IV-32)

3 [(mi + m2)-Jjr\

^ T » /771 > /7?2

dm i
IT, p,

, (IV-33)

dm 2
, (IV-34)

and

'as \
T, p, m2

3S

T, p,

dm i
. (IV-35)

ZD2

Carrying out the indicated differentiations in equation

(IV-24) one has

- P

0 1

i t J3?i»

F t 371 t S?2

(IV-36)
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Making use of the change of variable theorem in partial

differentiation one obtains

p, mi 9 m 2

H K)
T

()

T, mi p, zalf m2 • T, p x p, mi, m2

The derivatives and (^
p, mi, JJ?2 p» mi ,

equal to zero. Thus one has

(IV-37)

are each

dT
.9 m2 mi

(IV-38)

Similarly it follows that

37 /
p9 Ml 9 P* ml

dTdp

(IV-39)

also

( I V- 4 0 )
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and

d2v
£^± I = liar •

(IV-41)

Consequently substituting the values of ( kJ,
» /771 9 .77 2

. a n d

/ \ 3

from equations (IV-38), (IV-39), (IV-40), and (IV-41) in

equation (IV-36) one obtains

Mil 32F 9cp 32F ai?
oi ol up op oDol oi

In a similar way carrying out the indicated differentiations

in equation (IV-30) and making use of the change of variable

theorem in partial differentiation one obtains

1 alp lp i 3c
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Combining equations (IV-42) and (IV-43) one has

•IK (IV-44)

Carrying out the indicated differentiations in equation

(IV-25) one has

l/T, p, m2

dT
(mi + m2)

p9 mi 9 /i?2

3c

Tt p» /1J2

3-^r

- P\
3m i

T9 p*

CP -

(IV-45)

Making use of equation (IV-14) one has

\dmi
r,7

9 P

9 072 /p» ffi i f in 2

+
r,

IB i 9 IB 2

(IV-46)
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By application of the change of variable theorem in partial

differentiation one then obtains

p9 mi * /T?2 p* nil P> mi* m2

dU\ /dp\ fdU \ /dl
dp Jrp ^ \dT / \OMl/rn Q V " 1 /Q

(IV-47)

• ^ ) and ( • ^ 1 ) a r e each equa l
61/ \ 6 i J

p» mi 9 n?2 p9 mi $ ni2

to zero. Thus one has

[w) ^ . (IV-48)
1321 » ffl 2 P • m 1

Similarly it follows that

IJ72

(IV-49)
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Also by application of the change of variable theorem in

partial differentiation one obtains

ML \
pi

mi ' '1 , p,

(IV-50)

The two derivatives ( TT— ) and ( -r̂ - ) are

each equal to zero and the derivative ( TT-1 } is equal

t 0

i 7 7 1
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Similarly we have

JhJILL
'dm i IT,

m2 (IV-52)

Consequently substituting the values of the derivatives from

the right side of equation (IV-46) for the value of the

derivative on the left side of equation (IV-45) one obtains

\dT/ + m-.
T, p

p> mi t m%
ip, sii,

5?) D
It p»

- P I
m2

CP "
(d¥

(IV-53)
p*

Next substituting the values of the derivatives from
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equations (IV-48), (IV-49), (IV-51), and (IV-52) in equation

(IV-53) one has

J ^ . (IV-54)

/3t/\ . . « /3F\
The derivative ['Wj ^ 1S e cl u a l t0 cp ~ P\$f)

^ p, mi X 'p,

Hence one obtains finally

. p^!L (IV-55)
3mi Pom1dT ' K± }

In a similar way carrying out the indicated differentiations

in equation (IV-31) and making use of the change of variable

theorem in partial differentiation one has

M: - i -ssf- • (IV-56)

1 The same result is derivable from equation (I¥-26)..

2 The same result is derivable from equation (IV-32).
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Combining equations (IV-55) and (IV-56) one has

d2u T d
2s d2v

T i ' P 3*i3r * (IV-57)

Likewise carrying out the indicated differentiations in

equation (IV-27) and making use of the change of variable

theorem in partial differentiation one obtains

d2U 3*p d2V 3

Also, carrying out the indicated differentiations in equation

(IV-33) and making use of the change of variable theorem in

partial differentiation one has

d2S

Combining equations (IV-58) and (IV-59) one has

= T 3^7 " P dSj£ ' (IV-60)

The same result is derivable from equation (IV-28).

The same result is derivable from equation (IV-34).
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From (IV-44) it follows that

and from (IV-43), (IV-44) and (IV-61) it also follows that

From (IV-44) it follows that

3^n a
(IV"63)

and

(IV-64)

Combining (IV-58) and (IV-64) one has

- p 3B 3 (IV-65)

and, similarly, combining (IV-59) and (IV—64) one has

d2S 32y
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Finally substituting the value of lp from equation (IV-44)

in equations (IV-13) and (IV-21) one obtains

m2

(IV-67)

and

T» mi• m2

Thus, just as in the case of a binary system of one

phase and of unit mass, there is one relation, equation

dV dV dV ^ w

(IV-44), between the seven derivatives, -7r=t -~—, -TO, cn, Zn,
01 op O^l r r

S/ >w»

TO » re . Consequently a l l seven will be known if the

following six are determined by means of experimental

dV dV dV v dU dSmeasurements: -5=, -5—, ^=r , c n , ^3 , ^c . There are
o 1 op OJ711 r^ uHJ i Oi3J 1

also eight relations, equations (IV-55), (IV-56), (IV-61),

(IV-62), (IV-63), (IV-64), (IV-65), (IV-66), between the
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den ^R H E H E H E H E a2^ 82t/
" 3 T f 3p ' "Sin? 37" dp 9 dml

9

J~ , ^w'2 » by means of which from the following ten,dm i °

d2V

the remaining eight can be calculated. From equation (IV-62)

dc L
—— can be calculated; from equation (IV-61) -rS- can be
op ol

calculated; from equation (IV-63) ~ " can be calculated;
op

3Z
from equation (IV-64) irzr- can be calculated; from equation

O U •> - I I J . J . C a_« /TT7 C C \ O U3/7
(IV—55) <\rp<y^ can be calculated; from equation (IV-55) ^ ̂  -

3 S
can be calculated; from equation (IV-56) ^ ^ ^ can be

32<T
calculated; and from equation (IV-66) ^ .j can be calculated.

It will therefore suffice in the case of a binary system of

o n e phase and of variable total mass, just as in the case of a

binary system of one phase and of unit mass, to determine the

specific volume over the range of temperature, pressure, and

composition that is of interest. The value of Cp then needs

to be determined as a function of temperature and composition

at one pressure. Finally the values of the energy and the
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entropy need to be determined as functions of the composition

at one temperature and one pressure. Thus in order to obtain

complete therraodynamic information for a binary system of one

phase and of variable total mass no additional experimental

measurements have to be made beyond those required to be made

in order to obtain complete thermodynamic information for a

binary system of one phase and of unit mass over the same

range of temperature, pressure, and composition. The

necessary measurements to obtain complete thermodynamic

information for a binary system of one phase and of unit mass

over a given range of temperature, pressure, and composition

were described in Part III of this text on pages 126-136. In

part III the use of galvanic cells to determine the specific

Gibbs function was explained, and from the specific Gibbs

function combined with measurements of the specific volume and

determinations of the specific energy (which do not require

measurements of heat quantities under equilibrium conditions)

the calculation of the specific entropy was also explained.

In the authorfs article entitled "The Operational Basis and

Mathematical Derivation of the Gibbs Differential Equation,

Which Is the Fundamental Equation of Chemical Thermodynamics"5

it was shown how osmotic cells could also be used in place of

galvanic cells to obtain the specific Gibbs function.

It is notable that in order to obtain complete

thermodynamic information for a binary system of one phase and

of unit mass, and likewise for a binary system of one phase

5 Tunell, G., in Thermodynamics of Minerals and Melts -
Advances in Physical Geochemistry, edited by R.C. Newton, A.
Navrotsky, and 3.J. Wood, Springer-Verlag New York, Inc., New
York, Heidelberg, Berlin, 1981, pp. 3-16.
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and of variable total mass no definition or measurement of

heat or work in the case of an open system when masses are

being transferred to or from the system is required.6

Derivation of any desired relation between the

thermodynamic quantities T, p, mi, JH2, V9 U9 S,

and their first derivatives for a binary system of one

phase and of variable total mass by the use of

functional determinants (Jacobians)

Equations (IV-1), (IV-11), and (IV-19) can, in general,

be solved for any three of the quantities, T9 p, m\ 9 /T?2» V9 Uf S,

as functions of the remaining four. The first partial

derivative of any one of the quantities, T, p, mi» m2> V, U9 S9

with respect to any second quantity when any third, fourth,

and fifth quantities are held constant can be obtained in

terms of the six derivatives -^=, TT~, TTZ; * cnf TTZ? , TTZ ,
01 op oiB\ y dm i aw i

and certain of the quantities T, p, mi, m2» mi, m2^ V, Uf S, by

application of the theorem stating that, if

w' = OJ(V» x, y, z)t w = f(s, t9 u, v ) 9 x = <p(s9 t, u, v ) f

y = ^(s, t, u, v), z = 6(Si» t, u, v), then one has

The definitions of heat and work in the case of o-pen
systems used by various authors are discussed in Appendix A to
Part II and Appendix A to Part IV of this text.
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3" A y, z

dv)
ds

dx
ds

ds

dz
ds

dw
ds

dx
ds

hL
ds

dz
ds

dw1

3t

dx
3t

dt

dz
dt

dw
dt

dx
at

iz
at

dz
at

3u

dx
du

iz
du

dz
du

dw
du

dx
du

h.
3u
dz
3u

dv/
dv

dx
dv

iz
dv

dz
dv

dw
dv

dx
dv

h.
dv
dz
dv

3(s» t, u, v)

3(^, Xf y9 z)

d(s9 t, u, v)

(IV-69)

provided all the partial derivatives are continuous and

provided the determinant in the denominator is not equal to

zero.

In Tables IV-1 to IV-35 (on pages 230-264) the value of

the Jacobian is given for each set of four of the variables,

7\ p9 fflii ̂2» ̂ # U* Sf as w', x, y9 z or i/, x, y, z, and with

T, p9 mi* mz as s» tf u» y. There are 140 Jacobians in the

Tables, but one has

d(wf x, y, z)
3(s» tf u» v)

x, y,
3(sf t» u»

x, 3(x, y, z, w)
3(Sf t, Ut ̂ )3(s» t» u9 v)

(IV-70), (IV-71), (IV-72)

because interchanging two rows of a determinant changes the

sign of the determinant. Hence it is only necessary to

calculate the values of 35 of the 140 Jacobians. The

calculations of these 35 Jacobians follow:
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T, p> 1771

dm 2
dT

dT
dT

dT

dm i
dT

dm 2
dp

dT
dp
&
dp

dm i
dp

dm 2
dm i

dm i

la
dm i

dm i

dm 2

dm 2

dm 2

3^2

dm 2
dT 0 -

dm 2

dp 0 + dm 2
dm 1

O - O + O - l - l

- 1 (IV-73)
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» 7\ P> mi)
3(r, /Dli

3^ IK IK 1Z
3T 3p 3/731 3m2
_3T dT_ 3T 3_T
3T 3p dmi dm2
dp dp dp dp
dT dp dmi dm2
dnii dm i dm i dm i
dT dp dmi dm 2

dV_ n IK
dT ' U ~ dp dmi dm 2

37
dm 2

1 f P

(IV-74)
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%(U, T, p , m i )
3 ( r , p» /Di»m 2)

317 317 3£ JM/
dT dp dm i dm 2

61 01 61 dl
dT dp dm i dm 2

op dp dp dp
dT dp dm i dm 2

dm i din^i dm i dmi
oT dp dm i dm 2

di dp 3nj! 3/332

3U

(IV-75)
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d(S, T, p, DJI)

9(T, p. mi' mi)

dS
dT
dT
dT

l£
dT

dT

dS
dp

dT
dp

dp

dm i
dp

dS
dm i

_3T
dm i

i£
dm i
dm i
dm i

dm 2

dT_
dm 2

dm 2

dm i
dm 2

ds as
9p

# -0 - l̂

95
dm 2

(IV-76)
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3<r, r,
3(r, p,

P» ^2)
iZ?X » ^ 2 /

9F
3T

dT
dT

i£
9T
3m 2
37"

3K
9p
3r
3p

9p

3^2
3p

3m 1

3m 1

3m 2
3m 1

3m 2

3T
3m 2

3m 2

3m 2

3m 2

dV

af dm 1 dm 2

r, p
(IV-77)
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d(U, T, p, m2)
3 ( T > p 9 mi, f l ? 2 )

Ml ML ML Ml
dT dp dm i 3/732

31 II H II
dT dp dm1 dm 2

dT dp dm i dm2

din 2 dm 2 dm 2 dm 2
3T *3p ~dm\ ~dm2

ML
ar 3mx

M

(IV-78)
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3(S,
3(7",

T, p , m2)
p, IBi , fi)2)

ds
dT
dT
dT

l£
dT

dm 2
dT

ds
dp

dT
dp

*R
dp

3m 2

35
3/77 i

11
dm i

l £

3m 2
dm i

3S
3/23 2

_3T
3iJ32

l£
3i7?2

3i3?2

3m 2

9S n _ 3S

3m i

s + s (4 )
T, p

(IV-79)
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3(7\
T, p, V)
p » 11} i 9 HI 2 )

dT

dT
dT

i £

3p

8T
3p

l£
8p

dm i

dT
dm i

3£

3/n

dT

3iJ7

3t/ 3[/

3T 3p

3T dm 2 dm 2 dm i

ML I I
0/231

(IV-80)
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d(S, T, p, V)
d(T, p, n?i, JB2)

dS
dT

dT
dT

l£
dT

dv
dT

ds
dp

dT
dp

dp

dV
dp

dS_
da 1

dm 1

dm 1

11
dm 1

as
dm 2
dT
dm 2

la

dm 2

ds n as r as 3F as dv
• f ) — — - — • (l -L. • _ •• •

dT dp dm 1 dm 2 dm 2 dmi

dS_ # dV_ _ 3S m 3 £
3ii?i dm 2 aii? 2 3/771

(IV-81)
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d(S, T,
d(T, p ,

p. U)

dS
dT

dT
dT

9£
dT

dU
dT

dS
dp

dT
dp

3p
du
dp

as
3fl?i
di
dm i

dm i

dm i

dm 2

dm 2

dm 2

dg
dm 2

dT dp dm i dm 2 dm2 3m i

dm i
Ml ML

P ^m^T,p
(IV-82)
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3(7, T, m
3(7\ p, m

dV
dT

dT
dT

dm 1
dT

3T

37
3p
dT
dp

dm 1

dm 2
dp

dm 1

3T
3m 1

3m 1
3m 1

dm 2
dm 1

11
3m 2

3T
3m 2

3m 1
dm 2

dm 2
dm 2

3T dp dm 1 dm 2

dp

(IV-83)
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d(U$ Ty mi 9 /1/2)
3 ( T f p» /771 9 /Z?2)

3tf
3T

3T
3r
3i27i

dT

dm 2
dT

dU
dp

dT
dp

dm 1
dp

dm 2

dp

ami

dm 1

dm 1
dm 1

dm 2
3^i

ML
dm 2

dm 2

dm 1

dm 2

dm 2

8T dp — • 0
dm 2

dp

dv\
k ^ 'T. OTiJ

(IV-84)



BINARY SYSTEMS OF VARIABLE TOTAL MASS 207

d(S* T9 mi 9 1112)

dS
dT

dT
dT

dm 1
dT

dm 2

dS
dp

dT
dp

dm 1
dp

dm 2

dS_
dm 1

dT_
dm 1

dm 1
dm 1

dm 2

as
dm 2

dm 2

dml
dm 2

dm 2
dT dp dm 1 dm2

oS ^ Q _ dS ^ , dS
dT dp 3/731 3/7?

dS_
dp

(/Di + Z&2) 3 ^ (IV-85)
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d(U, T, m i , V)
d(Tf p , m\* m2)

W
dT

dT
dT

dm i
dT

dv
dT

du
dp

dT
dp

dm i
dp

dv
dP

ML
8/771

IT
8/771

8/771
8/771

dm i

dU_

dm 2

dT_
dm 2

dm i

dm 2

dv_
dm 2

M , o - — • — + — • o + — • —
dT dp dm 2 dm i dm2 dp

8/722

fdV\

. i t / « T | I r T»
+ M - ffl 1 1 " ^ / T

p M
(IV-86)
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3(S, T, mi, V)
3(1", p> mi 9 012)

dS
dT

dT
dT

3/2?!

dT

dV
dT

dS
dp

dT
dp
dm 1

3p

37
3D

3S
3m 1

dT_
dm 1

dm 1
dm 1

dV_
dm 1

dS_
dm 2
dz
dm 2
dm 1

^m2

dm 2

n 3S 3^
U dp dm2

35 dV_
U + dm2' dp

dp dm 2 dm 1 dp

(IV-87)
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3(S, T, mlf U)
d(T, p9 mi, /??2)

ds
dT
dT
dT

dm i
dT

dU
dT

dS
dp

dT
dp

3i77l

dp

3/7
dp

as
dm i
3T
dm i

dml

dm i

W_
dm i

dm 2

dr_
dm 2

dm i

dm 2

Ml
dm 2

dT dp dm 2 dm 1 dm 2 dp

i£ . ML ML . ML
op dm 2 dm 2 dp

(IV-88)
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3(17, T, m2,
3 ( 7 \ p , 737 i » m2)

dU
dT

dT
dT

dm 2
dT

dV
dT

dU
dp
dT
dp

dm 2
dp

dV
dp

3£
dm i
d£
dm i

dm 2
dm i

ML
dm i

W_
dm 2
3T
dm 2

dm 2
dm 2

ML
dm 2

ML
dp 3/i3i* dp 3/772

ML . II - i£ # I I
dp 3/771 3/771 3 p

l'T,p

(IV-89)
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3(S, r, m2, V)
3 ( l j p 9 mi 9 733 2 )

dS
dT

dT
dT

dm 2
dT

dV
dT

dS
dp

dT
dp

dm 2
dp

IK

as
dm i
3T
3m i

3m 2
3m i

IK
3m i

as
dm 2

3T
3m 2

3m 2
3m 2

dm 2

i ^ . 0 + 1 ^ . 9 Z _ i £ # a7 __ as
dT dp 3m i 3i3?i 3p dm 2

3p
IK IK

3p

J^iw (IV-90)
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d(S, T,m7, U)
3 ( T > p9 mi 9 niz)

dS
dT

dT
dT

dm 2
dT

dU
dT

dS
dp

dT
dp

dm 2
dp

dU
dp

dS
dm1

11
dm i

dm 2

dm!

3£
dm i

as
dm 2

11
dm 2

dm 2

dm 2

ML
dm 2

as 3S 3LT _
dT dp ' dmx

Ŝ i£ __ 3S
3 / 7 2 " 3 p 3/i7 "

as
dp

dm i dm i dp

(IV-91)



214 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

3(S,
3(r,

T, V, U)
p> ni» D72)

dS
dT

If
dV
dT

dU
dT

dS
dp
dT
dp
dv
dp

3D

dm 1

dm 1

dV_
dm 1

dmi

2l
dm 2

3T
dm 2

dV_
dm 2

dm->

i£ . 0
dT

.ML
i 3/272

35/37
3i22l\3p

35 / 37 31
3p

p$ nix r p r

(IV-92)
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d(V9 p9ml9m2)

3(2\ p. mif m2)

dv
dT

dT

3/Dl
3T

dm 2

dT

dV
dp

i£
3p

3i732

3D

dv_
dm i

dmx

dm i
dm i

dm 2
dm i

dm 2

te.
dm 2

dm i

dm 2

dm 2
dm o

dv dv dv w
-rz; ' 1 - -r- • O + -~- • 0 - -̂— - 0dT dp dc?i dm 2

dT

p,
(IV-93)
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3(t/» p> inif
d(T, p, mi,

mz)
m2)

dU
dT

dT

dm i
dT

dm 2
dT

dU
op

dm i
dp

dm 2
dp

ML
dm i

dm i

dm i
dm i

dm 2
dm i

ML
dm 2

9£
dm 2

dm i

dm 2

dm 2
dm 2

dT
W n x du

-. . y ̂_ _
dp ami

- TT- • 0

dT

= (mi + /772) CP -pl"3TJ (IV-94)
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d(S9 p9 mi9 /??2)

d(T9 p9 mi9 n ? 2 )

ds
dT

9£
dT

dm i
dT

dm 2
dT

dS
dp

9£
dp

dm i
dp

dm 2
dp

dm i

l£
dm i

dm i
dm i

dm 2
dm i

dS_
dm 2

*R
dm 2

dm i

dm 2

dm 2
dm 2

<3i dp dm i dm 2

as
3T

(fl?i (IV-95)
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d(U, p , mi, V)
8 (T» p» m\9 m2)

3/7 3f/ W_ 3£
3f 8p 3/n.x 3m 2

dT dp dm 1 dm 2

dm 1 dm 1 dm 1 3m 1
dT dp dm 1 dm2
37 9F 3F 9£
dT dp dm 1 dm 2

M 1 K l^
dT " 8m 2 8p

8m2

P* mi

(IV-96)
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3(5 , p . a i , 7)
3(T> p» mi

3S
3T

3j>
3T

dm i
37"

37
37

3S
dp

3£
3p

3m i

37
dp

3S
3m!

3m x

3m i
3m i

37

dm 2

dm 2

dm i
3m 2

37
3m 2

3m2 dp

3£ . It
dT * 3m2

11
3/372

1L

-»•(£!]

(IV-97)
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8(5, p» mi >
3(7\ p, mi•

V)
m2)

dS
dT

dT

dm i
dT

du
dT

ds
dp

dp

dm i
dp

dg

dm i

dm i

dm i
dm i

dm i

3S
3m 2

l£
dm 2

dm i
dm 2

dU_
dm 2

is . ML _ 3 £
dT dm 2 dp dm \ dm 2 dT

dS
dm2

>{*•-.>#[<*-

(IV-98)
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3([7, pf m2» VJ_
0\l 9 p » mi? il?2 )

dU
dT

If
3m 2
3T
37
3T

W
dp

3p

3m 2
8p

3 D

3m i

dm i

dm 2
dm i

dv_
dm i

dU_

dm 2

up
om 2

dm 2
dm 2

dV_

dmo

dT
dU_
3p

dV_
3T

3mi 3T

T, pj

- cT (IV-99)
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d(S, p,
d(T, p,

3S
3r

3T

dV_
dT

dS_
dp

is.
3p

as
dm-i.

dS

dm i dm 2

dm 2 3/77;
dm i dm ̂

dp dm i dm 2

I S 3 V 3 S n 3 S 3 I _ 3 S . O
37 ' 3/ji! 3p 3mi 3T 3m2

3S 3£ 3S
3T1 ' 3m i +

(IV-1OO)
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3(5, p, m2f U)
3(T, p> /3?i, ^2)

as
3r

3T

3/13 2

3r

3T

3S
3p

l£
dp

dm 2
dP

9p

as
3m 1
3£
3/331

3/77 2
dm 1

dm 1

3/77 2

l £

3/77 2
3/77 2

3/77 2

3 5 3 £ / 3 5 . 0 ^ - ^ ^ .
dT %m1 dp dm^ dT ~ dm2

35
3m!" 3T

x / r , p
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3(5, p, V, U)
3(7% p$ mi $ /??2)

35 35 ^5 3S
dT dp dm i dm 2
dp dp dp dp
dT dp dai dm2
dV_ 3£ dV_ j)£
dT dp dm i dm 2
W_ 3£ dU_ dU_
dT dp 3/2?! dm 2

35/3F # 9£/ _ M t

3T\3 3 3

3m

dT dT ' dmi

(IV-1O2)



BINARY SYSTEMS OF VARIABLE TOTAL MASS 225

3( /7 , m i , m2f V)
3 ( T 9 pi mii J J ? 2 )

w
dT

dm i
dT

W
dv
dT

du
dp

dm i
dp

dm 2
dp

dV
dp

dm i

dm i
dm i

dm 2
dm i

11
3m i

W_
dm 2

dm i

dm 2

dm 2

dm 2

37
3m 2

ML £L 3£ I I 1 .̂ n - 1 .̂ n
3T * 3p " dp ' dT + 3 m / u 3m2*

 U

dT ' d p d p ' dT

(IV-1O3)



226 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

3(5, _f V)
d(T, p,

dm i
dT

dm 2
dT

dv
dT

35
dp

dm i
dp

dm 2

dv
dp

as
dm i
dm i
dm i

dm 2
dm i

dm i

as
3m 2
3m i
3m 2

3m 2
3m 2

dv_
3m 2

dT * dp dp ' dT + 3 m /
as
3 i 3 7 "

(IV-104)
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d(S, If)
3(7,

95

dm i
dT

dm 2
dT

dU
dT

95
dp

dm i
dp

dm 2
dp

du
dp

dS_
dm i

dm i
dm i

dm 2
dm i

317
dm i

dS_
dm 2

dm i
dm 2

dm 2
dm 2

ML
dm 2

a s ^ / _ a s 3 f / 9s n
9T * dp dp ' dT + 3/77! * U ^s

" 9 / n * U
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i.V.U)

3(7\ L» m2)

dS
dT

dT

dV
dT

dU
dT

dS
dp

dm i

dv
dp

du
dP

If,
3/771
3/7? i

It
3/7? i

3/3? i

3S
3/77 2

3/771

3/77 2

37;
3/7? 2

dm 2

35/17 # 3£ __ 37 # 3£ \
3T\3m2 dp dp dm2)

dP\dm2' dT ' dm2)
ML n
3/2i

PV - TS) - XM
V 3 n ?

(IV-1O6)
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3(S, m9, V9 U)
3(7% p» m\ 9 m2)

35
dT

dm 2
dT

dv
dT
du
dT

35
dp

dm 2
dp

dv
dp

dU
dp

as
3/33 !
dm 2
dm i

37
dm i

ML
dm i

as
dm 2
dm 2
dm 2

dV_
dm 2

dU_

dm 2

21 (ML 2L _ ML . ML \
dT [dmx* dp 3/77! * dp I

_ 21(21 . 21 _ IK . 2IL)
dp \3i37i* dT 3/33]/ dT )

+ 21 (21. IK _ 21.21) _ is # Q
3/13 x\ 3p dT dp dT I 0/732

J- * P J- 9

if)2

T,
(IV-1O7)
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\x» y» z

W >w

02

y

V

s

Jacobians of
binary

3(v't Xf Yi
3(7\ p, ail,

- 1

Table IV-1
extensive functions
system of one phase

z) 3(V, Xf yt
m2) * 3(r, p,/BX

T , p , f f l x

- 1

> + »i ( TT? I

for a

, D72)
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Table IV-2
Jacobians of extensive functions for a

binary system of one phase

d(w', x, y, z) d(w, x, y, z)
O\l f P 1 Ul\i U12) 0{i $ pi El I f 1112 )

\>r, y, z

w\
w \.

5

Tt p, m2

1
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\x» y* z

w \.

m2

U

s

Jacobians of
binary

3(V, x, v,
a(7\p.*i.

-

Table IV-3
extensive functions
system of one phase

z) 3(v» x» y»
0 2) ' 3(r,p.mi

T, p, V

(S.)r.F^(I,)r.

for a

2)

-
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Table IV-4
Jacobians of extensive functions for a

binary system of one phase

\x , y, z

w \

m1

m2

V

S

d(w', x, y, z) d(w9 x, y, z)
3 ( T , p , n l f m 2 ) * 3 ( T , p , m l f n 2 )

r, p, c/

V 3 r a i / T,p

- U - m2las )

u(& ) - v(& )
\dmiJrn \3ffll/T

i » P 1 t P
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\x» y» z

w \w \.

mi

B2

V

V

Jacobians of
binary

d(w'r x, y,

-

S

Table IV-5
extensive functions
system of one phase

2) 3(v, x, y,

7, p,S

for a

P
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P

V

(J

s

Jacobians of
binary

3 O \ X, y,
3(T, p, zalt

Table IV-5
extensive functions
system of one phase

z) 3(w, Xt y,
^2) ' 3(r» p9 nil

- 1

for a

z)
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\x» y» z

p

. ,

V

s

Jacobians of
binary

30/', x, y,
3(2\ p. JBI.

*

« . . .

Table IV-7
extensive functions
system of one phase

z) 3O, x, y,
m2) ' 3(r, p, mi

T*» p

+ ni2,j\ \̂" J
T» /ni

^ ^ v- [fhU \
J + p V ) — /Z?i{ i TTTT )

for a

z)
» iD 2 )

l \ Op Xrj '^ f
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\> x, y, z

w Xw X.

p

^ 2

>

s

Jacobians of
binary

d(w', Xf y,
3(7\ p, n?lf

- ( m i *

- ( m i + i332)| (£

(mi + ffl2)s (L

Table IV-
extensive
system of

z)

T, mi,

1 + pV) - m

f - fe) - a

- KsJT

8
functions
one phase

3(&s x, y.
3(T, p, f f l l

, //3ff \

•<(I,)T,

for a

, O22)

/'®.)r.J(«l.Sl

p-nw r (Pjjujp>f f i

r, aj
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\Xt y» z

P

.,

U

Jacobians of
binary

«.'.*. r
3(Tt pt /zzx

Table IV-9
extensive functions
system of one phase

z) 3(vt Xf y»

OT2) f 3(7*1 p» /̂ x

T t m 11 S

p» #1

L ^ mi'ft p

for a

z)
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w \

P

.,

u

s

Jacobians of
binary

d(wr, x, y,
3(Tt pi E2\*

7

*

Table IV-10
extensive functions
system of one phase

z) d(w, xf y,
^2) ' 3(T** p» /n 1

r, m2, v

•*•(&>„

for a

Mi,

](M.)
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w N.

P

.,

V

>

Jacobians of
binary

3(v't x,_y*
3(7% p» iDj s

(mi + ffl2)-J (2

- • • *

Table IV-11
extensive functions for a
system of one phase

z) 3 O y «)
a 2) 3(r, p,a71(.T72)

p/J^ ^p, Si
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\x, y, z

i \.

P

«

V

•

Table IV-12
Jacobians of extensive functions

binary system of one phase

d(w', x, _y, z)^ 3O» x, x»
3(7, p, mi, n 2) ' 3(7, p, /Di

7, m2» S

t*l!S.;

for a

z)
. m2)

p\[dTLsi
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Table IV-13
Jacobians of extensive functions for a

binary system of one phase

P

«

S

d(w', x, y, z) 9O, x, y, z)
o ( i t p , ZD i » n 2 / 9 ( i » p » 311 » ^2/

T. V, U

r / w \ -i / *" \ ^

.T;:;:,:g{:fuw'
/ O r \ 1 / rr »̂ »> f o S 1 t U l l a U \ 1 3 r \ i l l

*F 1 >>' " J 1 ( U 4* D r } 1 >s %* 1 —" OI { •"""""" I + Dl ' J 1 1 V
\ & P frp ^ I \ u $ ® \ / m \ \ o f l ® 1 / m \ ^ ® 1 / T » i l l
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\x, y, z

W N.

P

..

m2

U

Jacobians of
binary

3(7% ptWi

(mi +

-<—

^ jpt mi

P T, m}

Table IV-14
extensive functions
system of one phase
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Table IV-16
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system
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w \.

T
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U

S

Jacobians of
binary
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Table IV-17
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system of one phase
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system of one phase

z) 3O, x, y,
m2) * HT,p,mi

p » *D 11 £/

\ 0*311 /-,

L p« nil

j I \ OS

/3iS \ 1 /9 F \

for a

z)
.«2)



248
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Jacobians of
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Table IV-19
extensive functions for
system of one phase
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a
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(mi
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Table IV-20
extensive functions
system of one phase
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Table IV-23
Jacobians of extensive functions for a

binary system of one phase
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Table IV-24
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system
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T
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V

Table IV-25
Jacobians of extensive functions for a

binary system of one

3(1% p, mi, m2) ' 3(T

p, U, S
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Jacobians of
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Table IV-26
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system of one phase
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Table IV-27
extensive functions
system of one phase
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Table IV-28
extensive functions
system of one phase
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Table IV-29
Jacobians of extensive functions for a

binary system of one phase
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Table IV-30
Jacobians of extensive functions for a

binary system of one phase

3(w', Xt y, z) d(wr Xt y» z)
3C7.p.ai,ur2) ' 3(7fp.ai,ffl2)
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Table IV-31
Jacobians of extensive functions

binary system of one phase
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Table IV-32
Jacobians of extensive functions for a

binary system of one phase
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Table IV-34
Jacobians of extensive functions for a

binary system of one phase
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Table IV-35
Jacobians of extensive functions for a

binary system of one phase

\ x , y, z
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In order to obtain the first partial derivative of any

one of the seven quantities, T, p, ml9 m2, V, U9 S9 with respect

to any second quantity of the seven when any third, fourth,

and fifth quantities of the seven are held constant, one has

only to divide the value of the Jacobian in which the first

letter in the first line is the quantity being differentiated

and in which the second, third, and fourth letters in the

first line are the quantities held constant by the value of

the Jacobian in which the first letter of the first line is

the quantity with respect to which the differentiation is

taking place and in which the second, third, and fourth

letters in the first line are the quantities held constant.

To obtain the relation among any seven derivatives

having expressed them in terms of the same six derivatives,

3 ^ _

~~-p9 m i
 l T9 mi T9 p Tj p T9 p

one can then eliminate the six derivatives from the seven

equations, leaving a single equation connecting the seven

derivatives. In addition to the relations among seven

derivatives there are also degenerate cases in which there are

relations among fewer than seven derivatives.

In case a relation is needed that involves one or more

of the thermodynamic potential functions H = 17 + pV,

A = U - TS, G = U + pV - TS, partial derivatives

involving one or more of these functions can also be

calculated as the quotients of two Jacobians, which can

themselves be calculated by the same method used to calculate

the Jacobians in Tables IV-1 to IV-35.
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It will be noted that the expressions for the Jacobians

in Tables IV-1 to IV-35 are not symmetrical with respect

to the two mass fractions Si and m2. If the Jacobians in

these Tables had been expressed in terms of the derivatives

dV dV dU dU dS . dS . ,

ISt* M2> alx* BS 2' l a ^
 and a¥2'

 Wlth r e s P e c t t0 the

two mass fractions, mi and m29 rather than in terms of the

derivatives, TT-3 , -r^ » and -r-c , with respect to the single
ami dm i omi

mass fraction, mlf the symmetry of the expressions for the

Jacobians with respect to m1 and m2 would have been

preserved, but the Jacobians would not have been expressed in

terms of the minimum number of first derivatives. In this

case it would not have been possible to use the expressions

for the Jacobians directly to obtain a desired relation among

any seven first derivatives of the quantities, T9 p, mi9 m29

V, U, and 5, by elimination of the first derivatives, -r=9

dv dv dv - w du as A ds , .
"5~» irz f ~z~z t cD9 "T3 9 7y^ 9 TC * and •573- » rrom tne
op dm 1 amz ^ omi dfi?2 omi om2

seven equations for the seven first derivatives. Actually

with the use of the Jacobians in Tables IV-1 to IV-35 which

are expressed in terms of the minimum number of fundamental

, . . dV dV 8F ^ dU , dS . -
derivatives, ^ , j^9 ^ , cp9 ^ , and ^ , m spite o f

the fact that these expressions are unsyrametrical with

respect to mi and S29 it does not make any difference in the
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final result which component is chosen as component 1 and

which component is chosen as component 2. For example, if

one thinks of a solution of water and ethyl alcohol and if

water is chosen as component 1, then from Table IV-32 one

f dS \
obtains the derivative -r- I equal to

%-/ \J

pV-TS) +ffl2 ^.

Now from Table IV-29 one obtains the derivative

equal to

(|f J

On account of the fact that S\ + m2 = 1, one has

Consequently the same value would be obtained for the partial

derivative of the total entropy with respect to the mass of

water regardless of whether water were chosen as component 1

or as component 2.



Appendix A to Part IV

Equations for energy and entropy in the case of a

binary system of one phase and of variable total mass

developed on the basis of an expression for heat

in the case of an open system

In the author*s Carnegie Institution of Washington

Publication No, 408A1 equations were developed for energy and

entropy in the case of open systems on the basis of an

expression for the heat received by an open system. In the

case of a binary system of one phase undergoing reversible

changes of temperature, pressure, mass of component 1, and

mass of component 2, the heat received was shown to be

represented by the integral in the following equation

i o » p o 9 /z?i » / n 2 0

T» p» nt^» m 2

= / J (mx + m2) ZpdT + (mx + m2) Tp dp +

To f Po» fflln> ̂ 2 n

where lWl denotes the reversible heat of addition of

component 1 at constant temperature, constant pressure, and

constant mass of component 2, and lm denotes the reversible

1 Tunell, G., Thermodynamic Relations in Open Systems,
Carnegie Institution of Washington Publication No. 408A, 1977.

268
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heat of addition of component 2 at constant temperature,

constant pressure, and constant mass of component I.2 In the

case of a binary system of one phase undergoing reversible

changes of temperature, pressure, mass of component 1, and

mass of component 2, the energy change was shown to be

represented by the integral in the following equation

U(T, p, nil* m2) - U(TOf p0, m^, m^)

/{•
To* po

^ 1 * m2

(mi + mz) Cp - P " ^ \dT + (mi + i7?2) ^p -

(IV-A-2)

where mi denotes the mass fraction of component 1, S2 denotes

the mass fraction of component 2, H' denotes the specific

enthalpy of pure component 1 in equilibrium with the binary

solution across a semipermeable membrane permeable only to

component 1, and H'' denotes the specific enthalpy of pure

component 2 in equilibrium with the binary solution across a

semipermeable membrane permeable only to component 2.3 In the

2 Tunell, G., Carnegie Institution of Washington Publication
No. 408A, 1977, p. 40, equation (B-6), p. 42, equations
(B-10), and (B-ll), p, 46, equation (B-19), and P. 47,
equation (B-20).

3 Tunell, G., Carnegie Institution of Washington Publication
Mo- 408A, 1977, p. 52, equation (B-35).
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Water
bath

;S--; F=

Figure IV-A-1
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same case the entropy change was shown to be represented by

the integral in the following equation

S(T, p» mi, 1TI2) - S(T0, po? n?io»

p, m

+ m2) -jr dT + (mi + ./z?2) -ijr dp

To> Po>

+ \ - £ > + S ' \ d m l + | ^ P + S " \ d m 2

(IV-A-3)

where 5' denotes the specific entropy of pure component 1 in

equilibrium with the binary solution across a semipermeable

membrane permeable only to component 1, and S" denotes the

specific entropy of pure component 2 in equilibrium with the

binary solution across a semipermeable membrane permeable only

to component 2.1** 5 The derivation of these equations for

heat, energy, and entropy was based on a detailed operational

analysis of a system of three chambers immersed in a water

bath the temperature of which could be controlled (Figure

IV-A-1). Chambers I and II containing pure components 1 and 2

were separated by semipermeable membranes from chamber III,

which contained a solution of components 1 and 2. The

h Tunell, G., Carnegie Institution of Washington Publication
No. 408A, 1977, p. 56, equation (B-46)-.

5 For an explanation of methods for obtaining experimental
values for the lB

%s see G. Tunell, Idem, pages 46 and 59-62.
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membrane separating chambers I and III was supposed permeable

only to component 1; similarly, the membrane separating

chambers II and III was supposed permeable only to component

2. When the pressures exerted by the three pistons on the

contents of the three chambers were changed with maintenance

of osmotic equilibrium, causing movement of the three pistons,

and when the temperature of the water bath was changed,

causing a flow of heat to or from the materials in the three

chambers, the change of energy of the materials in the three

chambers, v/hich together constituted a closed system, was

given by the equation

U2 - Ul = Q - W, (IV-A-4)

where [/2 denotes the energy of the materials in the three

chambers in the final state, £/x denotes the energy of the

materials in the three chambers in the initial state, 0

denotes the heat received by the materials in the three

chambers from the water bath (a positive or negative

quantity), and W denotes the work done on the three pistons by

the materials in the three chambers (a positive or negative

quantity). Note that maintenance of osmotic equilibrium

required that of the three pressures in the three chambers

only one was independent, the other two were functions of the

temperature, the concentration in chamber III, and the one

pressure taken as independent. The materials in the three

chambers I, II, and III, together constituted a closed system

undergoing a reversible change of state. Consequently we have

S2 - Sx = ^ , (IV-A-5)
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where Si denotes the entropy of the materials in the three

chambers in the final state and S\ denotes the entropy of the

materials in the three chambers in the initial state. Thus

the total change in energy and the total change in entropy of

the closed system consisting of the materials in the three

chambers were experimentally determinable. Finally, by

subtraction of the energy changes of the pure components 1 and

2 in the side chambers I and II from the total energy change

of the materials in the three chambers, the change in energy

of the binary solution in chamber III as represented in

equation (IV-A-2) was derived. Likewise by subtraction of the

entropy changes of the pure components 1 and 2 in the side

chambers I and II from the total entropy change of the

materials in the three chambers, the change in entropy of the

binary solution in chamber III as represented in equation

(IV-A-3) was derived. For the details of these proofs the

reader is referred to Appendix B of the authorfs Carnegie

Institution of Washington Publication No. 408A.6 It is to be

noted that the only physical information used in the

derivations of equations (IV-A-1), (IV-A-2), and (IV-A-3) in

addition to the well established thermodynamic relations for

closed systems, was the fact that when mass of constant

composition is added reversibly to an open system of the same

composition at constant temperature and constant pressure no

heat is added.7

6 Tunell, G., Carnegie Institution of Washington Publication
Ho. 408A, 1977, pp. 34-58.

7 Cf. L.J. Gillesple and J.R. Coe, Jr., Jour. Phys. Chem.,
Vol. 1, p. 105, 1933, and G. Tunell, Carnegie Institution of
i%!ashington Publication No. 408A, 1977, pp. 18-24.
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It was not necessary to make use of any definition of

work in the case of an open system when masses are being

transferred to or from the system in the derivation of

equations (IV-A-1), (IV-A-2), and (IV-A-3). However,

according to the definition of work done by an open system

used by Goranson8 and by Van Wylen9 we have

dW = pdV . (IV-A-6)

In Appendix A to Part II of this text reasons for the

acceptance of this definition of work in the case of an open

system when masses are being transferred to or from the system

were set forth in detail.

The correct differential equation for the energy change

in an open system, when use is made of definitions of heat

received and work done in the case of open systems, was given

by Hall and Ibele in their treatise entitled Engineering

Thermodynamics. They10 stated that "A general equation for

energy change in an open system can be written

dE = dQ - dW + l(e + pv)idmi. (7.25)"

8 Goranson, R.W., Carnegie Institution of Washington
Publication No. 408, 1930, pp. 39, 44.

9 Van Wylen, G.J., Thermodynamics, John Wiley and Sons Inc.,
New York, 1959, pp. 49, 75-77, 80•

10 Hall, N.A., and W.E., Ibele, Engineering Thermodynamics,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1960, p. 108.
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In this equation dE denotes the energy change of the open

system, dQ the heat received by the open system, dW the work

done by the open system, e the specific energy of pure

component i in equilibrium with the open system across a

semipermeable membrane permeable only to component i, p the

pressure of pure component i in equilibrium with the open

system across a membrane permeable only to component i, and v

the specific volume of pure component i in equilibrium with

the open system across a semipermeable membrane permeable only

to component i . This equation is consistent with equation

(IV-A-2) of this text as well as with the equation of

Gillespie and Coe and with the Gibbs differential equation, as

we proceed to show. According to Gillespie and Coe11

dS = 4p + Z
1 i

where dS denotes the increase in entropy of an open system, dQ

the heat received by the open system, Sj the specific entropy

of pure component i in equilibrium with the open system across

a semipermeable membrane permeable only to component i, and

dwj the mass of component i added to the open system. Thus

we have

dQ = TdS — ZT,S-£ G?/Z?2
2

Substituting this value of dQ in the equation of Hall and

11 Gillespie, L.J., and J.R.. Coe, Jr., Jour. Chenu Phys., 1,
105, 1933.
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Ibele we have

dU = TdS - dW + !((/.£ + pVt - TS^dnii .
i

According to Goranson,12 Van Wylen,13 and Professor Wild1*4

dVl = pdV

in the case of an open system. Thus we obtain

dU = TdS - pdV + lG±dm± ,

2

where £2- denotes the specific Gibbs function of pure component

i in equilibrium with the solution across a semipermeable

membrane permeable only to component i. Since Gibbs proved

that at equilibrium the chemical potentials of a component on

both sides of a semipermeable membrane are equal and since the

chemical potential u of a pure component is equal to the

specific Gibbs function of this component, we thus arrive at

the result

dU = TdS - pdV + Z
i

12 Goranson, RJi., Carnegie Institution of Washington
Publication No, 408, 1930, pp. 39 and 44.

13 Van Wylen, op. cit, pp. 49, 75-77, 80.

114 Private communication from Professor R.L. Wild, who was
formerly the Chairman of the Physics Department of the
University of California at Riverside.
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where y^ denotes the chemical potential of component i in the

open system (solution) and dm± denotes the mass of component i

added to the open system. We have thus demonstrated that the

equation of Gillespie and Coe and the equation of Hall and

Ibele are consistent with the Gibbs differential equation.



Appendix B to Part IV

Transformation of the work and heat line integrals from

one coordinate space to other coordinate spaces in the case

of a binary system of one phase and of variable total mass

As in the case of a one component system of one phase and

of variable mass it is also true in the case of a binary

system of one phase and of variable total mass that it is not

necessary to define either work or heat when masses are being

transferred to or from the system in order to obtain the

energy and the entropy as functions of the absolute

thermodynamic temperature, the pressure, and the masses of the

two components from experimental measurements. Thus the

derivation of the Jacobians listed in Tables IV-1 to IV-35 did

not depend upon definitions of work done or heat received in

the case of a binary system of one phase and of variable total

mass when masses are being transferred to or from the system.

For some purposes, however, it is useful to have

definitions of work and heat in the case of a binary system of

one phase and of variable total mass. If the conclusion of

Van Wylen and Professor Wild be accepted that it cannot be

said that work is done at a stationary boundary across which

mass is transported, then the work W done by a binary system

of one phase and of variable total mass can be represented by

the line integral

Tf p, fill $ 21?2

fdT + p^dp + pf idmi + pf£<*

p 0, ml f m2
° (IV-B-1)

278
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in (T, p, i77l9 m2)-space. Furthermore it was shown in Appendix

IV-A that the heat 0 received by such a system is represented

by the line integral

T, p, m i, m 2

r0.Po.«H0.ffl20 (IV-B-2)

in (7\ p» mi, m2)-space, where lmi denotes the reversible heat

of addition of component 1 at constant temperature, constant

pressure and constant mass of component 2, and lm denotes

the reversible heat of addition of component 2 at constant

temperature, constant pressure, and constant mass of component

1. In order to obtain the total derivative of the work done

along a straight line parallel to one of the coordinate axes

in any other coordinate space one obtains from Tables IV-1 to

IV-35 the partial derivative of the volume with respect to the

quantity plotted along that axis when the quantities plotted

along the other axes are held constant and one multiplies this

partial derivative by the pressure. The total derivative of

the heat received along a straight line parallel to one of the

coordinate axes in any other space, on the other hand, cannot

be obtained by multiplication of the partial derivative of the

entropy by the absolute thermodynamic temperature when

reversible transfers of masses to or from the system are

involved. In such cases the total derivatives of the heat

received along lines parallel to coordinate axes in any

desired coordinate space can be derived in terms of the total

derivatives of the heat received along lines parallel to the
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coordinate axes in (T, p, mx, m2) -space by transformation of

the heat line integrals by an extension of the method set

forth in Appendix C to Part II. Following is an example of

such a transformation. In the case of a binary system of one

phase and of variable total mass the heat line integral

extended along a path in (7\/ni > tf?2» F)-space is

7\ m 1

=/{(§)«• ,•(£>• ,•(£>>
tI2\9 ™2

l f 1B2 »

737 2. »

0 ° (IV-B-3)

The derivatives (§) , (f ) , (f )

and f — J
7%
J can then be evaluated as quotients of two
7% / H i m

determinants. Thus we have
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dQ_
dT (mi + m2)cv =

dQ
dT

dm i
dT

dm 2
"3T

dV
dT

dT
dT

dm i
dT

dm 2
dT

dV
dT

dQ
dp

dm i
dp

dm 2

dV
dp

dT
dp

3/77 i

dp

dm 2

dp

dv
dp

dm i

dm i
dm i

3i772

dV
dm i

dT

dm i

dm 2

dm i

dV_
dm i

dQ

dm 2

dm1

dm 2

dm 2

3/77 2

dV

dm 2

3T
3/77 2

3/771

dm 2

dm 2

3/272

IK
3/77 2

dT
3£
3p I dp [&] •£.["]-£.["]}

- ( _
T, i7?i

T, Si

(IV-B-4)
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dQ_
dmi

, V

dQ_ dQ_ dQ_
dT dp dm i

dT dT dT
dT dp 3/7?!

dm 2
dT

dm 2

dp

dm 2
dT

dm 2

dm 2

dm i

_3£ dV_ 3£
dT dp 3/i?!

dm i dm i dm i
dT dp dm1

3T 9T 3T
dT dp dmi

dv_ dv^
dT dp

dm 2

3/77 !

dv_
dm i

dm 2

3/772

3/77 2

dm 2

II
3/77 2

3/771
3/77 2

3/7?2

3/77 2

3/772

_3F

dm 2

v. L -J L. .J L_ J

1 r, p J
m2) —) 1

1 • 171 i -^

/dv\
19 mi

7 + » 2\ ^ ^
, ^

(IV-B-5)
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dQ

T, an, V

dQ
dT

3T
dT

dm i
dT

dv
dT

dm 2
dT

dQ
dp

dT
dp

dm i
dp

dv
dP

dm 2
dp

dQ
dm i

dm i

dm i
dm i

dm i

dm 2
dm i

dQ_
dm 2

dm 2

dm i
dm 2

dm 2

dm 2
dm 2

dT dp dmi dm 2

dmi dmi dm\ dmi
dT dp dmi dm 2

dV dV dV dV
dT dp dmi dm2

rfoU _MM.
dT [UJ dp ldm

dm! dm2

^ j ) + l m 2 ( m 1 + m 2 )
T, p

(m1 + tf2)tar

(IV-B-6)
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dV
T9

dQ_
dT

dz
dT

IK
dT
3T
dT

dO
^P

H
3p

^2. i*2
dm i dm 2

dT dT
dm

dm i dm i
dT dp

dm i
dm i

IK
3p
3T
3p

3i772

3/7?i

3/7? 2

3i2?2 dm 2 dm 2 dm 2

dT dp 3/77! dm2

dV_ 3£
dm 1 dm 2

dT dT

dm 1 dm 2

3i7?l 3i7?i 3/771 3/771

3T 3p 3/77! 3/772

3T 3p 3/771 3/772

dT dp
dQ

O l • { • 7\

(IV-B-7)
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The corresponding values of the partial derivatives of the

entropy obtained from Tables IV-26, IV-10, IV-7, and IV-6 are

as follows:

/7Jl»/732»^ ^ L i » - ^ l p , f f l i J J I f nil

(IV-B-8)

, /772»

(IV-B-9)
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'If ) I/if

Wl

— in i\irzz

p, mi T, p

H.
, (M\

(IV-B-10)

1 From equations (IV-22) and (IV-23) we have

T7, p» ii?2 Tf p T, p9 H! I ± t y

Also from equation (XV-A-3) we have ("5— ) = -=-^ + 5'
\ dm 1 j m 1

and IT""/ " "7^ + 5W , where S' denotes the specific

entropy of pure component 1 in equilibrium with the binary
solution across a semipermeable membrane permeable only to
component 1, and S® the specific entropy of pure component 2 in
equilibrium with the binary solution across a semipermeable
membrane permeable only to component 2,
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and

(as) [ fil) Lfll) (iv-B-ii)_ [ fil

Thus it follows from (IV-B-4), (IV-B-7), (IV-B-8), and

(IV-B-11) that

f

and

§) , T(§) (IV-B-U)

but, finally, it also follows from (IV-B-5), (IV-B-6)

(IV-B-9), and (IV-B-10) that

and

(f) jf!^ ) . (IV-B-15)



Appendix C to Part IV

Discussion of the tables of thermodynamic.formulas for

multi-component systems presented in Carnegie Institution

of Washington Publication No. 408 by R.W. Goranson

On account of the fact that Goranson accepted the

erroneous assumption of Sir Joseph Larmor1 that in the case of

the Gibbs differential equation,

dU = TdS - pdV + Uicfoi + Vidm2 ... + Vndmn9

TdS represents dQ and that dQ represents an infinitesimal

amount of heat which is acquired in a specified state of the

system at a temperature T9 Goranson
fs basic equations for the

energy and the entropy of a multi-component system are

incorrect. GoransonTs equation for the energy change of a

binary system undergoing changes of temperature, pressure, and

masses of the two components

U(T, p , Wif 072) - U(TQ, po* /771

T9 p9 mi > m2

II d T/ I I *-* Ci T/ I

= J <(mi + ra2) ̂ p " P g ^ F + (mi + ̂ 2) lp - PjrUp
Tot P o , i Z ? i 0 > i7I2Q

(IV-C-1)

2
Ui\dm1 + \lm2 + pm^ - pV + M2\dm2

1 Larmor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Goranson, R.W., Carnegie Institution of Washington
Publication No. 408, 1930, the first equation in §32 on page
48.

288
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where lmi denotes the reversible heat of addition of

component 1 at constant temperature, constant pressure, and

constant mass of component 2, Lm2 denotes the reversible

heat of addition of component 2 at constant temperature,

constant pressure, and constant mass of component 1, m\

denotes the mass fraction mi/(mi + m2), m2 denotes the mass

fraction m2/(mi + m2), Ui denotes the chemical potential of

component 1, and U2 denotes the chemical potential of

component 2, should be replaced by equation (IV-A-2) of this

text which is repeated here as aquation (IV-C-2)

U(T, p* mi, m2) - U(TQ9 p 0 , miQ , ITI2Q)

T, D t OTi » M?

/ J (ml 4- m2) \cp - P^f\dT + (mi + m2)\ lp - pj^ \dp

H"\dm2\ ,

(IV-C-2)

where H' and H" denote the specific enthalpies of the pure

components 1 and 2 in equilibrium with the solution across

semipermeable membranes permeable only to components 1 and 2,

respectively. Similar corrections are to be applied in the

incorrect equation for the energy U in the case of a

multi-component system on page 60 of Carnegie Institution of

Washington Publication No. 408 [equation (1) in §41].
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Likewise Goranson's equation for the entropy change of a

binary system undergoing reversible changes of temperature,

pressure, and masses of the two components, the first equation

in §52 [equation (2)] on page 52 of Carnegie Institution of

Washington Publication No. 408

i b ^ i » p i IHi 9 ® 2 ) -"" £>\J- 0 t P o » ^ l n * 2 n ^

T9 p» m-^t m2

2-

T9

J j
TQ, p0, ml

I I
-m-̂  dwi + -^r2 dm2

should be replaced by equation (IV-A-3) of this text v/hich is

repeated here as equation (IV-C-4)

S(T9 p, mi, m2) - S(TQf pQ9

T, pf mlf m2

= / J (fl?2 + m2)-jrdT + (an +

Po

fe *\dm2\S*\dm2\ , (IV-C-4)
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where S' denotes the specific entropy of pure component 1 in

equilibrium with the binary solution across a semipermeable

membrane permeable only to component 1, and Sn denotes the

specific entropy of pure component 2 in equilibrium with the

binary solution across a semipermeable membrane permeable only

to component 2. Similar corrections are to be applied to the

incorrect equation for the entropy S in the case of a

multi-component system on page 64 of Carnegie Institution of

Washington Publication No. 408 (first equation in §43).

In GoransonTs Tables of Thermodynamic Relations for First

Derivatives expressions are listed such that any first

derivative of one of the quantities, absolute thermodynamic

temperature, pressure, mass of a component, volume, energy,

entropy, Gibbs function, enthalpy, Helmholtz function, work,

or heat with respect to any second of these quantities,

certain other quantities being held constant, should be

obtainable in terms of the standard derivatives,

dv) (dv) (dv ) ,
/ \ ® denoting

°
1 » £? 1 t • • . fl?n p » 071 t . • • fl?n ^ 1 9 pf lUf

all the component masses except ra/c, (/Hi + ... + mn)Cpi

Imu* /c = 1, ...,n» and ]î , k = 1» . •.» n, by division of one

of the listed expressions by a second listed expression, the

same quantities being held constant in each of these two

listed expressions.

The expressions listed by Goranson for first derivatives

in his Groups 1-8 are for the case in which all masses are

held constant and are the same as the expressions listed by

Bridgman for this case and the same as the Jacobians listed in

Table 1-1 of this text. Unfortunately very many of the
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expressions listed by Goranson in his remaining Groups for

first derivatives (Groups 9 - 162) are invalidated by his

erroneous assumption that dQ = TdS when there is reversible

transfer of mass as well as heat. Thus for example in

Goranson fs Group 18 in which p, m±, and S are held constant

the following expressions are listed:

Group 18

(According to Goranson, Carnegie Ins t i tu t ion of Washington

Publication No. 408, p. 181)

p, /7?2> S constant

.. 4- mn)cp\xk

-

f)+ Ci

dV cp{m1 + . . . + mn) _ 9F
uk

dV

p—

(dQ) = 0
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The corrected expressions for this group when account is taken

of the equation of Gillespie and Coe are given in the

following table

Group 18

(Corrected by G> Tune11)

p9 mj9 S constant

... 4-

M. . C P O T + ... fan)

3T "*" T

(3ff) = J;

•••+ mn)^ LVfc"

{dQ)



294 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

In the corrected Table for Group 18, Sk denotes the specific

entropy of pure component k in equilibrium with the multi-

component solution across a semipermeable membrane permeable

only to component k*3 In a good many cases Goransonfs

expressions involving the term lm can be corrected by the

substitution of (lm, + S
k) for lm.. However, in some cases

this substitution does not make the necessary correction.

In conclusion it may be noted that the principal

differences between GoransonTs Tables and the present

author's Tables are caused by GoransonTs erroneous assumption

that Hp- j = - ^ , m± denoting all the component
m^ T, p, m-j:

(dS \ W XL-
masses except OIL, whereas in reality I TT- J = ~7?r* + <->%

and by Goranson!s use of 3n + 3 standard derivatives, whereas

in reality all the partial derivatives with respect to the

various thermodynamic quantities can be expressed in terms of

3n fundamental derivatives, as Goranson himself recognized. **

3 It may be noted that the expressions in the table for Group
18 as corrected by the present author are consistent with the
expressions in Table IV-22 of this text, although they differ
in appearance from the expressions in Table IV-22.

k Goranson supplied an auxiliary table (Table A on page 149
of Carnegie Institution of Washington Publication 408) which
is intended to permit the expression of the 3n + 3 standard
derivatives in terms of 3n fundamental derivatives and the
masses of the components. However, Goransonfs Table A is also
partly invalidated by his incorrect assumption that



Preface

A collection of thermodynamic formulas for a system of

one component and of fixed mass was published by P.W. Bridgman

in 1914 in the Physical Revue and an emended and expanded

version by him was published by the Harvard University Press

in 1925 under the title A Condensed Collection of

Thermodynamic Formulas. In 1935 A.N. Shaw presented a table

of Jacobians for a system of one component and of fixed mass

and explained its use in the derivation of thermodynamic

relations for such a system in an article entitled "The

Derivation of Thermodynamical Relations for a Simple System"

published in the Philosophical Transactions of the Royal

Society of London. A collection of thermodynamic formulas for

multi-component systems of variable total mass by R.W.

Goranson appeared in 1930 as Carnegie Institution of

Washington Publication No. 408 entitled Thermodynamical

Relations in Multi-Component Systems. Unfortunately, Goranson

had accepted the erroneous assumption made by Sir Joseph

Larmor in his obituary notice of Josiah Willard Gibbs

(Proceedings of the Royal Society of London, Vol. 75, pp.

280-296, 1905) that the differential of the heat received by

an open system is equal to the absolute thermodynamic

temperature times the differential of the entropy, dQ = TdS.

In consequence of this error Goransonrs basic equations for

the energy and the entropy of a multi-component system are

incorrect. In 1933 L.J. Gillespie and J.R. Coe, Jr., in an

article published in volume three of the Journal of Chemical

Physics showed that in the case of an open system, "the

complete variation of the entropy, for simultaneous reversible

transfers of heat and mass, is

.;,T 0
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In this equation dS denotes the increase in the entropy of the

open system, dq the amount of heat received by the open

system, T the absolute thermodynamic temperature, sx the

entropy of unit mass of kind 1 added to the open system, and

dm the mass of kind 1 added to the open system. This

equation is inconsistent with GoransonTs basic equations for

the energy and the entropy of a multi-component system and is

also inconsistent with very many .expressions in his tables for

first and second derivatives in the case of a multi-component

system. Gibbs showed in his memoir entitled "On the

Equilibrium of Heterogeneous Substances" (Trans. Conn. Acad.

of Arts and Sciences, Vol. 3, pp. 108-248 and 343-524,

1874-78) that it is possible to determine the energy and the

entropy of a multi-component system by measurements of heat

quantities and work quantities in closed systems. On this

basis, the present author made a detailed analysis of the

measurements necessary to obtain complete thermodynamic

information for a binary system of one phase over a given

range of temperature, pressure, and composition without

involving definitions of heat or work in the case of open

systems, which was published in a book entitled Relations

between Intensive Thermodynamic Quantities and Their First

Derivatives in a Binary System of One Phase (W.H. Freeman and

Company, 1960.) In this book the present author also

presented a table by means of which any desired relation

between the absolute thermodynamic temperature T, the pressure

p, the mass fraction of one component m , the specific volume

V, the specific energy U, and the specific entropy S, and

their first derivatives for a binary system of one phase can

be derived from the experimentally determined relations by the

use of functional determinants (Jacobians).
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In the present work, tables of Jacobians are given for

one-component systems of unit mass and of variable mass and

for binary systems of unit mass and of variable total mass by

means of which relations can be obtained between the

thermodynamic quantities and their first derivatives. An

explanation of the experimental measurements necessary to

obtain complete thermodynamic information in each of these

cases is also provided. The table of Jacobians for the case

of a one-component system of unit mass is included for

comparison with the other tables of Jacobians, because the

Jacobians in the tables in the other three cases reduce

essentially to those in the table for the case of the

one-component system of unit mass when the masses are held

constant. The Jacobians in the table in the present text for

the case of a one-component system of unit mass are the same

as the expressions in Bridgman!s tables for this case. The

Jacobians in the tables in the present text for the case of a

binary system of unit mass differ slightly in form from those

in Table 1 of this author's book entitled Relations between

Intensive Thermodynamic Quantities and Their First Derivatives

in a Binary System of One Phase. It has been found that by

elimination of the special symbols £i and o*i for (-^ J
1711 p

and f-rr? ) and adherence to the symbols ^^p J and

u
 l

 T9 p Wl r, p
/ dS \
f -~T? J a simpler and more perspicuous arrangement of the

mi T, p

terms in the Jacobians results in this case. The Jacobians in

the new tables in the present text for the case of a binary

system of variable total mass differ very much from the

expressions in the tables in Carnegie Institution of

Washington Publication No. 408 by R.W. Goranson. Very many of
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the expressions in Goranson's tables are incorrect on account

of his erroneous assumption that dQ = TdS in the case of

open systems when there is simultaneous reversible transfer of

both heat and mass. Furthermore, Goranson's expressions

in his tables for first derivatives in such cases are not

formulated in terms of the minimum number of derivatives

chosen as fundamental as he himself recognized.

As might be expected there is a considerable parallelism

between the Jacobians in the tables in the present text for a

one-component system of one phase and of variable mass and

those in the tables in the present text for a binary system of

one phase and of unit mass. There is also a partial

parallelism between the Jacobians in the tables in the present

text for the two cases just mentioned and those in the present

text for the case of a binary system of one phase and of

variable total mass. Thus for example in the case of a one-

component system of one phase and of variable mass we have

3(S, V, U) IJZJ ̂

where 5 denotes the total entropy, V the total volume, U the

total energy, T the absolute thermodynamic temperature, p the

pressure, M the mass, S the specific entropy, V the specific

volume, U the specific energy, and cV, the heat capacity at

constant pressure per unit of mass. For comparison in the

case of a binary system of one phase and of unit mass we have

3(5, V, U)
1 \Am«J \umif m \uujt\i m

t P I t p T*
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Correspondence of Tables of Jacobians

Part I
Table 1-1

1

1

1

1

1

Part II
Tables II-l
to 11-15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Part III
Tables III-l

to 111-15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Part IV
Tables IV-1
to IV-35

1 & 2

6

7 & 10

8 & 11

9 & 12

16

17 & 20

18 & 21

19 & 22

26

27

28

29 & 32

30 & 33

31 & 34

3

4

5

13

14

15

23

24

25

35
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where m denotes the mass fraction of component 1, which is

equal to m , the mass of component 1, divided by the sum of m1

and m2t m2 denoting the mass of component 2.

Furthermore in the case of a binary system of one phase

and of variable total mass we have

3(5, mlt V, U)
3(7% p, mi, /B2)

Also we have

3 ( S , 1712, F, U)
3 ( T , p , m i , cia

The last factor in each of these four Jacobians is the same.

In the case of the next to the last factor in each of these

Jacobians there is some parallelism; thus the next to the

3(5, V, U)
last factor in the case of the Jacobian 3(T, p, M) ^s

v*» v / \j> ^

[U + pV - TS] which is equal to the specific Gibbs function G

G
or -j. The next to the last factor in the case of the
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)
Jacobian

3(5, V, U) J
± 1 P

\J

f \
which is equal to I dnii) • Finally the next to the last

factor in the case of the Jacobian TTT-ZT—*-*—2 N
a K J- • p 9 m i , m 2 )

i s

which is equal to and the next to the last

factor in the case of the Jacobian ^> ̂ 2>—»

oyl * p9 mi f m2)

which is equal to (£J^ It is to be noted that

in all of these four Jacobians a simplification would result

if use were made of the Gibbs function G and its derivatives;

however, in the tables this would introduce more first

derivatives than the minimum number of fundamental

derivatives in terms of which all first derivatives are

expressible. If it is merely desired to calculate a

particular derivative as the quotient of two Jacobians, the

introduction of the Gibbs function G (likewise the

introduction of the enthalpy, H = U + pV, and the Helmholtz

function, A = U - TS) in the expressions for the Jacobians

would cause no difficulty. On the other hand if it is

desired to obtain a relation among certain derivatives by

expressing them in terms of the minimum number of fundamental
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derivatives and then eliminating the fundamental derivatives

from the equations, the introduction of the Gibbs function G

(or the enthalpy H or the Helmholtz function A) in the

expressions for the Jacobians would defeat the purpose.

The basic theorem on Jacobians that is needed in the

calculation of derivatives of point functions with respect to

a new set of independent variables in terms of derivatives

with respect to an original se.t of independent variables was

stated by Bryan (in Encyklopadie der matematischen

Wissenschaften, B.G. Teubner, Leipzig, Bd. V, Teil 1, S. 113,

1903), and is mentioned (without proof) in a number of

textbooks on the calculus. Proofs of this theorem in cases of

functions of two independent variables and functions of three

independent variables are given in Appendix B to Part I and

Appendix C to Part II of the present work. In the case of

transformations of line integrals that depend upon the path

from one coordinate system to another coordinate system, the

Jacobian theorem does not apply. To cover this case a new

theorem is needed. The new theorem developed by the present

author for the expression of the derivatives of a line

integral that depends upon the path along lines parallel to

the coordinate axes in one plane or space in terms of the

derivatives of the line integral along lines parallel to the

coordinate axes in other planes or spaces is stated and proved

in Appendix B to Part I and Appendix C to Part II of the

present work (this theorem is expressed by equations (I-B-36)

and (I-B-37) in Appendix B to Part I and equations (II-C-63),

(II-C-64), and (II-C-65) in Appendix C to Part II). It is a

pleasure to acknowledge my indebtedness to Professor

C.J.A. Halberg, Jr., and Professor V.A. Kramer, both of
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the Department of Mathematics of the University of California

at Riverside, who have kindly examined my proof of this

theorem carefully and in detail and who have confirmed its

correctness. I wish also to express my gratitude to Mrs.

Sheila Marshall for carefully and skillfully typing the

manuscript of this book in form camera-ready for reproduction

by offset photolithography and to Mr. David Crouch for making

the drawings for Figures II-l, II-A-1, II-A-2, and IV-A-1.

George Tunell

Santa Barbara, California

August 1984
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Part I

Relations between thermodynamic quantities and

their first derivatives in a one-component system

of one phase and of unit mass

Introduction

In consequence of the first and second laws of

thermodynamics and the equation of state of a one-component

system of one phase and of unit mass there are very numerous

relations between the thermodynamic quantities of such a

system and their derivatives. Bridgman1 devised a table of

functions by means of which any first derivative of a

thermodynamic quantity of such a system can be evaluated in

terms of the three first derivatives, (—) , (—] , an(* ^p>

together with the absolute thermodynamic temperature and

the pressure, as a quotient of two of the tabulated

functions. The equation among any four first derivatives

can then be obtained by elimination of the three derivatives,

(JL£ ) 9 ( —) , and Cp , from the four equations expressing

the four first derivatives in terms of the three derivatives,

*1\ _ (W\ f and cp.

1 Bridgman, P.W., Phys. Rev., (2), 3, 273-281, 1914, also A
Condensed Collection of Thermodynamic Formulas, Harvard
University Press, Cambridge, 1925.

1



2 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

Bridgman's table has been found very useful and has

become well known. The functions in Bridgman's table can be

derived by a simpler method, however. The theorem upon which

this method is based had been stated by Bryan,2 but a proof of

this theorem is not included in the article by Bryan. In the

following pages the functions tabulated by Bridgman are

derived by the method of Jacobians explained by Bryan and the

Jacobian theorem is proved.

Equation of state of a one-component system of one phase

The principal properties of a one-component system of one

phase and of unit mass that are considered in thermodynamics

are the absolute thermodynamic temperature T, the pressure p,

the specific volume 7, the specific energy U, and the specific

entropy 5. It has been established experimentally that the

temperature, the pressure, and the specific volume are related

by an equation of state

*(p, V, T) = 0. (1-1)

Even if an algebraic equation with numerical coefficients

cannot be found that will reproduce the experimental data for

a particular one-component system within the accuracy of the

measurements over the entire range of the measurements, the

equation of state can still be represented graphically with

such accuracy, and numerical values can be scaled from the

graphs.3

Bryan, G.H., in Encyklopadie der matematischen
Missenschaften, B.G. Teubner, Leipzig, Bd, V, Teil 1, S. 113,
1903.

3 Deming, W.E., and L.E. Shupe, Phys. Rev., (2), 37, 638-654,
1931; York, Robert, Jr., Industrial and Engineering Chemistry,
32, 54-56, 1940.
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Work done and heat received by the system

One may plot the values of the temperature T and the

pressure p of the system in a series of states through which

the system passes, laying off the values of T along one

coordinate-axis and the values of p along the other

coordinate-axis. The points representing the series of states

then form a curve, which, following Gibbs^ one may call the

path of the system. As Gibbs further pointed out, the

conception of a path must include the idea of direction, to

express the order in which the system passes through the

series of states. With every such change of state there is

connected a certain amount of work, W, done by the system, and

a certain amount of heat, Q, received by the system, which

Gibbs5 and Maxwell6 called the work and the heat of the path.

Since the temperature and pressure are supposed uniform

throughout the system in any one state, all states are

equilibrium states, and the processes discussed are reversible

processes.

The work done by this system on the surroundings is

expressed mathematically by the equation

V

W = JpdV. (1-2)

Vo

4 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
2, 311, 1871-73, or Collected Works, Longmans, Green and Co.,
New York, 1928, Vol. 1, p. 3.

5 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
2, 311, 1871-73, or Collected Works9 Longmans, Green and Co.,
New York, 1928, Vol. 1, p. 3.

6 Maxwell, J. Clerk, Theory of Heat, 10th Ed., Longmans,
Green and Company, London, 1891, p. 186.
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The value of this integral depends upon the particular path in

the (p» tO-plane, and when the path is determined, for

example, by the relation

P = ftf), d-3)
the value of the integral can be calculated.

If the path is plotted in the (T, p)-plane the work done

by the system, W, may be obtained by transformation of the

integral in equation (1-2)

T.P

To, Po

and the path may be determined in this case by the relation

p = *(T). (1-5)

Similarly the heat, 0, received by the system,

T,P

Q = jicpdT +Ypdp\ , (1-6)

TQ f PQ
may be calculated provided the heat capacity at constant

pressure per unit of mass, cp, and the latent heat of change

of pressure at constant temperature per unit of mass, /«, are

known functions of T and p and the path is determined by

equation (1-5). The integrals in equations (1-4) and (1-6)

are line integrals7 that depend upon the particular choice of

the path.

7 For the definition of a line integral, see W.F. Osgood,
Advanced Calculus, The Macraillan Company, New York, 1925, pp.
220, 221, or R. Courant, Differential and Integral Calculus,
translated by J.E. McShane, Blackie & Son, Ltd,, London, 1944,
Vol. 2, pp. 344, 345.
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First and second laws of thermodynamics applied to a

one-conponent system of one phase and of unit mass

The first law of thermodynamics for a one-component

system of one phase and of unit mass traversing a closed path

or cycle is the experimentally established relation

${dQ - dW} = 0.8 (1-7)

Replacing <PdQ and $dW by their values from equations (1-4)

and (1-6) in order that the integral may be expressed in terms

of the coordinates of the plane in which the path is plotted,

one has

/{[*„ - P(if) y • [rp - P(f

8 Blondlot, R., Introduction a l'Etude de la Thermodynamique,
Gauthier-Villars et Fils, Paris, 1888, p. 66; Bryan, G.H., op.
cit., p. 83; Poincare, H., Thermodynami que, Second Edition,
Edited by J. Blondin, Gauthier-Villars et Cie, Paris, 1923, p.
69; Keenan, J.H., Thermodynamics, John Wiley & Sons, Inc., New
York, 1941, p. 10; Allis, W.P., and M.A. Herlin,
Thermodynamics and Statistical Mechanics, McGraw-Hill Book
Co., Inc., New York, 1952, p. 67; Schottky, W., H. Ulich, and
C. Wagner, Thermodynamik, die Lehre von den Kreisprozessen9
den physikalischen und chemischen Veranderungen und
Gleichgewichten, Julius Springer, Berlin, 1929, pp. 14-15.

Lord Kelvin in his paper entitled "On the dynamical
theory of heat, with numerical results deduced from Mr.
Joule's equivalent of a thermal unit, and M. Regnault's
observations on steam" (Trans. Roy. Soc* Edinburgh, 20,
261-288, 1851) made the following statement: "Let us suppose
a mass of any substance, occupying a volume v, under a
pressure p uniform in all directions, and at a temperature t,
to expand in volume to v + dv, and to rise in temperature to
t + dt. The quantity of work which it will produce will be

pdv;
and the quantity of heat which must be added to it to make its
temperature rise during the expansion to t + dt may be denoted
by

Mdv + Ndt,
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From equation (1-8) it follows that the integral

To» Po

is independent of the path and defines a function of the

The mechanical equivalent of this is
JiMdv + Ndt),

if J denote the mechanical equivalent of a unit of heat.
Hence the mechanical measure of the total external effect
produced in the circumstances is

(p - JM)dv - JNdt.
The total external effect, after any finite amount of
expansion, accompanied by any continuous change of
temperature, has taken place, will consequently be, in
mechanical terms,

/{(p - JM)dv - JNdt} ;

where we must suppose t to vary with v, so as to be the
actual temperature of the medium at each instant, and the
integration with reference to v must be performed between
limits corresponding to the initial and final volumes. Now
if, at any subsequent time, the volume and temperature of the
medium become what they were at the beginning, however
arbitrarily they may have been made to vary in the period,
the total external effect must, according to Prop. I., amount
to nothing; and hence

(p - JM)dv - JNdt
must be the differential of a function of two independent
variables, or we must have

dip - JM) d(-JN) M.
dt = dv ( 1 )'

this being merely the analytical expression of the condition,
that the preceding integral may vanish in every case in which
the initial and final values of v and t are the same,
respectively,n And elsewhere in the same paper Lord Kelvin
wrote: "Prop, I. (Joule).-When equal quantities of
mechanical effect are produced by any means whatever, from
purely thermal sources, or lost in purely thermal effects,
equal quantities of heat are put out of existence or are
generated/1
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coordinates; this function, to which the name energy is given

and which is here denoted by the letter U, is thus a function

of the state of the system

U(T, p) - U(T0, p0) =

Kb -'$)>• & - 4\] 4 • «-»>
ro» Po

The second law of thermodynamics for a one-component

system of one phase and of unit mass traversing a closed

reversible path or cycle is the experimentally established

relation

f- = 0 , 9 (1-10)

where T is the temperature on the absolute thermodynamic

scale. Expressing this integral in terms of the coordinates

of the plane in which the path is plotted, one has

(I-ll)

9 Clausius, R., Die mechanische Warmetheorief Dritte aufl.,
Bd. I, Friedrich Vieweg und Sohn, Braunschweig, 1887, S. 93;
Blondlot, R., op. cit., p. 66; Vanft Hoff, J.H., Physical
Chemistry in the Service of the Sciences9 English Version by
A. Smith, University of Chicago Press, Chicago, 1903, pp.
21-22; Schottky, W., H. Ulich, and C. Wagner, op. cit., p. 17;
Gibbs, J. Willard, Proceedings of the American Academy of Arts
and Sciences, new series, 16, 460, 1889, or Collected Works,
Vol. 2, Longmans, Green and Company, New York, 1928, p. 263.
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From equation (1-11) it follows that the integral

T.p

To, p0

is independent of the path and defines a function of the

coordinates; this function, to which the name entropy is given

and which is here denoted by the. letter f>, is thus a function

of the state of the system

S(T,p) - S(To,po) =

From equation (1-9) it follows directly10 that

\df) = P " P\dT)

P Pand

From equation (1-12) it follows likewise that

(
p

and

(ffl - k •

10 For the proof of this theorem, see W.F. Osgood, op. cit.,
pp. 229-230, or R. Courant - J.E. McShane, op. cit., Vol. 1,
pp. 352-355.
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A necessary and sufficient condition11 for equation (1-9)

to be true is

fdv\ "k r *IV /an ~k
12

(1-17)
P uH j,

Likewise a necessary and sufficient condition for equation

(1-12) to be true is

(1-18)

11 For the proof of this theorem, see W.F. Osgood, op. cit.,
pp. 228-230, or R. Courant - J.E. McShane, op. cit., Vol. 1,
pp. 352-355.

12 Lord Kelvin wrote the analogous equation with t and v as
the independent variables as an analytical expression of the
"first fundamental proposition" or first lav; of
thermodynamics. His statement follows: "Observing that J is
an absolute constant, we may put the result into the form

dj> _ dM dN
dt dt " dv *

This equation expresses, in a perfectly comprehensive manner,
the application of the first fundamental proposition to the
thermal and mechanical circumstances of any substance
whatever, under uniform pressure in all directions, when
subjected to any possible variations of temperature, volume,
and pressure." (Trans. Roy. Soc. Edinburgh, 20, 270, 1851.)
Clausius also stated that an analogous equation, his equation
(5), forms an analytical expression of the first law for
reversible changes in a system the state of which is
determined by two independent variables. (Abhandlungen iiher
die mechanische Warmetheorie* Zweite Abtheilung, Abhandlung
IX, Friedrich Vieweg und Sohn, Braunschweig, 1867, p. 9.)

13 Clausius stated that his equation (6), to which equation
(1-18) of this text is analogous, constituted an analytical
expression of the second law for reversible processes in a
system the state of which is determined by two independent
variables. (Abhandlungen iiber die mechanische Warmetheoriei
Zweite Abtheilung, Abhandlung IX, Friedrich Vieweg und Sohn,
Braunschweig, 1867, p* 9.)
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Carrying out the indicated differentiations one obtains from

equation (1-17) the relation

d2V fdV\ (1-19)
3r / ^ 3T3p V 3p / F 3p3r \

P j

and from equation (1-18) the relation

T \dT 1
P

Combining equations (1-19) and (1-20) one has

J T* " T \ d p

P

From equations (1-19) and (1-21) it also follows that

All the first derivatives of the three quantities V, U* and S

expressed as functions of T and p can thus be calculated from

equations (1-13), (1-14), (1-15), (1-16), and (1-21) if

(—) , (—) » anc^ ^p ^ave been determined experimentally.

In order to be able to calculate all the properties of

this system at any temperature and pressure, the volume must

be determined experimentally as a function of the temperature

and pressure; the first two derivatives (~~=) and ( T — )

can then be calculated at any temperature and pressure within
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the range over which the volume has been determined. The

third derivative, cp, need only be determined experimentally

along some line not at constant temperature, ll* since f g )

can be calculated from equation (1-22) if ("jvf) ^ a s been
P

determined as a function of T and p.

Derivation of any desired relation between the
w v-/ w

intensive thermodynamic quantities, T9 p> V9 U, S9 and

their first derivatives for a one-component system of

one phase from the experimentally determined relations

by the use of functional determinants (Jacobians)

Equations (1-1), (1-9), and (1-12) can be solved for any
\J \J <S

three of the quantities, T9 p9 V, U9 S9 as functions of the

remaining two. The first partial derivative of any one of the
yj v-/ KJ

quantities, T, p, V, U9 S9 with respect to any second quantity

when any third quantity is held constant can readily be

obtained in terms of the three first derivatives

(•̂r , ( — ]
\oIJ \dpJj, and Q 9 together with the absolute

thermodynamic temperature and the pressure, by application

of the theorem stating that if x' = oo(x>y),

if x = f(u» v), and if y = <t>(u9 v), then one has

Bridgman, P.W., Phys, Rev., (2), 3, 274, 1914.
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\3u/ \3v
V U

\du) Hu, v)

\"3u/
V

/3x\

u

V3W
u

3(x,
3(u,

y)

15

(1-23)

provided all the partial derivatives in the determinants are

continuous and provided the determinant in the denominator

is not equal to zero. The symbol -trr,—! -v here denotes the

Jacobian16 of the functions x1 and y with respect to the

variables u and v and the symbol ~> } ^ e n o t e s the Jacobian

of the functions x and y with respect to the variables u and

v. In Table 1-1 the value of the Jacobian is given for each

pair of the variables, T, p, V, U, S9 as x', y or x» y and

15 Bryan, G.H., op. cit., p. 113, equation (82); see also
Osgood, W.F., op. cit,, p. 150, Exercise 31, Burington, R.S.,
and C.C. Torranee. Higher Mathematics with Applications to
Science and Engineering9 McGraw-Hill Book Co., Inc., New York
and London, 1939, p. 138, Exercise 7, and Sherwood, T.K., and
C.E. Reed, Applied Mathematics in Chemical Engineering,
McGraw-Hill Book Co., Inc., New York and London, 1939, p. 174,
equation (164). A proof of this theorem for the case of
functions of two independent variables is given in Appendix B
to Part I.

16 For the definition of a Jacobian, see W.B. Fite, Advanced
Calculus, The Macmillan Company, Hew York, 1938, pp. 308-309.
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with T$ p as u9 v * There are 20 Jacobians in the table, but

x» y) _ 3(y, x)
one has (u» v) 3(u, v), because interchanging the rows

of the determinant changes the sign of the determinant; hence

it is only necessary to calculate the values of 10 of the

determinants. The calculations of these ten determinants

follow:

3(p, T)
P)

3T 3p

ar dT
dp

= - 1
(1-24)

3(/, r)
3(7, p)

3Ĵ  3£
37 3p

3T 3T
3T 3p

(1-25)

3(r, P)

1£ 3£
dT dp

dT
dT

dT
dp

, T)

95 3S
3T dp

_3T 3T
3T 3p

(ar)
d-27)

, p)

3<r, P)

3T 3p

2R
dp

(1-28)
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3(t/, p)
3(r, p)

dT dp

dp dp
dT dp

(1-29)

J5 dS_
dT dp

dp 9p
3T 3p

(I-3O)

3(r,p)

\-> o

d-31)

3(S, V)
3(r,p)

35 3S
37 3p

dT dp

V-/ V-» (1-32)

)S 3S

W_ dU
dT dp

Vji ^/ (1-33)

In order to obtain the first partial derivative of any one
KJ V-» V>

of the five quantities Tf p» V̂ f £/» S# with respect to any

second quantity of the five when any third quantity of the

five is held constant, one has only to divide the value of the

Jacobian in Table 1-1 in which the first letter in the first

line is the quantity being differentiated and in which the

second letter in the first line is the quantity held constant



Table 1-1
Jacobians of intensive functions for a

one-component system of one phase

3(7\ p) ' a(7\ p)

x \

T

P

KJ

V

KJ

u

KJ

s

T

-1

P

P

1

\j

P

cp - p(!f)
p

T

V

"P ' rn

\J

"(ar)
P

Kir+«p(tf) r

KJ KJ KJ

•

«®, - 4\

P

\^ <J

Xdf) " CP\dp)m
P T

(dV\2 Pcp(dV\

KJ

s

/an
\dT/

P

T

-i);4(Dr
\J KJ \J
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by the value of the Jacobian in Table 1-1 in which the first

letter of the first line is the quantity with respect to which

the differentiation is taking place and in which the second

letter in the first line is the quantity held constant.

To obtain the relation among any four derivatives, having

expressed them in terms of the same three derivatives,

\lvrJ ' \1T") ' anc* CP' o n e ^ a s on^y t0 eli mi n a te the three

derivatives from the four equations, leaving a single equation

connecting the four derivatives.

Three functions used in thermodynamics to facilitate the

solution of many problems are the following: the enthalpy H,

defined by the equation H = U + pV, the Helmholtz function A,

defined by the equation A = U - TS, and the Gibbs function G,

defined by the equation G = U + pV - TS. The corresponding

specific functions are Hf A9 and G. Partial derivatives

involving one or more of the functions H9 A, and G, can also

be calculated as the quotients of two Jacobians, which can

themselves be calculated by the same method used to calculate

the Jacobians in Table 1-1.



Appendix A to Part I

Transformation of the work and heat line integrals

from one coordinate plane to other coordinate

planes in the case of a one-component system of

one phase and of unit mass

The derivatives of the work done and the heat received by

a one-component system of one phase and of unit mass are total

derivatives1 with respect to the variables chosen as the

parameters defining the paths of the integrals. In order to

obtain the total derivative of the work done along a straight

line parallel to one of the coordinate axes in any plane, one

obtains from Table 1-1 the partial derivative of the volume

with respect to the quantity plotted along that axis when the

quantity plotted along the other axis is held constant and one

multiplies the partial derivative of the volume by the

pressure. Similarly to obtain the total derivative of the

heat received along a straight line parallel to one of the

coordinate axes in any plane, one obtains from the table the

partial derivative of the entropy with respect to the quantity

plotted along that axis when the quantity plotted along the

other axis is held constant and one multiplies the partial

derivative of the entropy by the temperature. For example,

the derivatives of the work done and heat received along a

straight line parallel to the K-axis in the (7\ 7)-plane are

(§) - P (I-A-D

Tunell, G., Jour. Chenu Physics, 9, 191-192, 1941,

17
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and

$1= KDJ* (II-
The total derivatives of the 'heat received along lines

parallel to the coordinate axes in any desired plane can also

be derived in terms of the total derivatives of the heat

received along lines parallel to the coordinate axes in the

(T$ p)-plane by transformation of the heat line integral as

explained in the second half of Appendix B to Part I.

Following is an example of such a transformation. In the case

of a one-component system of one phase and of unit mass the

heat line integral extended along a path in the (7\ F)-plane

is

7\ V
(I-A-3)

io»

where cv denotes the heat capacity at constant volume per unit

of mass and lv denotes the latent heat of change of volume at

constant temperature, and where cv and lv are functions of T

and 7. This integral depends upon the path in the (T, V ) -

plane determined by an equation between T and V, T = f(V).

/dlv\ /3cv\
In this case 1-^H w / ("57r) • ^n order to transform the
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integral for Q from the (7\ l/)-plane to the (7\ p)-plane, p

denoting the pressure, we make use of the fact that V is a

function of T and p,

V = F(T, p). (I-A-4)

Thus we write for the integral transposed to the (7% p)-plane

0 ./{
2"o» Po

r. P
+ iv(|^) )dT+ ̂ (|f)dp} • d-A-5)

TQ, po

By definition the coefficients of dT and dp in this integral

are cV, and ip. Thus we obtain the equations

and
P

rp
From equations (I-A-6) and (I-A-7) we obtain cv and lv as

functions of T and p:

v - cp -

and
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The same result can be obtained by substitution of values in

equations (I-B-35) and (I-B-36) in Appendix B to Part I. The

equivalence of symbols for the purpose of this substitution is

given in the following Table.

Table I-A-l

Equivalence of symbols

r o

0(u, v) cp

tt(u, v) L

Substituting the values from the right hand column for the

values in the left hand column in equations (I-B-35) and
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(I-B-36) we have

- /an y (dv\

\dTi C

and

« = cv. = a

i

CP*°
/3£\ #Q _

P

(I-A-ll)

Finally, equations (I-A-8) and (I-A-10) are equivalent because

TlP
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Proofs of the relations:

dx' , v)

and

/dr\
\~dx~)

dT
du
dy
du

dx

Iz
du

dT
dv

h.
dv

dx
dv
d y
d v

It is assumed that x' is a function of x and y,

x' = U)(x, y) (I-B-l)

and that x and y are functions of u and v,

x = f(u, v)9 (I-B-2)

and

y = 0(u, v). (I-B-3)

It is assumed further that these functions are continuous

together with their first partial derivatives. By application

of the theorem for change of variables in partial

differentiation1 one then obtains

du dx du dy du (I-B-4)

1 Osgood, W,F., Advanced Calculus, The MacMillan Co., New
York, 1925, pp. 112-115; Taylor, Angus, Advanced Calculus,
Ginn and Co., Boston, New York, Chicago, Atlanta, Dallas, Palo
Alto, Toronto, London, 1955, pp. 167-172.

22
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and

Jv = 3l37 +37 3u * (I-B-5)

From equations (I-B-4) and (I-B-5) it follows that

dxfdy _ _3x' dx^'dx_ f-r T> fi\

dy du du dx du

and

3y dv dv dx dv

Dividing both sides of equation (I-B-6) by -r^ and both

sides of equation (I-B-7) by -̂ p we have

dxr 3x;3x
du dx 3u

3y " 3j/ (I-B-8)
3a

and

3x' ^2l! ^2L
r. , dv 3x 3v

3y "" dy_ * (I-B-9)
dv

It follows that the right side of equation (I-B-8) is equal to

the right side of equation (I-B-9)

3x' _ 3x'££ dx1 _ 3x'3x
du dx du - dv dx dv

—i7~ —H—
du dv
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Multiplying both sides of equation (I-B-10) by (^"^J v/e

have

^ (I-B-ll)
3x du) du^dv dx

and consequently

dy dx1 dy dx 'dx dy dx' dy j^'J^
dv du dv dx du 3u dv 3u 3x dv

From equation (I-B-12) it follows that

dx du dv dx dv du ~ du dv dv du

and

3x \du dv dv du) " du dv dv du

Dividing both sides of equation (I-B-14) by

we have

Y~ ) is thus equal to the quotient
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of two Jacobian determinants

3x'
du

iz
du

3x
du

iz
3u

3x'
3v

iz
3v

dx
dv

iz
dv

(I-B-16)

provided the Jacobian determinant in the denominator is not

equal to zero. Thus we obtain the result

\dx

and similarly we have

3Cx'
3(u,

3(x,

v)

y)
(LZ, V)

(I-B-17)

* 9(y> x)
(I-B-18)

This case corresponds to the case of a one-component system of

one phase and of unit mass in which it is desired to transform

a function of the coordinates, such as the volume, the energy,

or the entropy, from one coordinate plane, such as the

entropy-volume plane to another coordinate plane, such as the

temperature-pressure plane.

Equations (I-B-17) and (I-B-18) are not applicable,

however, in the case of a one-component system of one phase
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and of unit mass when it is desired to transform the work line

integral or the heat line integral from one coordinate plane,

such as the entropy-volume plane, to another coordinate plane,

such as the temperature-pressure plane, because the work line

integral and the heat line integral depend upon the path and

are not functions of the coordinates. In this case, to which

the second equation of the heading of this Appendix applies,

the transformation can be accomplished in the following way.

Let us suppose that a line integral F

X* y

x, y)dx + Q(x, y)dy)

yo

dP 30
depends upon the path in which case TJ— 4 "tr- . This

integral has no meaning unless a further relation is given

between x and y, y = f(x), defining a particular path in the

(*> y)-plane.2 We are next given that x and y are functions

of u and v,

x = <t>(u, v), (I-B-20)
and

y = Ku, v). (I-B-21)

It is then desired to transform the integral T from the

2 In general this curve can be represented in parametric
form, x = X(o), y = 5(a) f but in simple cases the curve can
be expressed by the equation y = f(x) , or at leas t in
segments by the equations yl = f(x)f ya = F(x).
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(x, y)-plane to the (u9 v)-plane.
3 In this case if equations

(I-B-20) and (I-B-21) can be solved so that we have

u = <£>(*» y), (I-B-22)

and

v = ¥(x, y), (I-B-23)

then the curve in the (x9 y)-plane can be transformed into the

curve in the (u» v)-plane defined by the equation u = F(v).

We next replace dx in the integral T by -g— du + -g—dv and dy

by TT-du + Tp-dv . We then have
du dv

U, V

r [ \ r\\ ox 1 ox - i ^ I ° / J U y i i i / -r T» n / \

/ I 1 n/ l n V Jf» wtr II v '

U Q > V"Q

the curve in the (u, v)-plane now being determined by the

3 Cf. R» Courant, Differential and Integral Calculus,
Translated by J.E. McShane, Blackie & Son Ltd., London and
Glasgow, 1944, Vol. 2, p. 373. The procedure for transforming
a line integral that depends upon the path from the (x, y ) -
plane to the (u, v)-plane used by Courant is the same as the
procedure explained here and in Appendix C to Part II of this
text.
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equation u = F(v). Consequently we thus obtain

u, v

U* V

rr
[lit v)9 \p(u,

where 0 is set equal to

r = / IP(<KU,V), *(u, v))|^(

Uo.

u, v), \Ku,

U, V

0(u, v)du + Q(u, v)dv} , (I-B-25)
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and Q is set equal to

U, v)9 \Ku, v))|j + Q(<t>(u, v), \Ku,

In order to evaluate P and 0 as functions of u and v we next

solve the equations

du ' ' 9u

and

n . PM. + QhL (I-B-27)

for P and 0. Thus we have

QZL = 0 - p | i (I-B-28)
du ou

and

(I-B"29)

Dividing both sides of equation (I-B-28) by J±Z and both sides
du

of equation (I-B-29) by S^JL we obtain

and

o = n/|i-p|s/|j: (I-B-31)
/ dv 9v/ d̂  v 7
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and consequently

From equation (I-B-32) it follows that

P | i / |Z . P | i / | i = 0 / |Z_ f l / |Z . ( I _ B _ 3 3 )
3u / 8u 3v/ 3v / 3u / 3v

Thus from equation ( I -B-33) we ob ta in the va lue of P as a

function of u and v:

ox oy ox joy
3u/ du dv/ d

(I-B-34)
du dv/ dv

and multiplying both numerator and denominator of the right

side of equation (I-B-34) by (T*""jT*")we have

0 ^ - Q&
p ov du

3u dv dv du

Mow P(xf y) is the total derivative of T along a line parallel

to the x-axis in the (x, y)-plane«** Also 0(u, v) is the total

4 Cf. G. Tunell, Jour. Chem. Physics, 9, 191-192, 1941.
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derivative of T along a line parallel to the u-axis in the

(Uf v)-plane and Q(u, v) is the total derivative of T along a

line parallel to the v-axis in the (u, v)-piane. Thus from

equation (I-B-35) we have

><*•
(dl) _
\dx) ~

y

dT
du

Iz
du

dx
du
hL
du

dT
dv
dy_
dv

dx
dv
dy_
dv

(I-B-36)

Likewise Q(x, y) is the total derivative of T along a line

parallel to the y-axis in the (x9 y)-plane. Thus in a similar

way we have

X

dT
du
dx
du

du
dx_
8u

dT
dv
dx
dv

dv
dx
dv

(I-B-37)

The determinants forming the numerators of the fractions

constituting the right sides of equations (I-B-36) and

(I-B-37) are similar in form to the Jacobian determinants used

in the transformation of functions of two or more variables,

but F is not a function of x and y or of u and v and the

derivatives in the top lines of the determinants constituting

the numerators of the fractions that form the right sides of

equations (I-B-36) and (I-B-37) are total derivatives, not

partial derivatives.



Appendix C to Part I

Discussion of P.W. Bridgman's explanation of the derivation

of the functions tabulated in his book entitled

A Condensed Collection of Thermodynamic Formulas1

Bridgman explained the derivation of the functions

tabulated in his book entitled A Condensed Collection of

Thermodynamic Formulas in the following way.

All the first derivatives are of the type

where xx, x2, and X3 are any three different variables
selected from the fundamental set (for example,
p, T, v). The meaning of the notation is the
conventional one in thermodynamics, the subscript X3
denoting that the variable x3 is maintained constant,
and the ratio of the change of x\ to the change of X2
calculated under these conditions. The restrictions
imposed by the physical nature of the system are such
that derivatives of this type have a unique meaning.
The number of such first derivatives evidently depends
on the number of quantities selected as fundamental.
For nearly all applications 10 such variables are
sufficient, and this is the number taken for these
tables. ...2

Given now 10 fundamental quantities, there are
10x9x8 = 720 first derivatives. A complete collection
of thermodynamic formulas for first derivatives
includes all possible relations between these 720

1 Harvard University Press, Cambridge, 1925.

2 The variables selected as fundamental by Bridgman are the
following: the pressure p, the temperature T, the volume v,
the entropy s, the heat Q, the work w, the energy £, the

enthalpy #, the Gibbs function z , and the Helmholtz

function ¥.

32
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derivatives. In general, the relations involve any
four of the derivatives, for any three of the
derivatives are independent of each other. (There
are, of course, a large number of degenerate cases in
which there are relations between fewer than four
derivatives.) Now, except for the degenerate cases,
the number of relations between first derivatives is
the number of ways in which 4 articles can be selected
from 720, or

720 x 719 x 718 x 717 in i n 9
l x 2 x 3 x 4 = approx. 11x10*.

This is the number of thermodynamic relations which
should be tabulated in a complete set of formulas, but
such a programme is absolutely out of the question.
We can, however, make it possible to obtain at once
any one of the llxlO9 relations if we merely tabulate
every one of the 720 derivatives in terms of the same
set of three. For to obtain the relation between any
four derivatives, having expressed them in terms of
the same fundamental three, we have only to eliminate
the fundamental three between the four equations,
leaving a single equation connecting the desired four
derivatives.
This programme involves the tabulating of 720

derivatives, and is not of impossible proportions.
But this number may be much further reduced by
mathematical artifice. The 720 derivatives fall into
10 groups, all the derivatives of a group having
the same variable held constant during the
differentiation. Now each of the 72 derivatives in a
group may be completely expressed in terms of only 9
quantities. Consider for example the first group, in
which xi is the variable kept constant. Then any

/ 3x 7- \
derivative of this group ("T"*"̂ ) m a y ^e written

*k*
k x

. l\ =
dxkk

in the form (. l\ = / JL\ /( k\ , where
\dxk ~ V 3ai J / \ 3 o t i /k x xf xV 3ai J /\3otix1 xx

f x1

oti is any new variable, not necessarily one of the 10.
Let us make this transformation for all the
derivatives of the group, keeping the same a in all
the transformations. Then it is evident that all
derivatives of the group may be expressed in terms of

the nine derivatives IT""/ ••• ("5""/ * ^y taking
1̂ "̂i
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the ratio of the appropriate pair. That is, for the
purpose of calculating the derivatives we may replace

the derivative (3-^) by the ratio of numerator to

denoraerator, writing

—l)
\ 9x/wK x

and then substitute for (9x?-) the finite derivative
J X\

t dxj\
/ . — M and for (Bx/,) ,
V 9ai / J K xi V

x

dxj\ / 9x^ \

M d f ( B ) -^r~
xi V 9ax /

xi xi
We may now, as a short-hand method of expression,
write the equations

(3xy)xi = {^) , etc.,

remembering, however, that this is not strictly an
equation at all (the dimensions of the two sides of
the "equation" are not the same), but that the form of
expression is useful because the correct result is
always obtained when the ratio of two such
differentials is taken.

We may proceed in this way systematically through
the remaining 9 groups of 72 derivatives, choosing a
new and arbitrary a for each group. We will thus have
in all 90 different expressions to tabulate. This
number may now be further reduced to 45 by so choosing
the ars in the successive groups that the condition
(3x7O = - (9x/c) is satisfied. That such a choice

X jv X j

is possible requires proof, for having once chosen a ,

the choice of a2 is fixed by the requirement that

(dxi) = - (9x2) , and a3 is fixed by the
X.2 X i

requirement that (3xi) = -(9x3) , so that it is

now a question whether these values of a2 and a3 are

such that (gv ) » - (a*,) . That these conditions
x3 x2

are compatible is an immediate consequence of the
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mathematical identity

2 dxs dxj
x3 xi x2

The only degree of arbitrariness left is now in oti,
which may be chosen to make the expressions as simple
as possible.

In the actual construction of the tables the a's
play no part, and in fact none of them need be
determined; their use has been merely to show the
possibility of writing a derivative as the quotient of
two finite functions, one replacing the differential
numerator, and the other the differential denominator.
The tables were actually deduced by writing down a
sufficient number of derivatives obtained by
well-known thermodynamic methods, and then splitting
these derivatives by inspection into the quotient of
numerator and denominator. Having once fixed the
value of a single one of the differentials
arbitrarily, all the others are thereby fixed* For
simplicity it was decided to put (3x)p = 1.

The choice of the fundamental three derivatives
leaves much latitude. It seemed best to take three
which are given directly by ordinary experiment; the
three chosen are

/dv\ fdv\ * n \- fdQ
3?)' fe)- and CP[ = (a?

The problem addressed by Bridgman is that of obtaining a

derivative of any one variable of the 10 variables with

respect to any second variable of the 10 when any third

variable of the 10 is held constant in terms of the three

derivatives (37) » ("§£) ' a n d cp> a n d certain of the
P P T
)
P

thermodynamic quantities. This is a problem of obtaining

derivatives with respect to a new set of independent

variables in terms of derivatives with respect to an original
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set of independent variables. The solution of this problem by

means of Jacobians was given by Bryan3 in his article in the

Encyclopadie der matematischen Wissenschaften in 1903 and is

well established. The functions listed by Bridgman in his

table as (3p)v, (3x)v, (3s)v, (3E)V, (3p)s, (3x)s, (3V) S, (3E) S,

etc., are really Jacobians, not partial derivatives with

respect to hypothetical auxiliary variables ot3, a^. In the

derivation by means of Jacobians explained in the preceding

pages no hypothetical auxiliary variables were involved

and likewise no hypothetical unknown functions of a

and p, or of a2 and T, or of ot3 and v, etc., were involved.

Furthermore it is really not a matter of hypothesis that

(3xi) = - (dx2) . The quantity (3xi) is really the
Xz *1 *2

Jacobian 1*1* *?J ancj the quantity (3x2) is real ly the
o\t* P) xi

Jacobian ^*z* *1^ . The Jacobian j^**' *^ is equal to the

negative of the Jacobian ^; 2> ̂ ^ because interchanging two
o ̂ T, p )

rows of a determinant changes the sign of the determinant.

Finally it is not an arbitrarily adopted convention that

(3i)p = I. The quantity (3x)p is equal to the Jacobian

3 / f ̂ '{ t which is automatically equal to 1.

Bryan, G.H., in Encyclopadie der matematischen
Wissenschaften, B.G. Teubner, Leipzig, Bd. V, Teil 1, S. 113,
1903.



Part II

Relations between thermodynamic quantities and

their first derivatives in a one-component system

of one phase and of variable mass

Introduction

Thermodynamic relations in open systems of one component

and of one phase and other open systems have been analyzed by

Gillespie and Coe,1 Van Wylen,2 Hall and Ibele,3 and Beattie

and Oppenheim,4 also in part incorrectly by Larmor, 5 Morey,6

Goranson,7 Sage,8 Moelwyn-Hughes,9 Callen,10 and Wheeler.11

1 Gillespie, L.J., and J.R. Coe, Jr., Jour. Chem. Phys., 1,
103-113, 1933.
2 Van Wylen, G.J., Thermodynamics, John Wiley and Sons, Inc.,
New York, Chapman and Hall, London, 1959.
3 Hall, N.A., and W.E. Ibele, Engineering Thermodynamics,
Prentice-Hall, Inc., Englewood-Cliffs, N.J., 1960.

** Beattie, J.A., and Irwin Oppenheim, Principles of
Thermodynamics, Elsevier Scientific Publishing Co., Amsterdam,
Oxford, New York, 1979, pp. 296-320.
5 Larmor, Sir Joseph, Proc. Roy. Soc. London, 75, 280-296,
1905.
5 Morey, G.W., Jour. Franklin Inst., 194, 425-484, 1922.
7 Goranson, R.W., Thermodynamic Relations in Multi-Component
Systems, Carnegie Institution of Washington Publication
No. 408, 1930.
8 Sage, B.H., Thermodynamics of Multicomponent Systems,
Reinhold Publishing Corp., New York, 1965.
9 Moelwyn-Hughes, E.A., Physical Chemistry, Pergamon Press,
London, New York, Paris, 1957.
10 Callen, H.E., Thermodynamics, John Wiley and Sons, Inc.,
New York and London, 1960.
11 Wheeler, L.P., Josiah Willard Gibbs - The History of a
Great Mind, Rev. Ed., Yale University Press, Mew Haven, 1952,

37
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In the following text the relations for the energy and the

entropy of a one-component system of one phase and of variable

mass are derived and a table of Jacobians is presented by

means of which any first partial derivative of any one of the

quantities, the absolute thermodynamic temperature T, the

pressure p, the total mass Mf the total volume V , the total

energy U, and the total entropy 5, with respect to any other

of these quantities can be obtained in terms of the partial

derivative of the specific volume with respect to the

temperature, the partial derivative of the specific volume

with respect to the pressure, the heat capacity at constant

pressure per unit of mass, and certain of the quantities 7\ p,
W V-/ VJ>

Aft V, U, S.

In the case of a one-component system of one phase and of

variable mass it is not necessary to make use of a definition

of heat or a definition of work in the case of an open system

when mass is being transferred to or from the system in order

to derive the relations for the total energy and the total

entropy. For some purposes, however, it has been found useful

to have definitions of heat and work in the case of open

systems when mass is being transferred to or from the system.

The definitions of heat and work in the case of open systems

used by various authors are discussed in Appendix A to

Part II.

Calculation of the total volume, the total energy, and the

total entropy of a one-component system of one phase and of

variable mass as functions of the absolute thermodynamic

temperature, the pressure, and the total mass

Thermodynamic formulas can be developed in the case of a

one-component system of one phase and of variable mass on the

basis of the following set of variable quantities: the

absolute thermodynamic temperature Tt the pressure P, the
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Water
bath

Figure II-l
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total mass M, the total volume V, the total energy U, the

total entropy 5, the specific volume V, the specific energy U,

the specific entropy 5, the heat capacity at constant pressure

per unit of mass cp, and the latent heat of change of pressure

at constant temperature per unit of mass I p. Two one-

component systems of one phase and of variable mass are

illustrated in Figure II—1• The formulas developed in the

following pages apply to either open system I or open

system II in Figure II—1. Open systems I and II together

constitute a closed system.

In the case of a one-component system of one phase and of

variable mass the total volume V is a function of the absolute

thermodynamic temperature T, the pressure p, and the total

mass M

V = f(7, p, M) . (II-l)

The total volume is equal to the total mass times the specific

vo1ume

V = MV , (H-2)

and the specific volume is a function of the absolute

thermodynamic temperature and the pressure,

V = <t>(T, p) . (II-3)

From equations (II-l), (II-2), and (II-3) it follows that

) . - 4 ) •"<,«
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and

[|Z] = y fII-6)
\ZMJT$ p

 U ^

The total energy is a function of the absolute

thermodynamic temperature, the pressure, and the total mass

U = MT, p, M) . (H-7)

It is known that the total energy of a one-component system of

one phase and of variable mass is proportional to the total

mass at a given temperature and a given pressure because it

requires M times as much heat received and M times as much

work done to take M times as much substance from the standard

state to the given state as to take unit mass of the substance

from the standard state to the given state through the same

set of intermediate states. Thus the total energy is equal to

the total mass times the specific energy

U = MU . (II-8)

Furthermore it is known from the case of a one-component

system of one phase and of unit mass discussed in part I that

the specific energy is a function of the absolute

thermodynamic temperature and the pressure

U = 8(T, p) . (H-9)

Thus the relation of the total energy to the absolute
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thermodynamic temperature, the pressure, and the total mass is

expressed by the equation

U(T, p,M) - [/(To, PQ9 Mo)

From equations (II-7), (II-8), (II-9), and (11-10) it follows

that

and

MLr.

The total entropy is a function of the absolute thermodynamic

temperature, the pressure, and the total mass

S- E,iT,p,M) . ( I I - 1 4 )

It is known that the total entropy of a one-component system

of one phase and of variable mass is proportional to the total
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mass at a given temperature and a given pressure because it

requires M times as much heat received to take M times as much

substance from the standard state to the given state as to

take unit mass of the substance from the standard state to the

given state reversibly through the same set of intermediate

states. Thus the total entropy is equal to the total mass

times the specific entropy

S = MS . (11-15)

Furthermore it is known from the case of a one-component

system of one phase and of unit mass discussed in Part I that

the specific entropy is a function of the absolute

thermodynamic temperature and the pressure

S = oo(T, p) . (11-16)

Thus the relation of the total entropy to the absolute

thermodynamic temperature, the pressure, and the total mass is

expressed by the equation

S(Tf p,M) - S(T0, po, Mo)

r,
+ M-f-dp + SdM | . (11-17)

T o •

From equations (11-14), (11-15), (11-16)f and (11-17) it
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follows that

If) = M%, (H-18)
dTjp, M T

and

II • *• (II"20)
I 9 P

It is to be noted that the derivations of equations (11-10)

and (11-17) do not depend on definitions of heat and work in

the case of open systems.12 In equation (11-10) the

coefficient of dT is the partial derivative of the total

energy with respect to temperature at constant pressure and

constant mass, which is known from the case of a one-component

one-phase closed system to be M\cn - p^ L Likewise the

L y o TJ
coefficient of dp in equation (11-10) is the partial

derivative of the total energy with respect to pressure at

constant temperature and constant mass, which is known from

the case of a one-component one-phase closed system to be

lp - p77- | . The coefficient of dM in equation (11-10) is

12 It is possible to define heat and work in the case of a
one-component system of one phase and of variable mass and
this has been found to have usefulness in some engineering
problems. See Appendix A to Part II.
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the partial derivative of the total energy with respect to

mass, which is simply the specific energy, because the

addition of mass is at constant temperature and constant

pressure. Likewise in equation (11-17) the coefficient of dT

is the partial derivative of the total entropy with respect to

temperature at constant pressure and constant mass, which is

known from the case of a one-component one-phase closed system

cD
to be iV-rr. Also in equation (11-17) the coefficient of dp

is the partial derivative of the total entropy with respect to

pressure at constant temperature and constant mass, which is

known from the case of a one-component one-phase closed

\j>

lD
system to be M~ . The coefficient of dM in equation (11-17)

is the partial derivative of the total entropy with respect to

mass, which is simply the specific entropy, because the

addition of mass is at constant temperature and constant

pressure.

Necessary and sufficient conditions for (11-10) to be

true are

r *\ML ~ M)
. (n-22)
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and

3p/r,»

Similarly, necessary and sufficient conditions for (11-17) to

be true are

U) > (11-24)

p, M T, M

) " (LJL/ J • (n_25)

and

(11-26)

Carrying out the indicated differentiations in (11-21) and

13 Osgood, W.F., Advanced Calculus, The Macoillan Co.,
New York, 1925, p. 232, and Osgood, W.F., Lehrbuch der
Funktionentheorie, B.G. Teubner, Leipzig, 5 Aufl., 1928,
Bd. L, S. 142-150.
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(11-24) one o b t a i n s

and

3.. 9F M 3 c p 8y 3F , T T 9 7 ,

v-> v«/

Combining (11-27) and (11-28) one has

h = -r|£ . (ii-29)

From (11-27) and (11-29) it also follows that

^ = -r|S * (II-30)

From (11-22), (11-23), (11-25), and (11-26) only the already

known equations

dU ~
df = °P

OU j O F /TT on\
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|f = ^ ' (II-33)

and

I
are derived,

Thus in order to obtain complete thermodynamic

information for a one-component system of one phase and of

variable mass it is only necessary to determine experimentally

the specific volume as a function of temperature and pressure

and the heat capacity at constant pressure per unit of mass as

a function of temperature at one pressure. This is the same

conclusion as the one reached by Bridgmanli+ in the case of a

one-component system of one phase and of constant mass. No

additional measurements are required to obtain complete

thermodynamic information for a one-component system of one

phase and of variable mass beyond those required to obtain

complete thermodynamic information for a one-component system

of one phase and of constant mass.

Bricigroan, P.M., Phys. Rev., (2), 3, 274, 1914.
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Derivation of any desired relation between the

thermodynamic quantities T9 p, M, V, Uf S9 and their

first derivatives for a one-component system of one

phase and of variable mass by the use of

functional determinants (Jacobians)

Equations (II-l), (11-10) and (11-17) can, in general, be

solved for any three of the quantities, T9 p» M9 V9 U9 S, as

functions of the remaining three. The first partial

derivative of any one of the quantities, 7\ p, M9 V, U, S9

with respect to any second quantity when any third and fourth

quantities are held constant can be obtained in terms of the

three first derivatives, TTTT, TT~9 and cn, and certain of the
01 Op r

\J V> sj

quantities, T9 p9 M9 V, U9 S9 by application of the theorem

stating that, if xr = u)(x, y» z)9 x = f(u9 v, w),

y = <t>(u9 v9 w)9 z = 4/(u9 v9 w), then one has

(
[dx

y9

du dv ow
3y dy dy
du dv dw
dz dz dz
du dv dw

dx dx dx
du dv dw
dy dy dy
du dv dw
dz dz dz
du dv dw

Y*
d(u9 vf w)

_y»
d(u9 v9 w)

(11-35)

15 A proof of this theorem for the case of functions of three
independent variables is given in Appendix C to Part II.
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provided all the partial derivatives in the determinants are

continuous and provided the determinant in the denominator is

not equal to zero.

In Tables II-l to 11-15 the values of the Jacobians are

given for each set of three of the variables, T, p, M, V, U9 S,

as xr, y, z, or x9 y, z, and with 7\ p, M, as u, v, w. There

are sixty Jacobians in the Table, but one has

d(x, y, z) _ _d(z, y, x) = d'(y,z, x) ^ (11-36), (11-37)
3(u. v, w) ~ d(u, v, w) d(u, v, w)

because interchanging two rows of a determinant changes the

sign of the determinant. Hence it is only necessary to

calculate the values of twenty of the sixty Jacobians. The

calculations of these twenty Jacobians follow:

, r,
3(r,

ar 3p dM

dT <W II
dT dp dM
dp dp dp
dT dp dM

= 1 (11-38)

, Tf p)
, M)

dT

dT
dT

la
dT

dV
dp

l£
dp

dM

dT
dM

la
dM

T,p
V ; (11-39)
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_3(E7, T, p)
3(r, p, M)

dU
dT
dT
dT

3£
dT

du
dp
dT
dp

3p

dU
dM

• dT

dM

dM

ML U ; (11-40)

3(s, r, P)
3(T, p, AT)

35 3S 3S
3T 3p 3M
3T _3T _3T
3T 3p 3î
3p 3p 3p
3r 3p 3Af

/N ., ) ~ O » (11-41)

,̂ T, Af)
3(T,

3T
dV_
dp

1Z
3M

M; 9T 9T
dT dp dM
dM_ dM^ dM_
dT dp dM

(11-42)

30/.
3(7\

T,
P»

W)
M) "

dU
dT

dT
dT

dM
dT

dU
dp

dT
dp

dM
dp

dU
dM

dT
dM

dM
dM

$).+<%\] ••
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3(S,
d(T,

T,
P>M) '

as
dT
dT
dT

dM
dT

as
dp

dT
dp

dM
dp

as
dM
dT
dM
dM
dM

41 (11-44)

d(U, T,
d(T, p,

V)
M) ~

du
dT
dT
dT

dV
dT

dU
dp
dT
dp

dV
dp

du
dM
dT
dM
dv
dM (11-45)

a(s,
d{T,

r. v)
p,M) -

as
ar
ar
ar
dV
dT

as
dP

ar
dp

dV
dp

as
dM
ar
dM

dv
dM

&) + S(^) I ; (II-46)

US,
3(r,

T.
p,
U)
M) •

as
ar
ar
ar
du
dT

asdP
dT
dP
du
dp

asdM
ar
dM

dU
dM (11-47)
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d(V, p, M)
3(T, p, M)

dV
dT

l£
3r
dM
dT

dV
dp
3£
3D

dM
3 D

3^
dM
3£
dM

dM
dM

dT) (11-48)

diu,
d(T,

P'
p>
M)
M) ~

dU
dT

dp_
dT
dM
dT

dU
dp

3£
dP
dM
dp

dU
dM

i£
dM
dM
dM

M\cp - p ^ (11-49)

3(r,
p»
p»Af) "

3S
3T

3^
3T

3Af
3T

3S
3p

3p

dM
3D

3S
3M

3£
dM

dM
dM

(11-50)

3(y,
3(r,

p»
p«>f) =

3U
3T

i£
3T
3K

du
dp

3p

dV
9p

3t7
3M

3£
3Af

3^
dM (11-51)
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d(S, p , V)
d(T, p.M)

35
dT

95 3S
dp dM

dp dp dp
dT dp dM

dT dp dM

M\%V- (11-52)

3(5, p, U)
3(7\ p, M)

35 &S .35
3T1 3p 3 ^

dp dp dp
dT dp dM

3£ d£ dll
dT dp dM (H-53)

d(U9 M, V)
3(2% P» M)

ML M M
dT dp dM

M M M
dT dp dM

M. $1 ML
dT dp dM

dfl

(11-54)

3(5 , M, V)
dlT, p9 M)

95 35 3S
dT dp dM

M M. M.
dT dp dM

di di ar
dT dp dM (11-55)
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3(S,
3(r,

M,
P>

U)
M) ~

dS

ar
dM
dT

3(7
dT

ds
dp

dM
dp

dU
dp

dS
dM

dM
dM

dU
dM

\Z)T\
(11-56)

3(S, V, U)
3(7\ p, M)

95 3S
dp

dp

dU

35

(H-57)
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Table II-l
Jacobians of extensive functions for a
one-component system of one phase

'. y,z)
d(T,p>M)

30:, y, z)
3(7% p,tt)

T,p

V
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Table II-2
Jacobians of extensive functions for a
one-component system of one phase

\ y, z
x\
x \.

P

V

U

s

d(x', y, z) d(x, y, z)
3(T, p,M) f 3(T, p, M)

T, M

-1

«[r©P * '(111
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Table II-3
Jacobians of extensive functions for a
one-component system of one phase

', y, z) 3(x, y,z)
3(T,p,/•/) * 3CT, p,

7\



Table II-4
Jacobians of extensive functions for a

one-component system of one phase

\y» z

x'\
X \

p

M

V

s

dW, v, z) 3(x, y, z)
3(T, p,M) * d(T,p,M)

T, U

-u
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Table II-5
Jacobians of extensive functions for a
one-component system of one phase

x'\
X \

p

M

V

U

Hx'f y,z) d(xfy,z)
d(T,p,M) ' d(T,p,M)

T, S

-s

-»(i)p
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Table II-6
Jacobians of extensive functions for a
one-component system of one phase

X \

T

V

U

s

a Of', y, z) 3(x, v, z)
d(T,p,M) ' d(T,p9M)

p,M

1
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Table II-7
Jacobians of extensive functions for a

one-component system of one phase

\Yt Z

x'\
X \

T

M

u

s

d(x', Yf z) 3(x, y, z)
d(T,p,M) ' 3(T, p,M)

P;v

V

-M[CU * p?)(ff)p - ? / ]

-[?»- S1I)J
I
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Table II-8
Jacobians of extensive functions for a
one-component system of one phase

V i Z

x \.

T

M

V

s

3(xr, y, z) 3(x, y, z)
3(T, p,Af) ' 3(T, p,A/)

p, (/
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Table II-9
Jacobians of extensive functions for a
one-component system of one phase

\y» z

x'\
X \

T

H

y

U

d(x', v, z) 3(x, v, z)
KT,p,M) f 3(T, p,Af)

p,S

*»/

S

^[>* - =(f )J



65

Table 11-10
Jacobians of extensive functions for a
one-component system of one phase

\y» z
x'\
X \

T

P

U

S

d(x\ y,z) 3U, y, z)
d(T,p,M) ' Z(Tfp,M)
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Table 11-11
Jacobians of extensive functions for a
one-component system of one phase

\y» z

* ' \
x X

T

P

V

s

3(x'# Yf z) 3(x, y. 2)
d(T,p*M) * d(Tf p, M)

A/, (/

4#)/'(l)J
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Table 11-12
Jacobians of extensive functions for a
one-component system of one phase

x'\
X \

T

P

V

U

d(x', v, z) a(x, y, z)
d{T,p,M) ' 3(T, p,M)

M, S

JdV\
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Table 11-13
Jacobians of extensive functions for a

one-component system of one phase

\y» z

x'\
X \

T

P

X

]

r

3(x', y,z) 3(x, y,z)
3(T, p, Af.) ' 3(T, p, Af)

7, U
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Table 11-14
Jacobians of extensive functions for a
one-component system of one phase

\v f z
x \

T

P

M

U

3(x't yfZ) 3(x, yt z)

a(r, p. M) ' a(T, P,A/)

f(i)/2(li]

-[(H)/*(li]
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Table 11-15
Jacobians of extensive functions for a
one-component system of one phase

\y# z

x \

T

P

M

U

d(x', yf z) 3(x, y, z)
3 r, p, M 3 r, p, /r

u, s
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In order to obtain the first partial derivative of any-

one of the six quantities, T9 p, M9 V, U* S9 with respect to

any second quantity of the six when any third and fourth

quantities of the six are held constant, one has only to

divide the value of the Jacobian in which the first letter in

the first line is the quantity being differentiated and in

which the second and third letters in the first line are the

quantities held constant by the value of the Jacobian in which

the first letter of the first line is the quantity with

respect to which the differentiation is taking place and in

which the second and third letters in the first line are the

quantities held constant.

To obtain the relation among any four derivatives having

expressed them in terms of the same three derivatives,

(-77=) , \T~) 9 and cn, one can then eliminate the three
\ oT I \ dp JT P

derivatives from the four equations, leaving a single equation

connecting the four derivatives. In addition to the relations

among four derivatives there are also degenerate cases in

which there are relations among fewer than four derivatives.

In case a relation is needed that involves one or more of

the thermodynamic potential functions, H = U f pV> A E U - TS9

G = U + pV - TS9 partial derivatives involving one or more of

these functions can also be calculated as the quotients of two

Jacobians, which can themselves be calculated by the same

method used to calculate the Jacobians in Tables II-l to II-15«

It is interesting to note that in the transformations of

the thermodynamic quantities T9 p9 M9 V9 U9 S from one

coordinate space based on any three of these six quantities to

another coordinate space likewise based on three of these six

quantities, the enthalpy H, the Helmholtz function At and the

Gibbs function G appear automatically in the expressions for

many of the Jacobians involved.



Appendix A to Part II

Discussion of the definitions of heat and work in the case

of open systems used by various authors

According to Larmor,1 Morey,2 Goranson,3 Moelwyn-Hughes, **

Callen,5 and Wheeler6 in the case of an open system to which

mass is added or from which mass is taken away, the

differential of the heat received dQ is equal to the absolute

thermodynamic temperature T times the differential of the

entropy of the system dS. Neither Larmor nor Morey nor

Goranson nor Moelwyn-Hughes nor Callen gave an operational

analysis of any open system in support of their conclusion

that dQ = TdS in the case of open systems. Wheeler attempted

to explain the Gibbs differential equation for an open system

1 Larmor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Morey, G.W., Jour. Franklin I n s t . , 194, 433-434, 1922.

3 Goranson, R.W., Thermodynamic Relations in Multi-Component
Systems, Carnegie Inst i tut ion of Washington Publication
No. 408, 1930, pp. 39, 41, 44, 52.

% Moelwyn-Hughes, E.A., Physical Chemistry, Pergamon Press,
London, New York, Paris, 1957, p. 287.

5 Callen, H.B., Thermodynamics $ John Wiley and Sons, Inc.,
New York and London, 1960, p« 192.

6 Wheeler, L.P., Josiah Willard Gihbs-The History of a Great
Mind, Rev. Ed.f Yale University Press, Mew Haven, 1952, p. 76.

72
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of n components

dU = TdS - pdV + uldml + \x2dm2 ... + u n ^ n »
7

where \ii, Vi, ••• Un» denote the chemical potentials of

components 1, 2, ... n, and m\9 mi* ••• ®n denote the masses

of components 1, 2, ... n in the open system, in the following

way. Wheeler supposed that an:

. . . imaginary box is constructed with walls which
in addition to being elastic and thermally
conducting are also porous, so that the solution can
pass freely through the pores in either direction -
from inside out or from outside in. Then if the
condition of the fluid is slightly altered as
before, the change in energy in the box will depend
not only on the heat which may enter or leave and
the volume change due to the buckling of the walls
but also on the masses of the components of the
fluid going through the pores. Thus this energy
change cannot be computed by the prime equation8 as
it stands. It must be altered by the addition of as
many energy terms as there are components of the
fluid passing through the walls. If there are n
such components, the generalized prime equation will
express the change in energy in terms of n + 2
independent variables. Each of the added

7 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
3, 116, 1874-78, or Collected Works, Longmans, Green and Co.,
New York, 1928, Vol. 1, p. 63.

8 The equation here referred to as the prime equation is the

Clausius differential equation for closed systems:

dU = TdS - pdV.
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energy terms, in analogy to those in the prime
equation, Gibbs expresses as the product of two
factors, one an intensity and the other an extension
factor. Thus just as the heat term is expressed as
the product of temperature and the change in
entropy, and the work term as the product of
pressure and the change in volume, so an energy term
due to the added mass of any component was expressed
as the product of what Gibbs termed a "potential"
and the change in mass.

However, according to Gillespie and Coe9 in the case of an

open system

dS = ^ + lS±dmi (II-A-1)
1 2

when there is simultaneous reversible transfer of both heat

and mass. In this equation, dS denotes the increase in the

entropy of the open system, dQ the amount of heat received by

the open system, T the absolute thermodynamic temperature of

the open system, Sj the entropy of unit mass of kind i added

to the open system, and dm± the mass of kind i added to the

open system.

The equation of Gillespie and Coe applied to the case of

an open system in which there is simultaneous reversible

transfer of both heat and mass appears to be correct. Let us

consider the following simplest imaginable case of an open

system. In a thermostat filled with water, suppose that one

has a cylinder closed at both ends by pistons and containing a

9 Gillespie, L.J., and J.E. Coe, Jr., Jour. Chem. Phys., 1,
105, 1933.
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Figure II-A-1
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fluid of constant composition (Figure II-A-1). Suppose

further that the pistons are connected by a rigid bar so that

the volume between them remains constant. In Figure II-A-1,

let the two arrows indicate the position of a fixed circular

line around the cylinder. The fluid between the two pistons

constitutes a closed system and at this stage the temperature,

pressure, and volume of the total mass of fluid are kept

constant. Let us next suppose that the two pistons are moved

slowly to the left in unison from the positions indicated in

Figure II-A-1 by solid lines to the positions indicated by

dotted lines. The mass of fluid to the left of the arrows

then has received an addition and that to the right of the

arrows has undergone a diminution. The mass of fluid to the

left of the arrows has constituted an open system which we

designate as system I. Likewise, the mass of fluid to the

right of the arrows has constituted a second open system which

we designate as system II. Systems I and II together make up

a closed system, the entropy of which has remained constant.

The entropy of system I, S^, has increased by an amount equal

to the specific entropy of the fluid times the mass of the

fluid that has been moved past the arrows from right to left

and the entropy of system II, S-^, has decreased by the same

amount. Thus, we had:

dS1 « SdAf1, (II-A-2)

dS11 « SdM11 = -SdM1; (II-A-3)(II-A-4)

and

where S denotes the specific entropy of the fluid and M^ and
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A/II denote the masses of systems I and II. At the same time,

no heat has been received by the fluid from the water bath

since the temperature of the fluid has remained the same as

that of the water bath and the pressure and total volume of

the fluid have remained constant. The question then remains to

be answered whether or not it can be said that system I has

received any heat and similarly whether or not system II has

given up any heat. To say that at constant temperature,

constant pressure, and constant specific volume x grams of

fluid have transported y calories of heat from system II to

system I is the same as saying that these x grams of fluid at

the constant temperature t} and constant pressure pf contained

y calories of heat which they carried with them. It is well

known in calorimetry, thermodynamics, and statistical

mechanics that it is not possible to say that a body at a

certain temperature and pressure contains a certain amount of

heat* Doolittle and Zerban10 have stated that "most modern

authors of texts on thermodynamics and on physics have agreed

on the following conception of heat: Heat is energy

transferred from one substance to another substance because of

a temperature difference between the two substances.ff In the

case we have been discussing, system I, system II, and the

water bath of the thermostat have all remained at the same

temperature. Consequently, it cannot be said that there has

been any heat flow from the water bath to system I or system

II or from system II to system I. At constant temperature,

constant pressure, and constant specific volume, we thus had:

10 Doolittle, J.S., and A.H. Zerban, Engineering
Thermodynamics, International Textbook Co., Scranton, 1948,
p. 8.
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dQ1

and

0,

0,

dQ1 + dQ11 - 0,

(II-A-6)

(II-A-7)

(II-A-8)

where Q* and Q^ denote the heat quantities received by

systems I and II. Thus the heat received by a one-component

system of one phase and of variable mass can be represented by

the line integral

r,
Q - J[McpdT + Mlpdp + Octff} -11 (II-A-9)

where cp and !„ are functions of T and p and the coefficient

of dM is zero.

We turn next to the question of the definition of work in

the case of a one-component system of one phase and of

variable mass. In this case it remains to be determined

whether or not dM is equal to pdV if one wishes to introduce a

definition of work in the case of an open system when mass is

being transferred to or from the system. Several authors,

iA The question of the definition of the heat received by a
one-conponent system of one phase and of variable mass has been
discussed by this author more comprehensively on pages 17 to 33
of Carnegie Institution of Washington Publication No. 408A
entitled Tbermodynamic Relations in Open Systems published in
1977.
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Morey,12 Goranson,13 Moelwyn-Hughes,14 and Wheeler,15 have

stated that in the GIbbs differential equation dW = pdV.

However, none of these authors drew a diagram of an open

system and none of them apparently realized that this

statement does not carry over from the Clausius differential

equation for a closed system without the necessity of an

important new physical decision.

In regard to the question of the definition of work in

the case of an open system, we may note that G.J. Van Wylen,16

formerly Chairman of the Department of Mechanical Engineering

at the University of Michigan, states in his book entitled

Thermodynamics that "A final point should be made regarding

the work done by an open system: Matter crosses the boundary

of the system, and in so doing, a certain amount of energy

crosses the boundary of the system. Our definition of work

does not include this energy.!f

The question of the definition of work in the case of an

open system has been discussed by the present author v/ith

Professor R.L. Wild of the Physics Department at the

University of California at Riverside. In this discussion we

supposed that in a thermostat filled with water there was a

cylinder closed at both ends by pistons and containing a fluid

of constant composition (Figure II-A-2). In Figure II-A-2

12 Morey, G.V., op. cit., p. 434.

xi Goranson, R.W., op. cit.t pp. 39, 44.

:if Moelvyn-Hushes, E.A., op. cit., p.. 287.

15 Wheeler, L.P., op. cit.f p. 76.

Van u'ylen, G.J., Thermodynamics, John Wiley and Sons,
Inc., !k*w York, lc)59, p. 49.
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the two arrows indicated the position of a fixed circular line

around the cylinder. The fluid between the two pistons

constituted a closed system and at this stage the temperature,

pressure, and volume of- the total mass of fluid were kept

constant. We next supposed that the two pistons were moved

slowly to the left in unison from the positions indicated in

Figure II-A-2 by solid lines to the positions indicated by

dotted lines. The mass of fluid to the left of the arrows

then had received an addition and that to the right of the

arrows had undergone a diminution. The mass of fluid to the

left of the arrows constituted an open system which we

designated as system I. Likewise, the mass of fluid to the

right of the arrows constituted a second open system which we

designated as system II. Systems I and II together made up a

closed system, the energy of which remained constant. The

energy of system I, [/I, had increased by an amount equal to

the specific energy of the fluid times the mass of the fluid

that had been moved past the arrows from right to left, and

the energy of system II, lfi*-9 had decreased by the same

amount. Thus we had

dU1 = UdM1, (II-A-10)

dU11 = UdM11 = -WAfI, (II-A-11)(II-A-12)

and

dU1 + dU11 « 0, (II-A-13)

W T

where U denotes the specific energy of the fluid, and Ml and

#11 denote the masses of open systems I and II. In the case

of the open one-component system, system I, work was certainly

done by the fluid on the piston at the left hand end equal to
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the pressure times the increase in volume

dW1 = pVdM1, (II-A-14)

where p denotes the pressure of the fluid, and V denotes the

specific volume of the fluid. Since the change in energy of

system I was UdM^ and work was done by system I equal to

pVdtfi, the amount of energy that came across the fixed

boundary with the incoming mass was UdM~^ + pVdM^- which was

equal to Hdlfi. According to Van Wylen17 none of the energy

represented by the term HdM^- is to be considered as work and

this was confirmed by Professor Wild. Thus we had

dU1 = HdM1 - dF^1, 18 (II-A-15)

The major new physical decision that has to be made if the

definition of work is to be extended from the case of a closed

system to the case of an open system is whether or not it can

be said that work is done at a fixed boundary surface across

which mass is transported. Van Wylen and Professor Wild have

concluded that it cannot be said that work is done at a fixed

boundary surface across which mass is transported.

17 fan Wylen, op. cit., pp. 49, 75-77, 80.

18 Hall and Ibele in their treatise entitled Engineering
Thermodynamics (Prentice-Kail, Inc., Englewood Cliffs, N,J.,
1960) stated on page 108 that "A general equation for energy
change in an open system can be written

dE « dQ - dW + l(e + pv)idmi. (7.25)"

This equation reduces to equation (II-A-15) in the case of a
transfer of mass of constant composition at constant
temperature and constant pressure, in which case dQ « 0.
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Sage,19 on the other hand, stated that in the case of an

system of constant composition if the material added to

;ystem is at the same pressure as that of the system the

litesimal amount of work w is given by the equation

w + j = pdV - pVdm. (3.18)

lis equation j represents frictional work (which would

:e to zero in a reversible change). Sage20 stated further-

an open system is one for which material is transported

JS the boundaries. Sage's equation (3.18) is thus

ided to be applicable to open system I of Figure II-A-2,

lis case V is a function of T, p, and m and

dV = -KjidT + 7r-dp + Tr-dm (II-A-16)

furthermore

|~ = V . (II-A-17)

according to Sage

Si/ 3V w ^
w + j = p-zjzdT + p-Tr-dp + pVdm - pVdm

61 dp

(XI-A-18)

:he transfer of material of constant composition is at

Sage, B.H., Thermodynamics of Multicomponent Systems,
ihold Publishing Corp., New York, 1965, p. 47.

Sage, B.H., op. cit., p. 46.



84 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

constant temperature and constant pressure according to Sage

w + j = 0. Thus in the case of open system I discussed on

page 82 according to Sage w + j = 0, Since open system I for

certain performed work pVdM^ against the enclosing piston

Sagefs conclusion requires that the pVdM^ part of the HdM^

term be considered as work offsetting the work done by open

system I against the enclosing piston. In other words, Sage21

considers part of the energy associated with the mass

transferred across the fixed boundary to be work, contrary to

the conclusion of Van Wylen, Goranson, and Professor Wild.

The decision between these conflicting views is one to be made

by physicists and engineers and is, I believe, of some

interest, but so far as I am aware, all of the thermodynamic

relations and measurements needed in physical chemistry can be

obtained without involving any such decision or any definition

of work in the case of an open system.22

21 Sage (op. cit., p. 47) stated that "This definition of
work for a constant-composition system of variable weight
differs markedly from that used by Gibbs and Goranson."
According to Sage, work is defined by these authors for cases
in which j is zero as follows:

w = pdV = mp\ -TT=

This statement is correct as far as Goranson is concerned, but
in regard to Gibbs it is not correct, since Gibbs nowhere
mentioned work or heat in connection with an open system in
his memoir entitled f10n the Equilibrium of Heterogeneous
Substances/'
22 The definition of work in the case of open systems has
been of interest chiefly to engineers concerned with flow
processes (see, for example, J«H. Keenan, Thermodynamics, John
Wiley and Sons, Inc., Hew York, 1948, p. 35).
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In accordance with the conclusion of Van Wylen, Goranson,

and Professor Wild, the work W done by a one-component system

of one phase and of variable mass can thus be represented by

the line integral

T, p , M

W = M p | | d T + p | ^ d p + pVdMi. (II-A-19)

To» Po» ̂ o

This equation for work in the case of an open one-component

system of one phase or the corresponding differential form

dW = p|~dT+ p | ^dp+ pVdM , (II-A-20)

has been found to be of use in some engineering problems.



Appendix B to Part II

Transformation of the work and heat line integrals from one

coordinate space to other coordinate spaces in the case of a

one-component system of one phase and of variable mass

In Part II it was shown that it is not necessary to

define either work or heat in the case of an open system of

one component and of one phase when mass is being transferred

to or from the system in order to obtain the energy and the

entropy as functions of the absolute thermodynamic

temperature, the pressure, and the total mass from

experimental measurements. Thus the derivation of the

Jacobians listed in Tables II-l to 11-15 did not depend upon

definitions of work or heat in the case of an open system of

one component and of one phase when mass is being transferred

to or from the system.

For some purposes, however, it is useful to have

definitions of work and heat in the case of an open system of

one component and of one phase when mass is being transferred

to or from the system as was shown in Appendix A to Part II.

The derivatives of the work done by a system of one component

and one phase and of variable mass are total derivatives with

respect to the variables chosen as the parameters defining the

paths of the integral. In order to obtain the total

derivative of the work done along a straight line parallel to

one of the coordinate axes in any coordinate space one obtains

from Tables II-l to 11-15 the partial derivative of the volume

with respect to the quantity plotted along that axis when the

quantitites plotted along the other axes are held .constant and

one multiplies this partial derivative by the pressure.

86



ONE-COMPONENT SYSTEMS OF VARIABLE MASS 87

The derivatives of the heat received by a system of one

component and one phase and of variable mass are also total

derivatives with respect to the variables chosen as the

parameters defining the paths of the integral. However, the

derivatives of the heat received by a one-component system of

one phase and of variable mass along straight lines parallel

to the coordinate axes in various coordinate spaces cannot be

obtained by multiplication of the' partial derivatives of the

entropy by the absolute thermodynamic temperature when

transfer of masses to or from the system are involved. In

such cases the total derivatives of the heat received along

lines parallel to the coordinate axes in any desired

coordinate space can be derived in terns of the total

derivatives of the heat received along lines parallel to the

coordinate axes in (7\ p, A/)-space by transformation of the

heat line integrals as explained in the second half of

Appendix C to Part II. Following is an example of such a

transformation. In the case of a one-component system of one

phase and of variable mass the heat line integral extended

along a path in (7\ M* F)-space is

T,M9 V

r, M, v
(II-B-1)

dN
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In order to transform this integral to (T, p, Af)-space we

use of equations (II-C-63), (II-C-64), and (II-C-65) in

Appendix C to Part II. For the purpose of substitution of

values in equations (II-C-63), (II-C-64) and (II-C-65) the

equivalence of symbols is given in the following Table.

Table II-B-1

Equivalence of symbols

r o
x T

y M

z V
rdl\ fdQ)

: y, z ^dThu v
/dT\ /dQ'

4L\ (dQ\
dz J \dvL s/

u T

v p

w M

dJTJ MCP
V, W

dvl MlP
u» w

[dw)
u, v
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Substituting the values from Table II-B-1 in equation

(II-C-63) we have

dQ\
l'M, V

McD ML

dM
dT

dV
dT

dT
dT

dM
dT

dV
dT

dM
3p

dV
dp

dT
dp

dM
dp

dV
dp

dM
3J?
dV
dM

dT
dM

dM
dll

dv
dM

(II-B-2)

and multiplying out the quantities in the determinants we

obtain

dv M^ dvi. r dv

Jw fdv\ JdvVl ./dv\ (II-3-3)
>'T'
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Similarly, substituting the values from Table II-3-1 in

equation (II-C-64) we have

dQ

Mcp
dT
dT

dV
dT

dM
dT

dT
dT

dV
dT

Nip
dT
dp

dv
dp

dM
dp

dT
dp

dV
dp

0
dT
dM

dV
dM

dM
dM

dT
dM

dV
dM

(II-B-4)

and multiplying out the quantities in the determinants we

obtain

4.P- r 11

(II-B-5)
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Finally, substituting the values from Table II-B-1 in equation

(II-C-65) we have

dQ\

lT, M

Mcp
dT
dT
dM
dT

dV
dT

dT
dT

dM
dT

Mlp
dT
dp

dM
dp

dV
dp

dT
dp

dM
dp

0

dr_
dM
dM
dM

dV
dM

dT
dM

dM
dM

(II-B-6)

and multiplying out the quantities in the determinants we

obtain

\dVj
T, M

" \Zp/T '
(II-B-7)
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The corresponding values of the partial derivatives of

the entropy obtained from Tables 11-10, II-3, and II-2 are

(11 v n>

[-B-9)
I 1 /"f I t I S~l / 1 / I I /~I II i

and

1 > ivj P J

Thus it follows from (XI-B-3), (II-B-7), (II-B-8), and

(II-B-10) that

and

sy V 3 F / {-6-

but, finally, it also follows from (II-B-5) and (II-B-9) that

f£fi] j T ( — I r TT—^—1 ̂ ^



Appendix C to Part II

Proofs of the relations:

t y*
dx'
dx

y, z

3(u»- v9 w)

d(x, y9 z)
3(u, v, w)

and

)
dx 1y, z

du dv dw
dy dy dy
du dv aw
dz dz dz
du dv dw

dx dx dx
du dv dw
dy dy dy
du dv dw
dz dz dz
du dv dv/

It is assumed that x' is a function of x, y, and z

x' = u)(x, y, z). (II-C-1)

and that x» y, and z are functions of u» v9 and w

(II-C-2)

x = f(u, v, w), y = <f>(u9 v, w)t z = ^(u» v, v) . (II-C-3)

(II-C-4)

93
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It is assumed further that these functions are continuous

together with their first partial derivatives. By application

of the theorem for change of variables in partial

differentiation one then obtains

â ax wax l^ii
3x du + dy du + dz du '

ay ay ax ay ay ay dz
dv ~ dx dv dy dv dz dv

and

dw dx dw dy dw dz dw

From equations (II-C-5), (II-C-6) and (II-C-7) it follows that

dz du dx du dy du du

JzJv a ~"dx~dv~Jydv+~dvf (II-C-9)

and

dz 3w dx dw dy dw + dw ' (IX-L-IO)

Dividing both sides of equation (1I-C-3) by j£ f and both

sides of equation (1I-C-9) by 3£, likewise both sides of
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equation (II-C-1O) by Jl£ we have
dw

gy
dz

dx1

dz

dx1

9u

ay
dv

_ ay ax
3x du

dz

au

_ ay ax
3x dv

dz
dv

_ ay^x
dy du

dy dv

(II-C-11)

(II-C-12)

and

ay __ ay ax ̂ _ay a^
gy 3w dx dw dy dw
_ m _ • (H-C-13)

It follov/s that the right side of equation (II-C-11) is equal

to the right side of equation (II-C-12)

du '

ay
dv

ay
dx

ay
dx

dx
9u

92

du

dx
dv

dx1

dy

9y

ay

9u

dv

(II-C-14)

9v

Multiplying both sides of equation (II-C-14) by (•5~~T~
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have

3u " 3y 3u/ " du\dv " dx dv dy dv

Likewise it follows that the right side of equation (II-C-12)

is equal to the right side of equation (II-C-13)

_ ^1 _ ^ lz
dv 3x dv dy 3v

dv

(II-C-16)
3x[ _ 3/ 3x ^ 3^ 3^
dw dx dw dy dw

dz_
dv/

Multiplying both sides of equation (II-C-16) by f-^-^-j we

have

d^d^\ 3z/3^ 3xJ 3x j ^
dy dv ) = dv\dw ~ dx dw ~ dy

Consequently ve have from equations (II-C-15) and (II-C-17)

3v 3u " dv dx du ' dv dy du " du dv " 3u dx dv 3u dy dv '
(II-C-18)

and

v 3y 3v *
(II-C-19)
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From equation (II-C-18) it follows that

3V 3z d£ _ <M dz_ & _ 1* 1*! _ M i*! l£9^1x 3z 3V 3x
3y 3u 3v 3y 3v 3u ~ 3u 3v 3v 3u 3v 3x 3u 3u 3x dv

(II-C-20)

and from equation (II-C-19) it follows that

3y 3v dw dy dw 3v dv dw dw dv dw dx dv dv dx dw
(II-C-21)

7F" T~- - — —2- j

we have

3z 3y _ ĵ z _3y _3ẑ  _3V dx_ _ dz_ _3xJ _3x
3u 3v 3v 3u dv dx du du dx dv Q J C-22)

3u 3v 3v 3u

and dividing both sides of equation (II-C-21) by

dz dy dz dy \ ,_— —JL . _- -_JL we have
av aw dw av J

gy 3v dw dw dv dw dx dv dv dx dw fTT r OQ\
1.1~. — • \LL—\J—AD)

®Y dz dy dz dy
dv dw dw dv

Consequently the right side of equation (II-C-22) is equal
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to the right side of equation (II-C-23)

dz dx* dz dx* dz dx* dx dz dx* dx
du dv dv du dv dx du du dx dv

dz dy dz dy
du dv dv du

dz dx! dz dx! dz dx1 dx dz dxt dx
dv dw dw dv dw dx dv dv dx dw

dz dy dz dy
dv dw dw dv

(II-C-24)

Multiplying both sides of equation (II-C-24) by

/ 92 dy dz dy\fdz dy dz dy\ ,
i v IT- - 7T- -^-Hl-^— -%*- - yr~ ~zr~ i w^ have\ ov aw dw avj\du av ov du /

dz^dz 9 £ l z V ^ . l ^ - l ^ ^ 3^_9zj)x 3^ Jz dx_
dv dw ~ dw dv)\du dv dv du + dx dv du " dx du dv

3u dv " 3v 3u/V3v 3w " 3w 3v + 8x 3^ 3v 3x dv dw

(II-C-25)

Consequently it follows that

(II-C-26)

3*\3w 3v 3v 3*r/\3u 3v 3^ 3u

0 .
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dxfEquation (II-C-26) is then solved for TT— and we thus obtain

dv J\du dv dv 3u

3v 3v 3u/\3v dw dw 3v\
(II-C-27)

z. (Qz_ Qx_ _ _3z_ d2£\/dz_ dv_ _ dz_ dy\
[\dv du du 3v/\3v^ dw dw dv)

3z 3x _ _3:z_ dx\ /dz_ _3^ _ _3z_ _3j/
3^ 3v 3v 3v/ \du dv dv du

Multiplying out the expressions in parentheses in equation

(II-C-27) we have

^ _ |^£ 3V dz d_y _ 3z dx! dz dy _ 3z 3^ 3z 3y + 3z 3^ 3z 3y
3x "" I 3v 3w 3u 3v 3u 3v 3v du dw dv du dv dw dv dv du

dz 3V 3z 3y 3z 3^ 3z 3y 3z 3.̂  3z dy dz dx* dz 3y
3u 3v 3v 3û  3u dv dw dv dv du dv dw dv 3u dw dv

- î L ̂££ -̂ £ JLz. ̂ £. ̂££ ̂£. ̂!Z ^5. ̂£. ̂. ̂ K ̂ £ ̂£1 j£. ̂ Z
[_3v 3u dv dw dv du dw dv du dv dv dw du dv dw dv

dz dx dz dy dz dx dz dy dz dx dz dy dz dx dz dy
dw dv du dv dw dv dv du dv dw du dv dv dw dv duJ '

(II-C-28)

Now the third term in the bracket constituting the numerator

of the right side of equation (II-C-28) cancels the sixth term

in this bracket • Likewise the fourth term in the bracket
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constituting the denominator of the right side of equation

(II-C-28) cancels the fifth term in this bracket. The

remaining terms in the numerator and denominator of the right

side of equation (II-C-28) have a common factor 7p which we

next divide out. The terms that are then left are equivalent

to the quotient of two Jacobian determinants. We thus have

dx)
y, z

dx1
du
iz
du
dz
du

dx
3u
iz
du
dz
du

dx1
dv
iz
dv
dz
dv

dx
dv

dv
dz
dv

dx1
dw
Iz
dw
dz
3w

3x
dw
h.
dv/
dz
dw

(II-C-29)

provided the Jacobian determinant in the denominator is not

equal to zero. Thus we obtain the result

.3*/..

3(x%
3(u,

3(x,

y»

y» z)
3(u, v, w)

(II-C-30)

Similarly we have

KdyL
w)

3(ut v, v)

(II-C-31)
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and

, y)

x> y 3 Q , x, 7)
3(u» v9 w)

Equations (II-C-30), (II-C-31), and (II-C-32) are not

applicable, however, in the case of a one-component system of

one phase and of variable mass when it is desired to transform

the heat line integral from one coordinate space, such as the

temperature-volume-mass coordinate space, to another

coordinate space, such as the temperature-pressure-mass

coordinate space, because the heat line integral depends upon

the path and is not a function of the coordinates. In this

case, to which the second equation of the heading of this

Appendix applies, the transformation can be accomplished in

the following way. Let us suppose that a line integral T

x9 y, z

T = /{P(x, y, z)dx + Q(x, y, z)dy + /?(*, y, z)dz] (II-C-33)

XQ, y09 z0

v - u- u 3P ,30 3P / 3/? jdepends upon the path, in which case, TT~ f -TT-» -g— f -g—•, and

~%~ ̂  "sT* This integral has no meaning unless further

relations are given defining a particular path in

(x9 y, z)-space. For example, the curve can be represented in

parametric form by the equations, x = f(o)* y = A{a), and
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z = 5(o). We are next given that x» y, and z are functions

of ii, v9 and w9

(II-C-34)
x = <£(u, v, w)f y = x(ut v, w), z = ̂ (u, v, w). (II-C-35)

(II-C-36)

It is then desired to transform the integral T from

(x, y* z)-space to (uf K, uO-space. In this case if equations

(II-C-34), (II-C-35), and (II-C-36) can be solved so that we

have

(II-C-37)
a = *(x, y, z), v = X(x, y, z ) , u^ = *(x, y, z ) , (II-C-38)

(II-C-39)

then the curve in (x, y, z)-space can be transformed into the

curve in (u, v, w)-space defined by the equations u = F(s),

v = A(5), and v = 5(s). We next replace dx in the integral T

by ^ du +^ dv + ^ dw 9 also dy by |* du + |^ dv + |^ dv
ou dv dv/ f ^ J du du 8^

and dz by -~— du + -r— dv + TT~ d^« We then have
on dv dw

Ut V, W

f ] (II-C-40)

the curve in (uf v, v)-space mow being determined by the
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equations u = F(s)9 v=A(s)» w = H(s). Consequently we

thus obtain

u, v9 w

T =J<P(<t>(u9 v, w), x(u, v, w), \p(u, v, w))\"^du + ̂ dv + " 3 ^ ^

u0, VQ9 W0

Q(<t>(u, v9 w), x(u, v, w), \J/{u9 v9 w)

+ R(<t>(u9 v9 w)9 x(u9 v, w)9 ip(u9 v9 w)) -g— du + -^r-dv + -r—dw ^

u9 v9 w

f\ Q(u9 v9 w)du + II(u, v9 w)dv + tt(u9 v9 w)dv/\,

where 0 is set equal to

dx
P(<t>(u, v9 w), x(u9 v, w)» ^(u, v, v))-^j

u, v» w)9 x(ut v9 w), ^(u» v, ̂ ))g—»

II is set equal to

, v9 w)9 x(u9 vt w)9 f(u, v, v)

(o, v, v), x(ut v9 w)9 ̂ (u, y, w ) ) ^ "
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and Q is set equal to

dxu» v, w)9 x(u» v9 w), \p(u, v, W ) ) T —

In order to evaluate?, Q, and /? as functions of u, v, and w

we next solve the equations

0 - "&

and

for P, 0, and i?. Thus we have

^ = n " p% - Q% '

and
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Dividing both sides of equation (II-C-45) by TT-, both sides

of equation (II-C-46) by y, and both sides of equation

(H-C-47) by |^, we obtain

• - 6 / t - plf/If - «£/£ •

and

Consequently we have

(II-C-51)

and

fi/i2. _ P$2L/§£ _ n i z /^£ = n /— - P — /— - Q^-/—
I dw dw/ dw dw/ dw / dv dv/ dv dv/ dv

(I-C-52)

From equations (II-C-51) and (II-C-52) it follows that

(II-C-53)

and

9v
(II-C-54)
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Dividing both s ides of equation ( I I -C-53) by

ll/$z. _ &/$£) and both sides of equation (II-C-54) by
dvf dv duf du j

|I/ |£.|Z/|£) v e h a v e
dv/ dv dwf d I

/ 3v / 3u \3u/ 3u dvf dv

Q = zrnz I77Z (n-c-55)
3v/ 3v duf du

and

dvf dv dwf dw

Consequently we have

dvf dv duf du

3y /3z 5y 7&2
dvf dv " dw/ dw

(H-C-56)
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Multiplying both sides of equation (II-C-57) by

3z 3
37 " 37/a^J we o b t a i n

(II-C-58)

Solving equation (II-C-58) for P we have

dv I 3vy \3v

_ / 3x / 3z 3x /3z\/3x / 3£ 3^ / l z
\ 3^ / 3^ " 3v / 3v/ V3v / 3v 3u / 3u

3v / dw)\dv/ dv du I du t

I dz __ p. /dz\ (dj£_ I dz_ j)j£ / dz\
I dv ®/ du)\dv/ dv ~ dw/ dw)\ *

(II-C-59)

Carrying out the multiplications in equation (II-C-59) we
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obtain

/\(h./) _ ( / ) ( /

)(&/&) ( ( z

%w)\2v/ dv) + [dw/ dw]\du/ du

dv I dvj\dv/ dvj \ dv I dv/\c$u/ 3u/J

(II-C-60)
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Equation (II-C-60) can then be rewritten as

dx dy
du dv

du dv

dx dy
dw dv +

dz dz
dw dv

11 dv

dz_dz_
dv dv

n |z
dv

dv dv

dx
du

dz
du

dx
dw

dz
dw

n

32

dv

n

32

dv

dw

32
dw

hL
du

dz
du

hL
du

dz
du

hL
dw

dx dy
dv dv

dv dv

dx dy

dz dz
dv dv

dv

dz dz
dw dv

+ Hii
du dv

dx
dv

dz
dv

dx
dv

dz
dv

Q

dz
dw

0

dz
du

iz

32
dw

du

dz
du

du

dz
du

d£
dw

dz
dw

(II-C-61)

The third term in the bracket in the left side of equation

(II-C-61) cancels the seventh term in this bracket and the

first term in the bracket in the right side of equation

(II-C-61) cancels the fifth term in this bracket. Multiplying

the remaining terms in both sides of equation (II-C-61) by
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dz dz dz \
du dv dw j we obtain

M IK J!£ _. i* lz i£ i* iz ik
du dv dw du dw dv dv dw 3u

Q?L iLZ QZ_ _3X _3j£ dz_ dx dy dz
dw dv du dw du dv dv 3u dwj

I 3u 3i/ dv du du dv

aw du ov dw ow ovJ

(II-C-62)

Now P(x, y, z) is the total derivative of Y along a line

parallel to the x-axis in (x, y, z)-space. Also 0(u, v, v)

is the total derivative of F along a line parallel to the

u-axis in (u, v, w) -space, II(u, v9 w) is the total

derivative of T along a line parallel to the v-axis in

(u, v, v)-space, and Q(u, v, w) is the total derivative of F

along a line parallel to the w-axis in (u, v, uO-space. Thus

we have from equation (II-C-62)

du dv dw
dy ay dy

P(X,y,Z) =

y* z

M. M.

3"

M

(II-C-63)
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Likewise Q(x,. y, z) is the total derivative of T along a

line parallel to the y-axis in (u, v, ^)-space. Thus in

a similar way we have

Q(x,y,z) =(j|
x» z

dT dH d£
du dv dw
dx dx dx
du - dv dw
dz dz dz
du dv dv/

dy dy dy
du dv dw
dx dx dx
du dv dw
dz dz dz
du dv dw

'(II-C-64)

Also R(x* y, z) is the total derivative of T along a line

parallel to the z-axis in (x» y, z)-space. Consequently

in a similar way we have finally

R(x, y, z)
(dT\

x, y

dT
du
dx
du
dy
3u

dz
3u
dx
du

iz
du

dT
dv
dx
dv

hi
dv

dz
dv
dx
dv
3y
dv

dT
dw
dx
dw

Iz
dw

dz
dw
dx
dw
9Z
dw

(II-C 65)



Appendix D to Part II

Discussion of F.G. Donnanfs derivation of the equation

du = tds - pdv + \idm for a one-component system

of one phase and of variable mass

Donnan's1 proof of the equation

du - tds - pdv + ]idm

for a one-component system of one phase and of variable mass

is as follows:

Applied to a homogeneous system characterized by a
uniform temperature t and a uniform pressure p, and
subject to no other external forces except that due to
this pressure, the development of thermodynamics up to
the date of Gibbsf researches may perhaps be briefly
summarized in the equation of Clausius,
5u = t&s - pSv, where u = energy, s = entropy, and
v = volume. This equation applies to a closed system
of constant total mass, and the first fundamental step
taken by Gibbs was to extend it to a system of
variable mass. In the equation of Clausius the
entropy of the system may be changed by the addition
or subtraction of heat, whilst the volume may be
altered by work done by or on the system, both types
of change producing corresponding changes in the
energy. It is possible, however, simultaneously to
increase or diminish the energy, entropy, and volume
of the system by increasing or diminishing its mass,
whilst its internal physical state, as determined by
its temperature and pressure, remains the same. If we
are dealing with a system whose energy, entropy and

1 Donnan, F.G., The Influence of J. Willard Gibbs on the
Science of Physical Chemistry, An Address on the Occasion of
the Centenary Celebration of the Founding of the Franklin
Institute, Philadelphia, The Franklin Institute, 1924,
pp. 6, 7.

112
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volume may be regarded as sensibly proportional, at
constant temperature and pressure, to its mass, we may
write:

du - 6u +

ds = 6s +

dv = Sv + vodm

where the total differentials du, ds9 and dv indicate
changes which take account of variation of mass at
constant temperature and pressure as well as of heat
and work effects at constant mass (indicated by the
differentials 6u, 6s, 5v) and uo» SQ, vQf denote the
energy, entropy, and volume, respectively, of unit
mass under the specified conditions of temperature and
pressure. Combining these equations with that of
Clausius, we obtain

du = tds - pdv + (u0 - tsQ + pvQ)dm

or, putting

u0 - ts0 + pvo = li

du = tds - pdv + udoi.

According to Donnan the total differentials duf ds, and dv

indicate the changes in u* s, and v which take account of

variation of mass at constant temperature and constant

pressure as well as of heat and work effects at constant mass.

In Donnan !s equation du = 8u + uodm the term u^dm9 UQ

being the specific energy, gives the change in energy with

mass at constant temperature and constant pressure; it does

not give the change in energy with nass at constant entropy

and constant volume. The independent variables in the right

side of this equation are thus temperature, pressure, and
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mass. The differential &u is consequently really shorthand

for 4^-dt +%r-dp. Likewise in the equation ds = 8s + sodm,
ot op

where so is the specific entropy, the term 8s is really

shorthand for -rrpdt + ydp . Similarly in the equation

dv = 6v + vodm, where vQ is the specific volume, the term

6v is really shorthand for jr-dt + ~^~"dp . Thus written

out in full we have

du = |~dt + y-dp + uQdm , (II-D-1)

ds = ||dt + y-dp + sodm , (II-D-2)

and

dv = j^dt +ydp + vQdm . (II-D-3)

Combining equations (II-D-1), (II-D-2) and (II-D-3) we have

du - tds + pdv

+ pvQ)dm .

(II-D-4)
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It is known from the case of a one-component system of one

phase and constant mass that

It

- P§) . CII-D-6)

• CH-D-7)

IF
and

3p

Substituting these values of the partial derivatives of u and

s from equations (II-D-5), (II-D-6), (II-D-7), (II-D-8),

(II-P-9), and (II-D-10), in equation (II-D-4) we obtain

du ~ tds + pdv

- mt-^-dp + mp—^dt + mp-Tr-dp + (u0 -£ at op
(II-D-11)
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Thus we arrive at Donnanfs equation

du = tds - pdv + (uo - tso + pvo)dm , (II-D-12)

but by this mode of derivation the independent variables are

still t» pf and m, not s» v, and m.

The real problem Donnan was attempting to solve was to

show that when the independent variables in the case of a

one-component system of one phase and of variable mass are

entropy, volume, and mass, the partial derivatives of the

du Bu , du f x

energy are j^ = t, j^ = -p, and -^ = (uo - tso + pvo).

In order to solve this problem Donnan had to begin with

temperature, pressure, and mass as independent variables,

because the change of energy with mass is only equal to the

specific energy at constant temperature and constant pressure.

The real problem then consists in a transformation from

temperature, pressure, and mass as independent variables to

entropy, volume, and mass as independent variables.

It is assumed that the equations

s = F(t,p,m) (II-D-13)

and

v = <Kt,p,m) (II-D-14)

can be solved so that we have

t = F(s, vf m) (II-D-15)
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and

p = $ ( s , v, m) (II-D-16)

and thus finally

u = V(s, v, m) . (II-D-17)

From equation (II-D-17) it follov/s that

du = Tr-ds + -rr-dv + ir-dm . (II-D-18)

The partial derivatives TT-» TT~, and -xt— are then obtainable
r os ov dm

by the use of the Jacobians in Tables (II-D-1G), (II-D-12),

and (II-D-14). Thus we have

lvY +££/3v\
3(tf p» m)

= t , (II-D-19)

3(u» m* s)

on ) s
 d(t9 P> n )

s d\Vf itit s )

3 ( t , p , in) p
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and

3(u, v,

/3u\ = 3(t.p,

• ^

3(t, p,

3^\2 If 11
"57"J uo + pv0 - ts0 ?

= u0 + pv0 - ts0 . (II-D-21)

In the case of a one-component system of one phase and

of variable mass the chemical potential y is equal to f — j
v, s

and consequently to (uo + pvo - ts0) . Substituting the

values of (*g—) » l"g~"J » an(* I-g— ) from equations
m, v m9 s v9 s

(II-D-19), (II-D-20), and (II-D-21) in equation (II-D-18) we

arrive at the result

du = tds - pdv + ]idm , (II-D-22)

with Sf V, and m as independent variables. Equation

(II-D-22) is thus true with either t, p, and m as

independent variables or with s, v, and zn as independent

variables. However, the more important significance of

equation (II-D-22) is that it is true with s» v, and m as

Independent variables.



Part III

Relations between thermodynamic quantities and

their first derivatives in a binary system of

one phase and of unit mass

'Introduction

The basic thermodynamic relations for systems of variable

composition were first derived by J. Willard Gibbs in his

memoir entitled "On the Equilibrium of Heterogeneous

Substances."1 Gibbs2 stated that the nature of the equations

which express the relations between the energy, entropy,

volume, and the quantities of the various components for

homogeneous combinations of the substances in the given mass

must be found by experiment. The manner in which the

experimental determinations are to be carried out was

indicated by him3 in the following words: ffAs, however, it is

only differences of energy and of entropy that can be

measured, or indeed that have a physical meaning, the values

of these quantities are so far arbitrary, that we may choose

independently for each simple substance the state in which its

energy and its entropy are both zero. The values of the

1 Gibbs, J. Willard, Trans. Conn, Acad. of Arts and Sciences,
3, 108-248, 1874-78, or Collected Works, Longmans, Green and
Company, New York, 1928, Vol. 1, pp. 55-184.

2 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
3, 140, 1874-78, or Collected Works, Longmans, Green and
Company, New York, 1928, Vol. 1, p. 85.

3 Gibbs, J. Willard, Trans. Conn. Acad. of Arts and Sciences,
3, 140-141, 1874-78, or Collected Works, Longmans, Green and
Company, New York, 1928, Vol. 1, p. 85.

119
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energy and the entropy of any compound body in any particular

state will then be fixed. Its energy will be the sum of the

work and heat expended in bringing its components from the

states in which their energies and their entropies are zero

into combination and to the state in question; and its entropy

is the value of the integral J -~- for any reversible process

by which that change is effected (dQ denoting an element of

the heat communicated to the matter thus treated, and t the

temperature of the matter receiving it)."

Calculation of the specific volume, the specific energy,

and the specific entropy of a binary system of one phase

as functions of the absolute thermodynamic temperature,

the pressure, and the mass fraction of one component

from experimental measurements4

In the case of a binary system of one phase, the mass

fraction m of component 1 is defined by the equation

where ml denotes the mass of component 1 and m denotes the

Tunell, G., Relations between Intensive Thernodynamic
Quantities and Their First Derivatives in a Binary System of
9nt> Phase, V.H. Freeman and Co., San Francisco and" London,
I9ti\ pr). 7-16.
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mass of component 2; the specific volume V is defined by the

equation

where V denotes the total volume; the specific energy U is

defined by the equation

U = mi + m2
(III-3)

v/here £/ denotes the total energy; the specific entropy S is

defined by the equation

•mi + m2
(III-4)

v/here S denotes the total entropy. As a result of experiment

it is known that the pressure p9 the specific volume Vf the

absolute thermodvnamic temperature T, and the mass fraction

Si of component 1 are connected by an equation of state

*(pf V* 7\ = 0 , (111-5)

which can, in general, be solved for any one of these

quantities as a function of the other three. The relation of

the specific energy of such a system to the temperature,

pressure, and sass fraction of component 1 is expressed
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by the equation

P , f l ? i

cp - p
oV 9/7

where Cp denotes the heat capacity at constant pressure per

unit of mass and lp denotes the latent heat of change of

pressure at constant temperature per unit of mass. The

relation of the specific entropy S to the temperature,

pressure, and mass fraction of component 1 is expressed by the

equation

S(T, p,mx) - S(T0, po.iniJ

7\ p, flii

P jm P J 0^ J1*̂  I

7"di + ~-±-dp + -ZT;dmi > . / T T T 7N

i ojni J ( 1 1 1 - / ;

Necessary and sufficient conditions5 for (III-6) are

(III-S)

* Ossood, I ' .F . , Advanced Calculus, The !!acnillan Cornpany, ?!e\#
York, 1925, p. 232, and Lehrbuch der Funktionentheorie» 3d. 1,
Ste Auf l . , B.G. Teubner, Leipzig , 192S, pp. 142-150.
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cP '
dV

dT
p,

dm i
T,p

(III-9)

and

. dU
a Trzr

dm i

y dv
1P ~ ?irP

T,ml
dm i

T,p

(III-1O)

Similarly, necessary and sufficient conditions for (III-7) are

p * w i 1 j

(III-ll)

a TT^J
dm i

- oT

,22.

71 T,p

(111-12)

and

ami (111-13)

Carrying out the indicated differentiations in (III-8) and
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(III—11) one obtains

and

v / v-»

Combining (111-14) and (111-15) one has

lp = -Tff. (111-16)

Carrying out the indicated differentiations in (III-9) and

(111-12) one obtains

%2V

44= (in-17)

and

Conbmin3 (111-17) and (111-18) one has
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Carrying out the indicated differentiations in (111-10) and

(111-13) one obtains

d2u d^p d2v
3»T - p a ^ > (III-2C)

and

= 7 3§f • (111-21)

Combining (111-20) and (111-21) one has

From (111-16) it follows that

dT " ' F 3T

and from (111-14) and (111-16) one obtains

3c

From (111-16) it also follows that

dp
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and

(HI-26)

Combining (111-26) and (111-20) one has

3p3/i?x OIB \aT ofii\op

and, similarly, combining (111-26) and (III-21) one has

32S d2V (111-28)

There is thus one relation, equation (111-16), between

dV 3F dV Y dU dS
the seven auantities TTT;, TT—, TTW-> cD, /n,oT op dmi r ¥

Consequently, all seven will be known if the following six

dV
are determined by means of experimental measurements: -^=9ol

There are also eight relations, equations (111-17),

(111-18), (111-23), (111-24), (111-25), (111-26), (111-27),

(111-28), between the eighteen quantities, T^T, Tr-Tt \^ \ »
al dp am i

d c p g^p otp d t p

dp937* 3p f 3S1
> 37 * dp

32S 52S 325

f
m e a n s o f
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which from the following ten, f^, |^, - & , JjlL,
ol dp ami aTop

d2V d2V dZ ^ 2
p n 3(/ 3 g

3Tf dwl ' U ? " ' 3 ^ ' the remaining

eight can be calculated. From equation (111-24) -^- can

be calculated; from equation (111-23) -̂ *r can be
61

calculated; from equation (111-25) -r-41 can be

OtjT)

calculated; from equation (111-26) - s — can be calculated;

32[/
from equation (111-17) %T<\^ can be calculated; from

equation (111-27) ^ ^ can be calculated; from eouation
oponii

32S
(III—18) ^rp^>^ can be calculated; and from equation (111-28)

ol oih i

can be calculated. It will therefore suffice to

dV
determine experimentally TO- along a line at constant

temperature, T\ and constant pressure, p', then to

determine experimentally -^ at all points in a plane at

3F w
constant pressure, p f, and ^j— at all points in ( 7\ pf rn'i)-

space, likewise to determine Cp at all points in a plane

at constant pressure, p', and to determine experimentally

<T55- along a line at constant temperature, T', and constant

pressure, p', and also -zrzr- along a line at constant

temperature, Tr, and constant pressure, p'.
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From measurements of specific volumes over the range of

temperature, pressure, and composition that is of interest,

the values of |~» y% and TJJ- can be obtained. By means of

calorimetric measurements the necessary values of cp can

9/7
also be obtained. The determination of r j - at constant

offl i

temperature and pressure over the range of composition of

interest can be accomplished in many cases by means of a

dlJ
constant volume calorimeter, and in some cases -^p— can be

determined by means of measurements of the electromotive force

of a galvanic ceil at constant pressure over the ranges of

composition and temperature of interest in combination with

the measurements of specific volume. The determination of -rzr-
dm i

at constant temperature and pressure over the range of

composition of interest can be accomplished most readily by

measurements of the electromotive force of a galvanic cell at

constant temperature and pressure if a suitable cell is

available.

The methods of determination of -re- and -^r- by means
din i dm i

of electromotive force Measurements can be illustrated by the

following example. In the case of a galvanic cell consisting

of electrodes which are liquid thallium amalgams of different

concentrations both immersed in the same solution of a
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thallium salt, one has

G2 - G2' = -NF6 ,6 (111-29)

where G denotes the Gibbs function, U + pV - TS9 of a liquid

thallium amalgam, G2 denotes the partial derivative

(M.)
V^no/m at the concentration of one electrode, G2' the7, p. ni

same partial derivative at the concentration of the other

electrode, n2 the number of gram atoms of thallium, nx the

number of gram atoms of mercury, N the number of Faradays the

passage of which through the cell accompanies the reversible

transfer of one gram atom of thallium from the one amalgam to

the other (N = 1 in this case since a pure thallous salt was

used as the electrolyte), F the Faraday equivalent (which is

equal to the charge of one electron times the number of atoms

in a gram atom); and 6 the electromotive force. The values of

the electromotive forces of a number of such cells, including

one in which one electrode was a saturated liquid thallium

amalgam, were determined at 20°C and 1 atmosphere by Richards

and Daniels.7 By measurement of the electromotive force of

another galvanic cell in which the electrodes are finely

divided pure crystalline thallium and thallium saturated

liquid amalgam at the same temperature and pressure, the

6 Lewis, G. M.» and M. Randall, Thermodynamics and the Free
Energy of Chemical Substances * McGraw-Hill Book Company, Inc.,
Mew York, 1923,. p. 265.

7 Richards, T. W,, and F. .Daniels, Jour. Amer. Chen. Soc.f
41, 1732-1768, 1919.
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difference G§ - G2 could be evaluated, G% denoting the value

of G2 in the saturated liquid thallium amalgam, and G2 the

value of the function G for pure crystalline thallium per

gram atom. The value of G2 being assumed known from

measurements on pure thallium, the values of G2 in liquid

amalgams of different concentrations are then obtainable from

the measurements of electromotive force in the two kinds of

cell. From the values of G2, the values of G\ - G\ are

calculable by the use of the equation

?i - £1 « - /f

n 2

'If2- dn2 , (111-30)

v/here n2 denotes the gram atom fraction of thallium in the

amalgams.

and iii the gram atom fraction of mercury,

s Richards, T.U., and F. Daniels, op. cit., pp. 1732-1768;
Lewis, G.:T., and M. Randall, op. cit.» pp. 413-414.

* Lewis, G.I-"., and :i. Randall, op. cit., p. 44; cf. also
Gibbs, J. llllard, Trans. Conn, Acad. of Arts and Sciences, 3,
194, 1874-73, or Collected Works, Longmans, Green and Company,
;:ew York, 1925, Vol. 1, p. 135.
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— t dG \ *
G\ the partial derivative - 5 — , and G\ the value

V °n 1 Im
L/T, p, n2

of the function G for pure mercury per gram atom. The

integrand in the integral on the right side of equation

(111-30) remains finite and approaches a limit as £2

approaches zero and the value of the integral is thus

determinable.10 The value of Gi is assumed to be known from

10 Gibbs showed that in the case of a solution in which
the mass of the substance chosen as the solute is capable of

negative values, the quantity m2( ̂
 2 1 approaches

T, p, mi

zero as a limit when /T?2 approaches zero, T9 p, and mi being

l-z—)
/rr

held constant, y2 denoting the derivative l-z—) ; he
/7, p, mi

also showed that in the case of a solution in which the mass
of the substance chosen as the solute is incapable of negative
values, as is true of thallium amalgams, the quantity

"̂ ~2") still remains finite, and it approaches a
0m2Irp „ m

1 9 p9 mi

limit greater than zero when /7J2 approaches zero, 7\ p, and m\

being held constant, even though the derivative

becomes infinite in this case (Gibbs, J. v/illard, Trans.
Conn. Acad. of Arts and Sciences, 3, 194-196, 1874-78, or
Collected Works, Longmans, Green and Company, New York, 1928,
Vol. 1, pp. 135-137). It follows in the same way that the

/dG \
quantity ^("jr""^) also approaches a limit when 02

2 T9 pf ni

approaches zero, T» p, and tii being held constant. By

application of the change of variable theorem in partial
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measurements on pure mercury, and hence Gi can be obtained

as a function of the gram atom fraction at 20°C and

f dG \
1 atmosphere. The derivative (-r—l) can be calculated

1 * p f /Z?i

from the equation

(111-33)

where A2 denotes the number of grams in a gram atom of

I oG \
thallium, and the derivative (^— can be calculated

\omiJ

differentiation one obtains the relation

n1
T n n r (ni + n 2 )

2

1 t P* Hi 1 i p

Multiplying both sides of this equation by na» one has

I » p> n\ p

Since Si approaches 1 as a limit when 112 approaches zero,

r. p* and nx being held constant, it follows that TT
2- H^2-)

HI \3n2/T

1 > p

approaches the same limit as n^.i^A and nJ^A
2\3n2/r

 2\3n2/T
1 > p 1 $ pt rii
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from the equation

where Ai denotes the number of grams in a gram atom of

mercury. The intensive function G is defined by the

equation

G E

The derivative ( -^r-) for liquid thallium amalgams at
\dmi/rp °

20°C and 1 atmosphere can be calculated from the equation

By application of the Gibbs-Helmholtz equation

12 - H2 = NFT || - NF£ ^ (111-37)

where H denotes the enthalpy, U + pV9 of a liquid thallium

amalgam, H2 denotes the partial derivative ("T~~j > and
Tf p* ni

11 The derivation of equation (XII-36) is given in Appendix A
to Part III.

12 Lewis, G.N., and M. Randall, op. cit., pp. 172-173.
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£2 the value of the function H for pure crystalline thallium

per gram atom, the partial derivative #2 for liquid thallium

amalgams could then be determined, provided the electromotive

forces of the cells be measured over a range of temperature,

the value of #2 being assumed known from measurements on pure

crystalline thallium. From the values of //2» the values of

Hi - Hi are calculable by the use of the equation

n2

ffl -
n 1

^ d n 2 (111-38)

where H\ denotes the partial derivative and Ht

the value of the function H for pure mercury per gram atom.

The value of H\ is assumed to be known from measurements on

pure mercury, and hence Hi could be obtained as a function of

the gram atom fraction at 20°C and 1 atmosphere. The

derivative
f dH \
f ̂—1

T

could be calculated from the equation

and the derivative dH \r—J could be calculated from
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the equation

The intensive function H is defined by the equation

The derivative ("̂ =~ ) for liquid thallium amalgams at
V dill 1 Jrn °

'T, p

2CTC and 1 atmosphere could then be calculated from the

equation
oti \ _ (_dtt_\ _ (_dtL\ m (111-42)

Alternatively, the function iJ of liquid thallium amalgams and

/ dH \
the derivative ( -^3- could be calculated from calori-

metric determinations of heats of mixing of thallium and

mercury at constant pressure. Finally the values of

-*—-] and ("7T3T-) for liquid thallium amalgams at

20°C and 1 atmosphere could be calculated from thr* equations

cni-43)

13 The derivation of equation (111-42) is given in Appendix A
to Part III.
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and

Derivation of any desired relation between the intensive
V* ^ \s v-»

thermodynamic quantities, T9 p, mi, V, U, S9 and their first

derivatives for a binary system of one phase from the

experimentally determined relations by the use of

functional determinants (Jacobians) ll+

Equations (III-5), (III-6), and (III-7) can, in general,

be solved for any three of the quantities, T9 p, mi, V9 U9 S,

as functions of the remaining three. The first partial

derivative of any one of the quantities, T1, p, mi» V, U9 S,

with respect to any second quantity when any third and fourth

quantities are held constant can be obtained in terms of the

,. , . „. dv dv dv du ds
six first derivatives, -Tr=9 ^—, i^r-t c D > -^?—,

61 op dm i r dm i

together with the absolute thermodynamic temperature and the

pressure, by application of the theorem15 stating that, if

V = a)(xi y9 z ) * x = f(Uf v, w)9 y = <p(uf v9 w)f z = ^(u, v9 w)9

ll* Tunell, G., op. cit., pp. 17-23.

15 k proof of this theorem for the case of functions of three
independent variables is given in Appendix C to Part II.
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then one has

(dx'\

dx1

3u
dj_
3u
dz
3u

3x
du

iz
du
dz
du

dx-

dv
dz
dv

dx
dv
dy
dv
dz
dv

dx>
dw

iz
dw
is.
dw

dx_
dw
dy
dvr
dz_
dw

3(u,

(u, v» t-/)

(111-45)

provided all the partial derivatives in the determinants are

continuous and provided the determinant in the denominator is

not equal to zero.

In Tables III-l to 111-15 the value of the Jacobian is
w w w \^

given for each set of three of the variables, 7» p» mi» V9 U, S*

as x',y, z, or x, y, z» and with T* p* mit as u» v, v. There are

sixty Jacobians in the Table, but one has

3(u,
y»
v ,

2 )
V )

3(z,
3(u,

y»
V ,

3(y» i
3(iif \^, w) f (111-46), (111-47)

because interchanging two rows of a determinant changes the

sign of the determinant. Hence it is only necessary to

calculate the values of twenty of the sixty Jacobians. The

calculations of these twenty Jacobians follow;
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3(ii?i 9 T, p)
3(T» pt Mi)

dm i
dT

dT
dT

dT

dp

dT
dp

3p

dm i
dm i

dT
dm i

dm i

3(7, r,
p»

31/ 3F

9T 3T 3T
dT dp dm i
dp dp dp
dT dp dm i

d(u,
d(T,

T, p)
pflUiJ

dT

dT
dT

dT

dp

dT
dp

3£
dp

W
dm

dT

as
¥
dm

(111-48)

IE \
fT,p

(111-49)

f dU \
\ 35 / (111-50)
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3(S, T,
d(T, p,

P)
S i ) "

dS
dT

dT
dT

l£
dT

35
3p
dT
dp

3£
3 P

3S
3m i

11
3ffli

3D

355!

dS
l 7 7 , p

(111-51)

3(7 , 7, mi)
3(7 , p, S i )

31/
3T

dm i
dT

3 P

_37 .37
37 3p

dm i
dp

dv_
dm i

dT_
dS]

. M\ (111-52)

7,

dU
37

37
37

dm i
dT

du
dp
dT
dp

dm i
dp

du
3»i

37
dm i

dm i
dm i

+ p
\ (111-53)
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3(5, 7, mY]
3(7, p,Mx;

35
37

35 _35
3p 3/^1

37 17 37
37 3p 3SL

37 3p dmi

(111-54)

, r,
p,

din i

9(7
dT dp

dv
dp

ML
dm i

dT_

(111-55)

'IF) -T{§)

3(5, 7, V)
d\Tv pf nil)

as
dT
dT

dV
dT

as
dP

dT
dp

dv
dp

dg

dT_
3m i

i£
3m i

(111-56)
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3(S,
3(7,

T, U)
p, Si)

3S
3T

dT
dT

dU
dT

dS
dp

dT
dp

dU
dp

9S
3/77 ]_

37
dm i

dU_
dm i

dU
dm i

T, p p9 m%

(111-57)

dV\

h, s

d(V, p,l
3(7, p,

of
dV_ dV_
op dm ]

37 3p

"37" 3p~

dv\
dT! (III-5S)

>, SO

37 3p 3mi

OD op op
37 dp dm i

oT op oM\

"P (111-59)
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3(S, p,
3(7\p,

nil)
Si)

as

3/77 i
'NT'

01

dS
dp

l£
3p

dm iw dm i
dm i

f (III-6O)

> p»
3(T, p ,

W_ dg dll
dT dp dm i

3£
3r

dT

3m i

(M ] + (II ) | II
I \3JJ?I L \dMiJm JV 3T
L i , p /» p J

+ Cr (111-61)

0 ( 1) p * HI i )

T, p
l 4 , P

\_/
3S
3T

l£
dT

3T

/3K

3S
3p

l£
3p

/ w

pt Hi

3S
3^1

H

dm i

t (111-62)
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3(S, p, g)
d(T, p, ffll

dS dS
3T

dp dp
dT dp

"3T ~3p

J i J l / 7 \ D

ds
(111-63)

'p»

d(u, CTI, n

3T

3r

3T

ML
dp

dm i
dp

3P

dm i

dm i
dm i

dmi

\2
" C r

^r.S
(111-64)

.. y)

as as 3s

3T 3p

3T 3p

If 3D

dm i
Ofil

V
i t

(111-65)
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3(S> m\9
3('7\ p, S

3S 3S 3S
dT dp dmi

W 3pT 3mi
s-/ v-< s-/

3 T dp dm i

(111-66)

\s w <*J

3 ( T \ p» /z?i)

assr
37
3r

asdp

3F
3D

as35i

dV
dm i

dm i

dT dp Sin!

ML

(111-67)

37 \
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Table III-l
Jacobians of intensive functions
for a binary system of one phase

\y» z
X'N.
x N.

Si

V

u

%J

s

d(x', y, z) 3(x, v, z)
3(7\ p, mO ' 3(T, p, oO

T, p

1

(IS)

(ft)

(is)
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X1 >v
X ><

p

V

V

s

Table III-2
Jacobians of intensive
for a binary system of

3(x', y, z) 3(x
o{i t pi in\) o(i

T, mi

- 1

/ *Jl\ / **

functions
one phase

i y* z)

t p» Mi)

I

"U
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X \

p

.-,

U

s

Table III-3
Jacobians of intensive functions
for a binary system of one phase

3(x\ y, z) 3Ĉ r, v, z)
acr.p.nu) • acr.p.tfx)

T t p

w ii p i» p i • « i i

• r 1 ~— ]
t p p • /mi
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x Nk

P

*,

Table III-4
Jacobians of intensive functions
for a binary system of one phase

3(x', y, z) 3(x, v, z)

3(7, p. ft) ' 3(7, p. ft)

-(&),„

[-(S),P-KCiJ(4,-(t), * T\d7) v.
p p, mi
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Table III-5
Jacobians of intensive functions
for a binary system of one phase

x'X
X \

p

.-,

' •

U

d(x'f y, z) 3(x, y» z)
d(T*t p» ffl*i) f 3(T» p? OTI)

r, s

- f M \

- (—)
pt ox
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Table I I I -6
Jacobians of intensive functions
for a binary system of one phase

x'\
x \.

T

V

u

s

3(x', y, z) 3(x, y, z)
d(T, p, mi) f 3(T,p frai)

p, flfx

1

(dV)

cp-p\3rj -
p . mi

fa
r
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Table III-7
Jacobians of intensive functions
for a binary system of one phase

\y, z
x'\

T

U

s

3 ( x \ y, z) 3(x, y, z)
3(T, p , Mi) ' 3 ( r , p , m O

p , p

p. mi

[- U*JT, p" pfeJT, J l a ? I Si
 + cpfej r , p

rl»JT,p UxJr,pU;p>Ji



152

Table III-8
Jacobians of intensive functions
for a binary system of one phase

\Vf Z

X \

T

V

s

3(x', vt z) 3(x, v, z)
3(T, p, tfi) f 3(T, p.tf i)

p, (/

- c P + K3?j -

[/BOX (%V \ l /a?\ w/3?\

[ U ) n p* His,),.. Jvw),, ft - 'pfejr, p

l[(f,)7.p-Ki,),J*(f,)r.;Kii,,
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\y, z
x\
X >v

T

.-,

7

U

Table III-9
Jacobians of intensive
for a binary system of

3(x', y, z) 3Cx

p,S

(Si)

T

functions
one phase

%P

J
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Table 111-10
Jacobians of intensive functions
for a binary system of one phase

X \

T

P

U

s

d(x', y, z) d(x, y, z)
3(7, p.Afi) J 3(7, p, »i)

JdV)2 - ^\
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Table III-ll
Jacobians of intensive functions
.for a binary system of one phase

\v' z

x\
X \

T

P

V

w

S

3(x', y, z) 3(x, y, z)
3(7, p, ni) J 3(T, p, a!)

mi, ff

'p, mi
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Table 111-12
Jacobians of intensive functions
for a binary system of one phase

\y, z
x\
x y.

T

P

V

s

3(x', v, z) 3U, y, 2)
3(7, p,rai) ' 3(T, p, tfi)

r

-^;.,-*(f),.-,
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x X
x N.

r

P

s

Table 111-13
Jacobians of intensive functions
for a binary system of one phase

3O', y, z) 3(x, y, z)
o{l , p, mi ) o{r, pi zi i)

V, U

--.;r©,,,

ffll'r, p
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\ y> z
x\
x X

T

P

mi

if [-

Table 111-14
Jacobians of intensive functions
for a binary system of one phase

3(x\ y, z) 3(x, y, z)
3(T»p»i73^) 3(T»p»/I7j)

Vy S

<=p fdV \ fdS \ fdV\
Hi i.- ^^ i _ I — > — i ____ i
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X N,

T

P

y

Table 111-15
Jacobians of intensive functions
for a binary system of one phase

3(x', y, zj 3(x, y, z)
9(7, p, mi) f 9(7, p.tfi)

*- 7» p Tt p-* p» fflj 7» p

T 1115n? / "* \ ^ 5 i "̂* 1 OJ^ 1 * P!

f(I) +'(I) -Hi) T(f)2

/3K \
* ̂  \3p / - w.

i » iDi

P * ®l

J
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In order to obtain the first partial derivative of any

one of the six quantities, T, p, mi, V, U9 S, with respect to

any second quantity of the six when any third and fourth

quantities of the six are held constant, one has only to

divide the value of the Jacobian in which the first letter in

the first line is the quantity being differentiated and in

which the second and third letters in the first line are the

quantities held constant by the value of the Jacobian in which

the first letter of the first line is the quantity with

respect to which the differentiation is taking place and in

which the second and third letters in the first line are the

quantities held constant.

To obtain the relation among any seven derivatives,

having expressed them in terms of the same six derivatives,

dv\ (dv\ (dv \ - (w \ (ds

one can then eliminate the six derivatives from the seven

equations, leaving a single equation connecting the seven

derivatives. In addition to the relations among seven

derivatives there are also degenerate cases in which there are

relations among fewer than seven derivatives.

An additional therraodynamic function A = U - TS is used

to facilitate the solution of many problems. The

corresponding intensive function A is defined by the equation

1 s S7T1£ • (m-68)
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In case a relation is needed that involves one or more of the

thermodynamic potential functions, H, A9 or G* partial

derivatives involving one or more of these functions can also

be calculated as the quotients of two Jacobians, which can

themselves be evaluated by the same method used to calculate

the Jacobians in Tables III-l to 111-15.



Appendix A to Part III

Proof of the relation

The quantity G is defined by the equation

G

Multiplying both sides of equation (III-A-1) by (/??! + m2) one

has

G = G{mx + m2) . (III-A-2)

Differentiating both sides of equation (III-A-2) with respect

to ai holding T, p, and roa fast one obtains

l / T p fl?2

The quantity & is a function of the temperature T» the

pressure p* and the mass fraction sx. By application of the

theorem for change of variables in partial differentiation

one has thus

J \2rnJ n\am1L ' (III-A-4)
2 « p? Jft2 J- f p 1 * pt UI2

1 Tunell, G., Amer, Jour. Sci., 255, 261-265, 1957, and
Tunell, G,, Relations between Intensive Thermo dynamic
Quantities and Their First Derivatives in a Binary System of
One Phaset W.H. Freeman and Co., San Francisco and London,
1960, pp. 25, 26.
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Since, by definition,

one has

3/771 \ _ 1 __ /771

i pf ni2

O i + m2)
2

Hence it follows that

^

and, similarly,

^'r.p.an V O f f l 2 T,p

(III-A-5)

(III-A-6)

) . (III-A-8)
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By subtracting the left side of equation (III-A-8) from the

left side of equation (III-A-7) and the right side of equation

(III-A-8) from the right side of equation (III-A-7), one thus

obtains the equation to be proved:

In a similar way the equation

3tf \ fdH

P

can also be derived.



Appendix B to Part III

Transformation of the work and heat line integrals from one

coordinate space to other coordinate spaces in the case of a

binary system of one phase and of unit mass

As in the case of a one component system of one phase and

of variable mass, it is also true in the case of a binary

system of one phase and of unit mass that it is not necessary

to define either work or heat when masses are being

transferred to or from the system to change its composition in

order to obtain the energy and the entropy as functions of the

absolute thermodynamic temperature, the pressure, and the mass

fraction of one component from experimental measurements.

Thus the derivation of the Jacobians listed in Tables III-l to

III—15 did not depend upon definitions of work or heat in the

case of a binary system of one phase and of unit mass when

masses are being transferred to or from the system to change

its composition.

For some purposes, however, it is useful to have

definitions of work done and heat received in the case of a

binary system of one phase and of unit mass when masses are

being transferred to or from the system to change its

composition. If the conclusion of Van Wylen and Professor

Uild be accepted that it cannot be said that work is done at a

stationary boundary across which mass is transported, then the

work I'! done by a binary system of one phase and of unit mass

165
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can be represented by the line integral

7\ p

* •

in (f, p, ffli)-space. Furthermore, in the case of such a system

the heat 0 received can be represented by the line integral

7\ p.

Tf)f pQ t lSl0

Tf p» ©x

(f 1
I f

In order to obtain the total derivative of the work done along

a straight line parallel to one of the coordinate axes in any

other coordinate space one obtains from Tables III-l to 111-15

the partial derivative of the volume with respect to the

quantity plotted along, that axis when the quantities plotted

along the other axes are held constant and one multiplies this

partial derivative by the pressure. The total derivative of
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the heat received along a straight line parallel to one of the

coordinate axes in any other space, on the other hand, cannot

be obtained by multiplication of the partial derivative of the

entropy by the absolute thermodynamic temperature when

transfer of masses to or from the system is involved. In

such cases the total derivatives of the heat received along

lines parallel to the coordinate axes in any desired

coordinate space can be derived in terms of the total

derivatives of the heat received along lines parallel to the

coordinate axes in (7\ p, m1)~space by transformation of the

heat line integrals by the use of the method set forth in the

second half of Appendix B to Part II. Following is an example

of such a transformation. In the case of a binary system of

one phase and of unit mass the heat line integral extended

along a path in (7\#i, 7)-space is

T

• / " •J
To,

1 \~^F
I \ dT

mi ,

\

>̂
V

( dQ \
I MMM 1

T, mlf V

(III-B-3)

To* #io»



168 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

The derivatives (§
\dT

(%l)
W/

. and can be

evaluated by the method set forth in the second half of

Appendix B to part II as the quotients of two determinants.

Thus we have

= c,,

dQ
dT

dm i
dT
dV
dT

dT
dT
3ni

If
dv
dT

dQ
dp

dm i
dp

dv
dp

dT
dp

dm i
dp

dv
dp

dg
dm i

dSj
dm i

37
dm±

dT
dm i

3g1
dm i

dv
dml

dQ d£
mx

dV
/T,nl

mi

/3£\ , /3£\

(III-B-4)
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and

T, V

dQ
dT

dT
dT

dv
dT

dm i

dT

dT
dT

dv
dT

dQ
dp

dT
dp

dv
dp

dm i

dp

dT
dp

dv
dp

dm i

dT_
35 x

if
'dm i

^ ̂ofn i

din i

dT
dm i

3£
dm i

\(dQ\ - ^ 3F dv\

T9 p T$ mi Tip-* T,

pJ '
 V3^ yr, ̂  '

(1II-B-5)
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and finally

—c

dVl,
= I,

T, S

dQ
dT

dT
dT

ami
dT

dv
dT

dT
dT

dm i
dT

dQ
dp

dT
dp

dmx
dp

dv
dp

dT
dp

dm i
dp

dQ
dm i

dT

0/37 i

dm i

ar

dmi

(III-B-6)



Part IV

Relations betv/een thermodynamic quantities and

their first derivatives in a binary system of

one phase and of variable total mass

Introduction

In the following text the relations for the energy and

the entropy of a binary system of one phase and of variable

total mass are derived and a table of Jacobians is presented

by means of which any first partial derivative of any one of

the quantities, absolute thermodynamic temperature T9 pressure

p, mass mi of component 1, mass m2 of component 2, total

volume Vf total energy U9 and total entropy S, with respect to

any other of these quantities can be obtained in terms of the

partial derivative of the specific volume V with respect to the

absolute thermodynamic temperature, the partial derivative of

the specific volume with respect to the pressure, the partial

derivative of the specific volume with respect to the mass

fraction Si of component 1, the heat capacity at constant

pressure per unit of mass Cp, the partial derivative of the

specific energy U with respect to the mass fraction of

component 1, the partial derivative of the specific entropy S

with respect to the mass fraction of component 1, and certain

of the quantities, 7\ p, mi, m29 ffli» S2* V, U, S, where m2

denotes the mass fraction of component 2.
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Calculation of the total volume, the total energy, and

the total entropy of a binary system of one phase and

of variable total mass as functions of the absolute

thermodynamic temperature, the pressure, and the

masses of components one and two

Thermodynamic formulas can be developed in the case of a

binary system of one phase and of variable total mass on the

basis of the following set of variable quantities: the

absolute thermodynamic temperature, the pressure, the mass

of component 1, the mass of component 2, the total volume,

the total energy, the total entropy, the mass fraction of

component 1, the mass fraction of component 2, the specific

volume, the specific energy, the specific entropy, the heat

capacity at constant pressure per unit of mass, and the latent

heat of change of pressure at constant temperature per unit

of mass (p.

In the case of a binary system of one phase and of

variable total mass the total volume is a function of the

absolute thermodynamic temperature, the pressure, the mass of

component 1, and the mass of component 2,

V = f(T, p, w19 m2) . (IV-1)

The total volume is equal to the total mass times the specific

volume

V = (ffll + mz)V , (IV-2)

and the specific volume is a function of the absolute
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thermodynamic temperature, the pressure, and the mass fraction

of component 1,

V = (7\ p,Sx) . (IV-3)

From equations (IV-1), (IV-2), and (IV-3) it then follows

that

(§) = (ai + .2) (§) , (IV-4)
p / 2 ? m

<•••->(i

(IV-6)

and

The total energy is a function of the absolute thermodynamic

temperature, the pressure, the mass of component 1, and the

mass of component 2

U m j,(T, p f m l f m 2 ) . (IV-8)

As in the case of a one—component system of one phase and of

variable mass it is known from experiment that the energy is

an extensive function* Thus the total energy is equal to the
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t o t a l mass times the spec i f i c energy

U = Oi + m2)U . (IV-9)

Furthermore it is known that the specific energy is a function

of the absolute thermodynaraic temperature, the pressure, and

the mass fraction of component 1,

U = 0(T, p, mi) • (IV-10)

Thus the relation of the total energy to the absolute

thermodynamic temperature, the pressure, the mass of component

1, and the mass of component 2 is expressed by the equation

C/(T, p$ fl?j» ^ 2 ) ~ U(TQ§ po» ^ i n > ro2ft)

Tf p , mi9

= J|(/D! + DJ2)j?p - PjfldT + (mx + m2)\ 7p - P^

T<>f pot

From equations (IV-8), (IV-9), (IV-10), and (IV-11) it
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follows that

(f)
• p» mXf m 2

 L p»

and

U - m1 kn ] . (IV-15)

The total entropy is a function of the absolute thermodynaraic

temperature, the pressure, the mass of component 1, and the

mass of component 2

S = ?(r, p, fl?if m 2) • (IV-16)

As in the case of a one-component system of one phase and of

variable mass it is known from experiment that the entropy is

an extensive function. Thus the total entropy is equal to the
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total mass times the specific entropy

S = Oi + m2)S . (IV-17)

Furthermore it is known that the specific entropy is a

function of the absolute thermodynamic temperature, the

pressure, and the mass fraction of component 1,

S = a)(2\ p, mi) . (IV-18)

Thus the relation of the total entropy to the absolute

thermodynamic temperature, the pressure, the mass of component

1, and the mass of component 2 is expressed by the equation

S(Tf p, mif w2) -

T $ p» in i» w2

(mi ) ^

TQ,
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From equations (IV-16), (IV-17), (IV-18), and (IV-19) it

follows that

p9 mi

D
= (mi + m2) -jT ,

(IV-20)

(IV-21)

as
T, p9

(IV-22)

and

dm 2 T, p*
c i .

(IV-23)

Necessary and sufficient conditions for (IV-11) are

p* mi 9 in2

§) J]
P» #1 , (IV-24)
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t p > fll 2

3T
- 'p 9 W i » IB 2

dT

3 / 1 3 1

mi, m2

V F "TC'p.a/jy , (IV-25)

(IV-26)

T, a/ J ^ , (IV-27)

3B3I
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l2'T, p , m x

~ n i l , " 2

T, a/-l > , (IV-28)

3ffi

and

5 f l 7 i y r P m J I r P m i i > (IV_29)
8/32 j r , P,ni I 3mi J r . p,

Similarly, necessary and sufficient conditions for

(IV-19) are

, (IV-30)

Jr, P,
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T, p,

8T 3/77 2
/J?I »

jT, p,

, (IV-32)

3 [(mi + m2)-Jjr\

^ T » /771 > /7?2

dm i
IT, p,

, (IV-33)

dm 2
, (IV-34)

and

'as \
T, p, m2

3S

T, p,

dm i
. (IV-35)

ZD2

Carrying out the indicated differentiations in equation

(IV-24) one has

- P

0 1

i t J3?i»

F t 371 t S?2

(IV-36)
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Making use of the change of variable theorem in partial

differentiation one obtains

p, mi 9 m 2

H K)
T

()

T, mi p, zalf m2 • T, p x p, mi, m2

The derivatives and (^
p, mi, JJ?2 p» mi ,

equal to zero. Thus one has

(IV-37)

are each

dT
.9 m2 mi

(IV-38)

Similarly it follows that

37 /
p9 Ml 9 P* ml

dTdp

(IV-39)

also

( I V- 4 0 )
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and

d2v
£^± I = liar •

(IV-41)

Consequently substituting the values of ( kJ,
» /771 9 .77 2

. a n d

/ \ 3

from equations (IV-38), (IV-39), (IV-40), and (IV-41) in

equation (IV-36) one obtains

Mil 32F 9cp 32F ai?
oi ol up op oDol oi

In a similar way carrying out the indicated differentiations

in equation (IV-30) and making use of the change of variable

theorem in partial differentiation one obtains

1 alp lp i 3c
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Combining equations (IV-42) and (IV-43) one has

•IK (IV-44)

Carrying out the indicated differentiations in equation

(IV-25) one has

l/T, p, m2

dT
(mi + m2)

p9 mi 9 /i?2

3c

Tt p» /1J2

3-^r

- P\
3m i

T9 p*

CP -

(IV-45)

Making use of equation (IV-14) one has

\dmi
r,7

9 P

9 072 /p» ffi i f in 2

+
r,

IB i 9 IB 2

(IV-46)
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By application of the change of variable theorem in partial

differentiation one then obtains

p9 mi * /T?2 p* nil P> mi* m2

dU\ /dp\ fdU \ /dl
dp Jrp ^ \dT / \OMl/rn Q V " 1 /Q

(IV-47)

• ^ ) and ( • ^ 1 ) a r e each equa l
61/ \ 6 i J

p» mi 9 n?2 p9 mi $ ni2

to zero. Thus one has

[w) ^ . (IV-48)
1321 » ffl 2 P • m 1

Similarly it follows that

IJ72

(IV-49)
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Also by application of the change of variable theorem in

partial differentiation one obtains

ML \
pi

mi ' '1 , p,

(IV-50)

The two derivatives ( TT— ) and ( -r̂ - ) are

each equal to zero and the derivative ( TT-1 } is equal

t 0

i 7 7 1
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Similarly we have

JhJILL
'dm i IT,

m2 (IV-52)

Consequently substituting the values of the derivatives from

the right side of equation (IV-46) for the value of the

derivative on the left side of equation (IV-45) one obtains

\dT/ + m-.
T, p

p> mi t m%
ip, sii,

5?) D
It p»

- P I
m2

CP "
(d¥

(IV-53)
p*

Next substituting the values of the derivatives from
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equations (IV-48), (IV-49), (IV-51), and (IV-52) in equation

(IV-53) one has

J ^ . (IV-54)

/3t/\ . . « /3F\
The derivative ['Wj ^ 1S e cl u a l t0 cp ~ P\$f)

^ p, mi X 'p,

Hence one obtains finally

. p^!L (IV-55)
3mi Pom1dT ' K± }

In a similar way carrying out the indicated differentiations

in equation (IV-31) and making use of the change of variable

theorem in partial differentiation one has

M: - i -ssf- • (IV-56)

1 The same result is derivable from equation (I¥-26)..

2 The same result is derivable from equation (IV-32).
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Combining equations (IV-55) and (IV-56) one has

d2u T d
2s d2v

T i ' P 3*i3r * (IV-57)

Likewise carrying out the indicated differentiations in

equation (IV-27) and making use of the change of variable

theorem in partial differentiation one obtains

d2U 3*p d2V 3

Also, carrying out the indicated differentiations in equation

(IV-33) and making use of the change of variable theorem in

partial differentiation one has

d2S

Combining equations (IV-58) and (IV-59) one has

= T 3^7 " P dSj£ ' (IV-60)

The same result is derivable from equation (IV-28).

The same result is derivable from equation (IV-34).
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From (IV-44) it follows that

and from (IV-43), (IV-44) and (IV-61) it also follows that

From (IV-44) it follows that

3^n a
(IV"63)

and

(IV-64)

Combining (IV-58) and (IV-64) one has

- p 3B 3 (IV-65)

and, similarly, combining (IV-59) and (IV—64) one has

d2S 32y
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Finally substituting the value of lp from equation (IV-44)

in equations (IV-13) and (IV-21) one obtains

m2

(IV-67)

and

T» mi• m2

Thus, just as in the case of a binary system of one

phase and of unit mass, there is one relation, equation

dV dV dV ^ w

(IV-44), between the seven derivatives, -7r=t -~—, -TO, cn, Zn,
01 op O^l r r

S/ >w»

TO » re . Consequently a l l seven will be known if the

following six are determined by means of experimental

dV dV dV v dU dSmeasurements: -5=, -5—, ^=r , c n , ^3 , ^c . There are
o 1 op OJ711 r^ uHJ i Oi3J 1

also eight relations, equations (IV-55), (IV-56), (IV-61),

(IV-62), (IV-63), (IV-64), (IV-65), (IV-66), between the
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den ^R H E H E H E H E a2^ 82t/
" 3 T f 3p ' "Sin? 37" dp 9 dml

9

J~ , ^w'2 » by means of which from the following ten,dm i °

d2V

the remaining eight can be calculated. From equation (IV-62)

dc L
—— can be calculated; from equation (IV-61) -rS- can be
op ol

calculated; from equation (IV-63) ~ " can be calculated;
op

3Z
from equation (IV-64) irzr- can be calculated; from equation

O U •> - I I J . J . C a_« /TT7 C C \ O U3/7
(IV—55) <\rp<y^ can be calculated; from equation (IV-55) ^ ̂  -

3 S
can be calculated; from equation (IV-56) ^ ^ ^ can be

32<T
calculated; and from equation (IV-66) ^ .j can be calculated.

It will therefore suffice in the case of a binary system of

o n e phase and of variable total mass, just as in the case of a

binary system of one phase and of unit mass, to determine the

specific volume over the range of temperature, pressure, and

composition that is of interest. The value of Cp then needs

to be determined as a function of temperature and composition

at one pressure. Finally the values of the energy and the
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entropy need to be determined as functions of the composition

at one temperature and one pressure. Thus in order to obtain

complete therraodynamic information for a binary system of one

phase and of variable total mass no additional experimental

measurements have to be made beyond those required to be made

in order to obtain complete thermodynamic information for a

binary system of one phase and of unit mass over the same

range of temperature, pressure, and composition. The

necessary measurements to obtain complete thermodynamic

information for a binary system of one phase and of unit mass

over a given range of temperature, pressure, and composition

were described in Part III of this text on pages 126-136. In

part III the use of galvanic cells to determine the specific

Gibbs function was explained, and from the specific Gibbs

function combined with measurements of the specific volume and

determinations of the specific energy (which do not require

measurements of heat quantities under equilibrium conditions)

the calculation of the specific entropy was also explained.

In the authorfs article entitled "The Operational Basis and

Mathematical Derivation of the Gibbs Differential Equation,

Which Is the Fundamental Equation of Chemical Thermodynamics"5

it was shown how osmotic cells could also be used in place of

galvanic cells to obtain the specific Gibbs function.

It is notable that in order to obtain complete

thermodynamic information for a binary system of one phase and

of unit mass, and likewise for a binary system of one phase

5 Tunell, G., in Thermodynamics of Minerals and Melts -
Advances in Physical Geochemistry, edited by R.C. Newton, A.
Navrotsky, and 3.J. Wood, Springer-Verlag New York, Inc., New
York, Heidelberg, Berlin, 1981, pp. 3-16.



BINARY SYSTEMS OF VARIABLE TOTAL MASS 193

and of variable total mass no definition or measurement of

heat or work in the case of an open system when masses are

being transferred to or from the system is required.6

Derivation of any desired relation between the

thermodynamic quantities T, p, mi, JH2, V9 U9 S,

and their first derivatives for a binary system of one

phase and of variable total mass by the use of

functional determinants (Jacobians)

Equations (IV-1), (IV-11), and (IV-19) can, in general,

be solved for any three of the quantities, T9 p, m\ 9 /T?2» V9 Uf S,

as functions of the remaining four. The first partial

derivative of any one of the quantities, T, p, mi» m2> V, U9 S9

with respect to any second quantity when any third, fourth,

and fifth quantities are held constant can be obtained in

terms of the six derivatives -^=, TT~, TTZ; * cnf TTZ? , TTZ ,
01 op oiB\ y dm i aw i

and certain of the quantities T, p, mi, m2» mi, m2^ V, Uf S, by

application of the theorem stating that, if

w' = OJ(V» x, y, z)t w = f(s, t9 u, v ) 9 x = <p(s9 t, u, v ) f

y = ^(s, t, u, v), z = 6(Si» t, u, v), then one has

The definitions of heat and work in the case of o-pen
systems used by various authors are discussed in Appendix A to
Part II and Appendix A to Part IV of this text.
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3" A y, z

dv)
ds

dx
ds

ds

dz
ds

dw
ds

dx
ds

hL
ds

dz
ds

dw1

3t

dx
3t

dt

dz
dt

dw
dt

dx
at

iz
at

dz
at

3u

dx
du

iz
du

dz
du

dw
du

dx
du

h.
3u
dz
3u

dv/
dv

dx
dv

iz
dv

dz
dv

dw
dv

dx
dv

h.
dv
dz
dv

3(s» t, u, v)

3(^, Xf y9 z)

d(s9 t, u, v)

(IV-69)

provided all the partial derivatives are continuous and

provided the determinant in the denominator is not equal to

zero.

In Tables IV-1 to IV-35 (on pages 230-264) the value of

the Jacobian is given for each set of four of the variables,

7\ p9 fflii ̂2» ̂ # U* Sf as w', x, y9 z or i/, x, y, z, and with

T, p9 mi* mz as s» tf u» y. There are 140 Jacobians in the

Tables, but one has

d(wf x, y, z)
3(s» tf u» v)

x, y,
3(sf t» u»

x, 3(x, y, z, w)
3(Sf t, Ut ̂ )3(s» t» u9 v)

(IV-70), (IV-71), (IV-72)

because interchanging two rows of a determinant changes the

sign of the determinant. Hence it is only necessary to

calculate the values of 35 of the 140 Jacobians. The

calculations of these 35 Jacobians follow:
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T, p> 1771

dm 2
dT

dT
dT

dT

dm i
dT

dm 2
dp

dT
dp
&
dp

dm i
dp

dm 2
dm i

dm i

la
dm i

dm i

dm 2

dm 2

dm 2

3^2

dm 2
dT 0 -

dm 2

dp 0 + dm 2
dm 1

O - O + O - l - l

- 1 (IV-73)
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» 7\ P> mi)
3(r, /Dli

3^ IK IK 1Z
3T 3p 3/731 3m2
_3T dT_ 3T 3_T
3T 3p dmi dm2
dp dp dp dp
dT dp dmi dm2
dnii dm i dm i dm i
dT dp dmi dm 2

dV_ n IK
dT ' U ~ dp dmi dm 2

37
dm 2

1 f P

(IV-74)
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%(U, T, p , m i )
3 ( r , p» /Di»m 2)

317 317 3£ JM/
dT dp dm i dm 2

61 01 61 dl
dT dp dm i dm 2

op dp dp dp
dT dp dm i dm 2

dm i din^i dm i dmi
oT dp dm i dm 2

di dp 3nj! 3/332

3U

(IV-75)
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d(S, T, p, DJI)

9(T, p. mi' mi)

dS
dT
dT
dT

l£
dT

dT

dS
dp

dT
dp

dp

dm i
dp

dS
dm i

_3T
dm i

i£
dm i
dm i
dm i

dm 2

dT_
dm 2

dm 2

dm i
dm 2

ds as
9p

# -0 - l̂

95
dm 2

(IV-76)
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3<r, r,
3(r, p,

P» ^2)
iZ?X » ^ 2 /

9F
3T

dT
dT

i£
9T
3m 2
37"

3K
9p
3r
3p

9p

3^2
3p

3m 1

3m 1

3m 2
3m 1

3m 2

3T
3m 2

3m 2

3m 2

3m 2

dV

af dm 1 dm 2

r, p
(IV-77)
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d(U, T, p, m2)
3 ( T > p 9 mi, f l ? 2 )

Ml ML ML Ml
dT dp dm i 3/732

31 II H II
dT dp dm1 dm 2

dT dp dm i dm2

din 2 dm 2 dm 2 dm 2
3T *3p ~dm\ ~dm2

ML
ar 3mx

M

(IV-78)
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3(S,
3(7",

T, p , m2)
p, IBi , fi)2)

ds
dT
dT
dT

l£
dT

dm 2
dT

ds
dp

dT
dp

*R
dp

3m 2

35
3/77 i

11
dm i

l £

3m 2
dm i

3S
3/23 2

_3T
3iJ32

l£
3i7?2

3i3?2

3m 2

9S n _ 3S

3m i

s + s (4 )
T, p

(IV-79)
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3(7\
T, p, V)
p » 11} i 9 HI 2 )

dT

dT
dT

i £

3p

8T
3p

l£
8p

dm i

dT
dm i

3£

3/n

dT

3iJ7

3t/ 3[/

3T 3p

3T dm 2 dm 2 dm i

ML I I
0/231

(IV-80)
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d(S, T, p, V)
d(T, p, n?i, JB2)

dS
dT

dT
dT

l£
dT

dv
dT

ds
dp

dT
dp

dp

dV
dp

dS_
da 1

dm 1

dm 1

11
dm 1

as
dm 2
dT
dm 2

la

dm 2

ds n as r as 3F as dv
• f ) — — - — • (l -L. • _ •• •

dT dp dm 1 dm 2 dm 2 dmi

dS_ # dV_ _ 3S m 3 £
3ii?i dm 2 aii? 2 3/771

(IV-81)
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d(S, T,
d(T, p ,

p. U)

dS
dT

dT
dT

9£
dT

dU
dT

dS
dp

dT
dp

3p
du
dp

as
3fl?i
di
dm i

dm i

dm i

dm 2

dm 2

dm 2

dg
dm 2

dT dp dm i dm 2 dm2 3m i

dm i
Ml ML

P ^m^T,p
(IV-82)
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3(7, T, m
3(7\ p, m

dV
dT

dT
dT

dm 1
dT

3T

37
3p
dT
dp

dm 1

dm 2
dp

dm 1

3T
3m 1

3m 1
3m 1

dm 2
dm 1

11
3m 2

3T
3m 2

3m 1
dm 2

dm 2
dm 2

3T dp dm 1 dm 2

dp

(IV-83)
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d(U$ Ty mi 9 /1/2)
3 ( T f p» /771 9 /Z?2)

3tf
3T

3T
3r
3i27i

dT

dm 2
dT

dU
dp

dT
dp

dm 1
dp

dm 2

dp

ami

dm 1

dm 1
dm 1

dm 2
3^i

ML
dm 2

dm 2

dm 1

dm 2

dm 2

8T dp — • 0
dm 2

dp

dv\
k ^ 'T. OTiJ

(IV-84)
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d(S* T9 mi 9 1112)

dS
dT

dT
dT

dm 1
dT

dm 2

dS
dp

dT
dp

dm 1
dp

dm 2

dS_
dm 1

dT_
dm 1

dm 1
dm 1

dm 2

as
dm 2

dm 2

dml
dm 2

dm 2
dT dp dm 1 dm2

oS ^ Q _ dS ^ , dS
dT dp 3/731 3/7?

dS_
dp

(/Di + Z&2) 3 ^ (IV-85)
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d(U, T, m i , V)
d(Tf p , m\* m2)

W
dT

dT
dT

dm i
dT

dv
dT

du
dp

dT
dp

dm i
dp

dv
dP

ML
8/771

IT
8/771

8/771
8/771

dm i

dU_

dm 2

dT_
dm 2

dm i

dm 2

dv_
dm 2

M , o - — • — + — • o + — • —
dT dp dm 2 dm i dm2 dp

8/722

fdV\

. i t / « T | I r T»
+ M - ffl 1 1 " ^ / T

p M
(IV-86)
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3(S, T, mi, V)
3(1", p> mi 9 012)

dS
dT

dT
dT

3/2?!

dT

dV
dT

dS
dp

dT
dp
dm 1

3p

37
3D

3S
3m 1

dT_
dm 1

dm 1
dm 1

dV_
dm 1

dS_
dm 2
dz
dm 2
dm 1

^m2

dm 2

n 3S 3^
U dp dm2

35 dV_
U + dm2' dp

dp dm 2 dm 1 dp

(IV-87)
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3(S, T, mlf U)
d(T, p9 mi, /??2)

ds
dT
dT
dT

dm i
dT

dU
dT

dS
dp

dT
dp

3i77l

dp

3/7
dp

as
dm i
3T
dm i

dml

dm i

W_
dm i

dm 2

dr_
dm 2

dm i

dm 2

Ml
dm 2

dT dp dm 2 dm 1 dm 2 dp

i£ . ML ML . ML
op dm 2 dm 2 dp

(IV-88)



BINARY SYSTEMS OF VARIABLE TOTAL MASS 211

3(17, T, m2,
3 ( 7 \ p , 737 i » m2)

dU
dT

dT
dT

dm 2
dT

dV
dT

dU
dp
dT
dp

dm 2
dp

dV
dp

3£
dm i
d£
dm i

dm 2
dm i

ML
dm i

W_
dm 2
3T
dm 2

dm 2
dm 2

ML
dm 2

ML
dp 3/i3i* dp 3/772

ML . II - i£ # I I
dp 3/771 3/771 3 p

l'T,p

(IV-89)



212 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

3(S, r, m2, V)
3 ( l j p 9 mi 9 733 2 )

dS
dT

dT
dT

dm 2
dT

dV
dT

dS
dp

dT
dp

dm 2
dp

IK

as
dm i
3T
3m i

3m 2
3m i

IK
3m i

as
dm 2

3T
3m 2

3m 2
3m 2

dm 2

i ^ . 0 + 1 ^ . 9 Z _ i £ # a7 __ as
dT dp 3m i 3i3?i 3p dm 2

3p
IK IK

3p

J^iw (IV-90)
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d(S, T,m7, U)
3 ( T > p9 mi 9 niz)

dS
dT

dT
dT

dm 2
dT

dU
dT

dS
dp

dT
dp

dm 2
dp

dU
dp

dS
dm1

11
dm i

dm 2

dm!

3£
dm i

as
dm 2

11
dm 2

dm 2

dm 2

ML
dm 2

as 3S 3LT _
dT dp ' dmx

Ŝ i£ __ 3S
3 / 7 2 " 3 p 3/i7 "

as
dp

dm i dm i dp

(IV-91)
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3(S,
3(r,

T, V, U)
p> ni» D72)

dS
dT

If
dV
dT

dU
dT

dS
dp
dT
dp
dv
dp

3D

dm 1

dm 1

dV_
dm 1

dmi

2l
dm 2

3T
dm 2

dV_
dm 2

dm->

i£ . 0
dT

.ML
i 3/272

35/37
3i22l\3p

35 / 37 31
3p

p$ nix r p r

(IV-92)
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d(V9 p9ml9m2)

3(2\ p. mif m2)

dv
dT

dT

3/Dl
3T

dm 2

dT

dV
dp

i£
3p

3i732

3D

dv_
dm i

dmx

dm i
dm i

dm 2
dm i

dm 2

te.
dm 2

dm i

dm 2

dm 2
dm o

dv dv dv w
-rz; ' 1 - -r- • O + -~- • 0 - -̂— - 0dT dp dc?i dm 2

dT

p,
(IV-93)



216 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

3(t/» p> inif
d(T, p, mi,

mz)
m2)

dU
dT

dT

dm i
dT

dm 2
dT

dU
op

dm i
dp

dm 2
dp

ML
dm i

dm i

dm i
dm i

dm 2
dm i

ML
dm 2

9£
dm 2

dm i

dm 2

dm 2
dm 2

dT
W n x du

-. . y ̂_ _
dp ami

- TT- • 0

dT

= (mi + /772) CP -pl"3TJ (IV-94)
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d(S9 p9 mi9 /??2)

d(T9 p9 mi9 n ? 2 )

ds
dT

9£
dT

dm i
dT

dm 2
dT

dS
dp

9£
dp

dm i
dp

dm 2
dp

dm i

l£
dm i

dm i
dm i

dm 2
dm i

dS_
dm 2

*R
dm 2

dm i

dm 2

dm 2
dm 2

<3i dp dm i dm 2

as
3T

(fl?i (IV-95)
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d(U, p , mi, V)
8 (T» p» m\9 m2)

3/7 3f/ W_ 3£
3f 8p 3/n.x 3m 2

dT dp dm 1 dm 2

dm 1 dm 1 dm 1 3m 1
dT dp dm 1 dm2
37 9F 3F 9£
dT dp dm 1 dm 2

M 1 K l^
dT " 8m 2 8p

8m2

P* mi

(IV-96)
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3(5 , p . a i , 7)
3(T> p» mi

3S
3T

3j>
3T

dm i
37"

37
37

3S
dp

3£
3p

3m i

37
dp

3S
3m!

3m x

3m i
3m i

37

dm 2

dm 2

dm i
3m 2

37
3m 2

3m2 dp

3£ . It
dT * 3m2

11
3/372

1L

-»•(£!]

(IV-97)
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8(5, p» mi >
3(7\ p, mi•

V)
m2)

dS
dT

dT

dm i
dT

du
dT

ds
dp

dp

dm i
dp

dg

dm i

dm i

dm i
dm i

dm i

3S
3m 2

l£
dm 2

dm i
dm 2

dU_
dm 2

is . ML _ 3 £
dT dm 2 dp dm \ dm 2 dT

dS
dm2

>{*•-.>#[<*-

(IV-98)
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3([7, pf m2» VJ_
0\l 9 p » mi? il?2 )

dU
dT

If
3m 2
3T
37
3T

W
dp

3p

3m 2
8p

3 D

3m i

dm i

dm 2
dm i

dv_
dm i

dU_

dm 2

up
om 2

dm 2
dm 2

dV_

dmo

dT
dU_
3p

dV_
3T

3mi 3T

T, pj

- cT (IV-99)
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d(S, p,
d(T, p,

3S
3r

3T

dV_
dT

dS_
dp

is.
3p

as
dm-i.

dS

dm i dm 2

dm 2 3/77;
dm i dm ̂

dp dm i dm 2

I S 3 V 3 S n 3 S 3 I _ 3 S . O
37 ' 3/ji! 3p 3mi 3T 3m2

3S 3£ 3S
3T1 ' 3m i +

(IV-1OO)



BINARY SYSTEMS OF VARIABLE TOTAL MASS 223

3(5, p, m2f U)
3(T, p> /3?i, ^2)

as
3r

3T

3/13 2

3r

3T

3S
3p

l£
dp

dm 2
dP

9p

as
3m 1
3£
3/331

3/77 2
dm 1

dm 1

3/77 2

l £

3/77 2
3/77 2

3/77 2

3 5 3 £ / 3 5 . 0 ^ - ^ ^ .
dT %m1 dp dm^ dT ~ dm2

35
3m!" 3T

x / r , p
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3(5, p, V, U)
3(7% p$ mi $ /??2)

35 35 ^5 3S
dT dp dm i dm 2
dp dp dp dp
dT dp dai dm2
dV_ 3£ dV_ j)£
dT dp dm i dm 2
W_ 3£ dU_ dU_
dT dp 3/2?! dm 2

35/3F # 9£/ _ M t

3T\3 3 3

3m

dT dT ' dmi

(IV-1O2)
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3( /7 , m i , m2f V)
3 ( T 9 pi mii J J ? 2 )

w
dT

dm i
dT

W
dv
dT

du
dp

dm i
dp

dm 2
dp

dV
dp

dm i

dm i
dm i

dm 2
dm i

11
3m i

W_
dm 2

dm i

dm 2

dm 2

dm 2

37
3m 2

ML £L 3£ I I 1 .̂ n - 1 .̂ n
3T * 3p " dp ' dT + 3 m / u 3m2*

 U

dT ' d p d p ' dT

(IV-1O3)
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3(5, _f V)
d(T, p,

dm i
dT

dm 2
dT

dv
dT

35
dp

dm i
dp

dm 2

dv
dp

as
dm i
dm i
dm i

dm 2
dm i

dm i

as
3m 2
3m i
3m 2

3m 2
3m 2

dv_
3m 2

dT * dp dp ' dT + 3 m /
as
3 i 3 7 "

(IV-104)
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d(S, If)
3(7,

95

dm i
dT

dm 2
dT

dU
dT

95
dp

dm i
dp

dm 2
dp

du
dp

dS_
dm i

dm i
dm i

dm 2
dm i

317
dm i

dS_
dm 2

dm i
dm 2

dm 2
dm 2

ML
dm 2

a s ^ / _ a s 3 f / 9s n
9T * dp dp ' dT + 3/77! * U ^s

" 9 / n * U
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i.V.U)

3(7\ L» m2)

dS
dT

dT

dV
dT

dU
dT

dS
dp

dm i

dv
dp

du
dP

If,
3/771
3/7? i

It
3/7? i

3/3? i

3S
3/77 2

3/771

3/77 2

37;
3/7? 2

dm 2

35/17 # 3£ __ 37 # 3£ \
3T\3m2 dp dp dm2)

dP\dm2' dT ' dm2)
ML n
3/2i

PV - TS) - XM
V 3 n ?

(IV-1O6)
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3(S, m9, V9 U)
3(7% p» m\ 9 m2)

35
dT

dm 2
dT

dv
dT
du
dT

35
dp

dm 2
dp

dv
dp

dU
dp

as
3/33 !
dm 2
dm i

37
dm i

ML
dm i

as
dm 2
dm 2
dm 2

dV_
dm 2

dU_

dm 2

21 (ML 2L _ ML . ML \
dT [dmx* dp 3/77! * dp I

_ 21(21 . 21 _ IK . 2IL)
dp \3i37i* dT 3/33]/ dT )

+ 21 (21. IK _ 21.21) _ is # Q
3/13 x\ 3p dT dp dT I 0/732

J- * P J- 9

if)2

T,
(IV-1O7)
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\x» y» z

W >w

02

y

V

s

Jacobians of
binary

3(v't Xf Yi
3(7\ p, ail,

- 1

Table IV-1
extensive functions
system of one phase

z) 3(V, Xf yt
m2) * 3(r, p,/BX

T , p , f f l x

- 1

> + »i ( TT? I

for a

, D72)
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Table IV-2
Jacobians of extensive functions for a

binary system of one phase

d(w', x, y, z) d(w, x, y, z)
O\l f P 1 Ul\i U12) 0{i $ pi El I f 1112 )

\>r, y, z

w\
w \.

5

Tt p, m2

1
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\x» y* z

w \.

m2

U

s

Jacobians of
binary

3(V, x, v,
a(7\p.*i.

-

Table IV-3
extensive functions
system of one phase

z) 3(v» x» y»
0 2) ' 3(r,p.mi

T, p, V

(S.)r.F^(I,)r.

for a

2)

-
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Table IV-4
Jacobians of extensive functions for a

binary system of one phase

\x , y, z

w \

m1

m2

V

S

d(w', x, y, z) d(w9 x, y, z)
3 ( T , p , n l f m 2 ) * 3 ( T , p , m l f n 2 )

r, p, c/

V 3 r a i / T,p

- U - m2las )

u(& ) - v(& )
\dmiJrn \3ffll/T

i » P 1 t P
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\x» y» z

w \w \.

mi

B2

V

V

Jacobians of
binary

d(w'r x, y,

-

S

Table IV-5
extensive functions
system of one phase

2) 3(v, x, y,

7, p,S

for a

P
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P

V

(J

s

Jacobians of
binary

3 O \ X, y,
3(T, p, zalt

Table IV-5
extensive functions
system of one phase

z) 3(w, Xt y,
^2) ' 3(r» p9 nil

- 1

for a

z)
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\x» y» z

p

. ,

V

s

Jacobians of
binary

30/', x, y,
3(2\ p. JBI.

*

« . . .

Table IV-7
extensive functions
system of one phase

z) 3O, x, y,
m2) ' 3(r, p, mi

T*» p

+ ni2,j\ \̂" J
T» /ni

^ ^ v- [fhU \
J + p V ) — /Z?i{ i TTTT )

for a

z)
» iD 2 )

l \ Op Xrj '^ f
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\> x, y, z

w Xw X.

p

^ 2

>

s

Jacobians of
binary

d(w', Xf y,
3(7\ p, n?lf

- ( m i *

- ( m i + i332)| (£

(mi + ffl2)s (L

Table IV-
extensive
system of

z)

T, mi,

1 + pV) - m

f - fe) - a

- KsJT

8
functions
one phase

3(&s x, y.
3(T, p, f f l l

, //3ff \

•<(I,)T,

for a

, O22)

/'®.)r.J(«l.Sl

p-nw r (Pjjujp>f f i

r, aj
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\Xt y» z

P

.,

U

Jacobians of
binary

«.'.*. r
3(Tt pt /zzx

Table IV-9
extensive functions
system of one phase

z) 3(vt Xf y»

OT2) f 3(7*1 p» /̂ x

T t m 11 S

p» #1

L ^ mi'ft p

for a

z)
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w \

P

.,

u

s

Jacobians of
binary

d(wr, x, y,
3(Tt pi E2\*

7

*

Table IV-10
extensive functions
system of one phase

z) d(w, xf y,
^2) ' 3(T** p» /n 1

r, m2, v

•*•(&>„

for a

Mi,

](M.)
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w N.

P

.,

V

>

Jacobians of
binary

3(v't x,_y*
3(7% p» iDj s

(mi + ffl2)-J (2

- • • *

Table IV-11
extensive functions for a
system of one phase

z) 3 O y «)
a 2) 3(r, p,a71(.T72)

p/J^ ^p, Si
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\x, y, z

i \.

P

«

V

•

Table IV-12
Jacobians of extensive functions

binary system of one phase

d(w', x, _y, z)^ 3O» x, x»
3(7, p, mi, n 2) ' 3(7, p, /Di

7, m2» S

t*l!S.;

for a

z)
. m2)

p\[dTLsi
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Table IV-13
Jacobians of extensive functions for a

binary system of one phase

P

«

S

d(w', x, y, z) 9O, x, y, z)
o ( i t p , ZD i » n 2 / 9 ( i » p » 311 » ^2/

T. V, U

r / w \ -i / *" \ ^

.T;:;:,:g{:fuw'
/ O r \ 1 / rr »̂ »> f o S 1 t U l l a U \ 1 3 r \ i l l

*F 1 >>' " J 1 ( U 4* D r } 1 >s %* 1 —" OI { •"""""" I + Dl ' J 1 1 V
\ & P frp ^ I \ u $ ® \ / m \ \ o f l ® 1 / m \ ^ ® 1 / T » i l l
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\x, y, z

W N.

P

..

m2

U

Jacobians of
binary

3(7% ptWi

(mi +

-<—

^ jpt mi

P T, m}

Table IV-14
extensive functions
system of one phase

, z) 3O, x, y,
f /*?2 ) 3 ( 7 % p » 57

7% F, S

7% p 7% p

+ [s + £2(^l)
L ^ mi'Tf

L L Tt p

for a

z)

J(i,J
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\ x , y,z

w \

P

mi

m2

V

Jacobians of
binary

3(v ' ,x , y,
3(7% p» mi»

1 *

Table IV-15
extensive functions
system of one phase

z) d(w, x, y,
B?2) ' 3(T, p, JJ?I

. ) , , -« , ,

\ 1 t p

is p

for a

z)
, 0 2 )

01

i 9 p /J n> /I? j_
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\x» y» z

w \
w \.

T

V

U

S

Jacobians of
binary

d(w't x, y,
d(T, pf wi,

(

Table IV-16
extensive functions
system

z)
m2)

P»

(mi +

of one

d(T

3 7 1 » /772

1

•>(i?)

phase

» ^ » y»
> pt B 1

« . . .

for a

z)

J
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w \.

T

m2

U

S

Jacobians of
binary

3(w', x, Y*
a(JT, p, nil,

....

• *

Table IV-17
extensive functions
system of one phase

z) d(w, x, y,
m2) * d(T, p, mi

p. an V

p* nil

S - ^i (-rt? ) \~

for a

z)
, a 2)
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w \.

T

m2

V

S

Jacobians of
binary

d(w*, x, y,
3(X» pt ni11

Table IV-18
extensive functions
system of one phase

z) 3O, x, y,
m2) * HT,p,mi

p » *D 11 £/

\ 0*311 /-,

L p« nil

j I \ OS

/3iS \ 1 /9 F \

for a

z)
.«2)
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\x, y, z

T

«

V

u

Jacobians of
binary

3(v', x, y.
3(7\ p, 3?!,

-

- (mx +

Table IV-19
extensive functions for
system of one phase

z) d(w, x, y, z)
JD2) ' 3(7*f p» /!3i » t^Z/

p» i27 1» S

'-'•ft),..

a

]

!
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\ x , y, 2

w \ .

T

mi

U

S

Jacobians of
binary

3(v', x» y,
3 ( i » pi I3i9

-

(mi

: *

Table IV-20
extensive functions
system of one phase

z) d(w, x, yf
/n2,) 3(2T» p» mi

p* m2f V

pi JDi

•* w / 3F \ 1

for a

z)

' ^ 1
3T/ - J

p» flij .- '
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\Xt y, 2

T

mi

V

•

Jacobians of
binary

d(wr, x,_yf
3(7\ pf mlt

-

\H31 4*

- (JDI 4- m2)i -̂

+ 54

Table IV-21
extensive functions
systen of one phase

z)

Pt mi*

- /as \

3(w, x, y,
3(T. p, ai

u

p» ni

MS)
PJ P*

for a

z)
*2)

]
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\*» y* z

T

V

u

Jacobians of
binary

-3O', x, y,
o(T"» pt mi t

-

• [ •

\W\ + i3J2/i "̂ i

Table IV-22
extensive functions
system of one phase

z) 3O, x, y,
/312) ' 3(^» P» ^1

P....S

O l T, p

(mi + 02) " ^

~ (t/ — i S ) + IB21 V ^ **
1 \ \OJH

for a

z )

J ; j " * u i
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Table IV-23
Jacobians of extensive functions for a

binary system of one phase

\x , y, i

T

mi

m2

S

3(w\ x, y, z)
S ( T n m m \

O\l » p» J271 f "*2y

P-

W l / r , P

d(w, Xt y, z)
O^I » p , C31 » CJ2 ^

KdaJT, p
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\x, y, 2

w \
w \.

T

mi

m2

U

Jacobians of
binary

3 ( w' * x> y»
3(7\ p, nil,

(m

Table IV-24
extensive functions
system

a2)

. . . .

U + pV

of one phase

d(jvf x, y»
3 ( T . p , a i

f', S

s2(H) 1(|

for

D
^̂
)T/

Z )

T J

a

>

r, p

„
...

r. j

]

>

]
}

4

v3ffli

• P i "
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\x» y, z

T

m2

V

Table IV-25
Jacobians of extensive functions for a

binary system of one

3(1% p, mi, m2) ' 3(T

p, U, S

(mi + m 2 ) ^ - \(U - TS) -

+ [s-4§)
1 r,

/ . \ J JP 1 fr-t T C \ "1

phase

i x, y» z)
, p» mi» /n2)

lV.P

Aw) - r
p-• p» nil's

m2 11 "5^ I — TLv J J

r, P r.P
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\ x , y, z

w ><

T

P

U

S

Jacobians of
binary

d(w',x, y,
O\Tt P» /Di »

- (

(mi +

Table IV-26
extensive functions for a
system of one phase

z) 3(RT, x, y, z)

...... r

T tOi

p*mi
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\x, y, z

T

P

V

S

Jacobians of
binary

3(p/f, x, y,
3(2% pt Bit

- , ,

-(a

Table IV-27
extensive functions
system of one phase

z) 3(i/, x, y,

1D2) ' 9(2% p» /3x

+ ni 2) Ĥ r'yT' ) + P
L p, /Dx

r / ̂ \
?x + m 2) cp - p("3y)

D2)2 T\3f j + cp

for a

z)
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\*» y, z

7

P

V

U

Jacobians of
binary

d(w't Xf y,
9(2% p, 2Si,

-

Table IV-28
extensive functions
system of one phase

z) d(w, xf y,
/32) * 3(2% pt nil

mi9 m-it S

p t ZE71

Cp

for a

•(flJ
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\ x , y, z

w N.

T

P

m2

S

Table IV-29
Jacobians of extensive functions for a

binary system of one phase

3(V, x* y, z) 3O, x, y, z)
acr,Pfff l l,*2) • 3(r,P.iD l f f l2)

11 \ \3/ni/m \oflii
v.L \ i f p

\, L \ T' * p

P 1 \ 3JD i / «-> j 1

L p» Si i t in

{1*;;:::;t»"6

)JR.,

>

>,,-«„)]
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\

7

P

..

U

Table IV-30
Jacobians of extensive functions for a

binary system of one phase

3(w', Xt y, z) d(wr Xt y» z)
3C7.p.ai,ur2) ' 3(7fp.ai,ffl2)

mi, V, S

— (IHI + 112)1 f — miv'^y ) l^r i
v.L Tip-* p* nil

v% L i j p J

I VoT" 1 ̂ * X \OP 1 rn *-> 1

a I 1 •• I J_ r 1 — I IV

t p Ttp / J
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w \ .

T

P

fl?2

V

Table IV-31
Jacobians of extensive functions

binary system of one phase

d(w', Xt y* z) d(w, x, y,
3(T» p* oi# 1U2) J 3(Tt p» #?x

rr - ~ ^ /Vaa \
L̂ \ Tf /

L r, pJ r

— (ZUX + © 2 ) I~"T' (^ ~ T S ) — 07XI l"^"^
I I I \ \O/37

+ S - ffliflf ) P ( I ^ )
L U i D l / r , pJ V 3 r T

2 r /3F \ 2 PC

- (ai + i?2)2] \(S + pV - TS) - « i ( ( | | )
LL Y mi/Tt p

Udv]2 ERfdv]

for a

z)
• » 2 )

..J

m\.

I

L
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Table IV-32
Jacobians of extensive functions for a

binary system of one phase

\x , y, z

w \ .

T

P

mi

S

3<V, x, 7, z) 3O, x, y, z)
a(rfp,ffll,fla) ' 3(rfpfffl l im2)

fl?2» V, U

t^'"*lJil*

. Ff wV + £k(3I\ 11
[UWp> j ^ r lap ij.t - J j
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\x» y» z

W >v

T

P

n

a

Jacobians of
binary

3(v'f x, Y
3(7* t p» 237].

-['

f/a

Table IV-33
extensive functions
system of one phase

, z) 30*/. x, y,

\ 1 P »? ** I Qv
O 2 /K 1 y -f" flJ 21 >N *~«

*4t)r.p](ll).

•..•««;.,,•

for a

2 )

r ffl2)

31

>

7, p
XX ) I

r,p/j



263

\ x , y, z

w \>

T

P

mi

V

Table IV-34
Jacobians of extensive functions for a

binary system of one phase

3(Vr, x9 y, z) 3(i/, x*Yf z\
3(T» p, mi, 532) * 3(T\ p» mi, 572)

Cm 1 Hh ®2 )^ rri j C^ ~* +Sj ~¥ 127 21 \ *> *•*' / "" ^ \"5*t7

[ * ' - ^ - J

V.L \ 1 t p I t p

' p, nil
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Table IV-35
Jacobians of extensive functions for a

binary system of one phase

\ x , y, z

T

P

. .

m2

d(w', x, y, z) 9(V, x, y, z)
o\T1 p, tni, a?2) ' o(T"» p9 nilt ni2j

V, U, S

JIM:)2 +f£[li) 1} '
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In order to obtain the first partial derivative of any

one of the seven quantities, T, p, ml9 m2, V, U9 S9 with respect

to any second quantity of the seven when any third, fourth,

and fifth quantities of the seven are held constant, one has

only to divide the value of the Jacobian in which the first

letter in the first line is the quantity being differentiated

and in which the second, third, and fourth letters in the

first line are the quantities held constant by the value of

the Jacobian in which the first letter of the first line is

the quantity with respect to which the differentiation is

taking place and in which the second, third, and fourth

letters in the first line are the quantities held constant.

To obtain the relation among any seven derivatives

having expressed them in terms of the same six derivatives,

3 ^ _

~~-p9 m i
 l T9 mi T9 p Tj p T9 p

one can then eliminate the six derivatives from the seven

equations, leaving a single equation connecting the seven

derivatives. In addition to the relations among seven

derivatives there are also degenerate cases in which there are

relations among fewer than seven derivatives.

In case a relation is needed that involves one or more

of the thermodynamic potential functions H = 17 + pV,

A = U - TS, G = U + pV - TS, partial derivatives

involving one or more of these functions can also be

calculated as the quotients of two Jacobians, which can

themselves be calculated by the same method used to calculate

the Jacobians in Tables IV-1 to IV-35.
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It will be noted that the expressions for the Jacobians

in Tables IV-1 to IV-35 are not symmetrical with respect

to the two mass fractions Si and m2. If the Jacobians in

these Tables had been expressed in terms of the derivatives

dV dV dU dU dS . dS . ,

ISt* M2> alx* BS 2' l a ^
 and a¥2'

 Wlth r e s P e c t t0 the

two mass fractions, mi and m29 rather than in terms of the

derivatives, TT-3 , -r^ » and -r-c , with respect to the single
ami dm i omi

mass fraction, mlf the symmetry of the expressions for the

Jacobians with respect to m1 and m2 would have been

preserved, but the Jacobians would not have been expressed in

terms of the minimum number of first derivatives. In this

case it would not have been possible to use the expressions

for the Jacobians directly to obtain a desired relation among

any seven first derivatives of the quantities, T9 p, mi9 m29

V, U, and 5, by elimination of the first derivatives, -r=9

dv dv dv - w du as A ds , .
"5~» irz f ~z~z t cD9 "T3 9 7y^ 9 TC * and •573- » rrom tne
op dm 1 amz ^ omi dfi?2 omi om2

seven equations for the seven first derivatives. Actually

with the use of the Jacobians in Tables IV-1 to IV-35 which

are expressed in terms of the minimum number of fundamental

, . . dV dV 8F ^ dU , dS . -
derivatives, ^ , j^9 ^ , cp9 ^ , and ^ , m spite o f

the fact that these expressions are unsyrametrical with

respect to mi and S29 it does not make any difference in the
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final result which component is chosen as component 1 and

which component is chosen as component 2. For example, if

one thinks of a solution of water and ethyl alcohol and if

water is chosen as component 1, then from Table IV-32 one

f dS \
obtains the derivative -r- I equal to

%-/ \J

pV-TS) +ffl2 ^.

Now from Table IV-29 one obtains the derivative

equal to

(|f J

On account of the fact that S\ + m2 = 1, one has

Consequently the same value would be obtained for the partial

derivative of the total entropy with respect to the mass of

water regardless of whether water were chosen as component 1

or as component 2.



Appendix A to Part IV

Equations for energy and entropy in the case of a

binary system of one phase and of variable total mass

developed on the basis of an expression for heat

in the case of an open system

In the author*s Carnegie Institution of Washington

Publication No, 408A1 equations were developed for energy and

entropy in the case of open systems on the basis of an

expression for the heat received by an open system. In the

case of a binary system of one phase undergoing reversible

changes of temperature, pressure, mass of component 1, and

mass of component 2, the heat received was shown to be

represented by the integral in the following equation

i o » p o 9 /z?i » / n 2 0

T» p» nt^» m 2

= / J (mx + m2) ZpdT + (mx + m2) Tp dp +

To f Po» fflln> ̂ 2 n

where lWl denotes the reversible heat of addition of

component 1 at constant temperature, constant pressure, and

constant mass of component 2, and lm denotes the reversible

1 Tunell, G., Thermodynamic Relations in Open Systems,
Carnegie Institution of Washington Publication No. 408A, 1977.

268
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heat of addition of component 2 at constant temperature,

constant pressure, and constant mass of component I.2 In the

case of a binary system of one phase undergoing reversible

changes of temperature, pressure, mass of component 1, and

mass of component 2, the energy change was shown to be

represented by the integral in the following equation

U(T, p, nil* m2) - U(TOf p0, m^, m^)

/{•
To* po

^ 1 * m2

(mi + mz) Cp - P " ^ \dT + (mi + i7?2) ^p -

(IV-A-2)

where mi denotes the mass fraction of component 1, S2 denotes

the mass fraction of component 2, H' denotes the specific

enthalpy of pure component 1 in equilibrium with the binary

solution across a semipermeable membrane permeable only to

component 1, and H'' denotes the specific enthalpy of pure

component 2 in equilibrium with the binary solution across a

semipermeable membrane permeable only to component 2.3 In the

2 Tunell, G., Carnegie Institution of Washington Publication
No. 408A, 1977, p. 40, equation (B-6), p. 42, equations
(B-10), and (B-ll), p, 46, equation (B-19), and P. 47,
equation (B-20).

3 Tunell, G., Carnegie Institution of Washington Publication
Mo- 408A, 1977, p. 52, equation (B-35).



270 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

Water
bath

;S--; F=

Figure IV-A-1



BINARY SYSTEMS OF VARIABLE TOTAL MASS 271

same case the entropy change was shown to be represented by

the integral in the following equation

S(T, p» mi, 1TI2) - S(T0, po? n?io»

p, m

+ m2) -jr dT + (mi + ./z?2) -ijr dp

To> Po>

+ \ - £ > + S ' \ d m l + | ^ P + S " \ d m 2

(IV-A-3)

where 5' denotes the specific entropy of pure component 1 in

equilibrium with the binary solution across a semipermeable

membrane permeable only to component 1, and S" denotes the

specific entropy of pure component 2 in equilibrium with the

binary solution across a semipermeable membrane permeable only

to component 2.1** 5 The derivation of these equations for

heat, energy, and entropy was based on a detailed operational

analysis of a system of three chambers immersed in a water

bath the temperature of which could be controlled (Figure

IV-A-1). Chambers I and II containing pure components 1 and 2

were separated by semipermeable membranes from chamber III,

which contained a solution of components 1 and 2. The

h Tunell, G., Carnegie Institution of Washington Publication
No. 408A, 1977, p. 56, equation (B-46)-.

5 For an explanation of methods for obtaining experimental
values for the lB

%s see G. Tunell, Idem, pages 46 and 59-62.
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membrane separating chambers I and III was supposed permeable

only to component 1; similarly, the membrane separating

chambers II and III was supposed permeable only to component

2. When the pressures exerted by the three pistons on the

contents of the three chambers were changed with maintenance

of osmotic equilibrium, causing movement of the three pistons,

and when the temperature of the water bath was changed,

causing a flow of heat to or from the materials in the three

chambers, the change of energy of the materials in the three

chambers, v/hich together constituted a closed system, was

given by the equation

U2 - Ul = Q - W, (IV-A-4)

where [/2 denotes the energy of the materials in the three

chambers in the final state, £/x denotes the energy of the

materials in the three chambers in the initial state, 0

denotes the heat received by the materials in the three

chambers from the water bath (a positive or negative

quantity), and W denotes the work done on the three pistons by

the materials in the three chambers (a positive or negative

quantity). Note that maintenance of osmotic equilibrium

required that of the three pressures in the three chambers

only one was independent, the other two were functions of the

temperature, the concentration in chamber III, and the one

pressure taken as independent. The materials in the three

chambers I, II, and III, together constituted a closed system

undergoing a reversible change of state. Consequently we have

S2 - Sx = ^ , (IV-A-5)
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where Si denotes the entropy of the materials in the three

chambers in the final state and S\ denotes the entropy of the

materials in the three chambers in the initial state. Thus

the total change in energy and the total change in entropy of

the closed system consisting of the materials in the three

chambers were experimentally determinable. Finally, by

subtraction of the energy changes of the pure components 1 and

2 in the side chambers I and II from the total energy change

of the materials in the three chambers, the change in energy

of the binary solution in chamber III as represented in

equation (IV-A-2) was derived. Likewise by subtraction of the

entropy changes of the pure components 1 and 2 in the side

chambers I and II from the total entropy change of the

materials in the three chambers, the change in entropy of the

binary solution in chamber III as represented in equation

(IV-A-3) was derived. For the details of these proofs the

reader is referred to Appendix B of the authorfs Carnegie

Institution of Washington Publication No. 408A.6 It is to be

noted that the only physical information used in the

derivations of equations (IV-A-1), (IV-A-2), and (IV-A-3) in

addition to the well established thermodynamic relations for

closed systems, was the fact that when mass of constant

composition is added reversibly to an open system of the same

composition at constant temperature and constant pressure no

heat is added.7

6 Tunell, G., Carnegie Institution of Washington Publication
Ho. 408A, 1977, pp. 34-58.

7 Cf. L.J. Gillesple and J.R. Coe, Jr., Jour. Phys. Chem.,
Vol. 1, p. 105, 1933, and G. Tunell, Carnegie Institution of
i%!ashington Publication No. 408A, 1977, pp. 18-24.
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It was not necessary to make use of any definition of

work in the case of an open system when masses are being

transferred to or from the system in the derivation of

equations (IV-A-1), (IV-A-2), and (IV-A-3). However,

according to the definition of work done by an open system

used by Goranson8 and by Van Wylen9 we have

dW = pdV . (IV-A-6)

In Appendix A to Part II of this text reasons for the

acceptance of this definition of work in the case of an open

system when masses are being transferred to or from the system

were set forth in detail.

The correct differential equation for the energy change

in an open system, when use is made of definitions of heat

received and work done in the case of open systems, was given

by Hall and Ibele in their treatise entitled Engineering

Thermodynamics. They10 stated that "A general equation for

energy change in an open system can be written

dE = dQ - dW + l(e + pv)idmi. (7.25)"

8 Goranson, R.W., Carnegie Institution of Washington
Publication No. 408, 1930, pp. 39, 44.

9 Van Wylen, G.J., Thermodynamics, John Wiley and Sons Inc.,
New York, 1959, pp. 49, 75-77, 80•

10 Hall, N.A., and W.E., Ibele, Engineering Thermodynamics,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1960, p. 108.
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In this equation dE denotes the energy change of the open

system, dQ the heat received by the open system, dW the work

done by the open system, e the specific energy of pure

component i in equilibrium with the open system across a

semipermeable membrane permeable only to component i, p the

pressure of pure component i in equilibrium with the open

system across a membrane permeable only to component i, and v

the specific volume of pure component i in equilibrium with

the open system across a semipermeable membrane permeable only

to component i . This equation is consistent with equation

(IV-A-2) of this text as well as with the equation of

Gillespie and Coe and with the Gibbs differential equation, as

we proceed to show. According to Gillespie and Coe11

dS = 4p + Z
1 i

where dS denotes the increase in entropy of an open system, dQ

the heat received by the open system, Sj the specific entropy

of pure component i in equilibrium with the open system across

a semipermeable membrane permeable only to component i, and

dwj the mass of component i added to the open system. Thus

we have

dQ = TdS — ZT,S-£ G?/Z?2
2

Substituting this value of dQ in the equation of Hall and

11 Gillespie, L.J., and J.R.. Coe, Jr., Jour. Chenu Phys., 1,
105, 1933.
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Ibele we have

dU = TdS - dW + !((/.£ + pVt - TS^dnii .
i

According to Goranson,12 Van Wylen,13 and Professor Wild1*4

dVl = pdV

in the case of an open system. Thus we obtain

dU = TdS - pdV + lG±dm± ,

2

where £2- denotes the specific Gibbs function of pure component

i in equilibrium with the solution across a semipermeable

membrane permeable only to component i. Since Gibbs proved

that at equilibrium the chemical potentials of a component on

both sides of a semipermeable membrane are equal and since the

chemical potential u of a pure component is equal to the

specific Gibbs function of this component, we thus arrive at

the result

dU = TdS - pdV + Z
i

12 Goranson, RJi., Carnegie Institution of Washington
Publication No, 408, 1930, pp. 39 and 44.

13 Van Wylen, op. cit, pp. 49, 75-77, 80.

114 Private communication from Professor R.L. Wild, who was
formerly the Chairman of the Physics Department of the
University of California at Riverside.
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where y^ denotes the chemical potential of component i in the

open system (solution) and dm± denotes the mass of component i

added to the open system. We have thus demonstrated that the

equation of Gillespie and Coe and the equation of Hall and

Ibele are consistent with the Gibbs differential equation.



Appendix B to Part IV

Transformation of the work and heat line integrals from

one coordinate space to other coordinate spaces in the case

of a binary system of one phase and of variable total mass

As in the case of a one component system of one phase and

of variable mass it is also true in the case of a binary

system of one phase and of variable total mass that it is not

necessary to define either work or heat when masses are being

transferred to or from the system in order to obtain the

energy and the entropy as functions of the absolute

thermodynamic temperature, the pressure, and the masses of the

two components from experimental measurements. Thus the

derivation of the Jacobians listed in Tables IV-1 to IV-35 did

not depend upon definitions of work done or heat received in

the case of a binary system of one phase and of variable total

mass when masses are being transferred to or from the system.

For some purposes, however, it is useful to have

definitions of work and heat in the case of a binary system of

one phase and of variable total mass. If the conclusion of

Van Wylen and Professor Wild be accepted that it cannot be

said that work is done at a stationary boundary across which

mass is transported, then the work W done by a binary system

of one phase and of variable total mass can be represented by

the line integral

Tf p, fill $ 21?2

fdT + p^dp + pf idmi + pf£<*

p 0, ml f m2
° (IV-B-1)
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in (T, p, i77l9 m2)-space. Furthermore it was shown in Appendix

IV-A that the heat 0 received by such a system is represented

by the line integral

T, p, m i, m 2

r0.Po.«H0.ffl20 (IV-B-2)

in (7\ p» mi, m2)-space, where lmi denotes the reversible heat

of addition of component 1 at constant temperature, constant

pressure and constant mass of component 2, and lm denotes

the reversible heat of addition of component 2 at constant

temperature, constant pressure, and constant mass of component

1. In order to obtain the total derivative of the work done

along a straight line parallel to one of the coordinate axes

in any other coordinate space one obtains from Tables IV-1 to

IV-35 the partial derivative of the volume with respect to the

quantity plotted along that axis when the quantities plotted

along the other axes are held constant and one multiplies this

partial derivative by the pressure. The total derivative of

the heat received along a straight line parallel to one of the

coordinate axes in any other space, on the other hand, cannot

be obtained by multiplication of the partial derivative of the

entropy by the absolute thermodynamic temperature when

reversible transfers of masses to or from the system are

involved. In such cases the total derivatives of the heat

received along lines parallel to coordinate axes in any

desired coordinate space can be derived in terms of the total

derivatives of the heat received along lines parallel to the
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coordinate axes in (T, p, mx, m2) -space by transformation of

the heat line integrals by an extension of the method set

forth in Appendix C to Part II. Following is an example of

such a transformation. In the case of a binary system of one

phase and of variable total mass the heat line integral

extended along a path in (7\/ni > tf?2» F)-space is

7\ m 1

=/{(§)«• ,•(£>• ,•(£>>
tI2\9 ™2

l f 1B2 »

737 2. »

0 ° (IV-B-3)

The derivatives (§) , (f ) , (f )

and f — J
7%
J can then be evaluated as quotients of two
7% / H i m

determinants. Thus we have
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dQ_
dT (mi + m2)cv =

dQ
dT

dm i
dT

dm 2
"3T

dV
dT

dT
dT

dm i
dT

dm 2
dT

dV
dT

dQ
dp

dm i
dp

dm 2

dV
dp

dT
dp

3/77 i

dp

dm 2

dp

dv
dp

dm i

dm i
dm i

3i772

dV
dm i

dT

dm i

dm 2

dm i

dV_
dm i

dQ

dm 2

dm1

dm 2

dm 2

3/77 2

dV

dm 2

3T
3/77 2

3/771

dm 2

dm 2

3/272

IK
3/77 2

dT
3£
3p I dp [&] •£.["]-£.["]}

- ( _
T, i7?i

T, Si

(IV-B-4)
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dQ_
dmi

, V

dQ_ dQ_ dQ_
dT dp dm i

dT dT dT
dT dp 3/7?!

dm 2
dT

dm 2

dp

dm 2
dT

dm 2

dm 2

dm i

_3£ dV_ 3£
dT dp 3/i?!

dm i dm i dm i
dT dp dm1

3T 9T 3T
dT dp dmi

dv_ dv^
dT dp

dm 2

3/77 !

dv_
dm i

dm 2

3/772

3/77 2

dm 2

II
3/77 2

3/771
3/77 2

3/7?2

3/77 2

3/772

_3F

dm 2

v. L -J L. .J L_ J

1 r, p J
m2) —) 1

1 • 171 i -^

/dv\
19 mi

7 + » 2\ ^ ^
, ^

(IV-B-5)
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dQ

T, an, V

dQ
dT

3T
dT

dm i
dT

dv
dT

dm 2
dT

dQ
dp

dT
dp

dm i
dp

dv
dP

dm 2
dp

dQ
dm i

dm i

dm i
dm i

dm i

dm 2
dm i

dQ_
dm 2

dm 2

dm i
dm 2

dm 2

dm 2
dm 2

dT dp dmi dm 2

dmi dmi dm\ dmi
dT dp dmi dm 2

dV dV dV dV
dT dp dmi dm2

rfoU _MM.
dT [UJ dp ldm

dm! dm2

^ j ) + l m 2 ( m 1 + m 2 )
T, p

(m1 + tf2)tar

(IV-B-6)
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dV
T9

dQ_
dT

dz
dT

IK
dT
3T
dT

dO
^P

H
3p

^2. i*2
dm i dm 2

dT dT
dm

dm i dm i
dT dp

dm i
dm i

IK
3p
3T
3p

3i772

3/7?i

3/7? 2

3i2?2 dm 2 dm 2 dm 2

dT dp 3/77! dm2

dV_ 3£
dm 1 dm 2

dT dT

dm 1 dm 2

3i7?l 3i7?i 3/771 3/771

3T 3p 3/77! 3/772

3T 3p 3/771 3/772

dT dp
dQ

O l • { • 7\

(IV-B-7)
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The corresponding values of the partial derivatives of the

entropy obtained from Tables IV-26, IV-10, IV-7, and IV-6 are

as follows:

/7Jl»/732»^ ^ L i » - ^ l p , f f l i J J I f nil

(IV-B-8)

, /772»

(IV-B-9)
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'If ) I/if

Wl

— in i\irzz

p, mi T, p

H.
, (M\

(IV-B-10)

1 From equations (IV-22) and (IV-23) we have

T7, p» ii?2 Tf p T, p9 H! I ± t y

Also from equation (XV-A-3) we have ("5— ) = -=-^ + 5'
\ dm 1 j m 1

and IT""/ " "7^ + 5W , where S' denotes the specific

entropy of pure component 1 in equilibrium with the binary
solution across a semipermeable membrane permeable only to
component 1, and S® the specific entropy of pure component 2 in
equilibrium with the binary solution across a semipermeable
membrane permeable only to component 2,
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and

(as) [ fil) Lfll) (iv-B-ii)_ [ fil

Thus it follows from (IV-B-4), (IV-B-7), (IV-B-8), and

(IV-B-11) that

f

and

§) , T(§) (IV-B-U)

but, finally, it also follows from (IV-B-5), (IV-B-6)

(IV-B-9), and (IV-B-10) that

and

(f) jf!^ ) . (IV-B-15)



Appendix C to Part IV

Discussion of the tables of thermodynamic.formulas for

multi-component systems presented in Carnegie Institution

of Washington Publication No. 408 by R.W. Goranson

On account of the fact that Goranson accepted the

erroneous assumption of Sir Joseph Larmor1 that in the case of

the Gibbs differential equation,

dU = TdS - pdV + Uicfoi + Vidm2 ... + Vndmn9

TdS represents dQ and that dQ represents an infinitesimal

amount of heat which is acquired in a specified state of the

system at a temperature T9 Goranson
fs basic equations for the

energy and the entropy of a multi-component system are

incorrect. GoransonTs equation for the energy change of a

binary system undergoing changes of temperature, pressure, and

masses of the two components

U(T, p , Wif 072) - U(TQ, po* /771

T9 p9 mi > m2

II d T/ I I *-* Ci T/ I

= J <(mi + ra2) ̂ p " P g ^ F + (mi + ̂ 2) lp - PjrUp
Tot P o , i Z ? i 0 > i7I2Q

(IV-C-1)

2
Ui\dm1 + \lm2 + pm^ - pV + M2\dm2

1 Larmor, Sir Joseph, Proc. Roy. Soc. London, 75, 289-290,
1905.

2 Goranson, R.W., Carnegie Institution of Washington
Publication No. 408, 1930, the first equation in §32 on page
48.

288
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where lmi denotes the reversible heat of addition of

component 1 at constant temperature, constant pressure, and

constant mass of component 2, Lm2 denotes the reversible

heat of addition of component 2 at constant temperature,

constant pressure, and constant mass of component 1, m\

denotes the mass fraction mi/(mi + m2), m2 denotes the mass

fraction m2/(mi + m2), Ui denotes the chemical potential of

component 1, and U2 denotes the chemical potential of

component 2, should be replaced by equation (IV-A-2) of this

text which is repeated here as aquation (IV-C-2)

U(T, p* mi, m2) - U(TQ9 p 0 , miQ , ITI2Q)

T, D t OTi » M?

/ J (ml 4- m2) \cp - P^f\dT + (mi + m2)\ lp - pj^ \dp

H"\dm2\ ,

(IV-C-2)

where H' and H" denote the specific enthalpies of the pure

components 1 and 2 in equilibrium with the solution across

semipermeable membranes permeable only to components 1 and 2,

respectively. Similar corrections are to be applied in the

incorrect equation for the energy U in the case of a

multi-component system on page 60 of Carnegie Institution of

Washington Publication No. 408 [equation (1) in §41].
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Likewise Goranson's equation for the entropy change of a

binary system undergoing reversible changes of temperature,

pressure, and masses of the two components, the first equation

in §52 [equation (2)] on page 52 of Carnegie Institution of

Washington Publication No. 408

i b ^ i » p i IHi 9 ® 2 ) -"" £>\J- 0 t P o » ^ l n * 2 n ^

T9 p» m-^t m2

2-

T9

J j
TQ, p0, ml

I I
-m-̂  dwi + -^r2 dm2

should be replaced by equation (IV-A-3) of this text v/hich is

repeated here as equation (IV-C-4)

S(T9 p, mi, m2) - S(TQf pQ9

T, pf mlf m2

= / J (fl?2 + m2)-jrdT + (an +

Po

fe *\dm2\S*\dm2\ , (IV-C-4)
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where S' denotes the specific entropy of pure component 1 in

equilibrium with the binary solution across a semipermeable

membrane permeable only to component 1, and Sn denotes the

specific entropy of pure component 2 in equilibrium with the

binary solution across a semipermeable membrane permeable only

to component 2. Similar corrections are to be applied to the

incorrect equation for the entropy S in the case of a

multi-component system on page 64 of Carnegie Institution of

Washington Publication No. 408 (first equation in §43).

In GoransonTs Tables of Thermodynamic Relations for First

Derivatives expressions are listed such that any first

derivative of one of the quantities, absolute thermodynamic

temperature, pressure, mass of a component, volume, energy,

entropy, Gibbs function, enthalpy, Helmholtz function, work,

or heat with respect to any second of these quantities,

certain other quantities being held constant, should be

obtainable in terms of the standard derivatives,

dv) (dv) (dv ) ,
/ \ ® denoting

°
1 » £? 1 t • • . fl?n p » 071 t . • • fl?n ^ 1 9 pf lUf

all the component masses except ra/c, (/Hi + ... + mn)Cpi

Imu* /c = 1, ...,n» and ]î , k = 1» . •.» n, by division of one

of the listed expressions by a second listed expression, the

same quantities being held constant in each of these two

listed expressions.

The expressions listed by Goranson for first derivatives

in his Groups 1-8 are for the case in which all masses are

held constant and are the same as the expressions listed by

Bridgman for this case and the same as the Jacobians listed in

Table 1-1 of this text. Unfortunately very many of the
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expressions listed by Goranson in his remaining Groups for

first derivatives (Groups 9 - 162) are invalidated by his

erroneous assumption that dQ = TdS when there is reversible

transfer of mass as well as heat. Thus for example in

Goranson fs Group 18 in which p, m±, and S are held constant

the following expressions are listed:

Group 18

(According to Goranson, Carnegie Ins t i tu t ion of Washington

Publication No. 408, p. 181)

p, /7?2> S constant

.. 4- mn)cp\xk

-

f)+ Ci

dV cp{m1 + . . . + mn) _ 9F
uk

dV

p—

(dQ) = 0
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The corrected expressions for this group when account is taken

of the equation of Gillespie and Coe are given in the

following table

Group 18

(Corrected by G> Tune11)

p9 mj9 S constant

... 4-

M. . C P O T + ... fan)

3T "*" T

(3ff) = J;

•••+ mn)^ LVfc"

{dQ)



294 CONDENSED COLLECTIONS OF THERMODYNAMIC FORMULAS

In the corrected Table for Group 18, Sk denotes the specific

entropy of pure component k in equilibrium with the multi-

component solution across a semipermeable membrane permeable

only to component k*3 In a good many cases Goransonfs

expressions involving the term lm can be corrected by the

substitution of (lm, + S
k) for lm.. However, in some cases

this substitution does not make the necessary correction.

In conclusion it may be noted that the principal

differences between GoransonTs Tables and the present

author's Tables are caused by GoransonTs erroneous assumption

that Hp- j = - ^ , m± denoting all the component
m^ T, p, m-j:

(dS \ W XL-
masses except OIL, whereas in reality I TT- J = ~7?r* + <->%

and by Goranson!s use of 3n + 3 standard derivatives, whereas

in reality all the partial derivatives with respect to the

various thermodynamic quantities can be expressed in terms of

3n fundamental derivatives, as Goranson himself recognized. **

3 It may be noted that the expressions in the table for Group
18 as corrected by the present author are consistent with the
expressions in Table IV-22 of this text, although they differ
in appearance from the expressions in Table IV-22.

k Goranson supplied an auxiliary table (Table A on page 149
of Carnegie Institution of Washington Publication 408) which
is intended to permit the expression of the 3n + 3 standard
derivatives in terms of 3n fundamental derivatives and the
masses of the components. However, Goransonfs Table A is also
partly invalidated by his incorrect assumption that


