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1. Introduction 
When a parser encounters an ambiguous input sentence, it can deal with that sentence in one of 

two ways. O n e way is to p roduce a single parse which is the most preferable. S u c h parsers are 

called one-path parsers. O n the other hand, parsers that p roduce all possible parses of the 

ambiguous sentence are called all-paths parsers. One -path parsers are, naturally, much faster than 

all-paths parsers because they look for only one parse. There are, however , situations where all-

paths parsers should be used. For example, cons ider the following short story. 

I saw the man with a telescope. 
He bought it at the department store. 

When the first sentence is read, there is absolutely no way of resolving the ambiguity 1 at that time. 

T h e only action the system can take is to produce two parses and store them somewhere for later 

disambiguation. 

Another situation where all -paths parsers should be used is what we call interactive parser, which 

originally motivated this work. An interactive parser disambiguates structurally ambiguous input 

sentences by asking its user questions interactively. For example, an interactive parser asks a 

question such as the following to disambiguate the sentence "I saw a man with a te lescope." 

1) T h e action "I saw a man" takes place "with a te lescope" 
2) "a man" is "with a te lescope" 
N U M B E R ? 

T h e technique to implement this is descr ibed in [20] (also in Appendix ) . In order to ask s u c h a 

quest ion, all possible structures of the ambiguous sentence must be available, and therefore all -paths 

parsing is required. 

In this paper, we introduce an efficient ail -paths parsing algorithm named MLR, which is an 

extension of LR . T h e LR parsing algorithm is a very efficient one-path parsing algorithm which is 

much faster than the Cocke -Younger -Kasami algorithm [1] and Earley's algorithm [9] especially when 

the grammar is significantly large. T h e LR parsing algorithm, however , has seldom been used for 

natural language processing, because the LR parsing algorithm is applicable only to a small subset of 

context-free grammars, and usually it cannot apply to natural languages. O u r MLR parsing algorithm, 

while most of the LR parsing efficiency is preserved, can apply to arbitrary context - free grammars, 

and is therefore applicable to natural languages. 

O n e might wonder , by the way, whether natural languages can be specif ied in context - free phrase 

structure. It had been thought that natural languages are not context - f ree, before the recent 

T ' have the te lescope, or " the m a n " has the te lescope. 
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literature [11] showed that the belief is not necessari ly true and there is no reason for us to give up the 

context - f reedom of natural languages. W e do not d iscuss this matter further, because even if natural 

languages are not context - f ree, a fairly comprehensive grammar for a subset of natural language 

sufficient for practical systems can be written in context - f ree phrase structure. 

In section 2, we briefly review LR parsing, and d iscuss the problem that arises when applied to 

natural languages. In sect ion 3, w e int roduce the M L R parsing algorithm, and in sect ion 4 w e 

descr ibe how to represent parse trees efficiently and how to p roduce them using MLR parsing. 

Sect ion 5 compares MLR parsing with other existing parsing methods. Finally, we enumerate future 

tasks to be completed in sect ion 6 and potential contr ibutions in sect ion 7. 
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2. LR parsing 
LR parsers [1, 2] have been developed originally for programming languages. An LR parser is a 

shift - reduce parser which is deterministicaily guided by a parsing table indicating what action should 

be taken next. T h e parsing table can be obtained automatically from a context - f ree phrase structure 

grammar, using an algorithm first developed by DeRemer [7, 8]. W e do not descr ibe the algorithm 

here, referring the reader to Chapter 6 in Aho and Ullman [3]. 

2 .1 . A n e x a m p l e 

An example grammar and its LR parsing table obtained by the algorithm are shown in Figure 2-1 

and 2-2, respectively. 

(1) S — > NP VP 
( 2 ) S --> S PP 
(3) NP --> *det *n 
(4) PP — > «prep NP 
(6) VP --> *v NP 

F i g u re 2 -1 : Example Grammar 
State •det *n *v •prep $ NP PP VP S 
0 sh3 2 1 
1 sh6 acc 4 CM

 sh6 7 
3 sh8 
4 re2 re2 
5 sh3 9 
6 sh3 10 
7 rei rei 
8 re3 re3 re3 
9 re4 re4 
10 re6 re5 

action table goto table 
F i g u r e 2 - 2 : LR Parsing Table 

Grammar symbols starting with "*" represent pre-terminals. Entr ies "sh n " in the action table (the 

left part of the table) indicate the action "shift one word from input buffer onto the stack, and go to 

state n " . Entries M r e n" indicate the action " reduce constituents on the stack using rule n". T h e 

entry " a c c " s tands for the action " a c c e p t " , and blank spaces represent "e r ro r " . Goto table (the right 

part of the table) dec ides to what state the parser should go after a reduce action. T h e exact 

definition and operation of the LR parser can be found in Aho and Ullman [3]. 

Let u s parse a simple sentence " M y car has a radio" using the L R parsing table. T h e trace of the L R 

parsing is shown in F igure 2-3. 
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Inputbuffer = MY CAR HAS A RADIO $ 

STACK NA NW 

0 Sh3 MY 

0 •det 3 sh8 CAR 

3 • n 8 re3 HAS 

0 NP 2 sh6 HAS 

0 NP 2 *v 6 sh3 A 

0 NP 2 *v 6 •det 3 sh8 RADIO 

0 NP 2 •v 6 •det 3 *n 8 re3 $ 

0 NP 2 •v 6 NP 10 re6 $ 

0 NP 2 VP 7 rei $ 

0 S 1 acc $ 

F i g u r e 2 - 3 : T r a c e of L R Parsing 

T h e number on the top (rightmost) of the stack indicates the current state. Initially, the current state 

is 0. T h e inputbuffer initially contains the input sentence followed by the end marker " $ " . 

S ince the parser is looking at the word " M Y " , whose category is "*det" , the next action "shift and 

goto state 3" is determined from the action table. T h e parser takes the word " M Y " away from the 

inputbuffer, pushes the preterminal "*det" onto the stack, and goes to state 3 pushing the number 

" 3 " onto the stack. T h e inputbuffer is now " C A R H A S A R A D I O $ " . , 

T h e next word the parser is looking at is " C A R " , whose category is " * n " , and "shift and goto state 

8" is determined from the action table as the next act ion. Thus , the parser takes the word " C A R " 

from the inputbuffer, pushes the preterminal " * n " , and goes to state 8 pushing the number " 8 " onto 

the stack. T h e inputbuffer is now " H A S A R A D I O $ " . 

T h e next word is " H A S " , and from the action table, " reduce using rule 3 " is determined as the next 

action. So , the parser reduces the stack using the rule " N P -•> *det * n " . T h e current state " 2 " is 

determined by the goto table from the state before the removed constituents. T h e inputbuffer is still 

" H A S A R A D I O $ " , because w e have not shifted the word " H A S " yet. 

S ince the parser is still looking at the word " H A S " , and it is in state 2, the next action is "shift 
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goto state 6 M . So , the parser shifts the word " H A S " from the inputbuffer onto the stack, and goes to 

state 6. 

Several steps later, the parser eventually finds the action " a c c e p t " , which is the signal for the parser 

to halt the process . 

2 . 2 . P r o b l e m in A p p l y i n g to N a t u r a l L a n g u a g e s 

Several advantages of LR parsing exist which makes it attractive to use in natural language 

processing. As we have seen in the example, the LR paring is one of the most efficient parsing 

algorithms. It is totally deterministic and no backtracking or search is involved. T h e algorithm to build 

an LR parsing table is well -establ ished, and there is a practical program called Y A C C (Yet Another 

Compiler Compiler) [12] running on Unix . 

Unfortunately, we cannot directly adopt the LR parsing technique for natural languages. Th is is 

because not all context - f ree phrase structure grammars ( C F P S G ' s ) can have an *LR parsing table. 

On ly a small subset of C F P S G ' s called LR grammars (see figure 2-4) can have such an LR parsing 

table. Every ambiguous grammar is not L R , for example. And s ince natural language grammars are 

almost always ambiguous, they are not L R ; therefore we cannot have an L R parsing table for natural 

language grammars. 

F i g u r e 2 - 4 : Context - f ree Grammars and LR grammars 

If a grammar is n o n - L R , its parsing table will have multiple ent r ies 2 ; one or more of the action table 

entries will be multiply def ined. F igures 2-5 and 2-6 show an example n o n - L R grammar and its 

parsing table. 

2 T h e y are often cal led conflict. 
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(1) S — > NP VP 
(2) S — > S PP 
(3) NP — > *n 
(4) NP — > «det *n 
(5) NP — > NP PP 
( 6 ) PP — > «prep NP 
(7) VP — > «v NP 

F i g u r e 2 - 5 : An Example Ambiguous Grammar 

State *det •n •v •prep $ NP PP VP S 

0 sh3 sh4 

CM
 1 

1 sh6 acc 6 
2 sh7 sh6 9 8 
3 shlO 
4 re3 re3 re3 
6 re2 re2 
8 sh3 sh4 11 
7 Sh3 sh4 12 
8 rei rei 
9 re6 re6 re6 
10 re4 re4 re4 

9 11 re6 re6,she ree 9 
12 re7,she re7 9 

F i g u r e 2 - 6 : LR Parsing Table with Multiple Entries 

W e can see that there are two multiple entries in the action table; on the rows of state 11 and 12 at 

the column labeled "•prep" . It has been thought that, for LR parsing, multiple entries are fatal 

because once a parsing table has multiple entries, deterministic parsing is no longer possible and 

some kind of non-determinism is necessary. However , in the following sect ion, w e shall introduce an 

extended LR parsing algorithm, named M L R , that can handle parsing tables with multiple entries 

using a graph-structured stack. T h e M L R parsing algorithm, while it can apply to arbitrary C F P S G ' s , 

preserves most of the eff iciency of the standard LR parsing algorithm. 
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3. MLR parsing 
As mentioned above, once a parsing table has multiple entries, deterministic parsing is no longer 

possible and some kind of non-determinism is necessary. T h e first subsect ion descr ibes a simple 

non-determinism, i.e. pseudo-paral lel ism (breath-first search) , in which the system maintains a 

number of stacks simultaneously. W e call the list of stacks Stack List. T h e next subsect ion descr ibes 

the idea of stack combination, which was introduced by Tomita's paper [21] (also in Appendix) , to 

make the algorithm efficient and feasible. With this idea, stacks are represented as trees (or a forest). 

Finally, a further refinement, the graph-structured stack, is descr ibed to make the algorithm even 

more efficient. 

3 .1 . W i t h S t a c k L i s t 

T h e basic idea is to handle multiple entries non-deterministically. W e adopt pseudo-parallel ism 

(breath-first search) , maintaining a list of stacks called Stack List. T h e pseudo-parallel ism works as 

follows. 

A number of processes are operated in parallel. Each process has a stack and behaves basically 

the same as in standard LR parsing. When a process encounters a multiple entry, the process is split 

into several processes (one for each entry), by duplicating its stack. When a process encounters an 

error entry, the process is killed, by removing its stack from the stack list. All processes are 

synchronized ; they shift a word at the same time so that they always look at the same word . Thus , if a 

process encounters a shift act ion, it waits until all other processes also encounter the shift action. 

Figure 3-1 shows a snapshot of the stack list right after shifting the word "w i th" in the sentence "I 

saw a man on the bed in the apartment with a te lescope" using the grammar in Figure 2-5 and the 

parsing table in Figure 2-6. 
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0 s , i 
— • 

*p,6 
— • 

• — 
0 

s , i 
— • 

*p,6 
— • 

• — 
0 S,1 

— • — • 
• — 

0 
S,1 

— • — 
*p,6 

• — 
0 - s , i *P,6 

• — 
0 

s/i *p,6 
— — 

NP,11 
• 

*P,6 
— • 

• — 
0 s , i 

' - # — — # 
NP,11 

• 
*p,6 

— • 

0 HP,2 *v,7 NP,12 
•—• 

*p.6 
• 

NP,11 
• — • 

0 

0 

NP,2 
— • 
*v,7 NP,12 

S,1 *p,6 

NP.11 
• 

NP.11 
# • 

NP̂ ,11 

NPJ1 
• 

*p,6 
— • 

*p,6 
• 

• — 
0 NP,2 *v.7 NP,12 

w 
NP,11 

• 

0 
• — — • —w 

•£,6 NP̂ ,11 
• 

• — 
0 f№>,2 NP,11 

• 
*p,6 
• 

0 NP,2 
— • 

NP,11 
• 

F i g u re 3 - 1 : Stack List 

For the sake of convenience , w e denote a stack with nodes and edges . T h e leftmost node is the 

bottom of the stack, and the rightmost node is the top of the stack. E a c h node , except the leftmost 

node, has two labels, a grammar symbol and a state number. T h e leftmost node has only a state 

number, and it is always 0. T h e distance between nodes ( length of an edge) does not have any 

signif icance, except it may help the reader understand the stacks' status. 

W e notice that some stacks in the stack list appear to be identical. T h e y are, however , internally 

different because they have reached the current state in different ways . Although w e shall descr ibe a 

method to compress them into one stack in the next sect ion, we cons ider them to be different in this 

sect ion. 

A disadvantage of the stack list method is that there are no interconnect ions between stacks 

(processes) and there is no way for a process to utilize what other processes have d o n e already. 

Therefore, the number of stacks in the stack list g r o w s exponential ly as ambiguities are encountered . 

For example, these 14 processes in Figure 3-1 will parse the rest of the sentence "the te lescope" 14 

times in exactly the same way. Th is can be avoided by using a t ree-structured stack, which is 



descr ibed in the following subsect ion . 

3 . 2 . W i t h a T r e e - s t r u c t u r e d S t a c k 

If two processes are in a common state, that is, if two stacks have a common state number at the 

rightmost node, they will behave in exactly the same manner until the node is popped from the stacks 

by a reduce act ion. T o avoid this redundant operation, these processes are unified into one process 

by combining their stacks. Whenever two or more processes have a common state number on the top 

of their stacks, the top nodes are unified, and these stacks are represented as a tree, where the top 

node cor responds to the root of the tree. W e call this a tree-structured stack. When the top node is 

popped, the tree-structured stack is split into the original number of stacks. In general , the system 

maintains a number of tree-structured stacks in parallel, so stacks are represented as a forest. Figure 

3-2 shows a snapshot of the tree-structured stack right after shifting the word " w i t h " . 

Al though the number of stacks is reduced significantly by the stack combination technique, the 

number of b ranches of the tree-structured stack (the number of bottoms of the stack) that w e must 

maintain still g rows exponential ly as ambiguities are encountered . In the next subsect ion , we 

descr ibe a further modification in which stacks are represented as a directed acycl ic g raph . 

F i g u r e 3 - 2 : A Tree-st ructured Stack 
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3.3. W i t h a G r a p h - s t r u c t u r e d S t a c k 

S o far, when we split a stack, we make a c o p y of the whole stack. However , we do not necessari ly 

have to c o p y the whole stack: Even after different parallel operations on the tree-structured stack, the 

bottom portion of the stack may remain the same. On ly the necessary port ion of the stack should 

therefore be split. When a stack is split, the stack is thus represented as a tree, where the bottom of 

the stack cor responds to the root of the tree. With the stack combination technique descr ibed above , 

stacks are represented as a directed acycl ic g raph . F igure 3-3 s h o w s a snapshot of the graph stack. 

NP.12 
F i g u r e 3*3: A Graph -St ructured Stack 

It is easy to show that the M L R parser with the graph-st ructured stack d o e s not parse any part of an 

input sentence more than o n c e in the same way. Th is is because if two processes had parsed a part 

of a sentence in the same way, they would have been in the same state, and they would have been 

combined as one process . 

S o far, we have focussed on how to accept or reject a sentence. In pract ice, however , the parser 

must not only simply accept or reject sentences, but also must build the syntactic structure(s) of the 

sentence (parse trees). In the next sect ion, w e descr ibe how to represent the syntactic structure and 

how to build it with the M L R parser. 
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4. An Efficient Representation of Parse Trees 
T h e ambiguity (the number of parses) of a sentence g rows exponential ly as the length of a sentence 

grows. Thus , one might notice that, even with an efficient parsing algorithm such as the one we 

descr ibed, the parser would take exponential time because exponential time would be required 

merely to print out all parse trees. W e must therefore provide an efficient representation so that the 

size of the representation does not g row exponential ly . 

In this sect ion, we descr ibe two techniques for providing an efficient representation: s u b t r e e 

sharing and local ambiguity packing. It should be mentioned that these two techniques are not 

completely new ideas, and some existing systems already adopted these techniques. W e shall 

therefore focus on how to implement these techniques with the MLR parsing algorithm. 

4 .1 . S u b - t r e e S h a r i n g 

If two or more parse trees have a common sub-t ree, the sub- t ree should be represented only once . 

For example, parse trees for the sentence "I saw a man with a te lescope" should be represented as 

follows: 

l s a w a man w i t h a t e l e s c o p e 

F i g u re 4 - 1 : Shared T r e e s 

O u r M L R parsing is very well suited for building this kind of shared tree as its output, as we shall see 

in the following. 

T o implement this, w e no longer push grammatical symbols on the stack; instead, we push pointers 

to a n o d e 3 of shared trees. When the parser "shif ts" a word , it creates a leaf node labeled with the 

O n e must not be c o n f u s e d " n o d e s " of shared trees and " n o d e s " of a g raph -s t ruc tured stack. Hereinafter, the term " n o d e " 
will be used as of shared trees unless otherwise noted . 
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word and the pre-terminal, and instead of pushing the preterminal symbol , a pointer to the newly 

created leaf node is pushed onto the stack. If the exact same leaf node (i.e. the node labeled with the 

same word and the same pre-terminal) already exists, a pointer to this existing node is pushed onto 

the stack, without creating another node. When the parser " r e d u c e s " the stack, it pops pointers to 

shared tree nodes from the stack, creates a new node w h o s e success ive nodes are pointed to by 

those popped pointers, and pushes a pointer to the newly created node onto the stack. 

Us ing this relatively simple procedure , the M L R parser can p roduce the shared trees as its output 

without any other special book-keeping mechanism, because the M L R parser never does the same 

reduce action twice in the same manner. 

4 . 2 . L o c a l A m b i g u i t y P a c k i n g 

W e define that two subtrees represent local ambiguity if they have common leaf nodes and their top 

nodes are labeled with the same non-terminal symbol . That is to say, a fragment of a sentence is 

locally ambiguous if the fragment can be reduced to a certain non-terminal symbol in two or more 

ways. If a sentence has many local ambiguities, the total ambiguity would g row exponential ly. T h e 

local ambiguity packing is a technique to avoid this, and works in the following way. T w o subtrees 

that represent local ambiguity are merged and treated by higher- level structures as if there were only 

one subtree. Examples of shared trees without and with the focal ambiguity packing are s h o w n in 

F igure 4-2. 

s a w 

*d *n *p *d *n * 
a man in the apt * 

F i g u r e 4 - 2 ( a ) : Unpacked Shared T rees 

w i t h a te l 
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*n 

I s a w a man in the apt w i t h a te l 

F i g u r e 4 - 2 ( b ) : Packed Shared T rees 

T h e local ambiguity packing can be easily implemented with the M L R parsing as follows. In the 

graph structured stack, if two or more edges have a common starting point and a common ending 

point, they represent local ambiguity, and the parser cons iders them as if there is only one edge. In 

Figure 3-3 for example, we see one 5-way localambigui ty and two 2-way local ambiguities. F igure 4-3 

shows the snapshot of the graph-st ructured stack and the shared trees right after shifting the word 

"w i th" in the sentence "I saw a man on the bed in the apartment with a te lescope . " 



F i g u r e 4-2: Graph -St ructured Stack and Packed Shared T r e e s 
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5. Comparison with Other Methods 
In this sect ion, we compare the MLR parsing with other existing parsing methods such as L R , A T N , 

Cocke -Younger -Kasami , Earley and Chart parsing. 

5 .1 . L R p a r s e r s 

There are several kinds of LR parsers: LR(O), SLR(1) , LALR(1) , LR(1) , LR(k) , etc. LR(O) is the 

simplest and the least efficient LR parser, because it does not manage "look ahead" at all. O n the 

other hand, LR(k) is the most efficient, but its parsing construct ion is the most complex. Y A C C is 

LALR(1) . These LR parsers differ from each other only by the LR table construct ion algorithm; the 

parsing algorithm itself is common to all these LR parsers. S ince the parsing table construct ion of the 

MLR parser does not differ from that of L R parsers, w e can also think of several kinds of MLR parsers: 

MLR(O), MSLR(1) , MLALR(1) , MLR(1) , MLR(k) , etc., according to the parsing table construct ion 

algorithm. T h e MLR parser whose parsing table is obtained by Y A C C is therefore MLALR(1) . 

LR parsing can be cons idered as a special case of MLR parsing. If the grammar is LR , MLR parsers 

behave in exactly the same manner as L R parsers. 

5 . 2 . O t h e r O n e - p a t h P a r s e r s 

Al though the L R parsers and P A R S I F A L [15] (theoretically LR(k) [4]) cannot handle ambiguous 

sentences, other one-path parsers, including A T N [27], D C G [ 1 7 ] , B U P [ 1 6 ] and L I N G O L [ 1 8 ] , can 

simulate the all-paths parsing, producing all possible parses by backtracking. However , the number 

of times they must backtrack g rows exponential ly as the sentence ambiguity g rows , and they become 

unrealistic when a sentence has hundreds of possible parses. 

5 . 3 . C o c k e - Y o u n g e r - K a s a m i A l g o r i t h m 

Cocke -Younger -Kasami ( C Y K ) algorithm operates basically bottom-up: all constructable subtrees 

are built exhaustively regardless of whether they are actually utilized by some higher structure trees. 

Thus , this algorithm produces many meaningless subtrees which are never used, wasting time and 

space. Moreover , while the MLR parser can detect ungrammaticality of a sentence as soon as an 

inconsistent word is read, the C Y K algorithm cannot detect the ungrammaticality until the whole 

sentence is read. ' 

r 
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5 . 4 . E a r l e y ' s A l g o r i t h m 

Earley's algorithm is somewhat more efficient than C Y K algorithm in the sense that it does not build 

all possible subtrees exhaustively. Also, Ear ley 's algorithm is capable of detecting ungrammaticality 

as soon as an inconsistent word is read. 

T h e disadvantage of this algorithm, compared with M L R , is that each time a word is read, the system 

must compute " a set of items" (cf. pp.207 in [3]). Comput ing sets of items requires the system to look 

all over the grammar rules, and it is particularly inefficient when the grammar is large. In MLR 

parsing, on the other hand, such sets of items are pre -computed at the parsing table construct ion 

time, and the results of the pre-computing are encoded implicitly in the parsing table. Therefore , the 

MLR parser does not have to compute sets of items during parsing. 

5 . 5 . C h a r t P a r s i n g 

T o avoid confus ion, it should be noted that there is no s u c h thing as a "chart parsing algor i thm". A 

chart [13] is the name of a data structure that represents the syntactic structure of a sentence. T h e 

most popular algorithm for chart parsing is the C Y K algorithm because it is simple. However , Ear ley 's 

algorithm can also be used for the chart parsing, and such a parser is called the Active Chart 

Parser [26]. S ince we have already mentioned these two algorithms, w e do not compare the M L R 

parser with chart parsers incorporating these two algorithms. 

T h e graph-structured stack in the MLR parsing looks very similar to the chart. A l though we have 

viewed MLR parsing as a general ized and extended version of LR parsing, w e can also view MLR 

parsing as an extended version of chart parsing, wh ich is guided by an LR parsing table. T h e major 

extension is that nodes in the chart contain information about the L R state as well as information 

about position of the node in the sentence. Thus , unlike a conventional chart , there may be more 

than one node at any position of a sentence. New edges and nodes are then created according to the 

L R parsing table. It might be interesting to redesign the M L R parsing algorithm as the extended chart 

parsing, although w e d o not d iscuss this matter further. 
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6. Future Work 
In this section we enumerate future work to be completed in a year or so. In brief, we will implement 

the algorithm, experiment with a fairly large English grammar, compare our algorithm with other 

parsing algorithms and discuss its applications. T h e following subsect ions describe the future work 

in more detail. 

6 .1 . I m p l e m e n t a t i o n of t h e a l g o r i t h m 

W e will implement our algorithm fully. T h e program will be written in Mac Lisp on C M U - C S - C 

(Tops-20). Moreover, we will implement the following extension in order to parse natural language in 

a more flexible manner. 

• Handling Mult i -part -of -speech Words : Some words in English such as "saw" have more 
than one grammatical categories. W e will solve this problem elegantly as follows. When 
such a word is encountered, the parsing table can immediately tell us which of its 
categories are legal. And if more than one of its categories are legal, the parser behaves 
as if a multiple entry were encountered. Little effort should be required to extend our 
parser to handle this. 

• Handling Unknown Words: Moreover , our parser will be able to parse a sentence with 
unknown words. Unknown words can be considered as a special mult i -part -of -speech 
word whose categories can be any legal categories. 

6 . 2 . E x p e r i m e n t o n the P a r s e r E f f i c i e n c y 

W e will construct parsing tables for a tiny (10 rule), a small (60 rule) and a fairly large (400 rule) 

Engl ish grammar. W e will either run Y A C C or write our own program for table construct ion. If we 

utilize Y A C C , we need to write a program that converts Y A C C output into a parsing table in our 

representation. 

W e will then have the parser actually parse an appropriate set of English sentences, in order to find 
out: 

1. T h e parsing time with respect to the length of a sentence. 

2. T h e parsing time with respect to the ambiguity of a sentence. 

3. T h e parsing time with respect to a grammar size. 
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6 . 3 . C o m p a r i s o n w i t h O t h e r A l g o r i t h m s 

W e will compare our algorithm in detail with at least two other algorithms: C Y K algorithm and 

Earley 's algorithm. T h e comparison will be made in one of the following ways. 

1. T o prove mathematically that our algorithm dominates the other algorithm(s) under some 

reasonable assumptions. 

2. T o define some reasonable "primitive operat ions" and compare the number of 
operations. Note that w e need not to implement the other algorithm(s). 

3. T o implement the other algorithm(s) on the same machine and in the same programming 
language and compare their execut ion times. 

6 . 4 . D i s c u s s i o n o f A p p l i c a t i o n s 

T h e following discussions will be made. 

• Incorporation of Semantics: W e will d iscuss incorporation of Knowledge Representation 
Language (KRL) [5] with our parsing algorithm so that only semantically correct parses 
are produced. 

• Application to Interactive Parser: We will d iscuss the technique of interactive sentence 
disambiguation [20] and discuss incorporation of this technique with our parsing 
algorithm. This technique requires having all possible parsers in advance, out of which 
the system asks its user questions to disambiguate a sentence. 

• Application to Machine t ranslat ion: W e will d iscuss an application of the interactive 
parser to personal/interactive machine translation'systems [25, 22, 23, 24,19]. 
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7. Potential Contributions 
Finally, we point out potential contr ibutions of our work. 

7 .1. T o P a r s i n g T h e o r y 

W e extend the LR parsing algorithm so as to handle an arbitrary context-free grammar with little 

loss of the LR efficiency. Although its upper bound on the time needed in the worst case is 0 ( n 3 ) as 

others, its coefficient is significantly reduced due to utilization of an LR parsing table. 

7 .2 . T o P r a c t i c a l S y s t e m s 

W e give an efficient all-paths parsing algorithm, which would be required in practical systems such 

as personal/interactive machine translation systems with the interactive sentence disambiguation. 

7 .3 . T o C o m p u t a t i o n a l L i n g u i s t i c s 

An obvious application is to the possible implementation of G P S G [10], in which grammar rules are 

eventually represented purely as a context - free phrase structure grammar. Also, our algorithm could 

apply to implementation of functional grammars such as Lexical Functional Grammar (LFG) [6] and 

Unification Grammar ( U G ) [ 1 4 ] , in which a base structure is specified by a context-free phrase 

structure grammar. O u r algorithm would be particularly suitable in case sentences are highly 

- ambiguous. 
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8. Appendix 

8.1. LR parsers for Natural Languages 

8.2. Disambiguating Grammatical ly Ambiguous Sentence by Asking 
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A b s t r a c t 

MLR, an extended LR parser, is introduced, and its 
application to natural language parsing is d iscussed. 
An LR parser is a shift -reduce parser which is 
deterministically guided by a parsing table. A parsing 
table can be obtained automatically from a context-
free phrase structure grammar. LR parsers cannot 
manage ambiguous grammars such as natural 
language grammars, because thetr parsing tables 
would have multiply-defined entries, which precludes 
deterministic parsing. MLR, however, can handle 
multiply-defined entries, using a dynamic 
programming method. When an input sentence is 
ambiguous, the MLR parser produces all possible 
parse trees without parsing any part of the input 
sentence more than once in the same way, despite the 
fact that the parser does not maintain a chart as in 
chart parsing. O u r method also provides an elegant 
solution to the problem of multi -part-of-speech words 
such as , , that , \ The MLR parser and its parsing table 
generator have been implemented at Carnegie-Mel lon 
University. 

1 I n t r o d u c t i o n 

LR parsers [1,2] have been developed originally for 
programming language of compilers. An LR parser is a shift-
reduce parser which is deterministically guided by a parsing table 
indicating what action should be taken next. The parsing table 
can be obtained automatically from a context-free phrase 
structure grammar, using an algorithm first developed by 
DeRemer [5, 6]. We do not descr ibe the algorithm here, reffering 
the reader to Chapter 6 in Aho and Ullman [4]. T h e LR parsers 
have seldom been used for Natural Language Processing 
probably because: 

1. It has been thought that natural languages are not 
context-free, whereas LR parsers can deal only with 
context-free languages. 

2. Natural languages are ambiguous, while standard LR 
parsers can not handle ambiguous languages. 

This research was sponsored by the Defense Advanced Research Protects 
Agency (DOO), ARPA Order No. 3597. monitored by the Air Force Avionics 
Laboratory Under Contract F33615-8IK-1539. The views and conclusions 
contained in this document are those of the authors and should not be interpreted 
as representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the US Government. 

T h e recent literature [8) shows that the belief "natural 
languages are not context - f ree" is not necessari ly true, and there 
is no reason for us to give up the context -freedom of natural 
languages. We do not d iscuss on this matter further, considering 
the fact that even if natural languages are not context-free, a 
fairly comprehensive grammar for a subset of natural language 
sufficient for practical systems can be written in context free 
phrase structure. Thus, our main concern is how to cope with the 
ambiguity of natural languages, and this concern is addressed in 
the following section. 

2 L R p a r s e r s a n d A m b i g u o u s G r a m m a r s 

If a given grammar is ambiguous . 2 we cannot have a parsing 
table in which every entry is uniquely defined; at least one entry of 
its parsing table is multiply defined. It has been thought that, for 
LR parsers, multiple entries are fatal because they make 
deterministic parsing no longer possible. 

Aho et. a/. [3] and Shieber (12| coped with this ambiguity 
problem by statically 3 selecting one desired action out of multiple 
actions, and thus converting multiply-defined entries into 
uniquely-defined ones.With this approach, every input sentence 
has no more than one parse tree. This fact is desirable for 
programming languages. 

For natural languages, however, it is sometimes necessary for a 
parser to produce more than one parse tree. For example, 
consider the following short story. 

I saw the man with a telescope. 
He should have bought it at the department store. 

When the first sentence is read, there is absolutely no way to 
resolve the ambiguity 4 at that time. T h e only action the system 
can take is to produce two parse trees and store them 
somewhere for later disambiguation. 

In contrast with Aho et. at. and Shieber, our approach is to 
extend LR parsers so that they can handle multiple entries and 
produce more than one parse tree if needed. We call the 
extended LR parsers MLR parsers. 

A grammar is ambiguous, if some input sentence can be parsed in more than 
one way. 

By "statically", we mean the selection is done at parsing table construction 
time. 

4 , T have the telescope, or "the man" has the telescope. 



3 M L R P a r s e r s 

An example grammar and its MLR parsing table produced by 
the construction algorithm are shown in fig. 1 and 2, respectively. 
The MLR parsing table construction algorithm is exactly the same 
as the algorithm for LR parsers. Only the difference is that an 
MLR parsing table may have multiple entries. Grammar symbols 
starting with represent pre-terminals, "sh n" in the action 
table (the left part of the table) indicates the action "shift one 
word from input buffer onto the stack, and go to state n". " re n" 
indicates the action " reduce constituents on the stack using rule 
n" . " a c c " stands for the action "accept" , and blank spaces 
represent "er ror" . Goto table (the right part of the table) decides 
to what state the parser should go after a reduce action. The 
exact definition and operation of LR parsers can be found in Aho 
and Ullman [4]. 

We can see that there are two multiple entries in the table; on 
the rows of state 11 and 12 at the column of "•prep". As 
mentioned above, once a parsing table has multiple entries, 
deterministic parsing is no longer possible; some kind of non-
determinism is necessary. We shall see that our dynamic 
programming approach, which is descr ibed below, is much more 
efficient than conventional breath-first or depth-first search, and 
makes M L R parsing feasible. 

O u r approach is basically pseudo-parallelism (breath-first 
search). When a process encounters a multiple entry with n 
different actions, the process is split into n processes, and they 
are executed individually and parailelly. Each process is 
continued until either an "error" or an "accept" action is found. 
T h e processes are, however, synchronized in the following way: 
When a process "shifts" a word, it waits until all other processes 
"shift" the word. Intuitively, all processes always look at the 
same word. After ail processes shift a word, the system may find 
that two or more processes are in the same state; that is, some 
processes have a common state number on the top of their 
stacks. These processes would do the exactly same thing until 
that common state number is popped from their stacks by some 
" reduce" action. In our parser, this common part is processed 
only once. As soon as two or more processes in a common state 
are found, they are combined into one process. This combining 
mechanism guarantees that any part of an input sentence is 
parsed no more than once in the same manner/ This makes the 
parsing much more efficient than simple breath-first or depth-first 
search. O u r method has the same effect in terms of parsing 
efficiency that posting and recogniz ing common subconstituents 

of different parses have in the chart parsing method [10, 11]. The 
idea should be made clear by the following example. 

4 A n E x a m p l e 

In this section, we demonstrate, step by step, how our MLR 
parser processes the sentence: 

I S A W A MAN W I T H A T E L E S C O P E 
using the grammar and the parsing table shown in fig 1 and 2. 
This sentence is ambiguous, and the parser should accept the 
sentence in two ways. 

Until the system finds a multiple entry, it behaves in the exact 
same manner as a conventional LR parser, as shown in fig 3-a 
below. T h e number on the top (rightmost) of the stack indicates 
the current state. Initially, the current state is 0. S ince the parser 
is looking at the word " I " , whose category is " # n " , the next action 
"shift and goto state 4" is determined from the parsing table. The 
parser takes the word " I " away from the input buffer, and pushes 
the preterminal " * n " onto the stack. T h e next word the parser is 
looking at is " S A W " , whose category is "*v" , and " reduce using 
rule 3" is determined as the next action. After reducing, the 
parser determines the current state, 2, by looking at the 
intersection of the row of state 0 and the column of "NP'\ and so 
on. 

STACK NEXT-ACT ION NEXT-WORD 

NP 2 
NP 2 
NP 2 
NP 2 
NP 2 

•det 3 •det 3 
NP 12 

•n 10 

sh 4 re 3 
sh 7 
sh 3 
sh 10 re 4 
7, sh 

I 
SAW 
SAW 

A 
MAN 

WITH 
WITH 

Fig 3 - a 

At this point, the system finds a multiple entry with two different 
actions, " reduce 7" and "shift 6". Both actions are processed in 
parallel, as shown in fig 3-b. 

( 1 ) S - -> NP VP 
( 2 ) CO

 

--> S PP 
( 3 ) NP --> *n 
( 4 ) NP --> * d e t *n 
( 5 ) NP - -> NP PP 
( 6 ) PP --> •prep NP 
( 7 ) VP - -> •v NP 

F ig 1 

S t a t e •det •n •v •prep S NP PP VP S 

0 sh3 sh4 2 1 

1 sh6 a c c 5 
2 sh7 sh6 9 8 
3 s h l O 
4 re3 r e 3 r e 3 
5 r e 2 r e 2 

CD sh3 sh4 11 
7 sh3 Sh4 12 
8 r e l r e l 
9 re5 re5 r e 5 

10 r e 4 r e 4 r e 4 
11 re6 r e 6 , s h 6 r e 8 9 
12 r e 7 , s h 6 r e 7 9 

F ig 2 



0 MP 2 VP 8 re 1 WITH 

0 MP 2 *v 7 MP 12 •prep 6 w a i t A 

0 S 1 sh 6 WITH 

0 NP 2 *v 7 NP 12 •prep S w a i t A 

0 S I " p r e p 6 sh 3 A 

0 MP 2 *v 7 MP 12 •prep 6 sh 3 A 

Fig 3 - b 

Here, the system finds that both processes have the common 
state number, 6, on the top of their stacks. It combines two 
processes into one. and operates as if there is only one process, 
as shown in fig 3-c. 

0 S 1 M H M B M ' p r e p 6 sh 3 A 
0 MP 2 *v 7 MP 1 2 ^ 

0 S 1 « M M ^ ' p r e p 6 ' d o t 3 sh 10 TELESCOPE 
0 NP 2 "V 7 MP 1 2 ^ 

0 S 1 M H M ^ ' p r s p 6 *det 3 *n 10 re 4 S 
0 MP 2 *v 7 MP 1 2 ^ 

0 S I M w ^ M ^ ' p r e p 6 MP 11 re 6 S 
0 MP 2 *v 7 MP 1 2 ^ 

Fig 3 - c 

The action " reduce 6" pops the common state number 6, and 
the system can no longer operate the two processes as one. T h e 
two processes are, again, operated in parallel, as shown in fig 
3-d. 

0 S I PP 5 re 2 S 
0 NP 2 - v 7 NP 12 PP 9 re 5 $ 

0 S 1 a c c e p t 
0 NP 2 *v 7 NP 12 re 7 S 

Fig 3 - d 

Now, one of the two processes is finished by the action 
"accept" . The other process is still continued, as shown in fig 
3-e. 

0 MP 2 VP 8 r e 1 

0 S I a c c e p t 

This process is also finished by the action "accept" . The 
system has accepted the input sentence in both ways. It is 
important to note that any part of the input sentence, including 
the prepositional phrase "WITH A T E L E S C O P E " , is parsed only 
once in the same way, without maintaining a chart. 

5 A n o t h e r E x a m p l e 

Some English words belong to more than one grammatical 
category. When such a word is encountered, the MLR parsing 
table can immediately tell which of its categories are legal and 
which are not. When more than one of its categories are legal, 
the parser behaves as if a multiple entry were encountered. The 
idea should be*made clear by the following example. 

Cons ider the word "that" in the sentence: 
That information is important is doubtful. 

A sample grammar and its parsing table are shown in Fig. 4 and 5, 
respectively. Initially, the parser is at state 0. The first word 
"that" can be either "•det" or "*that", and the parsing table tells 
us that both categories are legal. Thus, the parser processes "sh 
5" and "sh 3" in parallel, as shown below. 

STACK NEXT ACTION NEXT WORD 

0 sh 5. sh 3 That 

0 sh 5 That 

0 sh 3 That 

0 •det 5 sh 9 i n f o r m a t i o n 

0 • t h a t 3 sh 4 i n f o r m a t i o n 

0 •det 5 *n 9 re 2 i s 
0 •that 3 « n 4 re 3 i s 

0 NP 2 sh 6 is 

0 •that 3 NP 2 sh 6 i s 

F ig . 6 -a 

At this point, the parser founds that both processes are in the 
same state, namely state 2, and they are combined as one 
process. 

F ig 3 - e 

( 1 ) S — > NP VP 
( 2 ) NP — > •det mn 
( 3 ) NP — > •n 
( 4 ) NP — > • t h a t S 
( 5 ) VP — > •be * a d j 

F ig . 4 

S t a t e •ad j •be •det •n • t h a t $ NP S VP 

0 sh6 sh4 sh3 2 1 

1 a c c 
2 sh6 7 

3 shS sh4 sh3 2 8 

4 r e 3 
5 sh9 
6 s h l O 
7 r e i p e l 
8 r e 4 
9 r e 2 

10 r e o r e o 

F ig . 5 



0 MP J 2 s n 6 

o - t h a t 3 M P r 

0 N p 2 *be 6 s h io i m p o r t a n t 
0 * t h a t 3 MP 

0 MP mz «be 6 « a d j 10 re 5 i s 
0 - t h a t 3 M P ^ 

0 HP ul VP 7 re I i s 
0 * t h a t 3 MP 

F ig . 6 - b 

The process is split into two processes again. 

0 MP 2 VP 7 re 1 i s 

0 •that 3 
MP 2 VP 7 re 1 i s 

0 S 1 TERROR* is 

0 •that 3 S 8 re 4 i s 

Fig . 6 - c . 

O n e of two processes detects "error" and halts; only the other 
process goes on. 

0 NP Z sh 6 i s 

0 HP 2 •be 6 sh 10 d o u b t f u l 

0 MP 2 •be .8 « a d j 10 re 5 S 

0 MP 2 VP 7 re 1 s 0 S 1 a r c s 
F ig . 6 - d 

Finally, the sentence has been parsed in only one way. W e 
emphasize again that, in spite of pseudo-parallelism, each part of 
the sentence was parsed only once in the same way. 

6 C o n c l u d i n g R e m a r k s 

The MLR parser and its parsing table generator have been 
implemented at Computer Sc ience Department, Carnegie-Mel lon 
University. The system is written in M A C L I S P and running on 
Tops-20. 

O n e g o o d feature of an MLR parser (and of an L R parser) is 
that, even if the parser is to run on a small computer, the 
construct ion of the parsing table can be d o n e on more powerful , 
larger computers. O n c e a parsing table is constructed, the 
execut ion time for parsing depends weakly on the number of 
product ions or symbols in a grammar. Also, in spite of pseudo-
parallelism, our MLR parsing is theoretically still deterministic. 
This is because the number of processes in our pseudo-
parallelism never exceeds the number of states in the parsing 
table. 

O n e concern of our parser is whether the size of a parsing table 
remains tractable as the size of a grammar grows. Fig. 6 shows 
the relationship between the complexity of a grammar and its L R 
parsing table (excerpt from Inoue [9]). 

XPL EULER FORTRAN ALGOL60 

T e r m i n a l s 47 74 63 66 
N o n - t e r m i n a l s 51 45 77 99 
P r o d u c t i o n s 108 121 172 , 205 

S t a t e s 180 193 322 337 
T a b l e S i z e ( b y t e ) 2041 2587 3662 4264 

F ig . 6 

Although the example grammars above are for programming 
langauges, it seems that the size of a parsing table g rows only in 
proport ion to the size of its grammar and does not grow rapidly. 
Therefore, there is a hope that our MLR parsers can manage 
grammars with thousands of phrase structure rules, which would 
be generated by rule -schema and meta-rules for natural language 
in systems such as G P S G [7]. 
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A b s t r a c t 

T h e problem addressed in this paper is to 
disambiguate grammatically ambiguous input 
sentences by asking the user, who need not be a 
computer specialist or a linguist, without showing any 
parse trees or phrase structure rules. Explanation List 
Comparison (ELC) is the technique that implements 
this process. It is applicable to all parsers which are 
based on phrase structure grammar, regardless of the 
parser implementation. An experimental system has 
been implemented at Carnegie-Mel lon University, and it 
has been applied to Engl ish-Japanese machine 
translation at Kyoto University. 

1. I n t r o d u c t i o n . 
A large number of techniques using semantic information have 

been developed to resolve natural language ambiguity. However , 
not all ambiguity problems can be solved by those techniques at 
the current state of art. Moreover, some sentences are absolutely 
ambiguous, that is, even a human cannot disambiguate them. 
Therefore, it is important for the system to be capable of asking a 
user questions interactively to disambiguate a sentence. 

Here, we make an important condition that an user is neither a 
computer scientist nor a linguist. Thus, an user may not recognize 
any spec'al terms or notations like a tree structure, phrase 
structure grammar, etc. 

T h e first system to disambiguate sentences by asking 
interactively is perhaps a program called "disambiguator" in Kay's 
MINO system [2]. A l though the disambiguation algorithm is not 
presented in [2], some basic ideas have been already 
implemented in the K a y s system 2 . In this paper, we shall only 
deal with grammatical ambiguity, or in other words, syntactic 
ambiguity. Other ambiguity problems, such as word -sense 
ambiguity and referential ambiguity, are exc luded. 

Suppose a system is given the sentence: 

"Mary saw a man with a te lescope" 
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and the system has a phrase structure grammar including the 
following rules <a> - <g>: 

<a> S - - > NP + VP 
<b> S - - > NP • VP + PP 
<c> NP - - > *noun 
<d> NP - - > *det + *noun 
<e> NP - - > NP + PP 
<f> PP - - > * p r e p + NP 
<g> VP — > * v e r b • NP 

T h e system would produce two parse trees from the input 
sentence (I. using rules <b>,<c>,<g>,<d>,<f>,<d>; II. using rules 
<a>.<c>,<g>,<e>,<d>,<f>,<d>). The difference is whether the 
preposition phrase "with a telescope" qualifies the noun phrase 
"a man" or the sentence "Mary saw a man". This paper shall 
discuss on how to ask the user to select his intended 
interpretation without showing any kind of tree structures or 
phrase structure grammar rules. O u r desired question for that 
sentence is thus something like: 

1) The action "Mary saw a man" takes place "with a telescope" 
2) "a man" is "with a telescope" 
N U M B E R ? 

The technique to implement this, which is described in the 
following sections, is called Explanation List Comparison. 

2. E x p l a n a t i o n L is t C o m p a r i s o n 
T h e basic idea is to attach an Explanation Template to each rule. 

For example, each of the rules <a> - <g> would have an 
explanation template as follows: 

E x p l a n a t i o n T e m p l a t e 

<a> ( 1 ) i s a s u b j e c t o f t h e a c t i o n ( 2 ) 
<b> The a c t i o n (1 2) t a k e s p l a c e ( 3 ) 
<c> ( 1 ) i s a noun 
<d> ( 1 ) i s a d e t e r m i n e r o f ( 2 ) 
<e> ( 1 ) i s ( 2 ) 
< f> ( 1 ) i s a p r e p o s i t i o n o f ( 2 ) 
<g> ( 2 ) i s an o b j e c t o f t h e v e r b ( 1 ) 

Whenever a rule is employed to parse a sentence, an 
explanation is generated from its explanation template. Numbers 
in an explanation template indicate n t h constituent of the right 
hand side of the rule. For instance, when the rule <f> 

PP — > •prep + NP 

matches " w i t h a t e l e s c o p e " (*prep = " W I T H " ; NP = " a 



t e l e s c o p e " ) , the explanation 

"(with) is a preposition of (a telescope)'* 
is generated. Whenever the system builds a parse tree, it also 
builds a list of explanations which are generated from explanation 
templates of all rules employed. We refer to such a list as an 

explanation list. T h e explanation lists of the parse trees in the 
example above are: 

Alternative I. 

<b> The action (Mary saw a man) takes place (with a telescope) 
<c> (Mary) is a noun 
<g> (a man) is an object of the verb (saw) 
<d> (A) is a determiner of (man) 
<f> (with) is a preposition of (a telescope) 
<d> (A) is a determiner of (telescope) 

Alternative II. 

<a> (Mary) is a subject of the action (saw a man with a telescope) 
<c> (Mary) is a noun 
<g> (a man with a telescope) is an object of the verb (saw) 
<e> (a man) is (with a telescope) 
<d> (A> is a determiner of (man) 
<f> (with is a preposition of (a telescope) 
<d> (A) is a determiner of (telescope) 

In order to disambiguate a sentence, the system only examines 
these Explanation Lists, but not parse trees themselves. Th is 
makes our method independent from internal representation of a 
parse tree. Loosely speaking, when a system produces more than 
one parse tree, explanation lists of the trees are "compared'* and 
the "difference" is s h o w n to the user. T h e user is, then, asked to 
select the correct alternative. 

3 . T h e r e v i s e d v e r s i o n of E L C 
Unfortunately, the basic idea described in the preceding section 

does not work quite well. For instance, the difference of the two 
explanation lists in our example is 

2) 

The action (Mary saw a man) takes place (with a telescope), 
(a man) is an object of the verb (saw); 

(Mary) is a subject of the action (saw a man with a telescope), 
(a man with a telescope) is an object of the verb (saw), 
(a man) is (with a telescope); 

despite the fact that the essential difference is only 

1) The action (Mary saw a man) takes place (with a telescope) 
2) (a man) is (with a telescope) 

T w o refinement ideas, head and multiple explanations, are 
introduced to solve this problem. 

3.1 . Head 

We define head as a word or a minimal cluster of words which 
are syntactically dominant ih a group and could have the same 
syntactic function as the whole g roup if they stood alone. For 
example, the head of " V E R Y S M A R T P L A Y E R S IN N E W Y O R K " is 
" P L A Y E R S " , and the head of " I N C R E D I B L Y B E A U T I F U L " is 
" B E A U T I F U L " , but the head of "I L O V E C A T S " is "I L O V E C A T S " 
itself. T h e idea is that, whenever the system shows a part of an 
input sentence to the user, only the head of it is shown. T o 
implement this idea, each rule must have a head definition besides 
an explanation template, as follows. 

R u l e 

<a> 
<b> 
<c> 
<d> 
<e> 
< f > 
<g> 

Head 

[ 1 2 ] 
[1 2 ] 
[ 1 ] 
[ 1 2 ] 
[ 1 ] 
[ 1 2 ] 
[ 1 2 ] 

For instance, the head definition of the rule <b> says that the 
head of the construct ion "NP + VP + PP" is a concatenation of 
the head of 1-st constituent (NP) and the head of 2 n d constituent 
(VP) . T h e head of "A G I R L with A R E D B A G saw A G R E E N T R E E 
W I T H a telescope" is, therefore, "A G I R L saw A T R E E " , because 
the head of "A G I R L with A R E D B A G " (NP) is "A G I R L " and the 
head of "saw A G R E E N T R E E " (VP) is "saw A T R E E " . 

In our example, the explanation 

(Mary) is a subject of the action (saw a man with a telescope) 

becomes 

(Mary) is a subject of the action (saw a man), 

and the explanation 

(a man with a telescope) is an object of the verb (saw) 

becomes 

(a man) is an object of the verb (saw), 

because the head of "saw a man with a te lescope" is "saw a 
man" , and the head of "a man with a te lescope" is "a man" . 

T h e difference of the two alternatives are now: 

1) 
1 

2) 
^The action (Mary saw a man) take place (with a telescope); 

(Mary) is a subject of the action (saw a man), 
(a man) is (with a telescope); 

3 .2 . M u l t i p l e e x p l a n a t i o n s 
In the example system we have discussed above, each rule 

generates exactly one explanation. In general , multiple 
explanations (including zero) can be generated by each rule. F o r 
example, rule <b> 

S - - > NP + VP + PP 

should have two explanation templates: 

( 1 ) 1s a s u b j e c t o f the a c t i o n ( 2 ) 

The a c t i o n ( 1 2 ) takes p l a c e ( 3 ) , 

whereas rule <a> 

S — > NP + VP 

should have only one explanation template: 
( 1 ) 1s a s u b j e c t o f the a c t i o n ( 2 ) . 

With the idea of head and multiple explanations, the system now 
produces the ideal question, as we shall see below. 

3 . 3 . R e v i s e d E L C 
T o summarize, the system has a phrase structure grammar, and 

each rule is followed by a head definition followed by an arbitrary 
number of explanation templates. 



R u l e Head 

<a> [1 2 ] 
<b> [1 2 ] 

<c> [ 1 ] 
<d> [1 2 ] 
<e> [ 1 ] 
< f> [1 2 ] 

<9> [1 2 ] 

E x p l a n a t i o n T e m p l a t e 

( 1 ) i s a s u b j e c t o f t h e a c t i o n ( 2 ) 
( 1 ) i s a s u b j e c t o f t h e a c t i o n ( 2 ) 
The a c t i o n (1 2 ) t a k e s p l a c e ( 3 ) 
<<none>> 
( 1 ) i s a d e t e r m i n e r o f ( 2 ) 
( 1 ) i s ( 2 ) 
( 1 ) i s a p r e p o s i t i o n o f ( 2 ) 
( 2 ) i s an o b j e c t o f t h e v e r b ( 1 ) 

A l t e r n a t i v e I I . 

(a man) is (with a teiescope) 
(a man) is (in the park) 

A l t e r n a t i v e I I I . 

The action (Mary saw a man) takes place (with a telescope) 
(a man) is (in the park) 

With the ideas of head and multiple explanation, the system 
builds the following two explanation lists from the sentence "Mary 
saw a man with a telescope". 

A l t e r n a t i v e I. 

<b> (Mary) is a subject of the action (saw a man) 
<b> The action (Mary saw a man) takes place (with a telescope) 
<g> (a man) is an object of the verb (saw) 
<d> (A) is a determiner of (man) 
<f> (with) is a preposition of (a telescope) 
<d> (A) is a determiner of (telescope) 

A l t e r n a t i v e I V . 

The action (Mary saw a man) takes place (in the park) 
(the park) is (with a teiescope) 

A l t e r n a t i v e V . 

The action (Mary saw a man) takes place (with a telescope) 
The action (Mary saw a man) takes place (in the park) 

A l t e r n a t i v e I I . 

<a> (Mary) is a subject of. the action (saw a man) 
<g> (a man) is an object of the verb (saw) 
<e> (a man) is (with a telescope) 
<d> (A) is a determiner of (man) 
<f> (with is a preposition of (a telescope) 
<d> (A) is a determiner of (telescope) 

The difference between these two is 

T h e action (Mary saw a man) takes place (with a telescope) 

and 

(a man) is (with a telescope). 

Thus , the system can ask the ideal question: 

1) T h e action (Mary saw a man) takes place (with a telescope) 
2) (a man) is (with a telescope) 
Number? 

4 . M o r e C o m p l e x E x a m p l e 
The example in the preceding sections is somewhat 

oversimplified, in the sense that there are only two alternatives 
and only two explanation lists are compared. If there were three 
or more alternatives, comparing explanation lists would be not as 
easy as comparing just two. 

Consider the following example sentence: 

Mary saw a man in the park with a telescope. 

This sentence is ambiguous in 5 ways, and its 5 explanation lists 

are shown below. 

A l t e r n a t i v e I. 

(a man) is (in the park) 
(the park) is (with a telescope) 

With these 5 explanation lists, the system asks the user a 

question twice, as follows: 

1) (a man) is (in the park) 
2) T h e action (Mary saw a man) takes place (in the park) 
N U M B E R ? 1 

1) (the park) is (with a teiescope) 
2) (a man) is (with a telescope) 
3) T h e action (Mary saw a man) takes place (with a teiescope) 

N U M B E R ? 3 
The implementation of this is descr ibed in the following. 

We refer to the set of explanation lists to be compared, {L1, L2,... 
} , as A. If the number of explanation lists in A is one ; just return 
the parsed tree which is associated with that explanation list. If 
there are more than one explanation list in A, the system makes a 
Qlist (Question list). T h e Olist is a list of explanations 

Olist = { e r e2 en) 

which is shown to the user to ask a question as follows: 

n ) 9n 
Number? 

Olist must satisfy the following two condit ions to make sure that 
always exactly one explanation is true. 

• Each explanation list ¿ in A must contain at least one 
explanation e which is also in Olist. Mathematically, 
the following predicate must be satisfied. 

V i 3 e ( e € * A e G C H i s t ) 
This condition makes sure that at least one of 
explanations in a Qlist is true. 

• No explanation list L in A contains more than one 
explanation in a Qlist. That is, 



-(3L3e3e'(L E ^ A e G l A e ' G i 
A e £ Qlist A e ' E Qlist A e *e') 

This condition makes sure that at most one of 
explanations in Qlist is true. 

T h e detailed algorithm of how to construct a Qlist is presented in 
Appendix. 

O n c e a Qlist is created, it is presented to the user. T h e user is 
asked to select one correct explanation in the Qlist, called the key 
explanation. All explanation lists which d o not contain the key 
explanation are removed from A. If A still contains more than one 
explanation list, another Qlist for this new A is created, and shown 
to the user. Th is process is repeated until A contains only one 
explanation list. 

5 . C o n c l u d i n g R e m a r k s 
An experimental system has been written in Maclisp, and 

running on Tops-20 at Computer Sc ience Department, Carnegie-
Mellon University. T h e system parses input sentences provided by 
a user according to grammar rules and a dictionary provided by a 
super user. T h e system, then, asks the user questions, if 
necessary, to disambiguate the sentence using the technique of 
Explanation List Comparison. The system finally produces only 
one parse tree of the sentence, which is the intended 
interpretation of the user. The parser is implemented in a bottom-
up, breath-first manner, but the idea descr ibed in the paper is 
independent from the parser implementation and from any 
specific grammar or dictionary. 

T h e kind of ambiguity we have discussed is structural ambiguity. 
An ambiguity is structural when two different structures can be 
built up out of smaller constituents of the same given structure 
and type. O n the other hand, an ambiguity is lexical when one 
word can serve as various parts of speech. Resolving lexical 
ambiguity is somewhat easier, and indeed, it is implemented in the 
system. As we can see in the Sampfe Runs below, the system first 
resolves lexical ambiguity in the obvious manner, if necessary. 

Recently, we have integrated our system into an Engl ish-
Japanese Machine Translation system [3], as a first step toward 
user-friendly interactive machine translation [6]. The interactive 
English Japanese machine translation system has been 
implemented at Kyoto University in Japan [4 ,5 ] . 

A p p e n d i x A : Q l i s t - C o n s t r u c t i o n A l g o r i t h m 

i nput A : set of explanation lists 
o u t p u t Qlist : set of explanations 
loca l e : explanation 

L : explanation list (set of explanations) 
1/, C : set of explanation lists 

1: C — * 
2: U « A 
3: Qlist « 0 
4: if ¿7 » (pihen r e t u r n Qlist 
5: s e l e c t one explanation e s u c h that 

e is in some explanation list € U, 
but not in any explanation list G C; 
if no such e exists, r e t u r n E R R O R 

6: Qlist <= Qlist + { e } 
7: C « C + {L\eGL aLgU) 
8: U = {L\e£L A I € (U) } 
9: g o t o 4 

• The input to this procedure is a set of explanation 
lists, [LVL2,...}. 

• The output of this procedure is a list of explanations, 
{ e r e 2 , ... , en], such that each explanation list, Lv 

contains exactly one explanation which is in the Qlist. 

• An explanation list L is called covered, if some 
explanation e in L is also in Qlist. L is called 
uncovered, if any of the explanations in L is not in 
Qlist. C is a set of covered explanation lists in A, and 
U is a set of uncovered explanation lists in A. 

• 1-3: initialization. Let Qlist be empty. All explanation 
lists in A are uncovered. 

• 4: if all explanation lists are covered , quit. 

• 5-6: select an explanation e and put it into Qlist to 
cover some of uncovered not explanation lists, e 
must be such that it does exist in any of covered 
explanation lists (if it does exist, the explanation list 
has two explanation in A, violating the Qlist 
condition). 

A c k n o w l e d g e m e n t s • 7 - 8 : m a k e uncovered explanation lists which are now 
covered by e to be covered . 
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on an earlier version of this paper. 
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A p p e n d i x B: S a m p l e R u n s 

( t r a n s l i n e ( t i m e n i e s I l i ce an a r row i n J a p a n ) ) 

( — E M O OF PARSE- - 10 ALTERNATIVES) 

( The word TIME ( 1 ) i s : ) 
(1 : VERB) 
(2 : NOUN) 
NUMBER) I 

(The word F L I E S ( 2 ) I s : ) 
(1 : VERB) 
(2 : NOUN) 
NUMBER> 1 

(1 : (AN ARROW) IS ( I N JAPAN) ) 
(2 : THE ACTION (T IME F L I E S ) TAKES PLACE ( I N JAPAN) ) 
NUMBER> I 

(S (NP (T IME «NOUN)) 
( F L I E S -VERB) 
(PP ( L I K E «PREPOSIT ION) (NP (AN «DETERMINER) (ARROW « N O U N ) ) ) 
(PP ( I N «PREPOSIT ION) (JAPAN « N 0 U N ) ) ) 

( t r a n s l i n e ' ( M a r y saw a man i n the apartment w i t h a t e l e s c o p e ) ) 

( END OF PARSE- - 5 ALTERNATIVES) 

(1 : (A MAN) IS ( I N THE APARTMENT)) 
(2 : THE ACTION (MARY SAW A MAN) TAKES PLACE ( I N THE APARTMENT)) 
NUMBER> 1 

(1 : (A MAN) IS (WITH A TELESCOPE) ) 
(2 : (THE APARTMENT) IS (WITH A TELESCOPE) ) 
(3 : THE ACTION (MARY SAW A MAN) TAKES PLACE (WITH A TELESCOPE) ) 
NUMBER> 2 

(S (NP (MARY «NOUN)) 
(VP (SAW -VERB) 

(NP (NP (A «DETERMINER) (MAN *NOUN)) 
(PP ( I N «PREPOSIT ION) 

(NP (THE «DETERMINER) (APARTMENT « N 0 U N ) ) ) ) ) 
(PP (WITH «PREPOSIT ION) 

(NP (A «DETERMINER) (TELESCOPE « N O U N ) ) ) ) 


