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Abstract

An extended LR parsing algorithm is introduced and its application to natural language
processing is discussed. Unlike the standard LR, our algorithm is capable of handling
arbitrary context-free phrase structure grammars including ambiguous grammars, while
most of the LR parsing efficiency is preserved. When an input sentence is ambiguous, it
produces all possibie parses in an efficient manner with the idea of a "graph-structured
stack.” Comparisons with other parsing methods are made.

This research was sponsored by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 3587, monitored by the Air Force Avionics Laboratory Under
Contract F33615-81-K-1539. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.



N -

(41}

[+)]

-\‘

[s+]

Table of Contents
. Introduction
. LR parsing
2.1. An example
2.2. Problem in Applying to Natural Languages
. MLR parsing .
3.1. With Stack List
3.2. With a Tree-structured Stack
3.3. With a Graph-structured Stack
. An Efficient Representation of Parse Trees
4.1. Sub-tree Sharing
4.2, Local Ambiguity Packing
. Comparison with Other Methods
5.1. LR parsers
5.2. Other One-path Parsers
5.3. Cocke-Younger-Kasami Algorithm
5.4. Earley's Algorithm
5.5. Chart Parsing
. Future Work
6.1. Implementation of the algorithm
6.2. Experiment on the Parser Efficiency
6.3. Comparison with Other Algorithms
6.4. Discussion of Applications
. Potential Contributions of the Thesis
7.1. To Parsing Theory
7.2. To Practical Systems
7.3. To Computational Linguistics
. Appendix )
8.1. LA parsers for Natural Languages
8.2. Disambiguating Grammatically Ambiguous Sentence by Asking

U L S i



1. Introduction

When a parser encounters an ambiguous input sentence, it can deal with that sentence in one of
two ways. One way is to produce a single parse which is the most preferable. Such parsers are
called one-path parsers. On the other hand, parsers that produce all possible parses of the
ambiguous sentence aré called all-paths parsers. One-path parsers are, naturally, much faster than
all-paths parsers because they look for only one parse. There are, however, situations where ail-

paths parsers shouid be used. For example, consider the following short story.

| saw the man with a telescope.
He bought it at the department store.

When the first sentence is read, there is absolutely no way of resolving the ambiguity1 at that time.
The only action the system can take is to produce two parses and stare them somewhere for later

disambiguation.

Another situation where all-paths parsers should be used is what we call interactive parser, which
originally motivated this work. An interactive parser disambiguates structurally ambiguous input
sentences by asking its user questions interactively. For example, an interactive parser asks a

question such as the following to disambiguate the sentence "l saw a man with a telescope.”

1) The action "l saw a man" takes place "with a telescope”
2} "a man" is "with a telescope"
NUMBER?

The technique to implement this is described in [20] (also in Appendix). In order to ask such a
question, all possible structures of the ambiguous sentence must be available, and therefore afl-paths
parsing is required.

fn this paper, we introduce an efficient all-paths parsing algorithm named MLR, which is an
exténsion of LR. The LR parsing algorithm is a very efficient one-path parsing algorithm which is
much faster than the Cocke-Younger-Kasami algorithm [1] and Earley’s algarithm [9] especially when
the grammar is significantly large. The LR parsing algorithm, however, has seldom been used for
natural language processing, because the LR parsing algorithm is ai)plicable only to a small subset of
context-free grammars, and usuaily it cannot apply to natural languages. Qur MLR parsing algarithm,
while most of the LR parsing efficiency is preserved, can apply to arbitrary context-free grammars,
and is therefore applicable to natural languages.

One might wonder, by the way, whether natural languages can be specified in context-free phrase
structure. It had been thought that natural languages are not context-free, before the recent

1"I" have the telescope, or "the man" has the telescope.



literature [11] showed that the belief is not necessarily true and there is no reason for us to give up the
context-freedom of natural languages. We do not discuss this matter further, because even if natural
languages are not context-free, a fairly comprehensive grammar for a subset of natural language

sufficient for practical systems can be written in context-free phrase structure.

In section 2, we briefly review LR parsing, and discuss the problem that arises when applied to
natural languages. 'n section 3, we introduce the MLR parsing algorithm, and in section 4 we
describe how to represent parse trees efficiently and how. to produce them using MLR parsing.
Section 5 compares MLR parsing with other existing parsing methods. Finally, we enumerate future

tasks to be completed in section 6 and potential contributions in section 7.



2. LR parsing

LR parsers [1, 2] have been developed originally for programming languages. An LR parseris a
shift-reduce parser which is deterministically guided by a parsing table indicating what action should
be taken next. The parsing table can be obtained automatically from a context-free phrase structure
grammar, using an algo-rithm first developed by DeRemer [7, 8]. We do not describe the algorithm

here, referring the reader to Chapter 6 in Aho and Uliman [3].

2.1. An example
An example grammar and its LR parsing table obtained by the algorithm are shown in Figure 2.1

and 2-2, respectively.
{(3) NP --> *dat *n

(6) VP --> sv NP

- e ———— - ey W

State  *det *n *v *prep § NP PP VP §
0 sh3 2 1
1 shé ace 4
2 shé 7
3 sh8
4 rez re2
B sh3 9
8 sh3 10
7 rel rel
8 red red red
g red red
10 reb rebd
action table goto table

Figure 2-2: LR Parsing Tahle
Grammar symbols starting with "*" represent pre-terminals. Entries "sh n" in the action table (the
left part of the table) indicate the action "shift one word from input buffer onto the stack, and go to
state n”. Entries "re n" indicate the action "reduce constituents on the stack using rule n". The
entry "acc” stands for the action "accept”, and blank spaces represent "error”. Goto table (the right
part of the table) decides to what state the parser should go after a reduce action. The exact
definition and operation of the LR parser can be found in Aho and Ullman [3].

Let us parse a simple sentence "My car has a radio” using the LR parsing table. The trace of the LR
parsing is shown in Figure 2-3.



Inputbuffer = MY CAR HAS A RADIO $

STACK NA  NW

o sha W
0 *det 3 shd CAR

0 *det 3 *n 8 red HAS
0 NP 2 shé HAS
O NP 2 *v 8 shd A

O NP 2 *v 8 *det 3 shda RADIO
O NP 2 *v 6 *det 3 *n 8 red $

0O NP 2 *v 68 NP 10 re6 $

O NP 2 VP 7 rel §
0S1 acc $

Figure 2-3: Trace of LR Parsing
The number on the top (rightmost) of the stack indicates the current state. Initially, the current state
is 0. The inputbuffer initially contains the input sentence folowed by the end marker "$".

Since the parsér is Jooking at the word "MY", whose category is "*det”, the next action "shift and
goto state 3" is determined fl_'om the action table. The parser takes the word "MY" away from the
inputbuffer, pushes the preterminal "*det” onto the stack, and goes to state 3 pushing the number
"3* onto the stack. The inputbuffer is now "CAR HAS A RADIO §".

*

The next word the parser is looking at is "CAR", whose category is "*n", and "shift and goto state
8" is determined from the action table as the next action. Thus, the parser takes the word "CAR"
from the inputbuffer, pushes the preterminal "*n", and goes to state 8 pushing the number "8" onto
the stack. The inputbuffer is now "HAS A RADIO §".

The next word is "HAS", and from the action table, "reduce (Jsing rule 3" is determined as the next
action. So, the parser reduces the stack using the rule "NP --> *det *n". The current state "2" is
determined by the goto table from the state before the removed constituents. The inputbuffer is still
"HAS A RADIO $", because we have not shifted the word "HAS" yet.

Since the parser is still looking at the word "HAS", and it is in state 2, the next action is "shift and



goto state 6". So, the parser shifts the word "HAS" from the inputhuffer onto the stack, and goes to

state 6.

Several steps later, the parser eventually finds the action "accept”, which is the signal for the parser
to halt the process.

2.2. Problem in Applying to Natural Languages

Several advantages of LR parsing exist which makes it attractive to use in natural tanguage
processing. As we have seen in the example, the LR paring is one of the most efficient parsing
algorithms. It is totally deterministic and no backtracking or search is involved. The algorithm to build
an LR parsing table is well-established, and there is a practical program called YACC (Yet Another
Compiler Compiler} [12)] running on Unix.

Unfortunately, we cannot directly adopt the LR parsing technigue for natural languages. This is
because not all context-free phrase structure grammars (CFPSG's) can have an 1R parsing table,
Only a small subset of CFPSG's called LR grammars {(see figure 2-4) can have such an LR parsing
table. Every ambiguous grammar is not LR, for example. And since natural language grammars are
almost always ambiguous, they are not LR; therefore we cannot have an LR parsing table for naturai
language grammars.

LInambiguous

Figure 2-4: Context-free Grammars and LR grammars

If a grammar is non-LR, its parsing table will have multiple entries? ; one or mare of the action table
entries will be multiply defined. Figures 2.5 and 2-6 show an example non-LR grammar and its
parsing table.

2They are often called conflict.
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(4) NP --> *det *n
(6) NP --> NP PP
(8) PP --> *prep NP
(7) VP ==> *v NP

State *det *n *y *prep $ NP PP VP §
0 sh3 shé 2 1
1 sh8@ ace 6
2 sh? shé 9 8
3 shi0
4 red red red
6 re2 re2
8 sh3 sh4 11
7 sh3 shd 12
8 rel rel
9 rab reb reb

10 red red red
11 reb reB,shé red 9
12 re?,sh8 rel 9

-—----—---———---—a-—--——-------——-—--—---q—-—------———--—-----——--—-

Figure 2-6: LR Parsing Table with Multiple Entries

We can see that there are two multipte entries in the action table; on the rows of state 11 and 12 at
the column labeled "*prep”. It has been thought that, for LR parsihg. multiple entries are fatal
because once a parsing table has multiple entries, deterministic parsing is no longer possible and
some kind of non-determinism is necessary. However, in the following section, we shatll introduce an
extended LR parsing algorithm, named MLR, that can handle parsing tables with multiple entries
using a graph-structured stack. The MLR parsing algorithm, while it can apply to arbitrary CFPSG's,
preserves most of the efficiency of the standard LR parsing algorithm.



3. MLR parsing

As mentioned above, once a parsing table has multiple entries, deterministic parsing is no longer
possible and some kind of non-determinism is necessary. The first subsection describes a simple
non-determinism, i.e. pseudo-paralielism (breath-first search), in which the system maintains a
number of stacks simultaneously. We call the list of stacks Stack List. The next subsection describes
the idea of stack combination, which was introduced by Tomita's paper [21] (also in Appendix), to
make the algorithm efficient and feasible. With this idea, stacks are represented as trees (or a forest).
Finally, a further refinement, the graph-structured stack, is described to make the algorithm even

more efficient.

3.1. With Stack List

The basic idea is to handle multiple entries non-deterministically. We adopt pseudo-parallelism
(breath-first search), maintaining a list of stacks called Stack List. The pseudo-parallelism works as
follows.

A number of processes are operated in parallel. Each process has a stack and behaves basically
the same as in standard LR parsing. When a process encounters a muitiple entry, the process is split
- into several processes (one for each entry), by duplicating its stack. When a process encounters an
error entry, the process is killed, by removing its stack from the stack list. All processes are
synchronized; they shift a word at the same time so that they always look at the same word. Thus, ifa

process encounters a shift action, it waits until all other processes also encounter the shift action.

Figure 3-1 shows a snapshot of the stack list right after shifting the word "with” in the sentence "I
saw a man on the bed in the apartment with a telescope” using the grammar in Figure 2-5 and the
parsing table in Figure 2-6.
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Figure 3-1: Stack List

For the sake of convenience, we denote a stack with nodes and edges. The leftmost node is the
vottom of the stack, and the rightmost node is the top of the stack. Each node, except the leftmost
node, has two labels, a grammar symbol and a state number. The leftmost node has only a state
number, and it is always 0. The distance between nodes (length of an edge) does not have any
significance, except it may help the reader understand the stacks' status.

We notice that some stacks in the stack list appear to pe identical. They are, however, internally
different because they have reached the current state in different ways. Although we shall describe a
method to compress them into one stack in the next section, we consider them to be different in this
section.

A dtsadvantage ol the stack list method is that there are no interconnections between stacks
{processes) and there is no way for a process to utilize what other processes have done already.
Therefore, the number of stacks in the stack list grows exponentially as ambiguities are encountered.
For example, these 14 processes in Figure 3-1 will parse the rest of the sentence "the telescope” 14

times in exactly the same way. This can be avoided by using a tree-structured stack, which is



described in the following subsection.

3.2. With a Tree-structured Stack

if two processes are in a common state, that is, if two stacks have a common state number at the
rightmost node, they will behave in exactly the same manner until the node is popped from the stacks
by a reduce action. To évoid this redundant operation, these processes are unified into one process
by combining their stacks. Whenever two or more processes have a common state number on the top
of their stacks, the top nodes are unified, and these stacks are represented as a tree, where the top
node corresponds to the root of the tree. We call this a tree-structured stack. When the top node is
popped, the tree-structured stack is split into the original number of stacks. In general, the system
maintains a number of tree-structured stacks in parallel, so stacks are represented as a forest. Figure
3-2 shows a snapshot of the tree-structured stack right after shifting the word "with".

0

&

0 P,

L 2 &

Q NP2 %7 NP2
® e 7 -
0 s,1
®-

o NP2 v 7 NP12
— & &

W}

@

0 NP2 %7 NP,12
N & L

0 NPZ %7
*—-

Figure 3-2: A Tree-structured Stack

Although the number of stacks is reduced significantly by the stack combination technique, the
number of branches of the tree-structured stack (the number of bottoms of the stack) that we must
maintain still grows exponentially as ambiguities are encountered. In the next subsection, we
describe a further modification in which stacks are represented as a directed acyclic graph.
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3.3. With a Graph-structured Stack

So far, when we split a stack, we make a copy of the whole stack. However, we do not necessarily
have to copy the whole stack: Even after different parallel operations on the tree-structured stack, the
bottom portion of the stack may remain the same. Only the necessary portion of the stack should
therefore be split. When a stack is split, the stack is thus represented as a tree, where the bottom of
the stack corresponds to the root of the tree. With the stack combination technique described above,

stacks are represented as a directed acyclic graph. Figure 3-3 shows a snapshot of the graph stack.

S,

NP.12
Figure 3-3: A Graph-Structured Stack

It is easy to show that the MLR parser with the graph-structured stack does naot parse any part of an
input sentence more than once in the same way. This is because if two processes had parsed a part
of a sentence in the same way, they would have been in the same state, and they would have been

combined as one process.

So far, we have focussed on how to accept or reject a sentence. In practice, however, the parser
must not only simply accept or reject sentences, but also must build the syntactic structure(s) of the
sentence (parse trees). In the next section, we describe how to represent the syntactic structure and
how to build it with the MLR parser.
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4. An Efficient Representation of Parse Trees

The ambiguity (the number of parses) of a sentence grows exponentiaily as the length of a sentence
grows. Thus, one might notice that. even with an efficient parsing algorithm such as the one we
described, the parser would take exponential time because exponential time would be required
merely to print out all parse trees. We must therefore provide an efficient representation so that the

size of the representation does not grow exponentially.

In this section, we describe two techniques for providing an efficient representation: sub-tree
sharing and local ambiguity packing. It should be mentioned that these two techniques are not
completely new ideas, and some existing systems already adopted these techniques. We shall
therefore focus on how to implement these techniques with the MLR parsing algorithm.

4.1. Sub-tree Sharing

if two or more parse trees have a common sub-tree, the sub-tree should be represented only once.
For example, parse trees for the sentence "l saw a man with a telescope"” should be represented as
tollows:

NP

*n oy *d *n *p *dq *n
: I saw @& man with a telescope
Figure 4-1: Shared Trees
Qur MLR parsing is very well suited for building this kind of shared tree as its output, as we shall see
in the following.

To implement this, we no longer push grammatical symbols on the stack; instead , we push pointers
to a node® of shared trees. When the parser "shifts" a word, it creates a leat node labeled with the

3
One must not be confused "nodes” of shared trees and "nodes” of a graph-structured stack. Hereinafter, the term "nods”
will be used as of shared Irees unless otherwise noted.
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word and the pre-terminal, and instead of pushing the pre-terminal symbol, a pointer to the newly
created leaf node is pushed onto the stack. If the exact same leaf node {i.e. the node labeled with the
same word and the same pre-terminal) already exists, a pointer to this existing nade is pushed onto
the stack, without creating ancther node. When the parser "reduces” the stack, it pops pointers to
shared tree nodes from the stack, creates a new node whose successive nodes are pointed to by

those popped pointers, and pushes a pointer to the newly created node onto the stack.

Using this relatively simple procedure, the MLR parser can produce the shared trees as its output
without any other special book-keeping mechanism, because the MLR parser never does the same

reduce action twice in the same manner.

4.2. Local Ambiguity Packing

We define that two subtrees represent local ambiguity if they have common leaf nodes and their top
nodes are labeled with the same non-terminal symbol. That is to say, a fragment of a sentence is
locally ambiguous if the fragment can be reduced to a certain non-terminal symbol in two or more
ways. If a sentence has many local ambiguities, the total ambiguity would grow exponentially. The
local ambiguity packing is a technique to avoid this, and works in the following way. Two subtrees
that represent local ambiguity are merged and treated by higher-level structures as if there were only
one subtree. Examples of shared trees without and with the local ambiguity packing are shown in
Figure 4-2,

*p *Q *d *n *p *dq *n *n *d *n
| saw @8 man in the apt with a tel
Figure 4-2(a): Unpacked Shared Trees
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NP //f" NP NP NP
AN /N N
-!-In *'v' *d *n *p -!‘d *n *p *d/ *n
I saw 3 man in the apt with a tel
Figure 4-2{b): Packed Shared Trees

The local ambiguity packing can be easily implemented with the MLR parsing as follows. (n the
graph-structured stack, if two or more edges have a common starting point and a comman ending
" point, they represent local ambiguity, and the parser considers them as if there is only one edge. In
Figure 3-3 for example, we see one 5-way local-ambiguity and two 2-way local ambiguities. Figure 4-3
shows the snapshot of the graph-structured stack and the shared trees right after shifting the word
“with" in the sentence "1 saw a man on the bed in the apartment with a telescope."
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10,1

11,11 13,6

Figure 4-2: Graph-Structured Stack and Packed Shared Trees
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5. Comparison with Other Methods
In this section, we compare the MLR parsing with other existing parsing methods such as LR, ATN,
Cocke-Younger-Kasami, Earley and Chart parsing.

5.1. LR parsers

There are several kinds of LR parsers: LR(0), SLR(1), LALR(1), LR(1), LR(k}, etc. LR(Q) is the
simplest and the least efficient LR parser, because it does not manage "look ahead" at all. On the
other hand, LR(k) is the most efficient, but its parsing construction is the most complex. YACC is
LALR(1). These LR parsers differ from each other only by the LR table construction algorithm; the
parsing algorithm itself is common to all these LR parsers. Since the parsing table construction of the
MLR parser does not differ from that of LR parsers, we can also think of several kinds of MLR parsers:
MLR(0), MSLR(1), MLALR(1), MLR(1), MLR(k), etc., according to the parsing table construction
algorithm. The MLR parser whose parsing table is obtained by YACC is therefore MLALR(1).

LR parsing can be considered as a special case of MLR parsing. !f the grammar is LR, MLR parsers
behave in exactly the same manner as LR parsers.

5.2. Other One-path Parsers

Although the LR parsers and PARSIFAL [15] (theoretically LR(k) [4]) cannot handle ambiguous
sentences, other one-path parsers, including ATN [27], DCG [17], BUP [16] and LINGOL [18], can
simulate the all-paths parsing, producing all possible parses by backtracking. However, the number
of times they must backtrack grows exponentially as the sentence ambiguity grows, and they become
unrealistic when a sentence has hundreds of possible parses.

5.3. Cocke-Younger-Kasami Algorithm

Cocke-Younger-Kasami (CYK) algorithm operates basically bottom-up: all ¢constructable subtrees
are built exhaustively regardiess of whether they are actually utilized by some higher structure trees.
Thus, this algorithm produces many meaningless subtrees which are never used, wasting time and
space. Moreover, while the MLR parser can detect ungrammaticality of a sentence as soon as an
inconsistent word is read, the CYK algorithm cannot detect the ungrammaticality until the whole
sentence is read.
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5.4. Earley's Algorithm
Earley's algorithm is somewhat more efficient than CYK algorithm in the sense that it does not build
all possible subtrees exhaustively. Also, Earley's algorithm is capable of detecting ungrammaticality

as soon as an inconsistent word is read.

The disadvantage of this algorithm, compared with MLR, is that each time a word is read, the system
must compute "a set of items” (cf. pp.207 in {3]). Computing sets of items requires the system to look
all over the grammar rules, and it is particularly inefficient when the grammar is large. In MLR
parsing, on the other hand, such sets of items are pre-computed at the parsing table construction
time, and the results of the pre-computing are encoded implicitly in the parsing table. Therefore, the

MLR parser does not have to compute sets of items during parsing.

5.5. Chart Parsing

To avoid confusion, it should be noted that there is no such thing as a "chart parsing aigorithm". A
chart [13] is the name of a data structure that represents the syntactic structure of a sentence. The
most popular algorithm for chart parsing is the CYK algorithm because it is simple. However, Earley's
algorithm can also be used for the chart parsing, and such a parser is called the Active Chart
_ Parser [26]. Since we have already mentioned these two algorithms, we do not compare the MLR

parser'with chart parsers incorporating these two algorithms.

The graph-structured stack in the MLR parsing looks very similar to the chart. Although we have
viewed MLR parsing as a generalized and extended version of LR parsing, we can also view MLR
parsing as an extended version of chart parsing, which is guided by an LR parsing tabie. The major
extensnon is that nodes in the chart contain information about the LR state as well as information
about position of the node in the sentence. Thus, unlike a conventional chart, there may be more
than one node at any position of a sentence. New edges and nodes are then created according to the
LR parsing table. It might be interesting to redesign the MLR parsing algorithm as the extended chart

parsing, although we do not discuss this matter further,
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6. Future Work

In this section we enumerate future work to be completed in a year or so. In brief, we will implement
the algorithm, experiment with a fairly targe English grammar, compare our algorithm with other

parsing algorithms and discuss its applications. The following subsections describe the future work
in more detail.

6.1. implementation of the algorithm
We will implement our algorithm fully. The program will be written in Mac Lisp on CMU-CS-C
- (Tops-20). Moreover, we will implement the following extension in order to parse natural language in
a more flexible manner.
¢ Handling Muiti-part-of-speech Words: Some words in English such as "saw" have more
than one grammatical categories. We will solve this problem elegantly as foliows. When
such a word is encountered, the parsing table can immediately teli us which of its
categories are legal. And if more than one of its categories are legal, the parser behaves

as if a muitiple entry were encountered. Little effort should be required to extend our
parser to handle this.

¢ Handling Unknown Words: Moreover, our parser will be able to parse a sentence with
unknown words. Unknown words can be considered as a special muiti-part-of-speech
word whose categories can be any legal categories.

6.2, Experiment on the Parser Efficiency
We will construct parsing tables for a tiny (10 rule), a small (80 rule} and a fairly large {400 rule)
English grammar. We will either run YACC or write our own program fcr table construction. If we

utilize YACC, we need to write a program that converts YACC output into a parsing table in our
representation.

We will then have the parser actually parse an appropriate set of English sentences, in order to find
out:

1. The parsing time with respect to the length of a sentence,
2. The parsing time with respect to the ambiguity of a sentence,

3. The parsing time with respectto a grammar size.
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6.3. Comparison with Other Algorithms
We will compare our algorithm in detail with at least two other algorithms: CYK algorithm and

Earley's algorithm. The comparison will be made in one of the following ways.

1. To prove mathematically that our algorithm dominates the other algorithm(s} under some
reasonable assumptions.

2 To define some reasonable "primitive operations” and compare the number of
operations. Note that we need not to implement the other algorithm(s).

3. To implement the other algorithm(s) on the same machine and in the same programming
language and compare their execution times.

6.4. Discussion of Applications

The following discussions will be made.

o Incorporation of Semantics: We will discuss incorporation of Knowledge Representation
Language (KRL) [5] with our parsing algorithm so that only semantically correct parses
are produced.

e Application to Interactive Parser. We will discuss the technique of interactive sentence
disambiguation [20] and discuss incorporation of this technique with our parsing
algorithm. This technique requires having all possible parsers in advance, out of which
the system asks its user questions to disambiguate a sentence.

e Application to Machine “ranslation: We wiil discuss an application of the interactive
parser to personal/interactive machine translation systems {25, 22, 23, 24, 19].
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7. Potential Contributions

Finally, we point out potential contributions of our work.

7.1. To Parsing Theory
We extend the LR parsing algorithm so as to handle an arbitrary context-free grammar with little
loss of the LR efficiency. Although its upper bound on the time needed in the worst case is O(na) as

others, its coefficient is significantiy reduced due to utilization of an LR parsing table.

- 7.2. To Practical Systems
We give an efficient all-paths parsing algorithm, which would be required in practical systems such

as personal/interactive machine translation systems with the interactive sentence disambiguation.

7.3. To Computational Linguistics

An obvious application is to the possible implementation of GPSG [10], in which grammar rules are
eventually represented purely as a context-free phrase structure grammar. Also, our algorithm could
apply to implementation of functional grammars such as Lexical Functional Grammar (LFG} [6] and
Unification Grammar (UG)[14], in which a base structure is specified by a context-free phrase
structure grammar. Qur algorithm would be particularly suitable in casé sentences are highly
ambiguous.
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8. Appendix
8.1. LR parsers for Natural Languages

8.2. Disambiguating Grammatically Ambiguous Sentence by Asking
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Abstract

MLR, an extended LA parser, is introduced, and its
application to natural language parsing is discussed.
An LR parser is a shift-reduce parser which is
deterministically guided by a parsing table. A parsing
table can be obtained automaticaliy from a context-
free phrase structure grammar. LR parsers cannot
manage ambiguous grammars such as natural
language grammars, because thew parsing lables
would have mulliply-defined entries, which precludes
deterministic parsing. MLR, however, can handle
mulliply-defined entries, using a dynamic
programming methed. When an input sentence is
ambiguous, the MLR parser produces all possible
parse trees without parsing any part of the input
sentence more than once in the same way, despite the
fact that the parser does not maintain a chart as in
chart parsing. Qur method also provides an elegant
solution to the problem of multi-part-of -speech words
such as "that”. The MLR parser and its parsing table
generator have been implemented at Carnegie-Mellon
University.

1 Introduction

LR parsers{1.2] have been developed originally for
programming language of compilers. An LR parser is a shift-
reduce parser which is deterministicatly guided by a parsing table
indicating what action should be taken next. The parsing table
can be obtained automatically from a conlext-free phrase
structure grammar, using an algorithm first developed by
DeRemer [5, 6]. We do not describe the aigorithm here, reffering
the reader to Chapter 6 in Aho and Ullman [4]. The LR parsers
have seidom been used for Natural Language Processing
probably because:

1.t has been thought that natural languages are not
coriext-free, whereas LR parsers can deal only with
context-free languages.

2. Natural languages are ambiguous, while standard LR
parsers can not handhe ambiguous languages.

‘This research was sponscred by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 3587. momiored by the Air Force Avienics
Laboratary Under Cuntract F33615-81-K-1539. The views and conclusions
tontained in this document are these of the authors and should not be interpreled
a8 representing the official policies, either expressed or implied, of the Defenss
Agvanced Research Projects Agency or the US Government,

The recent literature {8] shows that the belief “natural
languages are not context-free” is not necessarily true. and there
is no reason for us to give up the context-freedom of natural
ianguages. We do nat discuss on this matter further, considering
the fact that even il natural languages are not context-free, a
tairly comprehensive grammar for a subset of natural lanquage
sufficient for practical systems can be written in context-free
phrase structure. Thus, our main concern is how to cope with the
ambiguity of natural languages, and this concern is addressect in
the following section.

2 LR parsers and Ambiguous Grammars

It a given grammar is ambiguous.2 we cannot have a parsing
tabie in which every entry is uniquely defined: at least one entry of
its parsing table is multiply definecd. It has been thought that, for
LR parsers, muitiple entries are fatal because they make
deterministic parsing no longer possible.

Aho er. al. (3] and Shieber [12] coped with this ambiguity
problem by staticaily3 selecting one desired action out of multiple
actions, and thus converting muitiply-defined entries into
uniquely-defined ones.With this approach, every input sentence
has no more than one parse tree. This fact is desirable for
programming languages.

For natural languages, however, it is sometimes necessary for a
parser to produce more than one parse tree. Faor example,
consider the following short story.

| saw the man with a telescape.
He shouid have bought it at the department store.

When the first sentence is read, there is absolutely no way to
resolve the ambiguily‘ at that time. The only action the system
can !ake is to produce two parse trees and store them
somewhere for iater disambiguation.

In contrast with Aho et. 2. and Shieber, our approach is to
extend LR parsers so that they can handle multiple entries and
produce more than one parse tree I needed. We call the
extended LR parsers MLR parsers.

2A grammar i$ ambiguous, if same input sentence can be parsed in mare than
one way.

3Bv “statically”, we mean the selection i3 done at parsing table construction
tima,

dope have tha telescope, or “the man” has the telescope.



3 MLR Parsers

An example grammar and its MLR parsing table produced by
the construction aigorithm are shown in fig. * and 2, respectively.
The MLR parsing table construction algorithm is axactly the same
as the algorithm for LR parsers. Only the difference i1s that an
MLR parsing table may have muitipie entries. Grammar symbols
starting with “*" represent pre-terminals. "sh n" in the action
table (the left part of the table) indicates the action “shift one
word from input buffer onto the stack, and go to state n". "re n"
indicatas the action "reduce constituents on the stack using rule
a". "acc" stands for the action "accept”, and blank spaces
represent "ercor”. Goto lable (the right part of the table) decides
to what state the parser shouid go after a reduce action. The
axact definition and operation of LR parsers can be found in Aho
and Uliman [4].

Wa can see that there are two muitiple entries in the table; on
the rows of state 11 and 12 at the column of “‘prep”. As
mentioned above, once a parsing table has muitiple entries,
deterministic parsing is no longer possible: some kind of non-
determinism is necessary. We shail see that our dynamic
programming approach. which is described below, is much more
efficient than conventional breath-first or depth-first search, and
makes MLR parsing feasible.

Our approach is basically pseudo-parallelism (breath-first
search). When a process encounters a multiple entry with n
different actions, the process is spiit into n processes, and they
are executed individually and paraillelly. Each process is
continued until either an “error” or an "accept” action is found.
The pracesses are, however, synchronized in the lfollowing way:
When a process "shifts” a ward, it waits untit all other processes
"shift” the word. Intuitively, all processes always lock at the
same word. After all processes shift a word, the system may find
that two or more processes are in the same state; that is, some
processes have a common state number on the top of their
stacks. These processes would do the exactly same thing until
that common state number is popped from their stacks by some
"reduce” action. In gur parser. this common part is processed
anly once. As S00A as two Or more pro¢esses in a common state
are found. they are combined into one process. This combining
mechanism guarantees that any part of an input sentence is
parsed no more than once in the same manner. This makes the
parsing much maore efficient than simple breath-first or depth-first
search. Qur method has the same effect in terms of parsing
efficiency thal posting and recognizing common subconstituents

of different parses have in the chart parsing method {10, 11]. The
idea should be made clear by the following example,

4 An Example

in this section, we demonstrate, step by step. how our MLR
parser processes the sentence:

| SAW A MAN WITH A TELESCOPE

using the grammar and the parsing table shown in fig 1 and 2.
This sentance is ambiguous, and the parser shouid accept the
senlence in two ways.

Until the system linds a muitiple entry, it behaves in the exact
same manner as a conventionat LR parser, as shown in fig 3-a
below. The number on the top (rightmast) of the stack indicates
the current state. Initially, the current state is 0. Since the parser
is looking at the word "1", whose category is ““n”, the next action
“shift and goto state 4" is determined from the parsing table. The.
parser takes the word "I" away from the input buffer, and pushes
the preterminal "*n"” anto the stack. The next word the parser is
looking at is "SAW", whose categary is “*v", and "reduce using
rute 3" is determined as the next action. After reducing, the
parser determines the current state, 2, by looking at the
intersection of the row of state 0 and the column of "NP”, and so
on,

STaCk NEXT-ACTION MNEXT-WORD
Q sh 4 [
0 *n 4 rg 3 SAw
9 NP 2 sh 7 SAW
0 NP 2 %¢ 7 sh 3 A
O NP 2 *v 7 *det 3 sh 10 MAN
0 NP 2 *v 7 *dat 3 "n 10 re 4 WITH
0 NP 2 7 NP 12 re 7, sh & WITH

At this point, the system finds a multiple entry with two different
actions, "reduce 7" and "shift 6". Both actions are processed in
paralel, as shown in fig 3-b.

State *dat *n v *prep b} NP PP VP S
0 shl shé4 2 1
1 sh@ ace 5
--------------------------- 2 sh? shé 9 B8
(1) § =--> NP VP 3 shio
{2) S --> S PP 4 rel red reld
(3} NP --> =*n 5 re2 re2
(4) NP --> =det *n 8 sh3 shé 11
{5) NP --> NP PP 7 sh3 sh4 12
(8) PP ==> "prep NP 8 rel ral
(7} VP --> *v NP 9 rob re5 res
__________________________ 10 red red red
11 reg ra6,shd ref 9
12 ra7,shgé re? 9
Fig1 = e eiieaa-mammmmwesmmemmamsmmes— e em—m oMo aeassmss—————aea-aoose-



ONP 2 VP S ra 1 WITH
O KP 2 *v 7 NP L2 "“prep B wait A
051 sh & WITH
0 NP 2 *v 7 NP 12 *prep 8 wait A
0SS 1 *prep B sh 3 A
0O NP 2 * 7 NP 1Z *prep B sh 3 A

Here, the system finds that both processes have the common
state number, 6, on the top of their stacks. it combines two
processes into one, and operates as if there is only one process,
as shown in fig 3-c.

051——ﬁ'9faﬂﬁ sh 2 A
0 NP 2 *v 7 NP 12

sh 10 TELESCOPE

g0s§1 _-7‘prup& *det J
O KP 2 v 7 NP 12

[+ lﬁ'prapﬁ‘dna'n 10 re 4 1
O NP 2 ®¢ 7 NP 12

¢S 1_—7'[”'695?4? 11
O NP 2 *v T NP 12

Fig 3-¢
The action "reduce 6" pops the comman state number 8, and
the system can no longer operate the two processas as one. The
two processes are, again, operated in parailel, as shown in fig
a-d.

0SS 1PPS re 2 s
QO NP 2 *v 7 NP 12 PP 9 re 5 s
0sS1 accapt

O NP 2 *v T NP 12 ra 7 3

Fig 3-d
Now, one of the two processes is finished by the action

This process is also finished by the action "accept”. The
sysltem has accepted the input sentence in both ways. It is
important to nate that any part of the input sentence, including
the prepositional phrase "WITH A TELESCOPE", is parsed only
ance in the same way, without maintaining a chart.

5 Another Example

Some English words belong to more than one grammatical
category. When such a word is encountered, the MLR parsing
lable can immediately tell which of its categories are legal and
which are not. When more than one of its categories are legal,
the parser behaves as if a multiple entry were encountered. The
idea should be'made ¢lear by the following example.

Consider the word “that” in the sentence:
That information is important is doubtful.
A samgple grammar and its parsing table are shown in Fig. 4 and 5,
respectively. Initially, the parser is at state 0. The first word
“that" can be either "*det” or "*that”, and the parsing table tells
us that both cateqaries are legal. Thus, the parser processes “sh
5" and "sh 3" in parallel, as shown beiow.

STACK NEXT ACTION NEXT WORD
b sh §, sh ] hat
¢ sh § That
¢ sh 3 That
0 *det 5 - sh 9 informatian
0 *that 3 sh 4 infarmation
0 *dat S5 *n 9 rg 2 is
0 “that 3 *n 4 e 3 is
QNP 2 sh & is
d =that 3 NP 2 sh & is
Fig. 6-a

At this point, the parser founds that hoth processes are in the
same slate, namely state 2, and they are combined as ane

" " o . ’ process.
accept”. The other process is still continued, as shown in fig
3-e.
0O NP 2 VP B re 1 $
0s1 accept
Fig 3-e
State  *adj *he *det *n *that § NP S VP
0 shé sh4 sh3 2 1
Bt ettt 1 ace
(1) S5 --> NP VP 3 shé 7
(2} NP --> *det *n 3 shb sh4 shd 2 8
{3} NP --> *n 4 red
(4) NP --> *that S 5 shg
(5) VP --> *ba *adj 8 shil
------------------------ 7 rel ral
8 red
9 ra2
Fig. 4 10 rab rob
Flg. S



oup_-?z sh & is

B *Lhat 3 NP

Q2 NP 2 *be B sh 10
0 *that 3 &P

0 NP—72 *be 5 ®*adj 10 re 5 is
0 *"that 3 N
0 np-——,z VP 7 -re 1 is

0 *that 3 NP

important

Fig. 8-b
The process is split into two processes again.

O NP 2 VP 7 re 1 is

0 *that 3 4P 2 VP 7 re 1 is

0st #EARORY is

Q0 %*that 35 3 - re 4 s
Fig. B-¢

One of two processes detects "error” and hails; only the other
process goes on.

2 NP 2 sh 6 is

0O NP 2 *be & sh 10 doubtful

0 NP 2 *be & *ad) 10 re S N

O NP 2 VP re 1 $

0s1 arc $
Fig. 6-d

Finally, the sentence has been parsed in only one way, We
emphasize again that, in spite of pseudo-parailelism, each part of
the sentenca was parsed only once in the same way.

6 Concluding Remarks

The MLR parser and its parsing table generator have been
implemented at Computer Science Department, Carnegie-Mellon
University. The system is written in MACLISP and fuURNINg on
Tops-20.

One good feature of an MLR parser {and of an LR parser) is
that, even if the parser is to run on a small computer, the
construction of the parsing table can be done on mare powertful,
larger computers. Once a parsing table is constructed, the
execution time for parsing depends weakly on the number of
productions or symbols in a grammar. Also, in spite ¢of pseudo-
parallglism, our MLR parsing is theoretically stili deterministic.
This is because the number of processes in our pseudo-
parallelism never exceeds the number of states in lhe parsing
table.

One concern of our parser is whether the size of a parsing table
remains tractable as the size of a grammar grows. Fig. 6 shows
the relationship between the compiexity of a grammar and its LR
parsing tatile (excerpt from lnoue [9]).

Terminals 47 74 63 56
Non-terminals 51 45 77 39
Productions 108 121 172 . 205
...................................... [,
States 180 193 322 337

TableSize{byte) 2041 2587 3662 4264

Although the example grammars above are for programming
langauges, it seems that the size of a parsing table grows only in
proportion ta the size of its grammar and dges not grow rapidly.
Theretore, there is a hope that our MLR parsers can manage

. grammars with thousands of phrase structure rules, which would

be generated by rule-schema and meta.rules for natural language
in systems such as GPSG [7].
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Abstract

The problem addressed in this paper is to
dizambiguate  grasmmatically  ambiguous input
semences by asking the user, who need not be a
computer specialist or a linguist, withoul showing any
parse trees or phrase structure rules. Explanation List
Comparison {ELC) is the technique that impiements
this process. it is applicable to ali parsers which are
based on phrase structure grammar, regardless of the
parser implementation. An experimental system has
been implemented at Carnegie-Mellon University, and it
has been applied to English-Japanese machine
transtation at Kyoto University.

1. Introduction _

A large numier of technigues using semantic information have
been developed to resoive natural fanguage ambiguity. Howevaer,
rot all ambiguity problems can be soived by those techniques at
the current state of art. Moreover. some sentences are absolutely
ambiguous. that is, even a human cannot disambiguate them.
Therefore, it is important for the system to be capable of asking a
user questions interactively to disambiguate a sentenca.

Here, we make an impertant condition that an user is neither a
compuier scentist nor a finguist. Thus, an user may not recognize
any spec'al terms or notations like a tree structure, phrase
structure grammar, etc.

The first system tfo disambiguate sentences by asking
intaractively is perhaps a program called "disambiguator” in Kay’s
MIND system [2]. Aithough the disambiguation algorithm is not
presented in[2], some basic ideas have been aiready
implemented in the Kay's systemz. In this paper, wa shali only
deal with grammatical ambiguity, or in other words, syntactic
ambiguity.  Other ambiguity problems, such as word.sense
ambiguity and referential ambiguity, are excluded.

Suppose a system is given the sentence:

“Mary saw & man with a lelescope”

TThis resedrcn was sponsored by the Delense Advanced Research Projects
Agency {DCD), ARPA Order No. 3597, monitored by the Air Force Avionics
Laborittory Under Contract F33615-81-K-1539.  The views and conclusions
contained in this document are those of the authars and shouid not be interprated
a5 representing the affical poiicies, wither pressed or implied, aof the Defensa
Advancad Research Projecis Agency or the US Government.

2F’e!'smal communication.

and the system has a phrase structure grammar inciuding the
fallowing rules <a> - {g>:

<a> S -=> NP + VP

<b> S ==> NP + VP + PP
<c> NP --> *noun

<d> NP --> *det + *noun
<a> NP --> NP + pp

<f> PP --> *prep + NP
<g9> VP =-=> *veart + NP

The system would produce two parse trees from the input
sentence (l. using rules <b><e>{g><d> <M Ld>; il using rules
arde>dg><e>d><P(d>). The dilference is whether the
preposition phrase "with a telescope” qualifies the noun phrase
"a man” or the sentence “Mary saw a man”. This paper shall
discuss on how to ask the user to select his intended
interpretation without showing any kind of tree structures or
phrase structure grammar rules. Our desired guestion for that
sentence is thus something like:

1) The action "Mary saw a man" takes place "with a telescope”
2) "a man" ig "with a telescope"
NUMBER ?

The technigue to implement this, which is described in the
following sections, is called Explanation List Comgarisan.

2. Explanation List Comparison

The basic rdea is to attach an Explanation Template to each rule,
For example. each of the rules <a> - <g> would have an
explanation tempiate as follows:

Explanation Template

<a> (1} is a subject of the action (2)
<b> The action (1 2) takes place (3)
<e? {1) is a noun

> (1) is a determinar of (2)

<e> (1) is (2)

<> (1) is a preposition of {2)

<g> (2) is an object af tha verdb (1)

Whenever a rule s employed to parse a sentence, an
explanation is generated from its explanatian tempiate. Numbers
in an explanation template indicate n-th constituent of the right
hand side of the rule. For instance, when the rule <f>

PR =-=> ®*prep + NP
matches “with a telescope” (*prep = “WITH™ NP = "a



telescopa”}, the explanation
"{with) is a preposition of (a telescope)”
is generated. Whenever the system builds a parse tree, it also
builds a list of explanations which are generated from explanation
temptates ot all ruies employed. We refer to such a list as an
~expfanation list. The explanation lists of the parse trees in the
example above are:
Altemative 1.

<b> The action (Mary saw a man) takes place (with a telescope)
<c> (Mary} is a noun

<g> (a man} is an object of the verb (saw)

<d> (A) is a determiner of (man)

<P> {with}) 13 a preposition of (a telescope)

<d> (A) is a determiner of (telescope)

Alternative Il

<a> (Mary) is a subject of the action (saw a man with a telescope)
<c> (Mary) is a noun

<g@> (a man with a telescope) is an object of the verb {saw)

<e?> (a man} is (with a telescope)

{d> (A}is a determiner of {(man)

<P> {with is a preposition of (2 telescope)

<d> {A) is a determiner of {teiescope)

In order to disambiguate a sentence, the system only examines
these Exptanation Lists, but not parse trees themseives. This
makes our method independent from internal representation of a
parse tree. Loosely speaking, when a system produces more than
one parse tree, explanation lists of the trees are "compared” and
the “diiference” is shown to the user. The user is, then, asked to
select the correct alternative.

3. The revised version of ELC

Unfortunately, the basic idea described in the preceding section
does nat work quite well. For instance, the difference of the two
explanation lists in cur example is |

1)
The action (Mary saw a man) takes place (with a telescope),
(a man) is an object of the verb (saw);

2)
(Mary} is a subject of the action (saw a man with a telescope),
(a man with a telescope) is an object of the verb {saw),
{a man) is (with a telescope);

despite the fact that the essential difference is only

1) The action {Mary saw a man) takes place (with a telescope)
2) (aman)is (with a telescope)

Two refinement ideas, head and muitiple explanations, are
introduced to solva this problem.

3.1.Head

We define head as a word or a minimal cluster of words which
are syntactically dominant in a group and could have the same
syntactic function as the whole group if they stood alone. For
example, the head of "VERY SMART PLAYERS IN NEW YORK" is
"PLAYERS", and the head of "INCREDIBLY BEAUTIFUL" is
"BEAUTIFUL", but the head of “} LOVE CATS" is "l LOVE CATS"
itself. The idea is that, whenever the system shows a part of an
input sentence to the user, only the head of it is shown. To
implement this idea, each rule must hava a head definition besides
an explanation tempiate, as follows.

Rule Head

<a> [t 2]
<b {1 2]
<c> {1]

<d> [12]
<e> (1]

< {12]
<g> (1 2]

For instance, the head definition of the rule <b> says that the
head of the constructiont "NP + VP + PP" is a concatenation of
the head of 1-st constituent (NP) and the head of 2-nd constituent
(VP). The head of "A GIRL with A RED BAG saw A GREEN TREE
WITH a telescope” is, therefore, “A GIRL saw A TREE", because
the head of “A GIRL with A RED BAG" (NP) is "A GIRL" and the
head of "saw A GREEN TREE" (VP) is "saw A TREE".

In aur example, the explanation
(Mary) is a subject of the action (saw a man with a telescope)
becomes
(Mary) is a subject of the action (saw a man),
and the explanation
(a man with a telescope) is an object of the verb (saw)
becomes
{a man) is an object of the verb (saw),

because the head of "saw a man with a telescope” is "saw a
man”, and the head of “a man with a telescope” is "a man”.

The difference of the two aiternatives are now:

1)

The action {Mary saw a man) take place (with a telescope);
2}

(Mary) is 2 subject of the action {saw a man),

(a man) is {with a telescope);

3.2. Mulitiple explanations
In the example system we have discussed above. each rule

generates exactly one explanation. In general, multiple
explanations (including zero) can be generated by each rule. For
exampie, rule <b>

§ ==> NP + VP + PP )
should have two explanation templates:

(1) 13 a subject of the action (2)

The action (1 2) takes placs (3),
whereas rule {a>

§ ==> NP + VP
should have only one explanation template:

(1) 13 a subject of the action (2).
With the idea of head and muitiple expianations, the system now
produces the ideal question, as we shall see below.

3.3. Revised ELC

To summarize, the system has a phrase structure grammar, and
each rule is followed by a head definition followed by an arbitrary
number of explanation templates,



Ruie Head Explanation Template

<a> [t 2] (1) is a subject of the actien (2)

<b> [1 2] (1) is a subject of tha action {2)
The action (1 2) takes placs (3)

>  [1] <{none>>

{d> 1 2] (1) is a detarminer of (2)

<a> [t] (1) is {(2)

<f> [t 2] (1) is a preposition of (2)
<g> [1 2] (2) is an object of the verb (1)}

With the ideas of head and multiple explanation, the system
builds the following two explanation lists from the sentence "Mary
saw a man with a telescope”.

Alternative {.

<b> (Mary)is a subject of the action (saw a man)

o> The action {Mary saw a man} takes place (with a teiescope)
<g> (aman)is an object of the verb {saw)

<d> (A)is a determiner of (man)

<«f> (with) is a preposition of (a telescope)

{d> (A)is adeterminer of (telescope)

Alternative 1.

<a> (Mary) is a subject of the action (saw a man)
<g> (aman)is an object of the verb (saw)

<&> f{aman)is (with a telescope)

{d> [A)is a determiner of {man)

<> (with is a preposition of (a telescope}

<d> (A)is a determiner of (lelescope}

The diference between these two i
The action (Mary saw a man) takes place (with a telescope)
and
{a man) is {with a telescope}.
Thus, the system can ask the ideal question:

1} The action {Mary saw a man} takes place (with a telescope)
2) (a man) is {with a telescope)
Number?

4. More Complex Example

The example in the preceding sections is somewhat
oversimplified, in the sense that there are only two aiternatives
and only two explanation lists are compared. If there were three
or more alternatives, comparing explanation lists would be not as
easy as comparing just two.

Consider the following example sentence:
Mary saw a man in the park with a telescope.
This sentence is ambiguous in 5 ways, and its 5 explanation lists
are shown below.
Alternative i.

{a man) is {in the park)
{the park) is (with a telescope)

Alternative il.

(a man) is {with a telescope)
(a man) is (in the park)

Alternative lil.

The action (Mary saw a man) takes place (with a telescope)
{a man) is (in the park)

Alternative iV,

The action {Mary saw a man) takes place {in the park)
{the park) is {with a telescope)

Alternative V.

The action (Mary saw a man) takes place (with a telescope)
The action {Mary saw a man) takes place {in the park}

Wwith these 5§ explanation lists, the system asks the user a
question twice, as follows: :

1) {a man) is (in the park)
2) The action (Mary saw a man) takes place (in the park)
NUMBER? 1

1) (the park) is {with a telescope}

2) (a man) is (with a telescope)

3) The action (Mary saw a man) takes place (with a telescope)
NUMBER? 3

The implementation of this is described in the following.

We refer to the set of explanation lists to be compared, {1 v Lz.
}, as A. If the number of explanation lists in A is one ; just return
the parsed tree which is associated with that explanation list. 1f
there are more than one explanation list in A, the system makes a
Qlist (Question list). The Qlistis a list of explanations

Qlist = {e, &, ...8.}
which is shown to the user to ask a question as follows:

1) e,
2) s,
n) e,
Number?

Qlist must satisfy the following two conditions to make sure that
always exactly one explanation ig true.

» Each explanation list L in A must contain at least one
explanation e which is aise in Qlist. Mathematically,
the foltowing predicate must he satisfied.

Yl3ele €L A e € Qlist)
This condition makes sure that at least one of
explanations in a Qlist is true.

s No explanation list L in A contains more than one
- explanation in a Qlist. That is,



~3l3eFe' il cArscl A EL

Ae e QlistAe €QlistAe we)
This condition makes sure that at most one of
explanations in Qlist is true,

The detailed algorithm of how to construct a Qlist is presented in
Appendix.

Once a Qlist is created, it is presented to the user. The user is
asked to select one correct explanation in the Qlist, called the key
explanation. Al explanation lists which do not contain the key
explanation are removed from A. If A still contains more than one
explanation list, another Qlist for this new A is created, and shown
to the user. This process is repeated until A contains only one
explanation list.

5. Concluding Remarks

An experimental system has been wrtten in Maclisp, and
running on Tops-20 at Computer Scienca Department, Carnegie-
Melion University. The system parses input sentences provided by
a user according to grammar rules and a dictionary provided by a
super user. The system, then. asks the user questions, if
necessary, to disambiguate the sentence using the technique of
Explanation List Comparison. The system finaily produces only
one parse tree of the sentence, which is the intended
interpretation of the user. The parser is implemented in a bottom-
up, breath-first manner, but the idea described in the paper is
independent from the parser implementation and from any
specific grammar or dictionary.

The kind of ambiquity we have discussed is structural ambiguity.
An ambiguity is structural when two dilferent structures can be
built up out of smaller constituents of the same given structure
and type. On the other hand, an ambiguity 15 jexical when one
word can serve as various parts of speech. Resoiving lexical
ambiguity is somewhat easier, and indeed, it is implemented in the
system. As we can see in the Sample Runs below, the system first
resolves lexical ambiguity in the obvious manner, if necessary.

Recently, we have integrated our system into an English-
Japanese Machine Transiation system [3], as a lirst step toward
user-friemdly interactive machine translation {6]. Thea interactive
Engtish Japanese machine translation system has been
implemented at Kycto University in Japan [4, 5].
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Appendix A: Qlist-Construction Algorithm

input A : set of explanation lists

output Qlist: set of explanations

lacal e : explanation
L ; explanation list {set of explanations)
U, C : set of explanation lists

C=g

U=A

: Qlist == ¢

: it = ¢ then return Qlist

. select one explanation e such that
@ is in some explanation listS U,
but not in any explanation liste C;
if no such e exists, return ERROR

: Qlist = Qlist + {e}

C=Cas+{lleclalel}

s U=({lleglAl e}

. goto 4

b wn =

[(o s R I}

* The input to this procedure is a set of explanation
lists. {L,. 12, o b

» The output of this procedure is a list of explanations,
{e, e, . e,}. such that each explanation list, L,
conains exactly one explanation which is in the Qlist.

# An explanation list L is called covered, it some
explanation e in L is also in Qlist. L is called
uncovered, it any of the explanatiens in L is not in
Qlist. Cis a set of covered explanation lists in A, and
U is a set of uncovered explanatian lists in A.

¢ 1.3: initialization. Let Qlist be empty. Al explanation
lists in A are uncovered.

¢ 4: if all explanation lists are cavered, quit.

* 5-6: select an explanation e and put it into Qlist to
cover some of uncovered not explanation lists. &
must be such that it does exist in any of covered
explanation lists {if it does exist, the expilanation list
has two explanation in A, violating the Qlist
condition).

* 7.8: make uncovered axplanation lists which are now
cavered by e to be covered.

« 9: repeat the process until everything is covered.
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Appendix B: Sample Runs
ransgling “[time f1i lixe an arrow in
{-~-END OF PARSE-- 10 ALTEANATIVES)

(The word TIME (1) fis:)

(1 : VERB)
{2 : NOUN)
NUMBER> 2

[The word FLIES (2) fs:)

(1 : VERB)}
(2 : NOUN)
NUNBER> 1

(1 : {AN ARROW) IS (IN JAPAN)) i
(2 : THE ACTION (TIME FLIES) TAKES PLACE (IN JAFAN))
NUMBER> 2

(S (NP (TIME *NOUN))
{FLIES *VERB}
(PP (LIKE *PREPOSITION) (NP {AM *DETERMINER) {ARROW SNOUN}))
(PP (IN *PREPOSITION) (JAPAN *NOUN)))

ransling ‘'(Mar w man i h nt with
[---END OF PARSE-- 5 ALTERNATIVES)

{1 : (A MAN} IS (IN THE APARTMENT))
(2 : THE ACTIOM (MARY SAW A MAN) TAKES PLACE (I[N THE APAATMENT})
NUMBER> 1

{1 : (A MAN} IS (WITH A TELESCOPE))

{2 : (THE APARTMENT) IS (WITH A TELESCOPE))

{3 : THE ACTION (MARY SAW A MAN) TAKES PLACE (WITH A TELESCOPE)})
NUMBER> 3

(S (NP (MARY *NOUN))
(VP (SAW SVERA)
(KP (NP {A "DETERMINER) (MAN =NOUN))
(PP (IN *PREPOSITION)
(WP (THE *DETEAMINER) (APARTMENT *NOUN)))))
{PP {WITH *PREPOSITION)
(NP (A OETERMINER) (TELESCOPE *NOUN})))



