
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-84-163

An Efficient
All-paths Parsing Algorithm

for Natural Languages

M a s a r u T o r n i t a
Computer Sc ience Department

Carnegie -Mel lon University
Pittsburgh, PA 15213

25 O c t o b e r 1984

Abstract
An extended L R parsing algorithm is introduced and its application to natural language

processing is d iscussed. Unlike the standard LR, our algorithm is capable of handling
arbitrary context-free phrase structure grammars including ambiguous grammars, while
most of the LR parsing efficiency is preserved. When an input sentence is ambiguous, it
p roduces all possible parses in an efficient manner with the idea of a "graph-st ructured
stack." Comparisons with other parsing methods are made.

Th is research was sponsored by the Defense Advanced Research Projects A g e n c y
(D O D) , A R P A Order N o . 3597, monitored by the Air Force Avionics Laboratory Under
Contract F33615-81 -K-1539. T h e views and conclus ions contained in this document are
those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects A g e n c y or the U S
Government .

i

Table of Contents
1. Introduction 1
2. LR parsing 3

2.1. An example 3
2.2. Problem in Applying to Natural Languages 5

3. MLR parsing 7
3.1. With Stack List 7
3.2. With a Tree -s t ructured Stack 9
3.3. With a Graph-s t ructured Stack 10

4. An Efficient Representation of Parse T r e e s 11
4.1. Sub- t ree Sharing 11
4.2. Local Ambiguity Packing 12

5. Compar ison with Other Methods 15
5.1. L R parsers 15
5.2. Other One -path Parsers 15
5.3. C o c k e - Y o u n g e r - K a s a m i Algorithm 15
5.4. Ear ley 's Algorithm 16
5.5. Char t Parsing 16

6. Future Work 17
6.1. Implementation of the algorithm 17
6.2. Exper iment on the Parser Eff ic iency 17
6.3. Compar ison with Other Algorithms 18
6.4. Discuss ion of Appl icat ions 18

7. Potential Contr ibut ions of the Thes is 19
7.1. T o Parsing Theory 19
7.2. T o Practical Systems 19
7.3. T o Computat ional Linguist ics 19

8. Appendix 20
8.1. LR parsers for Natural Languages 20
8.2. Disambiguating Grammatically Ambiguous Sentence by Asking 20

1

1. Introduction
When a parser encounters an ambiguous input sentence, it can deal with that sentence in one of

two ways. O n e way is to p roduce a single parse which is the most preferable. S u c h parsers are

called one-path parsers. O n the other hand, parsers that p roduce all possible parses of the

ambiguous sentence are called all-paths parsers. One -path parsers are, naturally, much faster than

all-paths parsers because they look for only one parse. There are, however , situations where all-

paths parsers should be used. For example, cons ider the following short story.

I saw the man with a telescope.
He bought it at the department store.

When the first sentence is read, there is absolutely no way of resolving the ambiguity 1 at that time.

T h e only action the system can take is to produce two parses and store them somewhere for later

disambiguation.

Another situation where all -paths parsers should be used is what we call interactive parser, which

originally motivated this work. An interactive parser disambiguates structurally ambiguous input

sentences by asking its user questions interactively. For example, an interactive parser asks a

question such as the following to disambiguate the sentence "I saw a man with a te lescope."

1) T h e action "I saw a man" takes place "with a te lescope"
2) "a man" is "with a te lescope"
N U M B E R ?

T h e technique to implement this is descr ibed in [20] (also in Appendix) . In order to ask s u c h a

quest ion, all possible structures of the ambiguous sentence must be available, and therefore all -paths

parsing is required.

In this paper, we introduce an efficient ail -paths parsing algorithm named MLR, which is an

extension of LR . T h e LR parsing algorithm is a very efficient one-path parsing algorithm which is

much faster than the Cocke -Younger -Kasami algorithm [1] and Earley's algorithm [9] especially when

the grammar is significantly large. T h e LR parsing algorithm, however , has seldom been used for

natural language processing, because the LR parsing algorithm is applicable only to a small subset of

context-free grammars, and usually it cannot apply to natural languages. O u r MLR parsing algorithm,

while most of the LR parsing efficiency is preserved, can apply to arbitrary context - free grammars,

and is therefore applicable to natural languages.

O n e might wonder , by the way, whether natural languages can be specif ied in context - free phrase

structure. It had been thought that natural languages are not context - f ree, before the recent

T ' have the te lescope, or " the m a n " has the te lescope.

2

literature [11] showed that the belief is not necessari ly true and there is no reason for us to give up the

context - f reedom of natural languages. W e do not d iscuss this matter further, because even if natural

languages are not context - f ree, a fairly comprehensive grammar for a subset of natural language

sufficient for practical systems can be written in context - f ree phrase structure.

In section 2, we briefly review LR parsing, and d iscuss the problem that arises when applied to

natural languages. In sect ion 3, w e int roduce the M L R parsing algorithm, and in sect ion 4 w e

descr ibe how to represent parse trees efficiently and how to p roduce them using MLR parsing.

Sect ion 5 compares MLR parsing with other existing parsing methods. Finally, we enumerate future

tasks to be completed in sect ion 6 and potential contr ibutions in sect ion 7.

3

2. LR parsing
LR parsers [1, 2] have been developed originally for programming languages. An LR parser is a

shift - reduce parser which is deterministicaily guided by a parsing table indicating what action should

be taken next. T h e parsing table can be obtained automatically from a context - f ree phrase structure

grammar, using an algorithm first developed by DeRemer [7, 8]. W e do not descr ibe the algorithm

here, referring the reader to Chapter 6 in Aho and Ullman [3].

2 .1 . A n e x a m p l e

An example grammar and its LR parsing table obtained by the algorithm are shown in Figure 2-1

and 2-2, respectively.

(1) S — > NP VP
(2) S --> S PP
(3) NP --> *det *n
(4) PP — > «prep NP
(6) VP --> *v NP

F i g u re 2 -1 : Example Grammar
State •det *n *v •prep $ NP PP VP S
0 sh3 2 1
1 sh6 acc 4 CM

 sh6 7
3 sh8
4 re2 re2
5 sh3 9
6 sh3 10
7 rei rei
8 re3 re3 re3
9 re4 re4
10 re6 re5

action table goto table
F i g u r e 2 - 2 : LR Parsing Table

Grammar symbols starting with "*" represent pre-terminals. Entr ies "sh n " in the action table (the

left part of the table) indicate the action "shift one word from input buffer onto the stack, and go to

state n " . Entries M r e n" indicate the action " reduce constituents on the stack using rule n". T h e

entry " a c c " s tands for the action " a c c e p t " , and blank spaces represent "e r ro r " . Goto table (the right

part of the table) dec ides to what state the parser should go after a reduce action. T h e exact

definition and operation of the LR parser can be found in Aho and Ullman [3].

Let u s parse a simple sentence " M y car has a radio" using the L R parsing table. T h e trace of the L R

parsing is shown in F igure 2-3.

4

Inputbuffer = MY CAR HAS A RADIO $

STACK NA NW

0 Sh3 MY

0 •det 3 sh8 CAR

3 • n 8 re3 HAS

0 NP 2 sh6 HAS

0 NP 2 *v 6 sh3 A

0 NP 2 *v 6 •det 3 sh8 RADIO

0 NP 2 •v 6 •det 3 *n 8 re3 $

0 NP 2 •v 6 NP 10 re6 $

0 NP 2 VP 7 rei $

0 S 1 acc $

F i g u r e 2 - 3 : T r a c e of L R Parsing

T h e number on the top (rightmost) of the stack indicates the current state. Initially, the current state

is 0. T h e inputbuffer initially contains the input sentence followed by the end marker " $ " .

S ince the parser is looking at the word " M Y " , whose category is "*det" , the next action "shift and

goto state 3" is determined from the action table. T h e parser takes the word " M Y " away from the

inputbuffer, pushes the preterminal "*det" onto the stack, and goes to state 3 pushing the number

" 3 " onto the stack. T h e inputbuffer is now " C A R H A S A R A D I O $ " . ,

T h e next word the parser is looking at is " C A R " , whose category is " * n " , and "shift and goto state

8" is determined from the action table as the next act ion. Thus , the parser takes the word " C A R "

from the inputbuffer, pushes the preterminal " * n " , and goes to state 8 pushing the number " 8 " onto

the stack. T h e inputbuffer is now " H A S A R A D I O $ " .

T h e next word is " H A S " , and from the action table, " reduce using rule 3 " is determined as the next

action. So , the parser reduces the stack using the rule " N P -•> *det * n " . T h e current state " 2 " is

determined by the goto table from the state before the removed constituents. T h e inputbuffer is still

" H A S A R A D I O $ " , because w e have not shifted the word " H A S " yet.

S ince the parser is still looking at the word " H A S " , and it is in state 2, the next action is "shift

5

goto state 6 M . So , the parser shifts the word " H A S " from the inputbuffer onto the stack, and goes to

state 6.

Several steps later, the parser eventually finds the action " a c c e p t " , which is the signal for the parser

to halt the process .

2 . 2 . P r o b l e m in A p p l y i n g to N a t u r a l L a n g u a g e s

Several advantages of LR parsing exist which makes it attractive to use in natural language

processing. As we have seen in the example, the LR paring is one of the most efficient parsing

algorithms. It is totally deterministic and no backtracking or search is involved. T h e algorithm to build

an LR parsing table is well -establ ished, and there is a practical program called Y A C C (Yet Another

Compiler Compiler) [12] running on Unix .

Unfortunately, we cannot directly adopt the LR parsing technique for natural languages. Th is is

because not all context - f ree phrase structure grammars (C F P S G ' s) can have an *LR parsing table.

On ly a small subset of C F P S G ' s called LR grammars (see figure 2-4) can have such an LR parsing

table. Every ambiguous grammar is not L R , for example. And s ince natural language grammars are

almost always ambiguous, they are not L R ; therefore we cannot have an L R parsing table for natural

language grammars.

F i g u r e 2 - 4 : Context - f ree Grammars and LR grammars

If a grammar is n o n - L R , its parsing table will have multiple ent r ies 2 ; one or more of the action table

entries will be multiply def ined. F igures 2-5 and 2-6 show an example n o n - L R grammar and its

parsing table.

2 T h e y are often cal led conflict.

6

(1) S — > NP VP
(2) S — > S PP
(3) NP — > *n
(4) NP — > «det *n
(5) NP — > NP PP
(6) PP — > «prep NP
(7) VP — > «v NP

F i g u r e 2 - 5 : An Example Ambiguous Grammar

State *det •n •v •prep $ NP PP VP S

0 sh3 sh4

CM
 1

1 sh6 acc 6
2 sh7 sh6 9 8
3 shlO
4 re3 re3 re3
6 re2 re2
8 sh3 sh4 11
7 Sh3 sh4 12
8 rei rei
9 re6 re6 re6
10 re4 re4 re4

9 11 re6 re6,she ree 9
12 re7,she re7 9

F i g u r e 2 - 6 : LR Parsing Table with Multiple Entries

W e can see that there are two multiple entries in the action table; on the rows of state 11 and 12 at

the column labeled "•prep" . It has been thought that, for LR parsing, multiple entries are fatal

because once a parsing table has multiple entries, deterministic parsing is no longer possible and

some kind of non-determinism is necessary. However , in the following sect ion, w e shall introduce an

extended LR parsing algorithm, named M L R , that can handle parsing tables with multiple entries

using a graph-structured stack. T h e M L R parsing algorithm, while it can apply to arbitrary C F P S G ' s ,

preserves most of the eff iciency of the standard LR parsing algorithm.

7

3. MLR parsing
As mentioned above, once a parsing table has multiple entries, deterministic parsing is no longer

possible and some kind of non-determinism is necessary. T h e first subsect ion descr ibes a simple

non-determinism, i.e. pseudo-paral lel ism (breath-first search) , in which the system maintains a

number of stacks simultaneously. W e call the list of stacks Stack List. T h e next subsect ion descr ibes

the idea of stack combination, which was introduced by Tomita's paper [21] (also in Appendix) , to

make the algorithm efficient and feasible. With this idea, stacks are represented as trees (or a forest).

Finally, a further refinement, the graph-structured stack, is descr ibed to make the algorithm even

more efficient.

3 .1 . W i t h S t a c k L i s t

T h e basic idea is to handle multiple entries non-deterministically. W e adopt pseudo-parallel ism

(breath-first search) , maintaining a list of stacks called Stack List. T h e pseudo-parallel ism works as

follows.

A number of processes are operated in parallel. Each process has a stack and behaves basically

the same as in standard LR parsing. When a process encounters a multiple entry, the process is split

into several processes (one for each entry), by duplicating its stack. When a process encounters an

error entry, the process is killed, by removing its stack from the stack list. All processes are

synchronized ; they shift a word at the same time so that they always look at the same word . Thus , if a

process encounters a shift act ion, it waits until all other processes also encounter the shift action.

Figure 3-1 shows a snapshot of the stack list right after shifting the word "w i th" in the sentence "I

saw a man on the bed in the apartment with a te lescope" using the grammar in Figure 2-5 and the

parsing table in Figure 2-6.

8

0 s , i
— •

*p,6
— •

• —
0

s , i
— •

*p,6
— •

• —
0 S,1

— • — •
• —

0
S,1

— • —
*p,6

• —
0 - s , i *P,6

• —
0

s/i *p,6
— —

NP,11
•

*P,6
— •

• —
0 s , i

' - # — — #
NP,11

•
*p,6

— •

0 HP,2 *v,7 NP,12
•—•

*p.6
•

NP,11
• — •

0

0

NP,2
— •
*v,7 NP,12

S,1 *p,6

NP.11
•

NP.11
•

NP̂ ,11

NPJ1
•

*p,6
— •

*p,6
•

• —
0 NP,2 *v.7 NP,12

w
NP,11

•

0
• — — • —w

•£,6 NP̂ ,11
•

• —
0 f№>,2 NP,11

•
*p,6
•

0 NP,2
— •

NP,11
•

F i g u re 3 - 1 : Stack List

For the sake of convenience , w e denote a stack with nodes and edges . T h e leftmost node is the

bottom of the stack, and the rightmost node is the top of the stack. E a c h node , except the leftmost

node, has two labels, a grammar symbol and a state number. T h e leftmost node has only a state

number, and it is always 0. T h e distance between nodes (length of an edge) does not have any

signif icance, except it may help the reader understand the stacks' status.

W e notice that some stacks in the stack list appear to be identical. T h e y are, however , internally

different because they have reached the current state in different ways . Although w e shall descr ibe a

method to compress them into one stack in the next sect ion, we cons ider them to be different in this

sect ion.

A disadvantage of the stack list method is that there are no interconnect ions between stacks

(processes) and there is no way for a process to utilize what other processes have d o n e already.

Therefore, the number of stacks in the stack list g r o w s exponential ly as ambiguities are encountered .

For example, these 14 processes in Figure 3-1 will parse the rest of the sentence "the te lescope" 14

times in exactly the same way. Th is can be avoided by using a t ree-structured stack, which is

descr ibed in the following subsect ion .

3 . 2 . W i t h a T r e e - s t r u c t u r e d S t a c k

If two processes are in a common state, that is, if two stacks have a common state number at the

rightmost node, they will behave in exactly the same manner until the node is popped from the stacks

by a reduce act ion. T o avoid this redundant operation, these processes are unified into one process

by combining their stacks. Whenever two or more processes have a common state number on the top

of their stacks, the top nodes are unified, and these stacks are represented as a tree, where the top

node cor responds to the root of the tree. W e call this a tree-structured stack. When the top node is

popped, the tree-structured stack is split into the original number of stacks. In general , the system

maintains a number of tree-structured stacks in parallel, so stacks are represented as a forest. Figure

3-2 shows a snapshot of the tree-structured stack right after shifting the word " w i t h " .

Al though the number of stacks is reduced significantly by the stack combination technique, the

number of b ranches of the tree-structured stack (the number of bottoms of the stack) that w e must

maintain still g rows exponential ly as ambiguities are encountered . In the next subsect ion , we

descr ibe a further modification in which stacks are represented as a directed acycl ic g raph .

F i g u r e 3 - 2 : A Tree-st ructured Stack

10

3.3. W i t h a G r a p h - s t r u c t u r e d S t a c k

S o far, when we split a stack, we make a c o p y of the whole stack. However , we do not necessari ly

have to c o p y the whole stack: Even after different parallel operations on the tree-structured stack, the

bottom portion of the stack may remain the same. On ly the necessary port ion of the stack should

therefore be split. When a stack is split, the stack is thus represented as a tree, where the bottom of

the stack cor responds to the root of the tree. With the stack combination technique descr ibed above ,

stacks are represented as a directed acycl ic g raph . F igure 3-3 s h o w s a snapshot of the graph stack.

NP.12
F i g u r e 3*3: A Graph -St ructured Stack

It is easy to show that the M L R parser with the graph-st ructured stack d o e s not parse any part of an

input sentence more than o n c e in the same way. Th is is because if two processes had parsed a part

of a sentence in the same way, they would have been in the same state, and they would have been

combined as one process .

S o far, we have focussed on how to accept or reject a sentence. In pract ice, however , the parser

must not only simply accept or reject sentences, but also must build the syntactic structure(s) of the

sentence (parse trees). In the next sect ion, w e descr ibe how to represent the syntactic structure and

how to build it with the M L R parser.

11

4. An Efficient Representation of Parse Trees
T h e ambiguity (the number of parses) of a sentence g rows exponential ly as the length of a sentence

grows. Thus , one might notice that, even with an efficient parsing algorithm such as the one we

descr ibed, the parser would take exponential time because exponential time would be required

merely to print out all parse trees. W e must therefore provide an efficient representation so that the

size of the representation does not g row exponential ly .

In this sect ion, we descr ibe two techniques for providing an efficient representation: s u b t r e e

sharing and local ambiguity packing. It should be mentioned that these two techniques are not

completely new ideas, and some existing systems already adopted these techniques. W e shall

therefore focus on how to implement these techniques with the MLR parsing algorithm.

4 .1 . S u b - t r e e S h a r i n g

If two or more parse trees have a common sub-t ree, the sub- t ree should be represented only once .

For example, parse trees for the sentence "I saw a man with a te lescope" should be represented as

follows:

l s a w a man w i t h a t e l e s c o p e

F i g u re 4 - 1 : Shared T r e e s

O u r M L R parsing is very well suited for building this kind of shared tree as its output, as we shall see

in the following.

T o implement this, w e no longer push grammatical symbols on the stack; instead, we push pointers

to a n o d e 3 of shared trees. When the parser "shif ts" a word , it creates a leaf node labeled with the

O n e must not be c o n f u s e d " n o d e s " of shared trees and " n o d e s " of a g raph -s t ruc tured stack. Hereinafter, the term " n o d e "
will be used as of shared trees unless otherwise noted .

12

word and the pre-terminal, and instead of pushing the preterminal symbol , a pointer to the newly

created leaf node is pushed onto the stack. If the exact same leaf node (i.e. the node labeled with the

same word and the same pre-terminal) already exists, a pointer to this existing node is pushed onto

the stack, without creating another node. When the parser " r e d u c e s " the stack, it pops pointers to

shared tree nodes from the stack, creates a new node w h o s e success ive nodes are pointed to by

those popped pointers, and pushes a pointer to the newly created node onto the stack.

Us ing this relatively simple procedure , the M L R parser can p roduce the shared trees as its output

without any other special book-keeping mechanism, because the M L R parser never does the same

reduce action twice in the same manner.

4 . 2 . L o c a l A m b i g u i t y P a c k i n g

W e define that two subtrees represent local ambiguity if they have common leaf nodes and their top

nodes are labeled with the same non-terminal symbol . That is to say, a fragment of a sentence is

locally ambiguous if the fragment can be reduced to a certain non-terminal symbol in two or more

ways. If a sentence has many local ambiguities, the total ambiguity would g row exponential ly. T h e

local ambiguity packing is a technique to avoid this, and works in the following way. T w o subtrees

that represent local ambiguity are merged and treated by higher- level structures as if there were only

one subtree. Examples of shared trees without and with the focal ambiguity packing are s h o w n in

F igure 4-2.

s a w

*d *n *p *d *n *
a man in the apt *

F i g u r e 4 - 2 (a) : Unpacked Shared T rees

w i t h a te l

13

*n

I s a w a man in the apt w i t h a te l

F i g u r e 4 - 2 (b) : Packed Shared T rees

T h e local ambiguity packing can be easily implemented with the M L R parsing as follows. In the

graph structured stack, if two or more edges have a common starting point and a common ending

point, they represent local ambiguity, and the parser cons iders them as if there is only one edge. In

Figure 3-3 for example, we see one 5-way localambigui ty and two 2-way local ambiguities. F igure 4-3

shows the snapshot of the graph-st ructured stack and the shared trees right after shifting the word

"w i th" in the sentence "I saw a man on the bed in the apartment with a te lescope . "

F i g u r e 4-2: Graph -St ructured Stack and Packed Shared T r e e s

15

5. Comparison with Other Methods
In this sect ion, we compare the MLR parsing with other existing parsing methods such as L R , A T N ,

Cocke -Younger -Kasami , Earley and Chart parsing.

5 .1 . L R p a r s e r s

There are several kinds of LR parsers: LR(O), SLR(1) , LALR(1) , LR(1) , LR(k) , etc. LR(O) is the

simplest and the least efficient LR parser, because it does not manage "look ahead" at all. O n the

other hand, LR(k) is the most efficient, but its parsing construct ion is the most complex. Y A C C is

LALR(1) . These LR parsers differ from each other only by the LR table construct ion algorithm; the

parsing algorithm itself is common to all these LR parsers. S ince the parsing table construct ion of the

MLR parser does not differ from that of L R parsers, w e can also think of several kinds of MLR parsers:

MLR(O), MSLR(1) , MLALR(1) , MLR(1) , MLR(k) , etc., according to the parsing table construct ion

algorithm. T h e MLR parser whose parsing table is obtained by Y A C C is therefore MLALR(1) .

LR parsing can be cons idered as a special case of MLR parsing. If the grammar is LR , MLR parsers

behave in exactly the same manner as L R parsers.

5 . 2 . O t h e r O n e - p a t h P a r s e r s

Al though the L R parsers and P A R S I F A L [15] (theoretically LR(k) [4]) cannot handle ambiguous

sentences, other one-path parsers, including A T N [27], D C G [1 7] , B U P [1 6] and L I N G O L [1 8] , can

simulate the all-paths parsing, producing all possible parses by backtracking. However , the number

of times they must backtrack g rows exponential ly as the sentence ambiguity g rows , and they become

unrealistic when a sentence has hundreds of possible parses.

5 . 3 . C o c k e - Y o u n g e r - K a s a m i A l g o r i t h m

Cocke -Younger -Kasami (C Y K) algorithm operates basically bottom-up: all constructable subtrees

are built exhaustively regardless of whether they are actually utilized by some higher structure trees.

Thus , this algorithm produces many meaningless subtrees which are never used, wasting time and

space. Moreover , while the MLR parser can detect ungrammaticality of a sentence as soon as an

inconsistent word is read, the C Y K algorithm cannot detect the ungrammaticality until the whole

sentence is read. '

r

16

5 . 4 . E a r l e y ' s A l g o r i t h m

Earley's algorithm is somewhat more efficient than C Y K algorithm in the sense that it does not build

all possible subtrees exhaustively. Also, Ear ley 's algorithm is capable of detecting ungrammaticality

as soon as an inconsistent word is read.

T h e disadvantage of this algorithm, compared with M L R , is that each time a word is read, the system

must compute " a set of items" (cf. pp.207 in [3]). Comput ing sets of items requires the system to look

all over the grammar rules, and it is particularly inefficient when the grammar is large. In MLR

parsing, on the other hand, such sets of items are pre -computed at the parsing table construct ion

time, and the results of the pre-computing are encoded implicitly in the parsing table. Therefore , the

MLR parser does not have to compute sets of items during parsing.

5 . 5 . C h a r t P a r s i n g

T o avoid confus ion, it should be noted that there is no s u c h thing as a "chart parsing algor i thm". A

chart [13] is the name of a data structure that represents the syntactic structure of a sentence. T h e

most popular algorithm for chart parsing is the C Y K algorithm because it is simple. However , Ear ley 's

algorithm can also be used for the chart parsing, and such a parser is called the Active Chart

Parser [26]. S ince we have already mentioned these two algorithms, w e do not compare the M L R

parser with chart parsers incorporating these two algorithms.

T h e graph-structured stack in the MLR parsing looks very similar to the chart. A l though we have

viewed MLR parsing as a general ized and extended version of LR parsing, w e can also view MLR

parsing as an extended version of chart parsing, wh ich is guided by an LR parsing table. T h e major

extension is that nodes in the chart contain information about the L R state as well as information

about position of the node in the sentence. Thus , unlike a conventional chart , there may be more

than one node at any position of a sentence. New edges and nodes are then created according to the

L R parsing table. It might be interesting to redesign the M L R parsing algorithm as the extended chart

parsing, although w e d o not d iscuss this matter further.

17

6. Future Work
In this section we enumerate future work to be completed in a year or so. In brief, we will implement

the algorithm, experiment with a fairly large English grammar, compare our algorithm with other

parsing algorithms and discuss its applications. T h e following subsect ions describe the future work

in more detail.

6 .1 . I m p l e m e n t a t i o n of t h e a l g o r i t h m

W e will implement our algorithm fully. T h e program will be written in Mac Lisp on C M U - C S - C

(Tops-20). Moreover, we will implement the following extension in order to parse natural language in

a more flexible manner.

• Handling Mult i -part -of -speech Words : Some words in English such as "saw" have more
than one grammatical categories. W e will solve this problem elegantly as follows. When
such a word is encountered, the parsing table can immediately tell us which of its
categories are legal. And if more than one of its categories are legal, the parser behaves
as if a multiple entry were encountered. Little effort should be required to extend our
parser to handle this.

• Handling Unknown Words: Moreover , our parser will be able to parse a sentence with
unknown words. Unknown words can be considered as a special mult i -part -of -speech
word whose categories can be any legal categories.

6 . 2 . E x p e r i m e n t o n the P a r s e r E f f i c i e n c y

W e will construct parsing tables for a tiny (10 rule), a small (60 rule) and a fairly large (400 rule)

Engl ish grammar. W e will either run Y A C C or write our own program for table construct ion. If we

utilize Y A C C , we need to write a program that converts Y A C C output into a parsing table in our

representation.

W e will then have the parser actually parse an appropriate set of English sentences, in order to find
out:

1. T h e parsing time with respect to the length of a sentence.

2. T h e parsing time with respect to the ambiguity of a sentence.

3. T h e parsing time with respect to a grammar size.

18

6 . 3 . C o m p a r i s o n w i t h O t h e r A l g o r i t h m s

W e will compare our algorithm in detail with at least two other algorithms: C Y K algorithm and

Earley 's algorithm. T h e comparison will be made in one of the following ways.

1. T o prove mathematically that our algorithm dominates the other algorithm(s) under some

reasonable assumptions.

2. T o define some reasonable "primitive operat ions" and compare the number of
operations. Note that w e need not to implement the other algorithm(s).

3. T o implement the other algorithm(s) on the same machine and in the same programming
language and compare their execut ion times.

6 . 4 . D i s c u s s i o n o f A p p l i c a t i o n s

T h e following discussions will be made.

• Incorporation of Semantics: W e will d iscuss incorporation of Knowledge Representation
Language (KRL) [5] with our parsing algorithm so that only semantically correct parses
are produced.

• Application to Interactive Parser: We will d iscuss the technique of interactive sentence
disambiguation [20] and discuss incorporation of this technique with our parsing
algorithm. This technique requires having all possible parsers in advance, out of which
the system asks its user questions to disambiguate a sentence.

• Application to Machine t ranslat ion: W e will d iscuss an application of the interactive
parser to personal/interactive machine translation'systems [25, 22, 23, 24,19].

19

7. Potential Contributions
Finally, we point out potential contr ibutions of our work.

7 .1. T o P a r s i n g T h e o r y

W e extend the LR parsing algorithm so as to handle an arbitrary context-free grammar with little

loss of the LR efficiency. Although its upper bound on the time needed in the worst case is 0 (n 3) as

others, its coefficient is significantly reduced due to utilization of an LR parsing table.

7 .2 . T o P r a c t i c a l S y s t e m s

W e give an efficient all-paths parsing algorithm, which would be required in practical systems such

as personal/interactive machine translation systems with the interactive sentence disambiguation.

7 .3 . T o C o m p u t a t i o n a l L i n g u i s t i c s

An obvious application is to the possible implementation of G P S G [10], in which grammar rules are

eventually represented purely as a context - free phrase structure grammar. Also, our algorithm could

apply to implementation of functional grammars such as Lexical Functional Grammar (LFG) [6] and

Unification Grammar (U G) [1 4] , in which a base structure is specified by a context-free phrase

structure grammar. O u r algorithm would be particularly suitable in case sentences are highly

- ambiguous.

Acknowledgements
f l would like to thank Jaime Carbonel l , Herb Simon, Phil Hayes, Ralph Grishman,

Takehiro Tokuda and Osamu Watanabe for thoughtful comments on an earlier version of
this paper and Cynthia Hibbard for helping to produce this document.

20

8. Appendix

8.1. LR parsers for Natural Languages

8.2. Disambiguating Grammatical ly Ambiguous Sentence by Asking

21

References
Aho, A. V . and Ul lman, J . D.
The Theory of Parsing, Translation and Compiling.
Prentice-Hal l , E n g l e w o o d Cliffs, N. J . , 1972.

Aho , A. V . and J o h n s o n , S . C .
LR parsing.
Computing Surveys 6:2:99-124,1974.

Aho , A. V . and Ul lman, J . D.
Principles of Compiler Design.
Addison Wesley, 1977.

Berwick, R. C .
A Deterministic Parser with Broad Coverage .
Proceedings of IJCAI83 :pp.710, August , 1983.

Bobrow, D. G . and Winograd , T .
An Overv iew of KRL, a Knowledge Representation Language.
Studies in Cognitive Science Vol.1 (No.1), 1977.

Bresnan, J . and Kaplan, R.
Lexical-Functional Grammar: A Formal System for Grammatical Representation.
MIT Press, Cambr idge, Massachusetts, 1982, pages pp. 173-281.

Deremer, F. L.
Practical Translators for LR(k) Languages.
PhD thesis, MIT, 1969.

DeRemer, F. L.
Simple LR(k) grammars.
Comm. ACM 14:7:453-460,1971.

Ear ley, J .
An Efficient Context - f ree Parsing Algorithm.
Communication of ACM (6:8):94-102, February, 1970.

Gazdar , G .
Phrase Structure Grammar.
D. Reidei , 1982, pages 131-186.

Gazdar , G .
Phrase Structure Grammars and Natural Language .
Proceedings of IJCAI83 v.1, August , 1983.

J o h n s o n , S . ,C .
YACC Yet Another Compiler Compiler.
Technica l Report C S T R 32, Bell Laboratories, 1975.

Kay, M.
The MIND System.
Algorithmics Press, N e w York , 1973, pages pp. 155-188.

22

Kay, M.
Functional Grammar.
In Fifth Annual Meeting of the Berkeley Linguistic Society, pages pp. 142-158. Berkeley

Linguistic Society , MIT Press, Berkeley, Cal ifornia, February, 1979.

Marcus, M. P.
A Theory of Syntactic Recognition for Natural Language.
T h e MIT Press, Cambr idge, Massachusetts , 1980.

Matsumoto, Y . , Tanaka, H., Hirakawa, H., Miyoshi , H. and Yasukawa, H.
B U P : A Bot tom-Up Parser Embedded in Prolog.
New Generation Computing 1:pp.145-158,1983.

Pereira, F. and Warren , D.
Definite C lause Grammar for Language Analysis.
Artificial Intelligence 13:pp.231-278, May, 1980.

Pratt, V . R.
L I N G O L - A Progress Report .
In Proc. of 4th IJCAI, pages pp.327-381. August , 1975.

Saito, H. and Tomita, M.
O n Automatic Composit ion of Foreign Letters.
In IPS J Symposium on Natural Language Processing. Information Processing Society of

J a p a n , 1984.

Tomita, M.
Disambiguating Grammatically Ambiguous Sentences by Asking.
In 10th International Conference on Computational Linguistics (COLING84). 1984.

Tomita, M.
LR Parsers For Natural Language .

In 10th International Conference on Computational Linguistics (COLING84). 1984.

Tomita, M., Nishida, T . and Doshita, S .

User F ront -End for disambiguation in Interactive Machine Translation System.
In IPS J Symposium on Natural Language Processing. Information Process ing Society of

J a p a n , (in Japanese) , 1984.
Tomita, M., Nishida, T . and Doshita, S .
An Interactive Eng l i sh - Japanese Machine Translation System.
Transactions of Information Processing Society of Japan (in Japanese ; submitted), 1984.

Tomita, M., Nishida, T . and Doshita, S .
Interactive Approach to Machine Translat ion.
(Forthcoming), 1984.

Tomita, M.
The Design Philosophy of Personal Machine Translation System.
Techn ica l Report , Computer Sc ience Department, Carnegie -Mel lon University, 1984.

Winograd , T .
Language as a Cognitive Process.
Addison-Wesley , 1983.

23

Woods , W. A.
Transit ion Network Grammars for Natural Language Analysis.
CACM 13:pp.591-606, 1970.

1 0 - t K International Conference o n
C o m p u t a t i o n a l L i n g u i s t i c s , 1984

LR Parsers
For Natural Languages1

M a s a r u T o m i t a
Computer Sc ience Department

Carnegie-Mel lon University
Pittsburgh, PA 15213

A b s t r a c t

MLR, an extended LR parser, is introduced, and its
application to natural language parsing is d iscussed.
An LR parser is a shift -reduce parser which is
deterministically guided by a parsing table. A parsing
table can be obtained automatically from a context-
free phrase structure grammar. LR parsers cannot
manage ambiguous grammars such as natural
language grammars, because thetr parsing tables
would have multiply-defined entries, which precludes
deterministic parsing. MLR, however, can handle
multiply-defined entries, using a dynamic
programming method. When an input sentence is
ambiguous, the MLR parser produces all possible
parse trees without parsing any part of the input
sentence more than once in the same way, despite the
fact that the parser does not maintain a chart as in
chart parsing. O u r method also provides an elegant
solution to the problem of multi -part-of-speech words
such as , , that , \ The MLR parser and its parsing table
generator have been implemented at Carnegie-Mel lon
University.

1 I n t r o d u c t i o n

LR parsers [1,2] have been developed originally for
programming language of compilers. An LR parser is a shift-
reduce parser which is deterministically guided by a parsing table
indicating what action should be taken next. The parsing table
can be obtained automatically from a context-free phrase
structure grammar, using an algorithm first developed by
DeRemer [5, 6]. We do not descr ibe the algorithm here, reffering
the reader to Chapter 6 in Aho and Ullman [4]. T h e LR parsers
have seldom been used for Natural Language Processing
probably because:

1. It has been thought that natural languages are not
context-free, whereas LR parsers can deal only with
context-free languages.

2. Natural languages are ambiguous, while standard LR
parsers can not handle ambiguous languages.

This research was sponsored by the Defense Advanced Research Protects
Agency (DOO), ARPA Order No. 3597. monitored by the Air Force Avionics
Laboratory Under Contract F33615-8IK-1539. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

T h e recent literature [8) shows that the belief "natural
languages are not context - f ree" is not necessari ly true, and there
is no reason for us to give up the context -freedom of natural
languages. We do not d iscuss on this matter further, considering
the fact that even if natural languages are not context-free, a
fairly comprehensive grammar for a subset of natural language
sufficient for practical systems can be written in context free
phrase structure. Thus, our main concern is how to cope with the
ambiguity of natural languages, and this concern is addressed in
the following section.

2 L R p a r s e r s a n d A m b i g u o u s G r a m m a r s

If a given grammar is ambiguous . 2 we cannot have a parsing
table in which every entry is uniquely defined; at least one entry of
its parsing table is multiply defined. It has been thought that, for
LR parsers, multiple entries are fatal because they make
deterministic parsing no longer possible.

Aho et. a/. [3] and Shieber (12| coped with this ambiguity
problem by statically 3 selecting one desired action out of multiple
actions, and thus converting multiply-defined entries into
uniquely-defined ones.With this approach, every input sentence
has no more than one parse tree. This fact is desirable for
programming languages.

For natural languages, however, it is sometimes necessary for a
parser to produce more than one parse tree. For example,
consider the following short story.

I saw the man with a telescope.
He should have bought it at the department store.

When the first sentence is read, there is absolutely no way to
resolve the ambiguity 4 at that time. T h e only action the system
can take is to produce two parse trees and store them
somewhere for later disambiguation.

In contrast with Aho et. at. and Shieber, our approach is to
extend LR parsers so that they can handle multiple entries and
produce more than one parse tree if needed. We call the
extended LR parsers MLR parsers.

A grammar is ambiguous, if some input sentence can be parsed in more than
one way.

By "statically", we mean the selection is done at parsing table construction
time.

4 , T have the telescope, or "the man" has the telescope.

3 M L R P a r s e r s

An example grammar and its MLR parsing table produced by
the construction algorithm are shown in fig. 1 and 2, respectively.
The MLR parsing table construction algorithm is exactly the same
as the algorithm for LR parsers. Only the difference is that an
MLR parsing table may have multiple entries. Grammar symbols
starting with represent pre-terminals, "sh n" in the action
table (the left part of the table) indicates the action "shift one
word from input buffer onto the stack, and go to state n". " re n"
indicates the action " reduce constituents on the stack using rule
n" . " a c c " stands for the action "accept" , and blank spaces
represent "er ror" . Goto table (the right part of the table) decides
to what state the parser should go after a reduce action. The
exact definition and operation of LR parsers can be found in Aho
and Ullman [4].

We can see that there are two multiple entries in the table; on
the rows of state 11 and 12 at the column of "•prep". As
mentioned above, once a parsing table has multiple entries,
deterministic parsing is no longer possible; some kind of non-
determinism is necessary. We shall see that our dynamic
programming approach, which is descr ibed below, is much more
efficient than conventional breath-first or depth-first search, and
makes M L R parsing feasible.

O u r approach is basically pseudo-parallelism (breath-first
search). When a process encounters a multiple entry with n
different actions, the process is split into n processes, and they
are executed individually and parailelly. Each process is
continued until either an "error" or an "accept" action is found.
T h e processes are, however, synchronized in the following way:
When a process "shifts" a word, it waits until all other processes
"shift" the word. Intuitively, all processes always look at the
same word. After ail processes shift a word, the system may find
that two or more processes are in the same state; that is, some
processes have a common state number on the top of their
stacks. These processes would do the exactly same thing until
that common state number is popped from their stacks by some
" reduce" action. In our parser, this common part is processed
only once. As soon as two or more processes in a common state
are found, they are combined into one process. This combining
mechanism guarantees that any part of an input sentence is
parsed no more than once in the same manner/ This makes the
parsing much more efficient than simple breath-first or depth-first
search. O u r method has the same effect in terms of parsing
efficiency that posting and recogniz ing common subconstituents

of different parses have in the chart parsing method [10, 11]. The
idea should be made clear by the following example.

4 A n E x a m p l e

In this section, we demonstrate, step by step, how our MLR
parser processes the sentence:

I S A W A MAN W I T H A T E L E S C O P E
using the grammar and the parsing table shown in fig 1 and 2.
This sentence is ambiguous, and the parser should accept the
sentence in two ways.

Until the system finds a multiple entry, it behaves in the exact
same manner as a conventional LR parser, as shown in fig 3-a
below. T h e number on the top (rightmost) of the stack indicates
the current state. Initially, the current state is 0. S ince the parser
is looking at the word " I " , whose category is " # n " , the next action
"shift and goto state 4" is determined from the parsing table. The
parser takes the word " I " away from the input buffer, and pushes
the preterminal " * n " onto the stack. T h e next word the parser is
looking at is " S A W " , whose category is "*v" , and " reduce using
rule 3" is determined as the next action. After reducing, the
parser determines the current state, 2, by looking at the
intersection of the row of state 0 and the column of "NP'\ and so
on.

STACK NEXT-ACT ION NEXT-WORD

NP 2
NP 2
NP 2
NP 2
NP 2

•det 3 •det 3
NP 12

•n 10

sh 4 re 3
sh 7
sh 3
sh 10 re 4
7, sh

I
SAW
SAW

A
MAN

WITH
WITH

Fig 3 - a

At this point, the system finds a multiple entry with two different
actions, " reduce 7" and "shift 6". Both actions are processed in
parallel, as shown in fig 3-b.

(1) S - -> NP VP
(2) CO

--> S PP
(3) NP --> *n
(4) NP --> * d e t *n
(5) NP - -> NP PP
(6) PP --> •prep NP
(7) VP - -> •v NP

F ig 1

S t a t e •det •n •v •prep S NP PP VP S

0 sh3 sh4 2 1

1 sh6 a c c 5
2 sh7 sh6 9 8
3 s h l O
4 re3 r e 3 r e 3
5 r e 2 r e 2

CD sh3 sh4 11
7 sh3 Sh4 12
8 r e l r e l
9 re5 re5 r e 5

10 r e 4 r e 4 r e 4
11 re6 r e 6 , s h 6 r e 8 9
12 r e 7 , s h 6 r e 7 9

F ig 2

0 MP 2 VP 8 re 1 WITH

0 MP 2 *v 7 MP 12 •prep 6 w a i t A

0 S 1 sh 6 WITH

0 NP 2 *v 7 NP 12 •prep S w a i t A

0 S I " p r e p 6 sh 3 A

0 MP 2 *v 7 MP 12 •prep 6 sh 3 A

Fig 3 - b

Here, the system finds that both processes have the common
state number, 6, on the top of their stacks. It combines two
processes into one. and operates as if there is only one process,
as shown in fig 3-c.

0 S 1 M H M B M ' p r e p 6 sh 3 A
0 MP 2 *v 7 MP 1 2 ^

0 S 1 « M M ^ ' p r e p 6 ' d o t 3 sh 10 TELESCOPE
0 NP 2 "V 7 MP 1 2 ^

0 S 1 M H M ^ ' p r s p 6 *det 3 *n 10 re 4 S
0 MP 2 *v 7 MP 1 2 ^

0 S I M w ^ M ^ ' p r e p 6 MP 11 re 6 S
0 MP 2 *v 7 MP 1 2 ^

Fig 3 - c

The action " reduce 6" pops the common state number 6, and
the system can no longer operate the two processes as one. T h e
two processes are, again, operated in parallel, as shown in fig
3-d.

0 S I PP 5 re 2 S
0 NP 2 - v 7 NP 12 PP 9 re 5 $

0 S 1 a c c e p t
0 NP 2 *v 7 NP 12 re 7 S

Fig 3 - d

Now, one of the two processes is finished by the action
"accept" . The other process is still continued, as shown in fig
3-e.

0 MP 2 VP 8 r e 1

0 S I a c c e p t

This process is also finished by the action "accept" . The
system has accepted the input sentence in both ways. It is
important to note that any part of the input sentence, including
the prepositional phrase "WITH A T E L E S C O P E " , is parsed only
once in the same way, without maintaining a chart.

5 A n o t h e r E x a m p l e

Some English words belong to more than one grammatical
category. When such a word is encountered, the MLR parsing
table can immediately tell which of its categories are legal and
which are not. When more than one of its categories are legal,
the parser behaves as if a multiple entry were encountered. The
idea should be*made clear by the following example.

Cons ider the word "that" in the sentence:
That information is important is doubtful.

A sample grammar and its parsing table are shown in Fig. 4 and 5,
respectively. Initially, the parser is at state 0. The first word
"that" can be either "•det" or "*that", and the parsing table tells
us that both categories are legal. Thus, the parser processes "sh
5" and "sh 3" in parallel, as shown below.

STACK NEXT ACTION NEXT WORD

0 sh 5. sh 3 That

0 sh 5 That

0 sh 3 That

0 •det 5 sh 9 i n f o r m a t i o n

0 • t h a t 3 sh 4 i n f o r m a t i o n

0 •det 5 *n 9 re 2 i s
0 •that 3 « n 4 re 3 i s

0 NP 2 sh 6 is

0 •that 3 NP 2 sh 6 i s

F ig . 6 -a

At this point, the parser founds that both processes are in the
same state, namely state 2, and they are combined as one
process.

F ig 3 - e

(1) S — > NP VP
(2) NP — > •det mn
(3) NP — > •n
(4) NP — > • t h a t S
(5) VP — > •be * a d j

F ig . 4

S t a t e •ad j •be •det •n • t h a t $ NP S VP

0 sh6 sh4 sh3 2 1

1 a c c
2 sh6 7

3 shS sh4 sh3 2 8

4 r e 3
5 sh9
6 s h l O
7 r e i p e l
8 r e 4
9 r e 2

10 r e o r e o

F ig . 5

0 MP J 2 s n 6

o - t h a t 3 M P r

0 N p 2 *be 6 s h io i m p o r t a n t
0 * t h a t 3 MP

0 MP mz «be 6 « a d j 10 re 5 i s
0 - t h a t 3 M P ^

0 HP ul VP 7 re I i s
0 * t h a t 3 MP

F ig . 6 - b

The process is split into two processes again.

0 MP 2 VP 7 re 1 i s

0 •that 3
MP 2 VP 7 re 1 i s

0 S 1 TERROR* is

0 •that 3 S 8 re 4 i s

Fig . 6 - c .

O n e of two processes detects "error" and halts; only the other
process goes on.

0 NP Z sh 6 i s

0 HP 2 •be 6 sh 10 d o u b t f u l

0 MP 2 •be .8 « a d j 10 re 5 S

0 MP 2 VP 7 re 1 s 0 S 1 a r c s
F ig . 6 - d

Finally, the sentence has been parsed in only one way. W e
emphasize again that, in spite of pseudo-parallelism, each part of
the sentence was parsed only once in the same way.

6 C o n c l u d i n g R e m a r k s

The MLR parser and its parsing table generator have been
implemented at Computer Sc ience Department, Carnegie-Mel lon
University. The system is written in M A C L I S P and running on
Tops-20.

O n e g o o d feature of an MLR parser (and of an L R parser) is
that, even if the parser is to run on a small computer, the
construct ion of the parsing table can be d o n e on more powerful ,
larger computers. O n c e a parsing table is constructed, the
execut ion time for parsing depends weakly on the number of
product ions or symbols in a grammar. Also, in spite of pseudo-
parallelism, our MLR parsing is theoretically still deterministic.
This is because the number of processes in our pseudo-
parallelism never exceeds the number of states in the parsing
table.

O n e concern of our parser is whether the size of a parsing table
remains tractable as the size of a grammar grows. Fig. 6 shows
the relationship between the complexity of a grammar and its L R
parsing table (excerpt from Inoue [9]).

XPL EULER FORTRAN ALGOL60

T e r m i n a l s 47 74 63 66
N o n - t e r m i n a l s 51 45 77 99
P r o d u c t i o n s 108 121 172 , 205

S t a t e s 180 193 322 337
T a b l e S i z e (b y t e) 2041 2587 3662 4264

F ig . 6

Although the example grammars above are for programming
langauges, it seems that the size of a parsing table g rows only in
proport ion to the size of its grammar and does not grow rapidly.
Therefore, there is a hope that our MLR parsers can manage
grammars with thousands of phrase structure rules, which would
be generated by rule -schema and meta-rules for natural language
in systems such as G P S G [7].

A c k n o w l e d g e m e n t s
I would like to thank Takehiro Tokuda, Osamu

Watanabe, Jaime Carbonel l and Herb Simon for
thoughtful comments on an earlier version of this
paper.

R e f e r e n c e s
[1] Aho, A. V. and Ul lman, J . D.

77? e Theory of Parsing. Translation and Compiling.
Prentice-Hal l , Eng lewood Cliffs, N. J . , 1972.

[2] Aho, A. V. and J o h n s o n , S . C.
LR parsing.
Computing Surveys 6:2:99-124, 1974.

[3] Aho , A. V., J o h n s o n , S. C. and Ullman, J . D.
Deterministic parsing of ambiguous grammars.
Comm. ACM 18:8:441-452, 1975.

[4] Aho, A. V. and Ullman, J . D.
Principles of Compiler Design.
Addison Wesley, 1977.

[5] Deremer, F. L.
Practical Translators (or LR(k) Languages.
PhD thesis, MIT, 1969.

[6] DeRemer, F. L.
Simple LR(k) grammars.
Comm. ACM 14:7:453-460, 1971.

[7] Gazdar , G .
Phrase Structure Grammar.
D. Reidel, 1982, pages 131-186.

[8] Gazdar , G .
Phrase Structure Grammars and Natural Language.
Proceedings of the Eighth International Joint Conference

on Artificial Intelligence v.1, August , 1983.
[9] Inoue, K. and Fuj iwara, F.

O n LLC(k) Parsing Method of LR(k) Grammars.
Journal of Information Processing vol.6(no.4):pp.206-217,

1983.
[10] Kaplan, R. M.

A general syntactic processor.
Algorithmics Press, New York, 1973, pages 193-241.

[11] Kay, M.
The MIND system.
Algorithmics Press, New York, 1973, pages 155-188.

[12] Shieber, S . M.
Sentence Disambiguation by a Shi f t -Reduce Parsing

Techn ique .
Proceedings of the Eighth International Joint Conference

on Artificial Intelligence v.2, August , 1983.

10 -tK International C o n f e r e n c e o n
Computational Linguistics, 1984

Disambiguating
Grammatically Ambiguous Sentences

By Asking
M a s a r u T o m i t a

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

A b s t r a c t

T h e problem addressed in this paper is to
disambiguate grammatically ambiguous input
sentences by asking the user, who need not be a
computer specialist or a linguist, without showing any
parse trees or phrase structure rules. Explanation List
Comparison (ELC) is the technique that implements
this process. It is applicable to all parsers which are
based on phrase structure grammar, regardless of the
parser implementation. An experimental system has
been implemented at Carnegie-Mel lon University, and it
has been applied to Engl ish-Japanese machine
translation at Kyoto University.

1. I n t r o d u c t i o n .
A large number of techniques using semantic information have

been developed to resolve natural language ambiguity. However ,
not all ambiguity problems can be solved by those techniques at
the current state of art. Moreover, some sentences are absolutely
ambiguous, that is, even a human cannot disambiguate them.
Therefore, it is important for the system to be capable of asking a
user questions interactively to disambiguate a sentence.

Here, we make an important condition that an user is neither a
computer scientist nor a linguist. Thus, an user may not recognize
any spec'al terms or notations like a tree structure, phrase
structure grammar, etc.

T h e first system to disambiguate sentences by asking
interactively is perhaps a program called "disambiguator" in Kay's
MINO system [2]. A l though the disambiguation algorithm is not
presented in [2], some basic ideas have been already
implemented in the K a y s system 2 . In this paper, we shall only
deal with grammatical ambiguity, or in other words, syntactic
ambiguity. Other ambiguity problems, such as word -sense
ambiguity and referential ambiguity, are exc luded.

Suppose a system is given the sentence:

"Mary saw a man with a te lescope"

This researcn was sponsored by the Defense Advanced Research Projects
Agency (DOD). ARPA Order No. 3597, monitored by the Air Force Avionics
Laboratory Under Contract F33615-81-K-1539. The views and conclusions
contained .n tnis document are those of the authors and should not be interpreted
as reoresentmg the official uoiicies. t-ither expressed or implied, of the Defense
Advancad Research Projects Agency or the US Government.

^Personal communication.

and the system has a phrase structure grammar including the
following rules <a> - <g>:

<a> S - - > NP + VP
 S - - > NP • VP + PP
<c> NP - - > *noun
<d> NP - - > *det + *noun
<e> NP - - > NP + PP
<f> PP - - > * p r e p + NP
<g> VP — > * v e r b • NP

T h e system would produce two parse trees from the input
sentence (I. using rules ,<c>,<g>,<d>,<f>,<d>; II. using rules
<a>.<c>,<g>,<e>,<d>,<f>,<d>). The difference is whether the
preposition phrase "with a telescope" qualifies the noun phrase
"a man" or the sentence "Mary saw a man". This paper shall
discuss on how to ask the user to select his intended
interpretation without showing any kind of tree structures or
phrase structure grammar rules. O u r desired question for that
sentence is thus something like:

1) The action "Mary saw a man" takes place "with a telescope"
2) "a man" is "with a telescope"
N U M B E R ?

The technique to implement this, which is described in the
following sections, is called Explanation List Comparison.

2. E x p l a n a t i o n L is t C o m p a r i s o n
T h e basic idea is to attach an Explanation Template to each rule.

For example, each of the rules <a> - <g> would have an
explanation template as follows:

E x p l a n a t i o n T e m p l a t e

<a> (1) i s a s u b j e c t o f t h e a c t i o n (2)
 The a c t i o n (1 2) t a k e s p l a c e (3)
<c> (1) i s a noun
<d> (1) i s a d e t e r m i n e r o f (2)
<e> (1) i s (2)
< f> (1) i s a p r e p o s i t i o n o f (2)
<g> (2) i s an o b j e c t o f t h e v e r b (1)

Whenever a rule is employed to parse a sentence, an
explanation is generated from its explanation template. Numbers
in an explanation template indicate n t h constituent of the right
hand side of the rule. For instance, when the rule <f>

PP — > •prep + NP

matches " w i t h a t e l e s c o p e " (*prep = " W I T H " ; NP = " a

t e l e s c o p e ") , the explanation

"(with) is a preposition of (a telescope)'*
is generated. Whenever the system builds a parse tree, it also
builds a list of explanations which are generated from explanation
templates of all rules employed. We refer to such a list as an

explanation list. T h e explanation lists of the parse trees in the
example above are:

Alternative I.

 The action (Mary saw a man) takes place (with a telescope)
<c> (Mary) is a noun
<g> (a man) is an object of the verb (saw)
<d> (A) is a determiner of (man)
<f> (with) is a preposition of (a telescope)
<d> (A) is a determiner of (telescope)

Alternative II.

<a> (Mary) is a subject of the action (saw a man with a telescope)
<c> (Mary) is a noun
<g> (a man with a telescope) is an object of the verb (saw)
<e> (a man) is (with a telescope)
<d> (A> is a determiner of (man)
<f> (with is a preposition of (a telescope)
<d> (A) is a determiner of (telescope)

In order to disambiguate a sentence, the system only examines
these Explanation Lists, but not parse trees themselves. Th is
makes our method independent from internal representation of a
parse tree. Loosely speaking, when a system produces more than
one parse tree, explanation lists of the trees are "compared'* and
the "difference" is s h o w n to the user. T h e user is, then, asked to
select the correct alternative.

3 . T h e r e v i s e d v e r s i o n of E L C
Unfortunately, the basic idea described in the preceding section

does not work quite well. For instance, the difference of the two
explanation lists in our example is

2)

The action (Mary saw a man) takes place (with a telescope),
(a man) is an object of the verb (saw);

(Mary) is a subject of the action (saw a man with a telescope),
(a man with a telescope) is an object of the verb (saw),
(a man) is (with a telescope);

despite the fact that the essential difference is only

1) The action (Mary saw a man) takes place (with a telescope)
2) (a man) is (with a telescope)

T w o refinement ideas, head and multiple explanations, are
introduced to solve this problem.

3.1 . Head

We define head as a word or a minimal cluster of words which
are syntactically dominant ih a group and could have the same
syntactic function as the whole g roup if they stood alone. For
example, the head of " V E R Y S M A R T P L A Y E R S IN N E W Y O R K " is
" P L A Y E R S " , and the head of " I N C R E D I B L Y B E A U T I F U L " is
" B E A U T I F U L " , but the head of "I L O V E C A T S " is "I L O V E C A T S "
itself. T h e idea is that, whenever the system shows a part of an
input sentence to the user, only the head of it is shown. T o
implement this idea, each rule must have a head definition besides
an explanation template, as follows.

R u l e

<a>

<c>
<d>
<e>
< f >
<g>

Head

[1 2]
[1 2]
[1]
[1 2]
[1]
[1 2]
[1 2]

For instance, the head definition of the rule says that the
head of the construct ion "NP + VP + PP" is a concatenation of
the head of 1-st constituent (NP) and the head of 2 n d constituent
(VP) . T h e head of "A G I R L with A R E D B A G saw A G R E E N T R E E
W I T H a telescope" is, therefore, "A G I R L saw A T R E E " , because
the head of "A G I R L with A R E D B A G " (NP) is "A G I R L " and the
head of "saw A G R E E N T R E E " (VP) is "saw A T R E E " .

In our example, the explanation

(Mary) is a subject of the action (saw a man with a telescope)

becomes

(Mary) is a subject of the action (saw a man),

and the explanation

(a man with a telescope) is an object of the verb (saw)

becomes

(a man) is an object of the verb (saw),

because the head of "saw a man with a te lescope" is "saw a
man" , and the head of "a man with a te lescope" is "a man" .

T h e difference of the two alternatives are now:

1)
1

2)
^The action (Mary saw a man) take place (with a telescope);

(Mary) is a subject of the action (saw a man),
(a man) is (with a telescope);

3 .2 . M u l t i p l e e x p l a n a t i o n s
In the example system we have discussed above, each rule

generates exactly one explanation. In general , multiple
explanations (including zero) can be generated by each rule. F o r
example, rule

S - - > NP + VP + PP

should have two explanation templates:

(1) 1s a s u b j e c t o f the a c t i o n (2)

The a c t i o n (1 2) takes p l a c e (3) ,

whereas rule <a>

S — > NP + VP

should have only one explanation template:
(1) 1s a s u b j e c t o f the a c t i o n (2) .

With the idea of head and multiple explanations, the system now
produces the ideal question, as we shall see below.

3 . 3 . R e v i s e d E L C
T o summarize, the system has a phrase structure grammar, and

each rule is followed by a head definition followed by an arbitrary
number of explanation templates.

R u l e Head

<a> [1 2]
 [1 2]

<c> [1]
<d> [1 2]
<e> [1]
< f> [1 2]

<9> [1 2]

E x p l a n a t i o n T e m p l a t e

(1) i s a s u b j e c t o f t h e a c t i o n (2)
(1) i s a s u b j e c t o f t h e a c t i o n (2)
The a c t i o n (1 2) t a k e s p l a c e (3)
<<none>>
(1) i s a d e t e r m i n e r o f (2)
(1) i s (2)
(1) i s a p r e p o s i t i o n o f (2)
(2) i s an o b j e c t o f t h e v e r b (1)

A l t e r n a t i v e I I .

(a man) is (with a teiescope)
(a man) is (in the park)

A l t e r n a t i v e I I I .

The action (Mary saw a man) takes place (with a telescope)
(a man) is (in the park)

With the ideas of head and multiple explanation, the system
builds the following two explanation lists from the sentence "Mary
saw a man with a telescope".

A l t e r n a t i v e I.

 (Mary) is a subject of the action (saw a man)
 The action (Mary saw a man) takes place (with a telescope)
<g> (a man) is an object of the verb (saw)
<d> (A) is a determiner of (man)
<f> (with) is a preposition of (a telescope)
<d> (A) is a determiner of (telescope)

A l t e r n a t i v e I V .

The action (Mary saw a man) takes place (in the park)
(the park) is (with a teiescope)

A l t e r n a t i v e V .

The action (Mary saw a man) takes place (with a telescope)
The action (Mary saw a man) takes place (in the park)

A l t e r n a t i v e I I .

<a> (Mary) is a subject of. the action (saw a man)
<g> (a man) is an object of the verb (saw)
<e> (a man) is (with a telescope)
<d> (A) is a determiner of (man)
<f> (with is a preposition of (a telescope)
<d> (A) is a determiner of (telescope)

The difference between these two is

T h e action (Mary saw a man) takes place (with a telescope)

and

(a man) is (with a telescope).

Thus , the system can ask the ideal question:

1) T h e action (Mary saw a man) takes place (with a telescope)
2) (a man) is (with a telescope)
Number?

4 . M o r e C o m p l e x E x a m p l e
The example in the preceding sections is somewhat

oversimplified, in the sense that there are only two alternatives
and only two explanation lists are compared. If there were three
or more alternatives, comparing explanation lists would be not as
easy as comparing just two.

Consider the following example sentence:

Mary saw a man in the park with a telescope.

This sentence is ambiguous in 5 ways, and its 5 explanation lists

are shown below.

A l t e r n a t i v e I.

(a man) is (in the park)
(the park) is (with a telescope)

With these 5 explanation lists, the system asks the user a

question twice, as follows:

1) (a man) is (in the park)
2) T h e action (Mary saw a man) takes place (in the park)
N U M B E R ? 1

1) (the park) is (with a teiescope)
2) (a man) is (with a telescope)
3) T h e action (Mary saw a man) takes place (with a teiescope)

N U M B E R ? 3
The implementation of this is descr ibed in the following.

We refer to the set of explanation lists to be compared, {L1, L2,...
} , as A. If the number of explanation lists in A is one ; just return
the parsed tree which is associated with that explanation list. If
there are more than one explanation list in A, the system makes a
Qlist (Question list). T h e Olist is a list of explanations

Olist = { e r e2 en)

which is shown to the user to ask a question as follows:

n) 9n
Number?

Olist must satisfy the following two condit ions to make sure that
always exactly one explanation is true.

• Each explanation list ¿ in A must contain at least one
explanation e which is also in Olist. Mathematically,
the following predicate must be satisfied.

V i 3 e (e € * A e G C H i s t)
This condition makes sure that at least one of
explanations in a Qlist is true.

• No explanation list L in A contains more than one
explanation in a Qlist. That is,

-(3L3e3e'(L E ^ A e G l A e ' G i
A e £ Qlist A e ' E Qlist A e *e')

This condition makes sure that at most one of
explanations in Qlist is true.

T h e detailed algorithm of how to construct a Qlist is presented in
Appendix.

O n c e a Qlist is created, it is presented to the user. T h e user is
asked to select one correct explanation in the Qlist, called the key
explanation. All explanation lists which d o not contain the key
explanation are removed from A. If A still contains more than one
explanation list, another Qlist for this new A is created, and shown
to the user. Th is process is repeated until A contains only one
explanation list.

5 . C o n c l u d i n g R e m a r k s
An experimental system has been written in Maclisp, and

running on Tops-20 at Computer Sc ience Department, Carnegie-
Mellon University. T h e system parses input sentences provided by
a user according to grammar rules and a dictionary provided by a
super user. T h e system, then, asks the user questions, if
necessary, to disambiguate the sentence using the technique of
Explanation List Comparison. The system finally produces only
one parse tree of the sentence, which is the intended
interpretation of the user. The parser is implemented in a bottom-
up, breath-first manner, but the idea descr ibed in the paper is
independent from the parser implementation and from any
specific grammar or dictionary.

T h e kind of ambiguity we have discussed is structural ambiguity.
An ambiguity is structural when two different structures can be
built up out of smaller constituents of the same given structure
and type. O n the other hand, an ambiguity is lexical when one
word can serve as various parts of speech. Resolving lexical
ambiguity is somewhat easier, and indeed, it is implemented in the
system. As we can see in the Sampfe Runs below, the system first
resolves lexical ambiguity in the obvious manner, if necessary.

Recently, we have integrated our system into an Engl ish-
Japanese Machine Translation system [3], as a first step toward
user-friendly interactive machine translation [6]. The interactive
English Japanese machine translation system has been
implemented at Kyoto University in Japan [4 ,5] .

A p p e n d i x A : Q l i s t - C o n s t r u c t i o n A l g o r i t h m

i nput A : set of explanation lists
o u t p u t Qlist : set of explanations
loca l e : explanation

L : explanation list (set of explanations)
1/, C : set of explanation lists

1: C — *
2: U « A
3: Qlist « 0
4: if ¿7 » (pihen r e t u r n Qlist
5: s e l e c t one explanation e s u c h that

e is in some explanation list € U,
but not in any explanation list G C;
if no such e exists, r e t u r n E R R O R

6: Qlist <= Qlist + { e }
7: C « C + {L\eGL aLgU)
8: U = {L\e£L A I € (U) }
9: g o t o 4

• The input to this procedure is a set of explanation
lists, [LVL2,...}.

• The output of this procedure is a list of explanations,
{ e r e 2 , ... , en], such that each explanation list, Lv

contains exactly one explanation which is in the Qlist.

• An explanation list L is called covered, if some
explanation e in L is also in Qlist. L is called
uncovered, if any of the explanations in L is not in
Qlist. C is a set of covered explanation lists in A, and
U is a set of uncovered explanation lists in A.

• 1-3: initialization. Let Qlist be empty. All explanation
lists in A are uncovered.

• 4: if all explanation lists are covered , quit.

• 5-6: select an explanation e and put it into Qlist to
cover some of uncovered not explanation lists, e
must be such that it does exist in any of covered
explanation lists (if it does exist, the explanation list
has two explanation in A, violating the Qlist
condition).

A c k n o w l e d g e m e n t s • 7 - 8 : m a k e uncovered explanation lists which are now
covered by e to be covered .

I would like to thank Jaime Carbonel l , Harb Simon,
Martin Kay, Jun - i ch Tsujii , Toyoaki Nishida, Shuj i • 9: repeat the process until everything is covered.
Doshita and Makoto Nagao for thoughtful comments
on an earlier version of this paper.

R e f e r e n c e s

Kay, M.
The MIND System.

Algorithmic Press, New York, 1973,.

Nishida, T. and Doshita, S .

An Application of Montague Grammar to Engl ish - Japanese
Machine Translation.

Proceedings of conference on Applied Natural Language
Processing : 156-165,1983.

Tomita, M., Nishida, T . and Doshita, S .
An Interactive Engl ish - Japanese Machine Translation

System.
Forthcoming (in Japanese) , 1984.

[4] Tomita, M., Nishida, T. and Doshita, S.
User Front -End for disambiguation in Interactive Machine

Translation System.
In Tech. Reports of WGNLP. Information Processing

Society of Japan, (in Japanese, forthcoming), 1984.

[5] Tomita, M.
The Design Philosophy of Personal Machine Translation

System,
Technical Report. Computer Sc ience Department,

Carnegie-Mel lon University, 1983.

A p p e n d i x B: S a m p l e R u n s

(t r a n s l i n e (t i m e n i e s I l i ce an a r row i n J a p a n))

(— E M O OF PARSE- - 10 ALTERNATIVES)

(The word TIME (1) i s :)
(1 : VERB)
(2 : NOUN)
NUMBER) I

(The word F L I E S (2) I s :)
(1 : VERB)
(2 : NOUN)
NUMBER> 1

(1 : (AN ARROW) IS (I N JAPAN))
(2 : THE ACTION (T IME F L I E S) TAKES PLACE (I N JAPAN))
NUMBER> I

(S (NP (T IME «NOUN))
(F L I E S -VERB)
(PP (L I K E «PREPOSIT ION) (NP (AN «DETERMINER) (ARROW « N O U N)))
(PP (I N «PREPOSIT ION) (JAPAN « N 0 U N)))

(t r a n s l i n e ' (M a r y saw a man i n the apartment w i t h a t e l e s c o p e))

(END OF PARSE- - 5 ALTERNATIVES)

(1 : (A MAN) IS (I N THE APARTMENT))
(2 : THE ACTION (MARY SAW A MAN) TAKES PLACE (I N THE APARTMENT))
NUMBER> 1

(1 : (A MAN) IS (WITH A TELESCOPE))
(2 : (THE APARTMENT) IS (WITH A TELESCOPE))
(3 : THE ACTION (MARY SAW A MAN) TAKES PLACE (WITH A TELESCOPE))
NUMBER> 2

(S (NP (MARY «NOUN))
(VP (SAW -VERB)

(NP (NP (A «DETERMINER) (MAN *NOUN))
(PP (I N «PREPOSIT ION)

(NP (THE «DETERMINER) (APARTMENT « N 0 U N)))))
(PP (WITH «PREPOSIT ION)

(NP (A «DETERMINER) (TELESCOPE « N O U N))))

