
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-84-164 5 - ;

General Quorum Consensus:
A Replication Method for Abst rac t Data Types

Maurice Herlihy
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

12 December 1984

A b s t r a c t

Replication can enhance the availability of data in distributed systems. This paper
introduces General Quorum Consensus: a new method for managing replicated data.
Unlike many methods that support replication only for uninterpreted files, this method
systematically exploits type-specific properties of objects such as sets, queues, or
director ies to provide more effective replication. Associated with each operation of the data
type is a set of quorums, which are collections of sites whose cooperation suffices to
execute the operat ion. Necessary and sufficient constraints on quorum intersections are
derived from an analysis of the data type's algebraic structure. A reconfiguration method is
proposed that permits quorums to be changed dynamically. By taking advantage of type-
specif ic properties in a general and systematic way, General quorum consensus can realize
a wider range of availability properties and more flexible reconfiguration than existing
repl icat ion methods.

Copyright © 1984 Maurice Herlihy

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

University Libraries
Carnegie M e l l o n University
Pittsburgh PA 15213-3890

1

1 . I n t r o d u c t i o n

Replicated data is data that is stored redundantly at multiple locations. Replication can

enhance the availability of data in the presence of failures, increasing the likelihood that the

data will be accessible when it is needed. Replication is a useful technique for systems in

which availability is important, such as banking systems, airline reservation systems,

authentication servers, and mail systems. This paper introduces general quorum

consensus: a new method for managing replicated data. Unlike many methods that support

replication only for uninterpreted files, general quorum consensus makes use of type-

specific properties of objects (such as sets, queues, or directories) to provide more effective

replication. The method is both general and systematic. It is general because it is

applicable to objects of arbitrary type, and it is systematic because constraints on correct

implementations are derived directly from algebraic structure of the data type in question.

These constraints are both necessary and sufficient: any replicated implementation

satisfying these constraints is correct, and no smaller set of constraints guarantees

correctness.

Our model of computation is presented in Section 2, and related work is discussed in

Section 3. In Section 4, we review a replication method for files due to Gifford, observing

that certain difficulties arise when one attempts to implement objects of arbitrary abstract

type on top of a replicated file. In Section 5, we introduce general quorum consensus: a

revised replication method that is capable of realizing a wider range of availability

properties. In Section 6, we present the correctness arguments for our method, and Section

7 presents a series of examples. Section 8 proposes a scheme for on-the-fly

reconfiguration, and Section 9 concludes with a discussion.

2 . M o d e l of C o m p u t a t i o n

A distributed system consists of a collection of sites that communicate through a network. A

site consists of one or more processors, one or more levels of memory, and any number of

devices. We assume that any site can communicate with any other when the network is

functioning properly. We make no assumptions about the speed, connectivity, or reliability

of the network.

Our model admits two kinds of failures: site crashes and communication failures. When a

2

site crashes, its resident data becomes temporarily or permanently inaccessible. We

assume that all communication failures take the form of lost messages: garbled and out-of-

order messages can be detected (with high probability) and discarded. Transient

communication failures may be hidden by lower level protocols, but longer-lived failures can

render functioning sites unable to communicate. For example, a network partition results if

the sites are divided into disjoint sets such that funct ioning members of distinct sets cannot

communicate. Similar failures may leave one site able to send messages to another, but not

vice-versa.

A failure is detected when a site that has sent a message fails to receive a response after a

certain durat ion. Although we assume that site crashes and lost messages can be detected

by the absence of a response, we do not assume that the different kinds of failure can be

distinguished: the absence of a response may mean that the original message was lost, that

the reply was lost, that the recipient has crashed, or simply that the recipient is slow to

respond.

General quorum consensus relies on certain consistency constraints that must be preserved

in the presence of failures and concurrency. These constraints apply not only to individual

pieces of data, but also to distributed sets of data. Our approach to this problem is to ensure

that activities are atomic: that is, indivisible and recoverable. By indivisible, we mean the

execution of one activity never appears to overlap (or contain) the execution of another, and

by recoverable, we mean the complete effect of an activity is all-or-nothing: it either

succeeds completely, or it has no effect. Atomic activities are called actions (or

transactions). An action that completes all its changes successfully commits] otherwise it

aborts, and the data objects it has modified are restored to their previous states. The effect

of executing multiple concurrent actions is serializable [10, 25]: their compiete effect is as if

they had been executed in some sequential order.

The replication method presented in this paper is built on top of an atomic action

mechanism which we assume is provided by the underlying system. Actions may be

serialized either in a predetermined timestamp order [26], or dynamically through shared

locks [10]. Elsewhere [17], we show that general quorum consensus can support a higher

level of concurrency if it is integrated with the action mechanism. Such integration does

3

not, however, extend the range of availability properties realizable by our method. This

paper focuses on availability properties; a consideration of the interaction of concurrency

control with replication lies beyond the scope of this paper.

The basic containers for data are called objects. Each object has a type, which

characterizes its behavior by defining a set of possible states together with a set of primitive

operations that provide the (only) means to create and manipulate objects of that type. Each

type has an accompanying specification that gives the meaning of the operations provided

by the type. A replicated object is an object whose state is stored redundantly at multiple

sites. Replicated objects are implemented by two kinds of modules: repositories and

front-ends. Repositories provide long-term storage for the object 's state, while front-ends

carry out operations for clients. In the terminology of Bernstein and Goodman [2], front-

ends correspond roughly to transaction managers and repositories correspond roughly to

data managers. To apply an operation to a replicated object, a client sends an invocation to

a front-end for the object. The front-end reads the data from some collection of repositories,

carries out a local computat ion, sends updates to some collection of repositories, and

returns the response to the client. Each operation is executed as part of an atomic action.

An operation's availability to a client is determined by two factors: the client must first be

able to locate a front-end for the object, and the front-end must in turn locate enough

repositories to execute the operation. Because the front-ends do not interact directly with

one another, new front-ends can be created without affecting existing ones. Consequently,

front-ends can be replicated to an arbitrary extent, implying that the availability of the

replicated object is dominated by the availability of the repositories.

3 , R e l a t e d W o r k

The replication method described in this paper can be viewed as a generalization of a file

replication method due to Gifford [12,13] . A detailed discussion of Gifford's method

appears in Section 4.

Bloch, Daniels, and Spector [8,6] have adapted Gifford's file replication method to

implement replicated directories. This directory replication method can also be viewed as a

specially optimized instance of the general method described here (see Section 7.3). These

4

papers focus on minimizing storage consumption and message traffic for directories, while

we focus on how an object's type structure determines its range of realizable availability

properties.

Early file replication methods did not attempt to preserve serializability: the value read from

a file is not necessarily the value most recently written [1,18, 27]. Replication methods for

directories have been proposed with the same property: clients may observe obsolete

bindings between pairs of values [24, 5, 11]. By sacrif icing serializability, these schemes

enhance performance and availability at the cost of more complex behavior by the

replicated object. General quorum consensus permits a similar trade-off through the

introduction of non-determinism, as discussed in Section 7.4.

In the true-copy token scheme [23], a replicated file is represented by a collection of

versions. Versions that'reflect the fi le's current state are called true copies. There are two

kinds of true copies: there may be a unique exclusive copy, used for both reading and

writ ing, or there may be multiple shared copies, used only for reading. A true copy is

marked by a true-copy token, which also indicates whether the copy is shared or exclusive!

Under our assumption that site failures cannot be distinguished from partitions, the failure of

a single site containing a true-copy token limits the availability of the entire replicated file. If

an exclusive copy token becomes unavailable, the replicated file can neither be read nor

writ ten, and if a shared copy token becomes unavailable, then the file can be read but

cannot be reconfigured for writ ing. Consequently, the true-copy token scheme can be used

to enhance performance by allowing actions to operate on local copies of the file, but it does

not enhance availability in the presence of communication failures.

In the available copies method [14], failed sites are dynamically detected and configured out

of the system, and recovered sites are detected and configured back in. Clients may read

from any available copy, and must write to all available copies. Systems based on variants of

this method include SDD-1 [16] and ISIS [4], These methods are not directly comparable to

ours because they make more optimistic assumptions about faults. While our methods

tolerate both site crashes and communicat ion failures, the available copies method tolerates

only site crashes. Following a communication failure such as a partition, the available

copies method would permit each partit ion's sites to configure out the others, allowing data

5

in distinct partitions to diverge irreconcilably.

Bernstein and Goodman have proposed a formal model for concurrency control in

replicated databases [3]. This model is used to show the correctness of several replication

methods for files. Implicit in this model are two a priori assumptions that unnecessarily

restrict availability. The basic correctness criterion, "one-copy serializability," assumes that

a replicated object is implemented by multiple copies, and that all information about

operations can be captured by a simple read/wri te classification. Neither assumption is

valid for the replication method proposed in this paper.

A longer and more thorough discussion of replication methods for abstract data types is

given in the author's Ph.D. thesis [17], which addresses several issues that lie beyond the

scope of this paper, such as integrating concurrency control with replication, and

techniques for further enhancing availability in the presence of partitions.

The work described in this paper was originally undertaken as part of the Argus project at

M.l.T. [21 , 22]. Argus is a programming language and system that supports the construction

of robust distributed programs.

4 . G i f f o r d ' s Q u o r u m C o n s e n s u s M e t h o d

In this section we describe a replicated method due to Gifford [12,13] . This description

serves two purposes: it introduces some important ideas, and it illustrates the novel aspects

of general quorum consensus. We first show how Gifford's method can be used to

construct both a replicated file and a replicated FIFO queue. In the next section we

introduce a revised replication method that supports a wider range of availability properties

for both files and queues, and we then generalize the revised replication method to arbitrary

data types.

A quorum for an operation is defined to be any set of repositories whose cooperation

suffices to execute that operation. It is convenient to divide a quorum into two parts: a

front-end executing an operation reads from an initial quorum and writes to a final quorum.

(Either the initial or final quorum may be empty.) A quorum for an operation is'any set of

repositories that includes both an initial and a final quorum.

6

For our purposes, a File is a container for a string. Files provide two primitive operations:

Read returns the file's current value, and Write sets the file to a new value. To simplify our

discussion, we assume that Write completely replaces the file's previous contents. This

assumption will be relaxed in Section 7.

An invocation consists of an operation name and argument values, a response consists of a

termination condit ion and results, and an event is a pair consisting of an invocation and its

associated response. For example, ReadO and Write(x) are invocations, Ok(x) and Ok() are

their respective responses, and [Read();Ok(x)] and [Write(x);OkO] are events.

4 . 1 . A Replicated File Implementat ion

In Gifford's method, each repository stores a version of the file together with a version

number, which is used to recognize the most recent version. To read from a file, the front-

end reads the versions from an initial Read quorum of sites, returning the version with the

greatest version number to the client. (The final quorum for Read is empty.) To write to a

file, the front-end first reads the version numbers from an initial Write quorum of

- repositories. The front-end then creates a new version of the file with a version number

greater than any it has observed, and writes out the new version to a final Write quorum.

Quorums for file operations are subject to two constraints:

• Each final quorum for Write must intersect each initial quorum for Read.

• Each final quorum for Write must intersect each initial quorum for Write.

The first constraint ensures that a front-end executing a Read invocation will observe the

effects of the most recent Write, and the second constraint ensures that each new version

created by a Write invocation will have a greater version number than its predecessors. As a

consequence, each Read quorum must intersect each Write quorum, and each pair of Write

quorums must intersect.

These constraints can be summarized by a quorum intersection graph. The vertices of the

graph correspond to classes of events. A directed edge from one vertex to another means

that each final quorum for operations in the first class must intersect each initial quorum for

operations in the second class. Informally, the direction of the arrow can be considered the

7

direction of information flow.

Figure 4-1 contains the quorum intersection graph for a file implemented by Gifford's

replication method. One vertex corresponds to the class of Read events, and the other

vertex corresponds to the class of Write events. The directed edge from the Write vertex to

the Read vertex means that every final quorum for Write must intersect every initial quorum

for Read, and the directed edge from the Write vertex to itself means that every pair of initial

and final quorums for Write must intersect.

A quorum for an operation is said to be minimal if no smaller set of repositories is also a

quorum for that operation. Henceforth, we restrict our attention to minimal quorums. Figure

4-2 displays the range of minimal quorum assignments for an object replicated among five

identical repositories. An entry of the form (m,n) means that an initial quorum is any set of m

repositories and a final quorum is any set of n repositories. Each column corresponds to a

distinct minimal quorum assignment. For example, the first column corresponds to a

quorum assignment in which an initial quorum for Read consists of any one repository and a

final quorum for Write consists of all five repositories. (Given n identical repositories,

Gifford's replication method permits rn/21 distinct quorum assignments.)

As discussed in [12], one convenient way to characterize quorums is to assign weighted

votes to repositories so that a collection of repositories is a quorum if and only if the sum of

its votes exceeds a chosen threshold value. Two quorums will intersect if the sum of their

threshold values exceeds the sum of the votes assigned to all repositories. As an aside, we

remark that some permissible quorum assignments cannot be characterized by voting

schemes: consider a file replicated among four repositories, where Read quorums must

contain either R1 and R2 or R3 and R4, and Write quorums must contain either R1 and R3 or

R2 and R4.

Gifford's method illustrates three points that deserve emphasis. First, an object's fault-

tolerance is best characterized by the (potentially different) levels of availability of each of its

operations. Second, an operation's set of quorums determines its availability: an operation

execution will succeed if and only if an appropriate quorum is available. Third, the

constraints on quorum intersections determine the availability properties that can be

8

Figure 4 - 1 : Quorum Intersection Graph for Files (Gifford's Method)

W r i t e — — — • R e a d

Figure 4 - 2 : Quorum Assignments for Five Identical Repositories

Read (1,0) (2,0) (3,0)
Write (1,5) (2,4) (3,3)

realized by this method. For example, because each Read quorum must intersect each

Write quorum, their levels of availability are inversely related: if the quorums for one event

are made smaller (rendering it more available) then the quorums for the other event must be

made correspondingly larger (rendering it less available). Similarly, because each pair of

Write quorums must intersect, a Write quorum must encompass a majority of repositories,

implying that Write cannot be more highly available than Read.

4 . 2 . A Rep l i ca ted FIFO Queue Implementat ion

A FIFO Queue has two operations: Enq places an item in the queue, and Deq removes the

least recently enqueued item, raising an exception [20] if the queue is empty. A replicated

queue might be used as a highly available spooler or scheduler. In this section we consider

a naive implementation of a replicated FIFO queue where the queue's state is stored in a

repiicated file, and the Enq and Deq operations are implemented by Read and Write

operations. The purpose of this example is to illustrate the benefits of an alternative

replication method that takes advantage of type-specific properties of queues.

9

Let us consider the constraints on quorum assignment that result from implementing a FIFO

queue on top of a replicated file. To dequeue an item, the front-end reads the versions from

an initial Read quorum of repositories. If the queue is non-empty, the appropriate item is

removed, and the shortened queue is written out to a Write quorum. Otherwise, an

exception is returned to the client, but the repositories need not be updated. Enq is

implemented similarly. For brevity, we henceforth restrict our discussion to Deq events that

do not terminate with an exception.

The constraints on Read and Write quorums impose the following constraints on quorums

for Enq and Deq events.

• Every initial Enq quorum must intersect every final Enq quorum.

Every initial Enq quorum must intersect every final Deq quorum.

• Every initial Deq quorum must intersect every final Enq quorum.

• Every initial Deq quorum must intersect every final Deq quorum.

Figure 4-3 displays the required quorum intersections for queue events. Figure

4-4 illustrates the only quorum assignment for a queue replicated among five identical

repositories. In fact, there is exactly one quorum assignment for n identical repositories,

because both Enq and Deq quorums must encompass a majority of repositories.

These quorum assignments are highly constrained, and it is natural to ask whether these

constraints can be relaxed. In the next section we introduce an alternative replication

method that places fewer constraints on quorum intersections for replicated queues. Every

quorum permitted by the file-based approach is permitted by the revised method, but the

latter permits quorum assignments that the file-based method does not.

5 . G e n e r a l Q u o r u m C o n s e n s u s

In this section we introduce a quorum consensus replication method that places fewer

constraints on quorum intersection, permitting a wider range of availability properties to be

realized. In the first part of this section, we propose a less restrictive file replication method

in which timestamps are used in place of version numbers. In the next part, we propose a

less restrictive queue replication method in which timestamped logs are used in place of

10

Figure 4 - 3 : Quorum Intersection Graph for Queues (Gifford's Method)

Figure 4 -4 : Quorum Assignments for Five Identical Repositories

Enq (3,3)
Deq (3,3)

versions. In the final part, we show how the revised replication methods for files and queues

can be generalized to encompass objects of arbitrary type.

5 . 1 . T i m e s t a m p s vs. V e r s i o n Numbers

in this section, we eliminate the constraint that Write quorums for files must intersect. This

improvement is achieved by replacing the version numbering scheme with a scheme based

on timestamps. In addition to reducing the constraints on quorum intersection, the

timestamp-based scheme requires fewer messages. Gifford's thesis [13] includes the

suggestion that t imestamps could be used in place of version numbers; we have worked out

the consequences of this suggestion in detail.

Timestamps are generated by system calls. Timestamps are totally ordered, having the

following properties:

* The ordering of t imestamps generated by a single action reflects the order in
which they were generated.

• The ordering of t imestamps generated by distinct committed actions reflects the
order in which the actions are serialized.

These properties can be realized by structuring timestamps as follows:

11

• The high-order bits are occupied by an action timestamp defining the action's
serialization ordering relative to other actions. This field is used to compare
timestamps generated by distinct actions.

• The low-order bits are occupied by values read from a logical clock private to
the generating action. This field is used to compare timestamps generated
within a single action.

It remains to be shown how action timestamps are generated. We describe two schemes,

one intended for systems in which actions are serialized in a predetermined order, and one

for systems in which actions are synchronized dynamically through confl icts over shared

data.

Under Reed's multiversion timestamp scheme [26], each action is given a pseudotime on

initialization, and scheduling constraints ensure that actions remain serializable in

pseudotime order. Under this scheme, the action pseudotimes are precisely the action

timestamps needed.

Under two-phase locking [10], a slightly more complicated scheme is required because the

eventual serialization ordering is unknown in advance. At the time an action generates a

timestamp, the high-order field is left empty. A timestamp generated by an uncommitted

action is considered later than a timestamp generated by a committed action (timestamps

generated by distinct uncommitted actions are never compared). When the action commits,

it reads a value from a Lamport clock [19]. This clock value is used as the action timestamp.

Similar timestamp generation schemes have been proposed by Dubourdieu [9], by Chan et

al. [7], and by Weihl [28].

The file replication method is changed as follows. Instead of reading and advancing the

most recently generated version number, a front-end executing a Write generates a new

timestamp and appends it to the newly created version. Instead of choosing the version with

the latest version number, a front-end executing a Read chooses the version with the most

recent timestamp.

The timestamp-based scheme imposes fewer constraints on quorum assignment. Because

a front-end executing a Write need not observe any previous version numbers, Write

12

quorums are no longer required to intersect. The quorum intersection graph for a replicated

file employing timestamps is shown in Figure 5-1 . Figure 5-2 shows the possible quorum

assignments for a file replicated among five identical repositories. The number of quorum

assignments for n identical repositories has effectively doubled, going from Vn/21 to n.

Figure 5 - 1 : Quorum Intersection Graph for Files (Revised Method)

W r i t e fe> R e a d

Figure 5 -2 : Quorum Assignments for Five Identical Repositories

Read (1,0) (2,0) (3,0) (4,0) (5,0)
Write (0,5) (0,4) (0,3) (0,2) (0,1)

By assigning non-intersecting Write quorums, Write can be made more highly available than

Read. Such quorum assignments facilitate "bl ind writes," in which a file is written without

first being read. For example, if actions A and B write to disjoint final quorums, then a later

action would choose the version with the later t imestamp. A similar technique has been

used for database synchronization, where it is known as the Thomas Write Rule [27].

Because files are typically read before they are written, we do not believe that quorum

assignments facilitating biind writes are of significant practical interest for files.

Nevertheless, when we turn our attention from files to other data types, we will see that there

are interesting types having operations that resemble blind writes, such as the Enq

operation for queues. The use of t imestamps significantly improves replication methods for

such types.

For files, a more practical advantage of the timestamp-based scheme is that Write

invocations require half as many messages as in the version-numbering scheme, because

the initial round of messages needed to ascertain the current version number is no longer

13

needed. The improved method is also of theoretical interest, as it shows that the

requirement that Write quorums intersect is not really a fundamental constraint, but rather

an artifact of a particular version numbering scheme.

5 .2 . Logs v s . V e r s i o n s

Instead of replicating versions of the queue, consider the consequences of storing a log of

events at each repository. A log is a sequence of entries, where an entry is a timestamped

record of an event. Individual log entries need not appear at all repositories, and the log at

any particular repository may have arbitrary gaps.

To enqueue an item x, the front-end creates a t imestamped Enq entry naming the item to be

enqueued: "1:00 Enq(x);Ok();Ok()." Here 1:00 is a timestamp, Enq(x) is the invocation, and

OkQ is the response indicating a normal termination. This entry is appended to each log at a

final Enq quorum of repositories.

When a front-end receives a Deq invocation, it executes the following steps:

• The front-end reads the logs from an initial Deq quorum of repositories. These
entries are merged in timestamp order, discarding duplicates. The resulting log
is called a view,

«• The state of the queue is reconstructed from the view, and the item to be
returned is ascertained.

• If the queue is non-empty, the front-end records the Deq event by appending a
new entry to the view and sending the modified view to a final Deq quorum of
repositories, where it is merged with the resident logs. An exception is returned
if the queue is empty.

Once these steps have been successfully completed, the response (the dequeued item or an

exception) is returned to the client.

It should be emphasized that this technique is intended to serve as a conceptual model for

replication, not as a literal design for an implementation. An implementation could be

considerably more efficient. For example, it is not really necessary to maintain a complete

log of all queue events, nor is it necessary to write out the entire view in Step Three. In

Section 7 we present a replicated queue implementation that includes measures to reduce

storage consumption and message traffic. Nevertheless, we focus on the unbptimized

14

method for now because it can be more readily generalized to other data types.

What constraints must we impose on quorum intersections for queue operations? In Section

6 we present a systematic method for establishing constraints on quorum intersections, but

for now we rely on informal arguments. If each initial quorum for an invocation is

constrained to intersect each final quorum for an event, then all prior entries for that event

will appear in any view constructed for the invocation. To choose a correct set of

constraints on quorum intersection, we must determine how much of an object's complete

log must be observed to choose a correct response to the invocation. To ascertain the item

at the head of the queue, a front-end executing a Deq must observe: (i) which items have

been enqueued, and (ii) which of these items have since been dequeued. The requirements

induce the following constraints on quorum intersection for Enq and Deq events:

• Every initial Deq quorum must intersect every final. Enq quorum.

• Every initial Deq quorum must intersect every final Deq quorum.

By contrast, the view for an Enq invocation need not include any prior events, because Enq

returns no information about the queue's state. As a consequence, initial Enq quorums are

empty.

To illustrate this method, let us trace a short execution for a queue replicated among three

repositories, where Enq has quorums of (0,2) and Deq has quorums of (2,2). The queue is

initially empty. An item x is enqueued by appending a log entry with timestamp 1:00 to the

logs at two repositories, say R1 and R2:

Bl R2 R3

1:00 Enq(x);Ok() 1:00 Enq(x);Ok()

To dequeue x, a front-end reads the logs from R2 and R3, merging the empty log from R3

with the single-entry log at R2. The resulting view indicates that x is the only item in the

queue. The front-end creates a Deq entry with t imestamp 1:15, and writes out the entire log

to R2 and R3:

HI R2 E3
1:00 Enq(x);Ok() 1:00 Enq(x);Ok() 1:00 Enq(x);Ok()

1:15Deq();Ok(x) 1:15 Deq();Ok(x)

Item y is then enqueued at R1 and R2 with timestamp 1:30, and z is enqueued at R1 and R3

15

with timestamp 7:45. For readability, a "miss ing" entry at a repository is shown as a blank

space.

R l R2 B3
1:00 Enq(x);Ok() 1:00 Enq(x);Ok() 1:00 Enq(x);Ok()

1:15 Deq();Ok(x) 1:15 Deq();Ok(x)
1:30 Enq(y);Ok() 1:30 Enq(y);Ok()

1:45 Enq(z);Ok() 1:45 Enq(z);Ok()

At this point, the log at each repository defines a legal queue, but no single repository

contains all items in the queue. Finally, a front-end dequeues y by reading from and

updating R1 and R3.

El R2 R3
1:00 Enq(x);Ok() 1:00 Enq(x);Ok() 1:00 Enq(x);Ok()
1:15 Deq();Ok(x) 1:15 Deq();Ok(x) 1:15 Deq();Ok(x)
1:30 Enq(y);Ok() 1:30 Enq(y);Ok() 1:30 Enq(y);Ok()
1:45 Enq(z);Ok() 1:45 Enq(z);Ok()
2:00 Deq();Ok(y) 2:00 Deq();Ok(y)

Figure 5-3 shows the quorum intersection graph for the revised implementation of a

replicated queue, and Figure 5-4 shows the quorum assignments for a queue replicated

among five identical repositories. As one can see by comparing Figures 4-4 and 5-4, the

log-based implementation places fewer constraints on quorum intersection than the file-

based implementation, and henoe permits a wider range of quorum assignments and a wider

range of availability trade-offs. Given n identical repositories, there is only one quorum

assignment for the file-based implementation (both Enq and Deq quorums encompass a

majority of repositories) but there are Tn/21 quorum assignments for the log-based

implementation (only Deq quorums require a majority). In each of the new quorum

assignments, the availability of the Enq operation is increased at the cost of decreasing the

availability of the Deq operation. This trade-off could be useful in a highly available printer

spooler, where the availability of the Enq operation used to spool items may be considered

more important than the availability of the Deq operation used by the printer controller.

Our method has the disadvantage that logs (and mp^aaes) continue to grow. This problem

can be alleviated by garbage collection: entries for events that can no longer affect later

events can be discarded. For example, file versions can be viewed as optimized logs in

which each Write entry is discarded as soon as it is superseded. Each repository can

16

Figure 5 -3 : Guorum Intersection Graph for Queues (Revised Method)

Enq

Figure 5 -4: Quorum Assignments for Five Identical Repositories

Enq. (0,1) (0,2) (0,3)
Deq (5,1) (4,2) (3,3)

garbage collect its own log, or collections of repositories can cooperate to identify and

discard obsolete entries. Message sizes can also be reduced if front-ends maintain a cache

of log entries, requesting only the missing entries from repositories. These optimizations are

type-specific, in the sense that an optimization appropriate for queues is not necessarily

appropriate for other data types. Examples of such optimizations are presented in Section

7.

5 .3 . Objects of Arbi t rary Type

We are now ready to address the main point of this paper. In this section, we generalize the

replication method described above for files and queues to objects of arbitrary type. The

treatment is informal; a more precise description together together with correctness

arguments is given in Section 6.

An object may be viewed as an automaton that accepts invocations and returns responses.

As before, an invocation consists of an operation name and argument values, a response

consists of a termination condit ion and result values, and an event is a paired invocation and

response. A history is a sequence of events. Each object has a specification that

characterizes a set of legal histories for that object. Objects having the same specification

17

are said to belong to the same data type.

Just as for queues, an object's history is represented by a collection of logs residing at

repositories. Log entries are partially replicated; each log entry might be stored at several

repositories, and each repository might store only a fragment of the entire log. Each

invocation is assigned a set of initial quorums, and each event is assigned a set of final

quorums. When a front-end receives an invocation from a client, the operation is executed

in the following three steps.

• The front-end reads the logs from an initial quorum of repositories for that
invocation. These logs are merged in timestamp order to construct a larger log
called a view.

• The front-end chooses a response consistent with the object state as defined by
the view.

• The front-end records the new invocation and response by appending an entry
to the view, sending the modified view to a final quorum of repositories for that
event. Each repository in the final quorum merges the view with its resident log.

The response may be returned to the client once all three steps have been completed

successfully. These steps must be executed atomically; the enclosing action must be

aborted if any step fails.

An instance of this replication method is said to be correct if it satisfies the following

properties:

• Every view constructed in Step One is a legal history.

• Any response legal for the view is legal for the object as a whole.

The first property ensures that it is possible to choose a response in Step Two, and the

second property ensures that the response chosen is indeed the "r ight" one. General

quorum consensus actually satisfies a stronger property: the result of merging the logs from

any collection of repositories is legal. As an incidental benefit, this property provides

catastrophe insurance: if it becomes impossible to locate a quorum for an operation

because some set of repositories has become permanently inaccessible, the remaining

repositories still define a legal state that corresponds to a subhistory of the entire (lost)

history. The object's surviving history can be rendered action-consistent if each action

18

records the same set of entries at each repository whose state it modifies.

Just as for files and queues, the correctness of the replication method is ensured by

constraining certain pairs of initial and final quorums to have non-empty intersections.

These constraints determine the level of availability that can be provided for each individual

event, as well as the trade-offs among the levels of availability of various events. Given a

type specif ication, we wish to derive constraints that are both correct and optimal. By

correct, we mean' that any quorum assignment consistent with the constraints yields a

correct implementation. By optimal, we mean that there exists no smaller set of constraints

that also yields only correct implementations. Note that both correctness and optimality are

defined with respect to a particular replication method. For example, Gifford's original

constraints on Read and Write quorums are correct and optimal for the method based on

version numbers, but they are not optimal for the method based on timestamps. In the next

section, we present a systematic way to derive correct and optimal constraints on quorum

intersection for general quorum consensus directly from an object 's type specif ication.

A naive implementation of this scheme has the practical disadvantage that logs and

messages grow as new entries accumulate. As before, this problem can be alleviated by the

application of type-specific log compaction techniques. In practice, a replicated object

should be designed in two steps: quorums are chosen as for straightforward log-based

scheme, and log compaction techniques are then applied to reduce storage consumption.

In Section 7 we show some examples of log compaction techniques for particular types.

6 . C o r r e c t n e s s A r g u m e n t s

This section presents correctness arguments for general quorum consensus. We first

describe our model for specifications, objects, and logs, and then present a model for our

replication method. We then define the notion of a serial dependency relation for a data

type, and show that a replicated object based on general quorum consensus is correct if

and only if the quorum intersection relation is a serial dependency relation for the object 's

type.

19

6 . 1 . S p e c i f i c a t i o n s

A specification for an object is a tuple <INV, RES, LEGAL>, where INV is a set of invocations,

RES is a set of responses, and LEGAL is a set of legal histories for that object. An event is a

pair [inv,res], where inv is an invocation and res is a response.

EVENT = INV X RES

For example, "Enq(x)" is an invocation, "OkQ" is a response, and M [Enq(x);Ok()]" is an

event of a Queue object.

A history is a finite sequence of events that corresponds to a computation. The histories

that correspond to valid computations are called legal histories. For example, the following

queue history:

Enq(x);Ok()
Deq();Ok(x)

is legal, but the history:

Enq(x);Ok()
[Deq();Empiy()]

is not. We assume that every prefix of a legal history is itself a legal history. One way to

characterize a set of legal histories is to use algebraic specifications [15]. In this paper, we

will rely on informally stated specifications.

The specifications employed in this paper model serial computations in which steps occur

one at a time. The absence of an explicit model of concurrency is justified by the

assumption that replication is performed on top of an atomic action system. Our

specifications model computations that have already been serialized by the underlying

action system. In [17], show that a high level of concurrency can be achieved if the

concurrency control method is integrated with the replication method.

6 .2 .Logs

Timestamps are chosen from a totally ordered domain TIMESTAMP. A log I is a map from

some finite set of t imestamps to events.

/: TIMESTAMP EVENT

The notation l{t) = ± means that the leg / has no event associated with the timestamp t. We

20

say that a log contains an event e if there exists a t imestamp t such that L(t) = e.

A log m is a sublog of L if m(t) = /(0 for every t imestamp for which m is defined. Two logs I

and m are coherent if they agree at every timestamp for which they are both defined. The

merge operation U is defined on pairs of coherent logs by:

(i u m) (f) = if /(f) * ± then/(f)
else m(f) .

Because the merge operation is defined only for coherent logs, it is commutative and

associative.

If / is a log and e an event, the notation / = m • e means that / can be expressed as the

merger of the log m and a log containing the single event e, with the additional property that

the latter's timestamp for e is greater than any t imestamp in m . Informally, we say that / is

constructed by appending e to m . The notation / = / 1 • L2 indicates that the log / can be

expressed as the merger of two logs / 1 and / 2 , where each timestamp for which L2 is defined

is greater than each timestamp for which / 1 is defined.

Let / be a log, and let 0 0 , . . . , f n} be the set of t imestamps for which / is defined, indexed in

ascending order. Let /-/(/) be the history whose /-th event is l{t.^ for 0 < / < n. The log / is

said to be legal if the history H(L) is a legal history.

6 .3 . Se r ia l D e p e n d e n c y

Let >- denote a relation between invocations and events. It is convenient to use the same

symbol to denote the relation between events defined by:

[inv\res] >- [inv']res*] <=> inv >- [inv'\res%].

Informally, a subiog m of / is said to be closed in / with respect to >- if whenever m contains

an event e of /, it also contains every prior event e5 of / such that e >- e'. More precisely:

De f i n i t i on 1 : The sublog m is closed in / if given timestamps t and f5 and events e
and e' such that t>t\e>- e\ L(t) = e, L{V) = e', and m{t) = e, then m(f ') = e \

We omit mention of >- and L when they are clear from context.

The correctness condit ion for general quorum consensus is based on the notion of a serial

dependency relation between invocations and events.

21

Definition 2: The relation >- is a serial dependency relation if for all invocations
inv, all responses res, all legal logs /, and all closed sublogs m of / containing all
events e of / such that inv >- e:

m*[inv,res] is legal => l*[inv\res] is legal.

Informally, this definition states that a correct response to an invocation can be chosen by

observing any closed legal sublog that contains all the events on which the invocation

depends.

Perhaps the simplest example of a serial dependency relation is provided by the File type, for

which Read invocations depend on Write events, but Write invocations need not depend on

any prior events. If / is a log consisting of Read and Write events, then a correct response to

Read{) can be chosen from any closed sublog of / that contains all Write events, and the

correct response to Write(x) (i.e. OkO) can be chosen from any closed sublog, including the

empty log. Similarly, Deq invocations depend on prior Enq events, and on prior Deq events

that did not signal Empty. Enq invocations do not depend on any prior events, because Enq,

like Write, has only one possible response.

For deterministic types, in which each invocation has a single correct response, the

implication in Equation 2 goes in both directions, but for non-deterministic types, the

implication goes in one direction only: there may be legal responses to inv in L that are not

evident from the sublog m. An example of such a non-deterministic type is given in the

SemiTable example in Section 7.4.

A given type may have several serial dependency relations. For example, the relation in

which every invocation depends on every event is a serial dependency relation, although not

an interesting one. More interesting serial dependency relations are the minimal relations,

relations with the property that no smaller relation is a serial dependency relation. We

remark that a type need not have a unique minimal serial dependency relation. An example

of a data type with several distinct minimal relations is given in the DoubleBuffer example in

Section 7.5.

We will see that serial dependency relations completely characterize the constraints on

quorum intersections, in the sense that a replicated object will satisfy its specification if and

22

only if its quorum intersection relation is a serial dependency relation.

6 .4 . Replication Schemes

A replication scheme is a tuple <S, REPOS, Initial, Final>, S is a specification and REPOS is a

set of repositories. We define the domain QUORUM to be the domain of sets of repositories:

QUORUM = 2 R E P 0 S

Initial is a map that defines the correspondence between each invocation and its set of initial

quorums:

Initial: INV -+ 2 Q U 0 R U M .

Final is a map that defines the correspondence between each event and its set of final

quorums:

Final: EVENT - + 2 Q U 0 R U M .

The quorum assignments define a quorum intersection relation >- between invocations and

events:

inv >- [inv'\res*] <=* each initial quorum for the invocation inv intersects each final
quorum for the event [inv'\res'\.

A replicated object is a non-deterministic automaton characterized by a replication scheme.

The object 's state is given by a collection of logs [ld\d € REPOS}. Each log is initially empty.

Given an invocation inv, the object undergoes a state transition and returns a response res

as follows:

• Choose an initial quorum I from lnitial(inv). Let v be the log constructed by
merging the Ld for all d in I. We refer to v as the view.

• Choose a timestamp greater than any chosen in a previous step, and a result res
such that v • [inv\res] is legal.

• Choose a final quorum F from Final{inv\res), and merge v • [tnv\res] with the log
at each d in F.

• Output the response res.

In summary, after an object whose state is {ld\d € REPOS} inputs an invocation inv, it

outputs a response res, and enters a new state given by {ld \ d € REPOS}, where:

ld = if of 6 F then Ld U y[inv\res]
else Ld

23

In the next two theorems, we establish certain relations between an object 's global log and

its internal state. Each property clearly holds in the initial state when all logs are empty; we

show that the property is preserved by state transitions.

Theorem 6 : The resuit of merging the logs from any set of repositories is a
closed sublog of the global log.

Proof: It suffices to show that the log residing at any single repository is closed;
the more general result follows from Lemma 3. Let the global log be /, and let the
states of the repositories be given by {Ld | d € R E P O S } . NOW assume that the
object undergoes a transition from / to /' = Z*e, and let the new states of the
repositories be given by {L^ j d £ REPOS}. We show that if the Ld are closed in /,

A computation involving a replicated object can be characterized by a global log containing

each event that has occurred since the object 's creation. Note that an object's global log is

not necessarily the log that would be constructed by merging the logs at all repositories at

the end of the computation, because events having empty final quorums (such as Read

events) are contained in the global log but not in the log at any repository.

6 .5 . Correctness Results

The desired correctness property for general quorum consensus states that every global log

generated by a replicated object is legal. We will show that general quorum consensus is

correct if and only if the quorum intersection relation is a serial dependency relation. We

argue by induction, demonstrating the invariance of certain properties relating an object 's

global log to the logs kept at the repositories. We begin with a few simple lemmas.

Lemma 3 : The result of merging closed sublogs is a closed sublog.

Proof: Let m and n be closed sublogs of /, let (m U n)(t) = e and /(/') = e \ such
that t > V and e >- e'. Without loss of generality, assume that m(t) = e. Because
m is closed in /, m{V) = e', and therefore (m U ri)(V) = e'.

Lemma 4 : If m is a closed sublog of /, then m is a closed sublog of /•e.

Proof: Left to the reader.

Lemma 5 : If / is a log, and v is the view constructed for an event e (Steps 1 and 2
above), then v contains all events e' of / such that e >>- e \ ~

Proof: The view constructed for e is the result of merging all logs from an initial
quorum for e. If e >- e \ then there exists at least one repository that lies in both
the initial quorum for e and the final quorum for e \ so e' must appear in the view
f o re .

24

then the I ' are closed in L\
a

Let d be a repository. If d is not a member of the final quorum for e, then Ld = /d,
so the result follows immediately from Lemma 4. Otherwise,

ld'=ldVve

where v is the view used to compute e. The view v is the result of merging logs
from repositories, each of which is closed in / (induction hypothesis). It follows
that v is closed in / (Lemma 3) and in V (Lemma 4). The log we is closed in V
because v contains every event on which e depends (Lemma 5). It fol lows that
is closed because it is the result of merging the closed logs u*e and Ld (Lemma 3).

It follows that the result of merging logs from an arbitrary set of repositories is closed, and

thus every view constructed for an invocation is closed.

Theorem 7 : If the quorum intersection relation is a serial dependency relation,
then the result of merging logs from any collection of repositories is legal.

Proof: Let S be an arbitrary set of repositories, and let Ls be the result of merging
the logs from the repositories in S. let l§* be the result of merging the logs from S
following a transition from / to = l*e. We show that if Ls is legal, so is / s ' .

There are two cases to consider: either S intersects the final quorum for the new
event e, or it does not. If it does not, then L$ = L$\ and the result is immediate.
Otherwise, the new event and its view have been merged with the log of one or
more repositories in S, yielding:

where v is the view used to compute e. Both v and {u U / s) are closed by
Theorem 6 and legal by the induction hypothesis. Because v is closed in Lt it is
also closed in the sublog {Ls U v) of /, and it contains every event on which e
depends (Lemma 5). By Definition 2, the legality of v*e implies the legality of
(/ s U v)*e. But (/ s U v)*e is the same as l s U we = L$\

The previous theorem has two corollaries of interest. The first is a well-formedness

property: every view corresponds to a legal log. The second is the catastrophe insurance

property: the view constructed by merging the logs from any collection of repositories is a

legal sublog of the object 's global log.

We are now ready to address the basic correctness property for general quorum consensus.

Theorem 8: If the quorum intersection relation is a serial dependency relation,
then every transition permitted by quorum consensus carries a legal global log to

25

a legal global log.

Proof: When an object undergoes a transition from a legal log / to /*e, the view v
is closed in / (Theorem 6), legal (Theorem 7), and contains every event of / on

. which e depends (Lemma 5). We know that ve is legal by construct ion; thus from
Definition 2 we deduce that L*e is legal.

We have just shown that general quorum consensus is correct if the quorum intersection

relation is a serial dependency relation. We now show the converse: any quorum

intersection relation that is not a serial dependency relation permits quorum assignments

that do not guarantee correctness.

Theorem 9: If the quorum intersection relation is not a serial dependency
relation, then there exist quorum assignments that generate illegal global logs.

Proof: We assume that the quorum intersection relation does not satisfy
Definition 2, and we construct a scenario in which an illegal global log is
generated. If the quorum intersection relation is not a serial dependency relation,
then there exists an event e = [inv\res], a log /, and a closed sublog m containing
all events whose final quorums intersect the initial quorums for inv, with the
property that:

m*e is legal but /*e is illegal.

To prove the theorem, it suffices to assign quorums in such a way that invoking
inv when the global log is / causes m to be constructed as the view, resulting in
the iliegal global log /*e.

The logs are replicated at two repositories: R1 and R2. Each event in m chooses
an initial quorum of R1 and a final quorum of both R1 and R2. Each event in / but
not in m chooses an initial quorum of R1 and R2, and a final quorum of R2. As a
result of these choices, the view used to generate each event in m contains all
and only the prior events in m, and the view used to generate every other event
contains all prior events.

We claim that these quorum choices must satisfy the object's quorum intersection
relation. All initial and final quorums intersect except the final quorums for events
not in m and the initial quorums for events in m. If any of these quorums were
required to intersect, then m would not be closed, contradict ing the assumption.
When a front-end assembles a view for inv, it reads the log from R1, which is
exactly the sublog m . R1 is an initial quorum for inv because it intersects the final
quorums for every event in m. The front-end then chooses the response res,
which by assumption is legal f o r m , but illegal for / .

Theorem 9 is an optimality result. It shows that a minimal set of constraints on quorum

26

intersection corresponds exactly to a minimal serial dependency relation for the type.

7 . E x a m p l e s

This section presents some examples of replicated objects. Our derivation of serial

dependency relations in these examples is informal. A formal derivation would require

introducing a formal specif ication method with proof rules strong enough to show the

properties discussed in the previous section, a task beyond the scope of this paper. These

examples also illustrate some type-specific optimizations for reducing the sizes of logs and

messages.

7 . 1 . Files

Our previous discussions have employed a somewhat idealized model for files, in which the

Write operation completely overwrites the contents of the file. A more realistic model would

permit partial updates, in which the Write operation modifies only part of the file. One

possibility is to view a file as an extensible array of pages. The file is initially empty, and

pages may be appended to the end of the file. Individual pages may then be read or writ ten.

The PagedFile type provides the fol lowing operations:

WritePage = operation(int, string) signals (bounds)

overwrites the page with the given index, and

ReadPage = operation(int) returns(string) signals (bounds)

returns the current value of the page with a given index. Both ReadPage and WritePage

signal an exception if the index lies beyond the end of the file. The Append operation allows

new pages to be added to the end of the file:

Append = operation(string)

and the Size operation returns the number of pages currently in the file.

Size = operationQ returns (int)

The view for a ReadPage invocation must include the previous Append events, to detect

whether the page exists, as well as all WritePage events for that page, to determine the

page's current value. Consequently, a ReadPage invocation depends on Append events

and on WritePage events for that same page. The view for a WritePage invocation need

include only previous Append events (to determine whether the index is in bounds).

27

Consequently, a WritePage invocation depends only on Append events. Size invocations

depend only on Append events because Append is the only operation that affects the size of

the table.

Figure 7-1 illustrates some of the required quorum intersections for paged files (to avoid

cluttering the diagram, we have omitted mention of events that terminate with exceptions).

The vertices marked WritePage{i*) and ReadPage{i) respectively denote the class of

WritePage and ReadPage events for the page with index /. Figure 7-2 shows the range of

quorum assignments for a paged file replicated among five repositories based on the

assumption that the quorums for ReadPage and WritePage do not depend on the page

affected.

Instead of keeping logs at repositories, an efficient implementation of the PagedFile type

might keep a timestamped version of each page. ReadPage invocations would request only

the most recent version of the page being read.

Instead of reading and writing at the page level, one might allow arbitrary sections of a file to

be read or writ ten. Although such a file could be represented as a log of updates, just as the

queue was represented by a log of Enq and Deq events, it might be more efficient to discard

entries for superseded updates, effectively associating timestamps with variably-sized

regions of the file.

7 .2 . Queues

A log representing a queue can be compacted by taking advantage of the observation that

an item must have been dequeued if an item enqueued with an earlier timestamp has been

dequeued. A repository that is part of a replicated queue implementation need retain only

the following information:

© The Enq t imestamp of the most recently dequeued item. This timestamp is
called the repository's horizon t imestamp.

• The Enq entries whose timestamps are later than the horizon timestamp.

Repositories do not store Deq entries or Enq entries for items known to be dequeued.

An item is dequeued as follows. The front-end reads the horizon timestamps and the Enq

28

Figure 7 - 1 : Quorum Intersection Graph for Paged Files

Append — • WritePageO,*)

Figure 7 -2 : Quorum Assignments for Five Identical Repositories

Append (0,5) (0,5) (0,5) (0,5) (0,5) (0,4)

Size 0,0) (1,0) 0,0) (1,0) (1,0) (2,0)

ReadPage (1.0) (2,0) (3,0) (4,0) (5,0) (2,0)

WritePage (1,5) (1,4) (1,3) (1,2) (1,1) (2,4)

Append (0,4) (0,4) (0,3) (0,2) (0,1)

Size (2,0) (2,0) (3,0) (4,0) (5,0)

ReadPage (3,0) (4,0) (3,0) (4,0) (5,0)

WritePage (2,3) (2,2) (3,3) (4,2) (5,1)

entries from an initial quorum. The Enq entries are merged in t imestamp order, and all

entries earlier than the latest observed horizon time are discarded. The oldest remaining

Enq entry identifies the item to be dequeued, and thus the new horizon time. The operation

is complete when the front-end installs the new horizon time at a final Deq quorum.

To illustrate the technique, we re-examine the three-site replicated queue example

described above in Section 5.2. As before, we start with a queue where x has been

enqueued at two sites.

29

R l R2 R3
horizon: 0 horizon: 0 horizon: 0
1:00 Enq(x);Ok() 1:0C Enq(x);Ok()

When x is dequeued, the horizon time for R2 and R3 is set to 1:00, and R2 discards the Enq

entry fo rx .

El B2 R3
horizon: 0 horizon: 1:00 horizon: 1:00
1:00Enq(x);Ok()

Item y is enqueued at R1 and R2, and z is enqueued at R1 and R3.

El B2 B3
horizon: 0 horizon: 1:00 horizon: 1:00
1:00Enq(x);Ok()
1:15Enq(y);Ok() 1:15 Enq(y);Ok()

1:30 Enq(z);Ok() 1:30 Enq(z);Ok()

When y is dequeued, the horizon time is set forward to 1:15 at R1 and R3, and R1 discards

the Enq entries for x and y.

El E 2 R3
horizon: 1:15 horizon: 1:00 horizon: 1:15

1:15Enq(y);Ok()

1:30 Enq(z);Ok() 1:30 Enq(z);Ok()

As a complementary compaction technique, repositories can periodically broadcast their

horizon times. A repository that observes a later horizon time can advance its own,

discarding all Enq entries with earlier timestamps. Note that propagating Enq entries in the

same way does not aid log compact ion, although it might provide better catastrophe

insurance.

Message sizes for Deq can be further reduced if the first round of messages is replaced by

the following two-round protocol, which is similar to a protocol proposed in [6] for replicated

directories, in the first round, the front-end reads the horizon times from an initial quorum.

In the second round, the front-end sends the latest horizon time back to the initial quorum,

and each site responds with its oldest Enq entry whose timestamp is later than the horizon

time. The earliest of these entries is the item to be dequeued. Although this protocol

requires an extra high-level message, each message has a fixed size, so fewer packets will

30

be transmitted at the lower level.

7 .3 . Tables

The Table type stores pairs of values, where one value (the key) is used to retrieve the other

(the item). The operation:

Insert = Operation(k: Key, i: Item) signals (Present)

inserts a new key/ i tem pair in the table. An exception is signaled if a pair with the given key

is already present in the table. The operation:

Delete = Operation(k: Key) signals (Absent)

deletes the pair with the given key from the table. An exception is signaled if a pair with the

given key is not present in the table. The operation:

Change = Operation(k: Key, i: Item) signals (Absent)

alters the item bound to the given key. An exception is signaled if a pair with the given key is

not present in the table. The operation:

Lookup = Operation(k: Key) returns(item) signals (Absent)

returns the item bound to the given key. An exception is signaled if a pair with the given key

is not present in the table. The operation:

Size = OperationQ returns(int)

returns the number of key-item pairs currently in the table.

Because Insert signals if the key is present in the table, Insert invocations depend on prior

Insert and Delete events. Delete invocations also depend on prior Insert events and prior

Delete events. Because Change signals if the key is absent from the table, Change

invocations depend on prior Insert events and prior Delete events, but not on prior Change

events. Lookup depends on prior Insert, Delete, and Change events for its result, and Size

depends only on prior Insert and Delete events, because Change and Lookup do not alter

the number of keys in the table.

The quorum sets for Insert, Delete, Change, and Lortrjp could depend on the key. For

example, operation executions using East Coast employees as keys could have different

quorums than operation executions involving West Coast employees. Of course, the front-

31

ends must be able to tell to which class a key belongs.

Part of the quorum intersection graph for the Table type is shown in Figure 7-3. (To avoid

cluttering the diagram, events that terminate with exceptions are not shown.) The vertex

marked lnsert(k,*)/Delete{k) represents the class of Insert and Delete events for the key

value k. The edge from lnsert{k*)/Delete{k) to Lookup{k) means that Lookup invocations

depend on prior Insert and Delete events for the same key value. The range of quorum

assignments for five identical repositories is shown in Figure 7-4 based on the assumption

that quorums are independent of key values.

Because operations involving distinct keys do not affect one another, the relative ordering of

their entries is unimportant. To avoid an inefficient linear search, the log representing a

table at a repository can itself be represented as a table mapping each key to the sequence

of entries involving that key. The size of the table can be further reduced by the observation

that only the most recent entry for a particular key can affect future events; thus it suffices to

bind each key to its most recent (committed) entry. Any key that does not appear explicitly

in the repository's table is implicitly bound to a delete entry with a timestamp of zero, which

is older than any timestamp generated by a normal action.

Message sizes can be reduced if a front-end executing an operation requests only the entry

for a particular key. If each front-end maintains a cache, it can include the timestamp for the

key's cached entry with each invocation. Each repository in the initial quorum either returns

an entry with a later timestamp, or it returns a confirmation that the cached entry is up to

date. If the timestamp sent by the front-end is later than the repository's timestamp, then the

repository's entry is out of date and may be discarded. Obsolete entries can also be

detected if background tasks at repositories periodically broadcast the timestamp

associated with a particular key. Once a repository has discarded an entry for a key, it

responds to later invocations with a Delete entry with a zero timestamp.

A possible disadvantage of the replicated table representation is that entries for Delete

events may tend to accumulate. An up-to-date Delete entry cannot be discarded as long as

there is a possibility that another repository has an obsolete Insert entry for that key. If a

repository unilaterally discards an entry for a deleted key, a later Lookup invocation for that

32

Figure 7 -3 : Quorum Intersection Graph for Tables

Figure 7-4: Quorum Assignments for Five Identical Repositories

Insert/Delete '(1,5) .(1,5) (1,5) 0.5) (1,5)

Size (1,0) (1,0) (1,0) (1,0) (1,0)

Lookup (1,0) (2,0) (3,0) (4,0) (5,0)

Change (1,5) (1,4) (1,3) (1.2) (1,1)

Insert/Delete (2,4) (2,4) (2,4) (3,3)

Size (2,0) (2,0) (2,0) (3,0)

Lookup (2,0) (3,0) (4,0) (3,0)

Change (2,4) (2,3) (2,2) (3,3)

key may observe an earlier insert entry without realizing that it is out of date. Consequently,

any compaction technique that can discard up-to-date Delete entries must be distributed,

because it must preserve an invariant affecting the state of all repositories. One approach to

this problem is a technique proposed by Bloch, Daniels, and Spector [8, 6] in which the table

representation is rendered more compact by ordering the entries and merging adjacent

entries for deleted bindings. In this scheme, Deletion requires two exchanges of fixed-size

messages.

33

A complementary approach is to use long-running low-priority background actions to

remove older entries from all repositories. A background task can be used to detect and

discard obsolete Insert entries by propagating each key's current timestamp. If the

background task also keeps track of the repositories it has notif ied, it can detect when all

obsolete Insert entries for a deleted key have been discarded, and it can then make a

second pass discarding the up-to-date Delete entries.

7.4 . A Non-Determinist ic Table

The specification for the Table type implies that the availability of the Lookup{k) and

lnsert{kj) events are inversely related: one event can be made more likely to succeed only

at the expense of the other. For example, if a key/ i tem pair is replicated among n

repositories, and if the initial quorum for Lookup consists of a single node, then the final

quorum for Insert must consist of all n repositories. In proposals for replicated tables found

in the Grapevine name server [5], in the Clearinghouse name server [24], and in a more

recent proposal by Fischer and Michael [11], such a trade-off is considered to be

unacceptable. Instead, a key/ i tem pair is added or deleted at a single repository, and the

update is later propagated to the other repositories. These approaches have the advantage

that updates complete more quickly and more likely to succeed, but they have the

disadvantage that the behavior of the server becomes considerably more complex because

clients may observe transient " inconsistencies" in the table, and concurrent confl ict ing

updates must somehow be resolved.

There are two ways to view these "transient inconsistencies." One view is that atomicity has

been sacrif iced for increased availability. The other view holds that the resulting data type

continues to be atomic, but that it can no longer be considered a deterministic map from

keys to items. Although the first view seems to reflect the attitude of the designers of the

replication methods under discussion, we prefer the second view for its economy of

mechanism: we may still use serializability to characterize the properties upon which the

programmer may rely, and we may use general quorum consensus to implement a replicated

non-deterministic table having essentially the same proper t ies

The SemiTable is a map from keys to multisets of items. When the table is created, it

contains (conceptually, at least) a binding between every key and a multiset containing only

34

the distinguished item Absent. An invocation of Insert(kJ) adds the item / to the multiset

associated with k, and an invocation of Lookup(k) will return some item previously bound to

/c, or signal Absent. There is an additional probabilistic guarantee that any item returned is

"probably' 1 the most recently inserted one.

The minimal serial dependency relation induced by the SemiTable specification is

degenerate: no event depends on any other event, and thus no quorums are required to

intersect. The view constructed for Lookup{k) will include the most recent Insert or Change

event for that key if the initial quorum for Lookup happens to intersect the final quorum for

the Insert or Change event. The probability that Lookup will observe an item is thus the

probability that the quorums will intersect. That probability is unity for the Table type, and

would be less for a non-deterministic implementation. If both Insert and Lookup choose

quorums of single repositories, then the probability of intersection may be small. To cause

the probability of intersection to rise with t ime, the log entry for Insert can be propagated by

a background activity, effectively causing the final quorum for Insert to grow. In a

satisfactory implementation of SemiTable, a Lookup invocation would choose the most

recently inserted item from the view, and insertions would be propagated quickly enough so

that the view is sufficiently likely to contain the most recently inserted item.

7 . 5 . The D o u b l e B u f f e r T y p e

Files, Queues, Tables, and SemiTables each have a unique minimal serial dependency

relation. We now consider a data type that has two distinct minimal serial dependency

relations, neither of which is a subset of the other. An object of type DoubleBuffer consists

of a producer buffer and a consumer buffer, each capable of holding a single item. The

object is initialized with an item in each buffer. The DoubleBuffer type provides three

operations:

Produce = operation(item)

copies an item into the producer buffer,

Transfer = operation ()

copies the item currently in the producer buffer to the consumer buffer, and

Consume = operation() returns (item)

returns a copy of the item currently in the consumer buffer.

35

The DoubleBuffer type supports two distinct serial dependency relations. The alternatives

arise because Produce events affect later Consume events only if there has been an

intermediate Transfer. Consequently, Produce entries can appear in the view constructed

for a Consume invocation either because the final and initial quorums of Produce and

Consume intersect directly, or because they intersect indirectly through Transfer. Quorums

for this type may be chosen with two degrees of freedom: one first chooses a serial

dependency relation, and then one chooses particular quorums subject to the constraints

imposed by the serial dependency relation.

In the first relation, illustrated in Figure 7-5, Consume invocations depend on both Transfer

and Produce events : an organization analogous to a mail program in which a request to

deliver a message simply marks the message for later transmission, and data is not actually

moved until it is requested by the recipient.

In the second relation, illustrated in Figure 7-7, Consume invocations depend on Transfer

events, and Transfer invocations depend on Produce events, an organization analogous to a

mail program in which a request to deliver a message results in immediate transmission.

It is interesting to note that neither serial dependency relation is strictly better than the other

with respect to quorum size. For example, comparing the right-hand columns of Figures

7-6 and 7-8, we see that the first relation has a minimal quorum assignment in which

Consume, Transfer, and Produce quorums respectively consist of any five, one, and one

repositories, while the same quorums for the second relation consist of any five, five, and

one repositories. In this instance, the first relation is clearly preferable. Comparing the

left-hand columns, however, we see that the first relation has a minimal quorum assignment

in which Consume, Transfer, and Produce quorums respectively consist of any one, five,

and five repositories, while the same quorums for the second relation consist of any one,

five, and one repositories. In this instance, the second relation is clearly preferable.

The DoubleBuffer type illustrates why it does not suffice simply to write out the new entry to

a final quorum at the conclusion of each operation execut ion. Consider the relation in

which Consume depends on Transfer, and Transfer depends on Produce, but Consume

does not depend directly on Produce. Any view constructed for Transfer contains the most

36

Figure 7 -5 : First Serial Dependency Relation for DoubleBuffer

Produce Consume

Transfer

Figure 7 -6 : Quorum Assignments for Five Identical Repositories

Consume
Transfer
Produce

(5,0)
(0,1)
(0,1)

(4,0)
(0,2)
(0,2)

(3,0)
(0,3)
(0,3)

(2,0)
(0,4)
(0,4)

(1,0)
(0,5)
(0,5)

F igu re 7 - 7 : Second Serial Dependency Relation for DoubleBuffer

Produce Consume

Transfer-

Figure 7 -8 : Quorum Assignments for Five Identical Repositories

Consume
Transfer
Produce

(5,0)

(5,1)

(0,1)

(4,0)
(4,2)
(0,2)

(3,0)
(3,3)
(0,3)

(2,0)
(4,4)
(0,2)

(1,0)
(5,5)
(0,1)

37

recent Produce entry, and any view constructed for Consume contains the most recent

Transfer. Because a front-end executing a Transfer records both the Transfer entry and its

view at a final quorum, the view for a later Consume invocation will also include the Produce

entry needed to ascertain the item to be returned. If our replication method were to write out

only the new Consume entry, then Consume would be forced to depend directly on Produce,

unnecessarily restricting the range of quorum assignments.

8 . R e c o n f i g u r a t i o n

In this section we extend general quorum consensus to support on-the-fly reconfiguration:

changing the quorum assignment for an existing object. Reconfiguration may be used to

change the trade-offs among the levels of availability provided by an object 's operations.

For example, a census data base might be configured to facilitate updates while the census

is in progress, and reconfigured to facilitate queries once the census is complete.

Reconfiguration may also be used to move an object from one collection of sites to another,

perhaps to replace malfunctioning or obsolescent hardware. A benefit of the

reconfiguration method described here is that reconfiguration incurs a negligible cost when

it is not used. Reconfiguration results in a temporary period of decreased availability and

increased message traffic as front-ends learn of the new configuration.

This reconfiguration scheme can be viewed as a generalization of a scheme proposed by

Gifford [12] . Our scheme gains flexibility both by taking advantage of type information, and

by incorporating a novel replicated reference counting scheme that facilitates the movement

of objects from one set of sites to another.

A reconfigurable object is implemented by two component objects, called the resource state

and the configuration state. The resource state contains the information of interest to

clients, while the configuration state contains the quorum information for the resource state.

For example, a reconfigurable queue's resource state identifies the items in the queue, while

its configuration state identifies the quorums for the Enq and Deq operations. Both the

configuration and resource states are themselves replicated. The configuration state

provides GetQuorum and SetQuorum operations.

An object is reconfigured in the fol lowing steps:

38

• Construct a view of the old resource state by merging the logs from a set of
repositories that includes an old initial quorum for each operation.

• Initialize the new resource state by writ ing out the view at a set of repositories
that constitutes a new final quorum for each operation.

• Record the new resource state quorums at a SetQuorum quorum for the new
configuration state.

• Mark the old configuration state as obsolete and record the new configuration
state's quorums at a SetQuorum quorum for the old configuration state.

A quorum for reconfiguring the object must include a quorum for each of these steps.

Each front-end keeps a local cache containing the quorum information for both the

configuration state and the resource state. An operation is normally executed in two logical

steps, although we v/ill see that only one exchange of physical messages is required.

• Verify that the cached configuration state is current.

• Operate directly on the resource state using the cached quorums.

If the front-end discovers that its cached configuration state is out of date, it reads the

quorum information for the new configuration state, reads the new configuration state into

its cache, and starts over. If several reconfigurations have taken place, a front-end may

have to follow a chain of obsolete configuration states before locating the current resource

state.

The'number of messages needed for this protocol can be kept to a minimum by a sensible

choice of quorums. Quorums should be assigned so that each quorum for each resource

state operation is also a GetGuorum quorum for the associated configuration state. Each

front-end includes a timestamp for its cached configuration state in every message directed

to a repository. When a repository receives a message containing an obsolete cache

timestamp. it responds with an exception identifying the newer configuration state.

A shortcoming of the scheme described so far is that there is no mechanism for safely

discarding obsolete configuration states. For example, if a replicated object is moved from

one set of repositories to another, the configuration state information at the old set of

repositories cannot be discarded as long as there is a possibility that some front-end's

39

cache is still out of date. If the old configuration states are discarded before that front-end's

cache is brought up to date, then that front-end will be unable to locate the new resource

state. To remedy this problem, we propose a reference counting scheme that enables the

object 's maintainers to detect when all front-ends have updated their configuration states.

This scheme has the desirable property that it does not affect the availability of the

replicated object, although it does require extra messages immediately following a

reconfiguration.

The state of an object of type RefCount is given by an integer value, initially zero. The Inc

operation increments the value by one:

Inc = operation()

and the Dec operation decrements the value by one:

Dec = operation().

The Value operation returns the object's current value:

Value = operation() returns(int)

- The quorum intersection graph for the RefCount type is shown in Figure 8 -1 . together with

the range of quorum assignments for five identical repositories. Value invocations depend

on both Inc and Dec events, but Inc and Dec invocations do not depend on any prior events

because neither returns any information.

Each object 's configuration state is modified to include a RefCount component. When a

front-end first records the configuration state in its cache, it records Inc entries at a quorum

of the configuration state's repositories. When a front-end observes that the configuration

state has been rendered obsolete, it records Dec entries at a quorum of repositories. Once

a configuration state has been rendered obsolete, the object 's maintainers may merge the

Inc and Dec entries from a quorum for the Value operation to ascertain the number of front-

ends whose caches are still out of date. A configuration state may be discarded when its

reference count and the reference counts of all earlier configuration states have reached

zero. (Because there are no cycles of reference between configuration states, an unneeded

configuration state will always have a reference count of zero.)

Reference counting need not reduce the object's availability if quorums are assigned so that

40

Figure 8 - 2 : Quorum Assignments for Five Identical Repositories

Inc (0,1) (0,2) (0,3) (0,4) (0,5)

Dec (0,1) (0,2) (0,3) (0,4) (0,5)

Value (5,0) (4,0) (3,0) - (2,0) (1,0)

every quorum for GetQuorum is also a quorum for Inc and Dec. A front-end must locate an

initial GetQuorum quorum for a configuration state to discover that it has become obsolete.

That same quorum can be used to decrement the old configuration state's reference

counter, although a second round of messages is necessary. Before the front-end can use

the new configuration state, it must check its currency by locating an initial GetQuorum

quorum. That same quorum can be used to increment the new configuration state's

reference counter.

We close this section with an example illustrating how a replicated queue might be

reconfigured. Initially, the queue is replicated among R1 , R2, and R3, having respective Enq

and Deq quorums of (0,2) and (2,2). As described above, the resource state quorums

determine the configuration state quorums: GetQuorum and Value have quorums of (2,0),

while SetQuorum, Inc,and Dec each have quorums of (0,2). After reconfiguration, the queue

is replicated among R 1 \ R2', and R3', having Enq quorums of (0,1) and Deq quorums of

(3,1). GetQuorum and SetQuorum must have respective quorums of (1,0) and (0,3), while

Figure 8 - 1 : Quorum Intersection Graph for Reference Counter

41

Inc, Dec, and Value must have respective quorums of (0,1), (0,1), and (3,0).

The queue's original configuration state is schematically represented as follows. (The

resource state is not shown.)

El B2 E 2
1:00 Current 1:00 Current 1:00 Current

{R1.R2.R3} {R1,R2,R3}
Enq = (0,2) Enq = (0,2)
Deq = (2,2) Deq = (2,2)

1:15lnc();Ok() 1:15 lnc();Ok()

1:30lnc();Ok() 1:30 lnc();Ok()
1:45 lnc();Ok() 1:45 lnc();Ok()

The first line indicates that each configuration state is marked as current with a timestamp of

1:00. The next three lines represent the quorum information for the resource state. The

resource state's quorum information is recorded at only two repositories, since these

constitute a SetQuorum quorum. The final three lines record the status of the configuration

state's reference count. In this example, the counter has been incremented by three front-

ends. No single repository has a record of all the increments that have occurred. Each

front-end includes the cache timestamp 7:00 with every message it sends to a repository.

The queue is reconfigured as follows.

• Merge the logs from any two repositories in the old resource state.

• Write out the resulting view to a!! three repositories in the new resource state.

• Record the new resource state quorums at all three repositories in the new
configuration state.

* Mark the old configuration state as obsolete and record the new configuration
state's quorums at any two repositories from the old configuration state.

Following reconfiguration, the old and new configuration states might appear as follows.

42

El
1:00 Current

R2
2:00 Obsolete

B3
2:00 Obsolete

{R1,R2,R3}
Enq = (0,2)
Deq = (2,2)

{R1',R2',R3'}
GetQ = (1,0)
SetQ = (0,3)

{R1',R2',R3'}
GetQ = (1,0)
SetQ = (0,3)

1:15lnc();Ok()

1:45lnc();Ok()

1:15lnc();Ok()
1:30lnc();Ok() 1:30lnc();Ok()

1:45 lnc();Ok()

El'
2:15 Current

B2'
2:15 Current 2:15 Current

{R1',R2',R3'}
Enq = (0,3)
Deq = (3,1)

{R1 ,,R2',R3*}
Enq = (0,3)
Deq = (3,1)

{RV.R^.RS'}
Enq = (0,3)
Deq = (3,1)

Now suppose a front-end attempts to enqueue or dequeue an item using the quorums in its

out-of-date cache. The front-end's message includes a cache timestamp, and any quorum it

chooses must include at least one repository that will detect that the timestamp is obsolete.

That repository will return an exception identifying the new configuration state. The front-

end decrements the old configuration state's reference count at two repositories, and uses a

single exchange of messages to read the new configuration state into its cache and to

increment the new configuration state's reference count.

43

HI R2 E2
1:00 Current 2:00 Obsolete 2:00 Obsolete

{R1.R2.R3} {R1',R2 ,,R3'} {R1',R2',R3'}
Enq = (0,2) GetQ = (1,0) GetQ = (1,0)
Deq = (2,2) SetQ = (0,3) SetQ = (0,3)

1:15lnc();Ok() 1:15lnc();Ok()
1:30lnc();Ok() 1:30lnc();Ok()

1:45lnc();Ok() 1:45lnc();Ok()
2:30 Dec();Ok() 2:30 Dec();Ok()

El' R2' R3'
2:15 Current 2:15 Current 2:15 Current

{R1 , ,R2',R3 , } {R1',R2 ,,R3'} {R1',R2 ,,R3'}
Enq = (0,3) Enq = (0,3) Enq = (0,3)
Deq = (3,1) Deq = (3,1) Deq = (3,1)

2:45 lnc();Ok()

The system maintainer can determine that it is not yet safe to discard the old configuration

state because its reference count indicates that there are still two front-ends that have not

updated their caches.

In summary, the reconfiguration method described here incurs a non-negligible cost only

when reconfiguration actually takes place. Under normal circumstances, availability is

unaffected because each quorum for operating on the resource state alone is a quorum for

the operation as a whole. No additional messages are needed because a front-end can use

the same physical messages for two logically distinct tasks: to establish the currency of its

cached configuration state, and to apply the operation to the resource state.

Reconfiguration does impose a one-time penalty on a front-end whose cache is out of date:

the next time it attempts to execute an operation it must conduct an additional exchange of

messages and locate an additional quorum, and an extra round of messages is needed to

update the configuration state's reference counter.

44

9. Discussion
This paper has introduced general quorum consensus: a new method for representing and

managing replicated data. The model of computation employed admits two kinds of failures:

communication interruptions and site crashes. Both categories of failures can be detected,

but not necessarily distinguished from one another. Underlying support for atomic actions

is needed to preserve invariant properties of the replicated data.

General quorum consensus is type-specific. Associated with each operation of the data

type is a set of quorums, which are collections of sites whose logs must be observed or

updated to execute the operation. An analysis of the data type's algebraic structure is used

to derive a set of constraints on quorum intersections. These constraints are correct and

optimal; any quorum assignment that satisfies these constraints yields a correct

implementation, and it is shown that no weaker set of constraints guarantees correctness.

Such constraints can be established for arbitrary types, including types having non-

deterministic operations.

Constraints on quorum intersection define the range of realizable availability properties. For

example, if quorums for two operations are required to intersect, then the operations' levels

of availability must be inversely related. To characterize these constraints, we introduce the

notion of a serial dependency relation for a data type. The problem of characterizing a data

type's range of realizable availability properties is transformed into the algebraic problem of

identifying its set of minimal serial dependency relations.

Our method employs two technical innovations: the use of t imestamps in place of version

numbers, and the use of logs in place of versions. Gifford's original scheme uses quorum

intersection for two distinct purposes: to compute responses to invocations {Read/Write

intersection), and to order events (Write/Write intersection). The introduction of timestamps

eliminates the need to use quorum intersection to order events, permitting operations that

do not commute to be given non-intersecting quorums. The use of logs in place of versions

reduces the constraints on quorum assignment for operations that alter the object's state. A

difficulty with versions is that any operation that modifies the object 's state must locate and

modify a current version, because versions that have diverged cannot be reconciled. By

contrast, divergent logs can be reconciled simply by merging their entries in timestamp

45

order.

As a practical matter, a log compaction mechanism is needed to prevent log and message

sizes from growing without bound. Effective log compaction techniques are type-specific;

as illustrated by the examples in Section 7, there is typically a range of techniques available

for any given type, ranging from obvious to subtle, and from cheap to expensive. As an

aside, we remark that an important step in the development of general quorum consensus

was the realization that quorum assignment and storage compaction should be treated as

distinct issues.

General quorum consensus supports on-the-fly reconfiguration. A novel replicated

reference counting scheme is introduced to facilitate moving an object from one set of sites

to another. Reconfiguration incurs a cost in reduced availability and increased message

traffic only when it actually occurs.

The major contribution of this paper is the presentation of a systematic and general

technique for exploiting type-specific properties of data to achieve more effective

replication. The traditional approach to replication has been to treat the data as an

uninterpreted file whose contents may only be read or written. While this approach is

capable of representing data of arbitrary type, our type-specific method can realize a wider

range of availability properties and more flexible reconfiguration.

A c k n o w l e d g m e n t s

I would like to thank Joshua Bloch and Dean Daniels for their careful reading of earlier drafts
of this paper.

46

References

Alsberg, P. A., and Day, J. D.
A principle for resilient sharing of distributed resources.

In Proceedings, 2nd Annual Conference on Software Engineering. October, 1976.

Bernstein, P. A., and Goodman, N.

A survey of techniques for synchronization and recovery in decentralized computer

systems.

ACM Computing Surveys 13(2):185-222, June, 1981.

Bernstein, P. A., and Goodman, N.
The failure and recovery problem for replicated databases.
In Proceedings, 2nd Annual Symposium on Principles of Distributed Computing.

August, 1983.
Birman, K. P., Josepth, T. A., Raeuchle, T., and Abbadi A. E.
Implementing fault-tolerant distributed objects.

In Proc. 4th Symposium on Reliability in Distributed Software and Database Systems.

October, 1984.
Birrel, A. D., Levin, R., Needham, R., and Schroeder, M.
Grapevine: an Exercise in Distributed Computing.
Communications of the ACM 25(14):260-274, Apri l , 1982.
Bloch, J. J., Daniels, D. S., and Spector, A. Z.
Weighted voting for directories: a comprehensive study.
Technical Report CMU-CS-84-114, Carnegie-Mellon University, Apri l , 1984.
Chan, A., Fox, S., Lin, W. T., Nori, A., and Ries, D.
The implementation of an integrated concurrency control and recovery scheme.
In Proceedings of the 1982 SIGMOD Conference. ACM SIGMOD, 1982.

Daniels, D., and Spector, A.
An Algorithm for Replicated Directories.
In Proceedings of the 2nd Annual Symposium on Principles of Distributed

Computing. August, 1883.

Dubourdieu D. J.
Implementation of Distributed Transactions.
In Proceedings 1982 Berkeley Workshop on Distributed Data Management and

Computer Networks, pages 81 -94. 1982.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L.
The Notion of Consistency and Predicate Locks in a Database System.
Communications ACM 19(11):624-633, November, 1976.

47

Fischer, M., and Michael, A.
Sacrif icing serializability to attain high availability of data in an unreliable network.
In Proceedings, ACM SIGACT-SIGMOD Symp. on Principles of Database Systems.

March, 1982.

Gifford, D. K.
Weighted Voting for Replicated Data.
In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM

SIGOPS, December, 1979.

Gifford, D. K.
Information Storage in a Decentralized Computer System.
Technical Report CSL-81-8, Xerox Corporation, March, 1982.

Goodman, N., Skeen, D., Chan, A., Dayal, U., Fox, S, and Ries, D.
A recovery algorithm for a distributed database system.
In Proceedings, 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database

Systems. March, 1983.

Guttag, J . V., and Horning, J. J.
The Algebraic Specification of Abstract Data Types.
Acta Informatica (10):27-52, 1978.

Hammer, M. M., and Shipman D. W.
Reliability Mechanisms in SDD-1, a System for Distributed Databases.
ACM Transactions on Database Systems 5(4):431-466, dec, 1980.

Herlihy, M. P.
Replication Methods for Abstract Data Types.
Technical Report MIT/LCS/TR-319, Massachusetts Institute of Technology

Laboratory for Computer Science, May, 1984.
Ph.D. Thesis.

Johnson, P. R., and Thomas, R. H.
The maintenance of duplicate databases.

Technical Report RFC 677 NIC 31507, Network Working Group, January, 1975.

Lamport, L.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7):558-565, July, 1973.

Liskov, B,, and Snyder, A.
Exception handling in CLU.

IEEE Transactions on Software Engineering 5(6):546-558, November, 1979.

Liskov, B., and Scheifler, R.
Guardians and actions: linguistic support for robust, distributed programs.
ACM Transactions on Programming Languages and Systems 5(3):381 -404, July,

48

B. Liskov, M. Herlihy, P. R. Johnson, G. Leavens, R. Scheifler, and W. Weihl.
Preliminary argus reference manual.

Technical Report 39, M.l.T. L.C.S. Programming Methodology Group, October, 1983.

Minoura, T., and Wiederhold, G.
Resilient extended true-copy token scheme for a distributed database system.
IEEE Transactions on Software Engineering 8(3):173-188, May, 1982.
Oppen, D., Dalai, Y. K.
The clearinghouse: a decentralized agent for locating named objects in a distributed

environment.

Technical Report OPD-T8103, Xerox Corporat ion, October, 1981.

Papadimitr iou, C.H.
The serializability of concurrent database updates.
Journal of the ACM 26(4):631 -653, October, 1979.
Reed, D.
Implementing atomic act ions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

Thomas, R. H.
A solution to the concurrency control problem for multiple copy databases.
In Proc. 16th IEEE CompuL Soc. Int. Conf. (COMPCON). Spring, 1978.

Weihl, W. "
Specification and implementation of atomic data types.
Technical Report TR-314, Massachusetts Institute of Technology Laboratory for

Computer Science, March, 1984.

